«Примени математику»

672

Описание

На примере решения большого числа конкретных задач в основном практического содержания показывается, как использовать математические идеи и методы для нахождения выхода из разного рода затруднительных положений, которые могут возникнуть в повседневной жизни. Рассматриваются вопросы построения и изменения ограниченными средствами, поиска оптимального решения в той или иной ситуации, способы быстрого счета, задачи на разрезание, переливание, взвешивание и т. п. Для школьников и всех любителей математики. Источник: http://mathemlib.ru/books/item/f00/s00/z0000034/index.shtml



153 страница из 157
читать на одной стр.
Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

стр.

19.83. Для паркета годятся любые одинаковые четырехугольники: сначала замостим всю плоскость параллелограммами, построенными на диагоналях данного четырехугольника как на сторонах, а затем в каждый параллелограмм поместим по данному четырехугольнику (на рис. 170 они заштрихованы), а остальные части плоскости автоматически окажутся такими же, но повернутыми четырехугольниками.

Рис. 170

19.84. Годится любая прямая, проходящая через точку пересечения диагоналей прямоугольника.

19.85. Достаточно провести разрез через центры симметрии прямоугольника и параллелограмма.

19.86. Достаточно, например, разрезать треугольник на три части, на которые его разбивают перпендикуляры к сторонам, опущенные из центра вписанной окружности (рис. 171).

Рис. 171

19.87. Пусть требуется провести разрез через вершину А четырехугольника ABCD. Через середину О диагонали BD проведем прямую, параллельную другой диагонали АС, до пересечения со стороной ВС или CD в точке Е (рис. 172). Тогда прямая АЕ делит четырехугольник ABCD на равновеликие части.

Рис. 172

19.88. Приставим один из меньших квадратов к другому и отрежем от них два исходных прямоугольных треугольника, переложив их так, как показано на рис. 173.

Рис. 173

19.89. Если мысленно разрезать данный ящик на два ящика размером 20*15*9 и 20*15*5, то в каждом из них одно измерение будет делиться на 10, другое на 5 и еще одно на 3. Поэтому оба ящика, а значит, и исходный можно заполнить коробками.

19.90. Можно разместить 68 кругов так, как изображено на рис. 174. При этом останется неиспользованной полоска шириной

(последняя величина положительная, поскольку

Рис. 174

19.91. Если бы это было возможно, то в круге радиуса 550 м можно было бы разместить без наложений 125 кружков радиуса 50 м каждый с центрами в скважинах. Но тогда общая площадь этих кружков, равная 125*2500*π м2 была бы меньше площади объемлющего круга, равной 550*550π м2, что не соответствует истине. Значит, указанное размещение скважин невозможно.

19.92. Если данная точка С не принадлежит окружности, то найдем точки D и Е пересечения прямых АС и ВС с окружностью, а затем точку F пересечения прямых АЕ и BD (рис. 175). Тогда прямая CF представляет собой искомый перпендикуляр.

Рис. 175

Комментарии к книге «Примени математику», Игорь Николаевич Сергеев

Всего 0 комментариев

Комментариев к этой книге пока нет, будьте первым!

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

Популярные и начинающие авторы, крупнейшие и нишевые издательства