С точки зрения арифметики большинство чисел отличается, так сказать, «хорошим поведением». Четные числа всегда чередуются с нечетными, каждое третье число всегда кратно трем, квадраты чисел подчиняются определенному закону. Поэтому мы можем составить длинный ряд чисел, которые ведут себя так, как им положено, независимо от длины этого ряда и величины самих чисел. Но простые числа похожи на неуправляемую толпу. Они появляются там, где им захочется, без предварительного предупреждения, на первый взгляд, совершенно хаотично, без какой-либо закономерности. А самое главное — их нельзя проигнорировать: простые числа необходимы для арифметики и для математики в целом.
Простые числа — не такая уж сложная тема, на изучение которой потребовалось бы много лет; фактически ее проходят еще в школе. Чтобы понять, что такое простое число, нужно лишь уметь считать и владеть четырьмя основными арифметическими действиями. Тем не менее, простые числа были и продолжают оставаться одной из самых удивительных проблем в истории науки. Тот, кто хочет заниматься математикой, но не владеет теорией простых чисел, ничего не сможет добиться, так как они присутствуют везде — иногда затаившись, как в засаде, готовые появиться когда их меньше всего ожидаешь. С неизбежностью появления простых чисел невозможно не считаться.
Простые числа важны не только в математике. Многие даже не догадываются о том, что они играют важную роль в нашей повседневной жизни, например, в банковских операциях или в обеспечении защиты персональных компьютеров и конфиденциальности разговоров по мобильному телефону. Они являются краеугольным камнем компьютерной безопасности.
В метафорическом смысле простые числа — как вредоносный вирус: если он захватывает ум математика, его очень трудно искоренить. Евклид, Ферма, Эйлер, Гаусс, Риман, Рамануджан и многие другие известные математики стали его жертвой.
Хотя некоторым и удалось более-менее излечиться, все они страдали навязчивой идеей найти «волшебную формулу», которая определяет, какое простое число будет следовать за определенным натуральным числом. Однако никому еще не удалось открыть это правило.
Комментарии к книге «Простые числа», Энрике Грасиан
Всего 0 комментариев