«О Бесконечном »

1167

Описание

Доклад, прочитанный 4-го июня 1925 г. на съезде математиков, организованном вестфальским математическим обществом в Мюнстере в память Вейерштрасса.



14 страница из 24
читать на одной стр.
Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

стр.

При сообщениях мы будем пользоваться в качестве числовых знаков также и буквами а, b, c. Согласно этому, b > а является сообщением того, что числовой знак b выступает за числовым знаком a. Точно так же, если исходить из этой точки зрения, a + b = b + a есть сообщение, что числовой знак a + b означает то же, что и числовой знак b + a. При этом содержательная правильность этого сообщения может быть доказана с помощью содержательного вывода, и мы можем с этим наглядным содержательным способом обсуждения пойти очень далеко вперёд.

Я хотел бы показать вам только один пример, в котором переходят за этот наглядный способ обсуждения. Самым большим (39 цифр) из известных до сих пор простых чисел является

р = 170 141 183 460 469 231 731 687 303 715 884 105 727.

С помощью известного евклидовского способа мы можем доказать, рассуждая полностью в рамках нашей установки, что между p + 1 и p! + 1 безусловно существует новое простое число. Это высказывание само по себе также соответствует нашей конечной установке, так как слово «существует» служит в данном случае только для того, чтобы короче сформулировать следующее высказывание:

Безусловно: p + 1 или p + 2 или p + 3 ... или p! + 1 есть простое число. Но, далее, очевидно, то же я  могу выразить словами: существует простое число

1.      > p и в то же время

2.      <= p! + 1

Отсюда мы приходим к формулировке теоремы, которая выражает только часть евклидовского утверждения; существует простое число >p. Хотя по своему содержанию это последнее утверждение гораздо уже евклидовского и хотя переход кажется совершенно безобидным, всё же это есть прыжок в трансфинитное [в смысле «законечное» — прим. ред.], если только это частичное высказывание рассматривать, как самостоятельное утверждение, вне вышеприведённой связи.

Комментарии к книге «О Бесконечном », Давид Гильберт

Всего 0 комментариев

Комментариев к этой книге пока нет, будьте первым!

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

Популярные и начинающие авторы, крупнейшие и нишевые издательства