«Военные аспекты советской космонавтики»

2679

Описание

В книге впервые (1992) в открытой отечественной литературе проводится систематический обзор советских космических систем военного назначения. Приводится классификация военных космических систем по выполняемым функциям, рассматривается организационная эволюция космической программы СССР и описываются советские космические системы военного и двойного назначения. Книга содержит большой справочный и статистический материал и предназначена для специалистов по космической технике, а также для лиц, интересующихся космонавтикой. Автор – выпускник факультета аэрофизики и космических исследований Московского физико-технического института, кандидат физико-математических наук. Изучением космических программ занимается более 10 лет, пройдя путь от самодеятельного любителя до профессионального аналитика. космонавтика



Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

Максим Тарасенко Военные аспекты советской космонавтики

ОТ АВТОРА

Когда два года назад эта работа начиналась, не было никакой надежды, что она будет опубликована, и, в лучшем случае, можно было рассчитывать остаться на свободе. Теперь же может возникнуть вопрос, нужна ли книга о советской военной космонавтике, когда и Советского Союза уже не осталось, а будущее государственной космической программы весьма туманно.

В этом отношении остается надеяться, что автор не одинок в инертности своего мышления и люди, действительно интересовавшиеся космонавтикой, не изменили в одночасье своих пристрастий.

Кроме того, в обществе, где государственная научно-техническая и военная политика формируется открыто, независимое фактографическое описание космической программы необходимо как один из каналов формирования квалифицированного общественного мнения.

Для аналитика, наблюдающего космическую программу не изнутри, а «со стороны», нынешний период осложняется тем, что со смягчением секретности постоянно выявляется новая информация, заставляющая корректировать или даже пересматривать прежние представления. По этой причине в ближайшее время едва ли возможно составить описание эволюции советской космонавтики, учитывающее все данные, ставшие доступными к моменту его опубликования. Однако именно сейчас, когда принимаются принципиальные решения о дальнейшей судьбе космической программы бывшего СССР, особенно важно иметь конкретную информационную основу для независимой оценки прошлых и нынешних событий.

Сознавая, что данная работа потребует исправлений еще до выхода из печати, автор, тем не менее, уверен в полезности обнародования ее в настоящем виде. Это, во-первых, стимулирует открытое общественное обсуждение, способствуя более глубокому изучению наиболее темной – военной стороны космонавтики. Кроме того, разоблачения последних лет проливают свет в основном на политические и организационные аспекты космических программ, и можно полагать, что приводимые в данной работе фактические данные о наблюдаемой космической деятельности сохранят свою ценность и в дальнейшем.

Данное исследование отражает личные взгляды автора, сформировавшиеся при изучении открытых источников информации.

Работа выполнялась в Центре по изучению проблем разоружения, развития энергетики и охраны окружающей среды при Московском физико-техническом институте. Значительная ее часть была проведена в Центре по энергетике и экологии Принстонского университета. Автор выражает особую признательность профессору Фрэнку фон Хиппелю и директору Центра Роберту Соколову. Ценная помощь была также оказана директором космических программ Федерации американских ученых Джоном Пайком и почетным исполнительным директором Американского института аэронавтики и астронавтики Джеймсом Харфордом. Автор благодарен В. М. Иванушкину и И. Б. Афанасьеву за ценные замечания и дополнения.

В книге впервые в открытой отечественной литературе проводится систематический обзор советских космических систем военного назначения. Приводится классификация военных космических систем по выполняемым функциям, рассматривается организационная эволюция космической программы СССР и описываются советские космические системы военного и двойного назначения.

ВВЕДЕНИЕ

Как и в любой области научно-технической деятельности, в космонавтике можно выделить четыре основных аспекта: научный, прикладной, военный и политический.

Научная сторона заключается в расширении фундаментальных познаний человечества о Вселенной.

Прикладное использование состоит в применении космических систем для удовлетворения насущных человеческих потребностей, таких как определение погоды, оповещение о стихийных бедствиях, обеспечение связи и т д.

В военном отношении использование космического пространства предоставляет уникальные возможности для наблюдения за противником и значительно повышает эффективность функционирования вооруженных сил как в мирное время, так и в боевых условиях.

Политические же эффекты от реализации космических программ и демонстрации тем самым своего научно-технического или военного превосходства зачастую оказываются для государственных лидеров настолько существенными, что именно эти эффекты во многом предопределяют направление развития самих программ.

Все эти аспекты значительно различаются по влиянию на развитие общества и по своему месту в национальных космических программах. Общественное представление о роли и приоритете каждого из них также различно и к тому же значительно отличается от реального положения вещей. Не отличаться оно не может уже потому, что политические мотивы подталкивают правительства к преувеличению своих достижений в научном изучении и хозяйственном освоении космоса и затушевыванию масштабов его военного использования.

Данная же работа имеет своей целью освещение именно военной стороны космической программы СССР. остающейся по существу неизвестной для всех, кто не занимается ей по долгу службы.

Сосредоточение на военной тематике не следует понимать как стремление очернить и без того находящуюся в кризисе советскую космонавтику и вбить свой гвоздь в крышку ее гроба. Автор убежден, что для действительной оптимизации национальной космической программы совершенно необходимо формирование квалифицированного и независимого общественного мнения. что, в свою очередь, невозможно без открытого обсуждения всех ее аспектов, включая военный. Более того, военное направление требует особого внимания, ибо оно непосредственно влияет на международное стратегическое равновесие и, вместе с тем, никогда не было доступно независимому анализу.

Данная работа построена следующим образом.

В главе 1 кратко рассматриваются направления военного применения космических аппаратов и способы определения конкретного военного назначения спутниковых систем с помощью открытых источников информации.

Некоторые сведения о движении искусственных небесных тел вокруг Земли, помогающие анализировать назначение спутников, приведены в приложении 1.

В главе 2 прослеживаются основные этапы организационного оформления космической деятельности в СССР с начала разработки баллистических ракет в середине 40-х гг. до создания Министерства общего машиностроения в 1965 г.; рассматривается организационная структура космической программы с 1965 по 1989 гг. и ее изменение в процессе нынешних реформ.

Приложение 2 дополняет главу 2 перечнем известных предприятий и учреждений, активно участвующих в создании и использовании космических систем.

В главе 3 описываются конкретные советские космические системы военного назначения, наблюдавшиеся когда-либо в эксплуатации или на этапе испытаний. Отдельные системы сгруппированы по родам осуществляемой ими деятельности в соответствии с вводимой в главе 1 классификацией.

В приложении 3 приведены классификация и описания ракет-носителей, применяемых или применявшихся в космической программе СССР, включая их известные технические характеристики и статистику запусков.

ПЕРЕЧЕНЬ ИСПОЛЬЗУЕМЫХ СОКРАЩЕНИЙ

БР – баллистическая ракета

ГСО – геостационарная орбита

ГУКОС – Главное управление космических средств (МО СССР)

ЖРД – жидкостный ракетный двигатель

ИСЗ – искусственный спутник Земли

КА – космический аппарат

КК – космический корабль

МБР – межконтинентальная баллистическая ракета

НИОКР – научно-исследовательские и опытно-конструкторские работы

ОВС – Объединеные Вооруженные Силы (СНГ)

ПРО – противоракетная оборона

РКТ – ракетно-космическая техника

РКП – ракетно-космическая промышленность

РСА – радиолокатор с синтезированием апертуры

СККП – система контроля космического пространства

СПРН – система предупреждения о ракетном нападении

ССО – солнечно-синхронная орбита

УНКС – Управление начальника космических средств

ГЛАВА 1 Основные направления использования космического пространства в военных целях.

1.1 Военные космические системы и их назначение

Понятие «использования космического пространства в военных целях» долгое время было весьма неопределенным, и до сих пор при разных обстоятельствах в него вкладывается различное содержание.

В публичной сфере четкость определений была даже нежелательной, поскольку в условиях конфронтации лидеры СССР и США стремились подчеркнуть агрессивно-милитаристский характер космической программы противника и мирную направленность своей.

США, например, заявляли, что «использование космоса посредством НАСА и других гражданских ведомств помогает лучше жить в мирных условиях, а использование посредством Министерства обороны обеспечивает сохранение мира». СССР же безапелляционно утверждал, что вся его космическая программа направлена исключительно на «изучение и освоение космического пространства в интересах науки и народного хозяйства». При этом советская пресса не уставала обвинять Пентагон в зловещих планах милитаризации космоса, а американские наблюдатели заключали, что 85% советских космических запусков носит военный характер.

Провозглашение президентом США Рейганом «Стратегической оборонной инициативы» по созданию системы противоракетной обороны с элементами космического базирования заставило советское руководство конкретизировать милитаризацию космического пространства как «создание, отработку и размещение космических наступательных вооружений» [I], после чего взаимные обвинения стали концентрироваться в этой более узкой области.

Однако, подобно тому как вооруженные силы состоят не только из «наступательных» боевых частей, но и из подразделений связи, разведки, тылового обеспечения и т д., использование космического пространства в военных целях охватывает не только размещение в космосе вооружений, но и любое применение средств космического базирования для обеспечения военной деятельности.

Поэтому под космическими системами военного назначения, являющимися предметом настоящего исследования, мы будем понимать любую спутниковую систему, полностью, либо преимущественно предназначенную для обеспечения функционирования вооруженных сил в мирное время и/или в боевых условиях.

По характеру выполняемых функций космические системы военного назначения можно разделить на 3 основные группы: боевые, разведывательные и вспомогательные.

– Боевые системы предназначены непосредственно для поражения целей в космосе или на Земле. Именно эти системы имеются в виду, когда речь идет о космическом оружии или милитаризации космоса.

– Разведывательные системы обеспечивают наблюдение за военной или околовоенной деятельностью противостоящей стороны, позволяя отслеживать как постепенные изменения общего стратегического потенциала, так и оперативные локальные перегруппировки сил.

– Вспомогательные системы предназначены для обеспечения связи, навигации и тому подобных функций, не являющихся специфически военными, но тем не менее жизненно важных для выполнения вооруженными силами своих боевых задач.

Детализация выполняемых функций и применяемых для этого технических средств выявляет в каждой из трех групп более мелкие классы.

Первые боевые системы предназначались для нанесения ядерных ударов из космоса по наземным объектам. Порожденная ударными системами проблема противодействия враждебным космическим аппаратам стимулировала развитие противоспутниковых систем, предназначенных для перехвата спутников противника либо с целью уничтожения, либо для инспекции. Последним направлением является разработка космических систем противоракетной обороны. Этот класс, вообще говоря, перекрывается с двумя предыдущими, поскольку некоторые технические средства, предлагавшиеся для уничтожения баллистических ракет на активном участке траектории, могли бы в принципе применяться и против наземных и воздушных целей. Средства же перехвата головных частей на внеатмосферном участке полета могут с не меньшим успехом использоваться для уничтожения орбитальных космических аппаратов.

Космическая разведка разделяется на оптическую (или фотографическую) и радиотехническую (или радиоэлектронную).

Оптические спутниковые изображения служат прежде всего для определения стратегического потенциала противника, изучения расположения его военных и промышленных объектов, таких как военные базы, командные центры, полигоны, оборонные предприятия и т д. Помимо стратегического планирования данные космического наблюдения принципиально важны для контроля действующих международных соглашений по ограничению вооружений.

Повышение разрешения получаемых изображений и ускорение процесса их обработки позволяет использовать спутниковую оптическую разведку и для организации боевых действий на тактическом уровне.

Радиотехническая разведка включает прослушивание электромагнитных излучений в радиодиапазоне и радиолокационное наблюдение.

Пассивная регистрация и пеленгование радиоизлучений дает возможность определять расположение и тактико-технические характеристики радиолокационных средств противника, что необходимо для выработки мер противодействия. Прослушивание радиопереговоров позволяет связать их с объектами, наблюдаемыми на фотоснимках, уточняя таким образом местонахождения центров связи и боевого управления. Кроме того, характер и интенсивность радиообмена отражают режим функционирования вооруженных сил противника, и их изменение может, например, выявлять повышение уровня боеготовности еще до того, как это станет заметно по данным оптической разведки.

Активное радиолокационное наблюдение позволяет получать изображения местности в радиодиапазоне, поэтому будучи родственным радиотехнической разведке по физическим принципам, с точки зрения пользователей оно ближе к системам оптической разведки. Главным достоинством радиолокационной съемки является ее независимость от условий освещенности и погодных условий, а недостатком – меньшее пространственное разрешение.

Специфическими функциями космического наблюдения, которые тоже можно отнести к разведывательным, являются обнаружение пусков баллистических ракет противника и регистрация ядерных взрывов.

Фиксирование из космоса инфракрасного излучения выхлопной струи ракетного двигателя позволяет обнаруживать стартующие баллистические ракеты на активном участке траектории, т е. значительно раньше, чем эти ракеты попадут в поле зрения наземных радиолокационных станций.

Космические датчики для регистрации ядерных взрывов предназначены прежде всего для контроля соблюдения Договора о запрещении ядерных испытаний в атмосфере, в космосе и под водой. Однако их способность определять место, высоту и мощность ядерного взрыва может использоваться и для оценки эффективности боевого применения ядерных средств.

Среди космических систем вспомогательного характера выделяются системы связи, навигации, геодезические и метеорологические.

Системы спутниковой связи применяются для организации управления вооруженными силами как на стратегическом, так и на оперативно-тактическом уровне. Использование орбитальных ретрансляторов для дальней связи снижает зависимость от дорогих и уязвимых кабельных и радиорелейных линий. Миниатюризация наземных терминалов позволяет расширять количество пользователей и применять спутниковую связь во все более мелких подразделениях вооруженных сил.

Навигационные спутники дают возможность боевым кораблям и самолетам определять свое местоположение, точное знание которого особенно важно для подводных лодок ракетного базирования.

Геодезические спутники используя для уточнения формы Земли и конфигурации ее гравитационного поля, что требуется для составления точных топографических карт и для повышения точности наведения баллистических ракет.

Метеорологические наблюдения из космоса обеспечивают не только общее прогнозирование погодных условий, так же важных для общей деятельности вооруженных сил, как и для народного хозяйства, но и точное определение метеообстановки в зонах особого интереса, таких как места предполагаемой фотосъемки и районы нацеливания высокоточных МБР. Информация же о морском волнении, скоростях течений, распределении температур и солености воды помимо собственно мореплавания жизненно важна для противолодочных операций.

К вспомогательным можно отнести и спутники, использующиеся для калибровки собственных радиолокационных станций, измерений вариаций плотности верхней атмосферы, тоже влияющих на точность наведения баллистических ракет, а также экспериментальные аппараты, предназначенные для отработки перспективного оборудования и проведения различных исследований военного характера.

Изложенное группирование военных космических систем на боевые разведывательные и вспомогательные не является общепринятым. В западной литературе системы связи и боевого управления объединяются с разведкой в один класс, обозначаемый «C3I»[1], а спутники раннего оповещения рассматриваются отдельно от разведывательных.

Думается, это не вызовет серьезных недоразумений, поскольку при описании конкретных систем в главе 3 каждая группа спутников рассматривается самостоятельно. Подчеркнем лишь, что приведенная классификация и выбранный порядок изложения не связан с характером задействования рассматриваемых систем в структуре вооруженных сил и никак не отражает их реального или предполагаемого приоритета в общем ряду военно-космических программ[2].

1.2 Возможность независимого определения назначения спутников

Более двадцати лет СССР напрочь отрицал, что космическое пространство используется им для каких бы то ни было военных целей. Только в апреле 1985 г. было официально признано, что «Советский Союз имеет спутниковые системы для связи, навигации, разведки…» [2]. Однако за последующие 7 лет это утверждение практически не конкретизировалось, и по сей день ни один советский спутник официально не признан военным[3].

Поэтому, прежде чем рассматривать военные космические системы и тем более распределять их по полочкам какой бы то ни было классификации необходимо выяснить, можно ли в принципе установить военный характер космического аппарата и определить его конкретное назначение, не вступая в конфликт со здравым смыслом или с уголовным кодексом.

Возможность утвердительного ответа на этот вопрос как раз и объясняет, почему предметом данного исследования являются именно космические системы и только они.

Если в реальной структуре военной деятельности системы космического базирования могут и не быть четко отделены от сходных по выполняемым функциям авиационных или баллистических, то в методическом плане такое разделение необходимо, поскольку именно космические объекты хорошо каталогизированы, доступны систематическому наблюдению и потому поддаются достаточно детальному независимому изучению.

Основой для этого изучения являются траекторные характеристики спутников. Рассортировав космические аппараты по высоте, наклонению и эксцентриситету орбиты, можно определить место запуска и тип используемого носителя для каждого из выделенных классов. Особенности каждой из выделенных групп (параметры орбит, количество и взаимное расположение одновременно функционирующих аппаратов, длительность и характер прекращения их существования) можно затем сопоставить с характеристиками, которыми должны были бы обладать спутниковые системы для решения тех или иных военных задач.

Предпочтительные параметры космических систем для многих военных и гражданских задач оказываются сходными. Однако системы прикладного характера обычно официально объявляются таковыми либо сразу, либо через некоторое время после входа в эксплуатационный режим. Если же система эксплуатируется год за годом, порой десятилетиями, без каких бы то ни было признаков научного или хозяйственного выхода, есть все основания считать что она предназначена для военных целей.

Дополнительно сузить круг задач предполагаемых для конкретных анализируемых систем, помогает прослушивание радиосигналов спутников. Хотя вся сколько-нибудь конфиденциальная информация передается в закодированном виде, определение рабочих частот, объема и характера передач дает дополнительные указания на род деятельности рассматриваемого спутника. Наглядным примером являются навигационные спутники, которые не только образуют на орбите упорядоченную группу, обеспечивающую глобальный охват, но и непрерывно излучают синхронизированные радиосигналы привязки.

Наибольшую ценность имеют прямые указания на задачи и характеристики тех или иных спутниковых систем. Даже если они не относятся непосредственно к военным программам, это сужает круг неотождествленных систем и дает опорные точки для привязки независимых наблюдений.

Косвенные указания на назначение советских космических систем дает их сопоставление с аналогичными американскими. Зная назначение тех или иных военных спутников США, можно с большой долей определенности утверждать, что сходные с ними по наблюдаемым проявлениям советские космические аппараты решают аналогичные задачи.

Источниками информации об орбитальных характеристиках советских спутников являются прежде всего официальные сообщения ТАСС об их запусках. Эти сообщения содержат параметры начальной орбиты каждого cпутника – период обращения, наклонение высоты апогее и перигее, а с 1987– 88 гг. и тип ракеты-носителя.

Kроме того, объединенная система воздушно-космической обороны США и Канады (НОРАД), отслеживающая, как и аналогичная советская система, все объекты в околоземном пространстве, часть своих данных публикует в открытой печати. Таблицы так называемых «двухстрочных орбитальных элементов» распространяются через Центр космических полетов им. Годдарда НАСА, а также еженедельно поступают в международную сеть электронной почты «Internet». Аналогичные сводки орбитальных элементов искусственных спутников Земли ежемесячно издаются Королевским аэронавтическим институтом Великобритании, использующим сеть станций оптического наблюдения.

Таблицы Центра имени Годдарда или Королевского аэронавтического института содержат гораздо больше подробностей, чем сообщения ТАСС, а их обновляемость позволяет отслеживать маневрирование спутников на орбите. Оптические наблюдения помимо орбитальных параметров позволяют по видимому блеску оценить размеры аппарата, а по зависимости блеска от времени и угла освещения Солнцем судить о его форме и способе ориентации.

Данные о поведении спутников в радиодиапазоне публикует так называемая Кеттерингская группа слежения, предоставляющая собой неформальное объединение радиолюбителей из ряда стран, прослушивающих и анализирующих сигналы различных спутников.

Результаты предварительного анализа перечисленных «первоисточников» ежемесячно публикуются, например, в поступающих в центральные библиотеки нашей страны английских журналах «Flight International» и «Spaceflight». В содержащихся в них таблицах космических запусков указываются международный регистрационный номер, место запуска и общее назначение каждого космического аппарата, а также тип ракеты-носителя. В «Spaceflight» также публикуются орбитальные элементы и сообщения о естественном или преднамеренном сходе аппаратов с орбиты.

Более детальные обзоры, специально посвященные космической программе СССР ежегодно публиковались независимыми экспертами Николасом Джонсоном (США), Филиппом Кларком (Великобритания), а каждые пять лет – Исследовательской службой Конгресса США.

Еще раз подчеркнем, что все перечисленные источники, как и все остальные, использованные в данной работе, базируются исключительно на открытой информации. Это означает, что сведения, доступные для общественного анализа, далеко не исчерпывающи. Более того, они значительно уступают по полноте данным, которыми располагает администрация США в результате использования «национальных технических средств» и разведывательной деятельности.

Тем не менее, открытая информация оказывается вполне достаточной для отождествления военного назначения космических систем, и ее анализ позволяет без какого бы то ни было реального ущерба для национальной безопасности составить довольно полное представление о характере и масштабах военных космических программ.

ГЛАВА 2 Организационная структура советской космонавтики.

Советская космонавтика не имела в мире равных по засекреченности всех своих сторон, но, пожалуй, наиболее туманным ее аспектом оставалось организационное устройство.

Между тем, организационные решения отражают цели государственной политики и особенности общественно-экономического устройства государства и тем самым оказывают немалое влияние на ход научно-технических разработок и предопределяют стратегию их использования. Поэтому прежде, чем переходить к рассмотрению самих космических систем, проследим эволюцию организационной структуры, в рамках которой эти системы создавались и эксплуатировались.

2.1 Краткая предыстория.

Космическая программа СССР, как и США. уходит корнями в работы по созданию ракетного оружия после второй мировой войны.

В исторических публикациях эти корни, как правило, прослеживаются на всю глубину веков, а применительно к СССР – как минимум до Циолковского, Кибальчича и т д. [1]. Никоим образом не умаляя вклада этих и других первопроходцев в теорию и практику ракетостроения, отметим, что их пионерская деятельность лишь закладывала фундамент будущего строения, формируя умы немногочисленных энтузиастов. Возведение же на этом фундаменте реального здания могло начаться и началось только после того, как идея использования ракет овладела умами высших государственных деятелей, которые определяли архитектуру будущей постройки, руководствуясь своими политическими целями, а не предсказаниями и мечтами энтузиастов.

Правда, в Советском Союзе ракетчики-энтузиасты уже с 1932 г субсидировались ОСОАВИАХИМом и Управлением военных изобретений РККА, а в 1933 г. был даже создан Реактивный научно-исследовательский институт (РНИИ). Однако, после ареста и казни в 1937 г. главнокомандующего Красной Армией М. Н. Тухачевского многие советские ракетчики разделили судьбу опального маршала. Кроме того, в 1938 г в связи с приближением войны в РНИИ были прекращены все работы со сроком завершения более трех лет и вся деятельность была сосредоточена на разработке реактивных снарядов и ракетных ускорителей для самолетов.

Только создание и боевое применение германской армией баллистической ракеты А-4 (известной более как V-2 – «Фау-2»), заставило лидеров СССР и США обратить особое внимание на ракеты дальнего действия.

Именно после этого первопроходцы и энтузиасты были привлечены к широкомасштабной государственной ракетной программе, которая непосредственно и привела к созданию не только ракетно-ядерного вооружения, но и космических ракет.

В 1944-45 гг. в СССР стали формироваться группы специалистов для изучения трофейных материалов по ракете А-4 и уже тогда ставилась задача создания аналогичного оружия. Показательно, что в США стремления военных ведомств расширить сферу своего влияния и, соответственно, объем финансирования стимулировали интерес к разработке управляемых ракет как в ВВС, так и в ВМФ и Армии (Сухопутных войсках). В СССР же нарком авиационной промышленности Шахурин уклонился от ракетной тематики, считая, вероятно, что у него будет достаточно хлопот и с переходом на реактивную авиацию. За освоение баллистических ракет взялся нарком вооружений Д. Ф. Устинов, отвечавший в годы войны за выпуск артиллерийских систем.

Государственная ракетная программа СССР была утверждена Советом Министров 13 мая 1946 г. В соответствии с принятым постановлением в Министерстве вооружений была создана головная организация по разработке жидкостных ракет – НИИ-88 на базе артиллерийского завода № 88 в г. Калининград Московской области. Для отработки методов приемки, испытания и применения ракетного оружия в Министерстве Вооруженных Сил СССР (тогдашнее название Министерства обороны) был организован военный НИИ-4, а также Государственный центральный полигон в районе села Капустин Яр Астраханской области. Первая эксплуатационная ракетная часть («бригада особого назначения») была создана на базе полка реактивных минометов [2].

Административная координация работ осуществлялась специально созданным органом – Комитетом по ракетной технике, переименованным затем в Специальный комитет № 2. Формально существовавший при Совете Министров СССР Комитет возглавлялся членом Политбюро ЦК КПСС Г. Маленковым, а его первым заместителем, фактически отвечавшим за развитие ракетной техники в целом, был министр вооружений Д. Устинов. В самом Министерстве вооружений для этого было организовано 7-е Главное управление [2].

Со стороны Министерства государственной безопасности разработка ракет дальнего действия контролировалась заместителем Л. П. Берии Седовым.

В 1952 г. было начато эскизное проектирование первой двухступенчатой ракеты межконтинентальной дальности Р-7, а в сентябре 1953 г. ее главный конструктор С. П. Королев впервые поднял в Комитете № 2 вопрос о включении в программу создания Р-7 работ по искусственному спутнику Земли. 26 мая 1954 г. он представил министру вооружений Устинову докладную записку, предусматривающую создание научного спутника массой 2—3 т, возвращаемого спутника, спутника для длительного пребывания 1—2 человек, орбитальной станции с регулярным сообщением с Землей [З].

Подобно тому, как правительство США с 1946 г. откладывало все проекты спутников под сукно, в СССР усилия Королева тоже не возымели действия до тех пор, пока мировой научной общественности не удалось затронуть чувствительные струны национального престижа. В октябре 1954 г. оргкомитет Международного геофизического года обратился к ведущим мировым державам с просьбой рассмотреть возможность запуска в период МГГ искусственных спутников Земли для проведения научных исследований. 29 июля 1955 г. президент Эйзенхауэр объявил, что США запустят такой спутник. На следующий же день Советский Союз пообещал сделать то же самое, и, видимо, только после этого «космические» предложения Королева получили ход.

