Сергей Попов Суперобъекты. Звезды размером с город
Главный редактор серии И. Максутов
Научный редактор К. Постнов
Редактор Р. Пискотина
Куратор серии С. Панина
Дизайн обложки А. Стельмащук
Иллюстраторы А. Стельмащук, А. Сербиненко
Руководитель проекта А. Тарасова
Корректор Е. Аксёнова
Компьютерная верстка М. Поташкин
© Попов С., 2016
© НП «Редакционно-издательский дом «ПостНаука», 2016
© ООО «Альпина нон-фикшн», 2016
Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).
* * *
Посвящается моей семье
Предисловие
Рано или поздно наша цивилизация погибнет в результате катаклизма. Грядущие поколения заново пройдут путь развития, который у нас уже за плечами. Но новый цикл жизни на Земле не будет простым повторением. Наши далекие потомки будут находить артефакты наших времен, но не смогут полностью понять их смысл. На основе интерпретаций наших знаний будет возникать новая мифология. Будут мифы и о самых совершенных небесных объектах.
Такой миф может выглядеть так: «Когда Творец Вселенной – Летающий Макаронный Монстр – создавал весь мир, то, сделав небо и Землю и населив Землю первыми существами, он захотел создать настоящий шедевр и поместить его в небо, которое было еще пустым и темным. Тогда он взял комок первовещества и начал его сжимать. Чем больше он мял его – тем больше он ему нравился. Он мял и мял его, делая все плотнее и плотнее. Но вдруг комок в его руках сжался очень сильно. Вещество исчезло, и получилась дыра. И стал Летающий Макаронный Монстр печален. Подумав, он взял другой комок. Смял его не очень сильно и бросил в небо. Появилось Солнце. Оно ярко светило и вначале радовало Творца. Он сделал много таких шариков, раскидав их вокруг – появились звезды. Но потом Летающий Макаронный Монстр опять стал печален. Светящиеся шарики недолго радовали его. Тогда он взял одну из звезд и начал ее мять и уминать. Но, помня о своем первом опыте, он был очень аккуратным. Творец лепил и лепил, мял и мял. Однако все время следил, чтобы шарик не превратился в дыру. Наконец Летающий Макаронный Монстр остановился. То, что получилось, очень понравилось ему. Это был настоящий шедевр, достойный того, чтобы украсить Вселенную. Так появились нейтронные звезды».
Действительно, я полагаю, что нейтронные звезды – это самые интересные макроскопические объекты неживой природы. Мы сейчас описываем мир, пользуясь тремя фундаментальными теориями: Специальной теорией относительности, Общей теорией относительности и квантовой механикой. Есть известный рисунок – cGh-карта или «куб теорий», придуманный очень талантливым физиком Матвеем Бронштейном[1]. На нем есть три координатные оси, одна из которых соответствует росту важности квантовых эффектов, другая – приближению к скорости света, а третья – увеличению гравитационного поля. Начало координат соответствует классической механике. Двигаясь вдоль оси, соответствующей увеличению скорости, мы попадем в область, где надо использовать Специальную теорию относительности. Если мы теперь начнем добавлять гравитацию, то окажемся там, где необходима Общая теория относительности. В том случае, если мы выйдем из начала координат вдоль оси, обозначенной значком постоянной Планка, то станут важны квантовые эффекты. Теперь, если добавить гравитацию, то это приведет нас в Terra Incognita квантовой гравитации. Наконец, переместившись в самую дальнюю от начала координат вершину куба, – столкнемся с процессами, требующими для своего описания так называемой «Теории всего», которая объединит все известные взаимодействия.
Если представить на этом рисунке место нейтронных звезд, то среди всех непосредственно наблюдаемых макроскопических объектов они окажутся самыми удаленными от начала координат. Для адекватного описания нейтронных звезд необходимы все три фундаментальные теории. Конечно, недра черных дыр должны быть еще экзотичнее, но их мы не можем наблюдать. Поэтому среди астрономических объектов, которые мы можем изучать, наиболее любопытная комбинация сложных физических процессов встречается у нейтронных звезд. Они и будут основными героями нашей книги. Разумеется, не забудем мы и про их «младших братьев» – белых карликов и про «старших сестер» – черные дыры.
Куб теорий, придуманный Матвеем Бронштейном. Чем дальше мы отходим от начала координат, двигаясь сразу по трем координатам, – тем более разнообразной становится физика.
Как астрофизика меня в первую очередь интересует то, что уже наблюдается или что можно наблюдать. Но за всеми этими данными стоит физика – наше понимание того, как устроена природа. По мере сил я попробую рассказать, что скрывается за скупыми словами «астрономы увидели», поэтому книга не везде будет легким чтением. Путь к звездам, а к нейтронным особенно, лежит через тернии. Тем не менее никаких специальных знаний, выходящих за рамки школьного курса или обычной эрудиции современного человека, читателю не потребуется. Для тех, у кого возникнет желание углубить и расширить свои знания о нейтронных звездах и связанных с ними феноменах, по ходу изложения будут приводиться ссылки на другие книги или интернет-ресурсы. Также о некоторых онлайн-ресурсах и книгах будет сказано в послесловии.
Благодарности
Книга основана на цикле коротких видеолекций, записанных «ПостНаукой». Без участия этого замечательного проекта она не появилась бы.
Я признателен Антону Бирюкову, Сергею Блинникову, Дмитрию Вибе, Андрею Игошеву, Владиславу Кобычеву, Игорю Огневу, Максиму Пширкову и Валерию Сулейманову, которые прочли разные варианты рукописи и сделали полезные замечания, которые я постарался учесть. Огромное спасибо Валентину Пальшину и Дмитрию Фредериксу, предоставивших некоторые из иллюстраций, связанных с экспериментом «Конус».
Множество важных уточнений сделал научный редактор книги Константин Постнов. Все оставшиеся в книге неточности – на моей совести.
Благодарю слушателей моих лекций за хорошие вопросы, стимулирующие рассказывать больше и лучше. А также коллег, в первую очередь – соавторов моих научных работ, много способствовавших моему просветлению в вопросе изучения нейтронных звезд.
Особая благодарность фонду «Династия», который не только на протяжении нескольких лет поддерживал мою научную работу и многократно приглашал меня для участия в научно-популярных мероприятиях, но и в целом воссоздал в России атмосферу интереса к научно-популярной литературе.
Наконец, я хотел бы выразить бесконечную признательность моей жене Сусанне за все, что она для меня делает.
I. Жизнь звезды
Звездный свет
Многие считают, что самые важные астрономические объекты – это звезды, и для этого есть основания. Если задуматься, все, что мы видим, мы видим так или иначе благодаря свету звезд. И, вообще говоря, мы видим именно все так, как мы видим, благодаря свету самой близкой к нам звезды – Солнца. Ведь наше зрение формировалось в течение длительной эволюции именно в условиях естественного солнечного освещения и адаптировалось именно к нему. На самом деле даже электрический свет имеет отношение к звездам и Солнцу. Как правило, искусственное освещение связано либо с углеводородами биогенного происхождения, которых, конечно, не было бы без солнечного света (как и каменного угля, который, если бы он мог говорить, рассказал бы нам о том, как светило Солнце сотни миллионов лет назад), либо – непосредственно с солнечной энергией, если у вас стоят солнечные панели, либо с гидроэнергетикой, а ведь вода у нас течет, потому что Солнце греет Землю. Пожалуй, только атомная энергетика в некотором смысле находится в стороне – однако на поверку (это мы покажем ниже) и она, как ни странно, имеет отношение к звездам.
Если мы посмотрим на ночное небо, то опять-таки все, что мы видим, – это или звезды, или объекты, которые светят отраженным светом звезд: Луна, планеты, кометы – все это отраженный свет Солнца. И если мы видим экзопланеты – планеты, вращающиеся вокруг других звезд, – то в основном они или отражают свет других звезд, или прогреты излучением звезд и поэтому излучают вроде бы сами, но часто без звезды этого мощного инфракрасного, к примеру, излучения экзопланеты не существовало бы. Поэтому первое важное утверждение этой главы состоит в том, что мы видим только потому, что во Вселенной есть звезды.
Изображение системы 2M1207, состоящей из экзопланеты (ее обозначают 2M1207b, она слева внизу) и бурого карлика. Это первый в истории прямой снимок объекта планетной массы (несколько масс Юпитера) вне Солнечной системы. Данная экзопланета видна благодаря собственному излучению. За счет продолжающегося гравитационного сжатия недра объекта разогреваются, и мы видим его инфракрасное излучение. То же верно и для некоторых других достаточно молодых планет. Поскольку соседом 2M1207b является бурый карлик – т. е. «недозвезда», в которой не начались реакции превращения водорода в гелий, то иногда ее классифицируют не как экзопланету, а как «объект планетной массы, вращающейся вокруг бурого карлика». Наблюдения проводились на телескопах VLT Европейской южной обсерватории (ESO).
Звезды в виде ярких неподвижных огоньков в небе были известны людям всегда, но, что это такое, по-настоящему поняли только в XIX веке, когда сумели надежно и достоверно измерить расстояния до звезд. Конечно, и раньше многие предполагали, что звезды – это далекие солнца, но тогда это были всего лишь догадки. Известно, например, что Тихо Браге был противником этой идеи, как раз потому, что он не смог измерить параллактическое смещение звезд и тем самым определить расстояния до них, а смириться с тем, что это настолько далекие солнцеподобные объекты, ему не позволяли его философские убеждения.
В 30-е годы XIX века сразу три астронома в разных странах (и даже полушариях) смогли измерить расстояния до звезд. Томас Хендерсон проводил свои наблюдения в Южной Африке (а обрабатывал уже в Британии). Он правильно выбрал звезду – Альфа Центавра. Это действительно ближайшая звезда на нашем небе. И Хендерсон верно измерил расстояние – получилось около одного парсека (т. е. три световых года с четвертью). Хотя наблюдения проводились в 1832–1833 годах, результаты были опубликованы только в 1839-м, поэтому пальму первенства он упустил. К чему, видимо, отнесся со свойственным английским джентльменам спокойствием.
Формально гонку выиграл Фридрих Бессель. Он выбрал слабую звезду 61 Лебедя, положившись на ее большое собственное движение на небе. И не прогадал. В 1838 году он опубликовал точные надежные измерения: расстояние порядка 10 световых лет (три парсека с лишним).
Другой Фридрих (которого мы знаем как Василия) – Струве – выбрал одну из двух самых ярких звезд северного неба – Вегу. И в серии работ (первая раньше работы Бесселя, вторая – позже) показал, что расстояние до Веги составляет 4–8 парсек (сейчас мы знаем, что оно составляет чуть менее 8 парсек).
Но знать расстояния – это еще не все.
Рождение и смерть звезд
Звезды рождаются и умирают, в том числе и прямо сейчас. Этот неоспоримый факт веками не был общепринятым и очевидным. Звезды воспринимались людьми как нечто практически вечное. Считалось, что эти далекие объекты, пусть и похожие на Солнце, светят всегда или почти всегда и в наше время уже не формируются и еще не прекращают свое существование. Это казалось логичным, само собой разумеющимся (возможно, Иммануил Кант был одним из первых, кто в Новое время серьезно заговорил о том, что звезды рождаются и умирают, и представил модель для формирования звезд и планетных систем, обычно же обсуждение ограничивалось Солнечной системой, хотя стоит отметить и Эммануила Сведенборга, рассуждавшего, правда, в рамках декартовской модели, где гравитация не играет определяющую роль). Но теперь мы понимаем, что звезды, конечно же, образуются, изменяются на протяжении своей жизни, и затем их жизненный цикл заканчивается – они во что-то превращаются. И это второй важный факт: звезды рождаются, живут и умирают. И это происходит на наших глазах.
Жизнь звезды – это в основном смена источников горения, смена источников энергии. Энергия вырабатывается в результате термоядерных реакций. Все эти термоядерные реакции начинаются с того, что водород превращается в гелий. Сейчас именно этот процесс происходит в Солнце и, вообще говоря, в большинстве звезд. Это самая длинная стадия звездной эволюции, она занимает примерно 90 % жизни звезды, некоторые из самых первых звезд нашей Галактики еще находятся на ней. Поэтому если мы наугад выберем какую-то звезду на небе, то с вероятностью более 90 % окажется, что в ее недрах водород пережигается в гелий. Затем водород заканчивается, звезда претерпевает первое изменение – она раздувается, превращается в красного гиганта. На диаграмме Герцшпрунга – Рэссела этот процесс соответствует движению вправо и вверх, в область низкой температуры поверхности, но большой полной светимости. Дальше все зависит от самого главного параметра звезды – от ее массы. Если масса достаточно большая, то ядро подожмется, станет еще более плотным и горячим, и пойдут следующие реакции: гелий начнет превращаться в углерод, углерод – в кислород, и так цепочка может идти до железа[2]. Лишь до железа и родственных элементов (никеля, кобальта), а не дальше вдоль таблицы Менделеева, потому что только это энергетически выгодно, так как при таких термоядерных реакциях энергия выделяется. Чтобы процесс шел дальше, необходимы затраты энергии, что невозможно на данном этапе жизни звезды: природа так не действует в стабильном режиме. Нужно чтобы происходило что-то не стационарное, чтобы что-то взрывалось. Что взрывается в звезде? Давайте поговорим об этом.
Диаграмма Герцшпрунга – Рэссела. Горизонтальная ось, на которой указаны спектральные классы, соответствует температуре звезд (горячие – слева, холодные – справа). Вертикальная – светимости (яркие вверху, слабые – внизу), она выражена в единицах светимости Солнца. Хорошо видны основные последовательности. Они соответствуют различным стадиям эволюции звезд. Важно, что эти последовательности не являются эволюционными треками. Выделяется так называемая главная последовательность, на которой звезда проводит бóльшую часть своей жизни, превращая водород в гелий.
Легкие звезды живут очень долго и очень медленно пережигают водород в гелий. Поскольку Вселенной всего лишь 13 миллиардов лет с хвостиком, то даже самые первые из легких звезд (с массой раза в два меньше солнечной и более легкие) должны доживать до наших дней. И их можно увидеть. Это очень важная задача – искать первичные звезды, образовавшиеся на самой-самой заре жизни Вселенной – спустя всего лишь несколько десятков миллионов лет после Большого взрыва.
Массивные звезды живут меньше просто потому, что они светят ярче и быстрее пережигают свой запас водорода, хотя его и больше, но светимость очень резко растет с ростом массы из-за роста температуры и плотности в центре. Если звезда имеет массу порядка солнечной, то она живет где-то 10–12 миллиардов лет. Солнце находится в середине жизненного пути, и в конце такой объект не взрывается – наша звезда просто не может взорваться, нет никаких физических причин для этого. Солнце превратится в красного гиганта, внешняя оболочка будет сброшена и останется постепенно остывающее ядро без источников энергии – белый карлик.
Белый карлик – это конечная стадия эволюции не слишком массивных звезд. Если же звезда раз в десять тяжелее Солнца, то она превратится не в белого карлика. В конце ее жизни ядро потеряет устойчивость. Оно уже будет состоять в основном из железа и начнет схлопываться, но этот коллапс может остановиться. И тогда произойдет очень мощное выделение энергии. Звезда как бы упадет сама на себя, но не превратится сразу в черную дыру, а произойдет взрыв сверхновой. Это очень важное событие. Оно не только имеет огромное значение в жизни отдельной звезды, отмечая ее яркий финал, но и позволяет образовывать тяжелые элементы.
В природе некоторые элементы тяжелее железа могут образовываться в заметном количестве практически только при взрывах сверхновых (также массивные ядра элементов могут возникать при слияниях нейтронных звезд и при быстром истечении оболочек красных сверхгигантов). А сверхновые – это в основном результат коллапса ядер массивных звезд (есть еще взрывы сверхкритических белых карликов в двойных системах, но их оставим на потом). Если мы говорим о звезде с массой в 10, 20, может быть, в 30 раз больше солнечной, то после взрыва сверхновой останется нейтронная звезда – крайне интересный объект, очень компактный. Средняя плотность у нейтронной звезды чуть выше, чем у атомного ядра[3], а в центре, разумеется, еще больше. Неудивительно, что такой объект имеет очень интересные физические свойства. Если же звезда вначале была еще более массивной, то, скорее всего, она превращается в черную дыру. То есть все-таки коллапс не останавливается – все схлопывается, гравитация побеждает все остальные силы, и образуется черная дыра. Иногда это может произойти со взрывом, а иногда – нет. Таким образом, у разных звезд разные судьбы.
Звезды и элементы
Всем известно, что небо ночью темное. Однако объяснить это явление отнюдь непросто. Лишь в XVIII веке эта загадка стала очень активно обсуждаться учеными и была названа парадоксом Ольберса. Хотя, как полагается, Ольберс был не первым, кто обратил внимание на то, что небо ночью темное, и задумался над этим, связав этот факт с вопросом о бесконечной Вселенной, заполненной звездами[4]. Проблема в том, что, чтобы небо было темным, нужно чтобы звезды где-то заканчивались. Потому что если бесконечная Вселенная заполнена звездами, то в таком вечном мире мы бы своим взглядом везде упирались в поверхность звезды и все небо сияло бы как поверхность Солнца[5]. Мы видим, что это не так – значит, звезды где-то заканчиваются. И самое интересное то, что заканчиваются они не в пространстве, а во времени – Вселенная имеет конечный возраст.
Глядя на самые близкие звезды, мы видим их такими, какими они были несколько лет или несколько десятков лет назад. Большинство звезд на небе видны нам такими, какими они были сотни и тысячи лет назад. Далекие галактики мы видим такими, какими они были миллиарды лет назад. Но нет и не может быть на нашем небе источника, который бы мы видели таким, каким он был 14 миллиардов лет назад, потому что 14 миллиардов лет назад никаких из наблюдаемых нами источников не было. Может быть, наша Вселенная бесконечна, но свет от далеких звезд просто до нас еще не добрался, поэтому у нас темное небо над головой и поэтому возникает вопрос: какими же были самые-самые первые звезды?
Дело в том, что, когда Вселенная образовалась, в ней успели появиться только первые два элемента: водород и гелий (плюс были еще мелкие добавки лития, одного из изотопов водорода – дейтерия, но это несущественные для нашего разговора детали). Соответственно, первые звезды могли состоять только из водорода и гелия, и взрывы этих объектов как раз и давали начало рождению первых тяжелых элементов. Потом цепочка продолжалась: выброшенное вещество входило в состав нового поколения звезд и т. д. Последующие поколения звезд имели уже другой химический состав.
Первые звезды, состоявшие только из водорода и гелия, могли быть очень массивными. В тысячу раз тяжелее Солнца! Сейчас таких уже не делают. Они могли порождать первые черные дыры, которые были в десятки раз тяжелее тех, что сейчас возникают из звезд. А потом первые звездные черные дыры стали зародышами того, что сейчас мы наблюдаем как сверхмассивные черные дыры в центрах галактик. Большой вопрос связан с тем, могли ли самые первые звезды быть легкими (легче Солнца). Вначале считалось, что нет. Моделирование показывало, что в облаке газа с массой около 100 000 масс Солнца возникает 1–2 массивные звезды. Однако расчеты, проводимые в последнее время, опровергают эту точку зрения. Компьютерные симуляции показывают, что в некоторых случаях возникает по 5–6 звезд и некоторые из них оказываются настолько легкими, что время их жизни превышает современный возраст Вселенной.
Чтобы увидеть первые звезды, астрономы идут двумя путями. Во-первых, они пытаются строить все более мощные инструменты. По всей видимости, понадобятся новые аппараты за пределами земной атмосферы – космические телескопы следующего поколения, чтобы увидеть хотя бы взрывы самых первых звезд. Увидеть их где-то там, в прошлом, спустя всего лишь десятки миллионов лет после рождения Вселенной. Свет от них будет сильно покрасневшим из-за расширения Вселенной (она растягивается более чем в 10 раз за время распространения света от первых звезд, т. е. длина волны фотонов возрастает во столько же раз), поэтому аппараты должны наблюдать в длинноволновой области спектра, где земная атмосфера в основном непрозрачна. Большие надежды возлагают на космический телескоп имени Джемса Вебба (JWST). Его гигантское, по меркам орбитальных аппаратов, зеркало позволит увидеть то, что ранее оставалось скрытым от нас[6]. Однако, если в ранней Вселенной рождались не только очень тяжелые звезды, но и маленькие – с массой, скажем, около половины массы Солнца, то они могли дожить до наших дней. И тогда, например, где-то в нашей Галактике, даже в наших окрестностях, крутятся звезды с аномальным химическим составом – там только водород и гелий.
James Webb Space Telescope – JWST. Это космический телескоп следующего поколения. Он должен прийти на смену космическому телескопу имени Хаббла. Одна из основных задач для этого инструмента – увидеть взрывы первых массивных звезд.
Регулярно, примерно раз в год, сообщается, что найдена новая рекордная, еще менее металличная звезда, как говорят астрономы. Астрономы очень просто подходят к терминологии в данном случае – все элементы тяжелее гелия они называют металлами. Так вот, такие звезды ищут, но пока не добрались до первичного состава. Ищут и далекие объекты с первичным составом. На больших красных смещениях, естественно, мы наблюдаем не отдельные звезды, а, например, большие газовые облака с очень низким содержанием тяжелых элементов. Но как хочется в итоге решить эту важнейшую задачу – в конце концов добраться до первых звезд.
Звезды – самые первые объекты во Вселенной. Современные компьютерные модели эволюции нашего мира говорят нам, что звезды образуются раньше галактик, поэтому самый первый свет, который возник во Вселенной, – это все-таки свет звезд. За исключением того, что когда-то светилась сама Вселенная, потому что была еще горячей.
Безусловно, люди воспринимают звезды как что-то далекое. Даже Солнце – это все-таки достаточно далекий объект и к тому же, на наше счастье, объект достаточно спокойный. Оно не взрывается, никуда не девается, очень стабильно светит. Разве только на нем происходят какие-то вспышки, которые, видимо, не могут сильно навредить биологическому миру на Земле. Но теперь человечество становится более уязвимым из-за своей зависимости от разнообразной электроники.
Есть мнение, основанное на наблюдении большого количества звезд, похожих на Солнце, что где-то раз в тысячу лет на нашей звезде происходят достаточно мощные вспышки, в сотни и тысячи раз более мощные, чем уже наблюдавшиеся солнечные. Они сопровождаются не только усилением электромагнитного излучения на некоторых длинных волнах, но и так называемым корональным выбросом. Поток солнечной плазмы устремляется во внешнее пространство. Если бы такое событие произошло сейчас (и выброс был бы направлен на Землю), то оно вывело бы из строя практически все космические аппараты, а также нарушило бы систему электроснабжения и радиосвязи на Земле. Вот это, наверное, и есть самая большая космическая проблема для нашей цивилизации – не падение астероидов, не что-то, что прямо приведет к исчезновению жизни на Земле (и что происходит примерно раз в десятки миллионов лет), а то, что выведет из строя электрические приборы, из-за чего перестанут работать спутники и прекратится подача электроэнергии. Это может быть крайне серьезной проблемой. Правда, повторим, такое на Солнце происходит редко. Солнце – очень спокойная звезда и поэтому воспринимается как далекий и безобидный объект. Пока еще, максимум, чего нам приходится опасаться, – это обгореть на пляже.
Довольно мощная вспышка произошла на Солнце в 1859 году. Ее называют событием Каррингтона – по имени астронома, описавшего ее. Современной электроники тогда не было, но были серьезные сбои и аварии в системе телеграфных линий (телеграфистов било током!). Произошла мощнейшая геомагнитная буря. Полярные сияния наблюдались на Кубе, в Колумбии и Мексике и едва ли не в Центральной Африке. Возможно, с тех пор несколько раз на Солнце происходили столь же мощные вспышки, но корональный выброс не был направлен на Землю.
Позже, уже в XX веке, мощные вспышки приводили к большим проблемам в линиях электропередачи. В 1989 году произошла крупная авария в канадских электросетях. Были приняты необходимые меры, чтобы в дальнейшем мы не могли пострадать от подобных событий. По статистике, лишь 4 % сбоев в системе электропередачи в США связаны с солнечными вспышками. Однако есть и более тревожные данные.
Анализ содержания изотопа углерод-14 показал, что в VIII веке его содержание было аномально высоким. Если предположить, что это было последствием солнечной вспышки, то она должна была бы быть очень мощной. Углерод-14 образуется в атмосфере при попадании в нее протонов высокой энергии (их как раз много выбрасывается в результате солнечных вспышек) или гамма-квантов (тогда причиной аномального роста содержания изотопа мог быть гамма-всплеск). Протон или гамма-квант взаимодействует с веществом атмосферы. В результате, в частности, образуются нейтроны с относительно небольшой (тепловой) энергией. Когда такой нейтрон взаимодействует с ядром азота, то образуется углерод-14. Затем он может накапливаться, например, в деревьях. От события Каррингтона такой аномалии нет. Поэтому вспышка в VIII веке должна была быть намного мощнее. Тогда на живом мире это не сказалось, но если бы такое произошло сейчас, то у нас были бы проблемы. К счастью, для мощной вспышки нужно, чтобы образовалась очень большая группа солнечных пятен. Так что мы узнаем о грозящей опасности заблаговременно.
Вспышка на Солнце, зарегистрированная 12 января 2015 года. Этот портрет Солнца в экстремальном ультрафиолете получен аппаратом Solar Dynamics Observatory американского космического агентства.
Итак, звезды очень важны для нашей жизни. Мы не только ничего бы не видели, если бы звезд не было – нас действительно не существовало бы, потому что мы состоим в основном из элементов тяжелее гелия. Давайте еще раз вспомним про эти самые тяжелые элементы.
Звезды – это самые главные термоядерные печи во Вселенной, где легкие элементы превращаются в тяжелые. За счет взрывов сверхновых синтез может идти дальше железа. Помните, в самом начале мы говорили, что и свет, связанный с работой атомных электростанций, в конечном счете восходит к звездам. Так вот, не было бы взрывающихся звезд – не было бы и урана, используемого для выработки электроэнергии.
Не будем забывать, что, когда во Вселенной закончилась короткая стадия первичного нуклеосинтеза, длившаяся лишь пару минут, в ней были только водород и гелий. А мы-то с вами состоим вовсе не из водорода и гелия (водорода по числу атомов в нас много, но по массе он не составляет основную часть нашего тела). То есть на самом деле практически все, что мы видим вокруг, как и мы сами, состоит из атомов, которые синтезировались в звездах. Вначале были только составные части – условно говоря, протоны и немножко нейтронов, поскольку есть гелий. И именно в звездах или при их взрывах образовались углерод, кислород, азот, кальций и т. д., из которых мы в основном и состоим.
Таким образом, не будет большим преувеличением сказать, что каждый атом в нашем теле побывал когда-то внутри какой-то звезды. Может быть, даже неоднократно, поскольку нашей Солнечной системе около пяти миллиардов лет (чуть меньше), а Вселенной – около 13 (чуть больше). Соответственно, у Галактики было достаточно времени, чтобы прошло несколько циклов и выброшенное звездами вещество успело перемешаться в межзвездной среде, облака в межзвездной среде начали конденсироваться, образовалось новое поколение звезд, они взорвались, цикл повторился, и в итоге образовалась Солнечная система с планетами и ее обитателями, состоящими уже из более тяжелых элементов. Таким образом, может быть действительно звезды – самые главные объекты во Вселенной.
Будущее звездной Вселенной
Что же ждет звездный мир в будущем? Сейчас процесс выглядит довольно стационарно. Звезды непрерывно формируются из межзвездной среды (в нашей Галактике образуется несколько звезд в год, а есть системы, где темп в десятки раз выше). В конце своей жизни они сбрасывают внешние слои. Делают они это или спокойно, или в результате взрыва сверхновой. В итоге что-то остается (белый карлик, нейтронная звезда или черная дыра), но большая часть вещества попадает обратно в межзвездную среду и может войти в состав следующего поколения звезд. Однако если мы подумаем об очень далеком будущем Вселенной – речь идет не о миллионах или миллиардах, а о десятках или даже сотнях миллиардов лет, – то, конечно же, газ будет потихонечку истощаться. То есть спустя многие-многие годы новые звезды будут образовываться очень редко. Сейчас мы это уже видим в эллиптических галактиках – там очень мало плотного холодного газа, из которого легко могут образоваться новые светила, и поэтому все звезды уже очень старые.
Фотографии эллиптической и дисковой галактик. Эллиптическая галактика ESO 325-G004 входит в состав скопления Abell S0740 (вокруг видно много других галактик разных типов). А дисковая – известный объект каталога Мессье, М101. В эллиптической газ уже практически закончился и процесс звездообразования очень слаб. Ярких массивных звезд, дающих голубоватый свет, там практически нет. В дисковых галактиках газа еще много, и красивый спиральный узор образован в основном яркими молодыми массивными звездами, которые сформировались менее нескольких десятков миллионов лет назад.
В далеком будущем это ждет все галактики: новые поколения звезд не будут формироваться, и тогда лишь уже образовавшиеся легкие звезды будут потихоньку доживать свой век. Ведь массивные звезды живут не очень долго, они быстро взорвутся, превратятся в нейтронные звезды и черные дыры. А маломассивные звезды могут существовать десятки миллиардов лет, пока не пережгут весь свой водород и не дойдут до стадии красного гиганта, а потом – белого карлика.
В конце концов, если Вселенная будет вечно расширяться, то через сотни миллиардов лет она останется без звезд. Мир станет «безвидным и пустым»: из объектов звездных масс будут в нем лишь белые карлики, нейтронные звезды и черные дыры. В более отдаленном будущем (которое и вообразить трудно) скорее всего, так или иначе начнут распадаться и они. Белые карлики и нейтронные звезды – из-за распада протонов. А черные дыры – из-за излучения Хокинга. Правда, и распад протонов, и хокинговское излучение пока остаются гипотезами, хотя и очень привлекательными.
К счастью, пока у нас есть и белые карлики, и черные дыры, и нейтронные звезды. Последние проявляют себя как источники очень разных типов.
II. Многообразие нейтронных звезд
Все хорошо в меру
Нейтронные звезды – самые интересные объекты во Вселенной. Это очень легко доказать. Возьмем любой объект. Например, ядро звезды. В принципе, при наличии неограниченных технических возможностей, можно любой достаточно массивный объект (начиная с красного карлика) превратить в нейтронную звезду, если его сильно сжать. В природе это происходит так: ядро звезды, довольно занимательный объект сам по себе, сжимается гравитацией. Источники энергии внутри исчерпываются, и ядро начало схлопываться – коллапсировать. Оно сжимается и становится все интереснее.
В физике, как правило, когда параметры достигают экстремальных значений, появляется что-то новое и примечательное. При существенном уплотнении вещество ведет себя не так, как при обычных значениях плотностей. Очень сильные магнитные поля меняют свойства вещества не так, как обычные магнитные поля. Количество переходит в качество. Так вот, представим, что мы сжимаем и сжимаем объект, и становится все интереснее и интереснее. Мы можем наблюдать крайне любопытные физические процессы, не встречающиеся в других условиях. Но если сжать его слишком сильно – получится черная дыра. То есть все исчезнет в этой черной дыре. Это уже не так увлекательно, потому что у черной дыры всего один основной параметр – масса. Кроме этого, черная дыра может вращаться, и это важно для описания пространства-времени в непосредственной близости от нее. Правда, эффект значителен лишь при экстремальном вращении, которое в природе у черных дыр достигается нечасто. Наконец, у дыры может существовать электрический заряд, но в реальности черные дыры почти всегда не заряжены, или заряд очень маленький, так как на заряженный объект быстро натекают заряды противоположного знака. Так что «пережав» и создав черную дыру, мы теряем часть интересной физики[7].
Во всем нужна мера. Если остановиться вовремя, то из ядра звезды размером десятки тысяч километров получится шарик радиусом километров десять – двенадцать. Это размер крупного города. Там есть сверхплотное вещество, которого нет в земных лабораториях, сверхсильные магнитные поля, которые нельзя создать в лабораторных установках. У вас очень сильная гравитация на поверхности. Все с приставками «сверх-» и «супер-». И вы можете наблюдать это экзотическое физическое многообразие! То есть вы можете непосредственно изучать сверхплотное вещество, которое находится в сверхсильном гравитационном, магнитном, электрическом поле. И это суперинтересно!
Внутреннее строение нейтронной звезды. Выделяют две основные части: ядро и кору. Каждую из них, в свою очередь, также делят надвое. Во внутренней коре появляются свободные нейтроны в сверхтекучем состоянии. А поведение вещества во внутреннем ядре вообще остается загадкой.
Предсказание и открытие нейтронных звезд
Внутри у наших суперобъектов все тоже страшно интересно. Кроме сверхплотного вещества, там может быть сверхтекучесть протонов, нейтронов, разные экзотические состояния, новые элементарные частицы. Это чрезвычайно любопытные для исследователя объекты.
Нейтронные звезды (что нечасто бывает в астрономии) вначале предсказали. Произошло это еще в 30-е годы ХХ века. Началось все с работы Льва Ландау, написанной даже до открытия нейтронов. В статье было высказано предположение о существовании сверхплотных звездных конфигураций с плотностью порядка ядерной. Но ничего не говорилось о возможном происхождении таких звезд, о том, где и как их искать. Настоящее откровение случилось в 1934 году, когда Вальтер Бааде и Фриц Цвикки опубликовали коротенькую заметку, в которой сумели правильно предвидеть, что нейтронные звезды рождаются в результате вспышек сверхновых (а потому их можно обнаружить в остатках этих взрывов).
Однако несмотря на то, что это весьма интригующее предсказание, никто не бросился искать нейтронные звезды. Дело в том, что найти десятикилометровый шарик где-то, бог знает где (в далеком остатке сверхновой), очень трудно. В итоге обнаружили их случайно только в 1967 году (Бааде не дожил до этого момента, а Цвикки – да). Никто не смог догадаться, что, если у компактных объектов есть сверхсильные магнитные поля (которые предсказывались за несколько лет до открытия пульсаров в работах Виталия Гинзбурга и Леонида Озерного) и они быстро крутятся, то в результате должны формироваться строго периодические радиоимпульсы (это неудивительно, специалисты до сих пор спорят о природе механизма генерации радиоизлучения пульсаров). А именно такие радиоимпульсы и были открыты.
Сама по себе история открытия радиопульсаров весьма драматична. Она в деталях рассказана во множестве книг и статей. Напомним, что поскольку пульсарный сигнал выглядит искусственным – слишком уж точным и коротким был период, как будто работает радиомаяк или еще какое-то устройство, – то первая мысль была о том, что астрономы уловили послание внеземного разума. Первый источник даже назвали LGM-1, т. е. Little Green Men –1. Уже тогда инопланетян называли маленькими зелеными человечками. Источник впоследствии получил «нормальное» имя – PSR B1919+21, но его первое обозначение явственно свидетельствует о неординарности открытия.
Типичные сигналы радиопульсара. Импульсы приходят строго периодически, что связано с вращением нейтронной звезды. У обычных радиопульсаров интервал между пиками составляет примерно от 10 миллисекунд до 10 секунд.
В 1960-е годы внеземной разум был очень модной темой. Наверное, это было связано с тем, что человек как раз вышел в космос и казалось, что мы вот-вот полетим к звездам. Тогда были потрачены довольно большие ресурсы на поиски искусственных внеземных сигналов. Активно проводились и наблюдения, и обсуждения. Собирались крупные международные симпозиумы с участием ведущих ученых. Кстати, современный скептицизм ученых относительно всяких зеленых человечков оправдан тем, что ученые лет 10–15 очень серьезно исследовали эту проблему, но не нашли ничего хотя бы немного обнадеживающего. Показательно, что в начале программы по изучению внеземного разума назывались CETI–Communication with ExtraTerrestrial Intelligence. Но потом быстро поняли, что ни о каком контакте в ближайшее время речь не пойдет, и возник термин SETI – Search for ExtraTerrestrial Intelligence, сохранившийся до сих пор.
Осознав, что радиопульсары – это естественный феномен, надо было понять, какие же астрономические объекты могут вести себя таким образом. Ввиду наличия короткого стабильного периода было всего два кандидата: это или пульсации белых карликов, или вращение нейтронных звезд. Конечно, белые карлики тоже вращаются, а нейтронные звезды пульсируют, но периоды не подходят. Чтобы выбрать что-то одно, нужно было измерить, как период изменяется со временем. Ясно, что со временем и энергия вращения, и энергия пульсаций должны уменьшаться. Но в одном случае (при пульсациях) период будет тоже уменьшаться, а в другом расти.
Если мы рассмотрим вращение, то потери энергии должны приводить к его замедлению. То есть период потихоньку возрастает. Пульсации ведут себя не так. Возьмите упругий шарик и вертикально уроните его на гладкую твердую поверхность. Он будет прыгать, энергия будет теряться. Но вы услышите, что частота ударов все время растет: та, та, та-та, та-та-та. Это наглядно иллюстрирует, что при затухании пульсаций период должен становиться короче.
Радиоастрономы довольно быстро смогли обнаружить, что периоды радиопульсаров растут. Совсем чуть-чуть: чтобы период увеличился на секунду, обычно требуется несколько миллионов или даже десятков миллионов лет. Но этот рост однозначно позволял сказать, что мы имеем дело не с пульсациями белых карликов, а с вращением нейтронных звезд.
Именно энергия вращения в конечном счете превращается в радиоизлучение. И не только в него. В радиодиапазоне излучается ничтожная доля от полного энерговыделения. Если нейтронная звезда является радиопульсаром, то она излучает не только в радио-, но и во всех других диапазонах, просто не всегда это видно. Стабильность излучения пульсаров делает их источниками, полезными в народном хозяйстве. Во-первых, их можно использовать как эталон точного времени. А во-вторых, по ним можно ориентироваться. И здесь как раз лучше всего подходят радиопульсары, видимые в рентгеновском диапазоне.
Рентгеновские детекторы становятся все дешевле, компактнее и надежнее. Многие радиопульсары, видимые в рентгеновском диапазоне, представляют собой яркие стабильные источники. Их легко увидеть и трудно с чем-нибудь перепутать, так как благодаря пульсациям излучения с точно известным периодом они как бы несут индивидуальные метки. Сейчас и в России, и в Европе, и в США активно разрабатывают системы ориентации спутников по рентгеновским пульсарам. Это особенно важно для аппаратов, которые работают в автоматическом режиме вдали от Земли. Недаром и на известных пластинах с краткой информацией о человеке и нашей планете, установленных на аппаратах серии «Пионер» и «Вояджер», положение Земли было показано относительно радиопульсаров, чтобы братья по разуму могли при случае найти нас. Если спутник находится в Солнечной системе, но далеко от Земли, то довольно трудно с высокой точностью определить его расстояние от Солнца. Наблюдения миллисекундных пульсаров в рентгеновском диапазоне позволят сделать это с точностью в несколько сот метров без необходимости постоянной связи с Землей.
Итак, радиопульсары были открыты. За это дали Нобелевскую премию. Дали ее не тому человеку. Это тоже отдельная, довольно типичная, история: главный автор открытия – Джоселин Белл – остался без приза. Но важно, что нейтронные звезды наконец-то обнаружены и люди начали их изучать.
Радиопульсары и рентгеновские пульсары – старый зоопарк
С радиопульсарами астрономам повезло: у нейтронных звезд вдруг оказались своего рода «бубенчики». Выяснилось, что молодые нейтронные звезды – не просто 10-километровые горячие шарики, они вдобавок излучают мощные периодические радиоимпульсы. Но был и еще один сюрприз, правда, авторам его открытия не так повезло.
С Земли невозможно наблюдать рентгеновское излучение космических объектов: все поглощается атмосферой. Приборы надо запускать в космос. Астрономы смогли начать это делать в начале 1960-х, устанавливая детекторы еще не на специализированных спутниках, а на ракетах, полет которых продолжался совсем недолго. Однако Риккардо Джиаккони, Герберт Гурски и их коллеги обнаружили несколько рентгеновских источников. Одним из них был объект, получивший наименование Sco X-1. Sco – обозначение созвездия Скорпион, именно там находится источник. X указывает на то, что это рентгеновский источник, во многих странах рентгеновские лучи называют Х-лучами (как обозначал их и сам Вильгельм Рентген). Наконец цифра 1 говорит о том, что это первый обнаруженный рентгеновский источник в созвездии Скорпион.
Теперь мы знаем, что источник Sco X-1 – это тесная двойная система с нейтронной звездой. Вещество нормальной звезды перетекает на компактный объект, будучи захваченным его гравитацией. Этот процесс называется аккрецией. В результате падения вещества на нейтронную звезду выделяется много энергии. Поскольку газ разогревается до высокой температуры, мы видим яркий рентгеновский источник. Примерно такое понимание природы Sco X-1 возникло через несколько лет после открытия, еще до обнаружения радиопульсаров. Но не было решающего доказательства.
Профиль импульса рентгеновского пульсара. Для наглядности показано два периода излучения. Периоды рентгеновских пульсаров могут находиться в очень широком диапазоне: от миллисекунд до часов.
Ключевым аргументом мог бы стать период вращения нейтронной звезды. Текущее на нее вещество – это плазма. Она неохотно двигается поперек силовых линий магнитного поля. Поэтому вещество каналируется на магнитные полюса, нагревая небольшую площадь поверхности. Такие горячие пятна называют полярными шапками. Если шапка повернута к нам – мы видим большой поток излучения. А когда нейтронная звезда повернута к нам холодным боком – меньший. В результате излучение будет пульсирующим. Такие источники называют рентгеновскими пульсарами[8].
