«Двигатели жизни»

453

Описание

Всё в нашем мире зависит от бактерий. Долгое время – почти 4 миллиарда лет – Земля была в их полном распоряжении. Именно эти микроскопические двигатели жизни изменили химический состав нашей планеты и сделали мир пригодным для обитания растений, животных и людей. Откуда взялись эти поразительные микроорганизмы? Как они устроены и какие тайны скрывают? Почему жизнь без них невозможна? И почему бактерии – социальные организмы? Известный американский биолог-океанограф Пол Фальковски, член Американского геофизического союза, Американской академии наук и искусств, рассказывает, как и почему бактерии смогли пережить все катаклизмы и приспособиться к меняющейся среде, а также демонстрирует читателю, что всё наше существование стало возможным только благодаря их эволюции, и они – наши истинные предки и настоящие двигатели жизни на Земле.



Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

Двигатели жизни (fb2) - Двигатели жизни [Как бактерии сделали наш мир обитаемым] (пер. Владимир Юрьевич Иванов) 6603K скачать: (fb2) - (epub) - (mobi) - Пол Фальковски

Пол Фальковски Двигатели жизни. Как бактерии сделали наш мир обитаемым.

© ООО Издательство «Питер», 2016

* * *

Моим родителям Эду и Хелен, моей жене и подруге Сари Раскин, а также нашим дочерям Саше и Мирит

Благодарности

Я обдумывал эту книгу уже довольно давно. Она была написана в несколько приемов на протяжении почти двухлетнего периода. Эта книга стала развитием моих идей, изложенных в курсе «История земных систем», который я ежегодно читаю в Ратгерском университете; однако я не хотел, чтобы она превратилась в еще один учебник. Мне хотелось обратиться к более широкой читательской аудитории и попытаться разъяснить, что мы знаем и (пожалуй, это еще важнее) чего мы не знаем о роли, которую сыграли микроорганизмы в процессе превращения Земли в обитаемую планету. Львиная доля работы была проделана, пока я находился в творческом отпуске в Рэдклиффском институте перспективных исследований при Гарвардском университете. Я чрезвычайно признателен людям, оказавшим мне гостеприимство в институте, а также моим университетским коллегам, взявшим на себя труд прочитать и прокомментировать первые несколько глав. В особенности хочу поблагодарить Рэя Джайявардхану (он же Рэй Джей) (Ray Jayawardhana), Тамару Шапиро (Tamar Schapiro), Бенни Шайло (Benny Shilo) и Алессандру Буонаньо (Alessandra Buonanno) за помощь, оказанную мне в начале работы.

Я в долгу перед моим другом и гарвардским коллегой Энди Ноллом (Andy Knoll) за поощрение и критику моих первых глав, а также за многочисленные обсуждения в тот период, когда я был в Кембридже, штат Массачусетс. Я благодарен моему покойному другу Тоширо Саино (Toshiro Saino), пригласившему меня прочесть курс лекций в Нагойском университете в 2006 году. После лекций в Японии мне почти сразу же удалось выстроить структуру этой книги. Разговоры со множеством людей за долгие годы помогли мне оформить мои идеи о роли микроорганизмов в возникновении жизни на нашей планете. Я благодарен Тому Фенчелу (Tom Fenchel) и Эду Делонгу (Ed Delong), сотрудничавшим со мной в работе над статьей, где описывалась роль микроорганизмов в поддержании биохимических циклов. Основные положения этой статьи оказались чрезвычайно важны при разработке нескольких глав этой книги. Покойная Линн Маргулис (Lynn Margulis) оказала мне большую поддержку; во время обеденных перерывов у нас было множество интересных разговоров о симбиозе. Благодаря Джо Киршвинку (Joe Kirschvink) и Минику Розингу (Minik Rosing) мне удалось понять, как много могут рассказать древние камни.

