Из первой формулы следует, что количество тепла обратно пропорционально сопротивлению. Говоря эту фразу, надо добавить: при неизменном напряжении. Именно этот случай мы и имели в виду, когда впервые воспользовались термином «сопротивление». А вот вторая формула, утверждающая, что тепло прямо пропорционально сопротивлению, требует, чтобы вы добавили: при постоянной силе тока.
В написанных выражениях читатель узнает закон, который носит имена Джоуля и Ленца.
Выяснив, что напряжение и сила тока пропорциональны, и получив, таким образом, возможность определять сопротивление проводника, исследователь естественно задается вопросом, как связана эта важная величина с формой и размером проводника и с веществом, из которого он сделан.
Опыты приводят к следующему открытию. Оказывается, что
R = ρ∙l/S,
где l — длина проводника, a S — его поперечное сечение. Это простейшее выражение справедливо тогда, когда мы имеем дело с линейным проводником неизменного сечения по всей своей длине. При желании, прибегнув к более сложным математическим операциям, можно записать формулу сопротивления для проводника любой формы. Ну, а что это за коэффициент ρ? Он характеризует материал, из которого изготовлен проводник. Значение этой величины, которая получила название удельного сопротивления, колеблется в очень больших пределах. По величинам ρ вещества могут отличаться в миллиарды раз.
Проделаем еще несколько формальных преобразований, которые пригодятся в дальнейшем. Закон Ома можно записать в такой форме:
I = U∙S/ρ∙l
Приходится часто встречаться с отношением силы тока к площади сечения проводника. Его называют плотностью тока и обозначают обычно буквой j. Теперь тот же закон запишется так:
j = (1/ρ)∙(U/l)
Исследователю кажется, что с законом Ома ему все ясно. Располагая неограниченным количеством проводников, сопротивление которых известно, можно отказаться от громоздких определений напряжения с помощью калориметра: напряжение ведь равно произведению силы тока — на сопротивление.
Комментарии к книге «Физика для всех. Книга 3. Электроны», Александр Исаакович Китайгородский
Всего 0 комментариев