Если период пульсаций короткий – значит источник очень компактный и прочный (иначе вращение разорвало бы его). Кроме того, по свойствам излучения можно понять, что оно приходит от очень небольшого объекта. Все вместе это было бы доказательством того, что аккреция идет на нейтронную звезду. Но Sco X-1 не пульсирует. Рентгеновские пульсары были обнаружены уже после того, как открыли радиопульсары. Так что шанс обнаружить нейтронные звезды по их рентгеновскому излучению был упущен. Правда, за огромный вклад в развитие рентгеновской астрономии Риккардо Джиаккони получил свою Нобелевскую премию, но это было уже в 2002 году, когда Джиаккони исполнилось 70 лет.
Таким образом, к началу 1970-х сформировалась такая картина. Молодые нейтронные звезды видны как радиопульсары благодаря своему быстрому вращению и сильным магнитным полям. А более старые компактные объекты могут стать видны, если они входят в тесную двойную систему, когда начинается перетекание вещества с обычной звезды на нейтронную.
В старом зоопарке нейтронных звезд было два типа зверей: радиопульсары и аккрецирующие нейтронные звезды. И казалось, что других сюрпризов не будет. К счастью, реальность оказалась богатой на чудеса.
Магнитары, Великолепная семерка и все-все-все – новый зоопарк нейтронных звезд
Вначале казалось, что вырисовывается более или менее простая картина. Происходит вспышка сверхновой и рождается компактный объект. Действительно, внутри остатков сверхновых, внутри разлетающейся туманности, мы находим нейтронные звезды. У них сильные магнитные поля, в тысячи миллиардов раз больше, чем на Земле. У них быстрое вращение. Они могут рождаться с периодами 10–20 миллисекунд и даже меньше. Это очень-очень короткий период. Скорость вращения на экваторе приближается к скорости света. Такой вот нестандартный объект. Хотя в конце концов даже самые нестандартные могут оказаться типичными, если они все на одно лицо. Радиопульсары казались похожими друг на друга. А самым главным прототипом считался пульсар в Крабовидной туманности.
Нейтронная звезда с линиями магнитного поля. Вблизи поверхности поле может иметь более сложную структуру, но на больших расстояниях доминирует дипольная составляющая, образующая привычную картину силовых линий.
Этот пульсар был открыт в 1968 году. Его обозначение PSR B0531+21 (где числа – координаты на небе, а буква «B» говорит о том, что координаты соответствуют эпохе 1950 года). Он находится в туманности, на месте которой в 1054 году китайские астрономы наблюдали взрыв сверхновой. (В Европе 1054 год отмечен Великой схизмой – расколом между Римской и Византийской церквами. Странно, что никто не заметил вспышку и не связал ее с концом света.) Сейчас период вращения нейтронной звезды, наблюдаемой во всех диапазонах спектра, составляет 33 миллисекунды. Но при рождении период был менее 20 миллисекунд. Магнитное поле пульсара примерно в 10 тысяч миллиардов раз больше земного.
Но в последние 15–20 лет стали открывать необычные молодые нейтронные звезды, не похожие на пульсар в Крабе. Открыли нейтронные звезды с очень большими магнитными полями – с полями в тысячу раз больше, чем у обычных радиопульсаров. Открыли молодые нейтронные звезды и с маленькими магнитными полями – в тысячу раз меньше, чем у обычных радиопульсаров. Открыли звезды, которые очень медленно вращаются при рождении. Медленно означает, что период вращения равен не десяти миллисекундам, а, скажем, одной секунде. Одна секунда для нас – все равно быстро, но это в сто раз медленнее, чем вращаются другие. Есть загадочная нейтронная звезда в остатке сверхновой RCW103. Обнаружилось, что ее излучение меняется с периодом почти семь часов, правда, пока нет полной уверенности, что это именно период вращения компактного объекта (например, это может оказаться орбитальным периодом или еще чем-то). Получился целый большой зоопарк молодых нейтронных звезд с очень интересными свойствами.
Сейчас в дополнение к радиопульсарам, которых известно более 2000 штук, выделяют следующие классы молодых нейтронных звезд. Во-первых, источники мягких повторяющихся гамма-всплесков. Во-вторых, аномальные рентгеновские пульсары. Две эти группы источников объединяют в общий класс магнитаров, их общее число – примерно три десятка. В-третьих, радиотихие нейтронные звезды в солнечных окрестностях, называемые Великолепной семеркой. В-четвертых, центральные компактные объекты в остатках сверхновых, их известно около десятка. Они тоже радиотихие, как и Семерка, они испускают тепловое излучение, но они моложе, у них короче периоды вращения и меньше магнитные поля. Наконец, надо упомянуть так называемые вращающиеся радиотранзиенты (Rotating radio transients – RRATs). Это явно родственники радиопульсаров, демонстрирующие очень короткие радиоимпульсы. Однако природа импульсов неясна, и источники выделяют в отдельный класс.
Совершенно непонятно, почему они такие разные. Казалось бы, все должно быть примерно одинаково. Вроде бы существует единый универсальный процесс: схлопнулось ядро звезды, и образовалась нейтронная звезда. Массы примерно одинаковые, радиусы – тоже. А вот вращение, магнитные поля и скорости – разные. Поэтому и наблюдаются они как непохожие друг на друга источники. В наши дни это очень актуальная задача – объяснить, почему новорожденные нейтронные звезды выглядят такими непохожими и как они потом эволюционируют.
Астрономы обнаружили такой парадокс. Если взять разные типы молодых нейтронных звезд и определить темп рождения в каждой популяции, то суммарный темп рождения молодых компактных объектов получается больше темпа сверхновых с коллапсом ядра. Странный результат. Значит, что-то мы делаем не так. Конечно, можно предположить, что мы ошиблись сразу во всех темпах, причем в одну сторону и в несколько раз. Но это вряд ли. Значит, видимо, просто нельзя складывать скорости рождения разных нейтронных звезд. Может быть, не совсем правильно думать, что все они рождаются настолько разными и их линии жизни никогда не пересекаются. Ведь если, например, сложить темпы рождаемости разных групп населения на Земле – мальчиков, девочек, физиков, химиков, болельщиков «Спартака», болельщиков ЦСКА, то окажется, что суммарный темп больше, чем темп рождения людей. Человек может, к примеру, родиться одновременно мальчиком, получить физическое образование и болеть за «Спартак». А может родиться девочкой, химиком, болельщицей ЦСКА, а потом сменить пол, стать физиком и начать болеть за «Барселону». То есть произойдет очень интересная эволюция. Может быть, что-то подобное происходит и у нейтронных звезд. То есть существуют какие-то эволюционные связи между пульсарами и магнитарами, магнитарами и Великолепной семеркой, Великолепной семеркой и центральными компактными объектами и т. д.
Источники энергии нейтронных звезд
Все эти типы источников сейчас активно изучаются. Разные молодые нейтронные звезды можно наблюдать различными способами, потому что они очень по-разному могут выделять энергию. В астрономии это всегда очень важно, потому что астрономия – единственная естественная наука, где мы не можем экспериментировать с реальными объектами исследования.
Все знают, как биологи изучают лягушек. Берут несчастных животных и режут их на мелкие кусочки, а потом через эти кусочки могут еще пропустить электрический ток. Физики, изучая частицы, разгоняют их, сталкивают – и смотрят, что получается. Мы не можем сталкивать нейтронные звезды, как-то ковыряться в них, бурить. Мы можем только наблюдать издалека. Поэтому важно, как и какая энергия выделяется в этих источниках.
Открытие нейтронных звезд с большими магнитными полями вызвало у астрофизиков огромный интерес, потому что эти объекты могут выделять энергию магнитного поля. Здесь важно напомнить, что магнитное поле порождается электрическими токами. Соответственно, если у нас присутствуют сильные токи, то появляются сильные поля. Так немножко понятнее. Ведь не так легко представить себе, как выделить энергию магнитного поля. Но все очень хорошо понимают, что если воткнуть пинцет в розетку, то будет короткое замыкание и все может перегореть. Выделяется энергия тока!
На нейтронных звездах с большими полями могут проходить короткие замыкания. Мы не очень пока понимаем, как и где они происходят – снаружи или в коре нейтронной звезды. Но при этом выделяется колоссальное количество энергии. За одну десятую секунды выделяется 1046 эрг (светимость Солнца – 4 на 1033 эрг в секунду, т. е. Солнце излучит 1046 эрг лишь за 100 000 лет!). Короткое время – десятую долю секунды – она светит ярче, чем большая галактика, т. е. система, состоящая из сотен миллиардов звезд. Это очень много. Это страшно интересно. И, естественно, когда очень много и страшно интересно, это очень трудно исследовать, изучать, потому что возникают очень сложные физические процессы. И ученые сейчас бьются, используют разные конкурирующие теории, чтобы описать эти явления.
С другой стороны, нейтронные звезды мы можем наблюдать просто потому, что на них что-то падает – идет аккреция. Каждый грамм, упавший на нейтронную звезду, дает около 10 в 20 эрг энергии (один грамм тротилового эквивалента – это 4×1010 эрг, т. е. в два миллиарда раз меньше!). Это много – примерно 10 % от mc2. Если вы возьмете водородную бомбу, взорвете, посчитаете, сколько энергии выделилось (будет примерно 1022 эрг, что соответствует примерно 250 килотоннам тротилового эквивалента). А потом возьмете просто камень такой же массы, как у бомбы, и бросите на нейтронную звезду, то выделится гораздо больше энергии. При самых эффективных термоядерных реакциях выделяется всего лишь порядка 1 % от mc2. Аккреция дает намного больше! Чтобы получить 1022 эрг, надо бросить на нейтронную звезду камень массой всего лишь… сто грамм!
Радиопульсары светят не за счет аккреции и не за счет диссипации энергии токов. Их «кладовая» – это вращение нейтронной звезды. Со временем период, за который компактный объект совершает оборот вокруг своей оси, растет. А энергия вращения обратно пропорциональна квадрату этого периода. Если мы начинаем с одной миллисекунды, то запас соответствует излучению с солнечной светимостью на протяжении 100 миллиардов лет! Неудивительно, что молодые сильно замагниченные нейтронные звезды, быстро «разбазаривающие» предоставленную им звездой-прародительницей энергию вращения, являются очень яркими источниками. Настоящая «золотая молодежь».
Причем быстрое вращение – это не единственное их наследство. Они еще и рождаются очень горячими. Запасов тепловой энергии тоже может хватить надолго. Именно благодаря расходованию ими запасенного тепла мы видим некоторые компактные объекты в остатках сверхновых.
Многообразие процессов с мощным выделением энергии дает разнообразные наблюдательные проявления. Поэтому ученые разными способами пытаются изучать нейтронные звезды. Используются самые разнообразные инструменты. Это и радиотелескопы – люди изучают радиопульсары и другие проявления нейтронных звезд в самой длинноволновой части спектра. Это и рентгеновские телескопы, потому что, когда энергии много, температура большая, то обычно испускается жесткое излучение. Это легко понять. Если вам нужно унести сто долларов, вы можете взять одной стодолларовой бумажкой или ста бумажками по одному доллару. Положить в карман. Мелкие даже удобнее. Но если вам надо унести сто миллионов долларов, то попробуйте посчитать, сколько это будет купюрами по одному доллару – будет несколько мешков. Столько не унести. Поэтому нужно брать крупными купюрами. Даже есть специальные купюры – тысячедолларовые, которые в магазинах не принимают. В природе все устроено точно так же. Когда в маленькой области пространства выделяется очень много энергии, то ее уносит самыми «жирными» рентгеновскими или гамма-квантами. И в нейтронных звездах это часто происходит. Они маленькие и компактные. И когда они светят, энергия уносится рентгеновским или гамма-излучением. (Продолжая аналогию, можно заметить, что для хищений в особо крупных размерах используют разные теневые схемы без участия наличных, а нейтронные звезды, когда энергии очень много, теряют ее за счет испускания нейтрино, крайне плохо взаимодействующих с веществом и поэтому способных незаметно покидать недра компактных объектов.)
Двадцатишестиметровый радиотелескоп обсерватории Маунт Плезант в Тасмании и рентгеновский спутник Чандра. Нейтронные звезды являются источниками и очень длинных, и очень коротких электромагнитных волн. Как в медицине, где для комплексной диагностики нужно использовать разные виды излучения и разные длины волн, так и в астрофизике наблюдения в разных диапазонах позволяют полнее изучить природу источников.
Но нейтронные звезды светят и в оптическом диапазоне. Например, возьмем самый знаменитый пульсар – пульсар в Крабовидной туманности. Можно посмотреть на нее в очень мощный оптический телескоп и заметить пульсации блеска одной из звездочек. Конечно, глазу это будет тяжело – слишком быстро меняется блеск. Но с помощью довольно простых приборчиков это можно сделать. Вообще говоря, классические астрономы, работавшие с данными оптических телескопов, могли это открыть до обнаружения радиопульсаров, если бы знали, куда смотреть. Тогда они бы опередили радиоастрономов.
Внутренняя часть Крабовидной туманности непосредственно вблизи пульсара. Видна структура, формирование которой связано с его активностью.
Итак, у нейтронных звезд может быть четыре основных источника энергии: вращение, энергия токов, тепло и аккреция. Первые три во многом связаны с тем, как нейтронная звезда рождалась – со сверхновой и свойствами взрывающегося ядра. В некоторых случаях, если часть вещества, выброшенного при взрыве, падает обратно на новорожденный компактный объект, аккреция также может стать источником энергии, связанным с параметрами сверхновой.
Отпечатки «пальцев» сверхновых на нейтронных звездах
Хотя нейтронные звезды крайне любопытны сами по себе, особенно интересно их исследовать, потому что они рождаются в бурном процессе взрыва сверхновой. А мы очень плохо знаем, как сверхновые взрываются. Мы видим их сотни в год, и это количество только растет с вводом в строй новых инструментов, специально предназначенных для поисков вспыхивающих объектов. Но посчитать детально модель такого взрыва очень тяжело. Там перемешано очень много всякой сложной физики. И по большей части авторы разных сценариев взрывов пользовались какими-то упрощениями. Например, кто-то не учитывал сильные магнитные поля, кто-то не учитывал какие-то термоядерные реакции, кто-то приближенно считал гравитацию, кто-то считал двумерную модель взрыва и т. д. А до недавнего времени сверхновые вообще не «взрывались» в компьютерах, если расчеты проводили в трех измерениях. Приходилось руками вписывать дополнительный импульс, добавлять «поршень», который расталкивал бы вещество. Только недавно, в 2012 году, наконец-то астрофизикам удалось продвинуться и взорвать «компьютерную сверхновую». Они смогли учесть эффекты Общей теории относительности более корректно, чем раньше. Это позволило получить взрыв и разлет вещества. Но все равно есть ощущение, что, хотя многое сделано, многое еще предстоит, поскольку разлет получился только в двумерном моделировании, а настоящая вспышка сверхновой происходит в трех измерениях. Кроме того, в этих расчетах не учитывались некоторые потенциально важные физические процессы.
Сейчас, в первую очередь благодаря росту мощности компьютеров, ученые активно продвигаются в этом направлении. Правда, наблюдатели постоянно подкидывают все новые и новые загадки, обнаруживая все более и более странные сверхновые. Но даже если взрыв смоделирован успешно, это надо сравнивать с разнообразными наблюдениями.
Нейтронные звезды, рожденные в процессе взрыва ядра звезды, несут на себе его отпечаток. Например, они могут очень быстро двигаться. Представьте, у вас есть компактный объект диаметром 20 километров с массой раза в два больше, чем у Солнца, а лететь он может со скоростью несколько тысяч километров в секунду. Хотя до взрыва скорость звезды-прародителя составляла всего лишь 10 км/с, т. е. она практически покоилась относительно своих соседей. Такая ситуация возможна, потому что если мощный взрыв чуть-чуть сделать несимметричным, то отдача заставит образовавшийся компактный объект быстро двигаться. Энергии хватит. И это тоже надо воспроизводить в расчетах. Нужно, чтобы модели рождения нейтронных звезд, т. е. модели взрывов сверхновых, объясняли как сами большие скорости, так распределение компактных объектов по скоростям: сколько рождается медленных, а сколько – быстрых. Таким образом, изучая скорости нейтронных звезд (и черных дыр), мы косвенно получаем информацию о физике взрыва сверхновой.
Точно так же масса, вращение, величина магнитного поля и другие параметры нейтронной звезды несут на себе отпечаток взрыва сверхновой. Частичное выпадение вещества после взрыва обратно на компактный объект может увеличивать массу и уменьшать наблюдаемое магнитное поле, асимметрия взрыва может раскручивать нейтронную звезду и менять направление оси вращения. Чем лучше мы понимаем происхождение начальных свойств нейтронных звезд, тем лучше понимаем физику сверхновых.
Я абсолютно убежден, что в наши дни область астрофизики, изучающая нейтронные звезды, не только находится на стадии роста, но и в течение ближайших лет будет оставаться очень активной областью, которая будет давать много важных результатов не только астрофизикам, но и физикам вообще. То есть она будет полезна для фундаментальной науки в целом. И связь со сложной физикой взрыва сверхновой – лишь один из примеров. Многие другие возникают по мере рассмотрения того, как параметры компактных объектов меняются со временем.
III. Эволюция нейтронных звезд
Астрофизические проявления нейтронных звезд, – т. е. то, какими мы их видим, – зависят от многих параметров: масса, скорость, период вращения, температура, магнитное поле, свойства вещества вокруг… Эволюция нейтронной звезды – это изменение ключевых параметров. Мы обсудим основные из них.
Вращение
У любого объекта есть предельная скорость вращения. Например, скорость вращения на земном экваторе составляет примерно полкилометра в секунду. Если мы начнем раскручивать нашу планету все быстрее и быстрее, то в конце концов она начнет разрушаться. Скорость вращения на экваторе Солнца примерно в 10 раз больше, чем на экваторе Земли. Если Солнце заставить вращаться в сотни раз быстрее, то вещество начнет истекать с солнечного экватора. Это приведет к замедлению вращения. Возникает предельный период. Нельзя заставить Солнце вращаться с периодом около часа. Нейтронные звезды могут вращаться очень быстро, потому что они компактные и плотные. Для них предельный период составляет менее одной тысячной доли секунды. Это соответствует скорости примерно 1/5 от скорости света! Дальше даже такие компактные объекты начинают истекать.
Нейтронные звезды могут иметь очень короткий период вращения, в том числе близкий к предельному, уже при своем рождении или приобретать его в ходе эволюции (раскручиваясь в двойных системах за счет аккреции вещества со второй звезды). Анализ данных наблюдений показывает, что практически все эти компактные объекты при рождении имеют периоды существенно менее одной секунды. Такую особенность легко объяснить. Нейтронная звезда появляется на свет в результате коллапса ядра звезды. Его размеры уменьшаются в тысячи раз. Все знают, что если вращающийся объект сжимается, то скорость вращения увеличивается. Простые оценки показывают, что звездное ядро в результате коллапса может легко раскрутиться до периода в доли секунды.
Вращение может быть настолько быстрым, что на какое-то время предотвратит образование черной дыры. Масса компактного объекта может быть большой, но превращение в черную дыру определяется плотностью в центре. Быстрое вращение понижает эту плотность. Поэтому какое-то время, пока новорожденный объект имеет короткий период, окончательный коллапс не происходит. Лишь спустя какое-то время, обреченная нейтронная звезда схлопнется. Такие, как говорят, метастабильные объекты называют супрамассивными нейтронными звездами. Теоретики любят привлекать их там, где им хочется сделать двухстадийный коллапс с дополнительным энерговыделением в промежутке (источником энергии служит вращение супрамассивного объекта).
Быстровращающаяся нейтронная звезда, замедляясь, может сколлапсировать в черную дыру из-за роста центральной плотности. По мере торможения вращения в центре растет плотность, и вещество может начать переходить в новую фазу. Область новой фазы, т. е. состоящая уже из других частиц, будет расти. Этот процесс может завершиться коллапсом.
В течение своей жизни нейтронная звезда может и замедлять свое вращение, и ускорять (но, конечно, не быстрее предельного). Для ускорения необходимо какое-то внешнее воздействие, а замедление может происходить и без участия внешних объектов. История нейтронной звезды обычно начинается с замедления.
Нейтронная звезда чаще всего рождается как радиопульсар. Даже если сам механизм радиоизлучения по какой-то причине оказывается подавленным (как, например, в центральных компактных объектах в остатках сверхновых), замедление вращения одиночной нейтронной звезды происходит примерно по одинаковому сценарию. У нас есть быстровращающийся «шарик» с магнитным полем. Такой объект должен излучать электромагнитные волны и ускорять заряженные частицы. В приложении к нейтронным звездам впервые на это указал Франко Пачини в 1967 году (т. е. прямо перед открытием радиопульсаров, хотя сам феномен пульсара не был предсказан). На излучение волн и ускорение частиц нужна энергия. Она берется из вращения, т. е. наш «шарик» будет замедляться. Время, затрачиваемое на один оборот, будет увеличиваться.
Энергия уносится потоком волн и частиц. Интенсивность излучения зависит от частоты вращения и величины магнитного поля. По мере замедления вращения энергии будет излучаться все меньше. Это означает, что будет падать давление, оказываемое дующим от нейтронной звезды «ветром» на внешнюю среду. Вначале давление обычно достаточно велико, поэтому пульсар «не знает» о том, что вокруг не пустота. Но со временем присутствие вещества будет все заметнее. Оно стремится подобраться поближе к нейтронной звезде. Это стремление связано как с давлением самого вещества (оно, во-первых, определяется температурой и плотностью вещества, а во-вторых, есть «лобовое давление», связанное со скоростью вещества относительно нейтронной звезды), так и с гравитацией. Если вещество вошло в область гравитационного влияния нейтронной звезды, то она сама начнет «натягивать» его на себя. В конце концов, ветер волн и частиц не сможет сопротивляться внешнему давлению, и вещество начнет проникать в магнитосферу. Это выключает не только пульсарный механизм (обычно он перестает работать еще раньше), но и весь процесс генерации ветра релятивистских частиц. Замедлившись до критического значения периода вращения, нейтронная звезда переходит на следующую эволюционную стадию.
Если первую стадию жизни нейтронной звезды называют эжектором (потому что вещество и волны активно эжектируются – выбрасываются – во внешнюю среду), то вторая стадия получила название пропеллера. Впервые ее рассмотрел в самом начале 1970-х годов Викторий Шварцман. Но мировую известность она получила в 1975-м благодаря статье Андрея Илларионова и Рашида Сюняева.
На этой стадии падение вещества на поверхность остановлено быстро вращающейся магнитосферой (которая вращается вместе со звездой, поскольку силовые линии «вморожены» в кору). Дело в том, что падающее вещество – это плазма. Вещество плазмы ионизовано, а заряженные частицы взаимодействуют с магнитным полем. Им очень тяжело двигаться поперек силовых линий (поэтому на Земле красивые сияния происходят в основном вблизи магнитных полюсов, за что их и называют полярными). Иногда говорят, что частицы сидят на силовых линиях как бусины на проволоке. На самом деле их поведение сложнее, но для нас важно, что плазма, как говорят, «вморожена» в магнитное поле. Плазме тоже, как и отдельным заряженным частицам, трудно двигаться поперек силовых линий. Поэтому магнитное поле может остановить поток вещества.
Если скорость вращения магнитного поля в данном месте превышает круговую скорость движения плазмы, то вращающиеся силовые линии магнитного поля работают как пропеллер, пытаясь разбросать вещество. Энергия вращения нейтронной звезды через магнитное поле передается веществу, часть которого может улететь вдоль силовых линий. Это приводит к очень быстрому торможению вращения нейтронной звезды. Поэтому стадия пропеллера достаточно короткая, и застать на ней нейтронную звезду довольно маловероятно. К тому же на этой стадии обычно нет мощного энерговыделения, так что и ярких источников здесь не получишь. Хотя кандидаты есть, их находят в тесных двойных системах, где вещество перетекает с нормальной звезды на слишком быстро вращающуюся нейтронную.
Постепенно время оборота нейтронной звезды вокруг своей оси растет. Медленно вращающийся пропеллер уже не может задержать поток вещества. Оно попадает на поверхность. Начинается аккреция.
Теперь вращение нейтронной звезды может и ускоряться, и замедляться. Падающее вещество может приносить с собой момент импульса (иногда употребляют и другой термин – угловой момент), т. е. может раскручивать нейтронную звезду[9]. Но взаимодействие магнитного поля с потоком вещества должно тормозить вращение. Обычно, если внешние условия не меняются, устанавливается равновесие. Особенно ярко это проявляется у рентгеновских пульсаров – аккрецирующих нейтронных звезд в тесных двойных системах. Период пульсаций излучения – это, как и у радиопульсаров, период вращения компактного объекта. Только источником энергии теперь служит не вращение, а потенциальная (гравитационная) энергия падающего вещества. Наблюдения демонстрируют, что часть аккрецирующих пульсаров показывает увеличение периода, а часть – уменьшение. Часто мы видим, что какой-то рентгеновский пульсар то ускоряется, то тормозится. Но обычно это колебания вблизи положения равновесия, когда торможение и ускорение примерно уравновешивают друг друга. Это равновесие крайне важно, так как если есть хорошая модель аккреции, то знание равновесного периода позволяет оценить магнитное поле нейтронной звезды, чем астрофизики активно пользуются. Зачастую другого способа хотя бы примерно узнать величину поля аккрецирующей нейтронной звезды просто нет.
Итак, радиопульсар живет, пока нейтронная звезда быстро вращается. Рентгеновский пульсар возникает в двойной системе, если звезда достаточно замедлилась. Если магнитное поле постоянно, то вращение – главный параметр, определяющий то, какой мы видим нейтронную звезду. Но поле не всегда постоянно.
Изменение магнитного поля
Магнитное поле порождается электрическими токами. И поля нейтронных звезд – не исключение. Поскольку они не подключены к розетке, и батареек в них нет, токи со временем должны уменьшаться, затухать. Соответственно, будет уменьшаться и магнитное поле. На пальцах – все ясно. Но при углублении в детали обнаруживается масса любопытного и неожиданного.
Начнем с вопроса: где текут токи, порождающие магнитное поле? Ответ: неизвестно. Конечно, важно понимать: когда ученые отвечают, что что-то не известно, чаще всего это означает наличие нескольких вариантов, выбрать из которых мы пока не можем. В случае нашего вопроса есть две основные возможности: поля (и токи) в основном сосредоточены в коре нейтронной звезды или они в основном находятся в ядре. Разумеется, в реальности они должны быть и там, и там. Но в какой пропорции?
Токи в коре должны быть более или менее похожи на тот ток, к которому мы привыкли. Ведь кора нейтронной звезды (кроме ее самой внутренней части, где вещество находится в состоянии так называемые «ядерной пасты», – спагетти, лазанья… – что понравилось бы Летающему Макаронному монстру) во многом похожа просто на кусок металла. Конечно, есть и существенные отличия, но по крайней мере тут нет каких-то фундаментальных сложностей. Возможно, поэтому сейчас очень популярны модели, где поле в основном сосредоточено в коре.
Магнитное поле в ядре, по всей видимости, устроено очень необычно. Дело в том, что протоны в ядре должны находиться в сверхтекучем состоянии (в ядре ток должен быть связан именно с протонами, а не электронами). Сверхтекучесть заряженных частиц означает наличие сверхпроводимости. А сверхпроводники с магнитным полем не дружат. Поле или совсем выталкивается из сверхпроводника, или разбивается на квантовые магнитные трубки, в которых разрушена сверхпроводимость. Скорее всего, недра нейтронных звезд представляют собой сверхпроводник второго рода. Огромное количество магнитных трубок пронизывает ядро нейтронной звезды. Теперь для затухания поля надо, чтобы эти трубки выталкивались из ядра в кору: только там их можно будет уничтожить. Это может происходить по мере замедления вращения нейтронной звезды, но здесь есть много неопределенностей. Поэтому часто предполагают, что эволюция поля в ядре нейтронной звезды не слишком сильно сказывается на наблюдательных проявлениях. Мы ниже также будем придерживаться этой гипотезы.
Есть еще один простой важный вопрос: откуда токи берутся? Первая часть ответа очень проста: они остаются от ядра звезды. Нейтронная звезда образуется в процессе коллапса. Если мы представим себе ядро звезды пронизанным магнитными силовыми линиями, то при сжатии линии сохранятся (как говорят, сохранится магнитный поток). Плотность линий возрастает при сжатии. Соответственно, возрастает поле. Если у нас есть ядро звезды радиусом несколько тысяч километров, то при сжатии до размеров нейтронной звезды поле вырастет в десятки или даже сотни тысяч раз. Так можно объяснить поля обычных радиопульсаров. Для магнитаров есть вторая часть ответа: нужно дополнительно усиливать поле, например, за счет динамо-механизма.
Схема коллапса с сохранением магнитного потока. Видно, что радиус объекта уменьшается, а число линий остается прежним. Значит, количество силовых линий, проходящих через элемент поверхности единичной площади, растет. Это означает усиление магнитного поля на поверхности.
Итак, допустим, токи в основном сосредоточены в коре. Тогда они будут уменьшаться просто за счет электрического сопротивления. Оно может определяться двумя основными факторами. Во-первых, есть дефекты в микроструктуре вещества коры. Они будут препятствовать потоку электронов – т. е. току. Во-вторых, кора может быть горячей. Тогда электронам будут мешать тепловые колебания – фононы. Пока нейтронная звезда молодая и горячая, доминирует затухание токов на фононах. Позже, когда звезда остынет, – на дефектах коры.
Затуханию токов может помогать еще один процесс, он особенно важен для сильных полей – т. е. для магнитаров. Это так называемый холловский каскад. Магнитные поля в коре могут иметь сложную структуру, не такую, как у обыкновенного дипольного поля, которое, как правило, представляет собой наиболее крупный элемент структуры. Мелкомасштабные поля затухают быстрее, и если придумать механизм, из-за которого энергия будет перекачиваться из больших масштабов в маленькие, то диссипация будет идти быстрее. Холловский каскад как раз приводит к тому, что крупномасштабное поле постепенно разбивается на мелкие составляющие, что приводит к более быстрому уменьшению глобального поля. А значит, к более активному энерговыделению.
Как бы то ни было, поле может (и должно!) уменьшаться. Чем сильнее поля – тем заметнее этот эффект. Уменьшение поля в некотором смысле имитирует замедление вращения: радиопульсар быстрее выключается, раньше происходит переход на стадию пропеллера, раньше может начаться аккреция. Но есть и более прямые проявления затухания поля.
Магнитное поле имеет энергию. Вообще говоря, большую. По формуле E = mc² в коре нейтронной звезды поле обычно соответствует плотности больше сотни грамм в кубическом сантиметре. А у магнитаров речь идет уже о многих тоннах в кубическом сантиметре! Это много. И эту энергию можно выделить. Кора даже может начать трескаться и разламываться после уменьшения энергии поля, так как это аналогично уменьшению давления в коре.
Поле порождается токами. Мы знаем два основных вида выделения энергии тока: какой-нибудь прибор либо греется постепенно, либо происходит короткое замыкание. В нейтронных звездах реализуются оба варианта.
Во-первых, постепенное затухание магнитного поля приводит к нагреву коры нейтронной звезды. Если поля велики, то эффект может быть значительным, и некоторые нейтронные звезды видны как рентгеновские источники именно благодаря такому «электрическому подогреву». Во-вторых, «короткие замыкания» приводят к вспышкам. Это основное свойство магнитаров, выделяющее их среди других нейтронных звезд.
Из-за эволюции поля может меняться его структура. Магнитное поле имеет много составляющих, т. е. это не просто «бабочка» диполя – это набор очень разных компонент, которые обычно быстро уменьшаются с расстоянием от поверхности нейтронной звезды (поэтому в большом масштабе всегда доминирует дипольное поле, оно спадает с расстоянием медленнее в сравнении с более «кудрявыми» компонентами), но вблизи поверхности они играют важную роль, направляя течение аккрецируемого вещества или формируя распределение поверхностной температуры при остывании нейтронных звезд. Разные компоненты эволюционируют с разной скоростью. Кроме того, они могут обмениваться энергией. Сейчас это научились воспроизводить в компьютерных расчетах. Такие особенности эволюции могут объяснить, например, магнитары со слабым дипольным полем. Они замедляются, как обычные пульсары, но вспыхивают, как настоящие магнитары, поскольку сильные поля (и токи) в них есть, только их структура иная. Кажется, что сильное поле все-таки не утаишь – как шило в мешке. Разве что взять мешок потолще…
«Толстый мешок» можно создать вокруг нейтронной звезды прямо в момент ее формирования. После взрыва сверхновой значительная масса вещества может выпадать обратно на сколлапсировавшее ядро. Этот процесс может занимать несколько часов. Нейтронная звезда (вместе со своим магнитным полем) формируется гораздо быстрее. Поэтому можно представить себе такую картину. На замагниченный компактный объект течет огромный поток плазмы. Давление настолько велико, что магнитосфера оказывается смятой. Теперь не магнитные силовые линии диктуют веществу, что надо течь на полюса, – теперь вещество дает силовым линиям команду «лежать». Поле прижимается к поверхности и укутывается слоем плазмы.
Иногда вещества выпадает много. Масса может составить и несколько солнечных. Нейтронная звезда не способна вынести такое давление и превращается в черную дыру. Но если упало всего лишь несколько тысячных или сотых массы Солнца, то в итоге получится нейтронная звезда, в коре которой продолжают течь мощные токи, но снаружи мы не видим сильного поля. Такие источники мы наблюдаем, например, как центральные компактные объекты в остатках сверхновых. Их еще иногда называют антимагнитарами, так как на диаграмме «период – темп замедления» они лежат относительно основной группы пульсаров с противоположной по сравнению с магнитарами стороны. При периодах в сотые или десятые доли секунды они обладают дипольными полями (которые отвечают за замедление вращения нейтронной звезды) в десятки и сотни раз меньше, чем у радиопульсаров. Но они не всегда останутся такими.
Поле будет потихоньку пробираться наружу. Согласно расчетам, это может занять несколько тысяч или десятков тысяч лет (в зависимости от того, каким было поле и сколько вещества выпало на поверхность). То есть антимагнитары должны исчезнуть, превратившись во что-то другое. Пока неясно, могут ли они потом включиться как радиопульсары или магнитары. Ответ в конечном счете должны дать наблюдения.
Тепловая эволюция
Нейтронные звезды рождаются горячими и начинают остывать. Первые расчеты этого процесса появились еще до открытия самих компактных объектов. Наверное, просто потому, что с этим связаны сложные и интересные физические явления
В процессе образования компактного объекта рождается огромное количество нейтрино. Пока идет коллапс, нейтрино могут покидать быстро сжимающееся ядро звезды. Но потом там станет слишком тесно и жарко. Первую минуту своего существования протонейтронная звезда непрозрачна для нейтрино. Она постепенно сжимается, начиная с размера в пару сотен километров, испуская нейтрино с поверхности, пока при возрасте несколько десятков секунд не достигнет своего окончательного радиуса и не станет прозрачной для этих частиц. Вот теперь можно считать, что нейтронная звезда окончательно родилась!
Пока компактный объект очень молод, главным процессом в тепловой истории является остывание. У нейтронной звезды оно происходит довольно причудливым образом, и все благодаря нейтрино. Предметы вокруг нас остывают снаружи (мы постоянно сталкиваемся с этим во время еды, например, беря печеную картошку из углей). А нейтронные звезды остывают изнутри. Нейтрино очень эффективно уносят энергию, а возникают они с большим темпом при высокой плотности вещества. Поэтому поток тепла направлен внутрь, а не наружу. Недра более холодные. По звезде наружу как бы бежит волна охлаждения. Эта стадия продолжается несколько десятков лет, пока температура внутри нейтронной звезды не выравнивается.
Итак, недра становятся изотермичными, но тут надо сделать два замечания. Во-первых, изотермичность не распространяется на самые внешние слои – кору. А наблюдаем-то мы именно их! Пока регистрация нейтрино из недр остывающих нейтронных звезд остается далеко за пределами наших технических возможностей (мы можем лишь регистрировать нейтринную вспышку при коллапсе, что однажды удалось сделать, когда в 1987 году наблюдалась сверхновая в Большом Магеллановом облаке). Поверхность типичной нейтронной звезды гораздо холоднее ядра. Например, если внутри может быть под миллиард градусов, то снаружи будет всего лишь около миллиона. Связано это с тем, что во внешних слоях есть относительно тонкая прослойка, работающая как прекрасный теплоизолятор.
Второе замечание связано с эффектом Общей теории относительности. Температура выравнивается благодаря теплообмену. Но вспомним о гравитационном красном смещении: сигнал, распространяющийся из области с большой гравитацией в область с меньшей будет покрасневшим (в том числе меньшей будет энергия каждого отдельного фотона). Из-за этого внутренние части будут горячее, но поток тепла не возникает, так как внешние слои воспринимают внутренние «покрасневшими», т. е. более холодными, чем они есть.
Нейтронная звезда может остывать за счет излучения фотонов с поверхности или нейтрино из недр. Продолжим наш разговор о нейтрино. Они могут рождаться в нескольких процессах взаимодействия элементарных частиц. Самым главным из них является так называемый прямой урка-процесс. Своим названием он обязан Георгию Гамову (с Гамовом вообще связано много мифологических событий, как и многие другие легенды, история урка-процесса описана в его книге «Моя мировая линия»). Будучи в Бразилии, он со своим коллегой Марио Шёнбергом посетил казино Urca. Обсуждая проблему уноса энергии при взрывах сверхновых, Шёнберг заметил Гамову, что в процессе превращения нейтрона в протон и электрон, а затем обратного превращения протона с электроном в нейтрон энергия уносится нейтрино так же быстро, как исчезают деньги в казино. Гамов решил назвать процесс в честь казино, что стало его очередной красивой шуткой. Правда, на всякий случай (если бы придрались редакторы; нас, скажем, один раз в академическом журнале попросили или убрать термин «урка», или расшифровать аббревиатуру) Гамов даже придумал расшифровку: unrecordable cooling agent. Но она не понадобилась и не стала популярной.
Остывание нейтронных звезд разной массы. Более легкие нейтронные звезды остывают медленнее. Рисунок основан на расчетах исследовательской группы из ФТИ им. Иоффе. Благодарю Петра Штернина и Дмитрия Яковлева за предоставленные данные.
Такой процесс, если речь идет об отдельных протонах и нейтронах, запускается только при достаточно высокой плотности (при участии ядер, например натрия и неона, процесс может запускаться и в белых карликах). Даже такие экстремалы, как нейтронные звезды, не всегда могут его себе позволить. Только в достаточно массивных объектах охлаждение происходит за счет прямого урка-процесса, да и то лишь в центральных областях. Правда, и этого достаточно. Если хотя бы несколько тысячных массы Солнца в центре компактного объекта охвачено прямым урка-процессом, то энергия теряется очень быстро. Кстати, если в плотных недрах нейтроны и протоны превращаются в другие частицы, то в большинстве случаев существуют аналоги прямого урка-процесса. Так что массивные компактные объекты должны остывать довольно быстро, даже если нейтронов в центре нет, а вместо них появились другие частицы.
Что же делать более худосочным? Для них природа придумала модифицированный урка-процесс. (Здесь уместно отметить остроумие сотрудников ФТИ им. Иоффе, которые не только являются одной из самых сильных научных групп в мире по изучению физики недр нейтронных звезд, но еще ввели в научный обиход – зарубежные коллеги, возможно, ничего не подозревают – наименования DURCA и MURCA для прямого (direct) и модифицированного процесса). В нем участвует лишняя частица, поэтому он не столь эффективен. Зато всегда работает.
Кроме урка-процесса нейтрино могут рождаться в результате взаимодействия частиц без превращений (например, при рассеянии частиц друг на друге). Плюс – есть еще одна экзотическая возможность.
Недра нейтронных звезд сверхтекучи. И это несмотря на температуру в сотни миллионов градусов! Просто плотность настолько высока, что даже при столь высокой температуре вещество считается холодным. То есть тепловая энергия частиц несущественна для их основных взаимодействий. Чтобы протоны или нейтроны стали сверхтекучими, необходимо, чтобы они образовывали пары – из фермионов (частиц с полуцелым спином, как у протонов и нейтронов) получаются бозоны (частицы с целым спином). На тепловую эволюцию это влияет двумя способами. Во-первых, наличие сверхтекучести подавляет прямой урка-процесс. Таким образом, сверхтекучесть помогает сохранить тепло. Однако пары могут рождаться и разрушаться. А при этом испускаются нейтрино. Так что, во-вторых, сверхтекучесть запускает новый канал остывания. Правда, более слабый.
Тепловая эволюция зависит от свойств недр: состава, плотности и т. д. Поэтому изучение зависимости температуры от возраста нейтронных звезд помогает продвинуться в понимании устройства их недр. Кроме того, измерение температуры дает независимую оценку возраста, если мы доверяем расчетам остывания. Как правило, им можно верить при возрастах от сотен до сотен тысяч лет при условии, что звезда довольно горячая (не запустился прямой урка-процесс) и не было дополнительного подогрева.
Откуда у нейтронных звезд «грелка»? Обсуждались самые разные идеи. Но если нет аккреции, то по всей видимости лишь одна из версий представляется действительно очень важной для одиночных нейтронных звезд. Это затухание магнитного поля.