Хотя еще 15 апреля 1955 г. было объявлено о создании при отделении астрономии Академии наук СССР Комиссии по межпланетным сообщениям, постановление Совета Министров о создании геофизического ИСЗ и его запуске в 1957 г. было принято только 30 января 1956 г. В августе того же года из состава НИИ-88 выделилось опытно-конструкторское бюро № 1 по ракетной технике под руководством С. П. Королева. В ОКБ-1 был учрежден проектный отдел для разработки ИСЗ, возглавленный М. К. Тихонравовым. который начал такие работы еще в НИИ-4 в порядке личной инициативы.

На ОКБ-1 была возложена ответственность за все работы по космической тематике. Оно вырабатывало технические предложения по осуществлению тех или иных космических проектов, а затем передавало их на утверждение в вышестоящие инстанции. Первой такой инстанцией было бывшее 7-е Главное управление Министерства вооружений, которое по мере изменения структуры руководства промышленностью перешло сначала в Министерство оборонной промышленности, а затем в Государственный комитет Совета Министров по оборонной технике (ГКОТ). Научная сторона проектов проходила экспертизу в Специальной Комиссии АН СССР. председателем которой был М. В. Келдыш. К исполнению решения принимались постановлениями ЦК КПСС и Совета Министров СССР.

Запуски космических аппаратов осуществлялись подразделениями Ракетных войск со своего полигона в Тюра-Таме, построенного в 1955—57 гг. для испытаний МБР Р-7. До 1959 г. ракетные войска представляли собой отдельные части, подчиненные заместителю командующего артиллерией, но с появлением межконтинентальных Р-7 были выделены в самостоятельный род войск – Ракетные войска стратегического назначения.

В 1959-60 гг. к работам по космической тематике были подключены также СКБ-458, возглавлявшееся М. К. Янгелем, и ОКБ-52 В. Н. Челомея. (Янгель с 1954 г. занимался разработкой баллистических ракет на долгохранимом топливе, а Челомей с 1944 г. руководил созданием крылатых ракет). Расширение космической деятельности не только потребовало выделения ее из общего плана развития ракетной техники, но и привело к тому, что предложения Главных конструкторов начали конкурировать друг с другом. Поэтому в 1961 г. на НИИ-88 были возложены функции «головного научного учреждения», обеспечивающего внутриведомственную экспертизу [З].

Последним этапом организационного становления советской космонавтики стала экономическая реформа 1965 г… создавшая, в частности, на базе ГКОТ комплекс военно-промышленных министерств. В составе сформированной тогда «оборонной девятки» было учреждено и министерство ракетно-космической промышленности, названное для вящей секретности «министерством общего машиностроения».

2.2 Структура космической программы СССР в 60-80-х гг.

Сложившаяся к концу периода хрущевских преобразований схема организации работ по ракетно-космической технике впоследствии оставалась практически неизменной почти четверть века (см рис 3)

В отличие от США, где в 1958 г космическая программа была разделена на военную, осуществляемую Министерством обороны, и гражданскую, реализуемую специально созданным Национальным управлением по аэронавтике и космосу (НАСА), в СССР вся космическая деятельность шла в едином русле и осуществлялась по такой же схеме, что и разработка и эксплуатация ракетного вооружения.

Научно-исследовательские и опытно-конструкторские работы (НИОКР) и производство велись предприятиями оборонно-промышленного комплекса, объединенными в 9 министерств, подведомственных Военно-промышленной комиссии Совета Министров СССР (ВПК), тогда как приемка и эксплуатация произведенной техники относились к ведению Министерства обороны Деятельность ВПК и Министерства обороны контролировалась оборонным отделом ЦК КПСС и секретариатом ЦК, в котором была предусмотрена должность секретаря ЦК КПСС по оборонно-промышленным вопросам.

На этапе разработки систем военного назначения Министерство обороны выступало в качестве заказчика, оформляющего техническое задание на создаваемую систему. Однако финансированием НИОКР или серийного производства Министерство обороны не распоряжалось Решения о разработке систем или запуске их в производство принимались совместными постановлениями ЦК КПСС и Совета Министров (или ВПК), а средства задействованным предприятиям выделялись не через бюджет Министерства обороны, а по линии соответствующих промышленных министерств непосредственно из государственного бюджета.

Такая система имела целью скрыть истинные масштабы военных расходов, но она же приводила к тому, что фактическим заказчиком военных систем выступали сами производящие министерства а верховные полномочия по распределению средств принадлежали Политбюро и аппарату ЦК КПСС.

Тем самым создавались объективные предпосылки для осуществления не наиболее эффективных, а наиболее экстенсивных и дорогостоящих программ В отсутствие финансовых рычагов взаимоотношения заказчиков и производителей могли строиться только на личных взаимоотношениях а все кадровые вопросы на сколько-нибудь существенном уровне контролировались общим отделом ЦК КПСС.

Сказанное относится к советским военно-техническим разработкам вообще и, в частности, справедливо для космических систем.

В «оборонной девятке» головным по созданию ракетно-космической техники было Министерство общего машиностроения (MOM), предприятия которого разрабатывали и выпускали ракеты (как космические, так и баллистические), ракетные двигатели и космические аппараты.

Остальные министерства военно-промышленного комплекса выступали в качестве смежников, поставляя комплектующие изделия, приборы или системы для ракет и космических аппаратов. Так, предприятия Министерства электронной промышленности (МЭП) разрабатывали бортовую и наземную электронику. Министерства радиопромышленности (МРП) – радио– и радиолокационное оборудование, а Министерства оборонной промышленности (МОП) – оптические приборы, включая фотоаппаратуру для разведывательных спутников. Предприятия Министерства авиационной промышленности (МАП) участвовали в разработках аэрокосмических средств; кроме того, экспериментальная база авиационной промышленности использовалась и при отработке изделий МОМа.

Приемка, испытания и эксплуатация произведенной ракетно-космической техники осуществлялись Главным управлением космических средств Министерства обороны СССР (ГУКОС), известным также как Управление начальника космических средств (УНКС).

Сформированное в 60-х гг. УНКС объединило все службы, не относящиеся непосредственно к несению боевого дежурства – полигоны Байконур и Плесецк, инженерно-испытательные подразделения, а также наземные и корабельные пункты командно-измерительного комплекса. Подчиненные начальнику космических средств «космические части» осуществляют предстартовую подготовку и запуск космических аппаратов как для военных, так и для гражданских пользователей, а также контролируют их на орбите. Даже в тех случаях, когда конечное управление ведется заказчиком из своего Центра, как, например, при пилотируемых полетах, промежуточные звенья командно-измерительного комплекса остаются под контролем «космических частей».

Исходя из определения УНКС, боевые космические системы не входят в его ведение. По логике вещей, частично-орбитальные («глобальные») ракеты, испытывавшиеся в 1966-71 гг… должны были находиться в ведении РВСН, а противоспутниковые системы, очевидно, относятся к Войскам ПВО, ответственным как за противовоздушную, так и за противокосмическую оборону [4]. При этом остается неясным, каким образом между космическими войсками и Войсками ПВО разделены наземные измерительные пункты, которые могут задействоваться как в командно-измерительном комплексе ГУКОС для управления «своими» спутниками, так и в системе контроля космического пространства ВПВО для слежения за «чужими» объектами.

ГУКОС, таким образом, является «первичным» потребителем продукции МОМа, принимающим, испытывающим, запускающим и контролирующим все космические аппараты, тогда как во всех остальных службах Вооруженных сил имеются конечные пользователи космических средств, применяющие спутниковые системы для разведки, обнаружения пусков баллистических ракет, навигации, поддержания связи и т д.

Такими же конечными пользователями являются и заказчики прикладных и народнохозяйственных систем. Последние выходят за рамки данного исследования, но для представления их места в общей структуре государственной космической деятельности отметим, что все сказанное о диктате производителя и верховенстве партийных органов к научным и народнохозяйственным программам относится вдвойне.

Заказчики научных и прикладных систем оказываются «дважды крайними», пользуясь «бесплатными» услугами МОМа для производства космических аппаратов, и ГУКОСа для их запуска и управления.

Научную сторону космических исследований призван координировать Межведомственный научно-технический совет по космонавтике, возглавляемый президентом АН СССР. В качестве головного НИИ по научным исследованиям космоса выступает созданный в середине 60-х гг. Институт космических исследований. В области планетологии с ним конкурирует Институт геохимии и аналитической химии им. Вернадского (ГЕОХИ). (Граница раздела сфер влияния ИКИ и ГЕОХИ проходит условно по поверхности планет). Медико-биологические исследования первоначально концентрировались в Государственном научно-испытательном институте авиационной и космической медицины, входящем в систему ВВС, но в 70-е гг. это направление возглавил Институт медико-биологических проблем, созданный при 3-м Главном управлении Минздрава СССР.

При разработке прикладных систем, точно так же, как и в случае военных, фактическим заказчиком выступает сам MOM и только после сдачи системы в эксплуатацию она передается в пользование соответствующему гражданскому ведомству – Министерству связи для связных спутников и Госкомгидромету для метеорологических, Минморфлоту для гражданского сегмента навигационной системы.

При этом, поскольку все прикладные программы реализуются при посредстве ГУКОСа, Министерство обороны может иметь свободу рук в использовании гражданских систем для своих целей и не создавать отдельных систем аналогичного назначения. Если, скажем, ВВС США используют специализированные метеоспутники DMSP, то советские войска, очевидно, довольствуются информацией со спутников Государственного комитета по гидрометеорологии.

2.3 Текущие изменения в структуре космической программы

Тем, кто непосредственно участвовал в реализации космических программ, необходимость радикальной реорганизации советской космонавтики могла быть очевидна уже давно. Такие вопросы поднимались еще в конце 60-х гг. [5], однако, как и в обществе в целом, первые признаки изменений появились только с началом перестройки.

В октябре 1985 г. было учреждено «Главное управление по созданию и использованию космической техники в интересах народного хозяйства, научных исследований и международного сотрудничества в мирном освоении космоса» (Главкосмос СССР).

Представленный сначала как «союзное министерство по космосу» Главкосмос был воспринят на Западе как «советское НАСА». Судя но названию он действительно мог задумываться как нечто подобное, но фактически его главной задачей стал поиск клиентов для коммерческого использования РКТ, т e. запусков иностранных спутников советскими носителями и полетов иностранных космонавтов на советских кораблях. Таким образом, Главкосмос стал лишь «крышей» или несекретным посредником для продвижения на зарубежный рынок продукции все еще засекреченной космической промышленности СССР. Когда же в 1988 г. род занятий МОМа перестал считаться государственной тайной и Главкосмос официально получил статус управления МОМа, он окончательно уподобился не НАСА, а скорее отделу сбыта крупного аэрокосмического концерна.

Дальнейшие видимые изменения последовали только во второй половине 1989 г. и были связаны с реорганизацией высших эшелонов руководства, поэтому об их воздействии снова можно говорить применительно ко всему военно-промышленному комплексу.

Создание нового высшего законодательного органа – Съезда народных депутатов СССР и преобразование прежнего декоративного Верховного Совета в постоянный парламент должны были изменить прежний характер принятия решений объединенными постановлениями ЦК и Совмина и поставить исполнительную власть под опосредованный контроль избирателей, т е. населения страны.

Однако порядок выборов народных депутатов СССР обеспечил внушительное представительство на Съезде всех высших слоев действующей военно-промышленной иерархии – министров, партийных руководителей, директоров заводов и военачальников. Выборы на Съезде Верховного Совета обеспечили еще большую концентрацию этих слоев в парламенте. На третьем же этапе сортировки депутатов представители ВПК, «как наиболее компетентные в данных вопросах» взяли под контроль комитеты и комиссии Верховного Совета ведающие вопросами их же профессиональной деятельности.

Введение в 1990 г. поста Президента СССР и последовавшее создание Президентского совета и Совета национальной безопасности было нацелено на переход от партийной субординации к узаконенным административным взаимоотношениям (рис 4). Однако, схема взаимодействия с нижележащими уровнями при этом не претерпела заметных изменений, тем более, что новые органы включали тех же ключевых лиц из Политбюро и Совета обороны.

Показательно, что в отличие от большинства гражданских ведомств девятка оборонных министерств до 1991 г. оставалась нетронутой, если не считать слияния Минсредмаша с Минатомэнерго в единый Минатомэнергопром, для чего, впрочем, потребовалась Чернобыльская катастрофа.

Тем не менее, нижние уровни получили первую встряску еще в рамках прежней структуры, когда в 1988 г. была провозглашена широкомасштабная конверсия оборонной промышленности. Часть мощностей предприятий оборонного комплекса предписывалось непосредственно переключить на производство указанной свыше народнохозяйственной продукции. МОМу поручалось организовать выпуск оборудования для пищевой промышленности, а НПО «Энергия» было назначено головным но производству протезов конечностей.

Освоение нехарактерной продукции, более дешевой и требующей небывалой массовости выпуска, привело, в сочетании с сокращением основного производства, к резкому падению рентабельности оборонных предприятий. Относительное материальное благополучие военно-промышленного комплекса, десятилетиями позволявшее ему аккумулировать высококвалифицированные кадры, было подорвано.

Начало реальных экономических преобразований, нацеленных на замену административного регулирования экономики рыночным, дополнительно ухудшило положение оборонных отраслей. Расширение самостоятельности предприятий в условиях дефицитной экономики лишило их гарантированного снабжения и разладило производственную кооперацию. Космическая программа, помимо экономических проблем, оказалась и в сложном политическом положении. На протяжении всей своей истории советская космонавтика постоянно использовалась для демонстрации преимущества социализма перед капитализмом. Когда же благодаря гласности выяснилось, что и в этой области у нас все не так радужно, как в официальных сообщениях, преобладающее отношение советских людей к космической программе изменилось от безразличного к резко отрицательному.

Поворот общественного мнения был настолько существенным, что несмотря на мощное военно-промышленное лобби Верховный Совет сократил расходы на космонавтику в 1990 г. на 10%, а на 1991 г. оставил «на уровне 1990 г.», что в сопоставимых ценах означало снижение на 35% [8].

На фоне ухудшающегося положения советской космонавтики в самых разных кругах стала популярна идея создания государственного космического агентства по типу НАСА США [5-7]. Несмотря на кажущееся единодушие, каждая группа сторонников этой идеи представляла ее реализацию по-своему.

Вопрос о создании Государственного аэрокосмического комитета, неоднократно обсуждавшийся в Верховном Совете СССР в 1989-90 гг., предусматривал просто объединение МОМа и МАПа, т е. слияние авиационной и космической промышленности. В свете проводившейся конверсии и сокращения оборонных заказов это по существу означало бы поглощение МОМа, потерявшего былой авторитет кузнеца ракетного щита, МАПом, который мог отчасти компенсировать спад военного производства гражданской авиатехникой. По этой причине представители МОМа отчаянно сражались против объединения и на том этапе добились своего.

Прежняя структура просуществовала еще два года, но август 1991 г. стал критической точкой. Неудача августовского переворота (возглавлявшегося, в частности, секретарем ЦК по оборонному комплексу бывшим министром общего машиностроения О. Д. Баклановым) предрешила судьбу прежних союзных структур и верховная власть явочным порядком перешла к республиканским органам. Предприятия ракетно-космического комплекса в числе всех прочих были переведены под юрисдикцию республик своего местопребывания.

При этом помимо проблем финансирования и поддержания производственных связей в разваливающемся союзе естественным образом обострились вопросы собственности на ракетно-космическую технику. Наиболее шумными их проявлениями стали провозглашение президентом Казахстана Н. Назарбаевым космодрома Байконур собственностью республики, и объявление генеральным конструктором Ю. П. Семеновым орбитального комплекса «Мир» собственностью трудового коллектива НПО «Энергия» [9, 10].

К концу 1991 г. СССР окончательно распался, и прежняя структура государственного управления, включая управление космической программой, формально прекратила существование. Верховный Совет СССР был распущен, деятельность КПСС прекращена, и даже министерства оборонно-промышленного комплекса расформированы.

После прекращения существования СССР первоначально казалось, что для продолжения космической программы придется срочно создавать уже не «советское НАСА», а «советское ЕКА». В пользу этого свидетельствовало и соглашение стран-членов СНГ, подписанное в Минске 30 декабря 1991 г. В нем стороны высказывались о необходимости продолжения космических программ, как народнохозяйственного, так и оборонного назначения и заявляли, что эти программы будут осуществляться совместно под управлением Межгосударственного космического совета.

Тем не менее, до настоящего времени не имеется ни совместного межгосударственного органа, ни предусмотренного тем же соглашением «пропорционального финансирования» для осуществления космических программ.

Сохранению целостности основного объема космической деятельности способствовало не только, а может и не столько органическое единство всего территориального комплекса космических средств бывшего Союза, но и то, что эксплуатация РКТ находится в ведении Вооруженных Сил, которые остались одним из немногих звеньев, объединяющих бывшие союзные республики.

Хотя с учреждением Содружества Независимых Государств Вооруженные силы и были провозглашены объединенными, эволюция СНГ ведет к тому, что та их часть, которая не перешла под контроль остальных республик, все более рассматривается как российская.

В сочетании с тем, что на территории Российской Федерации сосредоточено по разным оценкам от 75 до 90% потенциала РКП, основная часть территориального комплекса космических средств и управленческих структур, Россия фактически стала правопреемницей космической программы СССР, аналогично тому, как это произошло с ядерными вооружениями.

С переходом под юрисдикцию России, предприятия РКП были переданы в ведение Министерства промышленности РСФСР. Министерство общего машиностроения СССР было расформировано, а его предприятия стали преобразовываться в концерны, которые в свою очередь объединялись ассоциацией «Рособщемаш», учрежденной в октябре 1991 г.

Утверждалось, что целью ассоциации является содействие теперь уже независимым предприятиям в организации производства при переходе к рыночной экономике. Однако даже ее название указывает на тесную связь с прежним МОМом, не говоря уже о том, что президентом новой ассоциации стал бывший до этого министром общего машиностроения О. Н. Шишкин.

Тем не менее, с реорганизацией МОМа из союзного министерства в российскую ассоциацию идея «советского НАСА» не умерла. В сентябре при правительстве Российской Федерации была создана рабочая группа по выработке концепции космической программы России и модели Российского космического агентства, впервые включавшая экспертов из неофициальных общественных групп.

11 января 1992 г. распоряжением первого вице-премьера Г. Бурбулиса эта группа была преобразована в комиссию по выработке проекта положения о Российском космическом агентстве. Неделю спустя тот же Г. Бурбулис санкционировал создание для той же цели второй группы, на этот раз состоящей в основном из представителей бывших МОМа и ВПК.

Результат состязания был предрешен уже тем очевидным обстоятельством, что независимые эксперты отталкивались от желаемой концепции космической политики, выработанной с учетом опыта западных стран, тогда как «практики космонавтики» – от стремления сохранить насколько возможно накопленный потенциал и, соответственно, существующую структуру.

Российское космическое агентство было учреждено 25 февраля 1992 г. указом Президента России за номером 185 «О структуре управления космической деятельностью в Российской Федерации». Председателем РКА назначен Ю. Н. Коптев, бывший до этого заместителем министра общего машиностроения и вице-президентом «Рособщемаша».

На Российское космическое агентство возложены:

– осуществление государственной космической политики;

– выработка государственной космической программы в части космических систем научного, прикладного и оборонного назначения;

– координация коммерческих космических программ;

– развитие исследовательской и испытательной базы, обеспечение научно-технического задела для совершенствования космической техники;

– взаимодействие с соответствующими органами стран – членов СНГ и других государств.

Показательно, что хотя функции генерального заказчика РКА должно выполнять только применительно к разработке научных и прикладных систем, оно, тем не менее, участвует и в разработке и использовании систем двойного назначения, производимых по заказам Министерства обороны.

Это делает его более похожим на MOM, чем на НАСА. которое вообще не несет ответственности за военные программы. Отметим также, что под давлением вице-премьера Е. Гайдара РКА было подчинено правительству России, а не непосредственно Президенту, как это предлагалось изначально (и как имеет место в США). От альтернативных предложений в Указ вошло положение об учреждении Межведомственной экспертной комиссии для оценки космических проектов научного и народнохозяйственного назначения.

В части программ военного назначения наиболее существенное до сих пор изменение заключалось в том, что с 1991 г. Министерство обороны (тогда еще – СССР) получило право само распоряжаться средствами на закупку военной техники, в том числе и ракетно-космической.

Что же касается роли и места Вооруженных сил в космической деятельности в целом, то возможность их изменения в ближайшей перспективе зависит от результатов деятельности Верховного совета России по законодательному оформлению космической программы России, а также от практических действий стран СНГ в части развития и использования космических средств.

Новые решения, которые пока находятся в лучшем случае на начальной стадии воплощения, будут определять будущее развитие космических систем военного назначения, к рассмотрению предшествовавшей эволюции которых мы и переходим в следующих разделах.

ГЛАВА 3

3.1 Боевые системы.

3.1.1 Ударные системы космического базирования

Космическое пространство стало рассматриваться как потенциальная область военных действий задолго до того, как появились реальные технические возможности для такого использования.

Еще в 1948 г. Вальтер Дорнбергер, бывший немецкий генерал, руководивший производством ракет «Фау-2», а после войны работавший в США, выдвинул идею размещения атомной бомбы на околоземной орбите. Такая бомба в принципе могла бы быть сброшена на любой район Земли и представлялась эффективным средством устрашения.

В сентябре 1952 г., в разгар войны в Корее, общественное внимание в США привлек опубликованный проект боевой орбитальной станции, состоящей из пилотируемого командного поста и обращающегося по той же орбите хранилища ядерных боезарядов [1]. При приближении к цели по команде со станции боеголовки с летящего впереди «арсенала» должны были тормозиться и входить в атмосферу, после чего догоняющая их станция осуществляла бы точное радионаведение зарядов на цель.

В Конгрессе США концепция ядерных бомбардировочных спутников не вызвала большого энтузиазма. Она вяло обсуждалась несколько лет и оживление наметилось только в 1960 г. в контексте дебатов о ракетном отставании от СССР.

Но на этом этапе целесообразность создания систем орбитальной бомбардировки пришлось определять, сравнивая их уже не с дальними бомбардировщиками, а с межконтинентальными баллистическими ракетами (МБР).

Основным преимуществом орбитальных бомб было минимальное время достижения цели после схода с орбиты. Если МБР для полета на межконтинентальную дальность требуется 30-40 минут, орбитальный заряд упал бы на Землю через 5-6 минут после тормозного импульса. С другой стороны, ракета может быть в любой момент нацелена в любую точку, тогда как орбитальная бомба способна поразить лишь ту цель, которая в настоящее время находится на трассе ее полета. Отсутствие маневренности головных частей в атмосфере означало, что поражение произвольной цели могло бы требовать часов или даже дней. Система таким образом оказывалась более пригодной для нанесения спланированного первого удара, чем для возмездия.

Орбитальные бомбы уступали МБР и по точности попадания ввиду большей погрешности определения их местоположения но сравнению с ракетой в фиксированной пусковой установке. С другой стороны, предвычислимость их орбитального движения и конструктивная незащищенность делала их более уязвимой мишенью. К тому же система, несущая боевое дежурство на орбите, менее надежна, чем поддающаяся обслуживанию наземная.

(рисунок отсутствует)

Рис. 1.1 Сравнение траекторий баллистической и частично-орбитальной ракет

Все это в конечном итоге выливалось в более высокую стоимость. Когда в США было подсчитано, что создание системы орбитальных бомб обойдется в 20 раз дороже аналогичного по возможностям парка МБР – в 100—200 миллиардов долларов (в ценах начала 60-х гг.), это, видимо, стало наиболее веским аргументом в пользу отказа от такой системы.

Не развеялись, однако, опасения по поводу возможного создания орбитального оружия Советским Союзом, ибо советское руководство, рассчитывая получить значительный военный или политический эффект, за ценой, как правило, не стояло. Подобно тому, как первая МБР Р-7, обладавшая минимальными боевыми характеристиками и развернутая в единичных экземплярах, была успешно использована для создания иллюзии ракетного превосходства СССР, летающие над головами империалистов орбитальные бомбы могли бы быть сочтены хорошим психологическим оружием для сдерживания «агрессивных устремлений Запада».

Советские лидеры, скорее вольно, чем невольно, подогревали эти подозрения.

Еще в августе 1961 г., принимая в Кремле космонавта-2 Германа Титова Хрущев говорил, адресуясь к Западу: «У вас нет 50– или 100-мегатонных бомб, у нас есть бомбы мощностью свыше 100 мегатонн. Мы вывели в космос Гагарина и Титова, но мы можем заменить их другим грузом и направить его в любое место на Земле».

Это был блеф, т к. даже чтобы посадить «Востоки» в единственную наперед заданную точку приходилось задействовать все средства командно-измерительного комплекса. Но для американских военных и политиков достаточно было и того, что СССР разработал ракетные блоки, запускающиеся в невесомости и, значит, в принципе способен столкнуть с орбиты выведенный на нее ранее груз.

Таким образом, часто вспоминаемый триумф советской космонавтики на Западе в действительности был изрядно окрашен в панические тона и стимулировал наращивание ядерного потенциала США. Другим следствием стало стремление к международному запрещению военного использования космоса.

Однако переговоры на эту тему блокировались тем, что США всячески отбивались от протестов СССР против использования спутников для разведки, а СССР боялся, что США попытаются запретить межконтинентальные ракеты, поскольку их траектория проходит через космическое пространство.

17 октября 1963 года Генеральная Ассамблея ООН приняла резолюцию 1884, призывающую все нации воздержаться от выведения на орбиты вокруг Земли или размещения в космосе ядерных вооружений или любых других видов оружия массового уничтожения. Заместитель министра обороны США Росуэлл Джилпатрик еще в сентябре 1962 г. заявил, что США «не имеют программы размещения какого-либо оружия массового уничтожения на орбите… Нет сомнения, что США или СССР могли бы поместить термоядерное оружие на орбиту, но такое действие просто не является рациональной военной стратегией ни для одной из сторон в обозримом будущем» [6].

Советский Союз поддержал резолюцию 1884, но, как показали последующие события, это отнюдь не означало, что советское руководство разделило мнение США о нерациональности орбитальных бомб. Скорее, оно решило «идти другим путем», обходящим резолюцию ООН.

Первое указание на это поступило еще 15 марта 1962 г., когда Хрущев заявил, что «мы можем запускать ракеты не только через Северный полюс, но и в противоположном направлении тоже… Глобальные ракеты могут лететь со стороны океана или с других направлений, где оповещающее оборудование не может быть установлено» [З].

Неделей позже генерал-лейтенант В. Ларионов писал в «Красной звезде»: «военная стратегия признает, что космическое оружие станет основным средством решения стратегических задач» [4].