Множество людей чрезвычайно мне помогли, вычитывая главы книги и делая конструктивные замечания; в особенности я благодарен Сэму Элворти (Sam Elworthy), ходатайствовавшему за мою книгу, пока он работал в издательстве Принстонского университета, и моему редактору Элисон Калетт (Alison Kalett) за терпение и новые идеи, которые помогли улучшить книгу. Отдельно хочу поблагодарить мою жену Сари Раскин (Sari Ruskin) за ее чрезвычайно дельные замечания и поддержку. Мой давнишний друг Боб Кросс (Bob Kross) выдвинул много интересных предложений. Спасибо Форду Дулитлу (Ford Doolittle), Дэйву Джонстону (Dave Johnston), Дону Кэнфилду (Don Canfield), Полу Хоффману (Paul Hoffman) и Дугу Эрвину (Doug Erwin), указавшим мне на ключевые ошибки, которые иначе прошли бы незамеченными. Ник Лэйн (Nick Lane) был в высшей степени любезен в своих хвалебных отзывах о тех нескольких главах, которые я попросил его прокомментировать, и я получил большое удовольствие от обсуждения с ним основополагающих концепций моей книги. Множество моих студентов, постдоков и сотрудников на протяжении длительного времени помогали мне оформить мои мысли о роли микроорганизмов в эволюции жизни на Земле. Я признателен организациям, поддерживавшим мои исследования: NASA, Национальному научному фонду, Агуронскому институту и фонду Гордона и Бетти Мур. Благодарю Сари и двух наших дочек, Сашу и Мирит, за их понимание и терпение и прошу извинения за время, украденное у них, пока я работал над книгой. Я благодарю моих коллег по Ратгерскому университету, где я работал начиная с 1998 года. Никогда бы не подумал, что, будучи биофизиком и океанографом, я в один прекрасный день стану преподавать «Историю земных систем» на геологическом факультете. Однако более всего я благодарен моим родителям, которые не были учеными, однако с детства поощряли меня следовать в жизни за своей мечтой и предоставили мне интеллектуальные возможности и эмоциональную поддержку, которые так благотворно сказались на всей моей взрослой жизни.

Пролог

Жизнь представляет собой цепь взаимосвязанных исторических случайностей, непредвиденных поворотов и неожиданных возможностей. Я вырос в нью-йоркском муниципальном микрорайоне на окраине Гарлема. Когда мне было около девяти лет, моя мама подружилась с молодой парой из нашего дома. Это были аспиранты Колумбийского университета, они жили несколькими этажами ниже.

Билл Коэн и его жена Мириам изучали биологию, и в их квартире находились аквариумы с тропическими рыбами. Это была чудесная молодая чета, и моя мать, разумеется, надавала им множество советов, в которых они не нуждались. Детей у них еще не было, и вскоре после того как мама познакомила меня с ними, они пригласили меня к себе посмотреть на рыб. И я пропал!

Уже через несколько недель после нашего знакомства я получил от Билла и Мириам небольшой аквариум и принялся выращивать рыбок гуппи и зеленую водоросль нителлу, наблюдая за тем, как беременные самки дают жизнь новому потомству гуппи на ложе из водорослей. Я читал все книги о тропических рыбах, что мог достать. У меня развилась настоящая мания – мне хотелось узнать о них все, как и о рыбах вообще. Сам того не понимая, я ступил на путь, который сделал из меня биолога, – все благодаря случайному знакомству моей не в меру любопытной, словоохотливой матушки с парой молодых аспирантов, ехавших вместе с ней в лифте.

Время шло; я откладывал карманные деньги и то, что мне удавалось заработать, выполняя небольшие поручения, и покупал все более и более объемистые аквариумы и все более дорогостоящих экзотических рыб в легендарной Aquarium Stock Company, занимавшей целый квартал в Южном Манхэттене, между Уоррен-стрит и Мюррей-стрит. Это было место, где заядлые любители тропических рыб утоляли свою страсть.

Приблизительно в это же время мой отец купил мне небольшой микроскоп в Американском музее естественной истории, куда мы несколько лет ходили вместе едва ли не каждую субботу. Почти наверняка за микроскоп запросили больше, чем он стоил, и для моего отца это были большие деньги, однако я мечтал о нем уже давно; это был подарок ко дню рождения, который изменил мою жизнь. Я понимаю, что музеям необходимо получать деньги за микроскопы и тому подобное, но было бы гораздо лучше, если бы они могли просто раздавать их бесплатно всем детям, приходящим в музей.

Подарок отца позволил мне увидеть и исследовать невидимый, волшебный мир микроскопических организмов, что плавали у меня в аквариумах. Даже несмотря на то, что мой микроскоп был не самого высокого качества, он позволил мне прикоснуться к миру, о котором я не мог и мечтать. Сказать, что эти организмы были чудесными, – значит не сказать ничего.