Магнитные поля порождаются электрическими токами, и они уменьшаются со временем. Часть энергии токов идет на нагрев коры. Если поля были достаточно сильными и затухают быстро (а именно это происходит в магнитарах), то нагрев будет заметным. Действительно, магнитары отличает довольно высокая тепловая рентгеновская светимость – до сотни светимостей Солнца. Они заметно горячее своих кузенов, не имеющих столь сильных магнитных полей. Часть энергии, выделившейся при затухании магнитного поля (токов), переносится внутрь и там излучается наружу с помощью нейтрино.
Для нейтронных звезд в двойных системах есть другая «грелка». Это пикноядерные реакции. Если нейтронную звезду оставить в покое, то ее составные элементы придут в равновесное состояние. В том числе и кора. Но мощная аккреция выводит кору из равновесия. Падающее сверху вещество давит на кору. В итоге она начинает погружаться в более глубокие и плотные слои. Состав опустившегося вещества коры теперь не соответствует той плотности, в которой оно оказалось. Поэтому начнутся реакции превращения элементов. Они могут приводить к достаточно заметному выделению тепла. И это наблюдается. Известны источники в двойных системах, где аккреция иногда выключается. Удается увидеть, как меняется температура поверхности компактного объекта между эпизодами аккреции. Сравнение данных наблюдений с расчетами говорит о том, что для поддержания температуры необходимы пикноядерные реакции в коре. Это снова возвращает нас к вопросу о свойствах недр нейтронных звезд.
IV. Недра нейтронных звезд
Нейтронные звезды – очень интересные объекты, и многие считают, что самое интересное в них – это их недра. Иногда спрашивают «Зачем вообще нужна астрономия? Ведь вы изучаете какие-то далекие недоступные объекты, в чем же их народно-хозяйственное значение?» Основной ответ, наверное, состоит в том, что астрономические объекты дают нам уникальный шанс исследовать вещество в экстремальных условиях, которые на Земле недоступны. А это всегда важно, потому что если мы строим какую-то большую теорию, с совершенно понятным народно-хозяйственным выходом, например, электродинамику, то хотим, чтобы она работала во всех диапазонах параметров.
Экстремальное состояние вещества
Если мы хотим изучать очень сильные токи или очень сильные магнитные поля, то нам нужно проверять предсказания электродинамики для этих случаев, и единственный объект, где это можно делать, – нейтронные звезды. Хотим иметь хорошее понимание гравитации, например, чтобы у нас спутники по Солнечной системе летали так, как надо? Опять-таки, нам надо проверять в целом эту теорию гравитации, искать какие-то экстремальные объекты – это снова будут те же нейтронные звезды или черные дыры. То же самое касается ядерной физики. Мы хотим понимать, как взаимодействуют друг с другом протоны, нейтроны и другие частицы, как они превращаются друг в друга при разных условиях. В том числе хотим знать, как ведет себя вещество при очень высокой плотности.
На Земле в естественных условиях самая высокая плотность – плотность атомного ядра. Мы все помним, что атомы – это такие эфемерные образования, потому что хотя атом сам не маленький (его размер около 0,1 нанометра), но относительно большой он лишь за счет того, что легкие электроны (в тысячу с лишним раз легче, чем протон или нейтрон) крутятся вокруг ядра на расстоянии, намного большем его размера (в десятки тысяч раз меньше радиуса электронной орбиты). При этом практически вся масса атома заключена в крошечном ядрышке.
Заставить вещество сжаться еще сильнее, чем оно уже спрессовано в атомных ядрах, в земных условиях очень трудно, потому что мы сталкиваемся с сильным ядерным взаимодействием. Если на расстояниях бо́льших примерно 0,8 ферми (ферми – это длина, равная 10–15 метра) ядерное взаимодействие приводит к притяжению нуклонов (частиц, входящих в атомное ядро, т. е. протонов и нейтронов), то на меньших расстояниях возникает очень сильное отталкивание. Это очень мощное взаимодействие (в 1038 раз сильнее гравитационного в масштабе атомного ядра), с ним очень тяжело бороться. Единственный способ на Земле как-то поджать ядро – разогнать, например, два ядра на ускорителе и столкнуть их. Но при этом у вас получится горячее вещество. Ядра летят с огромной энергией, в момент столкновения она разом выделяется, и получается облако кварк-глюонной плазмы. И это для каких-то целей хорошо, но для изучения того, как ведет себя холодное плотное вещество, – плохо. Вы его не получаете или получаете на ничтожно короткое время со всякими «но». Кроме того, обычные ядра содержат примерно поровну протонов и нейтронов – это так называемое симметричное вещество. А нам важно выяснить, что будет при нарушении симметрии – если нейтронов в несколько раз больше, чем протонов. И единственное место, где можно, пусть и косвенно, изучать несимметричное холодное вещество при высокой плотности, – это недра нейтронных звезд.
Из чего сделаны нейтронные звезды
Оценки показывают, что в центре нейтронной звезды плотность может быть раз в десять больше, чем у атомного ядра. И там могут происходить очень интересные превращения. Во-первых, вещество состоит из протонов и нейтронов, при этом протонов и нейтронов примерно поровну. Но при сжатии вещества в нем становится больше нейтронов. Поначалу ядра обогащаются «лишними» нейтронами. Затем возникают нейтронные капли, и наконец, ядра исчезают, и остается смесь протонов и нейтронов. Этот процесс сопровождается появлением так называемой «ядерной пасты», поскольку конфигурации ядерного вещества и нейтронов напоминают разные «макаронные изделия». То длинные спагетти, то плоские листы для лазаньи. В некоторых моделях, в центральных частях нейтронных звезд нейтронов примерно в 10 раз больше, чем протонов. Собственно, поэтому они и называются нейтронными.
Но могут происходить и всякие другие хитрые превращения.
Может быть, энергетически выгодным является превращение нейтронов и протонов в другие частицы. Есть, соответственно, модели, в которых возникают гиперонные звезды (гипероны – элементарные частицы, содержащие странный – s – кварк), есть звезды, где в центральных частях возникают конденсаты других частиц – пионов, например, или также содержащий странный кварк каонов, которые в обычных условиях являются экзотикой.
Таблица частиц Стандартной модели. В ней есть шесть кварков. Каждый из них может иметь один из трех «цветов», и у каждого есть антикварк. Обычное вещество состоит из протонов и нейтронов, которые «сделаны» из двух типов самых легких кварков. В недрах компактных объектов вещество может переходить в новое состояние, где также становится важным третий по массе – так называемые странный, – кварк.
Есть еще более экзотические модели – это модели кварковых, или странных, звезд. Мы помним, что протоны и нейтроны состоят из трех маленьких частиц – кварков. И они обладают любопытной особенностью. Получить отдельный кварк и изучить его «лицом к лицу», невозможно. Если мы пытаемся выдрать кварк, например, из протона или какой-то другой частицы, понадобится такое количество энергии, которого достаточно для того, чтобы родить пару из кварка и антикварка. Новорожденный кварк войдет в состав той частицы, которую мы пытались разделить. А антикварк вместе с полученным нами кварком образует новую, составную частицу (это будет какой-нибудь мезон). То есть мы «вытянули» отнюдь не отдельный кварк. Это явление называют конфайнментом – кварки «заперты» в частицах, которые называют адронами.
Однако если речь идет о недрах компактной звезды, то из-за большой гравитации там создается настолько высокая плотность, что в этой области кварки становятся свободными. Говорят, что произошел деконфайнмент. Такую идею предложили в 1965 году (т. е. еще до открытия пульсаров!) Дмитрий Иваненко и Дмитрий Курдгелаидзе, практически сразу же после появления самой гипотезы о кварковом строении вещества.
При деконфайнменте вещество будет состоять уже не из протонов, нейтронов, гиперонов или еще каких-то частиц, а именно из свободных кварков, эдакой кварковой плазмы в некотором смысле. Это чрезвычайно интересно, если, конечно, такой сценарий реализуется в природе – пока кварковое вещество остается гипотезой. И снова единственное место, где это действительно можно было бы достаточно надежно изучать, – это недра нейтронных звезд.
Странными же эти звезды называют потому, что при высокой плотности вдобавок к обычным верхним и нижним – up (u) и down (d) кваркам, добавляется третий – странный – strange (s). S-кварк входит в состав многих элементарных частиц, например гиперонов. Во многих моделях кварковых звезд s-кварк важен для их устойчивости. Но иногда теоретикам удается обойтись и без него. Совсем недавно наличие странных кварков в плотном веществе начали учитывать при моделировании взрывов сверхновых. Это помогает увеличить светимость испускаемых нейтрино, их энергию, что важно для того, чтобы сверхновая все-таки взорвалась. Кроме того, коллапс может быть двухстадийным, когда вначале образуется нейтронная звезда, а потом – кварковая. Это приводит к дополнительному энерговыделению и также помогает взрыву.
Схема строения протона и нейтрона. Каждая из этих частиц состоит из трех кварков разных цветов (таким образом, сами протоны и нейтроны «бесцветны»). Примечательно, что масса покоя трех кварков намного меньше масс протона или нейтрона. Большие массы этих частиц во многом определяются взаимодействиями между кварками.
Вращение и состав
Вращение нейтронной звезды влияет на ее состав, если период достаточно короткий. Связано это с тем, что при быстром вращении внутри любого объекта начинает меняться плотность. Кроме того, объект сплющивается вдоль полюсов и вытягивается в экваториальной плоскости. При периоде, называемом предельным, вещество начинает истекать с экватора[10].
Изменение формы объекта при увеличении скорости вращения. Раскручиваясь, объект уплощается. Наконец, из-за очень сильного вращения может начаться истечение с экватора (если объект газовый) или же объект разделится вследствие неустойчивости (если он жидкий). В первом случае «лишний» момент импульса будет унесен оттекающим веществом. Во втором – перейдет в орбитальный момент.
Мы уже упоминали, что быстрое вращение бывает настолько важным для судьбы нейтронной звезды, что может даже предотвратить коллапс в черную дыру. Для этого необходима скорость, близкая к предельной, т. е. период должен быть около одной миллисекунды или даже меньше. При более мягких условиях (период вращения порядка нескольких миллисекунд) вращение может определять фазовые переходы внутри компактного объекта. То есть взаимные превращения частиц и строение звезды.
Например, пусть реализуется такое уравнение состояния, что существует критическая плотность, ниже которой вещество состоит в основном из нейтронов, протонов и мюонов, а при более высокой – происходит деконфайнмент. То есть появляется кварковое вещество. Если мы забудем про вращение, то плотность в центре (где, скорее всего, переход произойдет впервые, так как плотность там выше всего) зависит только от массы звезды. Вращение, близкое к предельному, меняет эту естественную картину. Теперь плотность зависит еще и от периода, и его значение будет определять состав недр.
Замедление вращения может приводить к тому, что в звезде произойдет фазовый переход. Например, звезда в двойной системе аккрецировала вещество со второго компонента. В результате росла масса, а магнитное поле уменьшалось – образовался миллисекундный рентгеновский пульсар. Однако, несмотря на рост массы, фазовый переход не произошел, так как объект раскрутился. По окончании аккреции нейтронная звезда становится миллисекундным радиопульсаром. Теперь она может потихоньку замедляться. В какой-то момент вращение уменьшится настолько, что плотность в центре подрастет, доберется до критического значения и начнется превращение вещества.
Как правило, после фазового перехода образуется более компактная конфигурация – нейтронная звезда (которая постепенно перестает быть такой уж нейтронной) поджимается, а потому немного раскручивается. На рубеже XX и XXI вв. несколько групп исследователей пытались обнаружить следы фазовых превращений в недрах компактных объектов, изучая их распределение по периодам вращения, но никаких надежных результатов получено не было. Нужны другие способы изучения недр нейтронных звезд.
Измерение температуры как способ изучения недр
Основные проблемы в изучении нейтронных звезд состоят в том, что, во-первых, они находятся далеко от нас. А во-вторых, если речь идет о недрах, то нам нужно, наблюдая поверхность или какие-то процессы снаружи нейтронной звезды, понять, как она устроена внутри. Здесь возникает типичная астрономическая задача: эксперимент невозможен, можно только наблюдать. И ученые пытаются с этой проблемой справиться.
Например, можно наблюдать остывающие нейтронные звезды. Это похоже на то, как врачи раньше, не имея продвинутых способов заглянуть внутрь пациента, ставили диагноз, измеряя температуру тела. Нейтронные звезды рождаются горячими, с температурой поверхности несколько миллионов градусов. Новорожденных, с возрастом порядка нескольких лет или десятков лет, компактных объектов мы пока не видим. Самые молодые из известных имеют возраст порядка нескольких сотен лет. Это соответствует температуре поверхности около миллиона градусов. Мы видим эту горячую поверхность, т. е. мы видим такие нейтронные звезды. Мы, возможно, даже наблюдаем сейчас совершенно уникальную вещь: как звезда остывает буквально у нас на глазах. За несколько лет наблюдений у одной из нейтронных звезд – это центральный компактный объект в остатке сверхновой Кассиопея А – удалось заметить, как температура упала на несколько процентов. (Тут, правда, идут споры: видим ли. И неудивительно, так как поймать эффект трудно.) И это дает нам информацию, что происходит в недрах, потому что нейтронная звезда, как мы уже говорили, остывает изнутри, а не с поверхности.
Итак, напомним: обычно тела остывают снаружи и, как правило, горячий объект на поверхности холоднее, чем внутри. У нейтронных звезд ситуация немножечко более хитрая. Хотя, исключая короткий период младенчества, формально они все равно горячее в центре, но энергия уносится не столько фотонами с поверхности, сколько нейтрино, вылетающими прямо из недр.
Рентгеновское изображение остатка сверхновой Puppis A. В нем находится остывающая нейтронная звезда, относящаяся к классу центральных компактных объектов.
Нейтронная звезда, кроме первой минуты своей жизни, прозрачна для нейтрино, и поэтому остывание первые сотни тысяч лет (иногда меньше – зависит от массы объекта) идет в основном изнутри, а тепло течет из внешних слоев внутрь, оттуда энергия излучается в виде нейтрино. Поэтому, наблюдая температуру поверхности, мы косвенно получаем информацию о том, что происходит в глубине.
В разных процессах с участием разных частиц темп излучения нейтрино должен быть различным. Поэтому кварковые звезды должны остывать не так, как звезды, состоящие из протонов и нейтронов; гиперонные звезды – не так, как объекты с большой долей пионного конденсата, и т. д. Значит, при той же массе и том же возрасте компактные объекты разного состава (и строения) будут иметь разную температуру поверхности. Сравнивая данные наблюдений с теоретическими расчетами остывания разных типов компактных объектов, можно надеяться продвинуться в изучении тайны их недр.
Здесь можно использовать как наблюдения отдельных объектов с хорошо известными параметрами (например, очень важно точно знать возраст и расстояние), так и данные по целым популяциям. Скажем, возьмем все близкие молодые одиночные нейтронные звезды (с возрастами меньше миллиона лет и расстоянием менее нескольких тысяч световых лет от нас) и посмотрим их распределение по температурам. Можно ли его объяснить, если все звезды кварковые или хотя бы половина? Получится ли описать эту популяцию, предположив, что молодые нейтронные звезды редко бывают настолько тяжелыми, чтобы там шел прямой урка-процесс? В наших работах с Давидом Блашке, Ховиком Григоряном и другими при помощи компьютерного моделирования мы смогли ответить на некоторые из этих вопросов. Мы можем отбрасывать некоторые варианты строения компактных объектов. Но для окончательного ответа пока не хватает ни наблюдательных данных, ни понимания физических процессов в недрах нейтронных звезд.
Глитчи
Радиопульсары на протяжении жизни замедляют свое вращение. Однако на фоне постоянной потери вращательной энергии иногда происходят «взбрыки». Пульсар резко увеличивает свою частоту вращения, а потом снова продолжается замедление. Период при таком событии уменьшается совсем чуть-чуть – например, на одну миллионную или даже миллиардную долю, но уже в начале 1970-х годов точность наблюдений позволяла это заметить. Такие события назвали глитчами.
То, что глитчи сообщают нам что-то очень важное о физике нейтронных звезд, было ясно сразу. Но что? Довольно быстро появились две основные идеи о происхождении глитчей. Первая кажется более наглядной. Это звездотрясения.
Представьте себе каплю воды в невесомости. Если она не вращается и никаких внешних воздействий нет, то капля примет точно сферическую форму из-за действия сил поверхностного натяжения. Раскрутим каплю – получим так называемый эллипсоид вращения: на полюсах – сплюснуто, вдоль экватора – вытянуто. Пусть теперь вращение капли постепенно замедлится, тогда и она снова постепенно станет сферой. Теперь на место капли поместим нейтронную звезду. Своей сферической формой она обязана действию гравитации. Ее вращение замедляется на стадии радиопульсара, но плавно изменять свою форму она не может: ведь у нее жесткая кора. Поэтому в коре постепенно растут механические напряжения, и наконец наступает момент, когда материал коры больше не может им сопротивляться. Кора резко переходит в новое состояние – звезда разом меняет свою форму. Именно в этот момент пульсар должен немного ускорить свое вращение. Очень красивая идея, но со временем стало ясно, что она не безупречна. Сам скачок периода она объясняет хорошо, но вот постепенную релаксацию темпа вращения после глитча – плохо. Поэтому сейчас более популярна другая гипотеза.
Глитч пульсара. Видно, как на фоне монотонного роста периода вращения происходит резкий скачок – уменьшение периода.
Несколько лет назад в гонках «Формула-1» была введена обязательная система рекуперации кинетической энергии – KERS (kinetic energy recovery system). Сейчас все такие системы основаны на зарядке аккумуляторов. Но среди первых были и механические. Идея проста: машина тормозит, но часть кинетической энергии не рассеивается, а идет на раскручивание массивного маховика. Позже, когда понадобится дополнительное ускорение, энергию вращения маховика можно передать на вал, и машина резко прибавит скорость. Похожий механизм, вероятно, действует и у нейтронных звезд.
В коре нейтронной звезды, во внутренних частях, нейтроны могут находиться в сверхтекучем состоянии. Это все меняет, так как сверхтекучая жидкость вращается странным образом. Если взять кастрюлю сверхтекучей жидкости и начать ее вращать, то вначале жидкость вообще не будет вращаться. Затем, при достижении критического темпа вращения, в центре кастрюли появится вихрь. Раскрутим еще сильнее – появится второй, третий и т. д. Но остальная часть жидкости вращаться не будет. Свойства вихрей квантованы, а их число соответствует темпу вращения сосуда: чем быстрее вращение – тем больше вихрей.
Замедление вращения нейтронной звезды связано с воздействием сил на ее кору. Кора жестко связана с основной массой недр звезды – с ее ядром, но не со сверхтекучими нейтронами во внутренней коре. Поэтому, пока вся звезда замедляется, нейтронная жидкость в коре вращается (как умеет, т. е. за счет вихрей) с тем же темпом, что и раньше. Накапливается разница скоростей вращения, но это не может продолжаться бесконечно. В какой-то момент система вихрей резко перестраивается, меняется их число. Теперь нейтронная жидкость подстроилась под общий темп вращения звезды, т. е. замедлилась. Но система-то у нас замкнутая! Сверхтекучая жидкость передала избыточную часть своего вращения коре, которую мы наблюдем. Поэтому вся остальная звезда немного увеличивает скорость вращения – происходит глитч.
Наблюдая радиопульсары, мы видим скорость вращения магнитосферы нейтронной звезды, которая жестко укоренена в ее коре. Поэтому, определяя период, мы измеряем вращение коры, связанной с ядром, – т. е. практически всей нейтронной звезды, кроме сверхтекучих нейтронов. Постепенное накопление разницы темпа вращения всей звезды и сверхтекучих нейтронов в коре остается для нас незаметным, но перестройки системы вихрей наблюдаются нами как сбой периода радиопульсара.
Интересно, что у магнитаров наблюдают явление, называемое антиглитчем. Как ясно из названия, оно состоит в резком замедлении вращения. Природа этого феномена не ясна. Вполне возможно, что здесь дело не в сверхтекучести, а в сильных магнитных полях в коре таких объектов.
Модель с перестройкой структуры сверхтекучих вихрей хороша тем, что в ней можно объяснить поведение нейтронной звезды после глитча. Хотя остается и много вопросов. Тем не менее данные по глитчам используют для того, чтобы поставить ограничения на параметры уравнения состояния нейтронных звезд. То есть узнать, как ведет себя вещество компактных объектов.
Вопросы о массе и масса вопросов
Многие полагают, что проблема внутреннего строения нейтронных звезд – это самый главный вопрос, связанный с их физикой. Поэтому многочисленные группы исследователей ищут разные подходы к решению этой проблемы.
Мы уже обсудили измерение температуры поверхности и наблюдения глитчей. Другой очень остроумный способ узнать, что находится в недрах нейтронной звезды, таков. Представим, что у нас есть нейтронная звезда. И мы начинаем потихонечку кидать на нее вещество. Масса ее вырастет, и в конце концов звезда схлопнется в черную дыру. В какой момент это произойдет? Это на самом деле фундаментальный вопрос. Что мы узнаем, ответив на него? Мы узнаем массу, при которой звезда начинает неудержимо сжиматься, т. е. узнаем, как долго вещество может выдерживать издевательства над собой до того, как оно скажет: «Все, баста, я коллапсирую в черную дыру, вы мне все надоели». Мы узнаем, при какой центральной плотности происходит этот коллапс. Поэтому важно находить все более и более тяжелые нейтронные звезды. То есть повышать границу, ниже которой вещество еще может противиться коллапсу. Если, в конце концов, ее найти, то можно сказать: вот мы видим нейтронные звезды, например, с массой 2,4 массы Солнца, а дальше мы уже видим черные дыры с массой 2,5 массы Солнца. Значит, практически будет выявлен предел для этого перехода между двумя типами звездных остатков. Это также очень много скажет нам о том, как взаимодействуют друг с другом частицы при высокой плотности, когда, наконец, их давления уже не хватит для того, чтобы удержать звезду от коллапса.
В основном массы нейтронных звезд и черных дыр определяют в тесных двойных системах. Мы подробно поговорим о них ниже. Однако есть еще один экзотический способ определения масс нейтронных звезд и черных дыр. Это – микролинзирование. Наблюдая множество далеких слабых звезд, мы можем заметить, что их блеск или положение изменились из-за того, что на луче зрения появился компактный массивный объект (гравитационная линза), который своей гравитацией исказил пространство. Насколько силен эффект, в первую очередь зависит от массы гравитационной линзы. Соответственно, если в роли линзы выступает нейтронная звезда или черная дыра, то мы получим оценку ее массы. Подробнее мы поговорим об этом подходе в главе, посвященной одиночным компактным объектам. Когда метод станет достаточно массовым и точным, будет построена единая функция масс компактных объектов. Возможно, на ней проявится граница между нейтронными звездами и черными дырами.
Ну и наконец, в ближайшие годы, когда заработают усовершенствованные установки для наблюдения гравитационных волн, то, наблюдая слияние нейтронных звезд, мы можем узнать, что происходит в их недрах. Если здесь на Земле нам приходится самим разгонять и сталкивать ядра атомов, то там у нас будет естественный эксперимент по сталкиванию двух нейтронных звезд. По гравитационно-волновому сигналу от слияния нейтронных звезд мы сможем понять, как же ведет себя вещество внутри этих объектов.
Во-первых, мы увидим, как нейтронные звезды откликаются на мощное приливное воздействие. Во-вторых, мы сможем различить условия, когда в результате слияния образуется нейтронная звезда и когда образуются черные дыры. В некоторых случаях мы сможем получить оценки массы сливающихся объектов. В-третьих, колебания образовавшейся после слияния нейтронной звезды позволят точно определить ее радиус. Наряду с данными о предельной массе это позволит проверить гипотезу о сосуществовании двух семейств компактных звезд: нейтронных и кварковых. В общем, будет множество новых данных, касающихся недр нейтронных звезд.
Вдобавок слияния звезд, содержащих кварковое вещество, должны приводить к выбросу большого числа страпелек (strangelet) – небольших комочков кварковой материи. Путешествуя в космосе, они могут долетать и до нас. И тогда их можно, например, регистрировать в некоторых экспериментах по изучению космических лучей, таких как прибор AMS-02 на борту МКС. Но это, видимо, дело будущего.
Изображение AMS-02. Прибор установлен на Международной космической станции. Установка предназначена для изучения космических лучей. Не исключено, что она внесет свой вклад и в поиск страпелек – капель странного (кваркового) вещества.
Как сейчас отвечают на главный вопрос?
Пока мы все ждем регистрации гравитационно-волнового сигнала от слияния нейтронных звезд, основной подход к определению условий в недрах компактных объектов таков. У теоретиков есть множество моделей для описания внутреннего строения компактных объектов. Обычно говорят об уравнении состояния: оно связывает плотность вещества с давлением. В рамках любой такой модели можно рассчитать связь массы и радиуса объекта. Теперь задача сводится к одновременному и, возможно, более точному определению масс и радиусов нейтронных звезд.
Диаграмма «Масса – радиус» для компактных объектов. По горизонтальной оси отложен радиус, измеряемый по экватору объекта. По вертикальной оси – гравитационная масса. Кривые соответствуют разным теоретическим моделям строения компактных объектов.
В идеале необходимо очень точно определить массу и радиус хотя бы для нескольких нейтронных звезд. Тогда можно надеяться, что все теоретические модели, кроме одной, будут отброшены. В реальности – это очень непростая задача: чаще всего точные измерения масс и радиусов делаются разными способами в разных источниках, поэтому для каких-то звезд есть точные определения масс, а для каких-то – радиусов. Подробнее мы обсудим эти измерения ниже.
Измерения масс и радиусов, а также теоретические кривые наносят на диаграмму «Масса – радиус». Именно здесь разыгрывается драма поиска ответа на главный вопрос физики нейтронных звезд.
На диаграмме «Масса – радиус» сразу выделяется несколько областей. Во-первых, посмотрим на левый верхний угол. Самый уголок отрезается черными дырами: линия соответствует радиусу Шварцшильда. Напомним, что он прямо пропорционален массе объекта и для солнечной массы составляет примерно 3 километра. Однако сразу за черными дырами не начинается территория нейтронных звезд. Отрезается еще кусочек. Не вдаваясь в детали, можно сказать, что часть диаграммы запрещена для реальных объектов, потому что там скорость звука оказывалась бы больше скорости света. То есть если мы как-то искусственно «слепим» такой шарик, то он должен быстро сколлапсировать в черную дыру. Наконец (при бо́льших радиусах и меньших массах) на диаграмме «Масса – радиус» начинается область нейтронных звезд.
Теперь посмотрим на правый нижний угол. Здесь мы можем отрезать кусочек диаграммы для самых быстро вращающихся пульсаров. Чтобы вещество не начало стекать с экватора, надо, чтобы скорость вращения там была меньше первой космической. Значит, для каждой массы и периода вращения есть предельный радиус: если звезда будет больше, то начнется истекание. Линию рисуют для самого быстровращающегося объекта. На сегодняшний день это пульсар PSR J1748-2446ad. Его период составляет примерно 1,4 миллисекунды. За секунду он делает 716 оборотов вокруг своей оси. То есть на экваторе скорость вращения заведомо превосходит 50 000 км/с!
Все остальное разрешено, и диаграмма заполнена теоретическими кривыми. Сразу видно, что они делятся на две основные группы: «нормальные» нейтронные звезды и кварковые звезды.
Кварковые звезды устойчивы благодаря сильному ядерному взаимодействию. Они могут быть очень маленькими, и пока они не слишком выросли, их масса примерно пропорциональна объему. То есть при увеличении массы звезда становится больше.
Для обычных нейтронных звезд это не так. При увеличении массы вещество в их недрах сжимается, поэтому радиус падает. Так же, кстати, ведут себя и белые карлики. В зависимости от уравнения состояния объекты по-разному откликаются на рост массы. Какие-то сжимаются очень существенно, какие-то меняют радиус незначительно. Про первых говорят, что у них «мягкое уравнение состояния», а про вторых – что «жесткое». На диаграмме «Масса – радиус» легко увидеть такое поведение теоретических кривых.
В некоторых случаях при росте массы уравнение вдруг становится из жесткого мягким. Это означает, что в недрах звезды плотность превзошла какое-то критическое значение и произошел фазовый переход: одни частицы превратились в другие. Например, у звезды могло появиться кварковое ядро. Такие объекты называют гибридными.
Сделаем важное уточнение относительно масс и радиусов на диаграмме: поскольку нейтронные звезды – объекты экзотические, то и с их основными параметрами не все так просто. Начнем с массы.
Для каждого обычного объекта (скажем, звезды) можно дать два таких определения массы. Во-первых, мы можем взять полное число барионов (протонов и нейтронов) в этом объекте и умножить его на массу одной частицы (для простоты считаем, что протон и нейтрон имеют равные массы, а массой электронов можно пренебречь). Такую массу называют барионной. Во-вторых, мы можем посмотреть, как наш объект участвует в гравитационном взаимодействии и определить его «гравитационный заряд» – гравитационную массу. Для звезд, планет и других объектов «нормальной» плотности эти две массы обычно с высокой точностью равны. Для нейтронных звезд ситуация иная.
Представьте теперь, что вы взяли железное звездное ядро с массой 1,4 массы Солнца и целиком превратили его в нейтронную звезду без выброса вещества. Какова масса нейтронной звезды? Вовсе не 1,4 солнечной, если мы говорим о гравитационной массе, а меньше процентов на 10–15. А именно эта масса важна практически во всех астрофизических проявлениях объекта (поэтому именно ее наносят на диаграмму). Дело в том, что как масса ядра атома гелия меньше массы четырех протонов за счет энергии связи, так и масса сколлапсировавшего звездного ядра будет меньше исходной. Излишек энергии будет излучен (в основном с помощью нейтрино) в соответствии с E = mc2. То есть при образовании нейтронной звезды барионная масса коллапсирующего ядра не изменилась (считаем, что ни один барион не пропал), а гравитационная резко уменьшилась (за время, необходимое нейтрино, чтобы покинуть горячую протонейтронную звезду).
Теперь о радиусе. Для нейтронной звезды их можно определить несколько, и связано это с эффектами Общей теории относительности. Во-первых, можно измерить расстояние от центра до поверхности. Во-вторых, можно обойти ее по экватору с рулеткой и разделить полученную длину на 2π. В-третьих, можно посмотреть на нее издалека, увидеть диск и определить его радиус. Все эти три значения будут разными. На диаграмме обычно откладывают второе.
Схематическое изображения искривления световых лучей, приходящих к нам от нейтронной звезды. Свет, вышедший перпендикулярно поверхности, будет удаляться по прямой. А вот световые лучи, испущенные под углом – будут двигаться по искривленным траекториям. Из-за большой концентрации массы пространство искажено, поэтому лучи могут приходить к нам и с обратной стороны. Чем массивнее нейтронная звезда – тем сильнее эффект.
Нейтронная звезда – компактный массивный объект. Внутри него пространство – время устроено по законам Общей теории относительности. Двигаясь из центра наружу, мы попадаем в области с все меньшей и меньшей гравитацией. Меняется метрика пространства, это приводит к последствиям, которые необходимо учитывать при определении длин, в частности – радиуса от центра к поверхности. Он не будет равен тому, который дают измерения только на поверхности.
Свет, приходящий к нам с поверхности нейтронной звезды, тоже двигается по искривленному самой звездой пространству. В частности, из-за этого искривления мы можем видеть часть обратной стороны компактного объекта. Поэтому размеры, наблюдаемые удаленным наблюдателем, будут больше, чем те, что получены измерениями прямо на поверхности.
Астрономы пытаются выжать максимум из доступных на сегодняшний день данных по определению масс и радиусов, чтобы сделать какие-то выводы об уравнении состояния. Кое-что удается сделать, но этого пока явно недостаточно. Сейчас разработаны специальные наблюдательные программы, в том числе с помощью орбитальных обсерваторий, чтобы продвинуться в решении главного вопроса физики нейтронных звезд и поставить точку на диаграмме «Масса – радиус». Видимо, это удастся сделать, изучая двойные системы с нейтронными звездами.
V. Свойства двойных звезд
Главный параметр
В первом приближении звезда – очень простой объект. И у звезды есть один самый главный параметр – это ее масса. Массы самых легких и самых тяжелых звезд сейчас различаются более чем в тысячу раз. Другие важные параметры, такие как химический состав, вращение и т. д., различаются у звезд не столь радикально, поэтому их вариациями можно пренебречь.
От массы, в первую очередь зависит, сколько звезда будет жить, во что она превратится, какие метаморфозы будет претерпевать на жизненном пути, какой будет ее светимость на разных этапах эволюции и т. д. Самые легкие звезды (в 10–13 раз легче Солнца) живут очень-очень долго, и реакции в них не идут дальше превращения водорода в гелий. Пока ни одна такая одиночная звезда во Вселенной не окончила свой жизненный путь, но когда-нибудь они станут гелиевыми белыми карликами. Самые тяжелые (раз в сто тяжелее нашей звезды) живут всего лишь пару миллионов лет и чаще всего превращаются в черные дыры.
В процессе эволюции звезда может увеличивать свой размер в сотни раз, а потом сбрасывать внешние слои и снова уменьшаться. Это сопровождается изменением мощности излучения и температуры. Меняется скорость вращения звезды, ее внутренняя структура и состав. Однако все эти превращения почти полностью предопределены начальной массой.
Если звезда одна, то массу в процессе своей жизни она может только терять. От звезды дует звездный ветер – иногда посильнее, иногда послабее, – и масса уменьшается. Но все эти потери уже предопределены тем, какой была масса в начале. Поэтому было бы здо́рово придумать способ менять (то уменьшать, то увеличивать) массу звезды в течение ее жизни.
Есть один хороший способ это сделать – разместить рядом вторую звезду, причем так близко, что на каких-нибудь этапах эволюции звездной пары вещество могло бы перетекать с одной звезды на другую (например, когда одна из звезд многократно увеличивает свой размер, превращаясь в красного гиганта). Именно это происходит в двойных системах, поэтому жизнь звезды в двойной системе сразу становится гораздо интереснее. Ее судьба может радикально изменится благодаря взаимодействию со своей соседкой.
Про тройняшек
Если в двойных системах все так непросто устроено – может меняться туда-сюда главный параметр в жизни звезды, то можно спросить: а что у нас с тройными системами, с системами четырех звезд, пяти и т. д.? Может быть, там эволюция звезд будет еще более причудливой? Оказывается, что нет. Если мы попробуем создать систему из трех и более звезд примерно с равными расстояниями между ними (чтобы они все могли обмениваться веществом), то такие группировки оказываются неустойчивыми.
Если вы достаточно близко друг от друга посадите три звезды, то взаимодействие приведет к тому, что или одна звезда будет выкинута, или две какие-то сольются, или образуется тесная пара из двух звезд, а третья будет крутиться далеко. Устойчивые орбиты могут существовать, только если исключено сильное взаимодействие между более чем двумя телами. В природе это все происходит естественным образом на стадии формирования звезд. Неустойчивые системы не возникают или очень быстро разрушаются.
То есть, так или иначе, единственным хорошим устойчивым элементом является двойная звезда. Взаимодействие одновременно трех и более звезд невозможно. Поэтому обсуждать тройные или системы более высокой кратности с точки зрения обмена массой не имеет смысла. Хотя есть системы, состоящие даже из шести звезд, но все это пары, вращающиеся друг вокруг друга на расстояниях, значительно больше расстояний между звездами в парах. Это, как говорят, иерархические системы.
Несколько тел в одной динамической системе могут слабо взаимодействовать друг с другом, медленно меняя орбиты. Это явление, получившее название механизма Козаи – Лидова, в 1961 году описал Михаил Лидов для спутников планет, а в 1962-м японский астроном Йошихиде Козаи отразил в расчетах изменения орбит астероидов. Суть его в том, что орбита легкого тела, вращающегося вокруг тяжелого, меняется под воздействием более далекого относительно легкого объекта. Квазипериодически орбита то вытягивается, то сильно наклоняется. Например, искусственный спутник Земли на изначально сильно наклоненной (пусть и круговой) орбите из-за влияния Луны может даже упасть на планету, потому что эксцентриситет со временем вырастает! Такая вековая эволюция орбит в кратной звездной системе происходит медленно, но в редких случаях может иметь далекоидущие последствия.
Единственная часто встречающаяся ситуация интенсивного взаимодействия более чем двух звезд – это так называемая перезарядка. В плотных звездных скоплениях (в первую очередь речь идет о шаровых) звезды могут испытывать очень тесные сближения. Тогда, если пара звезд встречает другую пару или близко пролетает одиночная звезда, может произойти смена партнеров. На короткое время все звезды образуют неустойчивую систему, а потом разлетаются. Так, например, могут возникать парадоксальные системы из звезд разных возрастов (в нормальной двойной, конечно же, обе звезды имеют одинаковый возраст). В результате взаимодействия двух пар, например, компаньон одной системы может поменяться местами с компаньоном другой, а одиночная звезда – занять место в паре, выбросив одну из звезд, ранее входивших в двойную. В общем, все как у людей. Но это только краткий эпизод в жизни звездных пар.
В системах высокой кратности могут происходить интересные превращения. Например, известна система из радиопульсара с двумя белыми карликами, один из которых образует тесную пару с пульсаром, а второй вращается вдалеке. Некоторые системы из черной дыры и маломассивной звезды при численном моделировании удается сформировать только в сценарии, где история начинается с тройной системы. Рассказывая о гиперскоростных звездах, упомянем сценарий с тройной системой. Однако нигде не происходит одновременного тесного взаимодействия сразу трех звезд, которое длилось бы достаточно долго – дольше, чем пара орбитальных периодов.
Таким образом, сложная эволюция в тройных (и в системах более высокой кратности) возможна, но она разбивается на отдельные этапы, когда во взаимодействии участвуют только два объекта. Поэтому детально изучать надо именно эволюцию двойных звезд.
Схема образования кратной звезды. Изначальное вращение протозвездного облака приводит к делению на несколько компонент.
Эволюция двойных
Итак, двойные системы. Звездные пары изучали давно. Однако только в XX веке ученые столкнулись с некоторым парадоксом и поняли, что нужно учитывать обмен вещества между звездами. Есть известная переменная звезда, ее видно невооруженным глазом – Алголь, которую еще называют Дьявольской звездой. Имя звезда получила, видимо, за свою переменность. Ал-гуль – чудовище в арабских и персидских мифах. На европейских картах звездного неба Алголь обычно соответствовала глазу отрубленной головы медузы Горгоны в созвездии Персея, ее хорошо видно на нашем северном небе. То, что это двойная звезда, начали подозревать еще в XVIII веке. Но доказать это и определить свойства каждой из звезд смогли намного позже, в конце XIX века. Затем оказалось, что в системе есть и третья звезда, вращающаяся вокруг тесной пары с периодом почти два земных года. Но нас будет интересовать только затменная пара с орбитальным периодом менее трех дней.
Когда удалось измерить параметры звезд, образующих эту двойную систему, выяснился удивительный факт – эволюционные стадии звезд не соответствовали их массам.
Одна звезда в паре тяжелее, другая легче. Мы знаем, что тяжелые звезды эволюционируют быстрее, т. е. тяжелая звезда при том же возрасте всегда должна выглядеть более «пожилой». Обе звезды в паре образовались, конечно же, одновременно (в шаровых скоплениях, где пространственная плотность звезд очень велика, пара звезд может образоваться в результате захвата; тогда их возрасты будут разными, но к Алголю это не относится). Значит, логично предположить, что постаревшая звезда в паре должна быть массивной. А у Алголя все было наоборот – легкая звезда была более проэволюционировавшей, это очень странно. И понадобилось сообразить, что звезды могут обмениваться массой, причем в больших количествах, так что это сильно влияет на наблюдательные проявления. То есть та звезда, которая сейчас является более легкой, вначале была более тяжелой и эволюционировала быстрее. На определенном этапе своей эволюции, как и полагается всякой приличной звезде, она раздулась, но часть вещества не просто улетела, а перетекла на соседку. Соседка увеличила массу, сама звезда массу уменьшила и стала более легкой в системе, но более проэволюционировавшей.
Это был только первый такой парадокс, связанный с перетеканием вещества в двойных системах. Второй, который тоже легко объяснить, выглядит следующим образом: не слишком тяжелые звезды в конце жизни превращаются в белые карлики. Вначале водород в недрах превращается в гелий. Появляется гелиевое ядро. Если массы у звезды не хватает для запуска следующей реакции, то в результате сброса внешних слоев образуется гелиевый белый карлик. Если массы хватает, то в ядре образуются углерод и кислород – возникает углеродно-кислородный (CO) белый карлик. Если реакция идет дальше, образуется кислородно-неоново-магниевый (O-Ne-Mg) белый карлик.
Все вроде бы логично, и мы действительно видим гелиевые белые карлики. Но они должны сформироваться из самых легких звезд, а эти звезды живут дольше, чем успела просуществовать наша Вселенная. Получается парадокс: мы видим белые карлики, состоящие из гелия, а по времени образоваться они никак не могли, на это понадобился бы еще десяток миллиардов лет. Откуда же они берутся? Они тоже возникают в двойных системах. Пусть первая звезда имеет массу типа солнечной или в несколько раз больше. Такая звезда успевает проэволюционировать за время, равное современному возрасту нашей Галактики. В конце своей жизни такая звезда должна была бы стать CO– или даже O-Ne-Mg белым карликом. Но еще на стадии выгорания водорода в ядре произойдет следующее. Вторая звезда, звезда-соседка, обдирает внешние слои проэволюционировавшей и расширившейся звезды, и остается голое гелиевое ядро. То есть только такая искусственная «обдирка» позволяет делать гелиевые белые карлики достаточно быстро из достаточно массивных звезд. Из одиночных звезд они пока не успели бы образоваться, так что, действительно, эволюция в двойных идет очень своеобразно.