В феврале 1963 г. главком РВСН маршал Бирюзов утверждал, что «сейчас стало возможным по команде с Земли запускать ракеты со спутников в любое заданное время и из любой точки траектории спутника» [5].

На тот момент Хрущев опять выдавал желаемое за действительное. Зримое подтверждение его предупреждения появилось лишь три года спустя, когда 9 мая 196.5 г. на военном параде в Москве были продемонстрированы новые МБР, получившие на Западе обозначение SS-10 Scrag. Их появление на Красной площади сопровождалось следующим радиокомментарием:

«Проходят трехступенчатые межконтинентальные ракеты. Их конструкция улучшена. Они очень надежны в эксплуатации. Их обслуживание полностью автоматизировано. Парад внушительной боевой мощи венчается гигантскими орбитальными ракетами. Они родственны ракетам-носителям, которые надежно выводят а космос наши замечательные космические корабли, такие как «Восход-2». Для этих ракет не существует предела досягаемости. Главным достоинством ракет такого класса является их способность поражать вражеские объекты буквально с любого направления, что делает их по существу неуязвимыми для средств противоракетной обороны» [7].

На ноябрьском параде того же года SS-10 описывались так: «… перед трибунами проходят гигантские ракеты. Это орбитальные ракеты. Боевые заряды орбитальных ракет способны наносить внезапные удары по агрессору на первом или любом другом витке вокруг Земли» (выделено авт.) [8].

После таких демонстраций «орбитальных ракет» Госдепартамент США публично потребовал от СССР прояснить свое отношение к резолюции ООН о недопущении вывода в космос оружия массового поражения. На это было заявлено, что резолюция запрещает применение космического оружия, но не его производство [9].

14 декабря 1965 г. ТАСС оповестил об испытаниях «варианта системы приземления космических аппаратов», при которых «некоторые элементы ракет-носителей» будут падать в указанный район Тихого океана [10].

17 сентября 1966 г. с космодрома Байконур состоялся запуск, официальною объявления о котором так и не появилось. Сеть зарубежных станций слежения зафиксировала более 100 обломков на орбите с наклонением 49,6 градусов в диапазоне высот от 250 до 1300 км. Новое для Байконура наклонение могло быть объяснено использованием носителя нового типа, а распределение обломков позволяло предположить, что они представляют собой останки предпоследней ступени па низкой околоземной орбите, последней ступени на вытянутой эллиптической орбите и, может быть, отдельно полезной нагрузки, находящейся несколько выше. Подобный двойной или тройной взрыв не мог произойти самопроизвольно, но планировался ли он заранее или был произведен из-за неполадок, остается неизвестным.

Аналогичный запуск состоялся 2 ноября 1966 г., также оставив на орбите более 50 прослеживаемых фрагментов, распределенных по высотам от 500 до 1500 км и свидетельствующих о раздельном подрыве груза, последней и предпоследней ступеней ракеты.

Новая серия запусков началась в январе 1967 г. Стартующие с Байконура ракеты выходили на очень низкие орбиты с апогеем около 250 и перигеем 140—150 км и наклонением от 49,6 до 50 градусов. Как обычно, они объявлялись очередными спутниками серии «Космос», но в стандартной формулировке отсутствовало указание периода обращения по орбите. Это сразу было воспринято как свидетельство возвращения груза с орбиты еще до завершения первого витка. Одни авторы тут же связали запуски с испытаниями орбитального оружия, другие полагали, что таким образом проверялась работа систем посадки пилотируемых кораблей после гибели Комарова. Последняя точка зрения была тем более странна, что запуски начались ДО гибели Комарова, использовали отличную от «союзовской» орбиту и только в течение 1967 г. испытаний состоялось девять (см. табл. 11).

Во всех этих запусках трасса полета пересекала восточную часть Сибири, центральную часть Тихого океана, оконечность Южной Америки и Южную Атлантику и затем через Африку и Средиземноморье возвращалась на территорию СССР, давая возможность после первого витка приземлиться недалеко от места старта или в районе Капустина Яра.

Дискуссии завершились 3 ноября 1967 г., когда министр обороны США Роберт Мак-Намара объявил, что эти запуски, по всей видимости, представляют собой испытания советской системы «частично-орбитальной бомбардировки» (Fractional Orbital Bombardment System, сокращенно FOBS), предназначающейся для нанесения ракетного удара по США не по кратчайшей баллистической траектории через Северный полюс, а с наименее ожидаемого и наименее защищенного южного направления.

Заявление Мак-Намары было вызвано запусками 16 и 28 октября, состоявшимися уже ПОСЛЕ вступления в силу Договора о неразмещении оружия массового уничтожения в космосе[4]. Но как бы удивительно это ни звучало, американский министр обороны подчеркивал, что эти советские испытания не нарушают существующих договоров и резолюций, «поскольку головные части SS-9 находятся на орбите менее одного оборота и на данном этапе отработки, по всей вероятности, не несут ядерных зарядов». Целью этой эквилибристики было успокоить общественное мнение и избежать создания аналогичной системы в США.

Через несколько дней наделавшие столько шума ракеты были продемонстрированы на московском параде по поводу 50-летия Октябрьской революции. Как и раньше, были показаны и SS-10, но на сей раз они уже не назывались «орбитальными» После них впервые появились SS-9:

«…колоссальные ракеты, каждая из которых может доставить к цели ядерные заряды огромной мощности. Ни одна армия в мире не имеет таких зарядов. Эти ракеты могут быть использованы для межконтинентальных и орбитальных запусков» [12].

По завершении интенсивной серии испытаний система орбитальной бомбардировки на базе ракет SS-9 была, очевидно, введена в ограниченную эксплуатацию. На Байконуре было сооружено 18 шахтных пусковых установок для этих ракет, и запуски по уже отработанной траектории продолжились с частотой два в год.

Только один из них отличался от общей картины и напоминал необъявленные пуски 1966 г. В декабре 1969 г. «Космос-316» был выведен на орбиту с апогеем 1650 км, оставив последнюю и предпоследнюю ступени на орбитах с апогеями 1581 и 920 км соответственно. В отличие от пусков 1966 г. они не были подорваны и сошли с орбиты в результате естественного торможения, причем часть обломков упала на территории США.

Последний запуск по частично-орбитальной траектории состоялся в августе 1971 г. Конкретный момент прекращения пусков мог быть связан с подготовкой первого советско-американского Договора об ограничении стратегических вооружений, подписанного в 1972 г., хотя в самом договоре о таких системах ничего не говорилось. Кроме того. в 1972 г. США ввели в эксплуатацию спутниковую систему раннего оповещения, фиксирующую ракеты не на подлете, а уже в момент старта, что сделало пуски по обходной траектории бессмысленными. СССР же к концу 60-х – началу 70-х развернул значительное количество баллистических ракет на подводных лодках (БРПЛ), которые обладали теми же достоинствами, что и частично-орбитальные, но были лишены недостатков последних.

Точка в истории орбитальных бомб была поставлена в 1979 г. Договором ОСВ-2, в который было включено положение о запрещении частично-орбитальных ракет. Договором предусматривалось, что 12 из 18 сооруженных пусковых установок этих ракет будут ликвидированы, а 6 переоборудованы для испытаний модернизируемых МБР [13].

Подобно «Неуловимому Джо», орбитальные бомбы, а затем и их частично-орбитальные собратья, исчезли с горизонта, но порожденная ими проблема противодействия враждебным космическим объектам оказалась гораздо более долговечной.

3.1.2 Противоспутниковые системы

Перспектива использования космического пространства для размещения ударных вооружений заставила задуматься над способами борьбы со спутниками еще до появления самих спутников.

Наиболее радикальным средством по тем временам представлялось уничтожение космических аппаратов взрывом ядерного заряда, доставляемого ракетой за пределы атмосферы. Системы вертикального выведения, не будучи орбитальными, выходят за рамки нашего рассмотрения. Отметим только, что большой радиус поражения ядерного взрыва, облегчая критическую проблему точности наведения, оказывался и главным недостатком таких систем, поскольку выводил из строя не только вражеские, но и собственные спутники атакующей стороны.

Орбитальный же перехват впервые начал прорабатываться в США по программе ВВС номер 706 Начатая в 1960 г. программа, известная также как «проект SAINT» (от Satellite Inspection Technique – метод инспекции спутников), предусматривала изучение возможности сближения с неизвестным космическим аппаратом с целью его инспекции и должна была завершиться экспериментом по сближению с мишенью на расстояние до 15 метров.

После испытаний ВВС надеялись сделать SAINT полноценным перехватчиком, оснастив его, например, небольшими ракетами. Администрация же запрещала даже обсуждать возможность использования инспектирующего аппарата в качестве антиспутника, поскольку это противоречило ее тезису о мирной сущности американской военной космической программы.

Внутриполитические трения, вызывавшие финансовые трудности, усугублялись концептуальными проблемами, такими как вопросы – даст ли фотографирование спутника, измерение антенн и т п. больше, чем можно узнать по его орбитальным характеристикам? какие физические средства инспекции можно считать допустимыми и какие контрмеры можно ожидать от другой стороны? Деликатность вопросов объяснялась прежде всего тем, что основным объектом инспекции должны были стать предполагаемые советские орбитальные бомбы. К тому времени, как США пришли к выводу о бесполезности таких бомб, в СССР они так и не появились. Поэтому в декабре 1962 г. ВВС США отказались от реализации проекта SAINT. оставив задачу сближения на орбите НАСА, приступившему в это время к программе «Джемини».

Советские военные тоже не остались равнодушными к идее космического перехвата. 13 сентября 1962 г., после совместного полета «Востока-3» и «Востока-4», когда неманеврирующие корабли за счет точности запуска удалось свести на расстояние до 5 км. Научно-техническая комиссия Генштаба заслушала доклады космонавтов А. Николаева и П. Поповича о военных возможностях кораблей «Восток» Вывод из докладов звучал следующим образом: «Человек способен выполнять в космосе все военные задачи, аналогичные задачам авиации (разведка, перехват, удар). Корабли «Восток» можно приспособить к разведке, а для перехвата и удара необходимо срочно создавать новые, более совершенные космические корабли» [14].

Подобные корабли тем временем уже разрабатывались.

1 ноября 1963 г. в СССР был запушен «первый маневрирующий космический аппарат «Полет-1». Необычно пышное даже по тем временам официальное сообщение объявляло, что это первый аппарат из новой крупной серии и что в ходе полета были выполнены «многочисленные» маневры изменения высоты и плоскости орбиты. Количество и характер маневров не уточнялись и ТАСС даже не сообщил наклонение начальной орбиты.

Второй «Полет» стартовал 12 апреля 1964 г. На этот раз параметры начальной и конечной орбит указывались полностью, что позволило оценить минимальный запас характеристической скорости аппарата с учетом изменения плоскости орбиты (табл. 1.2).

«Полеты», разрабатывавшиеся под руководством В. Н. Челомея, очевидно, рассчитывались на запуск его собственным носителем УР-200, предшествовавшим УР-500 «Протон» [15].

Однако, к началу летных испытаний «Полетов» УР-200 еще не была готова и их пришлось запускам предоставленными ОКБ-1 двухступенчатыми ракетами Р-7, используя двигательную установку самого аппарата для довыведения на начальную орбиту [16].

Западные наблюдатели классифицировали новую модификацию носителя как А-m (или SL-5) и расценили ее появление как возможное испытание разгонного блока многоразового включения для появившегося несколькими годами позже носителя типа F-1.

В конечном итоге это оказалось недалеко от истины.

Отстранение Хрущева от власти в октябре 1964 г. повлекло за собой падение политического веса Челомея и резкое сокращение финансирования работ ОКБ-52 Разработка носителя УР-200 была прекращена и в качестве штатного носителя для разрабатываемых на базе «Полетов» противоспутниковых перехватчиков стала использоваться янгелевская МБР Р-36 (SS-9), та же. что применялась для запусков орбитальных головных частей.

Первый запуск носителя SS-9, снабженного третьей ступенью с двигателем многоразового включения, состоялся 27 октября 1967 г. Носитель, получивший в системе Шелдона обозначение F-1-m (от maneuvering – маневрирующий), вывел на слегка вытянутую орбиту высотой 546 на 370 км, спутник, названный «Космосом-185». Вскоре спутник был переведен на более высокую орбиту с апогеем 888 и перигеем 552 км, которая и была объявлена ТАСС.

24 апреля 1968 г ТАСС объявил о запуске «Космоса-217». Указанная орбита соответствовала начальной орбите предшествовавшего «Космоса-185», но западные средства слежения зафиксировали только обломки, причем на более низкой орбите, аналогичной применявшейся для частично-орбитальных полетов.

19 октября 1968 г. на орбиту, близкую к объявленной для «Космоса-217», но не достигнутую им, вышел «Космос-248». (Возможно, он тоже сначала выводился на более низкую орбиту, но этот участок его траектории не наблюдался.)

На следующий день, 20 октября 1968 г. был запущен «Космос-249». Оставив разгонный блок на знакомой но частично-орбитальным полетам низкой орбите, он вышел на заметно вытянутую орбиту с апогеем 1639 км и перигеем 502 км, очень близким к средней высоте полета «Kocмoca-248». На втором витке орбита «Космоса-249» была скорректирована так. что он прошел в непосредственной близости от «Космоса-248», после чего взорвался В сообщении ТАСС о его запуске появилась новая формулировка: «Запланированные научные исследования выполнены». К реальной степени успешности испытания она, конечно, отношения не имела, а «объясняла» преднамеренный взрыв спутника всего через несколько часов после старта.

1 ноября «Космос-252» в точности повторил полет «Космоса-249», пролетев на втором витке вблизи «Космоса-248» и затем взорвавшись. Не оставалось сомнений что СССР испытывает систему спутникового перехвата, а наблюдаемая точность наведения неоправданно высокая для ядерного поражения, но явно недостаточная для прямого попадания, подводила к заключению, что поражение цели в данной системе должно осуществляться осколочным зарядом, подрываемым в момент наибольшего сближения перехватчика со спутником-мишенью.

Дополнительные основания для такого предположения давали предшествовавшие рассуждения советских специалистов о том, что ввиду отсутствия в космосе ударной волны, ядерные заряды могут быть менее эффективными для поражения космических объектов[5] и возможными средствами уничтожения орбитальных станций являются шрапнельный заряд, запускаемый по вертикальной траектории на высоту орбиты цели, или «пилотируемый корабль, оснащенный ракетной артиллерией» [19].

По утверждению Министерства обороны США, радиус поражения испытываемой СССР противоспутниковой системы мог составлять около 1 км.

Исходя из этого первая попытка перехвата «Космоса-248» была сочтена неудачной, а вторая, осуществленная «Космосом-252», – успешной.

Необходимо однако отметить, что соображения, из которых получена величина радиуса поражения 1 километр, остаются неизвестными, равно как и их соотношение с действительностью, поэтому сторонние оценки успешности или неудачности наблюдаемых испытаний следует воспринимать с осторожностью.

То, что подрыв перехватчика происходил не во время, а после максимального сближения с целью было, видимо, преднамеренным. Поскольку перехватываемый спутник выводился на орбиту такой же ракетой, что и перехватчик, он был явно велик для просто мишени и мог предназначаться для получения дополнительной информации о ходе испытания, поэтому его реальное уничтожение было нежелательным. Кроме того, испытывая систему сближения и систему подрыва заряда отдельно, можно было заявить, что реальных испытаний противоспутникового оружия не производится.

Следующее испытание ожидалось в августе 1969 г., после запуска «Космоса-291». Однако, видимо из-за неполадки бортового оборудования, эта мишень осталась на нерасчетной орбите с близким к стандартному апогеем 574 км, но перигеем всего 153 км и не проявив никаких признаков активности, через месяц упала из-за атмосферного трения.

Очередная мишень – «Космос– 373» – была запущена 20 октября 1970 г. и после серии маневров вышла па стандартную орбиту высотой от 520 км до 473 км. 23 октября – Космос-374» осуществил ее перехват (сочтенный неудачным), после чего попытка была повторена 30 октября «Космосом-375», прошедшим примерно в километре от цели. В обоих случаях перехват также осуществлялся на втором витке, примерно через три с половиной часа после старта, при прохождении перехватчика вблизи перигея своей траектории.

После первой серии запусков, очевидно, предназначавшихся для проверки принципиальной работоспособности системы, началась отработка различных профилей перехвата. На этом этапе необходимость в тяжелых специально оборудованных мишенях, видимо, отпала и для перехвата стали использоваться более легкие мишени, запускаемые ракетами С-1. Поскольку носители С-1 в то время запускались только с Плесецка, пришлось также изменить рабочее наклонение орбит, чтобы обеспечить компланарность орбит перехватчика и мишени, не нарушая отведенных стартовых коридоров обоих космодромов.

Первой мишенью, запущенной с Плесецка, стал «Космос-394», выведенный 9 февраля 1971 г. на круговую орбиту высотой около 600 км с наклонением 65,9 градуса. Перехватчик, «Космос-397», стартовал, как и прежде, с Байконура на носителе F-1-m и первый в 1971 г. перехват состоялся по уже отработанной двухвитковой схеме с атакой сверху.

Следующая мишень 19 марта 1971 г. была выведена на круговую орбиту высотой 1000 км, соответствующую орбитам американских навигационных спутников «Транзит». Запущенный 4 апреля перехватчик, «Космос-404», тоже использовал необычную орбиту высотой 800 на 1000 км – мало вытянутую и лежащую не выше, а ниже орбиты мишени. Перехват также состоялся на втором витке, через три с половиной часа после старта, но на этот раз перехватчик приближался не сверху, а снизу. Из-за малой разницы высот орбит скорость прохождения вблизи мишени была относительно невелика – около 45 м/с по сравнению с примерно 290 м/с в предыдущих случаях, позволяя определить это испытание скорее как инспекцию, а не перехват. В дополнение ко всему, после сближения с мишенью «Космос-404» не взорвался, как все прежние перехватчики, а двумя тормозными импульсами был сведен с орбиты и вошел в атмосферу над отдаленным районом океана.

В последнем испытании 1971 г. спутник-мишень «Космос-459» был выведен на орбиту высотой всего 277 на 226 км, напоминающую орбиты фоторазведывательных спутников. 29 ноября он был перехвачен «Космосом-462», сблизившимся по обычной двухвитковой схеме с высокой эллиптической орбиты, после чего перехватчик взорвался.

Таким образом, в течение 1971 г. была продемонстрирована способность системы инспектировать и перехватывать орбитальные объекты на высотах от 250 до 1000 км, т е. все военные спутники США, кроме геостационарных.

Видимо, серия испытаний должна была продолжиться и в 1972 г., когда 29 сентября «Космос-525» был выведен на такую же орбиту высотой 1000 км и наклонением 65,9 градуса, как «Космос-404» полутора годами ранее. Перехват его, однако, не был произведен. Возможно, свою роль в приостановке дальнейших испытаний сыграло подписание в 1972 г. Договоров об ограничении стратегических вооружений и систем противоракетной обороны. Тем не менее, маловероятно, что нежелательность дальнейших пусков была осознана внезапно в промежутке между запуском мишени и ожидавшимся через несколько дней стартом перехватчика[6] и, скорее, перехват «Космоса-521» не состоялся по техническим причинам.

Испытания системы возобновились только в 1976 г. и были направлены на отработку новых методик перехвата. 12 февраля «Космос-803» был выведен с Плесецка на околокруговую орбиту с характерным наклонением 66 градуса Перехватчик – «Космос-804» – стартовал 16 февраля и после сложных маневров вышел на близкую к «Космосу-803» орбиту, пройдя мимо него на небольшой скорости. Перехват произошел над территорией СССР, после чего «Космос-804» не взорвался, а сошел с орбиты. По расчетам американских наблюдателей промах составил около 150 километров и испытание было расценено как неудачное.

Данное испытание было связано ЦРУ с советскими военными учениями, проходившими с 29 января 1976 г. На следующий день после запуска «Космоса-804» на учениях отрабатывались удары морской и дальней авиации, завершившиеся имитацией запуска стратегических ракет 19 февраля [20].

Следующий перехватчик стартовал 13 апреля 1976 г., через 4 минуты после того, как «Космос-803» прошел над Байконуром. Выведенный на значительно более низкую эллиптическую орбиту «Космос-814» стал быстро настигать мишень и, совершив «подскок» за счет включения двигателя, всего через 42 минуты после запуска прошел менее чем в километре от «Космоса-803». После успешного перехвата «Космос-814» сошел с орбиты и сгорел в атмосфере.

8 июля 1976 г. «Космос-839» был выведен на наиболее высокую из использовавшихся мишенями орбиту с апогеем 2102 и перигеем 984 км. Когда 21 июля стартовал «Космос-843», он, по-видимому, из-за неполадок не смог выйти на орбиту перехвата и вошел в атмосферу. Анализ орбитальных элементов и сравнение с последующими испытаниями позволили предположить, что перехват предполагалось осуществить на высоте около 1630 км – значительно выше предыдущего рекорда «Космоса-404» в 1971 г. [21].

Однако, в отличие от всех предыдущих случаев, за видимой неудачей не последовала вторая попытка перехватить ту же мишень.

Возобновление испытаний помимо новых методик сближения, сокращения времени перехвата или расширения пределов досягаемости предусматривало освоение новой методики наведения. Первые перехватчики наводились с помощью радиолокаторов, которые относительно легко поддаются глушению. Устойчивость системы к мерам противодействия значительно повышается при использовании оптических датчиков, реагирующих на отраженный солнечный свет или собственное тепловое излучение спутника.

Считается, что инфракрасная система наведения впервые использовалась в декабре 1976 г. при перехвате «Космоса-880» «Космосом-886». После двух витков «Космос-886» прошел вблизи мишени и затем взорвался. В 1980 г. это испытание тем не менее было охарактеризовано как неудачное, поскольку бортовые датчики «не функционировали соответствующим образом» [22], но оценить достоверность такого утверждения автор не берется.

19 мая 1977 г. «Космос-909» был выведен на орбиту, аналогичную «Космосу-839». Через 4 суток была предпринята попытка перехватить его на первом витке на высоте 1710 км, но «Космос-910» прибыл в точку перехвата не вовремя и вошел в атмосферу всего через 70 минут после старта.

Из-за краткости полета «Космос-910» успела зафиксировать только одна из американских РЛС, расположенная на острове Шемия Алеутской гряды.

(Не располагая деталями траекторного анализа, автор мог бы предположить. что аналогичный полет «Космоса-843» мог завершиться успешным перехватом вне зоны радиовидимости иностранных средств слежения. Следуя логике рассуждений западных аналитиков, это объяснило бы отсутствие повторных попыток перехватить «Космос-839»).

Вторая попытка состоялась 17 июня и на этот раз «Космос-918» успешно приблизился на первом витке менее чем на один километр к «Космосу-910» на высоте 1575 км над Землей.

Следующая мишень была выведена на эллиптическую орбиту с перигеем всего 150 км и именно на этой высоте была перехвачена 29 октября 1977 г. «Космосом-961», расширившим таким образом и нижний диапазон работоспособности антиспутниковой системы.

Второе испытание, связываемое с отработкой оптического или теплового наведения, состоялось через год после первого. На этот раз мишень, «Космос-967», была выведена на околокруговую орбиту высотой около 1000 км и 21 декабря 1977 г. «Космос-970» предпринял попытку перехвата по двухвитковой траектории, подобно «Космосу-404» Однако промах оказался слишком значительным и испытание было сочтено неудачным.

Так же неудачно закончилась повторная попытка перехвата «Космоса-967» «Космосом-1004» 19 мая 1978 г.

Последнее испытание состоялось непосредственно перед началом советско-американских переговоров об ограничении противоспутниковых вооружений, однако на протяжении последующих двух лет. пока переговоры продолжались, запуски были приостановлены.

На последней из трех сессий переговоров, происходившей перед подписанием в Вене Договора об ограничении стратегических вооружений ОСВ-2, заключение моратория на антиспутниковые системы казалось уже неминуемым. Однако советская сторона стала настаивать, что американская система «Спейс Шаттл» является «потенциальным противоспутниковым средством» и также должна охватываться мораторием.

Это утверждение позволяет попять, чем же советские военные мотивировали необходимость создания отечественного аналога многоразового корабля. Трудно сказать, насколько они сами верили в боевые возможности транспортных систем типа «Шаттла». но в 1979 г. компромисс оказался невозможен. После ввода советских войск в Афганистан США прервали зашедшие в тупик переговоры, и в апреле 1980 г. Советский Союз возобновил испытания.

Частота их снизилась до 1 раза в год и все они предусматривали двухвитковый перехват мишеней на орбитах высотой 1000 км. Считается, что при этом продолжалась отработка ИК-датчиков и все испытания были неудачными, за исключением перехвата в марте 1981 г. «Космоса-1241» «Космосом-1258», когда, предположительно, вместо инфракрасного наведения было вновь использовано радиолокационное [23]. Однако, отталкиваясь только от доступных траекторных данных, автор расценил бы эти пуски как учебно-тренировочные после ввода системы в эксплуатацию.

Попытка перехвата «Космоса-1169» «Космосом-1174» была явно неудачной, поскольку в отличие от остальных испытаний перехватчик не произвел заключительного маневра непосредственно перед сближением с мишенью, предназначающегося, очевидно, для финального наведения после захвата цели бортовыми датчиками. Подрыв спутника произошел только через два витка после сближения с мишенью.

Может быть, советское Министерство обороны когда-нибудь подтвердит или опровергнет эти предположения, пока же отметим только, что согласно траекторным данным «Космос-1243» 2 февраля 1981 г, прошел достаточно близко от мишени и главным основанием для зачисления его в неудачные стало то, что месяц спустя мишень была перехвачена повторно. «Космос-1379», запущенный 18 июня 1982 г., также осуществил точное сближение, но, согласно [24], его детонатор сработал преждевременно.

Последнее испытание заслуживает особого внимания, поскольку оно с гало частью крупнейших учений советских ядерных сил, названных па Западе «семичасовой ядерной войной» В этот день на протяжении 7 часов были запущены две МБР шахтного базирования SS-11. мобильная ракета средней дальности SS-20 и баллистическая ракета с подводной лодки класса «Дельта» По боеголовкам этих ракет были выпущены две противоракеты и в этот же промежуток времени «Космос-1379» перехватил мишень, имитирующую навигационный спутник США «Транзит». Кроме того, в течение 3 часов между стартом перехватчика и его сближением с мишенью с Плесецка и Байконура были запущены навигационный и фоторазведывательный спутники. Ранее в дни перехвата ни с одного из космодромов никаких других запусков не производилось, так что эти пуски можно рассматривать как отработку оперативной замены космических аппаратов, «потерянных в ходе боевых действий»[7].

