«3. Излучение. Волны. Кванты»

877

Описание

отсутствует



105 страница из 109
читать на одной стр.
Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

стр.

Мы приводим результат в такой форме потому, что она удобна для запоминания: прежде всего, рассеиваемая энергия пропорциональна квадрату падающего поля. Что это означает? Очевидно, квадрат поля пропорционален энергии падающего пучка, проходящей за 1 сек. (В самом деле, энергия, падающая на 1 м2 за 1 сек, равна произведению e0с и среднего квадрата электрического поля <E2>; если максимальное значение Е есть Е0 то <E2> = 1/2E02.) Другими словами, рассеиваемая энергия пропорциональна плотности падающей энергии; чем сильнее солнечный свет, тем ярче кажется небо.

А какая доля падающего света рассеивается электроном? Вообразим мишень с площадью а, помещенную на пути луча (не настоящую мишень, сделанную из какого-то вещества, пото­му что она приведет к дифракции света и т. п., а воображаемую мишень, нарисованную в пространстве). Количество энергии, проходящее через поверхность 0, пропорционально падающей интенсивности и площади мишени:

(32.18)

А теперь давайте условимся: полное количество энергии, рассеиваемое атомом, мы приравняем энергии падающего пучка, проходящей через некоторую площадь; указав величину площа­ди, мы тем самым определяем рассеиваемую энергию. В такой форме ответ не зависит от интенсивности падающего пучка; он выражает отношение рассеиваемой энергии к энергии, падающей на 1 м2. Другими словами,

Смысл этой площади заключается в том, что, если бы вся попа­дающая на нее энергия отбрасывалась в сторону, она рассеи­вала бы столько энергии, сколько рассеивает атом.

Эта площадь называется эффективным сечением рассеяния. Понятие эффективного сечения используется всегда, когда эффект пропорционален интенсивности падающего пучка. В таких случаях количественный выход эффекта задается пло­щадью эффективной области, выхватывающей из пучка такую часть, чтобы она равнялась выходу. Это ни в коем случае не означает, что наш осциллятор на самом деле занимает подобную площадь. Если бы свободный электрон просто качался взад и вперед, ему бы не соответствовала никакая площадь. Это лишь способ выражения результата через определенную величину; мы указываем площадь, на которую должен упасть пучок, чтобы получилась известная энергия рассеяния. Итак, в нашем случае

(32.19)

(s — рассеяние).

Комментарии к книге «3. Излучение. Волны. Кванты», Ричард Филлипс Фейнман

Всего 0 комментариев

Комментариев к этой книге пока нет, будьте первым!

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

Популярные и начинающие авторы, крупнейшие и нишевые издательства