Новые и сверхновые
Перетекание вещества дает очень необычные объекты. Например, «новые звезды». Напомним, что слово «новая» здесь никак не относится к возрасту звезды. То есть это не молодой, только что возникший объект. Термин появился давно, когда физика этого явления была совершенно непонятной. Да и вообще, астрономия была в зачаточном (по нынешним меркам) состоянии. Астрономы видели, что вдруг на небе вспыхивала звезда там, где раньше ничего не было видно. То есть для них она была новой звездой на небе, наблюдаемом невооруженным глазом. Название появилось в XVI веке благодаря Тихо Браге, наблюдавшему, как на небе «зажглась новая звезда». Ирония состоит в том, что это была не новая, а сверхновая.
Оказалось, что эти звезды не новые, а очень даже старые. Это двойные системы: из белого карлика и обычной звезды. Вещество с обычной звезды стекает на поверхность белого карлика, постепенно накапливаясь на ней, и, когда плотность и температура достигают критических значений, происходит термоядерный взрыв. Внешние слои на белом карлике взрываются, резко увеличивается светимость, мы видим не видимый прежде яркий объект и называем его «новой звездой» (хотя никакая она не новая, и некоторые из них вспыхивают по несколько раз). Если бы не было двойных систем, то не было бы таких объектов.
Кривая блеска новой звезды. Блеск возрос в десятки тысяч раз (пять звездных величин – именно эти единицы использованы на вертикальной оси, – соответствуют изменению блеска в сто раз). Поэтому раньше казалось, что «новая звезда» вспыхнула на пустом месте, так как до и после вспышки объект был недоступен для телескопов. Теперь мы знаем, что вспышки новых происходят в двойных системах с белыми карликами. Современные инструменты позволяют детально изучать их и между вспышками.
Кроме новых звезд, есть сверхновые. Все обычно сразу вспоминают, что тяжелые звезды в конце своей жизни взрываются, потому что коллапсирует их ядро. Вещество обрушивается внутрь, но если черная дыра сразу не образуется, то происходит «отскок» (bounce). Именно это и приводит в конечном итоге к мощному энерговыделению. Но это только один из типов сверхновой. Есть еще один очень важный класс. Именно он помог космологам обнаружить ускоренное расширение Вселенной. Такие сверхновые, их называют типом Ia, опять-таки связаны с белыми карликами в двойных системах.
Дело в том, что у белого карлика есть предельная масса. Ее называют пределом Чандрасекара. Она не очень велика – примерно 1,4 массы Солнца в случае реалистичного химического состава тяжелого объекта этого типа. Если его масса превысит этот предел, то он потеряет устойчивость и, как мы теперь знаем, взорвется[11].
Как можно сильно увеличивать массу белого карлика? Естественно, в двойной системе. Есть два пути. Если партнером карлика является нормальная звезда, то при заполнении ею так называемой полости Роша (области пространства вокруг звезды, где все контролируется ее гравитационным полем) вещество начнет перетекать на компактный объект, увеличивая его массу. Это может произойти или из-за превращения звезды в красного гиганта, или из-за сближения компонент двойной системы. Вещество течет примерно так же, как в системе с новыми звездами, и потихонечку масса белого карлика может увеличиваться. В итоге она дорастет до предельной, и карлик взорвется, и это будет уже не маленький хлопок, как на новой звезде, а очень мощный взрыв. И это уже навсегда. Повтора не будет. Скорее всего, взрыв сверхновой типа Ia приводит к полному разрушению объекта.
Последние исследования показывают, что такой путь не является основным эволюционным каналом, приводящим к сверхновым Ia. Во-первых, мы не видим достаточного количества подобных систем, чтобы объяснить большую долю сверхновых Ia. А видеть мы их должны, так как аккреция, даже на белые карлики – очень эффективный источник энергии. Такие системы вносили бы большой вклад в фоновое рентгеновское излучение разных галактик, чего не наблюдается. Во-вторых, оценки показывают, что в подобных системах может часто запускаться феномен новой. При термоядерном взрыве на поверхности белого карлика (вспышке новой) заметная доля накопленного вещества должна выбрасываться в окружающее пространство. То есть масса карлика будет расти недостаточно быстро. Поэтому сейчас более вероятным считается второй путь.
Достаточно часто возникают тесные двойные системы из двух белых карликов. Хотя бы потому, что маломассивных звезд много и никаких разрушающих двойную систему взрывов при образовании белых карликов не происходит. Со временем белые карлики могут сблизиться друг с другом за счет испускания гравитационных волн. Начнется перетекание вещества, и два объекта сольются. Если суммарная масса двух объектов превосходит чандрасекаровскую, то в результате слияния возникнет сверхкритический белый карлик и произойдет взрыв сверхновой Ia. Правда, здесь тоже есть свои проблемы. Хотя известно большое количество двойных белых карликов, мы видим крайне мало систем, где суммарная масса превосходит критическую. Тем не менее сейчас полагают, что бо́льшая часть сверхновых типа Ia возникает именно в таком сценарии.
Вспышку сверхновой Ia видно на расстоянии миллиардов световых лет, и поэтому мы можем наблюдать такие сверхновые в очень далеких галактиках. Поскольку взрываются примерно одинаковые объекты, можно оценить мощность взрыва. Тогда, зная светимость, можно измерять расстояние до галактики со сверхновой, и тем самым получается использовать двойные системы уже для нужд космологии. Так что если уж не для народного хозяйства, то хотя бы для космологических нужд и получения Нобелевских премий двойные удалось приспособить.
На самом деле народное хозяйство постоянно имеет дело с продуктами взрывов сверхновых Ia. Весь чугун, вся сталь связаны именно с ними. Именно взрывы сверхчандрасекаровских белых карликов являются основными поставщиками железа во Вселенной. А кроме того, это невероятно красиво. У многих фотографии таких объектов красуются на рабочем столе компьютера. Чем не «прикладное значение»?
Посмертные красоты двойных систем
Иногда двойственность, т. е. вхождение звезды в двойную систему, играет важную роль и для обычных сверхновых, но не для самих взрывов, а для того, что мы видим после. Все, наверное, видели очень красивые картинки: изображение сверхновой 1987 года, которая вспыхнула в Большом Магеллановом облаке. Красивые кольца, их несколько штук. В проекции они накладываются друг на друга. Как возникает такая странная система? Звезда, вообще говоря, круглая, казалось бы, она не может порождать очень сложные объекты вокруг себя, должна быть какая-то сферическая симметрия (очень быстрое вращение или сильные магнитные поля потенциально могут дать цилиндрическую симметрию истечения). Чтобы породить такую интересную систему колец, опять-таки понадобилась двойная система.
Фотография колец сверхновой 1987А стала одной из визитных карточек хаббловского телескопа. Для объяснения их формирования нужно предположить, что взорвавшаяся звезда изначально входила в двойную систему.
Жила-была звездная пара. Одна из звезд продвинулась в своей эволюции и заполнила полость Роша. Началось перетекание. В процессе взаимодействия двух звезд вокруг них возникла общая оболочка, которая частично оттекала от двойной. Обладающее цилиндрической симметрией распределение газа вокруг двойной стало зародышем внешних колец. После слияния двух звезд образовался красный гигант. Он превратился в голубого гиганта, сбросив внешнюю оболочку. А оболочка сформировала зародыш внутреннего кольца. Голубой гигант своим ветром уплотнил эту структуру, окончательно формируя три кольца. Наконец, произошел взрыв голубого гиганта, и три кольца озарились ярким свечением. В итоге мы имеем красивую картинку.
Кроме остатков сверхновых, интересные структуры вокруг двойных возникают и в планетарных туманностях. Планетарная туманность – это то, что остается от оболочки красного гиганта, которую он сбрасывает, и потихонечку она рассеивается. Планетарными их назвали просто потому, что несколько веков назад, глядя в телескоп на такие объекты, наблюдатели видели туманный диск, похожий на диск планеты. Но есть и очень красивые планетарные туманности довольно сложной формы, совсем непохожие на диски. Специалисты предполагают, что эти необычные формы часто тоже обязаны двойным системам, которые находятся или находились внутри, и именно наличие двух звезд, вращающихся вокруг общего центра масс, приводит к возникновению такой красивой, необычной структуры, которую одиночная звезда обычно породить не в состоянии.
Планетарная туманность NGC 6302 с явно выраженной осевой, а не центральной симметрией. Такие структуры проще формировать с участием двойных систем.
Размеры двойных
Насколько тесными могут быть двойные системы? Конечно, есть какой-то нижний предел и какой-то верхний. Верхний предел размера системы связан с тем, что вокруг есть другие звезды. Они своим воздействием, приливами, влияют на двойную систему и могут ее разорвать. Поэтому очень широкие двойные системы элементарно неустойчивы – какая-то рядом пролетающая звезда способна увлечь за собой одну из звезд двойной или просто развалить систему. Здесь, кстати, возможны всякие занимательные процессы. Взаимодействие двух двойных может привести к обмену звездами. Динамика взаимодействия нескольких звезд вообще достаточно богата и порождает достаточно необычные объекты. Кроме того, суммарное воздействие галактических объектов – гравитационный потенциал Галактики – оказывает влияние на двойные системы и вносит свой вклад в верхний предел уже на стадии формирования двойной. В итоге практически не возникают двойные с расстоянием между звездами более тысячи миллиардов километров (примерно 0,1 светового года).
Что же у нас с нижним пределом размера двойной системы? Естественно, когда двойная только образовалась, то самый жесткий нижний предел – это просто суммарный радиус звезд. Они не должны слиться сразу по возникновении. Так что новорожденные звезды, даже самые легкие, вряд ли могут оказаться на расстоянии миллиона километров друг от друга. Но в результате эволюции могут возникать и более тесные системы, так как размер звезд может существенно уменьшаться на поздних стадиях.
В ходе своей эволюции звезды могут расширяться, и опять-таки важно, чтобы одна не оказалась внутри другой. Ведь это означает, что они сольются, т. е. двойная система не выжила, образовался единый объект. С другой стороны, в процессе своей эволюции звезды могут очень здорово съезжаться. Например, если одна из звезд расширилась и образовалась большая оболочка вокруг двойной, то звезды внутри этой оболочки будут очень сильно сближаться, и это позволяет образовывать очень интересные системы. Самая тесная на сегодняшний день двойная состоит из белых карликов. Они делают оборот друг вокруг друга всего лишь за пять минут (орбитальная скорость превосходит миллион километров в час)! Естественно, система должна была очень сильно съехаться, потому что вначале такую компактную двойную систему невозможно было создать: одна нормальная звезда прямо налезала бы на другую.
Интересным примером результата сближения звезд являются так называемые объекты Торна – Житков. Их придумали в далеком 1975 году Кип Торн и Анна Житков. По сути это чем-то напоминает гипотетический объект из старой работы Ландау, опубликованной в 1938 году: компактный объект ядерной плотности внутри обычной звезды. Торн и Житков не только детально рассмотрели свойства таких объектов, но и обсудили возможный механизм формирования.
Пример эволюционной последовательности в двойной системе. Система из двух звезд с массами 12 и 9 солнечных проходит длинную цепочку превращений. На одной из стадий, после взрыва сверхновой, наблюдается молодой радиопульсар в двойной системе. Затем возникает рентгеновский пульсар. На предпоследней стадии возникает объект Торна – Житков, а затем происходит коллапс в черную дыру.
Такие необычные «звери» возникают в тесных двойных системах, которые пережили первый взрыв сверхновой. Когда вторая звезда превращается в красного гиганта, компоненты пары начинают сближаться. В результате нейтронная звезда может быть поглощена гигантом. Удивительно, но такие объекты трудно распознать, и пока нет ни одного стопроцентно достоверного объекта Торна – Житков. Дело в том, что толстая «шуба» красного гиганта скрывает то, что происходит в недрах. Астрономы пытаются распознать объекты Торна – Житков по аномалиям химического состава во внешних слоях раздувшихся звезд. На момент написания книги лучшим кандидатом считается звезда HV 2112. Аномалии всех ранее появлявшихся кандидатов удалось объяснить процессами в недрах проэволюционировавших звезд (в первую очередь тем самым s-процессом, о котором мы упоминали в начале книги).
На рисунке показана эволюция двойной системы, приводящая к образованию объекта Торна – Житков. Все начинается с двух звезд с массами 9 и 12 масс Солнца. Более массивная звезда эволюционирует быстрее и заполняет свою полость Роша. Часть вещества перетекает на соседку (теперь та становится более массивной), а часть рассеивается вокруг. При этом орбита становится более тесной. Звезда, изначально бывшая более массивной, взрывается, порождая нейтронную звезду. Вначале она находится на стадии радиопульсара. Затем вторая звезда эволюционирует, расширяется, превращаясь в красного гиганта, и начинает перетекать на нейтронную. Возникает рентгеновский пульсар. Часть вещества не успевает попасть на компактный объект. Возникает так называемая общая оболочка, уносящая момент импульса (орбитальный момент системы). На этой стадии система также становится более тесной. В результате нейтронная звезда попадает внутрь гиганта. Возникает объект Торна – Житков.
Есть несколько способов заставить звезды в двойной системе сближаться. Кроме образования общей оболочки, это может быть связано с так называемыми магнитными звездными ветрами. Исходящий от звезды ветер частиц захвачен ее магнитным полем. И пользуясь полем как рычагом, звездный ветер может очень эффективно отводить от системы орбитальный момент, т. е., попросту говоря, тормозить вращение двойной. Такой механизм работает для систем с красными карликами. На определенном этапе, когда двойная уже стала очень тесной, звезды сближаются из-за излучения гравитационных волн. Гравитационные волны уносят момент импульса, система становится более компактной. Именно благодаря им могут сливаться друг с другом белые карлики, нейтронные звезды и черные дыры.
Гиперскоростные звезды
Еще один очень интересный тип объектов, связанных с двойными системами, – так называемые гиперскоростные звезды. Обычно звезды в окрестностях Солнца перемещаются друг относительно друга с довольно большими по нашим земным меркам скоростями: 10–20 км/с, что соответствует скоростям искусственных спутников или планет вокруг Солнца. В Галактике, в диске, звезды практически везде и всегда движутся относительно своих соседей примерно с такой типичной скоростью. Кроме диска, у Галактики есть другие составляющие, например, галактическое гало. Если в диске звезды движутся примерно в одной плоскости, то звезды гало могут обращаться по любым орбитам. Скорость вращения вокруг центра Галактики на солнечной орбите больше 200 км/с. Поэтому звезды гало могут «просвистывать» сквозь диск примерно с такой же скоростью, и мы видим такие объекты вокруг нас. Но эти объекты все равно связаны с нашей Галактикой, и для их появления не нужен особый механизм. Они так движутся от рождения.
Недавно, уже в XXI веке, стали открывать так называемые гиперскоростные звезды. Их скорости – это 500, 600, 700 или даже 800 км/с. Огромные значения, которые делают звезду уже не связанной с нашей Галактикой! То есть она улетает из нашего звездного острова навсегда. Может улететь в сторону другой галактики и даже войти в ее состав (хотя последнее маловероятно). Может просто остаться совсем одинокой и болтаться в межгалактическом пространстве, с течением времени уже превратившись в белого карлика, нейтронную звезду или черную дыру. Как же они образуются?
Схематическое изображение Галактики. Показаны основные составляющие: диск, балдж и гало. Вся Галактика погружена в гигантское гало темного вещества.
Такие объекты были предсказаны совсем незадолго до их открытия, в 80-е годы прошлого века. Ускорителем этих звезд является центральная черная дыра нашей Галактики. Если двойная система – для одиночных этот механизм не работает – пролетает очень близко от черной дыры, то черная дыра может развалить эту систему своим большим приливным воздействием. Одна звезда станет спутником черной дыры, а вторая приобретет очень большую скорость. И именно из центра Галактики должны лететь гиперскоростные звезды, что в большинстве случаев и наблюдается. Наверное, есть какие-то другие механизмы, не все гиперскоростные звезды (а их известно уже несколько десятков) летят прямо из центра Галактики, но это, безусловно, основной механизм, и он также требует, чтобы в начале у нас была двойная система. Отдельную звезду трудно разогнать черной дырой до таких больших скоростей.
Экзотический механизм разгона одиночек был предложен в 2015 году. Звезда должна подойти к сверхмассивной черной дыре настолько близко, что та практически начинает ее разрушать своими приливными силами. Однако если полного разрушения не произошло, то остаток «покореженной» звезды может приобрести скорость до 1000 км/с. То есть можно разогнать и одиночную звезду, но вряд ли в нашей Галактике нужны более тяжелые черные дыры. С двойными – проще.
Или с тройными. Недавно была обнаружена удивительная гиперскоростная звезда. Наблюдения показали, что летит она из центра Галактики, но вот выглядит слишком массивной. Если мы оценим, сколько звезда должна была добираться из галактического центра до своего современного местоположения, то обнаружим парадокс: столь массивные звезды так долго не живут. Объяснение потребовало вовлечения тройной системы. Промчавшись мимо сверхмассивной черной дыры, система потеряла одну из звезд, а оставшаяся пара ускорилась до уровня гиперскоростных звезд. Но в процессе полета гиперскоростная двойная слилась. Образовавшаяся звезда не только имеет массу, равную сумме масс исходных компонент двойной, но и выглядит более массивной из-за недавнего слияния, разогревшего звезду (похожими свойствами обладают так называемые «голубые бродяги», встречающиеся в основном в плотных скоплениях; эти объекты также выглядят более массивными, яркими и голубыми, чем им положено, из-за взаимодействия с другими звездами).
Но все-таки самая быстрая на сегодняшний день звезда в Галактике – US 708 – разогналась не за счет взаимодействия со сверхмассивной черной дырой. Как показывает исследование, опубликованное в 2015 году, она входила в тесную двойную систему, которую разрушил взрыв сверхновой. Скорее всего, сверхновой типа Ia. Скорость звезды составляет 1200 км/с.
А можно ли разогнать звезду до еще больших скоростей? Может быть, близких к световой. По всей видимости – можно. Снова нужна двойная система, но на этот раз из двух сверхмассивных черных дыр. В результате слияния галактик часто возникает такая монстровидная пара. Недавние расчеты показали, что пара таких черных дыр может ускорять обычные звезды до скоростей в десятки тысяч километров в секунду.
Было бы здорово прицепиться к гиперскоростной звезде и полететь в другую галактику. Если у звезды уже есть обитаемые планеты, то можно вместе с их обитателями совершить такой межгалактический перелет. Путешествие заняло бы сотни тысяч или даже миллионы лет, но, находясь на обитаемой планете вблизи нормальной долгоживущей звезды типа Солнца, колония внегалактических странников могла бы добиться успеха.
Планеты двойных звезд
В фантастических романах очень любят описывать планеты, имеющие два (или больше) солнца. Оказалось, что и в самом деле в системах двойных звезд могут существовать планеты. Их начали открывать совсем недавно. Основной вклад в обнаружение планет в двойных системах внес спутник «Кеплер».
Конфигурации устойчивых орбит планет в двойных системах. Планета может вращаться вокруг всей пары на расстоянии заметно большем, чем размер звездных орбит, или вокруг одной из звезд, находясь вблизи нее.
Говоря о планетах в двойных, мы можем вспомнить о тройных звездах. Устойчивыми оказываются только иерархические системы. Возможны две ситуации, когда планетная орбита оказывается устойчивой. Бывает, что планета вращается очень близко от одной из звезд и вторая звезда лишь несильно возмущает орбиту планеты. Это не так интересно, так как фактически у такой планеты одно солнце (второе будет намного слабее в небе такой планеты). А могут быть планеты, вращающиеся сразу вокруг всей двойной. Первая такая планета была открыта спутником «Кеплер». Ее, естественно, неофициально назвали Татуин, поскольку похожая планета существует в популярном фильме.
Сейчас известно уже несколько десятков планет в двойных звездных системах. Как вокруг какой-нибудь из звезд двойной, так и вокруг всей системы. Но есть и планеты в тройных системах. Одна из них (в системе GJ 667) даже находится в зоне обитаемости и имеет не слишком большую массу. То есть она может относиться к планетам земного типа и иметь на своей поверхности жидкую воду.
В некоторых планетных системах мы можем наблюдать процессы, аналогичные происходящим в тесных двойных системах. Например, если планета подобралась слишком близко к звезде, то та может ее нагревать своим излучением, возмущать своим приливным воздействием. Так же, как в тройных системах, может запускаться механизм Козаи – Лидова, приводящий к квазипериодическим изменениям наклона орбиты и ее вытянутости. Наконец, может даже начаться аккреция, а в конце концов планета может слиться со звездой, что будет сопровождаться яркой вспышкой. Их надеются обнаружить, когда войдет в строй большой обзорный телескоп LSST.
Сам процесс образования планет происходит в диске, окружающем звезду (сейчас мы даже видим диски вокруг молодых двойных звезд). Изучение дисков в астрофизике десятилетиями было в основном связано с исследованием тесных двойных. Поэтому многие методы и решения, разработанные для двойных, – например, решение Шакуры-Сюняева, – интенсивно используется для моделирования формирования планетных систем.
В течение последних лет планеты вокруг двойных звезд перестали быть фантастикой, и теперь мы знаем различные системы такого типа. Поговорим теперь, возможно, о самых фантастических двойных звездах.
VI. Релятивистские двойные звезды
Релятивистские двойные – это системы, где хотя бы один из объектов является очень компактным, и поэтому для описания таких систем нужна теория относительности (собственно, обе: и Частная – так называемая Специальная, – и Общая). По-английски «теория относительности» – theory of relativity. Поэтому компактные объекты и системы с ними называют релятивистскими. Обычно это системы или с нейтронными звездами, или с черными дырами. В будущем мы надеемся открыть и двойные, состоящие сразу из нейтронной звезды и черной дыры.
Двойные системы занимают важное место и в астрофизике обычных звезд. Самое главное, для чего звездные двойные системы понадобились астрономам, – это измерение масс. Поскольку если мы наблюдаем одиночную звезду, то точно измерить ее массу практически невозможно. Значит, нам нужно, чтобы что-то вокруг нее крутилось (и сама она также обращалась вокруг другого тела, точнее, они обе обращались вокруг центра масс). К счастью, есть двойные системы, и там мы можем измерять массы звезд. А потом, когда мы видим одиночную звезду, мы можем сказать: «Она похожа на одну из тех звезд в двойных, для которых мы измеряли массу, поэтому мы думаем, что масса этой одиночной звезды такая-то». Примерно так все это работает, хотя реальность, как обычно, немножечко богаче и сложнее.
Массивные двойные
Итак, образовалась двойная звезда. Почему же сформировалась пара, а не один объект? Сжимающееся облако газа и пыли вращается. Такое облако всегда вращается – в космосе вообще все вращается. Чем сильнее оно сжимается, тем быстрее вращается. И, наконец, центробежная сила способна остановить сжатие. Читатель может справедливо возразить, что никакой центробежной силы нет. Строго говоря, это верно (ведь, скажем, на Землю, вращающуюся вокруг Солнца, действует только сила солнечного притяжения, никакой другой реальной силы нет). Но зато есть закон сохранения момента импульса. Например, именно из-за необходимости преодолевать инерцию вращения нам труднее запустить аппарат к Меркурию, чем к Юпитеру, хотя Меркурий гораздо ближе. Сжимающемуся веществу очень трудно избавиться от вращения, а это необходимо сделать, для того чтобы стать еще компактнее.
По мере сжатия скорость вращения возрастет настолько, что станет невозможным образовать единый более компактный объект. Чтобы этого избежать, можно сжимающийся сгусток вещества разделить на две части. Тогда обе части будут вращаться друг вокруг друга, но каждая из них сможет коллапсировать, схлопываться дальше и в конце концов породит звезду. То есть «излишек» вращения сжимающегося облака мы конвертировали в орбитальное вращение пары объектов. Если деления на две части не хватит, то какой-то из кусочков опять может разделиться надвое, и образуется иерархическая система, состоящая, например, из двойной и одиночной звезды или из двух пар. А в некоторых случаях – даже из трех пар звезд.
Так вот, представим, что у нас образовалась двойная система, и пусть для определенности у нас обе звезды достаточно массивные. Тогда с течением времени одна из них (напомним, что более массивная эволюционирует быстрее своей соседки) закончит свою эволюцию, взорвется и породит нейтронную звезду. Затем вторая тоже закончит свою эволюцию и тоже произведет на свет нейтронную звезду. Таким образом, будет система из двух нейтронных звезд, а до этого – на какой-то стадии эволюции – пара из нейтронной звезды и обычной звезды, которая еще не превратилась в релятивистский объект. Это очень интересные системы, и именно в них мы можем измерять массы компактных объектов: массы черных дыр и нейтронных звезд. Это очень важно, в частности, если мы хотим понять, как наши суперобъекты устроены внутри.
Измерение масс компактных объектов – ключевой момент, если мы хотим доказать существование черных дыр. Впервые об этих объектах как возможной интерпретации наблюдаемых источников начали говорить в конце 60-х – начале 70-х годов ХХ века. Тогда начали открывать системы, состоящие из релятивистского объекта и нормальной звезды, вещество которой перетекает на компактного соседа, и при этом выделяется очень много энергии, поскольку вещество разгоняется гравитацией до очень большой скорости. Скажем, если оно падает в черную дыру – то до скорости света (по определению). На нейтронную звезду вещество падает с немножко меньшей скоростью, но тем не менее, останавливаясь на поверхности нейтронной звезды, оно имеет большую кинетическую энергию, вся эта энергия выделяется, и у нас возникает очень яркий источник.
В каком диапазоне будет излучать наш источник? Мы знаем, что холодные звезды имеют температуру поверхности около 3000 K и светят красным светом. Солнце со своими 6000 K – желтая звезда. Более горячие Сириус и Вега – белые. Чем горячее звезда – тем дальше максимум в спектре ее излучения сдвигается в сторону коротких волн. Чем короче волна – тем больше средняя энергия испускаемых фотонов. Если источник излучает много энергии с маленькой площади, то каждый из фотонов, которые уносят энергию, сам будет иметь большую энергию. (Это похоже на описанную выше ситуацию, когда вам надо унести крупную сумму в небольшом чемодане – конечно, вы возьмете самые крупные купюры!) В случае нейтронных звезд и черных дыр в двойных системах это оказываются рентгеновские фотоны, соответствующие температуре вещества в миллионы градусов.
Спектры черного тела для разных температур. Видно, что с ростом температуры максимум сдвигается в сторону более коротких волн.
В 60-е годы ХХ века возникла рентгеновская астрономия. А в начале 1970-х одно за другим последовали открытия новых удивительных источников. Оказалось, что зачастую мы видим двойные системы, где вещество течет с обычной звезды на компактный объект. В такой ситуации мы можем измерить массу компактного объекта, и она для некоторых из них оказалась большой. Что это означает с точки зрения физики? Например, если у нас есть компактный объект с массой 3, 4, 5, или 10 солнечных масс, то мы не можем сделать его из обычного вещества. Нам приходится предположить, что в этой системе находится черная дыра, поскольку нейтронные звезды не могут быть столь массивными – для них существует некий верхний предел. Мы не знаем его точно, но это где-то 2–3 солнечные массы, и, когда релятивистская звезда достигает этого предела, она схлопывается в черную дыру. Таким образом, компактные объекты, обладающие достаточно большой массой, не могут избежать превращения в черные дыры. Это не относится к обычным звездам, которые могут иметь массу и 100, и 120 солнечных масс, – у них внутри есть источник энергии, и давление внутри вещества предотвращает схлопывание в черную дыру. Но в случае рентгеновских двойных мы уверены, что второй компонент не является обычной звездой.
Релятивистская двойная система с аккрецией. Вещество перетекает с обычной звезды на компактный объект, разгоняясь до больших скоростей гравитацией. Часть вещества может выбрасываться в виде двух струй – джетов – в направлениях, перпендикулярных диску.
Измерение масс и радиусов в двойных системах
Многие методы измерения масс и радиусов так или иначе связаны с двойными системами, особенно если речь идет об одновременном измерении этих параметров. Начнем с того, что массы обычных звезд мы умеем точно определять только в двойных. Наблюдения позволяют определить орбитальный период и амплитуду лучевых скоростей для каждой звезды. После этого остается один неизвестный параметр – угол, под которым мы видим плоскость орбиты. Его можно определить, например, если в системе происходят затмения.
Тогда мы сразу получим массы обеих звезд в системе. Это работает и для систем с нейтронными звездами. Чаще всего сам компактный объект мы не видим. Однако если речь идет о радиопульсаре, то наблюдения изменений его периода позволяют определить орбитальную скорость в проекции на луч зрения. А если нейтронная звезда является рентгеновским источником, то мы можем наблюдать в оптическом диапазоне аккреционный диск, что также дает возможность измерить орбитальную скорость.
Иногда наблюдения диска в рентгеновском диапазоне позволяют обозначить верхний предел размера нейтронной звезды. Это связано с тем, что в рентгеновском диапазоне есть известная спектральная линия – линия железа. Когда ее испускает вещество аккреционного диска, то мы можем определить, на каком расстоянии от центра нейтронной звезды это произошло. Дело в том, что звезда настолько массивна и компактна, что в диске становится заметным один из эффектов Общей теории относительности – гравитационное красное смещение. Чем оно больше – тем ближе к гравитирующему центру (а стало быть, и к поверхности нейтронной звезды) подошел диск. В результате спектральная линия перестает быть узкой. У нее, как говорят астрономы, «отрастает красное плечо». Определение максимального смещения линии для данного источника дает радиус внутренней границы диска. А он, конечно же, не может быть меньше радиуса звезды. Часто такие оценки оказываются полезными и дают возможность отбросить уравнения состояния, предсказывающие слишком большие объекты.
Схематичное изображение линии железа (6,4 кэВ) с красным плечом. Из-за того, что часть излучения приходит от внутренних областей диска, свет приходит к нам покрасневшим.
Радиус нейтронной звезды можно также оценить, если видно тепловое излучение поверхности. Спектр такого излучения – достаточно универсальный (он зависит от состава атмосферы компактного объекта, но часто это удается правильно учесть), и на основании наблюдений можно довольно точно определить температуру. Если мы знаем светимость источника, то по известной температуре можем немедленно вычислить площадь излучающей поверхности. Если излучение не переменное, то, скорее всего, светит вся поверхность, а не какое-то горячее пятно. В случае нейтронной звезды по данным о светимости и температуре мы получим ее радиус. Это будет тот радиус, который виден удаленному наблюдателю. Он больше используемого на диаграмме «Масса – радиус» радиуса «по экватору». Чтобы получить значение и для него, надо знать гравитационную массу объекта.
Для продвижения в изучении свойств вещества компактных объектов лучше всего одновременно измерить и массу, и радиус. Обычно для этого нужно применить хотя бы два метода, так как из-за эффектов Общей теории относительности из наблюдений обычно определяется комбинация массы и радиуса. Например, рассмотрим измерения гравитационного красного смещения. Это похоже на получение значения радиуса внутренней границы диска, но теперь источник излучения находится прямо на поверхности. Красное смещение характеризует компактность объекта: насколько он мал при данной массе или насколько массивен при данном радиусе. Такое наблюдение позволило бы измерить отношение массы и радиуса (того, который отсчитывает «по экватору»), что дало бы прямую линию на диаграмме «Масса – радиус». К сожалению, в спектрах излучения поверхности нейтронных звезд нет подходящих линий. Один раз казалось, что удалось измерить красное смещение, но, увы, это была ложная тревога. Но даже если бы нам удалось измерить гравитационное красное смещение, был бы необходим второй метод, чтобы на линии на диаграмме «Масса – радиус» мы могли бы выделить короткий отрезок, а лучше – точку.
Один из классов тесных двойных систем с нейтронными звездами – барстеры – дает возможность добавить еще один метод. В этих источниках вещество, перетекающее с нормальной звезды, накапливается на поверхности нейтронной, пока не происходит термоядерный взрыв. В результате оболочка начинает расширяться. Затем вещество возвращается обратно. Но это не быстрое падение, потому что вещество поддерживается мощным потоком излучения. Вещество как бы парит над поверхностью. В это время светимость равна критической. Ее называют эддингтоновской в честь Артура Эддингтона, который первым рассмотрел такую ситуацию.
Здесь важно, что свет оказывает давление. Гравитация стремится уронить вещество на поверхность, а излучение стремится сбросить вещество. Анализ равновесия между гравитацией и излучением в итоге позволяет определить комбинацию массы и радиуса, так как эддингтоновская светимость, удерживающая вещество, зависит от массы притягивающего объекта.
Наконец, большие надежды связывают с анализом профилей импульсов рентгеновских пульсаров. Для решения этой задачи планируют даже запустить несколько космических проектов. Один из них называется NICER. Эта система рентгеновских телескопов будет установлена на МКС. Другой проект, гораздо более крупный, пока лишь планируется. Это европейский спутник LOFT.
Изображение установки NICER. Прибор будет установлен на Международной космической станции. Одна из главных задач – изучение нейтронных звезд в двойных системах с целью определения их масс и радиусов. Это позволит решить вопрос о состоянии вещества в их недрах.
Идея подхода состоит в том, что тщательное моделирование формы импульсов позволяет одновременно определить массу и радиус. Дело снова в эффектах Общей теории относительности. Нейтронные звезды настолько сильно искажают пространство вокруг себя, что мы всегда видим их затылок. По крайней мере частично. Световые лучи двигаются по прямой, только если они испущены перпендикулярно поверхности (т. е. точно по радиусу). Но элемент поверхности светит во все стороны, поэтому часть лучей покидает поверхность под углом к ней. Их траектория будет изогнутой, и это может привести к тому, что часть лучей обогнет нейтронную звезду. В итоге частично мы будем видеть излучение от обратной стороны компактного объекта. Чем компактнее нейтронная звезда – тем больше эффект.
Если звезда достаточно большая (при той же массе), то эффект мал. Это приводит к тому, что у таких звезд могут быть узкие импульсы и пульсации будут сильными. У массивных звезд с небольшими радиусами мы всегда видим достаточную часть обратной стороны, чтобы импульсы расплывались. Детальный анализ нескольких десятков объектов должен позволить достаточно точно определить комбинацию массы и радиуса и внести ясность в вопрос об уравнении состояния нейтронных звезд. Цена вопроса – Нобелевская премия.
Двойные с черными дырами
Двойные системы дали уникальную возможность изучать черные дыры. Мы, конечно же, не видим саму дыру, мы наблюдаем то вещество, которое течет в нее. Обычно вещество образует диск вокруг черной дыры, и мы видим излучение, приходящее из внутренних частей диска, которые отстоят от горизонта черной дыры всего на пару ее радиусов (может, и меньше, если дыра быстро вращается). И это пока единственный хороший способ что-то узнавать об этих удивительных объектах.
Главный аргумент в пользу существования черных дыр связан именно с релятивистскими двойными системами. Существуют так называемые новые звезды. На самом деле, как мы уже говорили, они старые, но свое название получили благодаря тому, что могут быстро увеличить свой блеск и вдруг появляются на небе. Это двойные системы. Вещество в них течет с обычной звезды на белого карлика, накапливается и происходит взрыв. Похожую штуку можно сделать и с нейтронной звездой. В этом случае у нас есть двойная система – нейтронная звезда плюс обычная, – и вещество течет с обычной на нейтронную. Оно постепенно накапливается на поверхности, и в какой-то момент происходит термоядерный взрыв, быстро охватывающий всю поверхность. Мы видим такие объекты. Их называют рентгеновскими барстерами (от burst – вспышка), и можно достаточно надежно доказать, что это действительно термоядерный взрыв на поверхности нейтронной звезды. При этом есть системы, крайне похожие на системы с барстерами, но там не происходит никаких вспышек. Единственный способ объяснить такие источники без вспышек – предположить, что компактные объекты, которые входят в эти двойные системы, просто не имеют поверхности. То есть, проще говоря, там черная дыра. Как лошадь барона Мюнхгаузена, в «которую лилось, а из нее выливалось», невозможно напоить, так и дождаться термоядерного взрыва от аккреции на черную дыру невозможно.
Кривая блеска рентгеновского барстера. Вещество накапливается на поверхности нейтронной звезды, пока не происходит термоядерный взрыв.
Если мы отбросим версию черной дыры и представим себе, что там есть какая-то поверхность, то вспышки должны происходить (при условии, что радиус нашего альтернативного объекта не отличается от радиуса черной дыры всего лишь на несколько процентов). Поэтому существование таких двойных систем, похожих на системы с барстерами, – с перетеканием вещества, но без вспышек – один из самых надежных аргументов в пользу существования черных дыр.
Мы думаем, что в ближайшие годы прямое доказательство существования черных дыр будет получено, и именно благодаря двойным системам. Если у нас в систему вначале входило две очень массивные звезды, каждая из которых прожила свою жизнь и породила черную дыру, то потом такая система, теряя орбитальный момент за счет испускания гравитационных волн, может проэволюционировать до слияния черных дыр. Это приведет к появлению гравитационно-волнового всплеска, и детекторы текущего поколения смогут их зарегистрировать. А поэтому общественность ждет, что в 2017–2018 годах наконец-то будут напрямую зарегистрированы гравитационные волны от слияния компактных объектов, и одновременно доказано существование черных дыр. Дело в том, что по форме сигнала мы сможем сказать, взаимодействуют ли друг с другом горизонты черных дыр, или сливаются объекты, имеющие твердые поверхности (правда, тут все равно есть тонкость, так как если представить себе гипотетическую альтернативу черным дырам, где радиус поверхности на ничтожно малую величину превосходит радиус горизонта, то дать окончательный ответ все равно будет нельзя или по крайней мере очень трудно). Если не будут обнаружены вспышки, связанные с последними мгновениями хокинговского испарения черных дыр, то на долгое время гравитационно-волновые данные будут самым прямым и надежным доказательством существования черных дыр.
Результаты численного расчета сигнала от слияния черных дыр. После объединения двух компактных объектов в один наступает фаза «звона», определяемая поведением горизонта образовавшейся черной дыры.
Ультрамощные рентгеновские источники
Двойные системы могут быть достаточно разнообразными, и один из типов рентгеновских источников, связанных с двойными системами настолько необычен, что пришлось придумывать новый тип черных дыр.
Рентгеновские источники излучают, когда вещество с одной звезды перетекает на компактный объект и происходит выделение энергии. Казалось бы, чем больше перетекает вещества – тем больше поток излучения. Но в реальной ситуации существует некоторый предел светимости.
Все хорошо помнят, что свет может оказывать давление, этот факт был открыт в самом конце XIX века и сейчас является хорошо понятным феноменом. Решающие эксперименты провел в Москве на физическом факультете Университета профессор Петр Лебедев.
Есть много примеров того, как давление света влияет на хорошо известные нам объекты. Например, искусственные спутники немножечко «сдувает» излучением Солнца. Но Солнце – довольно слабый источник, тем более если мы говорим о спутниках, двигающихся в десятках и сотнях миллионов километров от него. При более сильном излучении эффект, разумеется, заметнее. А теперь представим себе такую картину: перед нами поверхность нейтронной звезды, и мы откуда-то сверху кидаем на нее вещество. Каждый выпавший килограмм вещества приводит к выделению энергии больше, чем при типичном атомном взрыве. Чем больше вещества падает, тем больше выделяется энергии и тем больше излучение будет давить на падающий поток вещества. В итоге установится какое-то равновесие: мы можем продолжать кидать вещество, но светимость, начиная с какого-то момента, не будет возрастать, а часть вещества будет просто уноситься потоком излучения. То есть возникнет какая-то предельная величина, характеризующая исходящее излучение. Это уже встречавшаяся нам эддингтоновская светимость.
Эддингтоновская светимость зависит от того, насколько сильно свет взаимодействует с веществом. Фотоны взаимодействуют с электронами, а гравитация с большей силой тащит вниз тяжелые протоны и нейтроны. Поэтому предельные значения для водородной плазмы, где на один электрон приходится одна тяжелая частица, и для гелиевой плазмы, где на электрон приходится уже две тяжелые частицы, будут разными. Но состав вещества при аккреции не сильно разнится в разных источниках. Поэтому самая главная зависимость эддингтоновской светимости – это зависимость от массы объекта, на который идет аккреция. У нас устанавливается баланс между давлением света и гравитацией. Чем больше масса – тем сильнее гравитация. Чем сильнее гравитация – тем больше предельная светимость. То есть только очень массивные объекты могут в спокойном состоянии (без взрыва) иметь высокую светимость.