Эта демонстрация дала США убедительный повод для создания противоспутниковой системы нового поколения. Предварительные проработки системы с прямым кинетическим поражением начались еще в 1977 г. [25] и ее общая конфигурация определилась уже к началу Хельсинкских переговоров [26]. Однако решение о полномасштабной разработке и развертывании было объявлено президентом Рейганом в июле 1982 г. После того, как 23 марта 1983г. он провозгласил также Стратегическую оборонную инициативу, СССР объявил о прекращении противоспутниковых испытаний [27], но момент был уже упущен.

К 1984 г. американский противоспутниковый перехватчик MHV[8] с инфракрасным самонаведением, запускаемый на траекторию прямого восхождения с самолета F-15 был создан и прошел первые летные испытания.

Когда в 1985 г. ВВС решили провести перехват реальной мишени, СССР пригрозил, что в этом случае он не будет считать себя связанным своим мораторием. 13 сентября 1985 г. испытание все же состоялось, и СССР объявил о прекращении моратория, но в декабре 1985 г. Конгресс США запретил дальнейшие испытания американской системы до тех пор, пока СССР фактически воздерживается от испытаний своей.

В результате несколько лет удерживалось хрупкое равновесие, когда ни СССР, ни США не испытывали имеющиеся у обоих противоспутниковые системы, не будучи уверенными, что выиграют от возобновления испытаний больше, чем противник. Не получая средств, ВВС США с 1988 г. прекратили программу MHV. Судьба советской орбитальной системы остается неизвестной, но даже если она демонтирована, что маловероятно, история противоспутниковых средств на этом не заканчивается.

Перспективы их дальнейшего развития связаны с ведущимися исследовательскими работами в области систем противоракетной обороны.

Создание космической системы ПРО рассматривалось в США еще в начале 60-х гг. в свете советской ракетной угрозы. Тогда необходимость развертывания на низкой орбите системы из 800—3600 спутников привела к скорому отказу от этих планов, тем более, что появившиеся разведывательные спутники показали, что страхи о ракетном превосходстве СССР безосновательны.

В те годы СССР не предпринял никаких видимых действий в этом направлении. Однако начатые в 80-х гг. проработки в США полномасштабной системы ПРО с элементами космическою базирования уже не оставили СССР равнодушным. История СОИ требует отдельного рассмотрения, выходящего за рамки данной работы, как потому, что этот аспект военно-космического состязания наиболее широко дебатировался в советской литературе, так и потому, что до сих пор ни американская СОИ, ни ее советский аналог не дошли до этапа орбитальных испытаний космических средств ПРО.

С советской стороны, однако, такая попытка была сделана. При первом летном испытании РН «Энергия» 15 мая 1987 г. на ней размещался промежуточный вариант аппарата «Скиф ДМ», предназначавшегося для отработки конструкции и бортовых систем боевого космического комплекса с лазерным оружием [28]. Из-за неполадки разгонного блока «Скиф» на орбиту не вышел, и американская программа не получила тем самым мощного толчка для своего расширения.

Разрядка советско-американских отношений в последующие годы привела к тому, что СОИ оказалась на грани полного краха, но война в Персидском заливе создала благоприятную обстановку для переориентации ее к идее обороны от ограниченных ракетных ударов со стороны третьих стран или террористических формирований. К тому же, после распада СССР представители ряда республик стали проявлять готовность согласиться с аргументацией США, а в феврале 1992 г. президент России Б.Н.Ельцин даже предложил США совместно разработать и эксплуатировать глобальную систему ПРО.

Принципиально важные вопросы о влиянии систем ПРО на стратегическую стабильность и о судьбе советско-американского Договора об ограничении систем противоракетной обороны, прямо запрещающего создание систем ПРО космического базирования, выходят за рамки данной работы. Отметим лишь, что создание противоракетных средств космического базирования будет одновременно, и даже прежде всего, новым этапом в создании антиспутникового оружия, поскольку для таких средств задача спутникового перехвата будет несравненно легче их основной роли. Кроме того, даже «тонкая» система обороны от ограниченного ракетного удара более чем достаточна для полного уничтожения немногочисленных по сравнению с баллистическими ракетами спутников потенциального противника.

3.2. Разведывательные системы.

Космическая разведка, как и всякая другая, предназначена для получения легально недоступной информации о деятельности иных государств. От других видов технической разведки она отличается только способом размещения средств сбора данных.

Космическое базирование технических средств наблюдения обладает уникальными преимуществами, делающими космическую разведку во многом незаменимой. Поскольку международно признаваемый суверенитет государств распространяется только на атмосферное пространство над их территорией[9], разведывательные спутники могут вполне законно приближаться к любому объекту на этой территории на расстояние около 100 километров, как бы он ни был удален от государственных границ. Кроме того, трасса движения спутника периодически проходит над всеми точками поверхности Земли в определяемой наклонением рабочей орбиты полосе широты, что позволяет обеспечить глобальное наблюдение с помощью небольшого числа одновременно функционирующих аппаратов.

Преимущества использования космического пространства для слежения за поверхностью Земли (как ранее и для ее бомбардировки) были осознаны еще до запуска первых спутников, и с начала космической эры разведывательные спутники заняли одно из главных мест в космических программах как США, так и СССР.

3.2.1 Оптическая разведка.

Первым направлением космической разведки стали системы оптического наблюдения, явившиеся логическим развитием аэрофотосъемки.

Еще за 4 месяца до заявления Эйзенхауэра о намерении США запустить научный искусственный спутник Земли в течение Международного геофизического года, в марте 1955 г. ВВС США при финансовой поддержке ЦРУ объявили конкурс предложений по созданию «Стратегической спутниковой системы» для получения детальных изображений земной поверхности.

Из трех прорабатывавшихся технических решений – телевизионной съемки, фотографирования с проявлением пленки на орбите и фотосъемки с возвращением экспонированной пленки на Землю – наилучшую детальность изображений обещал последний способ. Правда, в отличие от остальных, он требовал не только обеспечения заданной ориентации аппарата на орбите, но и решения проблемы его безопасного возвращения на Землю. Основные технические задачи, которые требовалось решить для получения детальных изображений Земли совпадали, таким образом, с ключевыми проблемами создания пилотируемых космических аппаратов.

В США создание пилотируемых кораблей не было поручено ВВС, а стало задачей гражданского космического ведомства – НАСА; в результате американские космические корабли и разведывательные спутники разрабатывались различными подрядчиками.

В Советском Союзе до конца 50-х гг. был только один Главный конструктор по космической технике и обе задачи не только могли, но и ввиду ограниченных по сравнению с США производственных возможностей должны были решаться в рамках одной программы.

В 1958 г. ОКБ-1 приступило к эскизному проектированию ориентируемого корабля-спутника для полета с человеком на борту. В отличие от американского «Меркурия» советский корабль делался полностью автоматическим, что можно объяснить целым рядом причин: неизученностью воздействия невесомости на организм человека, историческими особенностями советской ракетной промышленности, не связанной с авиационной так тесно, как в США. Но, как бы то ни было, включение человека только в резервный контур управления космическим кораблем с самого начала делало возможным двойное применение аппарата и показательно, что принятый постановлением ЦК и Совмина план работ по космонавтике на 1960 г. предусматривал «разработку ориентируемого спускаемого спутника, для полета человека и задач наблюдения земли» [1] (выдел. авт.).

Запуски первых американских спутников с аналогичными «задачами наблюдения» вызывали у советского руководства, мягко говоря, негативную реакцию. Хрущев язвительно высказывался о «людях, подглядывающих в чужую спальню» и угрожал, что спутники-шпионы постигнет та же участь, что и самолет-разведчик U-2, сбитый 1 мая 1960 г. Тем не менее, ВВС США придерживались принципа «на-кась, выкуси» и наряду с программой «Дискаверер», формально предусматривавшей только обработку техники космической фотосъемки и возвращения с орбиты, в конце 1960 г. начали запуски спутников SAMOS, открыто предназначавшихся для ведения обзорной фоторазведки.

Разгневанное советское руководство настойчиво требовало в ООН запретить шпионаж из космоса. Учитывая, что к спутникам-шпионам причислялись даже первые американские метеоспутники «Тирос», передававшие грубые телеизображения облачного покрова, возникали опасения, что СССР потребует запретить вообще все космические полеты – ведь любой спутник на околоземной орбите обязательно будет пролетать над территориями других государств.

Советская позиция изменилась только в 1963 г. после создания собственных разведывательных спутников.

Первым советским фоторазведчиком стал «Космос-4», выведенный на орбиту 26 апреля 1962 г. и через 3 суток совершивший объявленную посадку в заданном районе.

С июля по декабрь 1962 г. еще 4 спутника «Космос» были запущены с Байконура носителями A-1 на орбиты, аналогичные орбитам пилотируемых «Востоков». все они были возвращены по прошествии 4 или 8 суток, но в отличие от «Космоса-4» о посадках этих, как и сотен последовавших за ними возвращаемых спутников официально не объявлялось.

Созданные на базе кораблей «Восток» автоматические аппараты, получившие название «Зенит», на несколько десятилетий стали основой систем космической фоторазведки. За это время они неоднократно модернизировались и приспосабливались к конкретным задачам, таким, как обзорная съемка больших площадей, детальное фотографирование районов особого интереса, стереоскопическая съемка, однако, базовая конструкция сохранилась на протяжении более 30 лет. (рис. 2.1).

Наблюдаемые различия длительности полетов, параметров орбит, частот передачи и кодировки телеметрической информации и позывных поисковых радиомаяков[10] позволили западным аналитикам выделить три основных варианта фоторазведчиков «востоковского» типа, называемых «поколениями», а также ряд более мелких модификаций.

Спутники первого поколения запускалось теми же ракетами-носителями и на такие же орбиты, что и пилотируемые «Востоки». Начиная с «Космоса-12» в декабре 1962 г. установилась типичная продолжительность полетов, равная 8 суткам, а частота запусков возросла к 1964 г. до 9 в год. В конце того же 1964 г. наблюдался и первый инцидент в этой программе, когда «Космос-50» по завершении 8-суточного полета не был возвращен, а взорвался на орбите.

Можно только гадать, был ли это взрыв самой тормозной установки или преднамеренное уничтожение спутника после ее отказа для предотвращения возможного при неконтролируемом сходе аппарата с орбиты попадания секретного оборудования в чужие руки.

Второе поколение фоторазведывательных спутников связывается с началом эксплуатации в 1963 г. ракеты-носителя «Союз». Носитель «Союз» отличается от предшествовавшего носителя «Восток» более мощной третьей ступенью, позволившей увеличить массу выводимого на орбиту груза с 4750 до 5500 килограммов[11], что давало возможность установить более совершенную фотоаппаратуру.

Первый спутник, запущенный ракетой «Союз», «Космос-22», вернулся на Землю через 6 суток, но в последующих полетах спутники второго поколения использовали ту же 8-суточную схему, что и первое поколение. При этом высота орбиты подбиралась так. чтобы каждый спутник, совершая по 16 витков в сутки, на 8-й день полета проходил вдоль той же наземной трассы, что и в первый, обеспечивая равномерное покрытие всей охватываемой полосы широт за время полета.

С 1966 г. для запусков фоторазведывательных спутников стали использоваться также стартовые комплексы близ Плесецка Архангельской области, построенные в 1957—59 гг. для боевого дежурства МБР Р-7 [5,6]. Это позволило повысить количество пусков до 20 и более в год, причем если с Байконура фоторазведчики выводились на орбиты с наклонением 65 (и, реже, 51,8 градусов), то расположение северного полигона позволяло запускать их также на орбиты с наклонениями 72—73 и 81 градус, покрывающие все населенные районы Земли.

Поскольку скорость прецессии орбиты зависит от ее наклонения (приложение 1), для каждого использовавшегося наклонения подбирались несколько различающиеся высоты орбит, с тем, чтобы обеспечить повторение наземной трассы по прошествии 7 суток.

В 1966 г. было зафиксировано появление второго варианта спутников второго поколения, отличающегося характером телеметрических сигналов. Расширение его применения совпадает по времени с прекращением использования первого поколения (см. табл. 2.4), а поскольку первая разновидность второго поколения предположительно обеспечивала более высокое разрешение, чем спутники первого поколения, считается, что второй вариант предназначался для менее легальной съемки [7]. Такая прямолинейная логика может иметь мало общего с реальностью, поэтому принятое разделение второго поколения на спутники «высокого» и «низкого» разрешения следует воспринимать только в изложенном выше смысле.

Различение спутников первого и второго поколений не составляло проблемы, поскольку третьи ступени носителей «Восток» и «Союз» различаются по длине почти в 3 раза и легко отличимы по видимому блеску.

Кроме того, пока спутники оптической разведки выводились «Востоками» и «Союзами» параллельно, эти носители запускались на несколько отличающиеся наклонения. Так, с Байконура спутники первого поколения выводились на орбиты с наклонением 51,2—51,3 градуса, а второго – 51,8 градуса, а с Плесецка – 64.6 и 65,6 градуса соответственно. Такое различие не имело практического значения для задач самих спутников и могло быть объяснено только использованием различных стартовых площадок, отстоящих друг от друга на несколько десятков километров. Хотя «Востоки» и «Союзы» используют одинаковые стартовые комплексы, разные площадки могли быть лучше приспособлены для обслуживания различающихся третьих ступеней того или иного носителя.

С 1968 г спутники стали оснащаться дополнительным двигательным отсеком, установленным на сферическом спускаемом аппарате с противоположной стороны от приборно-агрегатного отсека (рис. 21). Такая компоновка впервые использовалась на пилотируемых кораблях «Восход», но там резервная ДУ просто дублировала основной тормозной двигатель, тогда как на спутниках третьего поколения дополнительная установка использовалась для коррекции орбиты.

Возможность корректировать орбиту в ходе полета, продемонстрированная впервые «Космосом-228», позволяла компенсировать тормозящее воздействие атмосферы и, следовательно, использовать орбиты с более низким перигеем, обеспечивающим более высокое наземное разрешение. Кроме того, начиная с «Космоса-251», КДУ использовалась и для временного снижения орбиты, обеспечивающего ежесуточное повторение наземной трассы в течение нескольких дней. Стабилизация трассы повышает вероятность съемки лежащих вдоль нее районов, но ограничивает охват остальной территории. Такое маневрирование показывает, что целью съемки является конкретная область особого интереса и соответствующие спутники классифицируются как предназначенные для детальной фоторазведки.

На некоторых спутниках, предназначавшихся, видимо, для съемки с относительно низким разрешением, «носовые» двигательные установки заменялись отсеком вспомогательной полезной нагрузки. В ряде случаев дополнительная нагрузка использовалась для испытания новых приборов и научных исследований, что особо отмечалось в соответствующих сообщениях ТАСС.

Эти спутники, использовавшиеся с 1968 по 1978 г. сначала относились к третьему поколению, поскольку типичная длительность их полетов, так же как и у маневрирующих спутников, составляла не 8, а 12 суток [7]. В более поздних источниках они называются «вторым поколением с увеличенной продолжительностью [8], исходя из того, что их телеметрические сигналы передаются в режиме времяимпульсной модуляции (PDM), тогда как остальные спутники третьего поколения используют либо импульсную кодировку (типа азбуки Морзе), либо двухтоновые сигналы.

Отметим, что деление на поколения и варианты довольно условно, тем более, что все три поколения используют одну базовую конструкцию, а на различия в маневренности, формате телеметрии и поисковых радиомаяков, которые могут отражать конструктивные особенности, накладываются различия в параметрах орбит и вариации длительности полета, связанные с конкретными задачами каждого полета.

Так, с 1971 г. один-два раза в год стали запускаться аппараты, подобные по телеметрии маневрирующим спутникам третьего поколения, но не маневрирующие. Стабильное и небольшое число запусков привело к предположению, что в отличие от продолжавших использоваться неманеврирующих спутников с времяимпульсной модуляцией эти аппараты предназначены в основном для картографической съемки.

Продление орбитального существования спутников третьего поколения до 14 суток позволило с 1976 г изменить профиль обзорных полетов, осуществлявшихся ранее спутниками первого и второго поколений. Предназначающиеся для общего обзора спутники 3 поколения в течение первых суток полета выводятся на рабочие орбиты с апогеем 415 км. Высота перигея подбирается в зависимости от наклонения так, что за один виток трасса спутника смещается относительно земной поверхности на 23,3 градуса (для используемых наклонений перигей меняется от 324 до З56 км). Это обеспечивает возвращение ее к исходной точке через 201 виток по прошествии почти 13 суток, и как раз в этот момент спутник возвращается на Землю.

Меньшее расстояние между соседними витками, чем в применявшейся ранее 7-суточной схеме покрытия позволяет, не теряя полноты охвата, использовать более ДЛИННОФОКУСНУЮ оптическую систему, обладающую меньшим полем зрения, но дающую белее высокое разрешение. Сохранение же прежней оптической системы означало бы улучшение охвата за счет перекрытия соседних полос наблюдения. Вероятно, именно это и используется в действительности, т к. в описанной схеме наблюдения трассы суточных витков каждый день проходят посередине между витками предыдущего дня [9].

Такие спутники получили название спутников «промежуточного разрешения» чтобы отличать их от спутников «высокого разрешения», стабилизирующих свою трассу для наблюдения конкретных районов и неманеврирующих спутников «низкого разрешения».

В 1984 г были проведены эксперименты по «орбитальному хранению» спутников промежуточного разрешения до выполнения ими штатного обзорного полета. «Космос-1587» и «Космос-1613» после выведения на переходную орбиту оставались там не 8,5 оборота, как обычно, а 183,5. По прошествии более 11 суток они были переведены на обычные рабочие орбиты и возвращены в конце 207-виткового цикла. Помимо точного совпадения хода обоих полетов, преднамеренность операции была видна и в том, что стартовали оба спутника на час с лишним позже остальных аппаратов данного типа, но за счет более длительного полета посадка произошла в обычных условиях освещенности [10].

С 1975 г. спутники третьего поколения стали запускаться на приполярные орбиты с наклонением 81,3 градуса, которое в 1980 г. было заменено на 82,3 градуса. В сообщениях ТАСС об этих запусках указывалось, что «поступающая информация передается в Государственный научно-исследовательский и производственный центр «Природа» для обработки и использования».

Эти аппараты, носившие название «Фрам», были доработаны для ведения многозональной, спектрозональной и цветной съемок в целях изучения природных ресурсов [10а]. Однако, они по-прежнему могли использоваться и для обзорной разведывательной съемки и имеющиеся данные не позволяют с уверенностью судить, каким же образом распределялись, возможности этих спутников между военными и народнохозяйственными задачами.

Подобно спутникам обзорной разведки, «народнохозяйственные» спутники 3 поколения в течение первых суток полета выводились на рабочие орбиты, обеспечивавшие замыкание наземной трассы к моменту возвращения спутника через 13—14 суток. Средняя высота полета составляла обычно 265—275 км либо 220—230 км, при этом трасса повторялась через 207 или 209 витков соответственно. Отдельные спутники – не чаще раза в год – выводились и на более высокие орбиты, достигавшие 340—390 км.

Спутники, запускаемые с 1979 г. на более круглые орбиты с орбитами высотой от 250 в перигее до 280 км в апогее, с 1989 г. стали официально именоваться «Ресурс Ф» и получаемые ими изображения с 1987 г. предлагаются зарубежным пользователям на коммерческой основе. О спутниках, не укладывающихся в орбитальные параметры «Ресурсов Ф» и объявленное суммарное количество их запусков, никаких подробностей не известно. По-видимому, они отличались от «Ресурсов Ф» только комплектацией бортовой оптической аппаратуры и к настоящему времени, возможно, уже выведены из эксплуатации (последний запуск состоялся в июле 1989 г. под именем «Космос-2029»).

Кратковременность полетов спутников, созданных на основе «Востока», вынуждала запускать их в огромных количествах. К середине 70-х осуществлялось по 30—35 запусков ежегодно, но даже при такой интенсивности суммарное время полета фоторазведывательных спутников едва достигало 400 суток в год. При возникновении же международных кризисов интервалы между запусками приходилось еще сокращать, доводя частоту пусков, вероятно, до предела производственных возможностей.

Так, во время советско-китайского конфликта на о. Даманский с 25 февраля по 25 апреля 1969 г. стартовало 10 фоторазведывательных спутников, а когда в конце лета 1969 г. возник новый конфликт на о. Гольдинский, еще 15 спутников было запущено на протяжении менее 3 месяцев [11].

Другим недостатком аппаратов «востоковского» типа является то, что получить и проанализировать изображения можно только после завершения полета и возвращения фотоаппаратуры с отснятой пленкой на Землю. С этой точки зрения даже двухнедельный срок полета спутника в критических условиях оказывался неприемлемо долгим. Так, для отслеживания обстановки на Ближнем Востоке в ходе арабо-израильской войны в октябре 1973 г. Советскому Союзу пришлось запустить 3 фоторазведчика с интервалом в 3 дня и каждый из них вернуть через 6 суток.

Возможно, этот опыт заставил ускорить разработку следующего поколения разведывательных спутников, первый представитель которого вышел на орбиту два года спустя.

«Космос-758», стартовавший с Плесецка 5 сентября 1975 г., был, как и предыдущие фоторазведчики, запущен носителем «Союз», однако уже эксцентрическая орбита с апогеем 350 и перигеем 180 километров и новым наклонением 67,2 градуса не позволяла отнести его ни к одной их известных ранее групп. Он провел на орбите 20 дней, выполнив при этом ряд маневров, свидетельствовавших о значительно большем запасе характеристической скорости, чем у спутников третьего поколения, и 25 сентября взорвался, вероятно при попытке очередного включения двигателя.

Продолжение запусков подтвердило появление нового, четвертого по принятой классификации, поколения фоторазведывательных спутников. Спутники 4 поколения выводятся на характерную опорную орбиту высотой 170—180 на 350—360 километров. Малая высота перигея требует регулярных коррекций для компенсации сопротивления атмосферы и удержания спутника на орбите. Соответствующие включения двигателя используются одновременно и для коррекции дрейфующего аргумента перигея, чтобы сохранить его над нужной широтой при благоприятной для съемки освещенности.

В ходе полета спутники могут временно опускать перигей ниже 160 километров. Подобно спутникам детальной фоторазведки 3 поколения, они стабилизируют таким образом свою суточную трассу относительно земной поверхности и обеспечивают повторные наблюдения заданных районов в течение нескольких последовательных дней при одновременном улучшении разрешения. Повторные прохождения обычно осуществляются в течение 3 суток, после чего аппарат возвращается на исходную орбиту и продолжает прерванное глобальное наблюдение.

В подобных случаях рассмотрение стабилизированной трассы спутника дает 16 точек, над которыми располагаются перигеи его ежесуточных витков. Большинство из них оказывается над территорией СССР или над океаном, а один из немногих оставшихся можно определить как цель съемки, учитывая условия освещенности и возможные текущие особенности международной обстановки.

Типичная продолжительность полетов спутников 4 поколения сначала составляла 30 суток. В начале 80-х гг. она возросла до 45 суток, а в последующие несколько лет достигла 55—59. Полномасштабная эксплуатация системы началась в 1981 г., когда частота пусков увеличилась до 10 в год и спутники начали сменять друг друга, обеспечивая почти непрерывное нахождение на орбите по крайней мере одного из них (см. табл. 2.2).

В том же 1981 г. помимо полетов с целью детальной фотосъемки спутники, относимые к 4-му поколению, стали выводиться и на менее вытянутые орбиты высотой от 200 до 300 километров, позволяющие предположить ведение обзорной съемки. Такие запуски осуществляются, только с Байконура в среднем раз в год. Полеты проводятся, как правило, весной и длятся меньше остальных – сначала 4-6 недель, а в последнее время – 6-7 недель.

В мае 1988 г группа западных журналистов была приглашена на Байконур с целью рекламы советской ракетно-космической техники и наблюдала «обычный запуск искусственного спутника Земли». Сам спутник, получивший обозначение «Космос-1944», показан не был, но было объявлено, что он предназначен для обзорного картографирования [12], а после запуска выяснилось, что он, относится именно к вышеописанной группе.

Очевидно, эти спутники сменили ранее использовавшиеся для общей картографической съемки неманеврирующие СПУТНИКи третьего поколения, последний из которых был запущен в январе 1982 г.

При длительности полетов спутников 4 поколения до полутора-двух месяцев по крайней мере часть получаемой информации должна была передаваться на Землю в ходе полета. Поэтому когда Кеттерингская группа зафиксировала глубоко модулированные радиосигналы, передаваемые ими на частоте 240 МГц, они были связаны с ретрансляцией изображений на Землю.

Это мнение подтверждается недавним заявлением советских разработчиков, что «до 1980 г. цифровые сканирующие приемники с передачей изображения по радиолинии использовались только спутниками военного наблюдения» [13]. Отсюда следует, что на спутниках четвертого поколения (появившихся в 1975 г.) не только была применена ретрансляция изображений по радиоканалу, но и использовались фотоприемники с зарядовой связью, обеспечивающие получение изображения в удобной для последующей обработки цифровой форме.

Однако помимо связываемой с передачей изображений трансляции на УВЧ, от спутников 4 поколения время от времени фиксируются также стандартные УКВ сигналы поисковых маяков. Такие сигналы обычно принимаются на 9-й и 18-й день полета и свидетельствуют о периодическом возвращения на Землю объектов, которые считаются капсулами с отснятой пленкой [14].

Советские спутники четвертого поколения представляются таким образом аналогами американских спутников типа Big Bird, которые оборудовались одновременно оптическими системами для обзорного наблюдения с радиопередачей изображения и для получения детальных снимков, возвращаемых на Землю в капсулах.

Различие профилей полета этих двух типов заключается в том, что по течении расчетного срока пребывания на орбите советские спутники не разрушаются в атмосфере, как американские, а совершают посадку на территории СССР. Долгое время полагалось, что спутники четвертого поколения, «Биг Берд», сводятся с орбиты для затопления несгоревших обломков в океане. Однако в 1988 г. удалось зафиксировать сход с орбиты «Космоса-1942», который был направлен в обычный район приземления советских пилотируемых кораблей [14]. Возвращение спутников 4 поколения преследует, очевидно, цель повторного использования дорогостоящей фотоаппаратуры и, частично, бортовой электроники.

