139*35 = 139*26 + 139*21 - 139*20 = 4448 + 278 + 139 = 4865. 1.12. Деление на степень двойки можно провести в такой же последовательности, как умножение, описанное в формулировке задачи 1.11, но, естественно, с заменой операции умножения операцией деления, например,
139:32 = 69,5:16 = 34,75:8 = 17,375:4 = 8,6875:2 = 4,34375. 1.13. Пусть надо перемножить два числа вида 1a- и 1b-. Тогда имеем равенства
(10+а)(10+b) = 100 + 10а + 10b + ab = 10(а+b) + 100 + ab, которые подтверждают правильность предложенного в условии задачи способа.
1.14. Из равенства
(100-а) (100-b) = (100-а)100 - 100b + ab = 100 ((100-a)-b) + ab, где а и b - дополнения первого и второго сомножителя до 100 соответственно, вытекает правильность предложенного способа.
1.15. Ответ получен из верного равенства
(1000-а) (1000-b) = (1000-а)1000 - 1000b + ab = 1000 ((1000-a) - b) + ab при а = 13 и b = 4. Таким образом, для перемножения двух трехзначных чисел, близких к 1000, достаточно вычесть из одного числа дополнение второго до 1000 и, увеличив разность в 1000 раз, прибавить к ней произведение дополнений исходных чисел до 1000.
1.16. Пусть нужно перемножить числа 10а+b и 10а+с, удовлетворяющие условию b+с = 10. Тогда имеем
b>(10а+b)(10а+с) = 100а2 + 10aс + 10bа + bс = 100а2 + 10а(b+с) + bс = 100а2 + 100а + bс = 100а(а+1) + bc, что и требовалось доказать.
1.17. Для возведения в квадрат числа, оканчивающегося на 5, достаточно отбросить у него последнюю цифру, а затем перемножить полученное число с числом, большим его на 1, и приписать к результату справа 25. Это правило является следствием равенства, доказанного в решении задачи 1.16, если в нем положить b = с = 5.
1.18. Пусть перемножаются числа 10а+5 и 106+5. Правильность предложенного способа вытекает из следующих равенств:
1.19. Произведение чисел а и b можно найти по формуле
удобной для применения в случае одновременной четности или одновременной нечетности сомножителей (в противном случае их полусумма и полуразность были бы нецелыми) и в случае, когда эти сомножители близки друг к другу.
1.20. Квадраты двух соседних чисел различаются на сумму этих чисел, поскольку имеют место равенства
(а+1)2 - а2 = 2а + 1 = (а+1) + а. Аналогично, если числа различаются на 2, то разность их квадратов
Комментарии к книге «Примени математику», Игорь Николаевич Сергеев
Всего 0 комментариев