Сотни часов я проводил, глядя в окуляр моего микроскопа в попытке постичь сюрреалистичный микроскопический мир, события в котором разворачивались у меня перед глазами, – мир, столь чуждый моему повседневному опыту. Я видел, как микроорганизмы поглощают частицы меньшего размера. Я видел, как делятся одноклеточные организмы. Я наблюдал, как одни организмы плавают, а другие передвигаются, «шагая» по предметному стеклу. Я не понимал, каким образом эти организмы перемещаются, как они питаются, как вообще живут.

Читая книги, взятые в местной публичной библиотеке на 125-й улице, я понемногу начал узнавать кое-что о мире микробов. Кроме того, в библиотеке еще имелась замечательная деревянная модель парусного судна. Она располагалась на внушительной лестнице, которая вела на второй этаж. Чтобы добраться до взрослого отделения, где хранились книги по науке, я должен был миновать парусник. И пока я шел от парусника к научным книжкам, я предавался мечтам о мирах за пределами Гарлема. Меня все больше увлекал процесс добывания сведений об экзотических местах Африки и Южной Америки, откуда были родом мои рыбы, а также распознавания различных микроорганизмов по рисункам в тех немногочисленных книжках по этому предмету, которые можно было найти в библиотеке.

С помощью моего микроскопа и книг из библиотеки я понемногу начинал понимать, как инфузории-туфельки передвигаются, используя свои реснички, и как амебы скользят над поверхностью мелкозернистого гравия, выстилавшего днища моих аквариумов. Я узнал, что некоторые организмы тянутся к свету, а другие избегают его, что одним организмам для существования необходимо освещение, а другим – добавление органического вещества. Я начал выращивать колонии микроорганизмов из образцов воды, взятых в озерах Центрального парка и из луж на Риверсайд-драйв. Я пытался «думать» как микроб, что для ребенка не так уж сложно, даже если это происходит только в воображении.

Когда рыбы в моих аквариумах начали размножаться, я смог изучать развитие их эмбрионов за прозрачными оболочками икринок. При помощи моего микроскопа я наблюдал различные формы водорослей, растущих на стенках аквариумов, и видел, как улитки соскребают и поглощают их. Переворачивая гравий и перекладывая камни на дне, я мог рассматривать на предметном стекле детрит (донные отложения), с трудом различая движения мельчайших микроорганизмов, которые все называли бактериями. В то время я еще не очень хорошо понимал, что представляют собой эти «бактерии» и какова их связь с аквариумными рыбами и растениями.

Моя мама, у которой была навязчивая идея относительно пищевых отравлений, постоянно предупреждала меня насчет «червячков» в моих аквариумах, из-за которых я могу заболеть, если буду пить эту воду. Я не очень хорошо понимал, что это за «червячки», но осознавал, что с ними шутки плохи. Мама заставляла меня мыть руки каждый раз после того, как я перекладывал в аквариумах камни или отбирал образцы.

Разумеется, мне бы и в голову не пришло пить воду, в которой живут мои рыбы, но почему я, в принципе, могу от этого заболеть, оставалось загадкой. Ведь самим рыбам «червячки» не приносили никакого вреда, хотя они и пили эту воду – во всяком случае, мне так казалось. Неужели я действительно заболею, если попью воды из аквариума? Я не отваживался проверить. Вода наливалась из крана в ванной, рядом с моей комнатой. Я пил эту воду каждый день. Однако если бы мне вздумалось налить рыбам воды прямо из-под крана, они бы умерли. Я знал, что рыбы не переносят содержащийся в водопроводной воде хлор и что они могут жить только в такой среде, где есть бактерии и другие микроорганизмы. В то же время сам я мог спокойно пить воду, содержащую хлор, но почти наверняка бы заболел, если бы попил воды из аквариума. Получается, что в моем мире хлорированную воду пить было можно, но мои рыбы могли от нее умереть, потому что в их мире хлор убивал «червячков»? Это казалось лишенным смысла.

Выходило так, что микроорганизмы могли быть и хорошими и плохими одновременно. Для меня в мои девять лет было непросто осознать этот кажущийся парадокс. Было очевидно, что «червячки», приводившие в такой ужас мою маму, играли важную роль в моих аквариумах. Понемногу я начинал понимать, что эти «червячки» и есть микробы. В то время еще не было известно, что у каждого из нас внутри живет огромное множество микробов и что они столь же важны для нашего существования, как микробы в аквариумах для жизни рыб.

