«О Бесконечном »

1167

Описание

Доклад, прочитанный 4-го июня 1925 г. на съезде математиков, организованном вестфальским математическим обществом в Мюнстере в память Вейерштрасса.



12 страница из 24
читать на одной стр.
Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

стр.

Раньше мы уже выяснили, что какие бы опыты и наблюдения и какую бы отрасль науки мы ни рассматривали, нигде в действительности мы не находим бесконечности. Должны ли мысли о вещах быть столь непохожими на то, что происходит с вещами, должны ли они сами по себе идти другим путём, совершенно в стороне от действительности? Разве не ясно, что когда мы, как нам кажется,  в каком-то смысле познаём реальность бесконечного, на самом деле мы лишь позволяем себе соблазниться чудовищно большими и чудовищно малыми размерами, которые так часто встречаются в действительности. А содержательные логические выводы, когда мы их применяли к действительным вещам или событиям, — разве они нас где-либо обманывали и где-либо нам изменяли? Нет — содержательное логическое мышление необходимо. Оно нас обманывало только тогда, когда мы принимали произвольные абстрактные способы образования понятий; мы в этом случае как раз недозволенно применяли содержательные выводы, т.е. мы, очевидно, не обратили внимания на предпосылки, необходимые для применения содержательного вывода. В признании того, что такие предпосылки имеются и должны приниматься во внимание, мы согласны с философами, особенно с Кантом. Уже Кант учил — и это составляет существенную часть его учения, — что математика обладает не зависящим от всякой логики устойчивым содержанием, и потому она никогда не может быть обоснована только с помощью логики, вследствие чего, между прочим, стремления Дедекинда и Фреге должны были потерпеть крушение. Наоборот, кое-что уже дано в нашем представлении в качестве предварительного условия для применения логических выводов и для выполнения логических операций: определённые, внелогические, конкретные объекты, которые имеются в созерцании до всякого мышления в качестве непосредственных переживаний. Для того чтобы логические выводы были надёжны, эти объекты должны быть обозримы полностью во всех частях; их показания, их отличие, их следование, расположение одного из них наряду с другим даётся непосредственно наглядно, одновременно с самими объектами, как нечто такое, что не может быть сведено к чему-либо другому и не нуждается в таком сведении. Это — та основная философская установка, которую я считаю обязательной как для математики, так и вообще для всякого научного мышления, понимания и общения и без которой совершенно невозможна умственная деятельность. В частности, в математике предметом нашего рассмотрения являются конкретные знаки сами по себе, облик которых, согласно нашей установке, непосредственно ясен и может быть впоследствии узнаваем.

Комментарии к книге «О Бесконечном », Давид Гильберт

Всего 0 комментариев

Комментариев к этой книге пока нет, будьте первым!

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

Популярные и начинающие авторы, крупнейшие и нишевые издательства