Для нейтронных звезд эддингтоновская светимость оказывается равной примерно 100 000 светимостей Солнца. Если у нас есть черная дыра, которая образовалась из обычной звезды, то предел может чуть-чуть подрасти – раз в 10, в редких случаях в десятки раз. У нейтронных звезд полное энерговыделение может превосходить эддингтоновское, из-за сложной формы излучающей области, благодаря влиянию сильного магнитного поля. Но и здесь предел повышается менее чем сто раз даже в самых предельных случаях. То есть все равно очень трудно представить, как может существовать рентгеновский источник, основанный на компактном объекте звездной массы, со светимостью в несколько миллионов или даже десятков миллионов светимостей Солнца. А мы их видим…
В нашей Галактике таких источников нет, но как только появились хорошие рентгеновские телескопы, способные различать отдельные источники в какой-нибудь «далекой-далекой галактике» (первым таким прибором была обсерватория имени Эйнштейна), астрономы начали обнаруживать объекты с ненормально высокой светимостью. Существенно, что речь не идет об источниках в центрах галактик, которые могут быть связаны со сверхмассивными черными дырами. Также астрономы постарались максимально исключить ситуации, когда мы не можем разглядеть все в деталях, и принимаем группу из нескольких объектов за один источник. Ну и, разумеется, как могли, наблюдатели отбросили вероятные фоновые источники, например далекие квазары, случайно проецирующиеся на какую-нибудь гораздо более близкую галактику.
Самая простая возможность для объяснения аномально мощных источников, которую немедленно предложили астрофизики, это гипотеза, что там находится черная дыра, масса которой не 5, 7 или 10 солнечных масс (то, чего мы ожидаем от стандартной звездной эволюции), а сотни или даже тысячи масс Солнца. Это помогло бы ответить на многие вопросы и объяснить свойства этих ультрамощных (ultraluminous), как их называют из-за их большой светимости (т. е. мощности), источников. Проблема только в том, что непонятно, как такие черные дыры появляются в природе, и это до сих пор остается предметом очень активной дискуссии. То ли действительно есть какой-то способ создавать черные дыры промежуточных масс (промежуточных между звездными черными дырами и сверхмассивными черными дырами, которые находятся в центрах галактик), или же все-таки ультрамощные источники можно объяснить еще более тривиальным способом, допустив, что излучение испускается не симметрично, а направленно, как у прожектора. И тогда, если прожектор смотрит прямо на нас, мы видим очень яркий источник, думаем, что у него огромная светимость, предполагая, что он одинаково светит во все стороны, а светит он на самом деле в основном в нашем направлении.
Каждый год появляются новые интересные данные по ультрамощным источникам. Сейчас складывается картина, в которой эти объекты представляют собой смесь, ассорти. Есть очень веские аргументы в пользу того, что самые мощные из известных источников (например, источник HLX-1 в галактике ESO 243–49) действительно содержат очень массивные черные дыры с массами от нескольких сотен до 10 000 солнечных. С другой стороны, надежные оценки масс аккреторов в нескольких ультрамощных источниках свидетельствуют о типичных звездных массах черных дыр. Один источник, ко всеобщему удивлению, вообще оказался аккрецирующей нейтронной звездой! В 2014 году это замечательное открытие сделали Маттео Бакетти (Matteo Bachetti) и его соавторы, проводившие наблюдения на рентгеновском спутнике NuSTAR. Источник Х-2 в известной близкой галактике М82 оказался рентгеновским пульсаром с периодом чуть более одной секунды. Черные дыры пульсарами быть не могут, так что это точно нейтронная звезда. Наверняка ультрамощные источники еще не раз удивят астрономов. Например, высказываются гипотезы, что некоторые из них могут быть связаны с магнитарами.
Фотография галактики ESO 243–49 с гипермощным (hyper luminous) источником HLX-1. Местоположение источника отмечено кружком.
Вращение звезд и магнитары
Для появления некоторых интересных типов объектов нужно, чтобы звезда очень быстро вращалась. Пожалуй, есть два основных класса объектов, которые, как думают, образуются из очень быстро вращающихся ядер звезд: магнитары и источники длинных гамма-всплесков. Магнитары – это нейтронные звезды, которые характеризуются очень мощным магнитным полем. Чтобы создалось такое магнитное поле, т. е. чтобы были токи, которые его поддерживают, нужен какой-то механизм. Дело в том, что простого сохранения магнитного потока, скорее всего, недостаточно для возникновения магнитарных полей. Сейчас известно несколько массивных звезд с большими магнитными полями на поверхности. Но в состав магнитара входят только поля, пронизывающие ядро звезды. Хенк Спруит показал, что поля в ядре не хватит для того, чтобы объяснить параметры магнитаров. Значит, нужна дополнительная генерация.
Мы умеем генерировать электрические токи динамо-механизмами. При этих процессах энергия движения вещества (в том числе вращения) переходит в энергию электрического поля, а стало быть – в энергию магнитного поля. Соответственно, в динамо что-то должно крутиться.
Чтобы заработал эффективный динамо-механизм, ядро звезды, которая превратится в нейтронную звезду, должно очень быстро вращаться. Но здесь есть проблема. Массивные звезды имеют очень мощный звездный ветер, а мощность звездного ветра приводит к тому, что звезда замедляет свое вращение. Кроме того, расширение звезд (например, на стадии красного гиганта) также приводит к их торможению, что может сказываться и на вращении ядра. И потому мы ожидали бы, что большая часть массивных звезд к концу своей жизни вращаются очень медленно. Если внешние слои хорошо «зацеплены» за внутренние (например, благодаря магнитному полю), то у таких звезд и ядра должны медленно вращаться. Поэтому будут образовываться нейтронные звезды с не слишком быстрым вращением. «Не слишком» – по меркам нейтронных звезд, это может быть оборот за несколько сотых долей секунды, но нам хочется, чтобы она делала оборот за одну тысячную секунды – именно тогда мы сможем накрутить большое магнитное поле. Значит, ядро звезды надо дополнительно раскрутить.
Где можно раскрутить звезду? Опять-таки только в двойной системе! Если звезда входит в двойную, то возникает сразу несколько возможностей для того, чтобы звезда стала вращаться быстрее. Во-первых, звезда может раскрутиться, если на нее перетекает вещество с соседки. Во-вторых, в очень тесных системах звезды могут раскрутить друг друга приливным взаимодействием. Наконец, звезды могут просто слиться. Тогда получившаяся в итоге звезда будет обладать очень быстрым вращением. Поэтому вероятно, что основной канал образования магнитаров – это эволюция в двойных. Наши расчеты, проведенные в 2005 году вместе с Михаилом Прохоровым, а в 2009-м – с Алексеем Богомазовым, показали, что заметная часть магнитаров может рождаться в двойных системах, где хотя бы одна из звезд прошла стадию раскрутки.
Сейчас есть наблюдательные свидетельства в пользу такой модели. В 2009 году появилась статья Бена Дэвиса и его коллег, в которой они, описывая наблюдения одного из магнитаров – источника мягких повторяющихся гамма-всплесков SGR 1900+14, – начали обсуждать версию, что объект возник в двойной системе. А в 2014 году в работе Джейсона Кларка с соавторами были представлены убедительные аргументы в пользу того, что аномальный рентгеновский пульсар CXOU J1647–45 возник в двойной.
Возможно, что существует набор эволюционных каналов для двойных систем, которые в случае рождения нейтронной звезды приводят к появлению магнитара, а в случае образования черной дыры – к гамма-всплеску.
Гамма-всплески – это самые мощные взрывы во Вселенной. Их полное энерговыделение превосходит некоторые сверхновые. В стандартной на сегодняшний день модели длинных гамма-всплесков для столь неистового энерговыделения необходимо быстрое вращение коллапсирующего ядра звезды. В результате коллапса формируется черная дыра. Если ядро быстро вращается, то вокруг дыры сформируется толстый быстро вращающийся диск вещества. В такой системе, как показывают расчеты, можно сформировать ультрарелятивистский выброс и направленный поток излучения. Если он попадает на Землю, то мы регистрируем гамма-всплеск. Заметьте, в таком сценарии опять необходимо быстрое вращение звезды до взрыва, и мы не знаем, как этого достичь, если звезда не находится (или не находилась ранее) в двойной системе. А некоторые гамма-всплески объясняют и магнитарами.
Распределение гамма-всплесков по длительности. Четко выделяются две группы: короткие и длинные. Короткие, как полагают сейчас, связаны со слияниями нейтронных звезд. А длинные – с финальными стадиями жизни массивных звезд.
Двойные радиопульсары
Итак, массивные звезды в основном рождаются в двойных. Примерно в 10 % случаев система не разрушается после взрыва сверхновой. Значит, мы можем увидеть радиопульсар в паре с другой звездой. Но обычные пульсары живут недолго: всего миллион-другой лет – и все. Выключается механизм генерации радиоизлучения. Это происходит в основном из-за замедления темпа вращения. Еще немного может добавить уменьшение магнитного поля. Чтобы пульсар заработал вновь. было бы неплохо снова раскрутить его до очень короткого периода. Но как? Эволюция в тесной двойной системе дает такую возможность.
После возникновения нейтронной звезды в двойной системе второй компаньон продолжает свою жизнь. Как мы уже говорили, вокруг каждой из звезд существует область, контролируемая ею. Этот объем называют полостью Роша. В какой-то момент обычная звезда может заполнить свою полость Роша. Тогда начнется перетекание вещества на нейтронную звезду.
Полости Роша в двойной системе. Звезды могут обмениваться массой через так называемую внутреннюю точку Лагранжа, соединяющую две полости.
Переполнение может произойти в двух случаях: либо сама звезда расширилась – превратилась в красного гиганта, либо система просто стала более тесной – из-за излучения гравитационных волн или из-за магнитного звездного ветра компоненты сближаются, и начинается перетекание.
Поток вещества влияет на нейтронную звезду тремя способами. Во-первых, он раскручивает ее до миллисекундных периодов. Во-вторых, немного подрастает ее масса. Третий эффект довольно неожиданный – уменьшается магнитное поле нейтронной звезды.
Выше мы уже говорили, что поля затухают, если уменьшаются токи, их порождающие. А токи уменьшаются из-за сопротивления, которое возрастает, когда кора нейтронной звезды нагревается. Так вот, аккреция будет греть кору, что приведет к уменьшению магнитного поля. Кроме того, падение большой массы вещества приведет к тому, что старая кора, в которой текут токи, начнет опускаться глубже в недра. Там затухание токов будет происходить быстрее. Результатом снова будет уменьшение магнитного поля.
В итоге получится такой необычный объект: нейтронная звезда с периодом вращения несколько миллисекунд и полем в сотни раз меньше, чем у обычных пульсаров. Такой источник тоже может излучать в радиодиапазоне. Это миллисекундный пульсар.
Особенность подобных объектов в том, что из-за слабого поля они очень медленно тормозят свое вращение. Поэтому живут они долго – миллиарды лет. Соответственно, мы можем обнаружить много таких объектов.
Первый миллисекундный радиопульсар был открыт в 1982 году. Но идея о том, что в двойных системах могут появляться пульсары с низкими полями, была впервые детально разработана более 40 лет назад, в работе 1974 года Бориса Комберга и Геннадия Бисноватого-Когана. Постепенно заполнялись пробелы как в нашем теоретическом понимании природы этих систем, так и в наблюдательных данных. Со временем были открыты рентгеновские миллисекундные пульсары, это произошло в 1998 году. Эти источники – предшественники миллисекундных радиопульсаров. В системе еще идет аккреция на нейтронную звезду. Но если ее прекратить, то начнется генерация радиоизлучения. И совсем недавно удалось это увидеть.
Рентгеновские и радионаблюдения продемонстрировали, что некоторые из нейтронных звезд с миллисекундным вращением, находясь в двойных системах, видны то как рентгеновские пульсары, то как радио, в зависимости от того, сколько вещества перетекает на них со второго компаньона.
Радиопульсары с миллисекундными периодами вращения могут быть и одиночными объектами, если система распалась или второй компонент полностью исчез. Это может произойти как из-за полного перетекания, так и из-за «испарения». Включившийся радиопульсар потихоньку нагревает своего легкого партнера, что приводит к его постепенному испарению. Такие пульсары называют «черными вдовами» – в честь пауков, самки которых убивают и поедают самцов после спаривания.
Диаграмма «Период – производная периода» для радиопульсаров и родственных объектов. В среднем чем выше пульсар на диаграмме (при том же периоде), тем выше его дипольное магнитное поле. Слева внизу расположены миллисекундные пульсары, которые были раскручены в двойных системах.
Миллисекундные радиопульсары полезны тем, что для них можно очень точно измерять массы нейтронных звезд. И астрономы этим активно пользуются. Самые тяжелые объекты, обуздывающие фантазию теоретиков, занимающихся уравнением состояния, – как раз двойные миллисекундные пульсары. У некоторых из них масса даже немного превышает две солнечных. Неудивительно, что их партнерами чаще всего являются белые карлики. В таких системах вторая звезда успела проэволюционировать до конца. Соответственно, она успела передать много своей массы соседке – нейтронной звезде. То есть, скорее всего, самые тяжелые из известных нейтронных звезд не были такими от рождения.
Есть и радиопульсары в паре со второй нейтронной звездой. Таких двойных известно менее десятка. Изначально в такой системе должно было быть две массивные звезды. И она должна была пережить два взрыва. А чтобы мы с большей вероятностью открыли пульсар, он должен долго жить, т. е. быть миллисекундным, раскрученным.
Системы из двух компактных звезд помогают изучать теорию гравитации, так как пульсар – это очень точные часы, а вторая нейтронная звезда создает мощное гравитационное поле, в котором вынуждены работать и посылать нам сигналы эти часы. За открытие и исследование первой подобной системы, в результате которых были получены косвенные доказательства существования гравитационных волн, Расселу Халсу и Джозефу Тейлору в 1993 году была вручена Нобелевская премия по физике.
В начале этого века был открыт еще более удивительный объект: дважды двойной радиопульсар PSR J0737–3039. Это сделали Марта Бурге и ее соавторы. В этой системе обе нейтронные звезды наблюдались как радиопульсары (более старая – как миллисекундный, а более молодая – как обычный). Сейчас молодой пульсар не виден, так как его луч перестал попадать на Землю из-за прецессии. Но в будущем мы опять сможем наблюдать сразу два пульсара в двойной. Это очень тесная система (соответственно, слияние произойдет довольно скоро, по астрономическим меркам). Буквально за считаные месяцы удалось увидеть несколько релятивистских эффектов, которые в других системах удается увидеть только после нескольких лет (или даже десятилетий) наблюдений. Кроме того, в этой системе удалось получить фантастически точные измерения масс обеих нейтронных звезд. Вдобавок эта система очень близкая – около 600 парсек от Солнца. Значит, по всей видимости, такие пары – не редкость. Такой вывод крайне важен для оценки числа событий слияния пар нейтронных звезд, которые планируется наблюдать на установках VIRGO и LIGO. Обнаружение Мартой Бурге близкого тесного дважды двойного пульсара подтвердило оптимистичные оценки числа слияний, которые ранее делали теоретики на основе расчета эволюции популяций двойных звезд (так называемые метод популяционного синтеза). Отметим, что у нас в стране в этой области исследований работали и работают две очень сильные научные группы: в ИНАСАНе (Александр Тутуков и Лев Юнгельсон) и в ГАИШ (Владимир Липунов, Константин Постнов и др.).
Фотография Марты Бурге, открывшей дважды двойной пульсар. Снимок любезно предоставлен Джоном Саркисяном (John Sarkissian).
Судьба тесных систем из двух нейтронных звезд предсказана Общей теорией относительности. За счет испускания гравитационных волн звезды будут терять орбитальный момент и наконец сольются. Когда два массивных компактных объекта почти со скоростью света упадут друг на друга, выделится огромное количество энергии в самой разной форме. Мы будем обсуждать это явление в отдельном параграфе.
Астрономы надеются открыть еще более редкого «зверя»: пульсар в паре с черной дырой. Они встречаются редко – один на несколько тысяч обычных радиопульсаров (а их сейчас известно около 2000). И уж коли пока не повезло – ни одна такая система не открыта, то надо просто строить очень крупный инструмент, который откроет тысячи новых радиопульсаров. Первым таким прибором станет китайский радиотелескоп с огромной чашей в качестве антенны. Этот инструмент будет похож на знаменитый радиотелескоп в Аресибо. Он должен как минимум удвоить число известных к тому времени радиопульсаров. С высокой вероятностью среди новых будет и пара из радиопульсара и черной дыры, хотя бы одна. Потенциально это тоже может привести к Нобелевской премии. Если же и им не повезет, то через несколько лет в строй войдет система телескопов SKA (Square Kilometer Array). Одна из ее задач – увидеть все радиопульсары в Галактике, которые вообще светят в нашу сторону. От SKA будет не скрыться.
Один из обсуждаемых вариантов системы радиотелескопов SKA. Часть гигантской установки будет находиться в Австралии, часть – в Южной Африке.
Таким образом, двойные системы порождают, может быть, самые интересные объекты во Вселенной, самые мощные взрывы, самые удивительные типы нейтронных звезд и, может быть, имеют отношение к необычным типам черных дыр. Много нового об этих чудесах мы надеемся узнать благодаря регистрации гравитационных волн.
VII. Гравитационные волны
Теория гравитации и геометрия
Рассказ о гравитационных волнах начнем с черных дыр. Идея черных дыр родилась более двух столетий назад. Джон Мичелл и Пьер Симон Лаплас задумались: что будет, если взять обычные ньютоновские законы и рассмотреть увеличение второй космической скорости – т. е. той величины, которую надо единомоментно сообщить какому-нибудь шарику, мячику, камушку, чтобы он улетел, например, с Земли и больше не возвращался? Такая скорость вычисляется по довольно простой формуле V= (2GM/R)1/2. Здесь V – скорость, M – масса тела, с которого мы хотим улететь, R – его радиус, а G – ньютоновская постоянная. Формула легко получается из равенства кинетической и потенциальной энергии тела.
Мы берем эту формулу и видим, что можем, например, или, сохраняя радиус того объекта, с которого запускаем тело, увеличивать его массу – и тогда будет расти критическая скорость «полного улета». Или, наоборот, сохраняя массу, сжимать этот объект, с которого все улетает, – и снова скорость будет возрастать. В конце концов, мы дойдем до скорости света. То есть Мичелл и Лаплас высказали простую, но важную мысль, что согласно этой формуле можно сделать такой объект – или очень тяжелый, или очень компактный, маленький, – что скорость убегания от него будет равна скорости света.
Некий ренессанс идеи, или черные дыры в современном понимании, возник уже в рамках Общей теории относительности. Там картинка немножко иная, и нам в дальнейшем понадобится то, что Общая теория относительности – геометрическая теория гравитации[12]. В этой теории массивные тела искажают пространство-время вокруг себя. Обычно искажение пространства иллюстрируют следующим довольно простым способом. Представьте себе эластичную (например, резиновую) плоскость. Вы кладете на нее разные предметы – чем тяжелее предмет, тем больше прогнется поверхность и, соответственно, возникнет ямка, а прочие объекты будут туда «притягиваться». Вы запускаете на плоскость катиться какие-нибудь другие шарики, и они в эту ямку скатываются. Это хороший образ, и примерно так все и работает: тела притягиваются друг к другу из-за того, что они исказили пространство вокруг себя.
Продолжим эту аналогию. На плоскость можно положить столь тяжелый и компактный предмет (важно помнить, что у нас работает комбинация массы и радиуса: тяжелый, но большой предмет продавит очень большую по радиусу, но неглубокую ямку с малой кривизной стенок, т. е. относительно слабо исказит поверхность, а маленький шарик с очень высокой плотностью – деформирует заметно), что в том месте, где он лежит, плоскость продавится настолько сильно, что возникнет область пространства, которая как бы «окукливается», и из нее наружу ничего выходить не будет. Вот это, если не вдаваться в детали, и есть аналог черной дыры в Общей теории относительности. У нас возникла специфическая область пространства. С точки зрения внешнего наблюдателя, это почти что дыра в плоскости, границы которой четко определены. Внутрь можно попасть, но выбраться оттуда – нельзя. Если в такую дыру попадают объекты, то дыра растет.
Типичная иллюстрация черной дыры в геометрической модели гравитации. Черная дыра очень сильно искривляет пространство вокруг себя. В результате вещество может попасть в «воронку», и не сможет выбраться наружу.
Как настоящая черная дыра устроена внутри – большой и сложный вопрос. Теория позволяет построить довольно экзотические решения для поведения частиц, попавших под горизонт (в некоторых моделях даже собственно горизонт не возникает!). Например, можно избежать попадания некоторых частиц в центральную сингулярность. Но если вы никаких хитростей не добавляете, все действительно должно сваливаться в самый центр. А там мы уже не знаем, что происходит, так как формально многие параметры достигают бесконечных значений, и это говорит о том, что наши физические законы перестают в этой области работать. И здесь возникает проблема: а есть ли вообще черные дыры? С одной стороны, их предсказывает Общая теория относительности – стандартная, на сегодняшний день, теория гравитации. С другой стороны, исследователи понимают, что это не окончательная теория. Она обладает рядом хороших свойств и тщательно проверена там, где это возможно. Но наши экспериментальные и наблюдательные возможности ограничены. И черные дыры как раз являют собой прекрасный пример ограничений, поставленных самой природой. Нам нужна более совершенная теория, в которую Общая теория относительности войдет как часть. Теоретики работают над этим. Но одной теории мало. Надо иметь наблюдательные данные о том, что происходит в очень сильных гравитационных полях. Прямое доказательство существования черных дыр очень помогло бы, но как их открыть? Если это дыры и они черные, то что там вообще можно увидеть?
Единственный, сразу приходящий в голову ответ – это излучение Хокинга. Теория, предложенная Стивеном Хокингом в 1975 году, говорит нам, что черные дыры должны потихоньку испаряться. Однако это очень медленный процесс для реальных астрофизических черных дыр с массами, как у звезд, или для сверхмассивных черных дыр. В реальной ситуации их массы только растут из-за поглощения вещества и излучения, а эффектом испарения можно пренебречь. Только для гипотетических первичных черных дыр малых масс, возникших на заре жизни Вселенной (с начальной массой, скажем, как у астероида, размер дыры при этом будет как у элементарной частицы), испарение может играть важную роль в наши дни.
Обычно хокинговский процесс испарения черных дыр иллюстрируют следующим образом. В вакууме постоянно рождаются пары так называемых виртуальных частиц. Это ничему не противоречит. Здесь уместна аналогия. Вы как бы на короткое время берете взаймы энергию, рождаете пару частиц, а потом они аннигилируют – и все возвращается обратно. Представьте себе такую полукриминальную ситуацию. Вы работаете в банке. Вы периодически берете деньги из кассы, оставляя долговую расписку, и всегда назавтра возвращаете. Ничего страшного не произошло, никто ничего не знает – вы взяли на короткое время и вернули. А теперь представьте, что вернуть деньги не удается. То есть, например, случился какой-то кризис: вы взяли деньги, а вернуть уже ничего не можете. Значит, банк потерял деньги. Для внешнего наблюдателя это выглядит как уменьшение активов банка – его испарение. Ведь из банка деньги утекли, хотя у банка и прибавилось долговых расписок. Вернемся к черным дырам. Пусть вблизи горизонта черной дыры возникла пара частиц, и при этом одна упала в дыру, а другая улетела. Наблюдатель видит, что от черной дыры к нему летят частицы. Единственный источник энергии, для того чтобы получить эти частицы, – масса черной дыры. Таким образом, для внешнего наблюдателя масса начинает уменьшаться.
Это хорошая иллюстрация, но она не отражает некоторых важных аспектов хокинговского испарения. Ключевым моментом оригинальной модели является нестационарность горизонта черной дыры, он не должен стоять на одном месте. Тем, кто хочет детальнее разобраться в этом, можно порекомендовать брошюру Эмиля Ахмедова «О рождении и смерти черных дыр» (из-во МЦНМО, 2015). Здесь же попробуем дать очень краткое описание, основанное на аналогиях.
Известно очень красивое явление, называемое эффектом Казимира. Вакуум заполнен не только виртуальными частицами, но и электромагнитными волнами. Если мы поставим параллельно друг другу две проводящие пластины, то они экранируют внутреннюю область от электромагнитных волн. В ней могут существовать только волны с длиной меньшей, чем расстояние между пластинами. То есть плотность энергии виртуальных волн между пластинами меньше, чем снаружи. Поэтому возникнет сила, стремящаяся сдвинуть пластины. Наоборот, если мы начнем двигать эти пластины, то это приведет к излучению волн: из виртуальных они будут становиться реальными. Похоже на хлопанье в ладоши.
Теперь посмотрим на черную дыру с нестационарным горизонтом. Горизонт делит пространство на две очень непохожие части: снаружи можно попасть внутрь, но обратно – никак. Двигающийся горизонт позволяет сделать эдакий «хлопок одной ладонью». Это настолько необычная поверхность, что ее движение будет «выдирать» из вакуума волны и частицы, делая их реальными. Но на это нужна энергия, и браться она будет из массы черной дыры.
Испарение черной дыры – квантовый процесс. Для него очень важно, насколько горизонт искривлен. У большой черной дыры и размер велик. Поэтому кривизна горизонта мала, и эффект мал. (Вспомним, что наши далекие предки, живя на Земле с радиусом примерно 6400 км, не замечали ее кривизны. Будь радиус планеты раз в 10 меньше, они бы не заблуждались.) Поэтому, пока дыра имеет большую массу, она испаряется медленно. По мере уменьшения массы темп все возрастает и возрастает, и заканчивается все взрывом.
Однако пока наблюдать испарение черных дыр не получается. Вернемся к реалиям астрофизической жизни и вспомним, какие черные дыры мы знаем. Во-первых, есть черные дыры звездных масс. Живет большая массивная звезда. Она пережигает в своих недрах водород в гелий, гелий в углерод и кислород… Наконец доходит до элементов группы железа. Дальше горение идти не может, и ядро схлопывается. Если это схлопывание ничем не остановить, то образуется черная дыра. Типичная масса такого объекта раз в десять больше солнечной. Это достаточно массивная черная дыра, она испаряется очень медленно. Кроме того, вокруг постоянно летает какой-нибудь мусор, а вдобавок есть реликтовое излучение (чья температура, составляющая сейчас 2,7 градуса Кельвина, превышает температуру массивных черных дыр), и это все попадает в черную дыру. Поэтому ее масса все-таки в среднем растет, а испарение ничтожно мало.
Еще есть сверхмассивные черные дыры в центрах галактик. Существует два основных сценария их образования. То ли большие облака газа сразу схлопывались в дыры, а потом они росли. То ли первые звезды давали большие – по 100–200 масс Солнца – черные дыры, которые тоже потом росли, поглощая вещество. Для нас сейчас существенно, что эти дыры испаряются медленно, еще медленнее звездных, потому что температура черной дыры тем меньше, чем больше ее масса. Значит, увидеть их испарение тоже невозможно. Поэтому, вообще говоря, увидеть черную дыру тяжело.
Уверены ли астрофизики в существовании черных дыр? Есть простой практический ответ: Нобелевскую премию за открытие черных дыр пока никто не получил. Значит, нет окончательного подтверждения. В то же время, хотя и нет полной уверенности, почти все астрономы готовы биться об заклад, что они существуют. (Здесь важно уточнить, что мы говорим необязательно о черных дырах Общей теории относительности, а о более общем классе сколлапсировавших объектов, у которых нет поверхности и которым нельзя приписать какое-то обычное уравнение состояния.)
Мы не наблюдаем процессов, присущих исключительно черным дырам, потому что все время видим лишь что-то в их окрестности. Строго говоря, следовало бы говорить лишь о кандидатах в черные дыры, потому что пока можно изучать только поведение вещества вокруг них. Например, можно регистрировать излучение аккреционных дисков. Таким структурам посвящена самая известная, самая цитируемая статья, когда-либо написанная в нашей стране, – это работа Николая Шакуры и Рашида Сюняева, опубликованная в 1973 году. В ней построена модель течения вещества вокруг черных дыр. Это оказалось всем нужно, это крайне востребовано учеными, долгое время эта работа даже была самой цитируемой статьей в астрофизике во всем мире. Но, изучая только диски или движение звезд вокруг сверхмассивных черных дыр в центрах галактик, нельзя абсолютно надежно доказать, что это именно объекты с горизонтом, а не с поверхностью. Может быть, через несколько лет самым надежным источником информации о черных дырах станут гравитационные волны.
Гравитационные волны распространяются по пространству-времени, возмущая его.
Волны пространства-времени
Итак, мы описываем гравитацию с помощью геометрической теории. Обычно для иллюстрации ее свойств используют аналогию с эластичной поверхностью, о которой мы уже говорили. Пусть есть такая резиновая плоскость. Теперь представьте, что вы – бог и вы тыкаете пальцем в эту плоскость. Вы постукиваете по поверхности, и по ней бежит рябь. В некотором смысле это и есть гравитационные волны. Но палец в данном случае появляется откуда-то снаружи. Теперь вернемся в реальность. В реальности возмущение должно производить что-то на самой плоскости, какие-то реальные объекты. В принципе, если вы размахиваете руками – вы испускаете гравитационные волны, потому что руки имеют массу, так что они искажают пространство вокруг себя, вы ими двигаете, и по пространству бежит рябь. Но это очень слабый эффект. Сильный эффект достигается, если двигаются массивные и, что важно, достаточно компактные объекты, потому что нам нужно не просто тяжелое тело – нам нужно в данном месте очень сильно исказить пространство-время. И в данном случае черные дыры идеально подходят.
Однако черная дыра сама по себе достаточно симметрична, она ничего излучать не будет. Нам нужна какая-то асимметрия. К счастью, в природе происходят нужные нам несимметричные процессы. Например, было две массивные звезды. Обе поочередно взорвались как сверхновые и дали две черные дыры. И теперь они крутятся друг вокруг друга. Далее, представьте, у вас два уже шарика катаются по нашей эластичной плоскости, вращаясь вокруг общего центра масс. От них обязательно побежит рябь. Испускаются волны.
Вращаясь по своим орбитам, черные дыры испускают гравитационные волны. Они уносят энергию и момент импульса орбитального движения. Поэтому черные дыры постепенно сближаются. Гравитация так устроена, что если от системы двух тел отнять энергию, то скорость орбитального движения по мере сближения только растет. В случае черных дыр она постепенно доберется до скорости света. Значит, перед слиянием у каждой черной дыры имеется колоссальная кинетическая энергия.
Система из двух компактных объектов, которые сближаются за счет испускания гравитационных волн. Если хотя бы один из объектов является радиопульсаром, то мы можем очень точно измерить изменение параметров системы, что позволяет не только определить свойства обоих компонентов, но и проверять предсказания теорий гравитации.
Итак, мы рассматриваем экстремальный случай. Мы берем одну черную дыру и кидаем в другую. Это уникальный процесс, где столкновение происходит на скорости света, большего и представить нельзя. Вроде бы должна выделиться куча энергии, и она как бы выделяется – только в виде чего? Ведь у черных дыр нет поверхности! У нас сталкиваются не два обычных тела, а две области пространства-времени, ограниченные горизонтом. Вся огромная энергия выделяется в виде гравитационных волн. Если сливается система из двух черных дыр, то происходит очень мощный гравитационно-волновой всплеск. Такие сигналы планируют поймать на гравитационно-волновых антеннах LIGO и VIRGO. В ближайшее время это самый реалистичный способ открыть черные дыры. То есть ученые одним открытием убьют двух зайцев.
Во-первых, будет напрямую доказано существование гравитационных волн. Сейчас у нас есть лишь косвенное подтверждение. Астрономы наблюдали двойную систему, но не из двух черных дыр, а из двух нейтронных звезд. Одна из них излучает как пульсар, поэтому это как бы очень точные часы, посылающие нам регулярные сигналы, и мы видим, что система сближается, и единственный разумный механизм, который это все объясняет, как раз гравитационные волны. Данные наблюдений оказались в полном согласии с предсказаниями Общей теории относительности. За открытие и исследование двойного радиопульсара астрономы получили Нобелевскую премию по физике. Затем эти результаты были независимо проверены и подтверждены благодаря наблюдению десятка подобных систем.
Во-вторых, если мы откроем сигнал от слияния черных дыр, то мы не только напрямую зарегистрируем гравитационные волны, тем самым доказав правильность геометрического подхода к гравитации, мы еще и получим сильнейшие аргументы в пользу того, что мы правильно понимаем природу черных дыр. Две дыры сольются, образуя единую дыру, ее горизонт будет дрожать какое-то время, и от этого тоже можно зарегистрировать гравитационно-волновой сигнал. Поэтому задачи, связанные с регистрацией гравитационных волн, считаются крайне перспективными.
Слияния нейтронных звезд
Лучшим кандидатом в самые первые системы, чей гравитационно-волновой сигнал мы сможем зарегистрировать, являются сливающиеся нейтронные звезды. Они легче чёрных дыр и менее компактны, тем не менее, если слияние происходит ненамного дальше близких крупных скоплений галактик, мы рассчитываем, что сигнал смогут увидеть установки LIGO и VIRGO уже в ближайшие пару лет (затем можно будет наблюдать и более далекие всплески – вплоть до расстояний 200–250 мегапарсек).
Сливающиеся нейтронные звезды – это естественный продукт эволюции массивных двойных. Мы наблюдаем двойные радиопульсары и знаем, что многие из этих систем должны слиться за время, меньшее времени жизни Галактики. Расчеты показывают, что в галактике типа нашей слияния происходят раз в несколько десятков тысяч лет. Черные дыры сливаются друг с другом (или с нейтронными звездами) гораздо реже. Одной из первых работ, посвященных таким слияниям, была статья 1977 года Джона Кларка и Дугласа Эрдли. В ней рассматривалась судьба нейтронной звезды на последних стадиях процесса. Также важные результаты по слияниям были получены в работе Сергея Блинникова и его коллег, опубликованной в 1984 году. Сейчас процессы при слиянии компактных объектов изучают с помощью численного моделирования на самых мощных суперкомпьютерах. И все равно остаются вопросы.
Слияния нейтронных звезд – это прямо-таки золотой феномен: некоторые современные модели показывают, что большая часть золота во вселенной возникла именно в этом процессе. В том числе то золото, из которого делают нобелевские медали.
Слияния нейтронных звезд блестят и сияют во всех диапазонах. Это не только мощный источник гравитационных волн. При слиянии выделяется много энергии, вещество нагревается до гигантских температур – поэтому возникает интенсивный поток нейтрино. И конечно же, мощное электромагнитное излучение.
Сливающиеся нейтронные звезды – главный кандидат в источники коротких гамма-всплесков с длительностью порядка секунды. Почти за полвека наблюдений обнаружено много сотен таких событий, и все данные указывают, что лучшего объяснения не найти. Окончательным подтверждением должно стать одновременное обнаружение гамма-всплеска и гравитационно-волнового сигнала. Скорее всего, это произойдет в третьем десятилетии нашего века.
После слияния синтезируется много новых элементов (не только золото). Среди них есть и радиоактивные. Поэтому можно будет видеть некий аналог сверхновой – мощную вспышку, – но только с максимумом излучения в инфракрасном диапазоне спектра. Такие явления называют килоновыми. Название связано с завышенной первоначальной оценкой: ожидалось, что вспышки будут в тысячи раз ярче вспышек новых. Теперь расчеты говорят о том, что вспышки ярче новых всего лишь раз в сто (поэтому некоторые астрономы шутят, что их стоит переименовать в гектоновые), но зато сам всплеск виден дольше. Наблюдения таких вспышек в инфракрасном диапазоне спектра должны подсказать нам точные координаты всплеска (наблюдения только гравитационного излучения еще долго не будут в состоянии дать очень точные координаты, даже когда число детекторов возрастет и к двум американским и одному европейскому прибавятся установки в Индии и Японии). Тогда явление можно будет изучить гораздо лучше, наведя в эту точку астрономические спутники и крупнейшие наземные телескопы.
Наконец, если в недрах компактных объектов было кварковое вещество, то после слияния «полетят (кварковые) клочки по закоулочкам». Кварковое вещество может существовать в виде очень маленьких порций – страпелек (strangelet). То есть даже вне компактного объекта оно не теряет свои свойства. Мы надеемся, что специальные космические аппараты для изучения космических лучей (AMS-02 и подобные ему) смогут поймать страпельки. Или же наблюдения покажут, что ничего не поймали, а значит, кваркового вещества не существует. Это, кстати, тот случай, когда отрицательный результат поисков тоже важен и дает новую существенную информацию.
Как ловят гравитационные волны
Собственно, как ученые хотят это сделать? Когда гравитационная волна проходит сквозь предмет, она сжимает и растягивает его. Если у нас есть несколько предметов, то можно заметить, что меняются расстояния между ними. Скажем, если вы бросите в космосе бусы и они расположатся в виде идеальной окружности, то проходящая гравитационная волна будет периодически превращать такую окружность в эллипс и обратно. В зависимости от поляризации волны для нас это будет выглядеть как череда расширений в одном направлении и сжатий в другом. Если мы сумеем измерять расстояния между разными бусинками, то сможем заметить слабую гравитационную волну, заставляющую бусы совершать эти колебания.
Вначале ученые пытались ставить металлические (например, алюминиевые) болванки и смотреть, как они будут сжиматься-растягиваться. Для этого на них устанавливались пьезодатчики. Первым подобные опыты начал Вебер в конце 60-х годов прошлого века и продолжал их несколько десятилетий. Детекторы этого типа чувствительны в очень узкой полосе частот, соответствующей резонансу в болванке. Это не очень хорошо, так как источники могут и не излучать волны на данной узкой частоте. Например, сигнал от сливающихся нейтронных звезд будет непрерывно менять частоту (она будет расти) по мере сближения объектов и уменьшения орбитального периода.
Установки типа веберовских – это недостаточно чувствительные детекторы. Необходимо, чтобы где-то довольно близко произошел мощный всплеск гравитационных волн, например, слияние двух нейтронных звезд в близкой галактике (а еще лучше – в нашей) или совсем близкий взрыв сверхновой с большой асимметрией. Сам Вебер заявлял, что ему удалось зафиксировать сигнал, например, от сверхновой 1987 года в Большом Магеллановом облаке, но это сообщение не вызвало доверия у научного сообщества. Даже более крупные установки (например, ALLEGRO в США и NAUTILIS и AURIGA в Италии), охлаждаемые до низких температур, не дали никакого значимого результата. Поэтому сейчас используют другой подход.
Установки, на которые сейчас делается ставка, – это лазерные интерферометры большого размера. Они чувствительны в очень широкой полосе частот. Параметры установок выбирались исходя из свойств ожидаемого сигнала от слияния двух нейтронных звезд. Во многом такие приборы похожи на знаменитую установку, с помощью которой Альберт Майкельсон и Генри Морли доказали отсутствие эфира. Только современные детекторы гораздо больше.
Представьте: в вакуумном тоннеле на расстоянии нескольких километров друг от друга висят зеркала. Когда проходит гравитационная волна, они немножко смещаются друг относительно друга, и это можно заметить. Между зеркалами бегает лазерный луч, который после череды отражений попадает в детектор, где можно наблюдать интерференцию. При смещении зеркал меняется путь, который проходят лазерные лучи, а значит, меняется и интерференционная картинка. Это очень тонкий метод измерений.
Зеркала, конечно же, не находятся в покое. Они чувствуют сейсмические сигналы, чувствуют, как за десятки километров от места обсерватории проезжают тяжелые грузовики. Они дрожат просто потому, что они имеют конечную температуру, т. е. из-за тепловых флуктуаций. Наконец, даже сами фотоны в лазерном пучке «раскачивают» зеркала – о таких тонких эффектах идет речь! Но все эти воздействия можно учесть или отфильтровать[13]. И тогда… Задумайтесь, ученые рассчитывают заметить, как плечо интерферометра длиной в пару километров изменилось на 10–18 метров! Это не только намного меньше атома, но и гораздо меньше атомного ядра, но это можно измерить!
Схема гравитационно-волновой антенны. Сигнал лазера делится и направляется в два плеча интерферометра. Лазерный луч может многократно отражаться от зеркал, создавая в итоге интерференционную картинку. Изменение длины плеч интерферометра будет искажать эту картинку.
Есть надежда, что совсем скоро гравитационные волны будут обнаружены. Тем самым мы не только откроем новое окно во Вселенную, но и будут получены надежные доказательства (насколько это возможно) существования черных дыр.
А затем придет пора и «космических бус». Уже несколько десятилетий разрабатывается проект космического лазерного интерферометра. В нем расстояния между базами с лазерными установками будут исчисляться уже десятками миллионов километров. Сейчас этот проект называется eLISA. Его создает Европейское космическое агентство. Запуск пока намечен на 2034 год. Такой детектор будет чувствителен к волнам от сверхмассивных черных дыр. Они сами большие – размером порядка астрономических единиц, поэтому и детектор должен быть крупным, так как пара сверхмассивных черных дыр в ядре какой-нибудь далекой-далекой галактики испускает гравитационные волны с большой длиной волны, сопоставимой с расстоянием между дырами. Еще более продвинутые космические детекторы следующего поколения смогут, наверное, зарегистрировать и первичные космологические гравитационные волны.
У рукотворных детекторов гравитационных волн есть интересный конкурент – радиопульсары. Мы можем измерять периоды этих объектов с фантастической точностью, граничащей с ходом лучших атомных часов на Земле. Это значит, что мы можем предсказать, когда придет следующий импульс. Если ничто не помешает… Гравитационная волна – возмущает пространство-время. Поэтому сигнал от пульсара, попавший в волну, испытает задержку. И это можно заметить. Впервые эту идею разработал Михаил Сажин в 1978 году.
