Вопрос о том, делится ли данное число n нацело на другое число m, часто возникает в самых разных практических задачах. Один из способов выяснить это состоит в непосредственном делении числа n на число m, однако такой способ далеко не самый легкий. Желание иметь какие-либо критерии, позволяющие устанавливать факт делимости, не прибегая к операции деления, приводит нас к задаче о нахождении наиболее простых признаков делимости.
Некоторые признаки делимости (на 2, на 3, на 5, на 9) хорошо известны. Целью настоящего параграфа является создание более или менее целостной картины, выработка единого взгляда на систему методов, дающих различные признаки делимости. Разумеется, свойства чисел настолько богаты и разнообразны, что их вряд ли можно уложить в одну простую схему, дающую все признаки делимости. Мы постарались отобрать лишь такие свойства, из которых получаются наиболее эффективные, на наш взгляд, результаты.
Для решения приведенных ниже задач могут понадобиться некоторые сведения о целых числах. Напомним, что деление числа n на число m с остатком означает нахождение частного q и остатка r, для которых выполнены условия
n = qm + r, 0≤r<m. Если r = 0, то говорят, что число n делится на m или кратно m. Мы будем разрешать деление не только положительных чисел, но и любых целых чисел вообще - при этом число q, возможно, будет отрицательным или нулем. Будем допускать также и деление с недостатком -r, т. е. представление числа в виде
n = qm - r, 0≤r<m. Полезно знать следующие несложные факты (если они вам не известны, то попробуйте доказать их самостоятельно):
а) если два числа отличаются друг от друга на число, кратное m, то остатки от деления этих чисел на m совпадают, и наоборот;
б) сумма двух чисел имеет тот же остаток от деления на m, что и сумма остатков от деления этих чисел на m;
в) произведение двух чисел имеет тот же остаток от деления на m, что и произведение остатков от деления этих чисел на m;
г) если произведение двух чисел, одно из которых взаимно просто с числом m, делится на m, то второе из этих чисел делится на m, и наоборот;
д) если число делится на каждое из двух взаимно простых чисел, то оно делится и на их произведение.
Комментарии к книге «Примени математику», Игорь Николаевич Сергеев
Всего 0 комментариев