Чтобы, пользуясь этим методом, проводить какие-то вычисления, надо, естественно, знать амплитуду перехода из одного места в другое. Я приведу пример типичной амплитуды. В ней не учтены некоторые детали, такие, как поляризация света или спин электрона, а в остальном она абсолютно точна. С ее помощью вы сможете решать задачи, куда входят различные сочетания щелей. Предположим, что частица с определенной энергией переходит в пустом пространстве из положения r1 в положение r2. Иными словами, это свободная частица: на нее не действуют никакие силы. Отбрасывая численный множитель впереди, амплитуду перехода от r1 к r2 можно записать так:
где r12=r2-r1 а р — импульс частицы, связанный с ее энергией Е релятивистским уравнением
или нерелятивистским уравнением
p2/2m = Кинетическая энергия.
Уравнение (1.7) в итоге утверждает, что у частицы есть волновые свойства, что амплитуда распространяется как волна с волновым числом, равным импульсу, деленному на
В общем случае в амплитуду и в соответствующую вероятность входит также и время. В большинстве наших первоначальных рассуждений будет предполагаться, что источник испускает частицы с данной энергией беспрерывно, так что о времени не нужно будет думать. Но, вообще-то говоря, мы вправе заинтересоваться и другими вопросами. Допустим, что частица испущена в некотором месте Р в некоторый момент и вы хотите знать амплитуду того, что она окажется в каком-то месте, скажем г, в более позднее время. Это символически можно представить в виде амплитуды <r, t = t1 P, t= 0>. И ясно, что она зависит и от r, и от t. Помещая детектор в разные места и делая измерения в разные моменты времени, вы получите разные результаты. Эта функция r и t, вообще говоря, удовлетворяет дифференциальному уравнению, которое является волновым уравнением. Скажем, в нерелятивистском случае это уравнение Шредингера. Получается волновое уравнение, аналогичное уравнению для электромагнитных волн или звуковых волн в газе. Однако надо подчеркнуть, что волновая функция, удовлетворяющая уравнению, не похожа на реальную волну в пространстве; с этой волной нельзя связать никакой реальности, как это делается со звуковой волной.
Комментарии к книге «8. Квантовая механика I», Ричард Филлипс Фейнман
Всего 0 комментариев