Как это может произойти? К счастью для нас, здесь оказывается та же предустановленная гармония, которую мы так часто встречаем в истории развития науки — которая пригодилась Эйнштейну, когда он для своей гравитационной теории нашёл вполне разработанное общее исчисление инвариантов: в качестве такой успешно разрабатывавшейся предварительной теории мы находим алгоритм логики. Правда, этот последний возник первоначально из совершенно других отправных точек зрения, и в соответствии с этим знаки логического исчисления первоначально были введены тоже только для сообщений; но будет последовательным, если мы теперь отвергнем значение логических знаков, как мы отвергли значение знаков математических, и объявим, что формулы логического исчисления сами по себе не имеют никакого значения и суть идеальные высказывания. В логическом исчислении мы обладаем языком знаков, которым можно математические теоремы выразить с помощью формул, а логические умозаключения выразить с помощью формального процесса. Аналогично тому, как мы это делали при переходе от содержательной теории чисел к формальной алгебре, мы и в логическом исчислении рассматриваем знаки и символы операций, отвлекаясь от их содержательного значения. Благодаря этому, мы вместо содержательной математической науки, которую мы передаём обыкновенным языком, получаем некоторую совокупность формул с математическими и логическими знаками, следующих друг за другом по определённым правилам. Математическим аксиомам соответствуют некоторые определённые формулы, а содержательным выводам соответствуют правила, по которым формулы следуют одна за другой: таким образом, содержательные выводы подменяются внешними действиями согласно правилам. Тем самым совершается строгий переход от наивного к формальному обращению, с одной стороны, с самими аксиомами, которые сначала наивно считались основными истинами и которые уже давно в современной аксиоматике рассматриваются только как связи понятий, а, с другой стороны — с логическим исчислением, которое первоначально должно было быть только лишь иным языком.
Мы хотим ещё кратко разъяснить, каким образом формализируется математическое доказательство. Определённые формулы, которые, как я сказал, служат камнями для постройки формального здания математики, называются аксиомами. Математическое доказательство есть некоторая фигура, которая, как таковая, должна наглядно пред нами предстать; оно состоит из выводов, делаемых по следующей схеме:
S , S --> L
Комментарии к книге «О Бесконечном », Давид Гильберт
Всего 0 комментариев