Мир микробов все более очаровывал меня, я бы даже сказал – поглотил с головой. Я проводил бесчисленные часы, далеко за полночь, разглядывая в окуляр микроскопа образцы из моих аквариумов и слушая в наушниках моего детекторного радиоприемника, как «Кузен» Брюси Морроу ставит хиты шестидесятых на радио WABC.

На протяжении нескольких лет моя жизнь была полностью сосредоточена на аквариумах, микроскопе и живших в моих аквариумах микроорганизмах. Однако к тринадцатилетнему возрасту мои горизонты стали расширяться. Меня все больше интересовал другой невидимый мир – мир электромагнитного излучения. Правда, тогда я его так не называл. Кажется, я думал, что это просто радиоволны или что-то типа того. Каким образом изображения и звуки могли передаваться с далекой станции ко мне в квартиру? Для меня это был совершенно невероятный феномен.

В области электромеханики мои родители были абсолютными луддитами. От них нельзя было ждать какой-либо помощи в понимании принципа работы радио и тем более телевидения. Радио мы иногда слушали, но только классическую музыку (мои родители не одобряли ни джаз, ни рок-н-ролл). Телевизора у нас не было. Мой отец называл телевизоры «пожирателями времени» и считал, что для нормальной жизни они совершенно не нужны. Зато книг у нас в доме были буквально тысячи – и мой отец постоянно читал, читал и читал. Это с его подачи я пристрастился к чтению серьезной литературы. (Не знаю, если бы он дожил до появления Интернета, как бы он его назвал – вероятно, «предприятием по вымоганию времени» или как-нибудь в этом роде.) Тем не менее, хотя он и внушил мне глубокое уважение к литературе и печатному слову, получилось так, что, смотря телевизор в гостях у друзей, я все больше загорался желанием выяснить, каким образом можно передавать звуки и изображения на расстояние без проводов. В моей жизни звуки и изображения сыграли преобразующую роль. Я не мог себе представить, как их можно передавать в эфире так, чтобы они проигрывались на телевизоре, однако в принципе мог понять, как именно у Кузена Брюси получается проигрывать запись где-то в Мидтауне так, что я могу слушать ее на своем детекторном приемнике на расстоянии нескольких миль. Я твердо вознамерился выяснить, как работает эта магия.

Накупив дешевых деталей в маленьких магазинчиках на Кэнал-стрит, я соорудил детекторный радиоприемник. Самый сильный сигнал ловился на волне 770 AM – это было радио WABC. Фактически сигнал был настолько сильным, что оказался единственным сигналом, который я мог слушать на своем детекторном приемнике, использовавшем невероятно слабое электрическое поле, источником питания для которого служили радиоволны. Я мог прицепить зажим «крокодил» со своего приемника к батарее и бесплатно слушать музыку через маленькие наушники. «Кузен» Брюси был супер-диск-жокеем – перед каждой новой песней он выкрикивал несколько хвалебных фраз и объяснял, кто из музыкантов самый крутой. Это было просто отлично; Брюси был именно тем парнем, которого следовало слушать, вычищая аквариумы и перекладывая камни на дне.

Подрастая, я стал выполнять разные случайные работы неподалеку от дома, благодаря чему имел достаточно денег, чтобы покупать для своих аквариумов самые экзотические виды рыб. Одновременно я покупал подержанные или скидочные радиодетали в многочисленных лавочках на Кэнал-стрит. Я сделался страстным поклонником африканских цихлид, параллельно сооружая усилители, приемники и другую незамысловатую радиоаппаратуру. Я усвоил основы генетики, выращивая и продавая экзотических рыб Альфреду из Aquarium Stock Company. Я узнал, как замедляют электроны в резисторах и накапливают в конденсаторах, как работает электронная лампа, а также – конструируя радиоприемники и небольшие передатчики – каким образом передаются и принимаются невидимые радиоволны. Однако все это время в глубинах моего сознания хранился образ – модель парусника из библиотеки на 125-й улице. Это был мой маяк, указывавший путь к другому миру.

У меня ушло еще двадцать лет, прежде чем я по-настоящему осознал, каким образом организмы, которые мы не можем непосредственно воспринимать при помощи глаз, преобразовали нашу планету, создав глобальную электрическую схему жизни. Они делают свою работу молча, но их электрический контур – не метафора; это в самом деле двигатель жизни на Земле. Хотя их и нет в экспозиции Музея естественной истории, но именно они создали газы, благодаря которым я сейчас живу. Это они удаляют создаваемые мной отходы. Это они превратили крупинку пыли в галактическом пространстве в обитаемую планету.