Благодаря существованию огромного количества двойных звезд, тесных пар сверхмассивных черных дыр, слияниям сверхмассивных черных дыр в разных далеких галактиках и т. д. пространство оказывается заполненным низкочастотными гравитационными волнами. Наблюдая несколько десятков миллисекундных пульсаров, можно находить корреляции в изменениях их периодов. А изменения эти связаны с фоном гравитационных волн. Сейчас работает три крупных проекта, объединяющих радиоастрономов разных стран, по поиску такого сигнала. До появления гигантских космических лазерных интерферометров это будет лучший источник информации по гравволнам низкой частоты.
VIII. Скорости компактных объектов
Какой русский не любит быстрой езды? Собственно, глядя на Феттеля, а раньше – на Шумахера, можно спросить: «Какой немец не любит быстрой езды?», а глядя на Алонсо – «Какой испанец не любит быстрой езды?». Все любят большие скорости. Как ни странно, и нейтронные звезды и черные дыры могут обладать очень большими скоростями. По галактическим меркам даже рекордными. Давайте вспомним, с какими скоростями объекты двигаются в Галактике.
Стремительные звезды
Типичная скорость для звезд – где-то 10, 20, 30 км/с. Это их скорость относительно ближайших соседей. Кроме того, звезды вращаются вокруг центра Галактики. Для Солнца эта скорость немногим больше 200 км/с. Но в качестве индивидуального параметра, характеризующего данный объект, важна именно скорость относительно близких звезд или, если угодно, относительно окружающего его газа в межзвездной среде. Так вот, у нейтронных звезд и черных дыр эти скорости в среднем гораздо выше. Почему?
Есть несколько способов для того, чтобы объект в космосе разогнался. Первый (самый простой) – это взаимодействие с каким-то другим телом. Тогда объект может приобрести скорость. То есть он отберет энергию у какого-то другого объекта. Взаимодействие становится более эффективным, если в нем участвует больше двух тел. Таким способом можно очень сильно ускориться. Например, недавно был открыт новый класс источников – гиперскоростные звезды. Мы уже говорили о них выше. У них скорость гигантская по звездным меркам. Это могут быть даже тысячи километров в секунду. Явный признак взаимодействия с чем-то большим и тяжелым.
Большое и тяжелое в Галактике присутствует в количестве одной штуки. Это сверхмассивная черная дыра в ее центре. Ее масса составляет примерно 4 миллиона масс Солнца. Если пара звезд подлетит очень близко к этой черной дыре и распадется под действием приливных сил, то одна из звезд может приобрести большую скорость и улететь. Это может быть и обычная звезда, и нейтронная, и черная дыра, и белый карлик. Сейчас известны десятки гиперскоростных звезд, но все они находятся на больших расстояниях от нас. Наблюдения показывают, что они в самом деле летят из центра Галактики. Все они – обычные, как правило, не очень массивные звезды. Нейтронных звезд или черных дыр, которые получили свою скорость таким способом, пока не открыли.
Существует еще один весьма экзотический механизм «творения» гиперскоростных звезд. Астрономы наблюдают интереснейшее явление приливного разрыва звезд. Если звезда подлетает слишком близко к сверхмассивной черной дыре, то она оказывается разорванной приливными силами. Образовавшийся газ «вспираливается» в черную дыру, и мы наблюдаем всплеск излучения. Но если мы говорим, что «то, что нас не убивает, делает нас сильнее», то звезды могли бы сказать «то, что нас не разрывает, делает нас быстрее». Если звезду только «ободрало» приливными силами сверхмассивной черной дыры, то она, даже будучи одиночной, может приобрести дополнительную скорость и стать, таким образом, гиперскоростной. Причем весьма необычной, так как улетает она, так сказать, «неглиже». Конечно, компактные объекты так не разгонишь.
Взаимодействие и разгон
Нейтронные звезды и черные дыры в принципе тоже могут быть гиперскоростными. То есть их может разогнать сверхмассивная черная дыра за счет разрыва двойной. Но это очень экзотический механизм. В солнечной окрестности он, конечно же, не работает. Вокруг нас, если мы посмотрим на обычные звезды, есть интересный класс объектов, которые называют убегающими звездами. Как можно догадаться, они имеют скорость больше, чем их соседи. Больше – это 70 км/с, а иногда 100 км/с. Как они приобрели такие скорости?
Есть, опять-таки, два способа. Первый мы уже обсудили – это взаимодействие с каким-то другим телом и получение дополнительной энергии. Только теперь «другое тело» – это не сверхмассивная черная дыра. Происходит коллективное взаимодействие, например, в плотной молодой звездной ассоциации, и часть звезд теряет энергию, а часть – приобретает и становится убегающими.
Второй способ связан с двойными системами. Если у нас две звезды крутятся вокруг друг друга, одна взрывается (т. е. резко становится легче, а вещество улетает из системы), то вторая звезда становится гравитационно не связанной с ней. Но у нее была какая-то орбитальная скорость, и фактически вся эта орбитальная скорость сохранится. Немножечко, правда, звезда все-таки замедлится, пока будет отлетать от своей полегчавшей соседки, но несильно. Поэтому если до распада двойной орбитальная скорость составляла 100 км/с, то после разрыва системы звезда может улететь со скоростью 70 км/с.
Распад двойной системы после взрыва сверхновой. Улетающая оболочка уносит более половины массы системы. Показано движение центра масс оболочки, нормальной звезды и компактного объекта.
Естественно, нейтронные звезды и черные дыры тоже могут приобретать скорость в таком процессе. Тем более что они и образуются в результате вспышки сверхновой. Это называют «эффектом пращи». Как камень вылетает из пращи – крутили-крутили, а потом бросили, – так и здесь: крутилась удерживаемая силой гравитации звезда или черная дыра, а потом улетела, потому что гравитация резко уменьшилась. Так можно разгонять объекты до больших скоростей – сотни километров в секунду. Особенно нейтронные звезды и черные дыры, поскольку они могут оказываться в очень тесных системах. Понять это довольно легко: если у вас есть две большие обычные звезды, то вы не можете их поместить слишком близко – они сами по себе большие. Радиус каждой из них может быть несколько миллионов километров. А если они эволюционируют и расширяются, то будет еще больше.
А вот если одна из звезд уже превратилась в черную дыру или нейтронную звезду, то такой объект может оказаться гораздо ближе к своей соседке. Тела в двойной системе могут сближаться, например, из-за перетекания вещества. В процессе эволюции система станет более тесной. Звезды будут крутиться друг вокруг друга быстрее, и во время второго взрыва сверхновой звезды (т. е. взрыва второй звезды) компактный объект может оказаться улетающим с очень большой скоростью. Так можно получать даже скорости, превосходящие тысячу километров в секунду. Ситуация, когда возможен столь сильный разгон, должна быть довольно редкой, так как система должна быть очень тесной перед распадом. Но такое в принципе возможно.
Наконец, есть способы разогнаться до больших скоростей, доступные только для нейтронных звезд и черных дыр. Их придумали для того, чтобы объяснить данные наблюдений. Давайте посмотрим, откуда появилась эта задача.
Измерения скоростей пульсаров
Мы можем измерять скорости компактных объектов. В разных ситуациях это делается немного по-разному. Например, мы наблюдаем какой-нибудь радиопульсар. Изучаем его несколько лет. Точно измеряем координаты. И замечаем, что он смещается на небе. Если мы знаем расстояние до пульсара, то по его смещению мы можем определить, с какой скоростью он летит (точнее, так мы можем определить проекцию его скорости на небесную сферу). Сейчас благодаря таким измерениям известны скорости сотен радиопульсаров. Смещение наблюдают не только у радиопульсаров, но и у нейтронных звезд, являющихся рентгеновскими источниками или наблюдающихся в видимых лучах. И здесь мы можем определить скорость движения в проекции на небо.
Сравнение скоростей массивных звезд и радиопульсаров. Последние в среднем имеют скорость примерно в 10 раз выше.
В некоторых случаях мы наблюдаем последствия взаимодействия быстро двигающегося пульсара с межзвездной средой – вокруг него возникает ударная волна и красивая туманность. Это также позволяет измерять скорость. Иногда скорость оценивают, исходя из смещения нейтронной звезды от центра остатка сверхновой, ее породившего. Для этого нужно знать, когда произошел взрыв. Чаще всего для остатков сверхновых удается получить неплохую оценку возраста. Статистически мы можем определять скорости молодых радиопульсаров по их смещению относительно плоскости диска Галактики, где они в основном должны рождаться.
Уже первые измерения начала 70-х годов XX века показали, что пульсары двигаются со скоростями в несколько раз больше скоростей массивных звезд – их прародителей. Значит, пульсары как-то разгоняются. Причем довольно быстро. Обсуждались самые разные способы разгона.
В 90-е годы прошлого века оказалось, что пульсары двигаются еще быстрее. Новое понимание было связано с тем, что научились точнее определять расстояния до этих источников, и выяснилось, что ранее их занижали в среднем раза в два-три, из-за того, что не знали, как распределена в Галактике плотность электронов в межзвездной среде. Дело в том, что радиосигнал, распространяясь в плазме, «расползается». Электромагнитные волны разной частоты имеют разную скорость: ведь это не вакуум! Соответственно, волны разной частоты приходят к нам в разное время. Поэтому, например, максимум импульса пульсара будет регистрироваться в разное время на разных частотах, а если у нас измерения проводятся в широкой полосе частот, то форма импульса пульсара станет шире. Пронаблюдав, как расплылся сигнал, мы можем определить длину пути, если знаем, сколько было электронов на пути радиоволн. Так вот эта величина до середины 1990-х определялась неточно, а потому занижалось расстояние до подавляющего большинства радиопульсаров.
Сейчас мы знаем, что типичные скорости нейтронных звезд – примерно 300 км/с, т. е. в среднем в десять раз больше, чем у звезд, из которых они родились. При этом, поскольку мы имеем дело с крайне типичным явлением, нельзя объяснить все эти скорости только распадами двойных систем, хотя бы потому, что некоторая часть нейтронных звезд рождается из одиночных звезд или звезд в очень широких двойных системах (а там скорости маленькие).
Значит, должен быть какой-то особый механизм разгона, который работает только для нейтронных звезд (и, как выяснилось позже, для черных дыр).
Взрыв сверхновой и скорость
Общие черты механизма были осознаны довольно давно, задолго до 1990-х годов, когда проблема стала еще более насущной. Одним из первых вопрос о разгоне радиопульсаров рассмотрел Иосиф Шкловский в 1970 году, и ключевым словом было «асимметрия» (хотя Леонид Озерной обсуждал асимметрию взрыва еще раньше – в 1964 году, но в приложении к излучению гравитационных волн, а не к скорости нейтронной звезды). Нейтронная звезда рождается в результате взрыва сверхновой. При этом выделяется огромное количество энергии. За доли секунды высвечивается (в основном в виде потока нейтрино) столько энергии, сколько Солнце излучает за всю свою жизнь. Наличие огромного количества энергии хорошо для решения нашей задачи, ведь мы как раз хотим сообщить компактному объекту дополнительную кинетическую энергию. Поясним примером.
Если в вашем распоряжении есть большой бюджет, то даже его маленький кусочек, незаметный на фоне общей суммы, будет выглядеть внушительно. Так у всех больших американских космических миссий в течение долгого времени где-то около 1 % бюджета шел на популяризацию (сейчас, правда, финансирование популяризации в NASA осуществляется централизованно), что позволяло обеспечить весь мир красивыми астрономическими картинками и видео. Если миссия стоит $1 миллиард, то 1 % – это целых $10 миллионов. А $10 миллионов каждой миссии – немалая сумма для популяризации науки. Так и при взрыве сверхновой. Если есть очень много энергии и ее можно выделить несимметрично (хотя бы на 1 % вправо больше, чем влево), то тогда объект, который образуется, испытает асимметричное воздействие. И, соответственно, по закону сохранения импульса, новорожденный компактный объект полетит в ту или иную сторону, в зависимости от того, как устроена асимметрия. Так можно было бы получать скорости в несколько тысяч километров в секунду.
Вопрос в том, как устроить асимметрию? Здесь окончательного ответа до сих пор нет. Споры до сих пор продолжаются, отчасти потому, что нам не хватает наблюдательных данных, отчасти из-за того, что физика взрыва сверхновых очень сложная.
Основных механизмов генерации асимметрии два. Во-первых, взрыв просто может быть достаточно несимметричным, и возникнет такая ситуация. Есть свежеобразовавшийся компактный объект, а рядом, в выброшенном веществе, имеется область с повышенной плотностью. Она притянет к себе нейтронную звезду и будет ее разгонять. То есть если распределение вещества вокруг компактного объекта после взрыва сильно несимметрично, то возникают условия для разгона.
Вторая идея связана с нейтрино (ее впервые детально обсуждал Николай Чугай в 1984 году), поскольку именно они уносят основную энергию при взрыве сверхновой. Нейтрино в огромном количестве рождаются в коллапсирующем ядре звезды. Например, нейтрино возникают при образовании нейтронов в результате захвата электронов протонами в ядрах элементов при высоких плотностях (так называемая нейтронизации вещества). Если все сразу не ушло под горизонт черной дыры, то в какой-то момент, когда вещество прозрачно для нейтрино, они устремятся наружу. Задача теперь состоит в том, чтобы сделать несимметричным поток нейтрино. И здесь опять-таки есть несколько идей.
Во-первых, вы можете сделать распределение плотности вещества неоднородным. Тогда где-то вещество будет для нейтрино более прозрачным, а где-то менее прозрачным. Соответственно, туда, где прозрачно, нейтрино полетит больше. В этом направлении как бы будет работать реактивный двигатель. Значит, по закону сохранения импульса, нейтронная звезда начнет двигаться в противоположном направлении.
Другая идея связана с сильными магнитными полями. Нейтрино «чувствуют» магнитное поле, оно будет направлять их движение. В симметричной ситуации (например, в случае дипольного магнитного поля) возникнет две идентичные нейтринные струи. Но если магнитное поле в молодой нейтронной звезде (которая еще только образуется, и в ней все бурлит, все изменяется) будет немного несимметрично, то реактивный двигатель будет работать несимметрично. В одну сторону будет «дуть» меньше, в другую больше, и нейтронная звезда сможет разгоняться.
Если при рождении компактного объекта происходит временное усиление магнитных полей до очень высоких величин (такую модель называют магнито-ротационным взрывом, ее придумали и разрабатывают Геннадий Бисноватый-Коган и его коллеги), то здесь также симметрия может быть нарушена. А значит, возможно ускорение компактного объекта.
Похожая штука может работать и с черными дырами, если они образуются не сразу, а в два этапа. Если вещество не сразу ушло под горизонт, а вначале возникло тело вроде молодой нейтронной звезды (так называемая протонейтронная звезда), тогда, пока существует этот объект, наружу могут вылетать нейтрино, могут возникать струи вещества, могут происходить всякие бурные процессы. И все это может быть асимметричным. Таким образом новорожденный компактный объект может успеть разогнаться. А потом, когда образуется черная дыра, она «запомнит» скорость.
Для черных дыр скорости могут быть немного меньше, чем у нейтронных звезд, просто потому, что они более тяжелые. Если типичная масса нейтронной звезды – это полторы массы Солнца, то типичная масса черной дыры – примерно 5–10 масс Солнца, т. е. в несколько раз больше, значит, скорости будут в несколько раз меньше. Примерно это и наблюдается.
Нейтронных звезд мы знаем довольно много. Это в основном радиопульсары (их проще открывать), которых известно около 2000. Для многих из них скорости достаточно хорошо измеряются. А вот черных дыр мы знаем мало. Есть всего несколько кандидатов в одиночные черные дыры, открытых с помощью микролинзирования. Их точная скорость не определена, приблизительно это 100 км/с.
Зато есть двойные системы с черными дырами. Их известно около полусотни. Можно измерить скорости таких систем. В некоторых случаях мы видим, что вся двойная летит с большой скоростью, что нетипично для них. То есть, что-то ее разогнало. Это связывают с дополнительной скоростью, которую получают черные дыры в таких системах. Ее можно оценить. Снова получается величина в среднем в несколько раз меньше, чем у нейтронных звезд. Так что кажется, что гипотеза работает: «стратегия ускорения» нейтронных звезд и черных дыр одна и та же, но первые легче разогнать.
В случае нейтронных звезд дополнительную информацию о механизме разгона дает взаимная ориентация оси вращения и направления движения. Наблюдения показывают, что угол между этими векторами распределен не случайно. Есть тенденция к их примерной (но не точной!) соосности. Это может говорить о том, что время работы механизма не слишком мало и не слишком велико по сравнению с периодом вращения новорожденной нейтронной звезды. Ведь если бы «двигатель» долго работал на вращающейся звезде, то произошло бы усреднение переданного импульса относительно оси вращения, т. е. скорость стала бы направленной вдоль этой оси. А если бы разгон происходил почти мгновенно, то два вектора могли бы быть совсем не скоррелированными. Некоторые модели разгона предсказывали, что угол будет очень близок к 0 или к 90 градусам. Теперь эти сценарии можно отбросить.
Гравитационная ракета
В случае черных дыр есть еще один очень экзотический механизм разгона. Массивные звезды любят образовываться парами. Соответственно, есть такие пары, где обе звезды очень массивны. После взрывов они обе порождают черные дыры. И в довольно редких случаях система не распадается. То есть система пережила первый взрыв сверхновой, пережила второй, и у нас образовалась двойная черная дыра.
Со временем такая система становится все более компактной. Двигаясь по орбитам, черные дыры испускают гравитационные волны, и таким образом уносятся момент импульса и энергия. Дыры становятся все ближе и ближе друг к другу, пока наконец не сольются. Детекторы LIGO и VIRGO должны уловить гравитационно-волновые сигналы от этих слияний.
В 1960-е годы поняли удивительную вещь: гравитационные волны излучаются несимметрично. На первый взгляд кажется, что все симметрично: двойная система, два объекта водят хоровод по кругу. Однако это не так: ведь черные дыры сближаются по сворачивающейся спирали.
Любой объект, двигающийся с большой скоростью, больше излучает в направлении своего движения (точнее, так это выглядит в лабораторной системе отсчета). Это эффект Специальной теории относительности. Поэтому излучение гравитационных волн в системе из двух черных дыр идет несимметрично. Так происходит потому, что массы черных дыр отличаются друг от друга (добиться точного равенства масс практически невозможно). Это особенно заметно на последних стадиях, когда дыры фактически падают друг на друга. Гравитационные волны уносят не только момент импульса, но и обычный импульс. Получается удивительная штука. Представьте, что перед глазами у нас пара черных дыр. Они крутятся, центр масс системы вначале покоится относительно нас. Но по мере сближения черных дыр вся система начинает мало-помалу разгоняться. А потом они сливаются, и получившаяся черная дыра с огромной скоростью куда-то улетает.
Этот процесс называют гравитационно-волновой ракетой. И прелесть эффекта в том, что он не зависит от массы черных дыр, а зависит только от отношения масс (и от того, как они вращаются).
Это означает, что, если у нас сливаются две черные дыры с массами 5 и 10 масс Солнца или 5 и 10 миллиардов масс Солнца, то они в итоге могут приобрести одну и ту же скорость. Скорость посчитать очень непросто, поскольку на последнем этапе работает очень сильная гравитация, да еще в динамике (т. е. все быстро меняется). А мы плохо умеем решать такие задачи даже на суперкомпьютерах. Однако порядок скоростей удается оценить: получаются сотни километров в секунду. Максимальные скорости могут быть даже больше.
Сотни километров в секунду – с чем можно сравнить такую скорость? Это скорость, которая позволяет объекту улететь из Галактики. Чтобы покинуть Землю и стать спутником, нужна первая космическая скорость – почти 8 км/с. Чтобы преодолеть силу притяжения Земли и улететь в межпланетное пространство, нужно уйти за отметку 11 км/с. Есть скорость, которая позволяет улететь из Солнечной системы. А есть скорость, которая позволяет покинуть Галактику. Она зависит от того, из какого места вы стартуете. Но даже в центральных областях тысячи километров в секунду хватит для того, чтобы перестать быть гравитационно-связанным с нашей Галактикой и начать бороздить межгалактическое пространство. И черные дыры могут приобретать такие скорости.
Например, если сливаются две галактики, то существует небольшая вероятность того, что после того, как сверхмассивные черные дыры в их центрах сольются, получившаяся большая черная дыра из новой образовавшейся галактики улетит, потому что получит очень большую скорость. Особенно активно это должно было происходить миллиарды лет назад, когда галактики только начинали формироваться и еще не успели набрать большую массу – их было проще покинуть. Сейчас есть несколько галактик, в которых, как полагают, черные дыры после слияния приобрели значительную скорость. Покинуть тяжелую галактику они не смогли, но существенно сместились от центра, где мы их и наблюдаем.
Подводя итог этой главы, можно сказать, что нейтронные звезды и черные дыры есть не только в нашей Галактике, но и заполняют межгалактическое пространство, потому что существует очень много способов разогнать их до больших скоростей. В частности, до скоростей, которые позволяют им покинуть пределы своих родных звездных островов.
IX. Одиночные компактные объекты
Миллиард нейтронных звезд
Нейтронных звезд и черных дыр много. Но насколько много, с чем сравнивать? Давайте поговорим о нашей Галактике. Галактика большая: в ней примерно 400 миллиардов звезд (для сравнения: волос на голове менее 100 000), т. е. сравнивать нужно с этим числом. Можно примерно прикинуть, сколько же нейтронных звезд и черных дыр существует в нашей Галактике, точнее говоря, сколько их образовалось за время ее жизни.
Нейтронные звезды и черные дыры возникают в результате взрывов сверхновых. Мы можем оценить темп сверхновых в нашей Галактике. Сейчас это где-то раз в 30 лет, т. е. примерно три за 100 лет. Сколько лет нашей Галактике? Около 10 миллиардов, можно привести число точнее, оно будет чуть-чуть побольше, но мы делаем приблизительную оценку, поэтому сохраним по возможности круглые числа. Делим одно на другое, получаем, что за время, уже прожитое Галактикой, в ней должно было образоваться 300 миллионов нейтронных звезд и черных дыр, если темп вспышек сверхновых не менялся. Скорее всего, в начале, когда Галактика была молодой и только образовывалась, темп был немножко выше. Кроме того, черные дыры иногда могут образовываться без яркой вспышки. Поэтому неплохой оценкой будет такая: примерно миллиард нейтронных звезд и черных дыр. Можем даже прикинуть, сколько нейтронных звезд и сколько черных дыр в отдельности, какова пропорция. Нейтронные звезды, как мы думаем, образуются из более легких звезд, скажем, от 10 масс солнца до 30 или 40 примерно. Черные дыры – из более тяжелых. Больших объектов всегда меньше, чем маленьких, поэтому нейтронных звезд больше. Больше – может быть, в 10 раз, может быть, раза в 3–4. То есть получается, что у нас в Галактике почти миллиард нейтронных звезд и более 100 миллионов черных дыр. Раньше писали: «Примерно по одной нейтронной звезде или черной дыре на каждого жителя Земли», – но теперь на всех не хватает.
Спрашивается, почему же мы их не видим? Потому что это дело довольно непростое. Скажем, на Земле более 6 миллиардов человек, а во френдах у нас в социальных сетях несколько сотен, может быть, у кого-то несколько тысяч – примерно столько нейтронных звезд и черных дыр мы знаем сейчас из наблюдений[14]. Обычно в социальных сетях мы френдим своих знакомых – тех, кто в некотором смысле (необязательно географическом) находится вокруг нас. Аналогично можно было бы предположить, что мы знаем большую часть нейтронных звезд или черных дыр в солнечной окрестности. Но это не так – мы знаем только самые яркие. Какие-то из них видны нам, как яркие источники, действительно, потому что находятся недалеко. Но какие-то в самом деле излучают много энергии. Настоящие звезды! Так и в социальных сетях, к примеру, люди в самых разных странах очень любят читать твиттер Стивена Фрая или еще кого-нибудь из очень известных людей. Их все знают! С нейтронными звездами и черными дырами ситуация похожая. Это вообще типичная астрономическая ситуация: мы видим яркие, заметные объекты. Даже если они далеко.
Аккреция на одиночные компактные объекты
Как мы наблюдаем нейтронные звезды? Во-первых, мы можем видеть молодые нейтронные звезды из-за того, что они еще очень активные: они проявляют себя как радиопульсары, магнитары, еще какие-то интересные объекты. Одиночные черные дыры звездных масс не проявляют себя никак: не вспыхивают сами по себе и т. д. Увидеть одиночную черную дыру или старую нейтронную звезду довольно сложно, но есть один хороший способ. Нейтронные звезды и черные дыры – это очень компактные объекты, т. е. в них большая масса занимает очень маленький объем. С точки зрения гравитационного потенциала это очень глубокая яма. Если вы кидаете что-то на нейтронную звезду или черную дыру, то это тело достигает поверхности или горизонта (в случае черной дыры) с огромной – околосветовой (или световой, если речь о черных дырах) – скоростью. Если вещества течет много, то оно будет взаимодействовать само с собой. Например, мы запустили поток газа (в космосе в основном имеется именно газ) на компактный объект. В этом веществе имеется какое-то трение, поэтому потоки газа начинают тереться друг о друга и разогреваются до очень больших температур. Большие – это миллионы градусов. В результате мы видим яркие рентгеновские источники, если есть, чему течь.
Что же в космосе может течь на нейтронные звезды и черные дыры? Снова вспомним об обычных звездах – бóльшая часть звезд, особенно массивных, рождаются парами. Понять это достаточно просто. Вначале у нас было облако газа и пыли, из которого потом образуются звезды. Облако сжимается. Вначале оно немножечко крутилось. Сжимаясь, оно вращается все быстрее и быстрее, и в конце концов сжатие может полностью прекратиться из-за того, что принято называть центробежной силой.
Чтобы обойти этот барьер, природа придумала вот что. Облако делится на два куска, и теперь каждый кусок сам по себе крутится медленно. Но они быстро вращаются друг вокруг друга (т. е. вокруг общего центра масс), и, соответственно каждый из двух кусочков может продолжить сжиматься. В конце концов формируется двойная звезда. Если хотя бы одна из звезд достаточно массивна, то в финале эволюции получается нейтронная звезда или черная дыра в двойной системе. Если у компактного объекта есть звезда-соседка, значит, рядом есть много вещества, есть чему и откуда течь. Соответственно, заметная часть нейтронных звезд и черных дыр, которые мы видим, – это объекты в двойных системах, на которые течет вещество с соседней звезды, – идет аккреция. Но таких пар все-таки мало, если сравнивать с миллиардом объектов. Мало их по нескольким причинам.
Две звезды удерживаются в двойной системе благодаря гравитации. Если полная масса системы резко уменьшится более чем в два раза, то двойная распадется, как если бы порвалась веревка на этом рисунке.
Во-первых, не все объекты образуются в двойных системах, а во-вторых, есть несколько способов разрушить звездную пару. Двойные системы устойчивы, потому что два объекта притягиваются друг к другу. Существует как бы веревка такая – гравитация, – связывающая два объекта, вращающихся вокруг общего центра масс. Крутятся – значит стремятся улететь. Здесь обычно вспоминается Том Сойер, крутящий дохлую крысу на веревочке. Если веревка порвется, то крыса, естественно, улетит. Хотя если бы крыса весила столько же, сколько Том Сойер, то они бы разлетелись в разные стороны. Как порвать гравитационную веревочку? Нужно резко уменьшить массу одной из звезд. И есть прекрасный способ быстро уменьшить массу звезды – это взрыв сверхновой. Вспоминаем, что взрываются массивные звезды, которые были в 10–20–30 раз тяжелее Солнца. А остается после взрыва, к примеру, нейтронная звезда. Масса у нее чуть больше одной масса Солнца, может быть, полторы-две. То есть бóльшая часть вещества улетела, и, значит, теперь вторую звезду притягивает не 30 масс Солнца, а всего лишь одна-две массы Солнца. Гравитационная веревочка порвалась, и система распалась.
Таким образом, большая часть нейтронных звезд и черных дыр оказывается одиночными объектами, и тогда нечему течь на них. Возникает важный вопрос: как же увидеть старые нейтронные звезды (как молодые – радиопульсары, магнитары и т. д. – мы знаем)? Как увидеть старые нейтронные звезды, если они одиночные? Или одиночные черные дыры? С одной стороны, кажется, что миссия невыполнима в принципе. Однако детальное рассмотрение покажет нам, что задача эта очень непростая, а потому до конца не решена до сих пор, но принципиально препятствия преодолимы.
Космос на самом деле не пустой. В космосе есть газ и пыль. В конце концов, сами звезды, из которых потом образуются нейтронные звезды и черные дыры, формируются в результате сжатия облаков межзвездного газа и пыли. И, кстати, если вы построите звездолет, чтобы летать между звездами, то эта среда, которая заполняет пространство между ними, станет для вас большой проблемой. С одной стороны, есть красивые проекты, которые очень любят в фантастике: вы можете использовать как топливо тот самый водород, который заполняет межзвездное пространство. А с другой стороны, представьте, что вы летите с околосветовой скоростью (иначе путешествие между звездами неинтересно). Летите, и пусть вещества на вашем пути очень мало, но с вашей точки зрения каждый атом водорода в межзвездной среде влетает вам в лоб (точнее, в лоб вашему кораблю) со скоростью близкой к скорости света. Тогда возникает много всего нехорошего: от банального «все будет разогреваться» до возникновения радиоактивности, так что технически это серьезная проблема для межзвездных перелетов.
Межзвездные газ и пыль были окончательно открыты лишь в начале XX века. Важную роль здесь сыграли работы Иоганна Гартмана. Межзвездная среда заметно проявляет себя, поглощая свет звезд и делая его более красным. Провалы в Млечном Пути, темные полосы и волокна на фотографиях многих дисковых галактик – все это межзвездная пыль. Красивые туманности – например, облака на снимках Космического телескопа – все это межзвездный газ.
Таким образом, какое-то количество вещества в космосе все-таки есть. И одиночные нейтронные звезды, и черные дыры могут начать притягивать, натягивать на себя это вещество. В астрофизике это называется аккреция – вещество гравитационно притягивается в данном случае к компактному объекту. И тогда у нас возникает ситуация, примерно как в двойной системе, только вещества меньше. Каждый грамм, который упал на нейтронную звезду, выделяет примерно 1020 эрг энергии. Это очень много – 10 % от mc2. То есть это бóльшая доля, чем, например, выделяется при термоядерном взрыве. Так что аккреция – очень эффективный способ выделения энергии. Хотя и очень простой.
Аккрецию на одиночные нейтронные звезды и черные дыры активно обсуждали в начале 70-х годов прошлого века. У нас в стране первопроходцем в этой области был Викторий Шварцман. Это такая драматическая история, что о ней следовало бы снять художественный фильм. В 1970–1971 годы он опубликовал серию работ по аккреции на нейтронные звезды и черные дыры, которые актуальны до сих пор. Однако, к великому сожалению, все попытки обнаружить такие источники ни к чему не привели, хотя сам Шварцман приложил к этому большие усилия и даже переквалифицировался из теоретика в наблюдатели, создав научную группу в Специальной астрофизической обсерватории на Кавказе. Одиночные аккрецирующие компактные объекты не открыты по сей день.
Если найти хотя бы 100 миллиардов грамм в секунду (при таком темпе масса Солнца наберется аж за миллион миллиардов лет, т. е. по астрономическим меркам надо очень мало вещества), то можно получить достаточно заметный источник. Тем не менее аккрецирующие одиночные нейтронные звезды или черные дыры пока не открыты. Это важная задача для (надеюсь) ближайшего будущего. Следующий серьезный российский космический проект в области астрофизики – это спутник «Спектр-Рентген-Гамма». С помощью немецкого телескопа eROSITA он будет делать обзор всего неба в рентгеновских лучах, и есть надежда, что он сможет начать открывать одиночные аккрецирующие нейтронные звезды.
С черными дырами все немножко сложнее: у них нет поверхности, и поэтому очень яркий объект не получится – нет удара о поверхность. Однако вещество, падая на черную дыру, может закручиваться в диск, и можно надеяться увидеть излучение этого диска. Для этого также нужно делать обзор неба, но, скорее всего, не в рентгеновских лучах, а в инфракрасных. Или даже в радио! Есть работы, авторы которых показывают, что будущие крупные обзорные радиотелескопы (в первую очередь SKA) смогут выявить одиночные аккрецирующие компактные объекты. Надежды связаны с тем, что у их родственников – аккрецирующих черных дыр в двойных системах – наблюдают радиоизлучение. Если физика аккреции в обоих случаях достаточно схожа, то чувствительные приборы смогут засечь радиоволны и от одиночных.
Итак, может быть, какие-то из будущих проектов помогут обнаружить одиночные нейтронные звезды и черные дыры, наблюдая аккрецию на эти компактные объекты. Тем не менее уже сейчас мы можем говорить о том, что практически неуловимые одиночные черные дыры все-таки обнаружены.
Гравитационное линзирование
Есть один очень интересный способ открыть объект, даже если он совсем не виден (это, кстати, один из методов изучения темного вещества). У любого тела есть по крайней мере одно свойство, которое никуда не денется, – его масса. Из чего бы ни состоял объект – из железа или водорода, кварковой материи или темного вещества, у него есть масса. Это особенно ярко проявляется, если предмет нашего рассмотрения – черная дыра. Она обладает замечательной особенностью – что бы вы туда ни кидали, получается примерно то же самое. Вы можете сделать черную дыру из темной материи или из совершенно каких-то удивительных частиц – и у нее все равно будет какая-то масса. Так вот, массивный объект всегда искажает пространство вокруг себя. И этот эффект – эффект искажения пространства – можно обнаружить.
Как и почему? Первая идея легко понятна. Если бы мы могли летать туда-сюда на межзвездных масштабах, то мы бы просто чувствовали, что нас куда-то тянет. Вроде бы там ничего не видно (черную дыру действительно почти не видно, особенно издалека), но мы начинаем чувствовать притяжение. Почему? Потому что пространство исказилось и мы как бы катимся в эту яму. Катимся не только мы, катится все, что движется через эту область пространства, в том числе и свет. На этом основан замечательный эффект гравитационного линзирования.
Схема гравитационного линзирования. Массивное тело между источником и наблюдателем, во-первых, смещает изображение источника, а во-вторых, работая как собирающая линза, усиливает его.
Эффект был предсказан фактически сразу после создания Общей теории относительности. Точнее говоря, то, что эффект отклонения световых лучей вблизи массивных тел должен иметь место, ученые догадывались и раньше, но Общая теория относительности дала точные численные предсказания и совершенно иную, более правильную интерпретацию. Во время солнечного затмения в 1919 году впервые удалось проверить теоретическое предсказание. Для этого потребовалось, во-первых, измерить положение звезд на небе, когда свет свободно идет к нам. Затем – измерить их, когда на пути стоит какой-то массивный объект. А после сравнить результаты каждого измерения. Согласно предсказаниям Общей теории относительности, положения изображений звезд должны сдвинуться на определенную величину, определяющуюся массой объекта и угловым расстоянием звезд от него.
Для первого измерения можно воспользоваться любой ясной ночью или просто взять хорошие карты или каталог. Но как измерить положения звезд, когда свет от них проходит мимо массивного тела? Например, можно воспользоваться ситуацией, когда звезды оказываются рядом с солнечным диском. Днем, естественно, звезды увидеть трудно, но если у нас происходит солнечное затмение, то тогда мы можем наблюдать звезды очень близко от солнечного диска. Ученые именно так и поступили, и предсказание Общей теории относительности очень хорошо совпало с данными наблюдений. Тогда же специалисты подумали о том, что этот эффект можно наблюдать, если между нами и какой-то далекой звездой пролетает другая звезда. Позже гравитационное линзирование на объектах звездных масс получило название микролинзирования.
Как мы можем увидеть событие микролинзирования? Одну из первых статей по феномену линзирования опубликовал в 1924 году российский ученый Орест Хвольсон. Наблюдаемых эффектов здесь два. Первый мы уже назвали – видимое положение звезды на небе немного меняется. Второй эффект наблюдать даже проще. Звезда, которую мы наблюдаем, становится ярче, потому что гравитационная линза работает как собирающая линза. Свет звезды концентрируется и попадает к нам в телескоп. То есть когда мы измеряем блеск звезды, то видим, что в момент, когда между нами и звездой пролетает объект, являющийся гравлинзой, интенсивность излучения растет, а потом, когда линза улетает, она становится прежней.
Вроде бы все просто, но насколько вероятно такое событие? Первые оценки сделал сам Эйнштейн. Еще в 1912–1915 годах, задолго до своей знаменитой статьи 1936 года, посвященной гравитационному линзированию, он провел все основные вычисления, которые были позже обнаружены в его черновых записях[15]. Он рассмотрел вопрос о том, нельзя ли линзированием объяснить феномен новых звезд (сейчас мы знаем, что это двойные системы, где происходит термоядерная вспышка в веществе, накопленном на поверхности белого карлика). Оказалось, что линзирование тут ни при чем. Кроме того, что кривые блеска отличаются по форме (при линзировании кривая должна быть симметричной, причем во всех цветах, а у новых кривые асимметричны), новые вспыхивают слишком часто, чтобы линзирование позволило их объяснить. Чтобы увидеть в течение года одно событие микролинзирования, нужно наблюдать за миллионами звезд! Эта задача технически была невыполнима более полувека с момента предсказания, пока наблюдали с помощью фотопластинок (или даже визуально), но потом появились ПЗС-матрицы. Большой вклад в развитие метода микролинзирования был сделан Богданом Пачинским в 80-е годы ХХ века. Именно он обратил внимание на перспективы использования ПЗС-матриц для наблюдений этого явления. Он же впервые использовал слово «микролинзирование».
Современная ПЗС-матрица характеризуется мегапикселями, т. е. миллионами элементов, которые получают изображение, а значит, если у вас есть поле, заполненное звездами, вы можете на одном снимке следить за блеском сразу миллионов звезд – очень удобно. И как только это стало технически возможно, люди стали искать эффект гравитационного микролинзирования и довольно быстро его обнаружили.
Линзирование позволяет определить массу объекта, который выполняет роль линзы. Оказалось, что в некоторых случаях масса объекта большая: скажем, 10 масс Солнца или 6–7 масс Солнца. Если бы это была обычная звезда, то при массе 8–10 солнечных она была бы очень яркой, т. е. ее было бы хорошо видно. А наблюдения показывали, что объект абсолютно темный. Единственный темный компактный объект из тех, что мы знаем, который может иметь такую массу и летать где-то поблизости в нашей Галактике, – это черная дыра.
Сейчас есть несколько очень хороших кандидатов в одиночные черные дыры (в сентябре 2015 года ученые добавили несколько новых кандидатов, обработав данные проекта OGLE), которые были открыты с помощью микролинзирования. Недостаток у них один: линзирование – разовый феномен, черная дыра прошла между нами и какой-то далекой звездой и улетела. Мы не можем ее наблюдать ни до линзирования, ни после линзирования – мы видим только сам эффект. Так что надежно подтвердить, что за событие ответственна именно черная дыра, мы, к сожалению, не можем. Поэтому, с одной стороны, мы знаем, что есть хорошие кандидаты в черные дыры в двойных системах, с другой стороны, надежных кандидатов в одиночные черные дыры или старые нейтронные звезды пока нет, и это остается задачей на будущее.
Астрометрический спутник GAIA. Его задачей будет точное измерение положений множества звезд. Измерение годичных параллаксов на основе этих измерений позволит построить трехмерную карту нашей Галактики. Кроме этого, как ожидают, спутник откроет множество экзопланет.
Сейчас есть надежда, что спутник GAIA сможет обнаружить нейтронные звезды и черные дыры за счет эффекта микролинзирования. Этот спутник предназначен для очень точного измерения положения звезд. Это позволит построить трехмерную карту их распределения вплоть до центра Галактики. При микролинзирование меняется не только блеск звезды, но и ее видимое положение. GAIA сможет заметить это, в том числе в тех случаях, когда линзой является нейтронная звезда или черная дыра. Это будет новым способом наблюдать эти интереснейшие компактные объекты, а вдобавок мы сможем измерять их массы.
X. Магнитары
Все любят какую-нибудь экзотику. О чем бы мы ни говорили, всегда интересно, а как выглядят самые экзотичные случаи. Даже те, кто любят котиков и размещают их фотографии в разных социальных сетях, особенно неравнодушны к фотографиям особенно необычных и странных. Среди нейтронных звезд, наверное, самыми редкими котиками можно назвать магнитары.
Изобретение магнитаров
Сама идея магнитара появилась, как это нередко бывает, после того, как их обнаружили. История придумывания магнитаров такова. В начале 1990-х годов независимо друг от друга появилось две работы, где фигурировали нейтронные звезды с очень сильными магнитными полями. Во-первых, они были использованы в работе Владимира Усова для объяснения космических гамма-всплесков. Это загадка, которая в течение примерно 30 лет мучила астрофизиков. Гамма-всплески были обнаружены американскими спутниками-разведчиками (в СССР их наверняка называли «спутниками-шпионами»), которые должны были следить за ядерными испытаниями, проводимыми в первую очередь Советским Союзом и Китаем. Однако спутники начали видеть гамма-вспышки, которые приходят откуда-то из космоса. И вот с конца 60-х по конец 90-х годов ХХ века люди вообще не знали, что это такое, где происходит, и, конечно, было страшно интересно. Было придумано множество разных гипотез: начиная с того, что это происходит прямо в Солнечной системе, заканчивая гипотезой о далеких всплесках на космологических расстояниях, что в итоге и оказалось правильным.
