«Примени математику»

672

Описание

На примере решения большого числа конкретных задач в основном практического содержания показывается, как использовать математические идеи и методы для нахождения выхода из разного рода затруднительных положений, которые могут возникнуть в повседневной жизни. Рассматриваются вопросы построения и изменения ограниченными средствами, поиска оптимального решения в той или иной ситуации, способы быстрого счета, задачи на разрезание, переливание, взвешивание и т. п. Для школьников и всех любителей математики. Источник: http://mathemlib.ru/books/item/f00/s00/z0000034/index.shtml



10 страница из 157
читать на одной стр.
Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

стр.

(a+2)2 - а2 = 4а + 4 = 4(а+1) = 2((а+2) + а) равна удвоенной сумме этих чисел. Так как любое целое число отличается от ближайшего числа, кратного 5, не более чем на 2, то, пользуясь указанными здесь соображениями, можно восстановить его квадрат, например,

312 = 302 + (31 +30) = 900 + 61 = 961, 322 = 302 + 2 (32 + 30) = 900 + 124 = 1024, 332 = 352 - 2 (33+ 35) = 1225 - 136 = 1089, 342 = 352 - (34 + 35) = 1225 - 69 = 1156. 1.21. Кубы двух соседних чисел а и а+1 различаются на число

(а+1)3 - а3 = 3а2 + 3а + 1 = 3а(а+1) + 1, равное утроенному произведению этих чисел, увеличенному на 1. Поэтому, зная куб, скажем, числа 30, мы быстро находим куб следующего числа:

313 = 303 + 3*30*31 + 1 = 27 000 + 2790 + 1 = 29 791. 1.22. Вычисление квадратов в разобранных примерах основано на формуле

a2 = (а+b)(а-b) + b2, в которой удачный подбор числа b сильно облегчает выкладки: во-первых, один из сомножителей должен оказаться "круглым" числом (желательно, чтобы ненулевой его цифрой была только первая), во-вторых, само число b должно легко возводиться в квадрат, т. е. должно быть небольшим. Эти условия реализуются как раз на числах а, близких к "круглым".

1.23. Пусть надо найти квадрат числа а, заключенного между 25 и 50. Тогда, пользуясь формулой из решения задачи 1.22, получаем

а2 - (а + (50-а)) (а - (50-а))+ (50-а)2 = 50 (2а-50) + (50-а)2 - (а-25)100 + (50-а)2, откуда следует справедливость предложенного способа.

1.24. Приведенные в решении задачи 1.23 выкладки справедливы для любого числа а, поскольку они не используют оценок 25<а<50. Для описания же процедуры возведения в квадрат двузначного числа а, большего 50, имеет смысл в соответствующем описании из условия задачи 1.23 "дополнение" числа а до 50 заменить дополнением 50 до числа а, а вычитание 25 из числа а - прибавлением 25 к уже найденному дополнению а - 50. Действительно, с учетом формулы из решения задачи 1.23 имеем

а2 = (а-25)100 + (50-а)2 - ((а-50)+25)100 + (а-50)2. Например, при а = 63 получаем

632 = (13 + 25)100 + 132 = 3969. 1.25. Для возведения в квадрат числа, близкого к 500, достаточно отнять от него 250 и, увеличив результат в 1000 раз, прибавить к нему квадрат разности между исходным числом и 500. Действительно, по аналогии с решением задачи 1.23 имеем

а2 - (а+ (500-а)) (а-(500-а)) + (500-а)2 = 500 (2а-500) + (500-а)2 = (а-250)1000 + (500-а)2, а при а = 492 получаем разобранный в условии пример.

Комментарии к книге «Примени математику», Игорь Николаевич Сергеев

Всего 0 комментариев

Комментариев к этой книге пока нет, будьте первым!

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

Популярные и начинающие авторы, крупнейшие и нишевые издательства