На протяжении моей дальнейшей жизни мир в аквариумах, который я наблюдал благодаря купленному отцом микроскопу, становился для меня все более значимым, но я не мог в точности сказать почему. У меня ушло несколько десятилетий на то, чтобы понять, что смерть микроорганизмов и их разложение на усыпанных гравием днищах моих детских аквариумов представляли собой миниатюрные модели того, как органические соединения становятся топливом для машины, на которой я езжу. За время моей научной деятельности я начал понимать, что электрические схемы, которые я конструировал в детстве, были аналогами самой жизни – но они были незавершенными. Чего-то не хватало. Я понял, что не знаю ключевых механизмов функционирования клеток. Они-то не получают энергию из радиоволн; они берут энергию у более высокоэнергетических частиц света, излучаемых Солнцем. Что еще более загадочно – в отличие от радиоприемников, которые не развиваются из радиоикринок, чтобы стать взрослыми приемниками, клетки раз за разом объединяются и воспроизводятся. Воспроизводство клеток – одна из важнейших функций жизни.

Противоречие между воспроизводством и метаболизмом остается одной из самых трудных преград к пониманию того, как эволюционировала жизнь на Земле. Для этого требуется больше знаний об электрической схеме жизни. Мне далеко не сразу удалось соединить в своем мозгу пресловутые два мира. Честно говоря, я не уделял большого внимания невидимым мирам и в моем формальном обучении. Объединение схемы электрической циркуляции жизни с эволюцией организмов отнюдь не стояло в списке задач или приоритетов у моих школьных учителей или университетских преподавателей. Мне следовало обнаружить эти связи самостоятельно.

В старших классах школы, в которую я ходил, биология была дополнительным курсом и не включала в себя области, которые меня интересовали. В основном меня натаскивали по математике, физике и химии. Только став значительно старше, я осознал, что в книгах по биологии, которые мне давали читать в колледже, о микробах по большей части речь не шла – они рассматривались лишь как переносчики болезней (те же самые «червячки»). Разговоры об эволюции, когда они случались, почти всегда вращались вокруг животных и растений. Биологические статьи, которые требовалось читать, было не только невозможно достать – они были к тому же невыносимо скучны. Я не мог понять, как можно такой волнующий предмет, как изучение жизни, превратить в нечто настолько забитое никому не нужным научным жаргоном.

Тем не менее, будучи студентом нью-йоркского колледжа, обращающим внимание на окружающий мир, я вспомнил, как видел множество бабочек в парке рядом с моим домом – вдоль Риверсайд-драйв. Мне отчетливо припомнилась статья в National Geographic, где рассказывалось о миграции этих бабочек из какого-то отдаленного места в Мексике за тысячи миль на север, в Риверсайд-парк. Я мог лишь гадать, что им довелось пережить на своем пути к этому, казалось бы, никчемному клочку земли в Гарлеме. Было совершенно невозможно поверить, что столь хрупкие с виду создания могли выдержать переселение за несколько тысяч миль. Для меня они стали живой эмблемой жизненной силы. Подобно той мечте, что зародилась в моем юном сознании при виде модели парусника в библиотеке на 125-й улице, эти бабочки смогли выйти за границы своего обычного существования, чтобы открывать новые миры.

В колледже мы узнали, как отличать правый глаз коровы от левого, вызубрили названия костей человеческой руки, а также названия и формы различных цветов и фруктов. Большое внимание было уделено эволюции зубов и стадиям развития зародыша цыпленка. В результате неизбежно прививающийся, все менее вразумительный и большей частью ни на что не пригодный биологический лексикон стал для нас более важен, чем сам предмет изучения. К концу моего обучения в колледже практически все былое восхищение чудесами биологии, столь вдохновлявшее меня в детстве, как и следовало ожидать, оказалось перечеркнуто и уступило место формализованному языку и ритуализованной научной культуре. Наука – это философский культ, въевшийся в умы даже самых продвинутых ученых настолько глубоко, что ключевые вопросы, такие как: «Что такое жизнь? Когда она появилась? Как она устроена?», превратились в отдаленное воспоминание, если они вообще когда-либо задавались.