Говоря об аналогии между советскими спутниками 4 поколения и американскими Big Bird, уместно напомнить, что сама система «Биг Берд» была у ВВС США резервным проектом для прорабатывавшейся с 1965 г. пилотируемой разведывательной станции MOL (Manned Orbiting Laboratory). В тот же период КБ Челомея спроектировало аналогичную орбитальную пилотируемую станцию (ОПС) «Алмаз»[12]. В 1969 г. проект «МОЛ» был отменен, как неоправданное дублирование станции НАСА «Скайлэб», и ВВС США воспользовались запасным вариантом, разработав автоматические спутники КН-9, ставшие известными как «Биг Берд». В СССР же пилотируемые разведывательные станции дошли до стадии летных испытаний. Челомею «только» запретили использовать для доставки экипажей собственные транспортные корабли и заставили поделиться своими заготовками с королевской фирмой, которая сделала из них «гражданские» «Салюты» [15].

В отличие от последних, «Алмазы» выводились на значительно более низкие орбиты высотой от 220 до 250 км. Установка на борту фотокамеры со «складной» оптикой, обеспечивающей фокусное расстояние 10 метров [16] и постоянная ориентация станций на Землю системой электромеханической стабилизации однозначно говорили о предназначении «Алмазов» для детальной разведывательной съемки. Отснятую пленку предполагалось проявлять на борту станции, после чего экипаж должен был просмотреть ее и передать наиболее интересные кадры по телевизионному каналу. Остальная пленка возвращалась на Землю в капсуле, отделявшейся от станции в ходе полета [15].

Первый «Алмаз», названный официально «Салютом-2», был запущен 3 апреля 1972 г., но вышел из строя еще до старта корабля с экипажем. 28 апреля ТАСС объявил, что «программа полета завершена», опустив дежурное слово «успешно» и 28 мая станция упала в океан вблизи Австралии.

Последующие станции данного типа, ставшие известными как «Салют-3» и «Салют-5», были выведены на орбиты в 1974 и 1976 гг. Из 5 запущенных к ним кораблей «Союз» только три смогли состыковаться и доставить на станции экипажи, проработавшие в общей сложности 80 суток.

В 1978 г. работы по пилотируемым «Алмазам» были прекращены. Предпочтение было отдано автоматическим системам – по-видимому, именно вышеописанным спутникам четвертого поколения.

Использование для запуска спутников 4 поколения носителя «Союз», применявшегося и для предшествовавших типов фоторазведчиков, свидетельствует в пользу того, что это поколение также разработано Куйбышевским ЦСКБ, ответственным как за выпуск носителей «Восток» и «Союз», так и аппаратов на базе корабля «Восток». Однако запас автономности и характеристической скорости спутников четвертого поколения означает, что конструктивно они имеют мало общего с «востоковскими» предшественниками.

В западной литературе распространено мнение, что спутники 4 поколения созданы на базе корабля «Союз», вызванное прежде всего сходством требований к двигательной системе. Автору это представляется не очевидным, т к. именно двигательные установки являются причиной многочисленных аварий спутников 4 поколения, не наблюдаемых в пилотируемых полетах. Уже то, что два из трех первых спутников в 1975—76 г. взорвались на орбитах, свидетельствует об использовании новой ДУ. Ее очевидная модернизация в середине 80-х, когда ресурс спутников 4 поколения был продлен до двух месяцев, снова привела к тому, что почти ежегодно один из спутников взрывается на орбите. (В 1991 г. очередную аварию, возможно, удалось предотвратить, досрочно возвратив «Космос-2149» после 40 суток полета).

Компоновка спутников 4 поколения остается неизвестной. Можно сказать лишь, что их масса не превосходит 7 тонн, которые носитель «Союз» способен вывести на низкую орбиту, а конструкция включает солнечные батареи, необходимые при полетах длительностью полтора-два месяца.

Пятое поколение советских спутников оптической разведки отсчитывают от стартовавшего в декабре 1982 г. «Космоса-1426». Выведенный с Байконура носителем «Союз» на орбиту с уникальным наклонением 50,6 градуса «Космос-1426» провел на ней 67 суток – на 17 суток дольше тогдашнего рекорда длительности спутников 4 поколения. В течение полета он выполнил 10 коррекций траектории, поддерживая ее перигей на высоте 200—210 км в условиях благоприятной освещенности. 5 марта «Космос-1426» исчез с орбиты, хотя естественное падение было исключено.

Все последующие спутники пятого поколения запускаются на орбиты с наклонением 64,8 градуса и заметно более круглые, чем у «Космоса-1426». В отличие от спутников 4 поколения они не используют свою маневренность для временного снижения орбиты, постоянно сохраняя ее почти круговой и поддерживая высоту в довольно узком диапазоне. Примерно раз в две недели по мере снижения перигея до 220, а апогея до 260 км, производится двухимпульсный маневр, поднимающий орбиту до номинальной с перигеем около 240 и апогеем около 285 км. При этом аргумент перигея постоянно поддерживается близким к 90 градусам, т е. перигей находится над наиболее северными из достигаемых спутниками районов.

Длительность полетов спутников пятого поколения составляет 6—8 месяцев, а в 1987 г. «Космос-1881» установил рекорд долгожительства советских фоторазведчиков, равный 259 суткам. Благодаря этому уже с августа 1986 г, удалось обеспечить постоянное присутствие на орбите как минимум одного спутника пятого поколения. Непрерывность была нарушена очевидными неполадками в ходе полета «Космоса-1936», вызвавшими в мае 1988 г. его возвращение всего через 7 недель после старта и годичный перерыв в дальнейших запусках.

Тем не менее, уже сейчас можно утверждать, что штатный режим эксплуатации данной системы предусматривает постоянное нахождение на орбите двух спутников. Начиная с «Космоса-1770 и -1810» в 1986 г., во всех случаях, когда два спутника пятого поколения оказываются на орбитах одновременно, плоскости их орбит отстоят друг от друга ровно на 91 градус.

Точно такая же конфигурация из двух взаимно перпендикулярных околокруговых орбит с 1976 г. используется американскими спутниками КН-11, осуществляющими обзорное наблюдение с передачей в реальном масштабе времени цифровых изображений, получаемых электронно-оптическими приемниками с зарядовой связью.

О том, что спутники пятого поколения также должны передавать получаемые изображения по радиоканалу, говорит уже продолжительность их полетов в совокупности с отсутствием видимых признаков возвращения на Землю чего-нибудь вещественного. В отличие от всех предыдущих фоторазведчиков, Кеттерингской группе до сих пор не удалось зафиксировать не только сигналов возвращаемых капсул, но и вообще каких-либо радиопередач спутников пятого поколения. Это может объясняться ретрансляцией информации с помощью остронаправленной антенны через спутники связи или сбросом ее только при прохождении над территорией СССР.

Передача через спутники предпочтительнее, т к. позволяет наземным службам получать изображения в реальном масштабе времени, но трудности, наблюдаемые при использовании геостационарных ретрансляторов для орбитальных станций «Мир» и «Алмаз», могут означать, что такая методика еще недостаточно отработана. Тем не менее, разведка США утверждает, что СССР обладает возможностью получать спутниковые изображения в близком к реальному масштабе времени и «движется к созданию систем наблюдения в реальном времени» [17].

Ввод в эксплуатацию долгоживущих спутников 5 поколения, видимо, стал причиной сокращения обзорных полетов спутников 3 поколения, и полного прекращения их в 1990 г. За счет этого общее количество запусков фоторазведывательных ИСЗ с 1984 г. начало уменьшаться, в то время как их суммарный годовой налет продолжал расти.

Последним новшеством в советской программе, связываемой с оптической разведкой, стал «Космос-2031», запущенный 18 июля 1989 г. Выведенный с Байконура на орбиту с наклонением 50,6 градуса, использовавшимся до этого лишь дважды, причем последний раз – столь же непонятным «Космосом-1426», он не походил по поведению ни на спутники четвертого, ни пятого поколений. После 44 суток пребывания на орбите, в течение которых «Космос-2031» выполнил 9 маневров, была предпринята попытка возвратить его, но она не удалась, и при прохождении над стандартным районом посадки аппарат был взорван [10].

Необычно и то, что запуск «Космоса-2031» заслужил отдельного описания в журнале ВВС «Авиация и космонавтика», где утверждалось, что он является «первым из новой серии космических аппаратов для научных исследований» [18].

Возможно, именно этот запуск послужил основанием для упоминаний о «спутниках шестого поколения», хотя на это звание имеются более ранние претенденты.

В 1986—87 гг. несколько спутников были выведены на низкие орбиты ракетами «Зенит». Один из них, «Космос-1871» был официально признан неудачным и через 10 суток после старта неуправляемо упал с орбиты. Показательно, что этот аппарат был одним из менее чем десяти советских спутников, выведенных на орбиту с обратным вращением. Наклонение свыше 90 градусов имеет смысл только для сохранения постоянных условий освещенности во время полета, и такие солнечно-синхронные орбиты с 1966 г. используются почти всеми американскими фоторазведчиками.

Поскольку высота, при которой достигается солнечная синхронность орбиты, очень сильно зависит от наклонения, точно определить расчетную высоту орбиты «Космоса-1871» не представляется возможным. Тем не менее, наклонение его переходной орбиты – 97 градусов – больше соответствует американским фоторазведчикам «Биг Берд» и KH-11, работающим на высотах от 160 до 500 км, а не летающим на высотах от 700 до 1200 км спутникам метеорологического наблюдения и дистанционного зондирования, которые используют наклонения 98-99 градусов.

Все остальные спутники, выведенные «Зенитом» на низкие орбиты, имели наклонения 64.8 градуса, однако ТАСС указал, что «Космос-1873» аналогичен «Космосу-1871». Поскольку обнародованные планы создания систем дистанционного зондирования предусматривают запуски «Зенита» на солнечно-синхронные орбиты не ранее 1993 г, рассмотренные пуски трудно объяснить иначе, чем испытаниями нового типа спутников оптической разведки. Аппараты, масса которых превышала грузоподъемность носителя «Союз» (объявленная масса «Космоса-1871» составляла 10 тонн), возможно, разрабатывались уже не ЦСКБ Д. Козлова, а, например, НПО «Южное», изготовляющим сами РН «Зенит». Последнее обстоятельство, кстати, могло бы способствовать прекращению программы после первых неудач.

Наиболее важным показателем систем космической съемки помимо временного охвата является пространственное разрешение, определяющее минимальный размер различимых на поверхности Земли деталей. Понято, что ни одна сторона не желает раскрывать реальных возможностей слежения за противником и не показывает своих разведывательных снимков.

Наиболее детальные из доступных изображений земной поверхности получаются установленными на спутниках «Ресурс Ф» камерами СА-20М (КФА 1000) с фокусным расстоянием 1 м. и размером кадра 300х300 мм. Эти снимки имеют пространственное разрешение 6—8 метров [19], которое последующей обработкой может быть улучшено до 2—4 метров, но уже сам факт их свободного коммерческого распространения подтверждает, что это далеко от предела возможностей военных пользователей.

В 1989 г. тогдашний начальник космических частей А. А. Максимов утверждал, что «космическая разведка делает возможным получение изображений с разрешением до 0,2—0,3 метра» [20]. Американским спутникам КН-11А приписывается способность различать объекты поперечным размером менее 10 см, что по мнению одних экспертов является физическим пределом, устанавливаемым свойствами атмосферы, тогда как другие утверждают, что компьютерное улучшение изображений теоретически не имеет предела разрешения.

Встречая утверждения о способности разведывательных спутников читать номера автомобилей, следует не только помнить, что номера не пишутся на крышах, но и иметь в виду, что линейные протяженные объекты могут разрешаться на снимках, если их поперечный размер составляет всего 5% от элемента разрешения, т е. на снимке, где удается разглядеть, скажем, кабель диаметром 5 сантиметров, точечные объекты будут разрешаться, только если их размер превосходит метр.

Сравнение хронологии использования советских спутников оптической разведки со сменой поколений фоторазведывательных спутников США показывает, что советские системы находятся в эксплуатации дольше, чем американские и новые типы спутников после введения в строй долгое время сосуществуют с предыдущими, не сменяя их сразу, а постепенно вытесняя. Одно из возможных объяснений состоит и том, что системы принимаются недоработанными и годами доводятся уже в ходе эксплуатации. Другой причиной может быть инерционность промышленных предприятий, заинтересованных в продолжительном серийном выпуске уже освоенных аппаратов.

Показательно, что только в 1990-91 гг. стало резко сокращаться использование спутников третьего поколения для ведения детальной фоторазведки, хотя приспособленные для аналогичных целей спутники 4 поколения применяются с 1975 г.

Процесс этот, по всей видимости, стимулировался бюджетными ограничениями, которые Министерство обороны стремилось удовлетворить за счет прекращения эксплуатации более старых систем. Это, однако, отнюдь не означает снижения приоритета фоторазведывательных спутников, что видно уже из того, что уменьшение количества их запусков не сказалось на суммарном налете фоторазведчиков ввиду увеличения среднего времени активного существования.

3.2.2 Радиотехническая разведка.

3.2.2.1 Системы радиопрослушивания

При всей детальности космической фотосъемки оптические изображения выявляют только внешний вид и расположение наблюдаемых объектов. Прослушивание же излучений в радиодиапазоне дает возможность более точно определить назначение военных объектов, их характеристики и режим функционирования. Так, регистрация излучения радиолокационных станций позволяет определить их дальность действия, чувствительность, охватываемый объем, что облегчает создание средств противодействия. Интенсивность радиообмена между штабами и подразделениями вооруженных сил качественно характеризует режим их функционирования, и ее резкое изменение может свидетельствовать о готовящейся перегруппировке сил еще до того, как соответствующие изменения обнаружатся на оптических изображениях.

Отождествление спутников, предназначенных для пассивного прослушивания радиосигналов, значительно сложнее и неопределеннее, чем в случае оптической разведки. Тем не менее, формулируя общие требования к космической системе радиотехнической разведки, можно определить, какие из наблюдаемых спутниковых систем удовлетворяют им наилучшим образом.

Во-первых, задача радиопрослушивания требует глобального охвата, поэтому спутники должны запускаться на орбиты с высоким наклонением. Во-вторых, система должна обеспечивать неоднократное прослушивание каждого района в течение суток, чтобы затруднить меры радиомаскировки. В-третьих, спутники должны летать возможно ниже, чтобы фиксировать слабые сигналы, но достаточно высоко для того, чтобы длительность их орбитального существования превышала ресурс бортовой аппаратуры. (Система коррекции орбиты представляется излишней, т к. спутники радиотехнической разведки принимают сигналы сразу со всей зоны видимости и поэтому не нуждаются в такой точности наведения, как фоторазведчики).

Первая советская космическая система, связываемая с осуществлением радиотехнической разведки, начала развертываться в 1967 г. и в завершенном виде состояла из 4 спутников, обращающихся по околокруговым орбитам средней высотой около 525 км и наклонением 74 градуса, отстоящим друг от друга примерно на 45 градусов по долготе восходящего узла [22]. На такие же орбиты выводились американские спутники радиотехнической разведки, запускавшиеся с 1962 по 1971 г, причем с 1966 г. последние использовали даже то же наклонение – 75 градусов.

Спутники, масса которых могла достигать 1 тонны, запускались с Плесецка носителями С-1 («Космос»), причем замены производились до того, как сопротивление атмосферы сводило предыдущие спутники с рабочей орбиты. С 1970 по 1977 г. ежегодно осуществлялось в среднем по 4 запуска, что соответствует характерному времени активного функционирования около года (см. табл. 2.5) С 1978 г. частота пусков резко упала, и в 1982 г. они полностью прекратились, уступив место новой системе.

Спутники второго поколения начали запускаться уже с 1970 г. и поначалу были приняты за аварийные «Метеоры», поскольку, как и метеоспутники первого поколения, выводились носителями «Восток» на круговые орбиты высотой около 650 км и наклонением 81,2 градуса.

Регулярное появление 1—2 «неудачных «Метеоров» в последующие годы быстро опровергло предположение об авариях. Кроме того, с 1971 г. все «Метеоры» стали запускаться на орбиты высотой около 900 км. Продолжение пусков «Космосов» на прежнюю орбиту некоторое время приписывалось развертыванию специальной военной метеорологической системы, подобной американской системе DMSP, созданной ВВС после того, как гражданские метеоспутники США стали выводиться на более высокие орбиты.

В 1975г. наконец определился интервал между плоскостями орбит в создаваемой системе – 60° вместо 90 у «Метеора». После того, как в 1978 г. все 6 плоскостей были впервые заполнены, система радиотехнической разведки на базе носителей С-1 стала свертываться, и «метеороподобная» группа была окончательно признана вторым поколением спутников радиотехнической разведки [23].

Возможность двухимпульсного выведения на круговые орбиты грузов, неподъемных для С-1, представилась с появлением носителя «Циклон» (F-2). С 1978 г. он тоже стал использоваться для запусков на орбиту высотой 650 км, но с наклонением не 81,2, а 82,6 градуса.

Два из трех таких спутников, запущенных на этапе летных испытаний «Циклона», были объявлены как экспериментальные океанографические. Начиная же с «Космоса-1300», в августе 1981 г. началось формирование группировки, параллельной системе радиоразведки второго поколения.

Наиболее вероятно, что отработка «Циклона» позволила вернуть спутники второго поколения на носители «родной» фирмы, отказавшись от вынужденного использования «Востоков». Различие штатных траекторий выведения и итоговых наклонений орбит не позволяло провести прямую замену спутников в уже созданной группировке. Отчасти поэтому переход от «Востоков» к «Циклонам» растянулся на 2 года, и в процессе его новые спутники выводились на орбиты, отстоящие то на 45, то на 90 градусов друг от друга, прежде чем в 1983 г. стала устанавливаться стандартная конфигурация из 6 орбитальных плоскостей, разнесенных на 60 градусов.

Значительное повышение точности выведения при переходе от «Востока» к «Циклону» позволило понять, что расчетная орбита спутников радиотехнической разведки является кратной, и их трассы должны повторяться через каждые 44 витка, по прошествии 3 суток (для наклонения 82,6 градуса такая кратность достигается при средней высоте орбиты 647 километров).

Система из 6 орбитальных плоскостей с наклонением 82,6 градуса была полностью укомплектована спутниками в 1985 г и с тех пор непрерывно поддерживается в рабочем состоянии. Прием телеметрических сигналов свидетельствует, что в каждой плоскости может одновременно функционировать более одного спутника, следовательно, новые запуски производятся не только для замены вышедших из строя, но и заблаговременно. В последние годы частота запусков резко сократилась, что говорит либо о возросшей продолжительности существования спутников данного типа, либо о создании достаточного их орбитального резерва в предыдущие годы. Если в 1985—88 гг. запускалось в среднем 5 спутников в год, то в 1989 ни одного, а в 1990—91 по одному (см. табл. 2.5).

Последняя на сегодняшний день система, связываемая с ведением глобальной радиотехнической разведки, состоит из спутников, выводимых на круговые орбиты высотой около 850 км и наклонением 71 градуса.

Хотя наклонение орбит этих спутников ниже, чем у предыдущего семейства, охват от полюса до полюса сохраняется благодаря большей высоте полета, а период обращения, составляющий чуть менее 102 минут, обеспечивает почти точное воспроизведение ежесуточной трассы через 14 витков.

Эти обстоятельства позволили уже после первого запуска в сентябре 1984 г. заключить, что данные аппараты представляют собой новое поколение спутников радиотехнической разведки [24]. Перед попыткой запуска аналогичного спутника 27 июля 1991 г. он был впервые официально объявлен как «спутник военно-технического назначения, имеющий целью контроль за выполнением договорных обязательств по проблемам разоружения» [25].

Штатным носителем для спутников этого типа является РН «Зенит», но первые два, «Космос-1603» и «Космос-1656», были запущены в 1984 и 1985 гг. ракетами «Протон» (D-1-e), что, по всей видимости, было связано с запозданием разработки «Зенита», первый испытательный пуск которого состоялся только в апреле 1985 г.

На используемую орбиту высотой 850 км с наклонением 71 градус «Зенит» способен вывести до 10 тонн, что делает аппараты «типа «Космоса-1603» самыми крупными из находящихся сейчас в эксплуатации советских разведывательных спутников[13].

Уже первые запуски этой серии показали, что спутники выводятся в орбитальные плоскости, отстоящие друг от друга на 45 градусов, и позволили заключить, что полная система должна состоять из 4 аппаратов. До сих пор, однако, одновременно функционировало не более трех. Попытки завершить развертывание системы в 1990 и 1991 гг. были сорваны авариями ракет-носителей, приведшими к гибели двух спутников 4 октября 1990 и 30 августа 1991 г. В начале 1992 г. произошла третья подряд авария «Зенита» с аналогичным спутником [25а].

3.2.2.2 Радиолокационные системы

В отличие от систем пассивного радиопрослушивания, регистрирующих собственные излучения объектов, активные системы сами генерируют облучающий пучок электромагнитных волн, и, принимая отраженные волны, способны фиксировать объекты, соблюдающие радиомолчание. Поскольку отраженный сигнал содержит информацию как о расстоянии до объекта (запаздывание) так и о его относительной скорости (доплеровский сдвиг частоты), обработка радиолокационного сигнала позволяет восстановить изображение местности, хотя и не в видимом, а в радиодиапазоне. Таким образом, с точки зрения заказчика отображающие локаторы ближе к системам оптической разведки.

При этом важно, что радиолокационные системы позволяют получать изображения независимо от условий освещенности и наличия облачности, являющейся главной помехой для оптической съемки.

Однако для получения изображений той же детальности, что и оптическая система, радиолокатор должен был бы иметь антенну, во столько раз превосходящую по размеру объектив оптической системы, во сколько длина используемых радиоволн больше длины волны видимого света. При использовании дециметрового диапазона разница составляет 5 порядков и эквивалентом 10-сантиметровой линзы была бы 10-километровая антенна. Создания реальной антенны таких размеров можно избежать благодаря тому, что используемые при локации электромагнитные волны когерентны. Это позволяет синтезировать во времени искусственную апертуру из последовательных положений одной движущейся по орбите физической антенны и при технически мыслимых размерах антенн приблизить отображающие радары по разрешающей способности к оптическим системам.

Другой критической для космической радиолокации проблемой является энергоснабжение, поскольку потребляемая мощность излучателя пропорциональна четвертой степени рабочей дальности и для питания орбитального радара требуются чрезвычайно большие солнечные батареи, вызывающие значительное аэродинамическое торможение. Потребляемая мощность может быть снижена за счет уменьшения высоты рабочей орбиты, но при этом атмосферное торможение возрастает из-за увеличения плотности среды.

В СССР компромисс был найден на пути использования ядерных энергоустановок. Запуски радиолокационных спутников с ядерными реакторами начались в декабре 1967 г. Они выводились с Байконура ракетами F-1 на круговые орбиты высотой 250—260 км с наклонением 65 градусов. Такая высота обеспечивала достаточную чувствительность локатора, но малое время орбитального существования, поэтому во избежание быстрого падения реактора на Землю спутники по завершении активного существования переводились на орбиту захоронения высотой около 1000 км, где отработавший реактор должен просуществовать от 300 до 600 лет[14].

Отработка космических ядерных энергоустановок, очевидно, сопровождалась значительными техническими проблемами, вынуждавшими в целях безопасности уводить реакторы на высокую орбиту всего через несколько дней после запуска (см. табл. 2.6).

Начиная с 1974 г. спутники стали летать попарно, что могло быть истолковано, как переход к ограниченной эксплуатации. Пары радиолокационных спутников выводились на компланарные орбиты и угловое расстояние между ними в плоскости подбиралось так, чтобы просматриваемые обоими на каждом витке полосы прилегали друг к другу. Кроме того, оба спутника двигались вдоль общей наземной трассы, проходя над одними и теми же точками через два или три дня друг после друга. Высоты орбит в течение всего периода активного существования поддерживались бортовыми двигателями в пределах, обеспечивающих точное воспроизведение наземной трассы через каждые 111 витков по прошествии 7 суток [26].

В 1974 г. директор Военно-морской разведки США объявил, что данная система предназначена для слежения за перемещениями ВМС США и их союзников [27]. Не говоря о разведывательных данных, с технической точки зрения такое утверждение могло быть обосновано оценкой разрешающей способности орбитального локатора, которая могла быть произведена по характеристикам его облучающих импульсов. Согласно [28], такие спутники, получившие сокращенное обозначение RORSAT (от Radar Ocean Reconnaissance Satellite – спутник радиолокационной океанской разведки), способны фиксировать корабли класса эсминцев при отсутствии волнения, и класса авианосцев в бурном море.

Кроме того, стальные, хорошо отражающие радиоволны суда на ровной океанской поверхности естественно представляются первым объектом наблюдения при создании систем радиолокационного слежения. ВМС США в конце 60-х гг. сами начинали проработки радиолокационной системы «Clipper Bow» для наблюдения за советским флотом, но из-за высокой стоимости проекта предпочли систему пассивных радиоинтерферометрических измерений «White Сlоud». Для СССР задача слежения за флотами соперника представлялась гораздо более важной, чем для США и НАТО и не удивительно, что в Советском Союзе для морской радиотехнической разведки были использованы оба подхода[15].

Пассивные спутники, предназначавшиеся для определения местоположения западных боевых кораблей по их собственному радиоизлучению, начали запускаться в декабре 1974 г. Как и «Рорсаты», эти новые спутники, окрещенные на Западе «EORSAT» (от Electronic Ocean Reconnaissance Satellite – спутник электронной океанской разведки), запускались с Байконура носителями F-1-m на орбиты с наклонением 65 градусов. Использование пассивной методики позволило поднять их рабочие орбиты до высоты 430 на 445 километров, значительно снизив тем самым сопротивление атмосферы и расширив полосу обзора. Подобно «Рорсатам», высоты апогея и перигея поддерживались в очень узких пределах, отклоняясь от номинальных значений не более чем на 3 километра, что обеспечивало точное повторение наземной трассы через 61 виток по прошествии каждых 4 суток. Для этого корректирующие включения двигателей малой тяги проводились каждые 2—3 дня[16]. Кратные орбиты используются практически во всех системах космического наблюдения, но из всех советских систем только «Рорсаты» и «Эорсаты» поддерживают свою трассу с такой точностью.

Отсутствие на борту ядерных энергоустановок избавляет от необходимости захоронения «Эорсатов» на высоких орбитах, однако по завершении активного функционирования они все же выполняют маневр ухода с рабочей орбиты, несколько меняя ее высоту, после чего переходят в режим естественного снижения.

До 1987г. в процессе этого снижения большинство спутников взрывалось, зачастую спустя несколько месяцев, причем в ряде случаев отмечалось несколько взрывов через значительные промежутки времени. Возможно, это происходит спонтанно, в результате постепенного разрушения двигательной установки и соединения невыработанных остатков топлива.

