В качестве первого примера возьмем случай, когда физические условия не меняются со временем; мы имеем в виду внешние физические условия, так что Н не зависит от времени никаких магнитов никто не включает и не выключает. Выберем также систему, для описания которой хватает одного базисного состояния; такое приближение годится для покоящегося атома водорода и сходных систем. Уравнение (6.39) тогда утверждает, что
Только одно уравнение — и все! Если Н11постоянно, это дифференциальное уравнение легко решается, давая
Так зависит от времени состояние с определенной энергией Е=Н11. Вы видите, почему Нijследовало бы называть энергетической матрицей: она обобщает понятие энергии на более сложные случаи.
Вслед за этим, чтобы еще лучше разобраться в смысле уравнений, рассмотрим систему с двумя базисными состояниями.
Тогда (6.39) читается так:
Если все Н опять не зависят от времени, то эти уравнения легко решить. Для интереса займитесь этим сами, а мы позже еще вернемся к ним. Вот вы уже и можете вести расчеты по квантовой механике, зная об Н только то, что оно не зависит от времени!
§ 6. Молекула аммиака
Теперь мы хотим продемонстрировать, как динамическое уравнение квантовой механики может быть использовано для описания какой-то физической обстановки. Мы выбрали интересный и простой пример, в котором, сделав некоторые разумные предположения о гамильтониане, сможем вывести кое-какие важные (и даже практически важные) результаты. Возьмем случай, когда достаточно двух состояний,— это молекула аммиака.
Молекулу аммиака образуют один атом азота и три атома водорода, плоскость которых проходит мимо атома азота, так что молекула имеет форму пирамидки (фиг. 6.1, а).
Фиг. 6.I. Два равноценных геометрических расположения молекулы аммиака.
Комментарии к книге «8. Квантовая механика I», Ричард Филлипс Фейнман
Всего 0 комментариев