Вполне в духе армейских инструкторов по строевой подготовке многие из моих преподавателей всеми силами старались выкорчевать из моей головы эти и им подобные дерзкие вопросы. Восхищение или тем более радость от занятия биологией – да и вообще наукой, если на то пошло, – не имели никакого значения для жизни будущих медиков, которых из нас готовили. Если я собирался стать успешным солдатом в армии на службе биологических исследований, мне следовало владеть терминологией, знать факты и забыть об электрических схемах жизни и микробах. Я не виню моих профессоров, многие из которых руководствовались вполне благими намерениями. Такова была в те годы, а зачастую остается и по сей день, научная культура: найти «лучшее» и исключить «худшее». Проблема в том, как породить в молодых умах желание браться за самые сложные вопросы – а понимание происхождения жизни весьма сложный предмет. К несчастью, в процессе исключения «худшего» некоторые преподаватели зачастую систематически выпалывают из науки самые пытливые и творческие умы.

Лишь много позже, когда я принялся серьезно работать в настоящем природном аквариуме – океане, я начал размышлять о том, почему нет бабочек на Венере, и если бы они там были, то смогли бы мы об этом узнать? Я стал осознавать масштаб того, насколько все находится под контролем микроорганических процессов, которые делают Землю обитаемой для растений и животных, включая нас самих; я понял, что организмы, которые я в детстве наблюдал в микроскоп, связаны между собой невидимым, но вполне реальным электрическим контуром жизни. Именно этот контур позволяет нашей планете функционировать.

Эта книга представляет собой попытку исследовать и объяснить, как возникла эта глобальная электрическая схема, как она контролирует природное равновесие на Земле и как люди могут ее нарушить, подвергая себя потенциальной опасности. Начнем с того, что мы видим – а зачастую и не видим – в макроскопическом мире, том, в котором мы живем.

Глава 1. Незамеченные микроорганизмы

Несколько лет назад я получил возможность поработать на исследовательском судне на Черном море, у северного побережья Турции. Черное море – поразительный и уникальный водоем: ниже приблизительно 150-метровой отметки в нем нет кислорода. Задачей моей работы было изучить фотосинтезирующие бактерии в верхнем 150-метровом слое.

Фотосинтезирующие бактерии используют энергию солнечного света для строительства новых клеток. В любой части Мирового океана существуют микроскопические фотосинтезирующие организмы – фитопланктон, которые продуцируют кислород. Они являются предшественниками высших растений, но появились на Земле значительно раньше. Через несколько дней плавания инструмент, который моя исследовательская группа использовала для распознавания фитопланктона (особый тип флюорометра, который мы разработали уже много лет назад), зафиксировал странные сигналы, каких никто из нас прежде не видел. Сигнал исходил с довольно большой глубины – как раз из той части водной толщи, где никакого кислорода уже нет и освещенность очень низкая. В процессе дальнейшей работы я понял, что организмы, испускающие этот странный флюоресцентный сигнал, обитают в очень тонком слое воды – толщиной, возможно, не более метра. Это были фотосинтезирующие бактерии, но в отличие от фитопланктона, обитающего в верхней части водной толщи, они не могли продуцировать кислород. Эти бактерии были представителями древнейшей группы организмов, возникших в процессе эволюции задолго до фитопланктона. Они были реликтовыми представителями того времени, когда кислород еще не появился на нашей планете.

Работа на Черном море оказала глубочайшее влияние на мои представления об эволюции жизни на Земле. Отбирая образцы из все более глубоких слоев водной толщи, я мысленно возвращался вспять во времени, обнаруживая микроорганизмы, некогда населявшие все океаны, а сейчас ограниченные лишь очень малой частью своего прежнего местообитания. Организмами, испускавшими тот странный флюоресцентный сигнал, оказались фотосинтезирующие зеленые серные бактерии – облигатные анаэробы. При помощи энергии Солнца они расщепляют сероводород (H2S) и используют образовавшийся водород для производства органических соединений. Эти организмы могут жить при очень низком уровне освещенности, но не переносят даже весьма незначительного присутствия кислорода.

На протяжении нескольких последующих недель, курсируя по Черному морю с целью сбора образцов в различных его частях, мы наблюдали стаи дельфинов и рыб в верхних слоях воды, но ниже приблизительно 100-метровой отметки многоклеточные организмы отсутствовали. Животная жизнь не может долго существовать без кислорода, а здесь, на глубине, он исчезал. Бактерии преобразовали экосистему Черного моря: в верхнем 100-метровом слое они продуцировали кислород, но в более глубоких слоях, наоборот, поглощали его. Таким образом они сделали бассейн Черного моря своей уникальной экологической нишей.