Подтверждение того, что задачи обеих систем взаимосвязаны, последовало после шумного инцидента с «Рорсатом» «Космос-954».

В конце октября 1977 г. «Космос-954» прекратил регулярные коррекции орбиты, но перевести его на орбиту захоронения не удалось. По последующим сообщениям ТАСС, 6 января 1978 г. спутник внезапно разгерметизировался, из-за чего бортовые системы вышли из строя [29]. Неуправляемое снижение аппарата под действием верхних слоев атмосферы завершилось 24 января 1978 г. сходом с орбиты и падением радиоактивных обломков па севере Канады.

Помимо международного скандала, авария повлекла за собой длительное прекращение полетов «Рорсатов» для усовершенствования конструкции. Запуски же «Эорсатов» в это время участились и с апреля 1979 г. они тоже стали летать парами. Эти пары тоже сначала были компланарными, но спутники размещались в плоскости со сдвигом на четверть или на половину оборота, что обеспечивало движение вдоль общей трассы с интервалом в 1 или 2 дня. При смещении на половину оборота последовательные витки каждого аппарата пролегали в точности посередине между витками предыдущего, давая наиболее равномерное покрытие, использование же в ряде случаев смещения на четверть оборота позволяло предположить, что полное развертывание операционной системы могло предусматривать размещение четырех спутников одновременно.

Достигнутая длительность активного существования не позволяла, однако, этого добиться, и когда в 1980 г. возобновились запуски «Рорсатов»[17], две системы стали использоваться совместно.

Первый после перерыва «Космос-1176» был выведен в плоскость, отстоявшую на 146 градусов от плоскости орбиты единственного на тот момент «Эорсата». Из-за различия высот скорости прецессии орбит несколько различались, и угол постепенно увеличивался, но скорость его изменения была достаточно мала – 1 градус за 3 суток, – чтобы конфигурация не сильно изменилась на протяжении совместного функционирования. Во всех последующих случаях, когда «Рорсат» запускался в момент наличия на орбите только одного работающего «Эорсата», начальное угловое расстояние между восходящими узлами их орбит подбиралось в пределах 142—146 градусов.

До падения «Космоса-954» продолжительность работы «Рорсатов» не превышала полутора-двух месяцев. «Космос-1176» почти удвоил прежний рекорд, проработав 134 дня. Однако в 1981 г. два «Рорсата» пришлось увести на безопасные орбиты всего через 8 и 13 суток после запуска, что свидетельствовало о продолжении неполадок. Средняя долговечность пассивных «Эорсатов» к этому времени достигла уже почти 6 месяцев, а «Космос-1167» функционировал более года. Ограниченность времени функционирования «Рорсатов» заставляла, видимо, синхронизировать их запуски с ожидаемыми периодами повышения военно-морской активности, и эти полеты, как правило, кореллируют с проведением крупных учений ВМФ США и НАТО, а также собственного флота СССР.

Парные полеты «Рорсатов» удалось возобновить только к середине 1982 г., но через полгода после этого произошел еще один инцидент. 28 декабря 1982 г. работавший с 30 августа «Космос-1402» не удалось перевести на орбиту захоронений и он начал неконтролируемое снижение. Конструктивные доработки после предыдущей аварии позволили отделить активную зону от термостойкого корпуса реактора и предотвратить компактное падение обломков. Активная зона вошла в атмосферу 7 февраля 1983 г. и радиоактивные продукты деления рассеялись над Южной Атлантикой.

Авария «Космоса-1402» заставила прервать запуски «Рорсатов» еще на полтора года, парные же полеты возобновились только во второй половине 1985 г. К этому времени «Эорсаты» уже достигли почти непрерывного нахождения на орбите двух спутников одновременно, и в некоторые моменты на орбите оказывалось сразу три компланарных «Эорсата», отстоящих друг от друга на 90 градусов. Однако полностью укомплектовать орбитальную плоскость ни разу не удавалось и, видимо, по этой причине в 1986 г. «Космос-1735» опробовал новую рабочую орбиту с трехсуточной кратностью. Ее высота составляла 405 на 417 километров, и снижение периода обращения с 93,3 до 92.7 минуты обеспечивало воспроизведение наземной трассы через 46 витков вместо 61.

Месяц спустя «Космос-1737» был выведен на орбиту с наклонением 73,4 градуса – самым высоким из когда-либо использовавшихся при запусках с Байконура. Высота ее была подобрана так, чтобы тоже обеспечивать 3-суточную 46-витковую кратность. На этой орбите, улучшавшей условия наблюдения приполярных районов. «Космос-1737» проработал 8 месяцев. После этого он неожиданно исчез, что могло означать лишь преднамеренное сведение его с орбиты. Хотя после этого все «Эорсаты» стали по завершении работы уводиться с рабочей орбиты тормозным импульсом, а не постепенным разгоном, как раньше, «Космос-1737» до сих нор остается единственным «Эорсатом», заторможенным до немедленного входа в атмосферу.

В 1987 г. экспериментирование распространилось и на «Рорсаты». Так, «Космос-1900» был выведен на несколько более высокую, чем стандартная, орбиту с перигеем 255 и апогеем 270 километров, обеспечивающую повторение наземной трассы не через 7, а через 6 суток после 95 оборотов.

Более примечательно, что в 1987 г. были запущены два спутника, оборудованные новыми ядерными энергоустановками. В отличие от предыдущих «Рорсатов» «Космос-1818» и«Космос-1867» сразу выводились на орбиту высотой около 800 км. Как было объявлено впоследствии, каждый из них имел длину 10 метров, диаметр 1,3 м и массу 3800 кг. 1250 кг приходилось на термоионный[18] ядерный реактор «Топаз», заряженный 31,1 кг 90-процентного урана-235 [30].

Хотя обеспечение радиационной безопасности при испытаниях нового реактора могло бы быть достаточно веским основанием для проведения их на более высокой орбите, использование «Космосом-1818» и «Космосом-1867» кратной орбиты с повторением трассы через 6 суток и 99 витков, говорит о том, что их деятельность не ограничивалась испытанием энергоустановки. Кроме того, спутники были выведены в одну орбитальную плоскость на расстояние 120 градусов друг от друга, т е. следовали бы вдоль общей трассы с интервалом в двое суток. Проведению совместных наблюдений, однако, помешал выход «Космоса-1818» из строя вскоре после прибытия «Космоса-1867».

Одним из мотивов перехода на более высокие орбиты могли стать испытания в США противоспутниковой системы самолетного базирования, главной целью которой открыто объявлялись советские спутники морской разведки. (Хотя космическое наблюдение считается стабилизирующим фактором, руководство ВМФ США полагает, что данные советские системы способны вести также прямое целеуказание для противокорабельных средств в реальном масштабе времени.)

«Топазы», обладавшие кпд теплоэлектрического преобразования 5—10% против 2—4% у прежних реакторов, могли сулить частичную компенсацию потери радиолокационного разрешения при переходе на более высокие орбиты. Кроме того, они обладали значительно большей долговечностью. «Космос-1818» проработал на орбите 6 месяцев, «Космос-1867» – год, и ожидалось, что в дальнейшем ресурс орбитальных реакторов будет доведен до 3—5 лет [31]. Однако продолжение программы оказалось под вопросом из-за очередного инцидента с низкоорбитальным реактором.

В апреле 1988 г. была утеряна связь с упоминавшимся выше «Космосом-1900», выведенным на орбиту в декабре 1987 г. В течение пяти месяцев спутник неконтролируемо снижался, и наземные службы не могли дать команду ни на увод реактора на высокую орбиту, ни на отделение активной зоны для более безопасного ее схода с орбиты. К счастью, за пять суток до ожидавшегося входа в атмосферу, 30 сентября 1988 г. сработала система автоматического увода реактора, включившаяся ввиду исчерпания запаса топлива в системе ориентации спутника [32].

Хотя само по себе происшествие не нанесло материального ущерба, его наложение на предшествовавшие катастрофы «Челленджера» и Чернобыльской АЭС привело к беспрецедентным протестам против использования ядерных энергоустановок в космосе. Это обстоятельство стало дополнительным фактором, повлиявшим па прекращение полетов «Рорсатов» в 1988 г.

Основной причиной отказа от космических локаторов с ядерным энергопитанием стали, надо полагать, не призывы мировой общественности и уж тем более, не создаваемые реакторами помехи для гамма-астрономии, а низкие эксплуатационные характеристики.

Видимо не случайно после прекращения пусков «Рорсатов» в 1989 г. количество «Эорсатов» стало увеличиваться. С апреля 1987 г. испытанная впервые «Космосом-1735» 3-суточная орбита с 46-витковой периодичностью стала стандартной и одновременно функционирующие спутники стали располагаться в ней через 120 градусов, что обеспечивало их поочередное прохождение одних и тех же участков наземной трассы через сутки друг после друга. В 1989 г. после полного укомплектования этой плоскости тремя спутниками началось неожиданное заполнение второй плоскости, отстоящей на 172 градуса от первой. Поскольку за время оборота наземная трасса смещается на 23,48 градуса, такое угловое расстояние обеспечивает движение всех спутников вдоль одной и той же трассы, причем спутники из второй плоскости опережают соответствующие спутники из первой ровно на 8 витков.

В конце 1989 г. в обеих орбитальных плоскостях работало по 2 спутника. К концу 1990 г. количество одновременно функционирующих «Эорсатов» возросло до 5. Однако, до теперь уже ожидавшегося состава в 6 спутников система так и не была доведена.

Последний запуск «Эорсата» состоялся в январе 1991 г., и к августу 1991г. в системе оставалось только 3 функционирующих спутника. Хотя ввиду потепления отношений СССР и США задача слежения за американскими авианосными группами могла потерять былой приоритет, такой резкий перелом тенденции может означать, что в данном случае мы имеем дело с одним из первых примеров сокращения военной космической программы из-за разрастания экономического кризиса.

Помимо вышеописанных систем морской разведки, КБ В. Н. Челомея еще с 70-х гг. разрабатывало космическую РЛС на базе своей орбитальной пилотируемой станции «Алмаз». Ее бортовой радиолокатор с синтезированием апертуры предназначался для ведения обзорной съемки вне зависимости от времени суток или погодных условий и, обладая разрешением, измеряемым метрами, мог бы конкурировать со спутниками обзорной фоторазведки, как это сделали десять лет спустя американские ИСЗ «Лакросс».

Первый радиолокационный «Алмаз» был доставлен на Байконур в июле 1981 г., но в декабре министр обороны Д. Ф. Устинов запретил запуск и распорядился прекратить все работы в данной области. Программа возобновилась только после смерти Устинова и Челомея в декабре 1984 г.

Первый летный образец был утерян из-за аварии РН «Протон» 29 ноября 1986 г. [33]. Следующий запуск состоялся 25 июля 1987 г. Резервный аппарат, получивший обозначение «Космос-1870», был выведен на орбиту высотой около 260 км. Небывало высокое для «Протона» наклонение 71,9 градуса давало возможность при боковом обзоре охватить территории до 78 градуса широты, а 1350 кг бортового запаса топлива (несимметричного диметилгидразина и четырехокиси азота) позволили продержаться на такой низкой орбите 2 года, корректируя ее в среднем каждые 10—12 дней. Радиолокатор, работающий на частоте 3 ГГц (??? = 10 см) с мощностью в импульсе 190 кВт, обеспечил получение изображений с разрешением 25—30 метров.

Военных заказчиков это, очевидно, не устроило. По неофициальным данным разрешение аналогичной американской системы «Лакросс» составляет от 1 до 3 метров [34] и этот предел является принципиальным, поскольку «Лакросс» создавался прежде всего для слежения за советской бронетехникой и мобильными пусковыми установками. К тому же на «Космосе-1870» еще не была решена проблема ретрансляции данных в реальном масштабе времени и локатор работал в среднем 10 минут за виток, причем только 20% информации записывалось.

На следующем «Алмазе», запущенном 31 марта 1991 г. и считающемся предэксплуатационным, наземное разрешение должно было повыситься до 15 метров, а ретрансляция информации па Землю осуществляется как непосредственно, так и через два геостационарных спутника [35]. Тем не менее, этот «Алмаз» был с самого начала объявлен как многоцелевой аппарат для дистанционного зондирования Земли, и налаживание коммерческого распространения за рубежом его радиолокационных снимков говорит об отказе от разведывательного применения системы.

Отметим однако, что обнародованные изображения участков морского побережья, полученные «Космосом-1870», демонстрируют возможность по наблюдаемой на них волновой картине морской поверхности выявлять структуру дна и внутренних течений на глубинах до 200 метров. Поэтому нельзя исключить, что подобные системы могут вновь привлечь военный интерес, уже как средство обнаружения подводных лодок.

3.2.3 Спутники предупреждения о ракетном нападении

Создание в СССР и США в конце 50-х гг. межконтинентальных баллистических ракет вынудило каждую сторону разрабатывать также средства обнаружения пусков таких ракет другой стороны, чтобы не быть застигнутой врасплох возможным нападением.

Первые системы так называемого «раннего оповещения» опирались на мощные наземные РЛС, фиксирующие ракеты после их появления из-за местного горизонта. Использование отражения радиоволн от ионосферы позволяет заглядывать и за горизонт, но и в этом случае предельная достижимая мощность излучателя ограничивает дальность обнаружения двумя-тремя тысячами километров и максимальное время оповещения с помощью наземных систем составляет 10—15 минут до прилета. Наблюдение же с околоземной орбиты в принципе позволяет обнаружить ракету практически сразу же после старта по излучению выхлопной струи двигателя, Достигаемое при этом увеличение времени оповещения с 15 до 30 минут (для межконтинентальной дальности) было принципиальным для США, основу ядерного потенциала которых составляли стратегические бомбардировщики. Поэтому в 1958 г. одним из трех направлений программы ВВС США WL-117L наряду со спутниками детальной и обзорной фоторазведки стала разработка системы «Мидас»[19] для обнаружения пусков советских МБР [36].

Предварительные проработки подобных систем в СССР в начале 60-х гг. показали, что имевшийся технологический уровень был еще недостаточным и масштаб работ был, очевидно, поначалу ограничен. Первый экспериментальный спутник, на котором аппаратура обнаружения еще отсутствовала, был выведен на орбиту в сентябре 1972 г, под именем «Космос-520».

Однако когда в том же 1972 г. США ввели свою спутниковую систему раннего оповещения в штатную эксплуатацию, задача создания аналогичной системы приобрела в глазах советского руководства наивысший приоритет. В 1973 г. было принято постановление ВПК и ЦК КПСС, предписывающее создать спутниковую систему предупреждения о ракетном нападении (ССПРН) и передать Министерству обороны ее первую очередь к 1978 г., а вторую – в начале 80-х гг. [37].

Спутники первого поколения использовали высокоэллиптические орбиты с апогеем около 40 тысяч км и периодом обращения около 12 часов, аналогичные орбитам спутников связи «Молния» и обеспечивающие ежесуточное повторение двухвитковой наземной трассы. В отличие от «Молний», трассы этих спутников были значительно смещены к западу, что позволяло наблюдать из апогея за территорией США, находясь одновременно в зоне радиовидимости с территории СССР.

С 1972 по 1976 г. было запущено четыре экспериментальных спутника. В течение 1977 г. на орбиты было выведено сразу три спутника, что было расценено наблюдателями как создание ограниченной эксплуатационной системы.

Фактически же эти спутники предназначались лишь для отработки обнаружения американских ракет после экспериментов по калибровке и слежению за пусками с территории СССР. Однако после первых же успешных наблюдений американских запусков было приказано немедленно передать систему в опытную эксплуатацию. Государственные приемосдаточные испытания начались в середине 1978 г., и в сентябре спутниковая система предупреждения о ракетном нападении была включена в государственную систему противоракетной обороны [37].

В отличие от американских, первые советские спутники раннего оповещения использовали для наблюдения телекамеры-видиконы, – приспособленные для ближнего инфракрасного и ультрафиолетового диапазонов, а для уменьшения засветки фоновым излучением Земли и отражениями солнечного света от облаков наблюдение осуществлялось не по вертикали, а наклонно [37]. Поэтому апогей орбит спутников располагались не непосредственно над США, а над Атлантикой к Тихим океаном. Это, кстати, позволяет наблюдать за районами базирования американских МБР не на одном, а на обоих суточных витках. Кроме того, во время наблюдения оказывается возможным поддержание прямой радиосвязи либо с Москвой, либо с Дальним Востоком СССР.

Тем не менее, три спутника не обеспечивали круглосуточного наблюдения, и с 1980 г. система стала расширяться. Запуск «Космоса-1223» сформировал конфигурацию из четырех орбитальных плоскостей, отстоящих друг от друга на 80 градусов, а с 1981 г. запуски стали производиться также в промежутки между этими плоскостями. Одновременно в феврале-марте 1981 г. трассы всех рабочих спутников были сдвинуты на 30 градусов к востоку, что, казалось, удаляло их от цели, но тем самым создавало более благоприятные условия для наклонного наблюдения за территорией США (рис. 2.6, 2.7).

Итоговая штатная конфигурация системы включает 9 спутников на орбитах, отстоящих друг от друга на 40 градусов и обеспечивающих движение всех аппаратов вдоль общей наземной трассы с интервалами в 2 часа 40 минут. Из-за малого ресурса или низкой надежности спутников завершить развертывание системы удалось только в 1986 г, для чего в 1984—86 гг. приходилось запускать по 7 спутников в год (см. табл. 2.9). В данном случае прекращение функционирования спутников сразу становится заметным, поскольку для сохранения заданной геометрии обзора требуется регулярно корректировать орбиту, чтобы компенсировать гравитационные возмущения со стороны Солнца и Луны.

С полным укомплектованием системы темп запусков резко упал, а после локального всплеска в 1990 г, когда было запущено 6 спутников, пуски прекратились более чем на год, до января 1992 г. При этом последний спутник 1990 г., «Космос-2105», был выведен на орбиту, отстоящую всего на 15 градусов к востоку от предыдущего «Космоса-2097», выпадая таким образом из общего строя.

Умышленные отклонения от общего профиля полета наблюдались и раньше, когда, например, в 1985 г. «Космос-1661» стабилизировал свою трассу на 35 градусов западнее стандартной. Нечто подобное в конце своего активного существования в 1990 г. временно проделал «Космос-1793». Объяснением таких маневров могла бы быть отработка вертикальной геометрии наблюдения, которая могла стать осуществимой ввиду усовершенствования технологии.

Вертикальное наблюдение в сочетании с размещением спутника на стационарной орбите дает возможность не только регистрировать факт пуска ракет, но и определять азимут их полета– Именно такая методика применяется на американских спутниках раннего оповещения, использующих геостационарную орбиту с 1968 г.

Постановление 1973 г. также предусматривало создание «высокоорбитальной» (читай – геостационарной) спутниковой системы в качестве второго этапа развертывания ССПРН. Западные наблюдатели об этом, разумеется не знали, однако, когда в октябре 1975 г. «Космос-775» был выведен на стационарную орбиту над Атлантическим океаном, он сразу был сочтен предвестником геостационарной системы раннего оповещения СССР, Вскоре это предположение было забыто, поскольку в последующие годы все пуски на геостационарную орбиту явно связывались с созданием систем спутниковой связи (см. раздел 3.3.3)

Однако три спутника: «Космос-1546, – 1629 и -1894», запущенные в 1984, 1985 и 1987 гг., в отличие от остальных геостационарных «Космосов», в сообщениях ТАСС никак не комментировались. Все эти спутники помещались в точку стояния над 24—25 градусом западной долготы, из которой центральная часть территории США наблюдается как раз на краю видимого диска Земли.

Последним из невразумительно объясненных стационарных спутников стал запущенный 14 февраля 1991 г. «Космос-2133», который, как можно заключить из [38], является экспериментальным образцом спутника нового типа[20].

Эпизодичность подобных запусков свидетельствует о том, что геостационарный эшелон ССПРН еще далек от эксплуатационной готовности и сокращение пусков высокоэллиптических спутников не связано с развертыванием геостационарных, хотя в перспективе этого естественно было бы ожидать, если, конечно, не будет принято решение использовать оба эшелона параллельно.

Точных данных о надежности советской ССПРН не имеется[21]. По утверждению разработчиков, она исключительно надежна, и частота ложных срабатываний не превышает одного в год, тогда как ни один из побочных (испытательных, космических) пусков за все время эксплуатации пропущен не был [38]. Бывший же «представитель заказчика» заявляет, что ложные сигналы выдаются часто, вследствие чего спутники раннего оповещения используются только для предварительного предупреждения, требующего подтверждения наземными РЛС [39].

3.3. Вспомогательные системы.

3.3.1 Спутники связи

Система связи и управления войсками является важнейшим звеном в организации деятельности вооруженных сил, обеспечивая их функционирование как единого целого.

Географическая протяженность СССР и распространенность сферы деятельности вооруженных сил далеко за пределы государственных границ делают системы космической связи незаменимыми для организации как стратегического, так и оперативного управления войсками. При этом для СССР поддержание постоянной связи между подразделениями и вышестоящими инстанциями представляется особенно важным, т к., насколько можно судить, в советской военной иерархии нижестоящие звенья обладают меньшей свободой действий. Эти обстоятельства отчасти могут объяснить разнообразие существующих в СССР систем космической связи, использующих спутники как на низких, так и на высокоэллиптических и геостационарных орбитах.

Спутники связи на высокоэллиптических орбитах.

Разработка спутников связи началась в СССР в первой половине 60-х гг. Отдаленность территории СССР от экватора затрудняла использование геостационарной орбиты, поэтому в первой системе космической связи были применены сильно вытянутые эллиптические орбиты с апогеем около 40 тысяч километров и перигеем около 450—500 километров, обеспечивающие период обращения близкий к 12 часам.

При расположении апогея такой орбиты над Северным полушарием спутник находится в зоне радиовидимости с территории СССР 8—9 часов в сутки. Правда из-за возмущающего влияния экваториального сжатия Земли большая ось вытянутой орбиты, вообще говоря, не остается неподвижной, а вращается в плоскости орбиты. Скорость ее вращения, однако, обращается в нуль для наклонения 63,4 градуса, которое как нельзя более подходит как для наблюдения таких спутников с территории СССР, так и для их запуска по штатным траекториям выведения с Байконура и Плесецка, обеспечивающим наклонения орбит 65 и 62,8 градуса соответственно.

Период обращения по высокоэллиптической орбите подбирается несколько меньшим 12 часов, так чтобы с учетом прецессии плоскости орбиты обеспечить ежесуточное повторение наземной трассы, что значительно облегчает задачу наведения наземных приемных станций.

Первый такой спутник был выведен на орбиту 22 августа 1964 г., но из-за нераскрытия бортовой остронаправленной антенны он не мог использоваться по назначению и был назван «Космосом-41» [la]. Первым советским спутником связи стал ИСЗ «Молния-1», запущенный 23 апреля 1965 г. Разработка этих аппаратов начиналась в ОКБ-1, а затем была передана образованному в Красноярске «филиалу № 2», возглавленному М. Ф. Решетневым и ныне известному как НПО прикладной механики [1б].

Спутники «Молния-1» имеют массу около 1500 кг и оборудованы ретрансляторами на лампах бегущей волны мощностью 40 и 20 ватт, работающими соответственно в диапазонах 4,1/3,4 ГГц для телевещания на систему наземных станций «Орбита» и 1/0,8 ГГц для телефонно-телеграфной связи[22]. Прием и передача информации осуществляются через одну из двух остронаправленных антенн зонтичного типа. Наряду с ретрансляцией одного телевизионного канала бортовая аппаратура обеспечивает многоканальную телефонную и высокочастотную телеграфную связь, осуществляемую путем мультиплексирования ряда телефонных каналов [2].

Последнее обстоятельство прямо указывает на двойное назначение системы «Молния». Хотя ретрансляция телепрограмм является чисто народнохозяйственным приложением, ВЧ-связь всегда использовалась для правительственных и военных нужд.

Систему из трех спутников «Молния-1», минимально необходимых для поддержания круглосуточной связи, удалось создать только в 1968 г. с запуском «Молнии 1-10». В 1969—70 гг. она была заменена системой из 4 спутников, плоскости орбит которых отстояли друг от друга на 90 градусов, обеспечивая большее перекрытие зон связи. Относительное расположение самих спутников на орбитах синхронизировалось так, чтобы все они следовали вдоль одной и той же наземной трассы.

В 1970 г. запуски «Молний» были перенесены из Байконура в Плесецк, что с 1973 г. сопровождалось уменьшением наклонения используемых орбит с 65 до 62,8 градусов и некоторым изменением вследствие этого процедуры стабилизации трассы.

В 1971 г. начались запуски спутников «Молния-2», использующих ту же базовую конструкцию, но с увеличенными на 50% солнечными батареями и новой ретрансляционной аппаратурой. Рабочая частота увеличилась до 6 ГГц, что повлекло замену зонтичных антенн на рупорные.

В отличие от «Молний-1», в сообщениях о запусках «Молний-2» говорилось об использовании их в интересах международного сотрудничества, так что эта модификация могла предназначаться для конкуренции с возглавляемой США международной организацией спутниковой связи «Интелсат». (Альтернативная «Интелсату» организация стран-членов СЭВ «Интерспутник» была учреждена как раз в 1971 г.).

Последняя на сегодняшний день модель, «Молния-3», появилась в 1974 г. и визуально не отличалась от «Молнии-2», однако была рассчитана на регулярную передачу цветных телепрограмм, которые до этого носили экспериментальный характер.

К концу 1975 г. система спутников «Молния» состояла из 4 групп, по одному представителю всех трех типов в каждой. Использование спутников «Молния-2» в 1977 г. прекратилось, а группировка «Молний-1» с 1976 г. была увеличена с 4 до 8 спутников в разнесенных на 45 градусов орбитальных плоскостях. При этом было замечено, что спутники, запускаемые в промежутки между четырьмя первоначальными плоскостями, функционируют только во время нахождения над территорией СССР, используя режим кодирования частотным смещением [3]. Это послужило основанием для предположения, что система «Молния-1» полностью переключена на военные нужды, а «Молния-3» обслуживает преимущественно гражданских пользователей.

Отметим, однако, что именно «Молния З» с 1976 г. используется в системе экстренной связи между правительствами СССР и США, а также для связи с корабельными измерительными пунктами космического командно-измерительною комплекса СССР.

Если отдельные запуски серии «Молния-1» (как правило, в зимние месяцы) продолжают осуществляться и с Байконура, то все «Молнии-3» выводятся на орбиты только с Плесецка.

