Написано для Артёма.
Посвящается фанфикам по Поттеру.
«Я, может, только жить начинаю: на пенсию перехожу.»
= Точно — это про тебя.
— Математику, я люблю со школы, читал множество книг, а сейчас вот задумался, из всего чем нас мучили, в жизни пригодилась только элементарная арифметика[2].
Но может я просто не замечал, что некие практические задачи можно было бы решить дифференцированием, интегрированием, поиском экстремумов и подобным.
= Знаешь анекдот: Дети решите задачу «У Маши 4 груши...» «Но, Марья Ивановна мы проходили только про яблоки».
— Да, да я именно об этом. Для примера я взял квадратные уравнения, уж сколько нас ими жучили, сколько перерешали примеров, а за всю рабочую практику, ни разу не понадобилось... решил поискать в интернете, нечто подобное: «практическое применение квадратного уравнения»
= Представляю, чего ты там только не нашел. Потом проверю.
— Да, нашел много, но в одной из первых была ссылка на задачу сформулированную еще в древней Греции.
Два числа в сумме дают 20, а их произведение равно 96. Ну, ясное дело, надо определить эти числа.
Стало интересно, неужели я, такой крутой, не решу древнюю задачу.
Приведу это, совсем простое, решение подробно, по шагам, дабы ты смог его проверить.
1. Дана система:
x + y = 20
xy = 96
(фигурную скобочку системы на тексте не изобразить, да ты меня простишь)
2. из второй строки системы находим у
y = 96 / x
3. подставляем найденный у в первую строку
x + 96/x = 20
4. умножаем все на х
x2 + 96 = 20x
5. переносим правую часть и приводим к общепринятому виду (это называется приведенное квадратное уравнение)
x2 — 20x + 96 = 0
Вот тут я притормозил. Да, видимо жучили нас мало, за полвека формулу я забыл, если бы мне ее показали я узнал бы ее слету, вот, что значит нет постоянной практики.
= Так в чем проблема, посмотри в Интернете.
— Нет, легкие пути не для нас.
Тут я посмотрел на вторую строку системы
xy = 96
из этого следует, что в 96, в качестве сомножителей содержатся оба корня!!!
Комментарии к книге «Система Диофанта», W. Cat
Всего 0 комментариев