Одна из идей, касающихся возможной природы космических гамма-всплесков, была такой (ее как раз и придумал Владимир Усов). Пусть рождается нейтронная звезда, которая обладает очень большим магнитным полем – примерно 1015 Гаусс, это в миллион миллиардов раз больше, чем на Земле или Солнце. Второе предположение состоит в том, что новорожденный компактный объект очень быстро вращается, делая оборот, скажем, за одну миллисекунду (что близко к предельному периоду вращения нейтронных звезд). В результате получается исключительно мощный источник энергии. Источником энергии служит вращение нейтронной звезды, которое быстро высвечивается благодаря сильному полю и быстрому вращению. Это как бы такой суперрадиопульсар. При этом вращение быстро замедляется (ведь высвечивается в первую очередь именно энергия вращения). Поэтому мы будем видеть довольно короткую вспышку – краткую активность с быстрым спаданием блеска. Излучение такого источника довольно легко сделать направленным, а также поместить заметную долю потока в самый жесткий диапазон спектра. Получим гамма-всплеск.
Кривая блеска первого зарегистрированного гамма-всплеска. Это событие произошло 2 июля 1967 года. Разгадку природы этих событий пришлось ждать 30 лет.
Другая работа – это статья Кристофера Томсона и Роберта Дункана, также опубликованная в 1992 году. Они придумали механизм образования нейтронных звезд с очень сильными магнитными полями – в сотни раз больше, чем у обычных радиопульсаров. Потом они продолжили разрабатывать свою идею в целой серии статей. Они-то, собственно, и придумали магнитары в современном понимании как объекты, которыми можно было объяснять разные источники (а заодно ввели в обиход астрофизиков это слово). Но самое главные среди них – так называемые источники мягких повторяющихся гамма-всплесков. Гипотезу о том, что эти источники могут являться магнитарами, Дункан и Томпсон высказали уже в первой своей статье в 1992 году.
Открытие магнитаров
Источники мягких повторяющихся гамма-всплесков, как это ни странно, излучают мягкие повторяющиеся гамма-всплески. Обнаружены (точнее, выделены как отдельный класс объектов, связанных с нейтронными звездами) они были в 1979 году. На мой взгляд, это по крайней мере одно из самых красивых открытий, которое было сделано советской и российской астрофизикой. А может быть, не только самое красивое, но и самое важное. И уж совершенно точно, это самое красивое открытие, которое было сделано советской или российской астрофизикой с помощью установок, стоящих на спутниках.
5 марта 1979 года вспыхнул гамма-источник. Вспыхнул он в направлении Большого Магелланова облака – близкой к нам карликовой галактики. Как оказалось, источник действительно в ней и находится (детальный анализ потребовал некоторого времени, но в итоге советско-французская группа исследователей однозначно показала, что источник находится в остатке сверхновой в Магеллановом облаке). После основного пика излучения приборы «Конус», установленные на аппаратах Венера и созданные научной группой Евгения Мазеца из ФТИ им. Иоффе, зарегистрировали пульсирующий хвост. Было обнаружено, что источник обладает строгим периодом в несколько секунд. В принципе, это сразу указывает на нейтронную звезду – не так уж много в природе объектов, которые могут очень надежно выдерживать период несколько секунд. Действительно, сейчас мы знаем, что это одиночная нейтронная звезда, которая выдает столь мощные гамма-вспышки. А вспышка-то и в самом деле была на загляденее! Приборы просто ослепли и не смогли зарегистрировать максимум блеска – так ярко сияло. На одну десятую долю секунды магнитар стал ярче не слишком крупной галактики, и все это излучение приходилось на жесткий рентгеновский и мягкий гамма-диапазон.
С тех пор еще у двух магнитаров наблюдали мощные вспышки с длинным хвостом пульсирующего излучения. Первое событие произошло в августе 1998 года. Оно было очень похоже на событие 5 марта. А вот следующая вспышка всех поразила.
27 декабря 2004 года почти все космические рентгеновские и гамма-телескопы, смотревшие в сторону Солнца, «ослепли». В созвездии Стрельца произошла вспышка магнитара SGR 1806–20. Она получила наименование гипервспышки. Будучи похожей по форме на гигантские вспышки 1979 и 1998 годов, она была в сто раз мощнее. Квантов было настолько много, что детекторы не могли с ними справиться. Лишь один сумел увидеть «голову Медузы Горгоны».
Это снова был прибор эксперимента «Конус». У группы Евгения Мазеца из ФТИ им. Иоффе в это время на орбите было два прибора: один на американском спутнике «Винд» и второй на российском «Коронасе». Один взглянул на всплеск и «ослеп». А второй был в тени Земли. Соответственно, он не мог видеть вспышку. Но данные обработали, и увидели слабенький сигнал, пришедший через несколько секунд после того, как произошла гипервспышка. Подумав и посчитав, ученые поняли, что им удалось увидеть всплеск, отраженный от Луны! Единственный способ не ослепнуть, глядя на Медузу, – это смотреть на ее отражение!
Разумеется, столь мощные всплески должны быть видны с межгалактических расстояний. Но здесь есть две проблемы. Во-первых, источник невозможно разглядеть издалека после вспышки. Во-вторых, основной пик вспышки магнитара похож на короткий гамма-всплеск, поэтому их легко перепутать. В-третьих, чаще всего для одиночных коротких вспышек недостаточно точно измеряются координаты. Тем не менее есть несколько хороших кандидатов в гигантские и гипервспышки внегалактических магнитаров. И опять один из самых интересных был открыт астрофизиками из ФТИ им. Иоффе. Дмитрий Фредерикс и его коллеги увидели вспышку в направлении Туманности Андромеды. Точных доказательств, что это был именно магнитар, – нет, но уж очень похоже! Исследования, проведенные нами с Борисом Штерном, показывают, что возможно среди коротких гамма-всплесков затесалось несколько внегалактических вспышек магнитаров (о такой возможности еще в 1980-е писал Мазец с соавторами). Но и в данном случае указать, какой из гамма-всплесков точно связан с далеким магнитаром, не получается, так как после вспышки мы их не видим.
Кривая блеска вспышки 5 марта 1979 года по данным эксперимента «Конус». Виден резкий максимум блеска, во время которого прибор «ослеп», и пульсирующий «хвост». Пульсации связаны с вращением нейтронной звезды. Рисунок предоставлен сотрудниками Лаборатории экспериментальной астрофизики ФТИ им. Иоффе.)
От всех магнитаров, в том числе и от трех, дававших очень мощные вспышки, были открыты новые всплески, т. е. стало ясно, что это не катастрофическое явление. Если во время гигантской вспышки магнитар на долю секунды может стать ярче галактики, то во время слабых вспышек нейтронная звезда «всего лишь» в десятки миллионов раз ярче Солнца. Зато такие слабые всплески могут происходить очень часто. Некоторые магнитары, находясь в активной фазе, за месяц выдают около сотни вспышек. А ведь это всегда очень трудно – быстро выделить большую энергию в маленьком объеме, а еще труднее сделать это, не разрушив объект. В одном из интервью кто-то из наших актеров рассказывал, как во время съемок обсуждалось, что для выполнения трюков нужны каскадеры. Актеры стали уверять, что все сделают сами. Тогда одного из них спросили: «А вы можете прыгнуть с крыши пятиэтажного дома?» На что тот ответил: «Могу, но только один раз». Вот и многие взрывные явления таковы: их можно сделать – взрыв сверхновой, например, – но только один раз. Придумать модель объекта, который время от времени будет выделять энергии больше, чем целая галактика, довольно трудно.
Оказалось, что такие «выносливые» объекты есть, и это – магнитары. Магнитар 1990-х годов – это нейтронная звезда, обладающая большим дипольным магнитным полем, что означает, что где-то в недрах компактного объекта текут очень сильные токи, которые поддерживают это поле. Например, они могут течь в коре нейтронной звезды, которая состоит из более или менее обычного вещества – без суперэкзотики. И, естественно, если где-то течет ток, он может выделять энергию постепенно, например, просто нагревая спираль в чайнике, а может выделять энергию быстро – из-за короткого замыкания. Так, если на нейтронной звезде устроить короткое замыкание, то произойдет очень мощная вспышка, и мы будем наблюдать источник мягких повторяющихся гамма-всплесков. Все это возможно описать в рамках магнитарной модели. Но есть способы выделять энергию и постепенно…
Аномальные рентгеновские пульсары
Оказалось, что у источников мягких повторяющихся гамма-всплесков есть родственники. Новый класс одиночных нейтронных звезд был выделен в середине 1990-х годов сразу несколькими группами ученых, которые изучали так называемые рентгеновские пульсары. Рентгеновских пульсары все тогда представляли исключительно так: это двойные системы, где есть нейтронная звезда и обычная звезда. Вещество с обычной звезды течет на нейтронную, сразу падая на ее поверхность или предварительно закручиваясь в диск. Падающая плазма разогревается до очень высоких температур, и в результате генерируется поток рентгеновского излучения. Напомним, что нейтронная звезда, обладая магнитным полем, каналирует вещество на полярные шапки (примерно как на Земле магнитосфера направляет заряженные частицы в полярные области, и именно там происходят полярное сияния – на севере и на юге нашей планеты). Компактный объект вращается вокруг своей оси, и мы периодически видим то одну полярную шапку, то другую, и таким образом возникает феномен рентгеновского пульсара.
Но исследования показали, что есть странная группа рентгеновских пульсаров, которая отличается от всех остальных. И, немножко забегая вперед, можно сказать, что они оказались магнитарами. Эти странные рентгеновские пульсары имели примерно одинаковые периоды в районе 5–10 секунд (хотя в целом периоды рентгеновских пульсаров заключены в очень широком диапазоне – от миллисекунд до часов). Светимость у них была раз в сто меньше, чем у собратьев. Период вращения все время только увеличивался (в то время как у большинства рентгеновских пульсаров он то уменьшается, то растет). И не наблюдалось никаких свидетельств присутствия второй звезды в системе: не было видно ни самой звезды, ни модуляций излучения, связанных с орбитальным движением. Оказалось, что это в самом деле одиночные нейтронные звезды. Никакого перетекания вещества или, как говорят, аккреции там нет. Просто сама нейтронная звезда имеет очень горячие полярные шапки. Оставалось объяснить почему.
И здесь на помощь как раз приходят сильные магнитные поля. То самое выделение энергии тока, которое происходит не из-за короткого замыкания, а потихоньку, как в чайнике или электронагревателе, или еще каком-нибудь электроприборе. Температура выше там, где находится нагревательный элемент, – где течет ток. А потом с помощью теплопроводности, тепло распространяется по всему объему. Поверхность нейтронной звезды действительно можно греть не равномерно, а сильнее прогревать, например, полюса (это происходит из-за того, что тепло в коре переносят электроны, а им проще двигаться вдоль линий магнитного поля, которые как раз на полюсах направлены к поверхности). Тогда мы тоже будем видеть рентгеновский пульсар.
Какое-то время обсуждалась гипотеза, что аномальные рентгеновские пульсары могут светить благодаря аккреции. Тогда у них должен быть довольно мощный аккреционный диск. Вещество могло накопиться сразу после взрыва сверхновой. Это могло бы объяснить светимость и периоды источников. Но не объясняет некоторые особенности их всплесков, а главное – вспышки. Оказалось, что некоторые аномальные рентгеновские пульсары могут давать так называемые слабые вспышки, подобные наблюдаемым у источников мягких повторяющихся гамма-всплесков.
Источники мягких повторяющихся гамма-всплесков, кстати, между вспышками могут выглядеть как аномальные рентгеновские пульсары. Часть ученых заподозрила, что это «родственники» и роднит их сильное магнитное поле.
Сильные поля
Почему в случае аномальных рентгеновских пульсаров и источников мягких повторяющихся гамма-всплесков говорят именно о сильных магнитных полях? Разумеется, строго говоря, даже слабые магнитные поля могут приводить к тому, что какие-то части поверхности нейтронной звезды будут более горячими. И короткое замыкание в принципе можно устроить без очень сильных магнитных полей. Но, конечно, если поля большие, значит, и токи текут большие. Энергии выделяется больше, и объекты просто заметнее. Это первая причина.
Вторую причину мы не будем детально рассматривать, но вкратце она сводится к тому, что сильные токи быстрее и заметнее эволюционируют. То есть для них темп диссипации энергии действительно выше. Однако детальное обсуждение этого вопроса требует детального обсуждения физики процесса с соответствующими выкладками.
Третья причина связана собственно с измерениями магнитных полей. К сожалению, измерить напрямую магнитные поля столь далеких объектов довольно трудно. Массово их измеряют лишь косвенно. Чем сильнее магнитное поле, тем быстрее нейтронная звезда (не взаимодействующая с веществом вокруг) замедляет свое вращение. И по вот этому торможению вращения нейтронных звезд можно оценивать поля. Для радиопульсаров, например, это достаточно хорошо работает. Если такую же методику применить для источников мягких повторяющихся гамма-всплесков или для аномальных рентгеновских пульсаров, окажется, что поля у них в сотни раз больше, чем у обычных радиопульсаров. То есть при тех же периодах они замедляются в десятки тысяч раз эффективнее: произведение периода вращения на его производную (т. е. на темп замедления) пропорционально квадрату дипольного магнитного поля на поверхности нейтронной звезды.
Есть и другие причины думать, что магнитные поля магнитаров велики. Можно оценить запас энергии, необходимой для поддержания вспышечной активности в течение десятков тысяч лет. Необходимая величина соответствует запасам энергии магнитного поля, если оно велико. Для возникновения пульсирующего хвоста после гигантской вспышки нужно удерживать вещество от разлета – это может сделать сильное магнитное поле. Наконец, спектры магнитаров тоже свидетельствуют в пользу сильных полей.
Красивый результат был получен на рентгеновском спутнике ИНТЕГРАЛ, вначале Сергеем Мольковым с соавторами, а затем и другими группами наблюдателей. До этих наблюдений никто не мог получить спектры магнитаров на энергиях существенно больших 10 кэВ, т. е. за стандартным рентгеновским диапазоном. Экстраполяция спектров (и, соответственно, теоретических моделей) в область энергий жесткого рентгеновского диапазона предсказывала, что источники будут слабыми – спектры спадают в области жесткого рентгена. Оказалось, что это не так. Несколько аномальных рентгеновских пульсаров и источников мягких повторяющихся гамма-всплесков продемонстрировали мощное излучение в жестком рентгеновском диапазоне. Появились разные модели, объясняющие эти данные. Но самые успешные из них требуют присутствия сильного магнитного поля.
Таким образом, сформировалась первая концепция современных магнитаров: это нейтронные звезды с большими (и в смысле величины, и в смысле пространственной протяженности) магнитными полями. Они довольно редкие – известных магнитаров примерно в сто раз меньше, чем радиопульсаров. Но, дело в том, что они просто очень недолго живут – стадия активного магнитара длится в десятки раз меньше стадии радиопульсара. Они очень быстро замедляются, теряют свою энергию и перестают быть хорошо видимыми объектами. Полагали, что несколько процентов (может быть, до 10 %) всех нейтронных звезд в молодости могут быть вот такими магнитарами.
Уже в тот момент, когда появилась первая магнитарная концепция, встал вопрос, откуда берутся эти сильные магнитные поля. Поскольку если все-таки нормой являются обычные радиопульсары, то нужно придумать механизм, как усилить поля еще на два порядка. Такой сценарий был предложен уже в первых работах Томсона, Дункана и их соавторов. Он основан на работе динамо-механизма.
Наглядно идея выглядит так. Мы все представляем себе магнитные поля как силовые линии, как некие «шнуры», торчащие из магнита. Любой шнур можно перекрутить и сложить. Тогда в нашей области шнур будет упакован плотнее. То же самое с магнитным полем – оно станет в два раза сильнее, если вы проделаете такую штуку с силовыми линиями. Для этого нужно, чтобы поле было хорошо связано с веществом, а вещество совершало трехмерное движение. В случае магнитаров это возможно, когда нейтронная звезда, во-первых, очень быстро вращается, а во-вторых, она еще жидкая, и в ней возможна конвекция. Тогда конвекция и вращение в протонейтронной звезде могут приводить к тому, что магнитные поля будут усиливаться динамо-механизмом. Это хорошая идея, но она сталкивается с очень большой проблемой – трудно объяснить, почему же нейтронные звезды столь быстро вращаются вначале. Необходимо вращение в десятки раз быстрее, чем в среднем бывает при рождении у обычных пульсаров. Что же может заставить новорожденную нейтронную звезду так быстро вращаться?
Ее вращение, конечно же, связано с тем, как вращалась звезда-прародитель. И есть способ дополнительно раскрутить обычную звезду. Это возможно, если она входит в двойную систему. Тогда взаимодействие со звездой-соседкой может привести к тому, что звезда-прародитель магнитара будет вращаться в несколько раз быстрее, чем ей положено, и потом может возникнуть быстровращающаяся нейтронная звезда, которая сможет усилить свое магнитное поле и превратиться в магнитар. Пока, к сожалению, непонятно, работает этот механизм, или нет, но по крайней мере есть хорошая такая логическая цепочка, которая приводит к образованию нейтронных звезд с очень сильными магнитными полями как раз примерно в 10 % случаев. И есть наблюдения, которые говорят, что по крайней мере в некоторых случаях магнитары родились из звезд, которые на одной из стадий своей эволюции дополнительно раскрутились в двойных системах.
Картина запутывается
Первые магнитары были связаны с источниками мягких повторяющихся гамма-всплесков или с аномальными рентгеновскими пульсарами. И казалось, что это два совершенно отдельных семейства, стоящих в стороне от всех других нейтронных звезд. Однако чем дольше мы наблюдаем, тем больше видим связей между разными нейтронными звездами. Вначале было надежно установлено родство между аномальными рентгеновскими пульсарами и источниками мягких повторяющихся гамма-всплесков. Во-первых, практически все источники мягких повторяющихся гамма-всплесков между всплесками выглядят как аномальные рентгеновские пульсары. Во-вторых, когда понаблюдали за аномальными рентгеновскими пульсарами достаточно долго, увидели, что они вспыхивают, как источники мягких повторяющихся гамма-всплесков.
Более удивительные события ждали ученых дальше. У классических магнитаров никогда не наблюдалось радиоизлучения, подобного радиопульсарному. И несколько специалистов потратили годы жизни для того, чтобы это объяснить, и объяснили… Но потом такое радиоизлучение зарегистрировали. То есть магнитар становился радиопульсаром. А совсем недавно, в 2008 году, удалось увидеть обратный переход – как радиопульсар превратился в источник мягких повторяющихся гамма-всплесков. Значит, понадобится придумывать какой-то эволюционный механизм, который мог бы превращать объекты одного типа в другие.
Кроме обычных магнитаров, демонстрирующих очень быстрое замедление периода вращения, что связывают с большими дипольными магнитными полями, недавно стали обнаруживать вспыхивающие нейтронные звезды с медленно меняющимися периодами. Они демонстрируют всплески, как у источников мягких повторяющихся гамма-всплесков. Их периоды вращения такие же. Но оценка магнитного поля по росту периода дает значение порядка пульсарного. То есть магнитное поле раз в сто меньше. Таких источников известно уже несколько, и противники магнитарной модели очень обрадовались. Однако магнитары выстояли.
Мы уже говорили, что за изменение периода вращения отвечает дипольное поле. Но у нейтронной звезды могут быть и другие компоненты поля. По мере удаления от поверхности они быстро спадают, поэтому их роль мала на большом расстоянии от компактного объекта. Зато вблизи они могут быть важны. Для поддержания этих сильных, как говорят, мультипольных полей тоже необходим сильный электрический ток. Значит, наша нейтронная звезда все равно является магнитаром. В ее коре будет происходить выделение энергии тока, поэтому поверхность будет горячей. Из-за перезамыкания могут происходить вспышки и т. д. Но слабое дипольное поле не даст периоду быстро расти.
Эту гипотезу удалось доказать, когда Андреа Тиенго и его коллеги получили хороший рентгеновский спектр одного из магнитаров со слабым дипольным полем. Благодаря большой собирающей площади рентгеновской обсерватории ХММ-Ньютон астрономы смогли разглядеть спектральные детали, говорящие об очень сильном поле в небольшой области вблизи поверхности нейтронной звезды. Это полностью укладывается в модель магнитара, у которого мультипольные («кудрявые») поля гораздо сильнее дипольного. Магнитары остаются магнитарами.
Наиболее перспективные идеи в области «алхимии нейтронных звезд» так или иначе связаны с затуханием магнитного поля, что вполне естественно. У нейтронной звезды батарейки нет: если токи в ней текут, значит, со временем они затухают. И это может приводить к изменению статуса нейтронной звезды. Она может вспыхивать чаще или реже или не вспыхивать совсем. Например, объект может рождаться как источник мягких повторяющихся гамма-всплесков, затем превращаться в объект типа аномального рентгеновского пульсара, а после, когда магнитное поле распадается еще сильнее, он превращается просто в нейтронную звезду, которую мы видим в наших окрестностях благодаря ее тепловому излучению. Таких источников известно всего семь, и поэтому эта группа звезд известна как Великолепная семерка.
Появились попытки описать разные типы нейтронных звезд вместе, в рамках единого эволюционного сценария. Первую такую хорошую попытку сделали мы с коллегами из Испании и Германии. У нас получилось описать вместе, в рамках единого подхода, классические магнитары, Великолепную семерку и подобные им объекты, а также обычные радиопульсары. В дальнейшем Мигель Гуллон, Хосе Понс и их коллеги продолжили развивать этот подход.
Но со временем оказалось, что есть еще более удивительные превращения, и это позволило установить связь с другими типами молодых нейтронных звезд. В остатках сверхновых наблюдают центральные точечные объекты. Мы уверены, что это нейтронные звезды. Мы их видим, просто потому, что они еще горячие в силу своего небольшого возраста (в среднем порядка нескольких тысяч лет). При этом у них могут быть очень короткие периоды по сравнению с магнитарами, не 5–10 секунд, а десятые доли секунды. Совсем недавно, уже во втором десятилетии нашего века, стала популярной очень красивая идея. Пусть вначале рождается магнитар, т. е. нейтронная звезда с большим магнитным полем, но после взрыва сверхновой часть вещества падает обратно. Его падает настолько много, что это вещество как бы заваливает, экранирует магнитное поле, и в течении нескольких тысяч лет мы можем не знать, что там скрыт магнитар. Внешнее магнитное поле будет очень слабое, меньше, чем у радиопульсара. Звезда будет очень плохо тормозиться, но она будет горячее, чем ей положено быть, потому что внутри спрятан магнитар, который находится как бы в коконе. Детальные исследования таких объектов показывают, что это очень продуктивная гипотеза. Вот что в самом деле может реализовываться в природе: некоторые из рентгеновских источников в остатках сверхновых являются вот такими вот заваленными магнитарами, которым понадобится несколько тысяч лет, чтобы расправить крылья и превратиться в красивую бабочку.
Остаток сверхновой Кассиопея А, в центре которого находится одиночная остывающая нейтронная звезда.
XI. Великое объединение нейтронных звезд
Про зайчиков и белочек
Во всех естественных науках и отчасти в неестественных и противоестественных есть тяга к единой картине. Не только к систематизации, но и к попытке описать все с каких-то единых позиций, с помощью единого закона. Это естественный путь развития любой науки. Самое известное – это, конечно, создание теорий объединения в физике. Когда-то думали, что электричество и магнетизм – разные вещи, а потом все сложили в электромагнетизм. Затем объединили электромагнитное и слабое взаимодействия. Еще позже добавилось сильное ядерное взаимодействие – хотя здесь пока окончательной теории нет. Теперь мечта теоретиков состоит в том, чтобы добавить еще и гравитацию – создать единую теорию, или, как ее еще называют, Теорию всего.
Наверное, можно представить себе две причины тяги к единым моделям: есть пряник и кнут. Первая (о ней чаще говорят) связана с тем, что это эстетическое стремление. Действительно, очень красиво, когда, казалось бы, разрозненные факты и идеи вдруг складываются в общую мозаику. Это связано (также с эстетической) верой в то, что мир устроен относительно просто: мы можем его описать (или понять – как вам больше нравится), уложить все это в голове в виде изящной конструкции. Поэтому многие люди уверены, что объединительные подходы должны быть правильными.
Однако, вероятно, есть и вторая (подсознательная?) причина. Она может быть важнее не на индивидуальном, а на коллективном уровне. Видя обилие феноменологических данных, многообразие теоретических построений, великое множество отдельных задач и т. д. и т. п., мы начинаем пугаться, что эта лавина информации захлестнет нас и не позволит развиваться дальше. Потому что невозможно эффективно оперировать такой уймой фактов, используя человеческий мозг. Если бы все это удалось описать разом, в идеале – одной формулой, то не было бы необходимости постоянно «держать в голове» так много отдельных элементов картины: частное можно было бы вывести из общего. Это дало бы возможность накапливать новые данные, решать новые частные задачи, выдвигать новые гипотезы – и так до нового рубежа, когда появится новая единая теория.
Мне кажется, что тяга некоторых людей к псевдонауке или мифологическому объяснению явлений также связана с этими двумя причинами: во-первых, красиво, когда все устроено просто, а во-вторых, очень страшно, что все окажется сложным. Это вызывает беспокойство и стимулирует принятие простой (хотя и неправильной) картины мира.
Схема биологической эволюции с общими предками. Для нейтронных звезд тоже можно рисовать эволюционные схемы, причем иногда их поведение может быть довольно причудливым.
Модели единого описания в первую очередь базируются на каких-то общих свойствах описываемых объектов. Еще лучше, если элементы системы могут превращаться друг в друга или проявляют свойства, характерные сразу для нескольких классов объектов. В том случае, когда в системе есть эволюция, открываются дополнительные пути к объединению. Например, в нашей жизни мы знаем, что зайчики в белочек не превращаются, но мы знаем, что и у зайчиков, и у белочек есть единый общий предок. Так что в некотором смысле биология тоже стремится к описанию и объяснению всего с единых позиций, и эволюционная модель позволяет это сделать.
Таким образом, позыв объяснить большое разнообразие объектов в рамках какой-то единой картины существует везде, и астрофизика нейтронных звезд здесь не является исключением.
Такие разные нейтронные звезды
Как говорится, «чтобы объединиться, нужно решительно размежеваться» – с размежеванием у нейтронных звезд все было хорошо. Вначале были открыты радиопульсары. Это молодые нейтронные звезды, которые достаточно быстро вращаются, у них есть довольно сильное магнитное поле, и из-за этого возникает так называемые когерентное нетепловое излучение, генерируемое в магнитосфере. В первую очередь – радиоизлучение, но есть пульсары, которые мы видим пульсирующими во всех диапазонах: в видимом, в инфракрасном, в ультрафиолетовом, в рентгеновском, в гамма. Затем стали открывать молодые нейтронные звезды других типов, например магнитары. Это одно из самых красивых астрономических открытий, когда-либо сделанных в нашей стране. 5 марта 1979 года в рамках эксперимента «Конус» на аппаратах «Венера» была зарегистрирована очень мощная гамма-вспышка. После вспышки блеск не упал до нуля, а появились пульсации с периодом несколько секунд. Довольно быстро астрономы поняли, что это нейтронная звезда, нашли, где она находится, и показали, что это молодой объект. В списке наблюдательных проявлений компактных объектов появился новый вид активности молодых нейтронных звезд. Дальше этот зоопарк пополнялся, и к концу 90-х годов ХХ века существовало с полдюжины различных классов молодых нейтронных звезд, которые проявляли себя как астрофизические источники очень разных типов. Казалось, что каждый из них обречен родиться или радиопульсаром, или магнитаром, или центральным компактным объектом в остатке сверхновых, или еще чем-нибудь, и это судьба. То есть как у Кьеркегора: «или – или».
Приборы эксперимента «Конус». Их аналоги были установлены на аппаратах серии «Венера». Фотография предоставлена сотрудниками Лаборатории экспериментальной астрофизики ФТИ им. Иоффе.
Но затем появились новые наблюдения. Оказалось, что объект вовсе не обречен проявлять какой-то один тип активности: здесь зайчики могут превращаться в белочек (и обратно). Например, жил-был радиопульсар, наблюдали его исключительно как источник этого типа, и вдруг он начал выдавать вспышки как магнитар – объект из одного класса перешел в другой. Кроме этого, начали открывать транзиентные магнитары[16]. При этом мы уверены, что все это молодые нейтронные звезды. Потихонечку таких данных становилось все больше и больше, возникало все больше связей между разными типами нейтронных звезд. В итоге возник сильный позыв, связанный с реальными данными наблюдений, как-то объяснить все это в рамках общего сценария.
Так возникла концепция Великого объединения для нейтронных звезд, которая должна позволить объяснить все это многообразие типов источников единой физикой, единой эволюционной картиной.
Связующий элемент
Основной вопрос, который здесь возникает, – как устроены эволюционные связи между объектами разных типов, есть ли какой-то единый путь? Например, последовательность может быть строго задана: объект рождается как магнитар, потом проявляет себя как остывающая нейтронная звезда типа объектов из Великолепной семерки, потом – как радиопульсар. Или единого пути нет и возможны самые разные варианты развития событий, а какие-то параметры или их сочетания за это отвечают. Ведь если мы говорим об эволюции, то мы говорим об изменении каких-то параметров, каких-то свойств.
Нейтронная звезда с астрофизической точки зрения – объект довольно простой: есть не так много параметров, которые описывают все ее основные проявления. Давайте посмотрим, какие они у нейтронной звезды.
Во-первых, масса. Масса у реальных нейтронных звезд заключена в довольно узком диапазоне примерно от 1 до 2 масс Солнца. Нижний предел определяется свойствами звездных ядер и пределом Чандрасекара (с учетом гравитационного дефекта масс)[17]. А верхний связан с устойчивостью вещества относительно окончательного коллапса в черную дыру. Если мы говорим про одиночные звезды, можно с высокой точностью считать, что масса постоянна, никакой эволюции здесь просто так не устроишь.
Во-вторых, скорость. Скорость, с которой нейтронная звезда движется относительно своих соседей и окружающей межзвездной среды. С одной стороны, мы знаем, что объекты разных типов могут иметь очень разные скорости, с другой – нейтронную звезду быстро не замедлишь/не ускоришь. То есть тоже не получается сделать какую-то эволюцию.
Следующий важный параметр – период вращения. От него действительно зависит очень многое. Мы знаем, что он сильно эволюционирует, но у одиночных объектов изменяется практически в одну сторону: они вращаются все медленнее и медленнее, и медленнее, так как в данном случае нет никакого специального механизма, раскручивающего нейтронную звезду. Так что снова устроить какую-то сложную эволюцию, меняя период, не получается (кроме разве что момента включения сверхтекучести нейтронов в коре нейтронной звезды, когда она достигла соответствующей температуры – но это разовый и не очень сильный эффект).
Потом температура. С температурой все сложнее. Конечно, существует общий тренд – объект должен остывать, – но у нейтронной звезды могут быть внутренние источники тепла, которые позволяют ей или долго оставаться горячей, или даже подогреваться со временем. Однако, хотя температура может довольно сильно изменяться, сама по себе она не причина резких изменений поведения нейтронной звезды. Скорее уж температура отражает изменения, происходящие со звездой. Как часы на вокзале – поезд приходит не потому, что на часах 11 (вы можете часы убрать, остановить, перевести и т. д.). Просто точные часы вам показывают, когда должен приходить поезд.
И тогда у нейтронной звезды остается один важный изменяющийся (и со временем, и от объекта к объекту) параметр – это магнитное поле.
Нейтронные звезды обладают сильными магнитными полями. Сильные – это действительно очень большие величины. На поверхности Солнца (вне пятен) магнитное поле в среднем примерно такое же, как на земных магнитных полюсах. Есть звезды, на поверхности которых магнитные поля в сотни раз больше, чем на Солнце. На белых карликах магнитные поля бывают почти в миллиард раз сильнее, чем на Земле. А вот на поверхности нейтронных звезд поля больше, чем на Солнце или на Земле в тысячу миллиардов раз, иногда даже в миллионы миллиардов раз. То есть они в самом деле гораздо сильнее, и для этого есть несколько причин.
Первая очень простая: нейтронная звезда образуется при сжатии ядра обычной звезды, и магнитное поле при сжатии усиливается. Коллапсируя, вещество тянет магнитное поле за собой и как бы спрессовывает его. Давайте нарисуем силовые линии, как в школе все рисовали силовые линии обычных магнитов – получалась эдакая бабочка. Теперь представьте, что вы это нарисовали, а потом рисунок начали сжимать, число силовых линий осталось то же самое, но шарик (наше коллапсирующее ядро звезды), через который они проходят, становится все меньше, плотность линий возрастает, это и соответствует увеличению магнитного поля.
Есть и вторая причина, так как, по всей видимости, первой недостаточно, чтобы объяснить происхождение поля у самых экстремальных нейтронных звезд. Для образования магнитных полей наиболее замагниченных нейтронных звезд, таких как магнитары, нужен какой-то специальный механизм усиления магнитного поля. Как он работает, мы пока не знаем, но, по всей видимости, он есть, и это важная задача – определить его и описать на языке физической теории.
Итак, магнитное поле – это уже хороший параметр, потенциально подверженный интересным вариациям. Хотя в течение долгого времени казалось, что его эволюция тоже должна быть простой. Самая простая эволюция – это отсутствие эволюции. Параметр всегда остается постоянным. Чуть более сложная эволюция – это монотонное уменьшение, затухание. Мы привыкли видеть все распадающимся, если нет каких-то источников энергии или чего-то еще, что компенсирует регресс.
Здесь надо вспомнить, откуда вообще берутся магнитные поля. Нейтронная звезда – это не магнит в обычном смысле, т. е. не железка, синяя с одной стороны и красная с другой. Магнитное поле обычного магнита связано с молекулярными токами. У нейтронных звезд магнитные поля порождаются крупномасштабными токами. То есть, говоря о магнитных полях, мы должны себе представлять, что где-то внутри нейтронной звезды текут очень мощные токи, которые генерируют это самое магнитное поле. И здесь уже открывается простор для фантазии теоретиков, потому что, оказывается, токи можно делать сильнее и слабее, можно придумать процессы, которые будут эти токи менять. Хотя общий ход изменений, конечно, все равно направлен к уменьшению величины токов, но они могут сложно эволюционировать. Может меняться не только их величина, но и структура. Кроме того, магнитное поле можно экранировать. Если мы окружим нейтронную звезду оболочкой, своеобразным экраном, из какого-то проводящего материала, то снаружи мы можем не увидеть магнитное поле или видеть его существенно ослабленным, и это тоже, как ни странно, может работать в астрофизике. Таким образом, сейчас начала складываться картина Великого объединения нейтронных звезд, где все основные идеи завязаны на эволюцию магнитного поля. Оказалось, что это действительно очень хороший параметр.
Магнитные поля очень разные у объектов разных типов: у магнитаров побольше, у пульсаров поменьше, у центральных компактных объектов в остатках сверхновых еще меньше. Кроме того, магнитное поле может иметь, как говорят, разную топологию, сильно упрощая – разную форму. Может быть очень простое поле, как вот та самая «бабочка» у школьного магнита, а могут быть, например, маленькие петельки сильного поля вблизи поверхности. Получается, что вдали мы видим поле не очень сильное, а вблизи поверхности оно очень большое. Или поле может быть каким-нибудь скрученным-перекрученным, и оно будет приводить к процессу дополнительного выделения энергии. Благодаря этому стало возможным объяснить, откуда берутся транзиентные магнитары – у них эволюционирует магнитное поле. Иногда одна из компонент магнитного поля усиливается, а потом вдруг его энергия начинает активно выделяться. Грубо говоря, начинают происходить короткие замыкания в нейтронной звезде, и звезда порождает серию вспышек. Закончился этот эпизод активности – поле опять в среднем стало меньше, и объект может быть виден как, например, обычный радиопульсар.
Секретные поля
В последние годы астрофизики обратили внимание на один эволюционный механизм, который мы уже упоминали выше. Он позволяет добавить, вероятно, последнюю существенную связь между разными типами нейтронных звезд. В этом сценарии можно увеличивать наблюдаемое в основных астрофизических процессах магнитное поле компактных объектов.
Идея состоит вот в чем. Как рождается компактный объект? Жила-была массивная звезда. В конце ее жизни произошел взрыв сверхновой. Внешние слои улетели, железное ядро сжалось – образовалась нейтронная звезда. Все хорошо, но не все сбрасываемые слои могут улететь бесконечно далеко. Гравитация у компактного остатка все равно достаточно сильная, кроме того, ударные волны помогают замедлить разлетающееся части звезды, и часть вещества может упасть обратно. Падающее вещество – это очень хороший проводник электричества. Магнитное поле создает в проводящем слои такие токи, которые компенсируют поле для внешнего наблюдателя. Возможна такая ситуация, когда вещества на нейтронную звезду падает достаточно много, чтобы прижать магнитное поле к поверхности. Тогда получается забавный объект. Внутри у вас может быть нейтронная звезда с очень большим полем или, можно сказать, с очень большими текущими в ней токами, но снаружи все это завалено толстым слоем проводящего вещества, и наблюдатель на бесконечности видит объект с очень маленьким полем. Такая звезда очень плохо замедляется, никакой бурной активности не наблюдается: мы просто видим десятикилометровый шарик, который светится в соответствии со своей температурой где-нибудь около миллиона градусов, – и все. Нам он представляется спокойным объектом. Но там внутри может быть что угодно, включая магнитар.
Один из активно изучаемых сейчас объектов как раз является кандидатом в такие заваленные, или «спрятанные», магнитары. Обнаружилось это довольно интересным способом. Этот объект наблюдается в рентгеновском диапазоне, и его излучение пульсирует. Но это не значит, что объект сжимается или расширяется, просто на его поверхности есть более горячие области и более холодные. Нейтронная звезда вращается вокруг своей оси, и поэтому иногда мы видим больше горячей поверхности, иногда – меньше. Соответственно, к нам приходит то больше, то меньше излучения. Так вот, наблюдаемые пульсации очень сильные, и когда астрофизики попытались это промоделировать, то оказалось, что, чтобы создать такую неоднородную температуру на поверхности, нужно очень сильное магнитное поле. А мы видим по замедлению вращения, что поле-то у него вроде бы слабое. Единственное разумное объяснение состоит в том, что наружное поле, которое отвечает за замедление нейтронной звезды, имеет маленькую величину, а внутри, в коре компактного объекта, текут большие токи, поддерживается сильное поле, которое закрыто от нас вот этим напа́давшим материалом. Это не навечно, а с точки зрения жизни нейтронных звезд – на совсем короткий промежуток времени. За несколько десятков тысяч лет поле все-таки выберется наружу за счет диффузии.
Таким образом, придуман механизм (и найдено наблюдательное свидетельство в пользу того, что он может реализовываться), который позволяет превращать самые спокойные нейтронные звезды в самые буйные. То есть можно на несколько тысяч или десятков тысяч лет запереть нейтронную звезду, успокоить ее в эдакой смирительной рубашке, а потом все-таки магнитное поле нейтронной звезды проберется наружу, и из этой скорлупы вылупится магнитар.
Если этот процесс действительно реализуется в природе, то фактически у нас в руках оказываются эволюционные сценарии, которые связывают вместе все известные на сегодняшний день классы нейтронных звезд. Остается только построить детальные компьютерные модели жизни нейтронных звезд на основе этих сценариев и показать, что они соответствуют наблюдательным данным. С другой стороны, наблюдения позволили на протяжении последних 20 лет настолько расширить зоопарк нейтронных звезд, что мы психологически готовы к новым неожиданностям. Так что вполне возможно, что через несколько десятков лет или даже всего через несколько лет появятся какие-то новые удивительные объекты, которые не будут вписываться в нарисованную нами картину. В этом случае процесс Великого объединения нужно будет продолжать дальше и искать какие-то новые эволюционные связи между разными типами компактных объектов. Возможно, что для этого понадобится и новая физика.
XII. Компактные объекты и фундаментальная физика
Астрофизические лаборатории для бедных
«Все счастливые семьи похожи друг на друга, каждая несчастливая семья несчастлива по-своему». Всегда мечтал использовать эту фразу в научно-популярном тексте. Оставим несчастные семьи Льву Николаевичу, посмотрим на счастливые. Выглядит фраза как некий закон, имеет ли он действительно такую степень общности? Строго говоря, надо исследовать, проверять, одинаково ли счастливы счастливые семьи во время войны и во время мира или семьи казаков и семьи филипков, семьи австралийские и семьи шведские. Это надо проверять, если мы хотим от литературы перейти к науке, в данном случае – к социологии.
На самом деле все науки действуют примерно так же. То есть если мы записали какой-нибудь закон – в случае астрофизики это должен быть физический закон, – то дальше нужно его проверять в разных ситуациях. Потому что, хотя есть большой соблазн сказать, что книга природы написана на языке математики, на самом деле, конечно, не все так просто. На самом деле мы ее пишем, а не читаем. Мы смотрим на природу и пишем некую книгу на языке математики. Если мы уже написали какой-то кусочек или какие-нибудь великие физики написали его в XIX веке до нас, то продолжения могут быть альтернативными.