В 1983 и 1985 гг. орбитальная группировка «Молний-3» также была расширена с 4 до 8 спутников. В отличие от 12 остальных задействованных «Молний», движущихся вдоль общей для всех наземной трассы, 4 спутника новой группы расположены так, что их наземная трасса смещена по долготе примерно на 90 градусов, т е. апогей ежесуточных витков оказываются не над азиатской частью СССР и северо-восточной частью Америки, а над Западной Европой и Тихим океаном (рис. 3.2).

Среднее время замены спутников серии «Молния» в 1990 г. достигло 1400 суток, т е. около 4 лет. почти удвоившись по сравнению с первой половиной 80-х. Тем не менее, увеличение количества одновременно использующихся «Молний» до 16 обусловило сохранение до последнего времени высокого темпа их запусков – 5—6 ежегодно. Всего же за 27 лет с 1965 по 1991 г. на орбиты было выведено 140 спутников под этим названием, не считая еще 7 вышедших на нерасчетные орбиты и объявленных «Космосами» (см. табл. 3.1).

Спутники связи на высокоэллиптических орбитах сохраняют свою привлекательность для СССР даже после развития сети геостационарных спутников, будучи более удобными для использования в высоких широтах. В 1990 г. было объявлено о планах замены после 1992 г. более чем пожилых «Молний» на новые ИСЗ «Маяк», Сохраняя внешние конструктивные черты «Молнии», он должен наряду с использованием обычного диапазона 6/4 ГГц обеспечивать связь с мобильными пользователями в диапазоне 1,6/1,5 ГГц [4]. В то же время говорилось о намерениях заменить «Молнию-З» геостационарными ИСЗ «Гранит» [5].

Низкоорбитальные спутники связи

Существование системы «Молния» не помешало параллельному созданию сразу нескольких систем низкоорбитальных ретрансляторов.

Первая система, предположительно, была впервые испытана в 1967 г., когда «Космос-158» был выведен стартовавшей с Плесецкого космодрома ракетой-носителем «Космос» (С-1) на круговую орбиту высотой 850 км с наклонением 74 градуса[23].

С 1970 г, начались систематические запуски с частотой 1—2 пуска в год (см табл. 3.2). Средняя высота орбит спутников составляла 800—820 км, что соответствовало периоду обращения 100,8—101,0 минут. Их точное назначение представлялось неясным, т к. орбиты были выше, чем у спутников радиотехнической разведки, а, в отличие от навигационных, которые с 1967 по 1970 г. запускались на почти такие же орбиты, данные спутники не излучают характерных синхронизованных сигналов.

По мере продолжения запусков выяснялось, что новые спутники образуют самостоятельную систему, располагаясь в 3 орбитальных плоскостях, восходящие узлы которых отстоят друг от друга на 120 градусов. Поскольку от них не фиксируется никаких передач, кроме непрерывного излучения радиомаяка мощностью не более 1 ватта, предполагается, что над иностранной территорией они работают только в режиме приема информации, а сбрасывают ее во время прохождения над территорией СССР. Подобный режим записи/воспроизведения или «ретрансляции с задержкой» применяется, например, в системах тина электронной почты. Малое количество спутников, при котором время ожидания связи может составлять несколько часов, свидетельствует об использовании их для ретрансляции не самых срочных сообщений, например, для связи с разведывательной агентурой, работающей в различных частях света.

Впрочем, время ожидания связи значительно снижается, если в каждой плоскости одновременно функционируют несколько спутников. Долгое время считалось, что в каждый момент времени система состоит только из трех работающих спутников, хотя и предполагалось, что «списанные» ранее аппараты могут вновь задействоваться при преждевременном выходе из строя пришедших им на смену. Впоследствии, однако, обнаружилось, что радиомаяки спутников данного типа используют как минимум две различные частоты, что свидетельствует о возможности одновременного функционирования в каждой плоскости нескольких ИСЗ. В течение же 1989 г Кеттерингская группа слежения зафиксировала сигналы двенадцати (!) таких спутников, старейший из которых был загущен еще в 1983 г [6].

По этой причине оценить реальную долговечность спутников рассматриваемого типа весьма затруднительно. Средний интервал между повторными запусками в каждую отдельную плоскость в 1989—1991 гг. возрос до 26 месяцев по сравнению с 14-ю, сохранявшимися на протяжении 1980—1988 гг. Однако, учащение запусков в начале 80-х могло объясняться и стремлением улучшить эксплуатационные характеристики системы за счет увеличения числа задействованных спутников.

Вторая низкоорбитальная система отличается тем, что спутники-ретрансляторы массой всего по 40—60 кг[24] запускаются носителем «Космос» (С-1) сразу по 8 штук. Спутники, очевидно, поочередно отделяются от второй ступени носителя еще до полной отсечки ее двигателя, оказываясь благодаря этому на несколько различающихся орбитах высотой около 1500 км с периодами обращения от 114,5 до 116 минут. Из-за небольшого различия параметров орбиты постепенно расходятся, но последующие пуски синхронизуются так, что новые партии спутников всякий раз доставляются в середину этого пучка траекторий.

При достаточной долговечности бортовой аппаратуры три-четыре запуска обеспечивают довольно густое и случайное распределение ретрансляторов по орбите, так что в пределах отдельного театра военных действий можно было бы поддерживать прямую связь. По этой причине данная система считается предназначенной главным образом для тактической связи. Она могла бы обеспечивать передачу сообщений и в глобальном масштабе с незначительным или даже нулевым временем ожидания доступа, но с задержкой ретрансляции. Развертывание «октетной» системы началось в 1970 г.[25] и до конца 1991 г. состоялось 44 запуска – в среднем по два в год (см. табл. 3.3). За все время существования она не претерпела никаких видимых изменений, и только в 1985 г. появились признаки возможного дополнения или замены ее более новой.

Новая система состоит из более крупных спутников, запускаемых примерно втрое более грузоподъемным носителем «Циклон» (F-2) по 6 штук за раз. Группы из 6 спутников также, выводятся на орбиты высотой около 1500 км, но с наклонением 82,6 градуса, что улучшает охват приполярных районов. В двух первых запусках на орбиту доставлялось только по одному полноразмерному аппарату и по 5 макетов, имевших вчетверо меньшие радиолокационные сечения и предназначавшихся для отработки системы последовательного oотделения спутников при групповом выведении. Эксплуатация системы началась два года спустя, в 1987 г. При этом партии из 6 рабочих спутников стали запускаться поочередно в две взаимно перпендикулярные плоскости, обеспечивая более равномерное распределение ретрансляторов по орбите.

Ввод «секстетной» системы в эксплуатацию немедленно отразился па запусках «октетов», частота которых с 1987 г. была сокращена с двух до одного в год.

Наметившаяся в последние годы тенденция к коммерциализации деятельности космических предприятий СССР привела к тому, что в 1990 г. НПО прикладной механики и НПО точных приборов предложили создать на базе «секстетных» спутников коммерческую систему связи «Гонец». Представленные при этом данные позволили впервые увидеть реальный облик советского военного связного спутника (рис. 3.3).

Каждый «Гонец» представляет собой цилиндр массой 225—250 кг, покрытый солнечными элементами и снабженный выдвижной штангой гравитационного стабилизатора. Две малонаправленные конические антенны обеспечивают связь по 2—3 каналам в диапазоне 200—400 МГц при емкости бортового запоминающего устройства 8 Мбайт.

При коммуникации отдаленных группировок с центральным командованием системы низкоорбитальных ретрансляторов уступают высокоэллиптическим или стационарным ИСЗ по оперативности, однако избыточность такой распределенной системы делает ее менее уязвимой. Потеря одного или даже нескольких ретрансляторов практически не сказывается на операционных характеристиках системы, что особенно важно при ведении боевых действий.

Это обстоятельство в сочетании с относительной простотой и дешевизной низкоорбитальных ретрансляторов объясняют, почему низкоорбитальные спутники связи продолжают интенсивно применяться, несмотря на появление целого ряда геостационарных.

Геостационарные спутники связи

Использование геостационарной орбиты в СССР затруднялось географическим положением, осложняющим выведение на экваториальные орбиты и, видимо, техническими проблемами. Первую заявку на резервирование мест и частот на геостационарной орбите СССР подал в Международный союз электросвязи еще 3 февраля 1969 г., а первый реальный запуск состоялся только в марте 1974 г. – на 12 лет позже, чем в США.

Начиная со второй половины 70-х гг. использование стационарной орбиты постепенно расширялось, и в конце 1990 г. на ней находилось сразу 33 функционирующих спутника как минимум пяти типов [4]. Геостационарные спутники запускаются под четырьмя названиями: «Радуга», «Экран», «Горизонт» или «Космос», но среди последних явно выделяются несколько разновидностей. Все типы, отождествленные официально, разработаны НПО прикладной механики, изготовляющим также спутники серии «Молния» и являющимся, таким образом, монополистом в области крупных связных спутников.

Спутники «Экран», запускавшиеся с 1976 по 1989 г., применяются для непосредственного телевещания на сеть приемников коллективного пользования и выходят за рамки нашего рассмотрения.

Спутники «Радуга» и «Горизонт» помимо телевещания рассчитаны на ретрансляцию телефонно-телеграфной информации и могут быть использованы в системах правительственной и военной связи. В западных источниках считается, что для военной связи используются именно «Радуги» – старейшие из советских стационарных спутников, запускаемые с 22 декабря 1975 г. и располагающиеся в настоящее время в 8 различных точках стояния.

Дополнительным свидетельством военного назначения «Радуги» считается то, что она ни разу не демонстрировалась публично [7]. По этому поводу надо отметить, что в [8] имеется фотография с подписью «ИСЗ «Радуга». Изображенный на ней спутник ничем не отличается от известных фотографий «Горизонта», зато сам «Горизонт» представлен в той же книге лишь в виде штрихового рисунка, воспроизводящего все детали фотографии «Радуги»заисключением 4 маленьких солнечных батарей, откидывающихся в стороны от двух основных (рис. 34).

Ошибка ли это или «утечка информации» (что крайне маловероятно в условиях советской секретности), не вызывает сомнений, что появившийся в 1978 г. «Горизонт» конструктивно близок к «Радуге». Согласно [8], средняя масса «Радуги» составляет 1965 кг, а «Горизонта» – 2120 кг. Основной рабочий диапазон спутников обоих типов 6/4 ГГц (как и у «Молнии-3»), но «Горизонт» помимо 6 ретрансляторов этого диапазона имеет также по одному ретранслятору для диапазонов 1,6/1,5 и 14/11 ГГц.

В 1981 г. СССР подал в комиссию по распределению частот МСЭ заявку на развертывание в точках стационарной орбиты, занятых сейчас «Радугами» и «Горизонтами» ретрансляторов «Луч» и «Луч П» для связи в диапазоне 14/11 ГГц, «Волна» для связи с мобильными пользователями (0,4/0,3 и 1,6/1,5 ГГц) и «Галс» для правительственной связи[26]. Заявленная для «Галса» полоса 8/7 ГГц общепризнанна как диапазон правительственной и военной связи, и во всех указанных местах расположения этих ретрансляторов находятся «Радуги» (см. табл. 3.4).

Система мобильной связи «Волна», предлагавшаяся, очевидно, прежде всего для удовлетворения потребностей правительственных и военных пользователей, задействует точки нахождения как «Радуг» так и «Горизонтов». «Радугам» соответствуют ретрансляторы с нечетными номерами, рассчитанные на связь с воздушными и наземными транспортными средствами, а «Горизонтам» – четные, для связи с самолетами и судами.

Экспериментальные ретрансляторы «Луч» и «Волна» устанавливались на некоторых «Горизонтах» с 1982 г.

В июне 1989 г. очередная запущенная «Радуга» была неожиданно объявлена как «Радуга-1», что, очевидно, означает появление новой модификации спутника, хотя до сих пор в таких случаях первый номер сохранялся за исходной моделью. Сообщение о запуске отличалось от обычного для «Радуг» указанием на наличие на борту «многоканальнойретрансляционной аппаратуры, предназначенной для дальнейшего расширениятелефонно-телеграфной связи на территории СССР» (выделенные слова ранее отсутствовали). «Радуга-1» заняла пустовавшую до того точку стояния над 49 градусом восточной долготы и через полтора года к ней присоединился второй спутник под таким же обозначением.

Из 92 советских спутников, выведенных на геостационарную орбиту с 1974 по 1991 г., 19 носят имя «Космос».

Официальные сообщения о запуске одиннадцати из них прямо указывали на использование спутников для ретрансляции данных. Эта группа по своим характеристикам распадается на две. Первая, начатая в мае 1982 г. «Космосом-1366», может быть связана с заявленной СССР системой «Поток», назначение которой остается неясным, а потому заставляет предположить военное использование, вероятнее всего – для ретрансляции информации с разведывательных спутников. Спутники данного типа сначала выводились в точку, зарегистрированную как «Поток-2» (80 градусов в д.), но в 1986 г. «Космос-1738» впервые занял точку «Поток-1» над 13,5 градуса з д., где в 1988 г. его сменил «Космос-1961». В 1991 г. «Космос-1961» был заменен «Космосом-2172».

Вторая, более открытая система передачи данных аналогична системе TDRSS[27], использующейся в командно-измерительном комплексе НАСА, и предназначена для поддержания связи между пилотируемым комплексом «Мир» и Центром управления полетом. Система зарегистрирована как «SDRN»[28], но первый из входящих в нее спутников – «Космос-1700» – впоследствии назывался «Луч». С ретрансляторами «Луч» и «Луч П», заявлявшимися ранее, его роднит только рабочий диапазон 15/11 ГГц. Путаницу в названиях усугубил последний на сегодняшний день спутник этой серии «Космос-2054» названный после запуска «ретранслятором „Альтаир“.

В отличие от обоих предшественников, «Космоса-1700» и «-1897», «Космос-2054» был выведен не в «восточную» (над Индийским океаном), а в «западную» точку системы (над Атлантикой). В сообщении о его запуске бортовая ретрансляционная аппаратура впервые не называлась «экспериментальной».

Последнюю группу образуют «Космосы», выводимые без каких бы то ни было комментариев в точку над 25 градусом з д. Эти спутники обычно также ассоциируются со связными, но в последнее время появилось больше оснований квалифицировать их как экспериментальные спутники раннего оповещения (см. раздел 3.2.3).

3.3.2 Навигационные спутниковые системы

Уже опыт слежения за первым спутником в 1957 г. показал, что измерение доплеровского сдвига частоты радиосигнала, излучаемого движущимся по известной орбите передатчиком, может быть использовано для определения географических координат точки наблюдения.

Достигаемое при использовании космических средств повышение точности навигации было особенно принципиальным для подводных лодок ракетного базирования (ПЛАРБ), поскольку погрешность определения ими своего местоположения ограничивает точность наведения баллистических ракет, находящихся на борту.

В 1958 г. ВМС США приступили к разработке навигационной системы «Транзит», предусматривавшей запуск 6 спутников на круговые полярные орбиты высотой 1000 км. Аналогичная советская система стала развертываться в 1967 г Характерные синхронизированные сигналы, передаваемые навигационными спутниками, не позволяли их спутать ни с какими другими, даже несмотря на то, что конфигурация создаваемой в СССР космической навигационной системы на протяжении почти десятилетия постоянно трансформировалась.

С 1967 по 5970 г. 6 спутников было выведено с космодрома Плесецк носителями С-1 («Космос») на круговые орбиты средней высотой около 775 км и периодом обращения примерно 100 минут. Затем эта серия прекратилась и начались аналогичные запуски на орбиты высотой 1000 км с периодом обращения 104,8-105 минут, обеспечивающие более широкие полосы обзора. На протяжении 1970—1972 гг. была развернута система из трех спутников в отстоящих на 120 градусов орбитальных плоскостях, и в 1972 г. уже начались замены в рамках образованной группировки.

Однако позже в этом же году рабочая орбита была изменена еще раз. Высота ее осталась прежней, 1000 км, но наклонение используемых орбит увеличилось с 74 до 83 градусов и на этих орбитах началось формирование группировки из 3 спутников, отстоящих не на 120, а на 60 градусов друг от друга. Начиная с 1975 г. эта конфигурация была еще раз перестроена, и в завершенном виде система стала по существу копией «Транзита», включая 6 спутников в отстоящих на 30 градусов друг от друга орбитальных плоскостях. Хотя орбиты советских спутников и не стали чисто полярными, высота в 1000 километров достаточна для того, чтобы спутники могли наблюдаться из любой точки поверхности Земли.

В 1976 г. наряду с группировкой из 6 спутников начала формироваться еще одна система из 4 аналогичных, аппаратов. Они выводились на орбиты такой же высоты и наклонения, но их плоскости отстояли друг от друга не на 60, а на 45 градусов. Наблюдения Кеттерингской группы слежения показывали, что все эти спутники вещают на одной частоте – 150,00 МГц, отличаясь друг от друга только идентификатором, плоскости орбиты, тогда как все 6 прежних плоскостей характеризуются индивидуальными частотами передач, смещенными друг относительно друга на 30 кГц[29].

Объяснение появилось в 1978 г., когда третий представитель новой группы – «Космос-1000» – был объявлен предназначенным для навигации судов морского и рыболовного флота СССР. Новая подгруппа была таким образом отождествлена как «гражданская» система и впоследствии получила официальное название «Цикада». Существование же второй подгруппы по-прежнему официально не комментировалось, подтверждая ее военное назначение.

Вместе с тем, обе подсистемы существуют не независимо: восходящие узлы орбит «гражданских» спутников постоянно поддерживаются в противоположном полушарии по отношению к восходящим узлам «военных». Это обстоятельство, безразличное при использовании только одной группы спутников, расширяет возможности пользователей, способных принимать сигналы обеих групп.

С 1982 г. некоторые спутники системы «Цикада» оснащаются дополнительными ретрансляторами для приема сигналов аварийных радиобуев международной системы поиска аварийных судов и самолетов КОСПАС-SARSAT. Такая модификация с 1989 г. запускается под именем «Надежда». Опубликованные фотографии спутников системы «Цикада» (рис. 3.5) позволяют представить и внешний вид их «военных» партнеров – цилиндрический корпус со сферическими днищами, «завернутый» в солнечные батареи, со штангой гравитационного стабилизатора на одном конце и развертываемыми на орбите антеннами – на другом.

В последние 10 лет среднее время замены спутников в «военной» подгруппе составляет 16 месяцев, но как и в случае спутников связи, запуск нового не обязательно вызван поломкой предыдущего. Если же спутник неожиданно выходит из строя, то вместо него может временно включаться находящийся в той же плоскости более старый. Так, в конце 1988 г. «Космос-1891» был временно заменен выведенным ранее из эксплуатации «Космосом-1759 до запуска в феврале 1989 Космоса-2004», а «Космос-1802» реактивизировался для замены «Космоса-1934», вышедшего из строя через 9 месяцев после старта.

Более частое обновление военной, части системы в сочетании с различием численного состава групп приводит к тому, что на 1-2 ежегодных пуска «гражданских» навигационных спутников приходится 4-5 «военных»[30]. Всего же до конца 1991 г. для «военной» системы было запущено 99 спутников, а для «гражданской» – 22 (см. табл. 3,7).

Объявленная точность определения местоположения с помощью системы «Цикада» составляет по различным источникам от 80—100 до 100—200 метров, что соответствует данным, опубликованным для «Транзита» – от 60 до 130 м в диапазоне углов возвышения спутника от 26 до 66 градусов [9].

Для гражданских целей этою вполне достаточно, но развитие потребностей наведения новых систем вооружений стимулировало разработку второго поколения навигационных спутниковых систем. В отличие от предыдущих они рассчитаны на получение не двух, а трех координат пользователя, а также трех компонент его вектора скорости.

Добиться этого позволяет одновременное определение расстояния до нескольких спутников по запаздываниям сигналов от их тщательно синхронизированных бортовых часов. В США такая система, получившая название «Navstar/GPS»[31] начала испытываться ВВС в 1978 г.

В Советском Союзе испытания новой «Глобальной навигационной спутниковой системы» (ГЛОНАСС) начались в 1982 г. Используемая методика требует нахождения в любой момент времени в поле зрения каждого пользователя не менее 4 спутников, поэтому высоты орбит и количество спутников в системах второго поколения значительно увеличены. Как в советской, так и в американской системах применены круговые орбиты высотой около 20 тысяч километров и периодом обращения около 12 часов, но если система «Навстар» предусматривает размещение 18 спутников в 6 плоскостях, отстоящих друг от друга на 60 градусов, в СССР было решено ограничиться тремя плоскостями, а количество спутников увеличить до 21[32].

Обе системы работают в частотном диапазоне 1,6/1,5 ГГц, но, как и в системах первого поколения, каждый советский спутник работает на своей частоте, не ограничиваясь, как американские, встроенным в формат сигнала личным кодом. Поскольку, кроме того, «Глонасс» использует самую верхнюю часть диапазона. навигационные сигналы вплотную примыкают к полосе, отведенной для спутниковой связи с самолетами, а также перекрывают диапазон 1607—1612 МГц, зарезервированный для радиоастрономических исследований.

Спутники системы «Глонасс», весящие по 1400 кг каждый, доставляются на рабочую орбиту 4-ступенчатыми носителями «Прогон» (D-1-e) по 3 штуки в одном пуске. При начальном периоде обращения 675 минут спутники дрейфуют вдоль рабочей орбиты до назначенных точек расположения, где и стабилизируются с помощью бортового двигателя, доводя период обращения до 675,7 минуты.

Недоумение наблюдателей вызывало то, что до 1986 г. минимум один из каждых 3 спутников оставался нестабилизированным, и 16 из 48 запущенных с 1982 по 1990 г. спутников вообще не передавали навигационных сигналов. Только в 1991 г. выяснилось, что из-за дефицита электронных компонентов часть спутников не оснащалась навигационной аппаратурой и использовалась лишь для отработки выведения на рабочую орбиту.

Орбита «Глонассов», имеющая высоту 19 100 км, несколько отличается от первоначально заявлявшейся строго полусуточной с высотой 20 000 км. Однако она тоже является кратной, обеспечивая повторение наземной трассы каждого спутника через 8 суток по завершении им 17 витков. Это. возможно, имеет какие-то преимущества на начальном этапе, когда задействованы еще не все орбитальные плоскости и места расположения спутников.

В испытательных пусках, продолжавшихся с 1982 по 1988 г., спутники доставлялись только в две плоскости. Подобная картина сохраняется и после начала в 1989 г. запусков эксплуатационных спутников.

Развертывание первой фазы системы, предусматривающей использование 10—12 ИСЗ в двух плоскостях, завершилось в 1991 г. В феврале 1992 г. количество работающих одновременно спутников впервые достигло 12, но поддержание его даже на этом уровне потребует сохранения прежнего темпа запусков ввиду ограниченного ресурса аппаратов.

Начало же серийного производства эксплуатационных спутников в 1991 г. намечалось только на 1993 г., после чего, надо понимать, только и может начаться переход к полномасштабной системе из 24 ИСЗ, которую планировалось завершить к 1995 г.

Заявленная точность полностью развернутой системы «Глонасс» составляет 10 метров по каждой из координат и 0,05 м/с по каждой компоненте скорости [10]. Это практически совпадает с проектными требованиями к системе «Навстар/GPS». Подчеркнем, однако, что такая точность в GPS достигается только при использовании особо закодированного сигнала, доступного лишь военным пользователям. Гражданские пользователи системы GPS получают координаты с точностью до 30 метров, а в режиме «выборочной доступности», т е. при преднамеренном ухудшении сигнала для затруднения несанкционированного доступа к точному коду погрешность возрастает до 100 метров. Последняя величина также согласуется с характеристиками аппаратуры системы «Глонасс», доступной для гражданского использования и обеспечивающей погрешность 100 м по широте и долготе и 15 м/с по скорости [1] в отсутствие искусственного ухудшения сигнала[33].

Как бы то ни было, до завершения полного развертывания системы «Глонасс» низкоорбитальные навигационные системы сохранят свою роль, и наблюдавшаяся до последнего времени картина запусков, в которой ежегодные две партии «Глонассов» балансировались 5-6 низкоорбитальными спутниками едва ли изменится в пользу новой системы.

3.3.3 Геодезические спутники

Геодезические спутники предназначаются для точного определения формы Земли и конфигурации ее гравитационного поля. Эти данные важны как для научных целей, так и для составления точных топографических карт и наведения ракет дальнего действия.

Несферичность гравитационного поля Земли искажает траектории движения всех спутников, и любой из них в той или иной степени может использоваться для геодезических измерений. Так, уже первый искусственный спутник, запущенный в 1957 г., позволил уточнить значение экваториального сжатия Земли. Однако для более точных измерений геопотенциала необходимо минимизировать влияние на траекторию других возмущающих факторов, прежде всего сопротивления атмосферы.

По этой причине специализированный геодезический спутник должен иметь максимальное отношение массы к площади поперечного сечения (минимальный баллистический коэффициент) и выводиться на высокую, предпочтительно круговую орбиту.

Спутники, предназначенные специально для геодезических измерений, стали запускаться в СССР с 1968 г. Они выводились ракетами С-1 («Космос») на круговые орбиты высотой 1200 км с наклонением 74 градуса, и их сигналы были очень похожи на сигналы дебютировавших годом ранее навигационных спутников. Это вполне объяснимо, так как техника доплеровских измерений может использоваться и для навигации и геодезических целей. Однако не образующие упорядоченной системы одиночные спутники не позволяют проводить привязку в произвольное время и в произвольном месте, что делает очевидным их использование преимущественно для геодезических измерений.

Отдельные спутники данной серии выводились на орбиты, отличающиеся от остальных по наклонению («Космос-480» и «Космос-708»). Для навигации это сулило бы только дополнительные сложности, но для геодезических целей сопоставление измерений при различных наклонениях представляет интерес.

С 1972 г. высота орбит геодезических спутников увеличилась до 1300—1400 км, что могло быть связано либо с некоторым уменьшением их массы, либо с улучшением энергетических характеристик носителя «Космос»[34], а с 1981 г. геодезические спутники стали запускаться более грузоподъемным носителем «Циклон» (F-2). Новые спутники выводились на орбиты высотой 1500 км и наклонением 73,6 или 82,6 градуса, В 1989 г. очередной спутник этого типа, «Космос-1950», был назван «элементом комплекса „Гео-ИК“ и сообщалось, что его бортовое оборудование включает передатчик для доплеровских измерений, импульсную лампу и лазерные уголковые отражатели.