Рис. 1. Теоретический график распределения кислорода и сероводорода (газа с запахом тухлых яиц) в верхнем 300-метровом слое Черного моря. В Мировом океане этот водоем является уникальным. В большинстве океанических и морских бассейнов кислород прослеживается вплоть до самого дна. Здесь же, чуть ниже отметки, куда проникает лишь 1 % солнечного света, приходящего на поверхность, существует очень тонкий слой фотосинтезирующих бактерий, которые при помощи солнечной энергии расщепляют сероводород, используя его для своего роста. Метаболизм этих организмов чрезвычайно древен; вероятно, он возник более трех миллиардов лет тому назад, когда концентрация кислорода на поверхности Земли была еще чрезвычайно низкой

Проведя в море почти месяц, я наконец вернулся в стамбульский порт, где принялся восхищаться турецкими коврами. Гора Арарат в северо-восточной части Турции славится своими ткаными коврами, на которых изображена история Ноева ковчега. Изготавливаемые в этом регионе килимы представляют собой богато украшенные гобелены с вытканным рисунком в виде пар жирафов, львов, обезьян, слонов, зебр и всевозможных других знакомых нам животных. Глядя, как торговцы разворачивают свой товар, и прихлебывая бесконечно предлагаемый ими сладкий чай, я принялся размышлять над тем, как история ковчега повлияла на формирование нашего искаженного представления о жизни на Земле. С одной стороны, это история о разрушении и воскресении. С другой – она повествует о том, как Бог поручил людям присматривать за природой. Ни в том, ни в другом случае микробы не упоминаются ни как создатели, ни как разрушители жизни.

Слово «эволюция» буквально означает «развертывание», но, глядя, как торговец разворачивает передо мной свои восхитительные ковры, я понял, что библейский рассказ о ковчеге не дает нам ключа к пониманию того, как эволюционировала жизнь. Вся ли существовавшая на Земле жизнь была сохранена Ноем? Возможно ли, что какие-то организмы не были взяты в ковчег? Хотя история ковчега глубоко укоренилась в западной культуре, она не может служить источником информации о происхождении жизни. Чтобы подступиться к пониманию происхождения жизни, нам необходима другая перспектива, основанная на науке, и в особенности на тех ее разделах, что касаются эволюции микроорганизмов.

Наука в большой степени является искусством находить в природе закономерности. Для этого требуется терпеливое наблюдение, но мы неизбежно подпадаем под влияние наших чувств. Человек – животное визуальное, и наше восприятие мира базируется главным образом на том, что мы видим. А то, что мы видим, определяется тем, какие инструменты у нас есть под рукой. История науки тесно связана с историей изобретения новых орудий, позволяющих видеть вещи в другой перспективе, однако парадоксальным образом изобретение новых инструментов зависит от того, что мы видим. Если мы не видим какой-либо вещи, мы, как правило, выпускаем ее из внимания. Так и микроорганизмы долгое время оставались вне поля зрения, в особенности в том, что касается их роли в истории эволюции.

Первые несколько глав современной истории эволюции жизни на Земле были написаны в основном в XIX столетии учеными, изучавшими ископаемые останки животных и растений – останки, которые они могли с легкостью видеть. Наблюдавшиеся ими природные закономерности не учитывали микроорганическую жизнь по двум простым причинам: горные породы не содержали заметных ископаемых останков микроорганизмов, а при наблюдении за живыми организмами нельзя было с легкостью различить закономерности микробиотической эволюции. Инструментов для обнаружения ископаемых микроорганизмов почти не существовало; да и в любом случае, даже если бы они и были, роль этих организмов в формировании эволюции Земли не могла быть оценена до тех пор, пока в последующие десятилетия не стали доступны другие, более совершенные инструменты. Закономерности эволюции, наблюдавшиеся для животных и растений, были исторически выведены из формы и размеров их останков, а также расположения этих останков в геологическом времени. Применительно к микроорганизмам такой подход далеко не настолько действен.

В целом то, что мы не замечали микроорганизмы – как в буквальном, так и в переносном смысле, – исказило наше представление об эволюции более чем на столетие, и включение микроорганизмов в нашу картину эволюции еще до конца не завершено. Наука – не просто искусство обнаружения закономерностей в природе (что само по себе достаточно трудно). Она требует умения находить закономерности, которые не видны невооруженным глазом.

