Начертательной геометрией называют науку, которая является теоретическим фундаментом черчения. В данной науке изучаются способы изображения на плоскости различных тел и их элементов. Эти изображения позволяют однозначно определить форму и размеры изделия и изготовить его. При работе с чертежами выполняются два вида работ: подготовка чертежей и их чтение.
Чтение чертежа заключается в воспроизведении в уме реальной формы объекта и некоторых его частей с использованием при этом чертежа.
Начертательная геометрия основывается на методе проекций.
Проекцией точки М на некоторой плоскости называют изображение, которое строится в нижеследующей последовательности (рис. 1).
Через данную точку М необходимо провести прямую, которая не параллельна данной плоскости. Точку пересечения данной прямой и плоскости назовем точкой m. Полученная точка m будет являться проекцией точки М на данную плоскость. Прямую Mm называют проектирующей прямой, а данная плоскость называется плоскостью изображения.
Подобным образом можно получить проекции различных фигур как проекции каждой из его точек. Способ построения определяет вид проекции: центральную или параллельную.
2. Центральная проекцияПредставление о центральной проекции можно получить, если изучить изображение, которое дает человеческий глаз.
Для построения центральной проекции объекта нужно между глазом и изучаемым предметом поместить прозрачный экран и отметить на нем точки пересечения лучей, которые идут от глаза человека к отдельным точкам предмета. При соединении всех точек на экране получаем изображение (проекцию) фигуры (рис. 2). Эта проекция называется центральной.
Центральная проекция – это проекция, которая образуется с помощью проецирующихся лучей, проходящих через одну точку.
Изображение предметов при помощи центральной проекции встречается очень часто, особенно для предметов, обладающих большими размерами.
3. Параллельная проекцияПараллельная проекция – это такой вид проекции, при построении которого используются параллельные проецирующиеся лучи.
Комментарии к книге «Начертательная геометрия», Ю. В. Щербакова
Всего 0 комментариев