Внешний вид «Космоса-1950» (рис. 3.8) показывает его конструктивное родство с низкоорбитальными навигационными спутниками, объясняющееся близостью задач и сходством используемых методик. Установленная на спутнике импульсная лампа способна выдавать серии из 9 вспышек с энергией 800—1200 джоулей до 55 раз в сутки. Фотографирование их на фоне звездного неба позволяет определить местоположение точки наблюдения с точностью до 15 метров [13]. (Такая же методика использовалась на американских геодезических спутниках «Анна-1» и «Геос», запускавшихся в 1962—1975 гг.). Ограниченный ресурс бортовых систем диктует необходимость запусков геодезических спутников в среднем раз в год. Несравненно более долговечными являются пассивные спутники, оборудованные уголковыми отражателями для лазерной локации. Первым спутником такого класса стал американский «Лагеос», выведенный на орбиту в 1976 г. В СССР уголковые отражатели начали устанавливаться на спутниках системы «Глонасс», а в 1989 г. вместе с очередными парами «Глонассов» были запущены два специальных геодезических спутника «Эталон».

Спутники «Эталон» аналогичны по конструкции «Лагеосу» и представляют собой сферический корпус диаметром 1294 мм из алюминиево-титанового сплава, в который вмонтировано 306 сборок из 7 кварцевых уголковых отражателей каждая. Шесть из более чем 2100 отражателей каждого спутника изготовлены из германия и предназначаются для проведения в будущем измерений в инфракрасном диапазоне.

Впоследствии планировалось запустить еще два «Эталона», хотя спутники, в которых нечему ломаться, на орбитах высотой около 19000 километров могут функционировать практически вечно.

3.3.4 Метеорологические спутники

Метеорологическая обстановка влияет не только на мирную, но и на военную деятельность. Не говоря уже о необходимости учета погодных условий при планировании учебной или боевой деятельности вооруженных сил, наличие или отсутствие облачности определяет возможность выполнения разведывательной фотосъемки, а точность наведения головных частей современных МБР требует учета температуры воздуха и скорости ветра в районе цели. Таким образом, военным пользователям метеорологические наблюдения со спутников необходимы даже более, чем гражданским.

Работы по созданию спутниковой метеорологической системы начались в начале 60-х гг. В отличие от практически всех остальных космических аппаратов метеоспутники разрабатывались не ракетной фирмой, а ВНИИ электромеханики, относящимся к Министерству электротехнической промышленности. Такая аномалия могла быть вызвана изначальным стремлением создать спутник с электромеханической системой ориентации, избавляющей чувствительную инфракрасную и телевизионную аппаратуру от отрицательного воздействия выхлопов ракетных двигателей. (Нельзя, впрочем, исключить, что все было как раз наоборот).

Система электромеханической стабилизации начала отрабатываться еще в 1963 г. на спутниках «Космос-14» и «Космос-23». Измерительная же аппаратура испытывалась на возвращаемых фоторазведчиках «Космос-45», «Космос-65» и «Космос-92».

Первым целевым метеоспутником официально считается «Космос-122», 25 мая 1966 г. запущенный с Байконура[35] на круговую орбиту высотой 625 км и наклонением 65 градусов. Однако с августа 1964 по май 1966 г. на точно такие же орбиты выводились еще 4 «Космоса», которые также могли предназначаться для экспериментальных метеорологических наблюдений.

После испытаний «Космоса-122» запуски были перенесены в Плесецк, предоставлявший возможность вывода на околополярные орбиты. В 1967 г. «Космос-144» и «Космос-156» впервые образовали экспериментальную космическую систему «Метеор», включающую два аппарата на взаимно перпендикулярных орбитах с наклонениями 81,2 градуса. Однако штатная эксплуатация системы началась только в 1969 г., после чего используемые спутники и стали официально называться «Метеорами».

С декабря 1971 г. высота рабочей орбиты «Метеоров» была увеличена до 900 км, что расширяло полосу обзора, хотя и приводило к снижению разрешения. Система «Метеор» обеспечивала получение телевизионных изображений облачного покрова Земли в видимом и инфракрасном диапазоне через каждые 6 часов. В 1975 г. появились спутники «Метеор-2», способные помимо этого измерять вертикальный профиль температуры в атмосфере, а также оснащенные системой прямой передачи изображения, позволяющей без посредства Центра управления в любой точке Земли получать телеизображение соответствующего участка с разрешением 2 км.

В 1982-84 гг. запуски «Метеоров» были переведены с ракеты-носителя «Восток» (А-1) на «Циклон» (F-2). При этом наклонение рабочих орбит изменилось с 81,2 до 82,6 градуса, как это произошло и со спутниками радиотехнической разведки, и несколько увеличилась высота полета – с 900 до 950 километров.

Последней моделью серии «Метеор» стал «Метеор-3», дебютировавший в 1984 г. (Первый спутник этого типа вышел на нерасчетную орбиту из-за отказа последней ступени носителя и был назван «Космосом-1612»). ИСЗ «Метеор-3» имеют массу 2150 кг по сравнению с примерно 1500 кг у предыдущих, но тем не менее доставляются на более высокие орбиты, благодаря большей экономичности осуществляемого «Циклоном» двухимпульсного выведения. Увеличение высоты орбиты до 1200 км дало возможность ликвидировать разрывы между полосами наблюдения в экваториальных районах при сохранении угла зрения оптической системы. Измерительная аппаратура «Метеоров-3» размещается на универсальной монтажной платформе, что позволяет менять ее состав в зависимости от особенностей задач каждого спутника.

Штатная конфигурация системы «Метеор-3» предусматривает одновременное нахождение на орбитах трех спутников, восходящие узлы которых отстоят друг от друга на 60 градусов. После того как в 1991 г. с запуском 4-го «Метеора-3» она была полностью укомплектована, эксплуатация «Метеоров-2», очевидно, завершилась. Последние два «Метеора-2» были выведены на орбиты в 1990 г., несмотря на наличие еще трех работоспособных предшественников, что можно истолковать как стремление поместить на орбитальное хранение остающиеся спутники данного типа перед полным переключением на новую систему.

В отличие от США, Японии и Западной Европы в СССР до сих пор не существует геостационарных метеоспутников. Хотя еще в 1976 г. Советский Союз обязался до конца 1978 запустить такой спутник в рамках международной программы изучения глобальных атмосферных процессов (ПИ-ГАП/GARP), впоследствии обещание было взято назад со ссылкой на технические трудности. Тем не менее СССР зарезервировал на стационарной орбите 3 места для спутников GOMS (Geostationary Operational Meteorological Satellite)[36]. С 1988 г. первый запуск такого спутника, ставшего также известным как 17Ф45 [14] и «Электро» [15], неизменно обещался «в следующем году», но летом 1991 г. он был наконец собран и отправлен на космодром для испытаний. Поскольку «Электро» весит 2400 кг, т е. на 200 кг больше чем РН «Протон» с разгонным блоком ДМ может доставить на геостационарную орбиту, его запуск должен осуществляться с использованием нового блока ДМ-2, первый полет которого также задерживается по крайней мере с конца 1990 г. В настоящее время запуск первого ИСЗ «Электро» планируется на 1993 г. [16].

Для военных пользователей геостационарные метеоспутники представляют наименьший интерес. В метеорологическом обеспечении военной деятельности особое значение имеет точное определение погодных условий в относительно небольших районах. По этой причине после того, как спутники Национального управления по изучению океана и атмосферы (НОАА) США стали запускаться на более высокие орбиты, ВВС США создали специализированные низкоорбитальные метеоспутники DMSP[37] для удовлетворения своих специфических нужд, таких как обеспечение полетов и планирование съемок с разведывательных спутников.

В Советском Союзе такой специализации не наблюдается, возможно потому, что Вооруженные силы, контролируя все космические аппараты, имеют возможность получать всю необходимую информацию из единой системы метеонаблюдений. Кроме того, на советских спутниках оптической разведки устанавливаются бортовые датчики облачности, позволяющие избежать расходования пленки при неблагоприятных погодных условиях в районе цели [17].

3.3.5. Исследовательские и калибровочные спутники

Довольно большое количество советских спутников, не связываемых с известными научными или народнохозяйственными программами, не удается отнести также ни к одной из рассмотренных выше военных категорий. Даже после отбрасывания уникальных пусков, которые могут относиться к различным прерванным проектам, остается более ста спутников, четко разделяющихся по орбитальным параметрам на несколько серий. Периодическая замена аппаратов в пределах каждой из них свидетельствует об осуществлении продолжительных программ, а отсутствие какого бы то ни было упоминания о их конкретном назначении заставляет предположить, что эти программы также носят военный характер.

В космической деятельности Министерства обороны США имеется ряд вспомогательных программ, носящих исследовательский характер. Они охватывают испытания и отработку оборудования для перспективных космических систем военного назначения, различные калибровочные устройства, зонды для измерения плотности атмосферы и т п. Естественно ожидать существования подобных направлений и в советской программе, так что по крайней мере некоторые неотождествленные серии советских спутников могут предназначаться для решения аналогичных задач.

По этой причине в обзорах Исследовательской службы Конгресса США для советских спутников, не относящихся к вышеперечисленным военным категориям и не отождествленных как научные или прикладные, было введено понятие «малые (minor) военные спутники». Этот термин отражает вспомогательность их предполагаемого военного значения и отчасти подчеркивает их небольшие размеры, поскольку «малые» спутники запускались легкими носителями «Космос».

Запуски с использованием носителей В-1 начались в 1964 г. на космодроме Капустин Яр, а с 1967 г. распространились также в Плесецк. Все такие спутники выводились на вытянутые орбиты, распадающиеся по высоте апогея на три группы: низкие (500—600 км), высокие (1200—2200 км) и промежуточные (800—870 км). Если запуски с Капустина Яра обеспечивали наклонения орбит 48,4—49 градусов, то с Плесецка низкоапогейные спутники выводились на орбиты с наклонением 71 градус, а высокоапогейные – 82 градуса (см. табл. 3.11).

Орбиты каждого из этих типов применялись и для научных запусков (многие из которых были отождествлены как таковые лишь годы спустя), поэтому очень вероятно, что рассматриваемые спутники базировались на унифицированной конструкции, разработанной фирмой Янгеля и хорошо известной по первым спутникам серии «Космос».

Оптические измерения свидетельствовали, что спутники стабилизируются на орбите вращением, но никому из независимых наблюдателей не удавалось получить от них дешифруемые радиосигналы (в отличие от научных спутников, которые обычно сразу распознавались по телеметрии).

Малые высоты перигеев – от 220 до 290 км – ограничивали орбитальное существование запускаемых В-1 спутников считанными месяцами. Наиболее короткоживущими были низкоапогейные аппараты с периодом обращения около 92 минут, и спутники этой серии запускались 6—8 раз в год. В общей сложности на их долю приходится 63 из 98 запусков В-1, не отождествленных как научные.

Регулярность замен низкоорбитальных спутников свидетельствовала, что программа носит эксплуатационный, а не экспериментальный характер. О ее назначении высказывались самые различные гипотезы, от определения погодных условий в районах съемки фоторазведчиков, до ведения радиотехнической разведки и контроля за ядерными взрывами в космосе.

Однако для слежения за ядерными взрывами необходимо одновременное нахождение на орбите сразу нескольких спутников. Метеорологическое обеспечение фоторазведывательных полетов не требует такой скрытности связи. К тому же, как сказано выше, советские спутники оптической разведки используют собственные бортовые датчики облачности. Предположение об ведении радиотехнической разведки само по себе непротиворечиво, хотя для эффективности такой системы также желательно было бы иметь на орбите несколько спутников одновременно. Кроме того оно не очень увязывается с многолетним осуществлением таких запусков параллельно с существованием группировки спутников радиотехнической разведки, запускаемых носителями С-1.

Наиболее логичным кажется предположение [18], что данные спутники использовались для калибровки наземных радиолокационных станций и определения параметров верхней атмосферы.

С 1974 г. запуски на аналогичные орбиты стали осуществляться также с помощью более мощной ракеты С-1. В 1974—76 г. она заменила В-1 при наиболее редких запусках на высокоэллиптические орбиты с периодом обращения около 109 минут. Запуски на орбиты с апогеями 850—1000 км в 1977 г. прекратились вместе с использованием В-1 и два запуска С-1 в 1974 и 1976 гг. на близкие к этим орбиты с апогеями около 720 и перигеями 240—280 км не получили продолжения. Наиболее же массовая серия низкоапогейных запусков В-1 была в 1975—76 гг. сменена спутниками, выводимыми ракетами С-1 на околокруговые орбиты средней высотой около 495 километров и наклонением 65,8 градуса. До тех пор на такие орбиты выводились только мишени для спутникового перехвата, и поэтому запущенный в 1975 г. «Космос-752» поначалу рассматривался как неиспользованная по каким-то причинам мишень.

Увеличение со временем количества «неперехваченных мишеней», а также расширение запусков и на другие наклонения, свидетельствовало о самостоятельной роли этих спутников, а синхронное прекращение пусков низкоапогейных спутников ракетами В-1 позволяет предположить преемственность двух программ.

Примерно половина запускаемых носителями С-1 низкоорбитальных «малых» спутников, начиная с «Космоса-816» в 1976 г., периодически отделяет во время полета небольшие объекты, снижающиеся значительно быстрее основного аппарата. Если сами спутники при начальной высоте орбиты около 500 км существуют по несколько лет, «фрагменты» падают за несколько месяцев. Как правило, объекты появляются попарно и сбрасываются с основного аппарата симметрично, так что половина оказывается выше, а половина ниже его орбиты. Объекты обычно выпускаются небольшими группами на протяжении многих месяцев, причем отделение новой партии часто совпадает со сходом предыдущих с орбиты.

Фрагменты имеют радиолокационные сечения порядка 0,1 квадратного метра. Рассчитанные же по скорости их снижения баллистические коэффициенты составляют около 0,1 м /кг, что дает для массы каждого зонда около 1—2 кг [19], По всей видимости, объекты являются полыми без каких бы то ни было активных систем, а разница в баллистических коэффициентах говорит о различии их форм.

Слежение за такими пассивными зондами позволяет определять вариации плотности верхних слоев атмосферы, которая значительно, иногда многократно, меняется в зависимости от времени года, суток и состояния солнечной активности и влияет на точность управления полетами спутников и баллистических ракет.

Помимо этого, орбитальные мишени с точно известными радиолокационными характеристиками могут использоваться для калибровки радиолокационных станций, используемых в системе контроля космического пространства и предупреждения о ракетном нападении. В этом случае целесообразно использование мишеней разной формы, например, эталонных сфер и имитаторов радиолокационных характеристик реальных боеголовок. Использование космических мишеней для проверки радиолокационных средств для Советского Союза более актуально чем для США. США отрабатывают свои системы слежения на тихоокеанском атолле Кваджалейн с использованием реальных пусков МБР из Калифорнии, тогда как СССР лишен аналогичной возможности. Кроме того, в отличие от США, в СССР продолжается эксплуатация системы противоракетной обороны Москвы, что требует периодических учебных «атак».

С 1976 до 1983 г. предельное количество мишеней, отделяемых низкоорбитальными спутниками, составляло 24. Начиная с «Космоса-1601» эта величина возросла до 28. В ряде случаев технические неполадки, видимо, препятствовали сбросу всех объектов, а иногда фиксировались фрагменты, могущие представлять собой конструктивные элементы основного аппарата.

С 1988 г. аналогичные спутники стали запускаться также носителями «Циклон». При этом использовались несколько более высокие орбиты со средней высотой 530 км и наклонениями 74 или 82,5 градуса, но характер орбитального поведения остался прежним. Первый спутник нового типа, «Космос-1985», отделил 36 объектов партиями по 2—6 штук на протяжении более чем двух лет.

Продолжении этой серии «Космосом-2053» в 1989 и «Космосом-2106» в 1990 г. позволяет предположить, что калибровочные пуски постепенно переключаются с носителя С-1 «Космос» на «Циклон», подобно тому как это произошло с геодезическими спутниками.

Одновременно с этим неожиданно возобновились пуски «малых» спутников на высокоапогейные орбиты. Запущенные с годичным интервалом «Космос-2002» и «Космос-2059» были в 1989 и 1990 гг. выведены на наиболее вытянутые их использовавшихся малыми спутниками орбиты с апогеем около 2300 км и перигеем всего 190 км. При таких низких перигеях оба упали в течение нескольких месяцев, но вскоре после запуска каждый отделил по 10 небольших объектов, просуществовавших около полутора месяцев.

Кроме того, в 1990 г. «Космос-2098» был выведен на орбиту с апогеем 2000 км и перигеем около 400 км, использовавшуюся последний раз в 1983 г. В 1987 г. после 10-летнего перерыва «Космос-1868» также вновь использовал «среднеапогейную» орбиту высотой 280 на 710 км, а в 1991 на похожую орбиту высотой 200 на 780 км был выведен «Космос-2164».

Эпизодичность последних запусков делает более вероятным их экспериментальный характер. Однако если при использовании носителя В-1 низкие перигеи рабочих орбит могли диктоваться кратковременностью разгонного участка ее второй ступени, то сохранение этой же формы орбиты при применении РН С-1 свидетельствует о каком-то значении именно таких траекторий. Возможно, таким путем определяется вертикальный профиль параметров атмосферы и/или имитируется траектория полета МБР, апогей которой может достигать тысяч километров, а перигей находится ниже поверхности Земли.

Примечания

1

Command, Control, Communication and Intelligence – командование, управление, связь и разведка.

(обратно)

2

Представление о приоритетах можно получить, например, по предписывавшейся американскими планами очередности уничтожения советских космических систем в случае воины: «1) спутники морской разведки; 2) орбитальная станция «Салют», фоторазведывательные, навигационные спутники и спутники связи; 3) метеорологические спутники и спутники раннего оповещения» [3].

(обратно)

3

27 июля 1991 г. перед несостоявшимся запуском РН «Зенит» было объявлено, что она должна вывести на орбиту «спутник военно-технического назначения для контроля за выполнением договорных обязательств по проблемам разоружения» [4]. По иронии судьбы именно этот спутник на орбиту и не вышел, погибнув при аварии носителя 30 августа 1991 г. Во время визита Б.Н.Ельцина на Плесецкий космодром 29 апреля 1992 г. отмечалось, что 28 апреля из-за позиции Казахстана сорван запуск спутника Объединенных Вооруженных Сил СНГ. Однако после того, как запуск все же состоялся о военном назначении аппарата официально уже не упоминалось.

(обратно)

4

Договор, полностью называющийся «Договором о принципах деятельности государств по исследованию и использованию космического пространства, включая Луну и другие небесные тела», был открыт для подписания 27 января 1967 г. и подписан СССР в тот же день – через два дня после первого успешного испытания глобальной ракеты. [11]

(обратно)

5

Влияние электромагнитного импульса еще не было хорошо осознано.

(обратно)

6

В США, правда, получилось именно так, когда в декабре 1985 г. Конгресс запретил ВВС проводить испытательные пуски по уже выведенным на орбиту мишеням.

(обратно)

7

Возможно, приближенность к боевым условиям повлияла на то, что навигационный «Космос-1380» вышел на нерасчетную орбиту.

(обратно)

8

Miniature Homing Vehicle – миниатюрный самонаводящийся аппарат. Система обоз началась также PMALS (от Prototype Miniature Air-Launch System – прототип системы с воздушным запуском миниатюрного перехватчика).

(обратно)

9

Верхняя граница пространства, подпадающего под национальную юрисдикцию, строго не определена. На практике она примерно соответствует высоте, на которой из-за сопротивления атмосферы спутник уже не сможет совершить полного орбитального оборота вокруг Земли без использования двигательной установки, т е. 90—100 км.

(обратно)

10

Включаемые незадолго до посадки радиомаяки призваны облегчить поиск спускаемого аппарата после приземления. По наблюдениям Кеттерингской группы они передают двухбуквенные коды азбуки Морзе, первая из которых «Т» – тире, а вторая зависит от типа спутника.

(обратно)

11

Масса КК «Восход», выводившегося па орбиту с наклонением 65 градусов. В настоящее время на орбиту с наклонением 51,6 градуса РН «Союз» выводит до 7 т, но с 1963 г. она, очевидно, модернизировалась.

(обратно)

12

Примечательно даже совпадение использовавшихся обозначений «ОПС» и «MOL» (Manned Orbiting Laboratory) – орбитальная пилотируемая станция.

(обратно)

13

Расчеты траектории выведения «Космоса-1603» РН D-le «Протон» дают верхнюю оценку его массы примерно 8.4 тонны, но и это значительно превосходит 7 тонн, доставляемые на низкую орбиту РН «Союз».

(обратно)

14

Поскольку данные реакторы работают не на плутонии, а на уране-235, помещение их на такие орбиты не решает проблему падения радиоактивных отходов на Землю, т к. нарабатываемый в них плутоний имеет период полураспада 24 тысячи лет.

(обратно)

15

Тесная взаимосвязь двух систем заставляет в данном случае отойти от «физической» систематизации в пользу «организационной» и рассматривать систему пассивного радиослежения вместе с активными радиолокаторами.

(обратно)

16

Кратные орбиты используются практически во всех системах космического наблюдения, но из всех советских систем только «Рорсаты» и «Эорсаты» поддерживают свою трассу с такой точностью.

(обратно)

17

Именно тогда СССР согласился выплатить Канаде 3 миллиона долларов, составивших 50% стоимости операции «Morning Light» по очистке района падения «Космоса-954».

(обратно)

18

Принцип термоионного преобразования тепловой энергии в электрическую заключается в том, что раскаленная выделяемым в реакторе теплом металлическая поверхность эффективно испускает ионы, адсорбируемые расположенной с небольшим зазором охлажденной стенкой.

(обратно)

19

MIDAS – Missile Defense Alarm System (система предупреждения противоракетной обороны).

(обратно)

20

В [38] было заявлено, что «в 1991 г. был запущен аппарат нового поколения, который в настоящее время проходит летно-конструкторские испытания». Вместе с тем, спутники высокоэллиптического эшелона не запускались в 1991 г. вообще, а из трех «Космосов», выведенных на геостационарную орбиту, два были объявлены ретрансляционными.

(обратно)

21

В 1979-8O гг. американские спутники раннего оповещения DSP фиксировали ложные сигналы в среднем раз в 4 часа. Частота сбоев на советских спутниках может, однако быть меньшей, т к. они селектируют цели па фоне космоса, а не излучающей в ИК-диапазоне земной поверхности.

(обратно)

22

В системах космической связи первая указываемая частота соответствует каналу «Земля-борт», вторая – «борт-Земля».

(обратно)

23

В последних трех пусках носители С-1 с Байконура, предшествовавших переносу его эксплуатации в Плесецк, спутники выводились на орбиты такой же высоты, но с наклонением 56 градуса. Возможно, это были более ранние испытательные прототипы.

(обратно)

24

Масса оценивается по опубликованным данным о грузоподъемности РН «Космос» (С-1) на низкую орбиту.

(обратно)

25

Началу «октетных» запусков с Плесецка предшествовали два похожих пуска с Байконура в 1965 г., сопровождавшихся выведением групп из пяти спутников на орбиты высотой 1500 км и наклонением 56 градусов. В обоих случаях один из пяти спутников был оборудован радиоизотопным генератором электроэнергии.

(обратно)

26

В 1989 г. имя «Галс» появилось уже в качестве названия нового спутника телевещания, который должен был прийти на смену «Экрану» до проявления многоканального «Геликона».

(обратно)

27

TDRSS – Tracking and Data Relay Satellite System (спутниковая система слежения и ретрансляции данных).

(обратно)

28

SDRN – Satellite Data Relay Network (спутниковая сеть ретрансляции данных).

(обратно)

29

Идентификатор плоскости орбиты, входящий в формат передаваемых спутниками сигналов, меняется от 1 до 6 для спутников первой группы и от 11 до 14 для второй [15].

(обратно)

30

Деление условно, поскольку военные пользователи, очевидно, могут использовать спутники обоих типов.

(обратно)

31

От «Navigation Satellite with Timing and Ranging Global Positioning System» – глобальная система определения местоположения на основе навигационных спутников с измерением расстояния и времени.

(обратно)

32

В обеих системах предусматривается также наличие на орбитах 3 резервных спутников.

(обратно)

33

В зарубежной печати сообщалось, что наземные испытания гражданского приемника системы «Глонасс» в 1991 г. дали точность 17 метров.

(обратно)

34

Модернизация носителя представляется более вероятной, т к. с того же года навигационные спутники стали использовать более высокое наклонение, что при неизменной массе полезного груза требует увеличения характеристической скорости носителя.

(обратно)

35

На этом запуске присутствовал президент Франции Шарль де Голль, прибывший в СССР для подписания советско-французского договора о дружбе и сотрудничестве. Тем самым де Голль стал первым иностранным посетителем космодрома Байконур.

(обратно)

36

Фактически спутник GOMS предназначался как для метеорологических наблюдений, так и для ретрансляции данных военного назначения. Отказ военных от его использования привел к затягиванию программы и к предложению ретрансляционной аппаратуры спутника для гражданских приложений [16].

(обратно)

37

DMSP – Defense Meteorology Satellite Program (программа оборонных метеорологических спутников).

(обратно)

Оглавление

  • ОТ АВТОРА
  • ВВЕДЕНИЕ
  • ГЛАВА 1 Основные направления использования космического пространства в военных целях.
  •   1.1 Военные космические системы и их назначение
  •   1.2 Возможность независимого определения назначения спутников
  • ГЛАВА 2 Организационная структура советской космонавтики.
  •   2.1 Краткая предыстория.
  •   2.2 Структура космической программы СССР в 60-80-х гг.
  •   2.3 Текущие изменения в структуре космической программы
  • ГЛАВА 3
  •   3.1 Боевые системы.
  •     3.1.1 Ударные системы космического базирования
  •     3.1.2 Противоспутниковые системы
  •   3.2. Разведывательные системы.
  •     3.2.1 Оптическая разведка.
  •     3.2.2 Радиотехническая разведка.
  •       3.2.2.1 Системы радиопрослушивания
  •       3.2.2.2 Радиолокационные системы
  •     3.2.3 Спутники предупреждения о ракетном нападении
  •   3.3. Вспомогательные системы.
  •     3.3.1 Спутники связи
  •     3.3.2 Навигационные спутниковые системы
  •     3.3.3 Геодезические спутники
  •     3.3.4 Метеорологические спутники
  •     3.3.5. Исследовательские и калибровочные спутники
  • Реклама на сайте

    Комментарии к книге «Военные аспекты советской космонавтики», Максим Вадиславович Тарасенко

    Всего 0 комментариев

    Комментариев к этой книге пока нет, будьте первым!

    РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

    Популярные и начинающие авторы, крупнейшие и нишевые издательства