Со мной один раз произошел любопытный казус. Когда выходил последний том Гарри Поттера, мне не хотелось его покупать, потому что потом пришлось бы издалека везти его домой (я тогда был в обсерватории Кальяри на Сардинии), а он был очень тяжелый. И выкинуть жалко. Поэтому я его искал в Интернете. В итоге что-то нашел и нечаянно прочел альтернативное продолжение, приняв его за оригинал. Оно, кстати, понравилось мне больше, чем потом настоящий последний том саги (хотя и он неплох). Это очень здорово, когда есть хорошие альтернативы. Это очень важно, особенно в науке. Наука вообще существует, пока есть возможности писать «альтернативные продолжения» книги природы, о которой говорил Галилей.
В самом деле, пусть есть какой-нибудь физический закон, например, законы электродинамики. Вроде бы здесь все хорошо известно: мы начинали их изучать в школе, заканчивали учить в институте и потом забыли. Но если мы переходим к пределу очень сильных полей, то возникают альтернативные варианты. Мы начинаем от известных законов со стандартными полями, а в область сильных – экстраполируем, и это можно сделать одним способом или другим. И у всех теоретиков, как у разных писателей, есть разные взгляды на жизнь – как она устроена. Поэтому в естественных науках нам нужно проверять, какой из альтернативных вариантов соответствует действительности. То есть если мы хотим изучать счастливые семьи, то нам нужно ездить по всему миру и собирать данные о них и смотреть, одинаково ли они счастливы или эта гипотеза неверна.
Согласно легенде, возникшей на основе работы Винченцо Вивиани, ученика Галилея, великий ученый проводил свои опыты, бросая шары с Пизанской башни. Исторические исследования не подтверждают это. Однако даже если бы это было правдой, увеличение масштабов эксперимента не дало бы Галилею принципиально новых данных. Но уже в Солнечной системе, изучая движение тел под действием гравитации, можно столкнуться с принципиально новыми явлениями.
К несчастью, физический эксперимент всегда ограничен: всегда есть какие-то предельные значения параметров, достижимые в конкретном эксперименте. Начнем с самого банального. Например, если вы изучаете гравитацию, то вы можете изучать силу тяжести в масштабе своей комнаты, далее – в масштабе Земли, запустить спутники на околоземную орбиту, потом – запустить спутники на орбиту в Солнечной системе. Но изучать законы гравитации в больших масштабах вы не можете с помощью лабораторных приборов, вам нужно обращаться к естественным процессам в природе. Это самое банальное – лаборатория просто кончилась. Эксперимент ограничен масштабом установки.
Иногда нам не хватает каких-то мощностей, каких-то возможностей создать экстремальные параметры в лаборатории, и поэтому мы обращаемся к природным процессам. Чаще всего это процессы астрофизические. Академик Зельдович не зря называл Вселенную ускорителем для бедных. К примеру, инженеры и ученые 10–20–30 лет строили-строили и наконец построили какой-нибудь крупный ускоритель, научились ускорять частицы до больших энергий, но из космоса постоянно прилетают частицы с энергией в миллиард раз больше, чем на БАКе. Прилетают каждый день, прилетают совершенно бесплатно, в принципе их тоже можно брать и изучать. И нейтронные звезды – это как раз такие уникальные, естественные лаборатории, где очень многие параметры – самые разные – доведены до предела. Возможно, действительно, до предельных пределов, вообще существующих в природе.
Нейтронные звезды позволяют объяснять новые загадочные явления. Например, несколько лет назад прибор ПАМЕЛА, работавший на российском спутнике Ресурс-Д, предназначенный для изучения космических лучей, обнаружил избыток позитронов. Это вызвало большой ажиотаж, так как сразу же[18] была высказана идея, что лишние позитроны могут рождаться в результате аннигиляции частиц темного вещества. Несколько месяцев появлялось примерно по одной статье в день, посвященной эффекту ПАМЕЛЫ. Однако постепенно стало ясно, что у гипотезы с темным веществом в данном случае есть проблемы. Сейчас считается, что лучшим источником «лишних» позитронов могли бы быть близкие радиопульсары, испускающие ветер, содержащий много электрон-позитронных пар. Избыток электронов заметить трудно, как лишнюю ложку воды в тарелке супа. А лишние позитроны – легко, как лишнюю ложку соли в тарелке супа.
Другая загадка, которую могут помочь решить нейтронные звезды – это так называемые быстрые радиовсплески. Мы уже говорили о вращающихся радиотранзиентах (RRATs). Чтобы их открыть, понадобилось придумать и создать технологию, позволяющую идентифицировать отдельные очень короткие (миллисекундные) радиовсплески. Когда такие события поискали, то обнаружили не только вспыхивающие нейтронные звезды.
В 2007 году Дункан Лоример и его коллеги обнаружили миллисекундный радиовсплеск «из пустого места». Ни до, ни после в этом направлении ничего не удалось увидеть. Саму вспышку видели только в радиодиапазоне. Анализ показал, что, скорее всего, всплеск приходит с межгалактических расстояний, но точно сказать нельзя. Сразу же было высказано много разных гипотез, в том числе и с привлечением нейтронных звезд, например – магнитаров. Второй аналогичный всплеск обнаружили спустя несколько лет. Здесь авторы открытия высказали гипотезу, что это испарение черной дыры (именно такие события хотел найти Джон О’Салливан, инженер-радиоастроном, фактически придумавший Wi-Fi). Но были и сомнения, что это реальные события. Дело в том, что наблюдали очень похожие события, получившие наименование перитоны, которые явно казались имеющими земное, а не астрономическое происхождение.
В 2013 году появилась работа Дэна Торнтона с соавторами, в которой было представлено сразу четыре новых быстрых радиовсплеска. Стало ясно, что все-таки это какой-то астрономический феномен. Ситуация все больше напоминала ту, которая существовала с 1970 по конец 1990-х годов с космическими гамма-всплесками.
Неожиданный поворот приняло дело с перитонами. В 2015 году Эмили Петрофф из Австралии вместе со своими коллегами показала, что перитоны регистрировали, когда на обсерватории… открывали микроволновую печь! То есть это не просто земной феномен, а еще и искусственный. Более того, связанный с недопустимым использованием излучающих приборов на радиоастрономической обсерватории. Для нас же важно, что понимание природы перитонов сделало быстрые радиовсплески более достоверными в качестве астрономического феномена.
Сейчас большинство астрономов согласно, что быстрые радиовсплески – это внегалактические вспыхивающие источники. В 2014 году впервые удалось увидеть такой всплеск в реальном времени, а не в архивных записях. При этом в большинстве перспективных моделей для объяснения явления привлекаются нейтронные звезды. Иногда даже магнитары, как в нашей с Константином Постновым модели, физические детали для которой затем были разработаны в работе Юрия Любарского.
Есть такая забавная псевдотеорема, что нейтронные звезды – это суперобъекты. Доказывается она очень просто: в нейтронных звездах мы имеем сверхсильные гравитационные поля, сверхсильные электромагнитные поля, сверхпроводимость, сверхтекучесть (по-английски все эти термины начинаются с super). Таким образом, теорема доказана: нейтронные звезды действительно – суперобъекты. Потому-то физики их очень любят и делятся с астрономами самым ценным, что у них есть, – Нобелевскими премиями.
В самом деле, физики на астрофизиков иногда смотрят искоса (низко голову наклоня), т. е., иначе говоря, – косо. Почему? Потому что в астрофизике происходящие процесссы нам совсем не подконтрольны. У нас есть только наблюдения, а это сильно отличается от прямого контролируемого эксперимента. Когда мы не можем прямо манипулировать изучаемым объектом, то это, конечно, хуже, чем если бы все происходящие процессы находились в нашей власти, ведь мы получаем менее надежный результат. Но иногда ситуация такова, что деваться больше просто некуда. Здесь нейтронные звезды – как раз идеальный пример естественной лаборатории, где мы можем наблюдать экзотические процессы, не имея возможности вмешиваться в них.
В астрофизике совершается много интересных открытий, но не все из них одинаково интересны для большой физики. Вот, например, за экзопланеты, скорее всего, никогда Нобелевскую премию не дадут. По крайней мере есть общее мнение, что хотя это очень важное открытие, но оно астрофизическое (слишком астрофизическое) и к фундаментальной физике не имеет практически никакого отношения. А открытие нейтронных звезд, как сразу было ясно, представляет большой интерес сразу для нескольких областей физики. Поэтому и за открытие нейтронных звезд (радиопульсаров), и за открытие первых двойных радиопульсаров (первых пар «нейтронная звезда плюс нейтронная звезда») были вручены соответствующие Нобелевские премии. В конце этой главы мы попробуем пофантазировать, какие премии еще могу быть выданы.
Неземная гравитация
Какие же интересные физические процессы можно изучать, глядя на нейтронные звезды, какие уникальные условия с ними связаны? Во-первых, за что была выдана вторая Нобелевская премия, – это сильные гравитационные поля (наблюдения двойного радиопульсара позволили проверить предсказания Общей теории относительности для гравитационных полей, многократно превосходящих, доступные нам в Солнечной системе или на Земле). В принципе, самые сильные гравитационные поля существуют в окрестностях черных дыр, но тут есть большая сложность – у черной дыры нет поверхности. Поэтому изучать поведение вещества вблизи горизонта сейчас невозможно.
Мы наблюдаем большое количество кандидатов в черные дыры, но как мы их наблюдаем? По большей части мы видим вещество, которое крутится вокруг черной дыры. Однако у Общей теории относительности есть очень интересная особенность. Если в обычной (ньютоновской) теории гравитации мы возьмем какой-нибудь шарик и станем помещать его на разные орбиты вокруг тяготеющего центра, делая их все ближе-ближе-ближе к поверхности массивного тела, то все равно это будут круговые орбиты. Если центральный объект – просто массивная точка, то на любом расстоянии от нее по круговой орбите может вращаться спутник. В Общей теории относительности все не так: там есть последняя устойчивая круговая орбита. А если мы помещаем объект ближе, то орбита становится спиралью. И наш спутник довольно быстро «вспираливается» в черную дыру.
Поэтому, даже если у нас есть мощный красивый аккреционный диск вокруг черной дыры и мы его наблюдаем, то он имеет внутреннюю границу. Но диск обрывается не на горизонте черной дыры, как можно было бы ожидать, а на большем расстоянии. Может быть, даже в три раза дальше – зависит от того, как вращается черная дыра и в какую сторону крутится диск. То есть от внутреннего края диска вещество попадает внутрь черной дыры очень быстро – из-за этого там как бы возникает щель, нет яркой области, в которой достаточно долгое время существовало бы нагретое вещество. Поэтому изучать то, что происходит в совсем сильных гравитационных полях в черных дырах – зачастую сложно.
Нейтронная звезда может иметь радиус меньше, чем радиус такой последней устойчивой орбиты, т. е. диск также может не доходить до поверхности. Зато сама поверхность видна! Она твердая, и мы можем наблюдать ее, т. е. изучать плотную материю в сверхсильном гравитационном поле. Нейтронные звезды дают возможность изучать практически всю физику (электродинамику, гидродинамику, ядерную физику и т. д.) на фоне сильнейшей гравитации. И все это благодаря астрономическим наблюдениям, которые становятся все лучше. Ведь мы живем в счастливое время, когда каждые 10–20 лет можно получать инструменты во всех диапазонах спектра, превосходящие своих предшественников на порядок по всем параметрам. Кроме их стоимости: она остается примерно такой же. Более того, мы осваиваем все новые и новые методы наблюдений (гравволны, нейтрино). И пытаемся заглянуть в недра компактных объектов.
Аккреционные диски вокруг черных дыр с разным вращением. Диск вокруг невращающейся черной дыры обрывается на большем расстоянии. На рисунке не показан эффект искривления изображения диска, ставший известным благодаря фильму «Интерстеллар». Однако важно понимать, что на самом деле диск не искривлен, искаженным является только его изображение.
Сверхтекучие звезды
Другое очень важное для физиков свойство нейтронных звезд связано с высокой плотностью в их недрах. Там с веществом начинают происходить всякие удивительные вещи. Например, вещество, несмотря на высокую температуру (температура во внутренних слоях нейтронной звезды достигает порядка миллиарда градусов и даже выше!), может оказаться в сверхтекучем состоянии. Если в сверхтекучее состояние перешли протоны, то это вдобавок означает и сверхпроводимость. И у нас есть возможность наблюдать всякие интересные эффекты, связанные с этим.
Например, сверхтекучая жидкость вращается не так, как обычная. Если вы возьмете стакан со сверхтекучей жидкостью и начнете его крутить, то жидкость как целое вращаться не будет, а в жидкости возникнут квантованные вихри. Это, кстати, хорошо изучено в лабораториях. В Интернете можно посмотреть замечательные ролики, где показано, как возникают эти вихри. Нейтронная звезда работает в некотором смысле как такой стакан. Есть большая нейтронная звезда, у нее есть совсем не сверхтекучая кора плюс еще какие-то внутренние слои, содержащие заряженные частицы, которые связаны с корой. Такими частицами могут быть, например, те же самые протоны. Но вдобавок к этому в коре могут существовать сверхтекучие нейтроны. Тогда, с одной стороны, основная масса звезды вращается как единое целое, а с другой – сверхтекучая нейтронная жидкость внутри звезды крутится совсем по-другому: она образует внутри себя вихри. И вращательные свойства сверхтекучей жидкости и всего остального могут быть разными.
Волчок может прецессировать. Его ось вращения сама будет изменять направление в пространстве.
Нейтронная звезда постепенно замедляет свое вращение, потому что это замагниченный шарик. Из-за существования внешнего магнитного поля возникают токи, которые тормозят вращение нейтронной звезды. Звезда тормозится, а сверхтекучая жидкость еще ничего про это не знает, она (как умеет) крутится быстро. Но нельзя накапливать эту разницу в темпе вращения бесконечно. В конце концов, система квантовых сверхтекучих вихрей перестроится, скорости вращения выровняются, и что произойдет?.. Звезда уже крутится медленно, а жидкость пока еще крутится быстро. Если они выравнивают свои свойства, значит, жидкость передает свое вращение звезде. Мы будем видеть, как нейтронная звезда вдруг подкрутилась. Такие события наблюдаются и называются «глитчи». Это, по всей видимости, уникальная возможность изучать поведение сверхтекучих жидкостей в таком большом масштабе. Ведь у нас, конечно, нет возможности создать десятикилометровый стакан на Земле и привести в нем нейтроны в сверхтекучее состояние.
О глитчах мы уже упоминали в этой книге. Но есть еще один феномен, который пока мы обходили стороной. Это прецессия. Если взять волчок и закрутить его неточно вдоль оси симметрии, то он будет не только крутиться, но его ось будет совершать медленное периодическое движение (с периодом намного больше периода вращения) вокруг направления вращения.
Прецессирует ось Земли. Могут прецессировать и нейтронные звезды. Но тут есть одна проблема. Если в коре есть сверхтекучая нейтронная жидкость, то в ней есть вихри. И каждый такой вихрь работает как маленький гироскоп. То есть его ось очень трудно заставить изменить свое направление (поэтому гироскопы и используют в системах ориентации ракет и спутников). Прецессия хочет заставить вихри повернуться, а они сопротивляются. Это может привести к тому, что прецессия, аналогичная той, что мы видим у волчка, у нейтронных звезд наблюдаться не будет.
Наблюдения пока не могут внести решающую ясность. Изучая пару тысяч радиопульсаров, астрономы наткнулись всего лишь на пару случаев поведения, которое в принципе можно описать с помощью прецессии. Еще пара примеров есть в тесных двойных системах. Однако массового проявления прецессионного движения не видно. Теоретики продолжают пытаться разобраться в том, как эти данные можно совместить с нашим представлением о поведении сверхтекучих жидкостей в недрах компактных объектов.
Сверхплотное вещество
Другая интересная проблема (в смысле задача) связана с тем, что высокие плотности приводят к превращениям элементарных частиц. Грубо это можно сформулировать так: из чего состоит нейтронная звезда? Наивный ответ – из нейтронов. А это может быть совсем не так. Представьте, вы пришли в студенческую столовую, там написано «Котлета говяжья». Вы по простоте душевной думаете: «Ага, она сделана из говядины». Но не все так просто. Может и из говядины, а может – и нет, может – совсем чуть-чуть. Точно так же и с нейтронной звездой. Действительно, есть модели, где нейтронная звезда процентов на 80 действительно состоит из нейтронов – это самые старые консервативные модели. Но может быть, что нейтронов в нейтронной звезде процентов 20, может быть, 30, а все остальное – какие-то другие частицы, примерно как в той самой котлете. Происходит это потому, что при сжатии вещества – а в нейтронной звезде вещество сильно сжимается тяготением звезды; звезда сама на себя давит, и в ее центре плотность может превосходить плотность атомного ядра раз в 10 – начинаются всякие чудеса.
В лабораториях мы не можем подобраться к таким экстремальным параметрам. Самое большее, что мы можем сделать в лабораториях, – это разогнать ядро на ускорителе и ударить его о стенку или о другое летящее навстречу ядро. На короткое время у нас возникнет горячая, очень плотная среда. Но сделать холодную очень плотную среду да вдобавок еще и устойчивую, чтобы ее можно было детально изучать, в лаборатории невозможно. В нейтронных звездах это существует само собой.
В результате в недрах нейтронных звезд могут существовать довольно экзотические формы вещества. Самое экзотичное, наверное, кварковое. Все знают, что протоны и нейтроны – это не целые частицы, а составные. Они состоят из кварков – каждый из трех. Но выдернуть одиночный кварк из нейтрона или протона невозможно. Если вы все-таки попробуете, то вам придется затратить настолько много энергии, что появятся новые частицы: кварк и антикварк. Новый кварк останется в протоне или нейтроне, а антикварк прицепится к вытягиваемому вами кварку, образовав мезон – составную частицу. И поэтому в обычной ситуации свободных кварков не бывает. Но можно пойти совершенно от противного и начать протоны и нейтроны сдавливать. И тогда кварки, которые были заперты в индивидуальных хозяйствах нейтронов и протонов, при большом давлении вдруг станут свободными, образуется такой кварковый колхоз. Вот это и есть кварковое вещество. Это очень интересная гипотеза с интересными следствиями. По всей видимости, единственное место в природе, где такая любопытная штуковина может существовать, – это как раз недра нейтронных звезд.
Неземная электродинамика
Следующий интересный для физиков пункт связан с тем, что у нейтронных звезд очень сильные магнитные поля. Сильные – это в миллионы миллиардов раз больше, чем на Земле или на Солнце. Это действительно очень высокие значения. Снова, как с гравитацией и плотностью, в лабораториях мы такое получать не можем. Наша привычная электродинамика может вести себя там весьма необычно, могут происходить всякие интересные процессы, которые при низких магнитных полях (низкие – скажем, в миллиард раз больше, чем на Земле или на Солнце) не идут. А на нейтронных звездах с этим все в порядке, и это действительно можно наблюдать. Астрономы пытаются активно двигаться в этом направлении.
В физике часто важно, чтобы какая-то величина не просто была большой или маленькой, а чтобы ее значение превосходило некоторый предел. Для магнитных полей таких пределов несколько. Первый соответствует полю примерно в миллиард раз больше, чем на Солнце (или в несколько миллиардов раз больше, чем на Земле). Уже это значение существенно превосходит экспериментальные возможности наших лабораторий. В таком поле энергия электрона становится сравнимой с его кулоновской энергией в атоме водорода – самом распространенном во Вселенной элементе. Если поля заметно выше этого критического значения, то форма электронного облака в атоме меняется, оно вытягивается вдоль поля, и атом становится похож на цилиндр (или, иногда говорят, на иголку). Это многое меняет. Например, атомы могут образовывать псевдомолекулярные цепочки вдоль линий магнитного поля, а также – трехмерные структуры, соответствующие конденсату. Это важно для свойств атмосфер нейтронных звезд, о которых мы поговорим ниже.
Второе критическое значение называется Швингеровским полем. Оно в десятки раз больше, чем у обычных радиопульсаров (т. е. примерно в 100 000 миллиардов раз больше, чем на Земле). В данном случае энергия электрона в поле (соответствующая его так называемой циклотронной частоте) становится больше его энергии покоя. Это приводит к ряду интересных эффектов. В сверхшвингеровских полях с очень большой вероятностью происходит однофотонное рождение электрон-позитронных пар с участием гамма-квантов относительно низкой энергии. Если в обычной ситуации нам надо два энергичных гамма-кванта, чтобы породить пару из электрона и позитрона, или хотя бы один квант очень высокой энергии в магнитном поле (при не слишком высокой энергии квантов вероятность процесса становится очень малой, если поле имеет недостаточную величину), то в сильных магнитных полях любой, самый хилый фотон, чья энергия больше суммы массы покоя электрона и позитрона, с высокой вероятностью может породить пару частиц. И чем выше поле – тем выше вероятность такого процесса. Кроме того, столь сильное магнитное поле заметно поляризует вакуум. То есть вакуум становится похожим на анизотропный кристалл, и это сказывается на распространении фотонов. Вдобавок в сильных полях с большой вероятностью идут и другие процессы, изучаемые квантовой электродинамикой. Анигилляция электрон-позитронной пары может приводить к рождению одного гамма-кванта. Кванты электромагнитного излучения могут делиться надвое и т. д.
Наконец, третье критическое значение поля соответствует значению, при котором магнитное поле начнет разрывать нейтронную звезду. Чтобы получить оценку для этой величины, нам надо приравнять энергию магнитного поля к гравитационной энергии нейтронной звезды. Получается гигантское значение в миллиард миллиардов раз больше магнитного поля на Солнце. Теоретики иногда пользуются тем, что этот предел очень большой, и предполагают, что в недрах нейтронных звезд могут быть поля раз в десять меньше третьего критического. Там можно рассчитывать очень экзотические процессы, а сказать, что такого точно не может быть в природе, – нельзя. Теоретики – озорной народ!
Таким образом, нейтронные звезды – это действительно уникальные физические лаборатории, и астрономические наблюдения в этом смысле дополняют лабораторные эксперименты. То есть, к примеру, если вы хотите изучать ядерную физику, то вам нужно строить не только ускорители или реакторы, вам нужно строить и спутники, чтобы наблюдать нейтронные звезды. Например, наблюдать, как они остывают, а остывают они тоже довольно интересно.
Атмосферы нейтронных звезд
Несмотря на колоссальную силу тяжести, над поверхностью нейтронной звезды имеется тонкая атмосфера, иногда существенно меняющая наблюдаемые свойства компактного объекта.
Толщина атмосферы определяется температурой в ней, ее составом и гравитацией. Проделав не очень сложные вычисления, можно получить, что у нейтронных звезд атмосфера простирается ввысь на несколько миллиметров или сантиметров. Немного? Немного. Не густо? А вот как раз густо! Атмосферы достаточно плотные, чтобы сильно изменить спектр теплового излучения поверхности.
Из чего состоит такая атмосфера? Поверхность нейтронной звезды может в основном состоять из железа (помним, что коллапсирует железное ядро). Значит, и для атмосферы это одна из возможностей. Такие атмосферы самые тонкие, потому что атомы тяжелые. Общий характер спектра будет похож на тепловой (планковский), но в нем можно ожидать наличие множества спектральных деталей. К сожалению, рассмотреть их непросто.
Однако после коллапса железного ядра на него могут выпадать внешние слои из более легких элементов. Поэтому атмосфера может содержать не только железо, но и все, что было в сверхновой. Причем более тяжелые элементы легко выпадают в осадок. Так что если сверху «налить» немного водорода, то атмосфера для внешнего наблюдателя будет в основном водородной. Такие атмосферы самые толстые. И они довольно сильно меняют спектр. В рентгеновском диапазоне (а именно там мы обычно наблюдаем поверхности нейтронных звезд с температурой около миллиона градусов) они кажутся горячее, чем есть на самом деле. И это может сбить исследователей с толку.
Наконец, при некоторой комбинации температуры, состава и магнитного поля на поверхности может образоваться конденсат, о котором мы упоминали выше. Тогда нейтронная звезда станет «серой». Спектр будет казаться тепловым, но соответствующим более низкой температуре. В этом случае, определяя радиус звезды по излучаемой светимости и температуре, можно сильно ошибиться.
К счастью, есть способы подобрать правильный состав атмосферы, изучая спектр нейтронной звезды. В случае центрального компактного объекта в остатке сверхновой Кассиопея А, например, оказалось, что атмосфера в основном состоит из углерода. Правильное определение состава очень важно, ведь без учета этого тонкого-тонкого слоя можно ошибиться в определении температуры поверхности, а тем самым неправильно определить температуру недр, остывающих благодаря излучению нейтрино.
Нейтрино из ада
Новорожденная нейтронная звезда – это очень горячий объект. Температура недр некоторое время превышает миллиарды градусов. Примерно первые 100 000 лет своей жизни нейтронная звезда остывает в основном не с поверхности, как делает всякое нормальное тело, а из центра за счет испускания нейтрино. В это время температура недр составляет сотни миллионов градусов. Происходит забавный процесс: тепло течет вглубь звезды, где в некотором смысле исчезает (поскольку нейтрино свободно покидает недра нейтронной звезды).
Непосредственно наблюдать нейтрино от остывающих нейтронных звезд мы пока не можем. Регистрировать эти частицы очень сложно, нужны гигантские детекторы, и пока мы надеемся только видеть вспышки сверхновых. Но если нейтрино ускользает из компактного объекта, унося энергию, то поверхность нейтронной звезды постепенно остывает. Вот это можно наблюдать. Для этого в первую очередь подходят рентгеновские детекторы, так как температура поверхности составляет примерно миллион градусов. Конечно, мы видим не сам постепенный процесс остывания одиночных нейтронных звезд (хотя в одном случае, возможно, есть и такие данные, а в двойных довольно часто можно видеть, как нейтронная звезда остывает по окончании стадии мощной аккреции), так как температура заметно падает лишь за столетия. Однако мы можем видеть нейтронные звезды разных возрастов, измерять температуру их поверхности и тем самым получать нам новые знания о ядерной физике, поскольку процессы нейтринного излучения – это процессы, связанные именно с ней. И, таким образом, астрономические наблюдения снова дополняют лабораторные эксперименты.
Наблюдения нейтрино после взрыва сверхновой могут помочь понять, какой компактный объект возник в результате. До рождения ребенка родителей часто очень волнует вопрос: мальчик или девочка? При взрыве сверхновой тоже возможны два варианта. Наблюдения нейтрино при рождении компактного объекта могут помочь определить, возникла ли нейтронная звезда или черная дыра. Если коллапс идет до конца, то поток нейтрино (и их энергия) будет возрастать, а потом резко оборвется. В том случае, когда возникает нейтронная звезда, мы будет видеть более гладкую эволюцию потока. Если бы в 1987 году существовали современные детекторы нейтрино, то мы бы знали, какой компактный объект возник после взрыва в Большом Магеллановом облаке.
Грядущие открытия
Выше мы обещали пофантазировать, какие же еще Нобелевские премии могут быть вручены за исследования нейтронных звезд. Наверное, первая и самая вероятная – это премия за гравитационные волны. Они были предсказаны Общей теорией относительности. Косвенно мы знаем, что они существуют, но очень важно поймать гравитационные волны напрямую с помощью лабораторной установки. Лучший способ это сделать – наблюдать один из самых грандиозных процессов в природе. Слияние двух нейтронных звезд.
Чтобы получить гравитационно-волновой всплеск большой мощности, потенциально детектируемый современными антеннами, надо начать с массивной двойной звезды. Звезды поочередно взрываются. Каждая порождает нейтронную звезду, и система при этом выживает. В конце концов эти нейтронные звезды сольются, потихонечку сближаясь из-за излучения гравитационных волн. Финальный аккорд – буквально падение нейтронной звезды на нейтронную звезду. Оно сопровождается выделением огромной энергии и в виде гравитационных и электромагнитных волн.
Это должно быть очень интересно наблюдать. Кроме того, это очень важно для фундаментальной физики. Поэтому уже построено несколько специальных гравитационно-волновых антенн. Чтобы представить себе, насколько это существенно, можно вспомнить вот что. Когда американцы планировали постройку своих антенн LIGO, одновременно планировался сверхпроводящий суперколлайдер, который должен был бы быть построен в Техасе. Его целью было открыть бозон Хиггса. Потом возникла необходимость сокращения научных бюджетов, и нужно было закрывать какой-то крупный проект. Так вот, фактически научное сообщество выбрало гравитационные волны вместо бозона Хиггса (конечно, коллайдер намного дороже гравитационно-волновой антенны, тем не менее при стоимости более полумиллиарда долларов LIGO – это самый дорогой проект, финансировавшийся Национальным научным фондом, NSF, и в 1993 году проект гравитационных антенн был под угрозой закрытия). На фоне огромной популярности бозона Хиггса в наши дни это должно показывать, что есть вещи, по крайней мере по мнению части ученых, настолько же важные, как и этот самый бозон.
Возможно, еще одна Нобелевская премия будет когда-нибудь вручена за определение свойств вещества в недрах нейтронных звезд. Из чего состоят нейтронные звезды в самой сердцевине – это действительно один из самых больших вопросов в ядерной физике. Для ответа на него у астрономов есть интересный способ.
Снова представьте, что мы берем какой-то кусок вещества и начинаем его сжимать. Как мы можем это сделать? Скажем, можем взять нейтронную звезду и тихонечко кидать на нее вещество. Она будет становиться все массивнее, будет сама на себя сильнее давить, поджиматься, и плотность в центре будет расти. Мы не можем это делать бесконечно. В какой-то момент плотность достигнет критической, и вещество перестанет сопротивляться гравитации. Наша нейтронная звезда схлопнется в черную дыру. Если мы узнаем, когда это происходит, т. е. узнаем, какими могут быть самые массивные нейтронные звезды, то, по сути, мы ответим на этот важный вопрос в ядерной физике, связанный с поведением вещества при высокой плотности.
Как это сделать? Конечно, было бы здо́рово наблюдать какой-нибудь рентгеновский источник с нейтронной звездой, видеть периодически меняющееся излучение с поверхности нейтронной звезды, и вдруг «хоп!» – она исчезнет. Источник, может быть, и останется рентгеновским источником, останется аккреционный диск, но выглядеть он будет уже совсем по-другому (например, исчезнут пульсации рентгеновского излучения, возникающие из-за вращения нейтронной звезды), потому что там будет черная дыра.
Это было бы потрясающе, но застать сам момент превращений крайне маловероятно (может быть, нам помогут наблюдения слияния нейтронных звезд: в редких случаях они могут заканчиваться образованием черной дыры). Поэтому можно пойти другим путем, как обычно. Например, можно просто искать все более и более массивные нейтронные звезды. Это перспективное направление исследований, и астрономы, изучающие двойные радиопульсары, именно этой дорогой и идут. Здесь, правда, многое будет зависеть от везения.
Более надежный способ получить данные о поведении вещества в недрах компактных объектов – это одновременно очень точно измерить для какой-нибудь нейтронной звезды массу и ее размер. Для этого сейчас создаются специальные космические проекты. Один из новых приборов будет установлен на Международной космической станции, другие планируется запустить как отдельные спутники. Возможно, астрономам удастся решить эту загадку – из чего же состоят нейтронные звезды. И, таким образом, заработать Нобелевскую премию по физике.
Нобелевская медаль
Послесловие
Писать книгу о нейтронных звездах сложно не только потому, что эта тема связана со сложной физикой. Это еще и очень быстро развивающаяся часть астрофизики: постоянно появляются новые данные. За ними трудно уследить, но о них очень хочется рассказать. Наверное, какие-то прогнозы, о которых шла речь в книге, сейчас, когда вы держите ее в руках и уже заканчиваете чтение, не сбылись, а упомянутые гипотезы и модели оказались отброшенными. Надеюсь, что немногие.
Поток астрономических новостей очень велик. В месяц выходит более 1000 оригинальных астрономических статей. К счастью, по каждой тематике исследований периодически появляются хорошие обзоры разного уровня сложности (от совсем популярных до доступных лишь узким специалистам в данной области), позволяющие быть в теме. Конечно, подавляющее большинство оригинальных статей и обзоров публикуются на английском языке, поскольку это язык международного общения в современных естественных науках, позволяющий создать единое пространство научного дискурса без потери (не переведенной) информации и без задержек (и издержек) на работу переводчиков. Если языковой барьер для вас не преграда, то вы всегда сможете найти огромное количество информации в Архиве электронных препринтов на сайте arxiv.org, включая вполне доступные обзоры основных результатов и нерешенных проблем в различных областях науки. Сейчас в архиве доступно уже более миллиона статей, из них около 100 000 по астрофизике.
Чтобы не утонуть в этом море информации, можно воспользоваться моими обзорами астрофизической части архива. Они доступны по адресу /~polar/sci_rev/current.html. Например, если вас интересуют современные данные по какому-то классу нейтронных звезд и то, как они вписываются в общую картину астрофизических знаний, то вы сразу идете в раздел «Нейтронные звезды» и ищете обзоры, которые там специально выделены. Это позволит вам быть в курсе самых свежих научных результатов на высоком уровне. А кроме того, вы можете посмотреть списки и краткое изложение работ, которые сильнее всего привлекли мое внимание. На основе этих обзоров в начале января я делаю сводку самых интересных астрофизических статей за прошедший год. Их можно найти, например, в разделе «Наука» портала gazeta.ru.
На русском языке лучший источник свежих научных обзоров по физике и астрофизике – журнал «Успехи физических наук» (ufn.ru). Есть там и большое количество статей по компактным объектам, их эволюции и ее моделированию, аккреции и т. д. Наиболее полный сейчас вводный курс астрофизики на русском языке, рассчитанный в первую очередь на студентов-физиков, – книга «Общая астрофизика» Анатолия Засова и Константина Постнова. Популярным курсом астрономии может служить четырехтомник под редакцией Владимира Сурдина («Небо и телескоп», «Солнечная система», «Звезды», «Галактики»).
Безусловно, много полезной информации можно почерпнуть в Интернете. На мой взгляд, всегда важно обращать внимание на источник. Наибольшее доверие (в любой области) у меня вызывают статьи и лекции активных ученых, рассказывающих о близкой им области исследований (а вот ситуация, когда, пусть даже хороший, врач пишет об основах квантовой механики, вызывает здоровое подозрение). С этой точки зрения подборка материалов на сайтах «ПостНаука» и Элементы.ру станет прекрасным началом для знакомства, поскольку оба проекта тщательно отбирают своих авторов и спикеров.
Однако практика показывает, что для получения на русском языке свежей научной информации в популярном виде, важно не только читать книги или сидеть в Интернете, но и ходить на лекции действующих (sic!) ученых и задавать вопросы. Благо, популярных лекций сейчас проводится много. Поэтому обратите внимание на различные лектории и не пропускайте фестивали науки. При непосредственном общении удается лучше разобраться во всяких тонкостях и хитросплетениях.
Изучение свойств нейтронных звезд тесно переплетено с одновременным использованием моделей и методов из самых разных областей физики. Ученые пытаются выяснить, можно ли что-то сказать о самых фундаментальных вопросах, работая с этими естественными уникальными лабораториями. Как на параметрах компактных объектов может сказаться существование дополнительных измерений? Можем ли мы, изучая остывание нейтронных звезд, узнать что-то новое об эволюции фундаментальных констант? Какова роль новых частиц в наблюдаемых проявлениях звездных остатков? По разным вопросам фундаментальной физики сейчас есть много хороших популярных книг. О большинстве из них можно узнать в «Книжном клубе» на сайте Элементы.ру и в разделе «Книги» на «ПостНауке».
Начав со знакомства с нейтронными звездами, можно идти дальше, углубляя и расширяя свои знания о физике нашего мира. Надеюсь, читатель с интересом двинется по этому пути. Картина мира начнет становиться все обширнее и отчетливее, а связи между ее разными частями – все понятнее. Однако можно не сомневаться, что астрономы-наблюдатели не преминут подкинуть нам новые загадки и новых персонажей, чьи связи с другими обитателями поначалу покажутся нам совершенно непонятными. Относится это и к нейтронным звездам. Так что история не заканчивается, продолжение следует. А каким оно будет – мы пока не знаем.
Сноски
1
К сожалению, Бронштейн не дожил до открытия нейтронных звезд. Он стал жертвой сталинских репрессий, его расстреляли в 1938 году. Ему было чуть больше 30 лет. Примерно через 30 лет были открыты радиопульсары. – Здесь и далее примечания автора.
(обратно)2
Мы говорим здесь лишь о процессах в звездном ядре. В оболочках гигантских звезд может идти синтез тяжелых элементов благодаря так называемые s-процессу, т. е. медленному захвату нейтронов ядрами элементов. Например, так могут образовываться свинец и стронций.
(обратно)3
Так называемая ядерная плотность составляет 2,3×1014 грамм в кубическом сантиметре.
(обратно)4
Существует шуточный закон Арнольда, названный в честь великого российского математика, гласящий, что парадоксы и законы чаще всего носят имя не того, кто их впервые придумал. Часть шутки состоит в том, что это верно и для закона Арнольда (его скорее стоит связывать с именем Роберта Мертона). Что касается парадокса Ольберса, или так называемого фотометрического парадокса, то он, видимо, впервые детально обсуждался швейцарским астрономом Жаном-Филиппом Луи де Шезо в середине XVIII столетия. А в самом общем виде проблема была сформулирована еще Иоганном Кеплером в 1610 году, для которого это был аргумент против бесконечности Вселенной.
(обратно)5
Заполнение Вселенной пылью лишь частично решает проблему. Так можно избавиться от видимого излучения далеких звезд, но пыль нагреется, поглощая излучение, и будет переизлучать его. Или даже испарится, если нагреется слишком сильно. Так что проблема темного неба остается, сдвинувшись в другой спектральный диапазон. Детальнее о парадоксе Ольберса и связанных с ним космологических вопросах можно прочесть в книге Владимира Решетникова «Почему небо темное», изд-во «Век-2» (2012).
(обратно)6
Гигантский телескоп будет раскладываться на орбите. Как это будет выглядеть, можно посмотреть на подробных анимациях: .
(обратно)7
О физике черных дыр можно прочесть в книге Леонарда Сасскинда «Битва при черной дыре», изд-во «Питер» (2013).
(обратно)8
Иногда возникает путаница между аккрецирующими рентгеновскими пульсарами в двойных системах, пульсирующими тепловыми источниками в остатках сверхновых, аномальными рентгеновскими пульсарами и радиопульсарами, наблюдаемыми и в рентгеновском диапазоне. Это четыре разных типа объектов, чья светимость связана с разными источниками энергии: аккреция, запасы тепла, энергия магнитного поля и вращение соответственно. Но все они являются источниками пульсирующего рентгеновского излучения, и период пульсаций равен периоду оборота звезды вокруг своей оси. В этом параграфе мы говорим об аккрецирующих нейтронных звездах в двойных системах.
(обратно)9
Приток момента импульса соответствует раскручиванию, т. е. усилению вращения, а потеря момента импульса – замедлению вращения.
(обратно)10
Теоретические расчеты показывают, что незадолго до достижения предельного периода в компактном объекте могут возбудиться колебания, которые приведут к прекращению ускорения вращения, звезда начнет интенсивно терять момент импульса, т. е. будет замедляться. Зато из-за этих осцилляций нейтронная звезда может стать источником гравитационных волн. Правда, не настолько мощным, чтобы это можно было заметить с помощью детекторов LIGO или VIRGO, если мы говорим об известных потенциальных кандидатах. Оптимистичные оценки показывают, что следующее поколение детекторов сможет видеть этот эффект при рождении быстро вращающихся нейтронных звезд в сверхновых, вспыхивающих в близких галактиках.
(обратно)11
Существует также теоретическая возможность коллапса сверхкритического белого карлика в нейтронную звезду, но прямых наблюдательных подтверждений этой гипотезы нет.
(обратно)12
Популярно о теориях гравитации можно прочесть в книге Александра Петрова «Гравитация» (из-во «Век-2», 2014).
(обратно)13
Большой вклад в понимание природы шумов и способов борьбы с ними на установке LIGO внесла группа Владимира Брагинского с физического факультета МГУ.
(обратно)14
Тем, кто хочет увидеть списки известных нейтронных звезд, можно посоветовать онлайн-каталоги, которые используют профессиональные астрономы. Это в первую очередь каталог радиопульсаров и других периодических одиночных нейтронных звезд на сайте ATNF (Australia Telescope National Facility) . Затем – каталог магнитаров в университете McGill в Канаде /~pulsar/magnetar/main.html. И, наконец, каталог остывающих нейтронных звезд, поддерживаемый Даниэле Вигано /.
(обратно)15
В деталях об этом можно прочесть в статье Тилмана Сауэра, доступной в Архиве е-принтов
(обратно)16
Транзиентный источник – проявляющий бурную активность, возможно, вспыхивающий в течение какого-то времени и спокойный в другие промежутки времени, которые обычно более продолжительны. Значит, если мы открываем и наблюдаем магнитар в активной фазе, скажем, как источник мягких повторяющихся гамма-всплесков, то в спокойной фазе он может вести себя как объект совсем другого типа.
(обратно)17
Теоретически нижний предел для массы холодной нейтронной звезды составляет примерно 0,1 массы Солнца. Но при коллапсе ядер такие объекты не образуются. Ядра легких звезд порождают белых карликов, а не маломассивные нейтронные звезды.
(обратно)18
Это произошло даже до появления статьи с результатами ПАМЕЛЫ! В качестве источника данных использовали снимки слайдов доклада коллаборации на одной из конференций, что привело впоследствии к обсуждению того, этично ли так поступать.
(обратно)
Комментарии к книге «Суперобъекты. Звезды размером с город», Сергей Борисович Попов
Всего 0 комментариев