Однако, прежде всего, давайте вкратце рассмотрим историю эволюции, какой она виделась в XIX столетии. Именно тогда были сформированы многие из наших нынешних научных концепций относительно жизни на Земле. Эти идеи во многом основывались на том, что можно было понять в рамках библейских историй о сотворении мира, включая историю о потопе и том, как Ной позаботился о Божьих созданиях, – историй, подобных тем, что были вытканы на турецких коврах.

В начале 1830-х годов дворянин-ученый Родерик Импи Мурчисон и харизматичный кембриджский профессор Адам Седжвик сообщили о находке окаменелых останков животных в толще земли в Уэльсе. Окаменелости были известны уже на протяжении нескольких веков, однако их значение не было до конца ясно. Многие понимали, что это отпечатки организмов, погибших очень давно, – однако насколько давно, никто не мог сказать; оставалось неясным и то, каким образом эти отпечатки сохранились.

Седжвик был одним из ведущих английских специалистов по окаменелостям, а одним из студентов, посещавших его лекции, был Чарльз Дарвин. Летом 1831 года Дарвин, которому на тот момент едва исполнилось двадцать два года, отправился вместе с Седжвиком на экскурсию в Северный Уэльс, чтобы своими глазами посмотреть на ископаемые останки. Эта поездка перевернула жизнь Дарвина навсегда. Он не только помогал Седжвику искать среди камней останки животных – при этом он также изучил основные принципы геологии, и эти способности к наблюдению не раз сослужили ему хорошую службу на протяжении его дальнейшей жизни.

Окаменелости, подобные тем, что были найдены Седжвиком и Мурчисоном в Англии и Уэльсе, встречались также и в других частях Европы, в результате чего начала получать распространение система классификации, основанная на рядах сходных ископаемых останков. Зачастую внешний вид ископаемых животных напоминал знакомых нам жителей океана – моллюсков, ракообразных или рыб; наружность других, однако, была невероятно причудливой – они не были похожи ни на каких обитателей современных океанов. Относительно значения этих ископаемых кипели бурные дискуссии, но в любом случае эти открытия недвусмысленно предполагали серию последовательных изменений внешнего вида животных в толщах, сформированных этими древними морскими отложениями, – от нижних слоев к слоям, залегающим выше. В то время уже в основном сформировалось представление о том, что горные породы, залегающие в разрезе более глубоко, образованы раньше, нежели вышележащие.

Обнаружение в толще горных пород ископаемых животных едва ли можно было назвать новостью. Вероятно, самое знаменитое из первых описаний ископаемых останков было сделано датским ученым Нильсом Стенсеном (Николасом Стено) в 1669 году. Он обнаружил среди горных пород в Италии объекты, весьма напоминавшие зубы акул, и задался вопросом, каким образом окаменелые останки, принадлежавшие некогда жившим организмам, могли так хорошо сохраниться. Стенсен, однако, принял во внимание то, каким образом ископаемые были расположены в толще горных пород. Отложения залегали слоями, и ученому пришла в голову мысль о том, что более древние слои должны залегать ниже более молодых. Это представление, названное впоследствии принципом суперпозиции, является одним из базовых законов седиментологии. Оно сильно повлияло на интерпретацию найденных окаменелостей Седжвиком более сотни лет спустя. Сам Стенсен в конце концов забросил науку и обратился в лоно Церкви, решив посвятить свою жизнь Богу. Его ранние работы, посвященные окаменелостям, были почти полностью забыты, а сам он продолжал верить в то, что жизнь на Земле зародилась так, как это описано в Книге Бытия.

На мой взгляд, логический вывод о том, что сохранившиеся в горных породах останки расположены в некоем соответствии с временной шкалой, был удивительным прозрением, однако его было не так легко обосновать, поскольку в то время еще не были доступны базовые геологические данные. В значительной мере задача выявления закономерностей в окаменелых останках дожидалась великого ума Чарльза Лайеля, одного из интеллектуальных наставников и близкого друга Дарвина. Лайель, шотландский адвокат, ставший натуралистом, часто именуется первооткрывателем нового научного направления, которое он назвал геологией. Подобно Стенсену, Лайель понял, что в залегании ископаемых останков есть логическая последовательность; однако в отличие от Стенсена он занялся истолкованием геологических процессов, таких как эрозия, вулканизм и землетрясения, чтобы с их помощью объяснить эту наблюденную им последовательность. Фактически именно его истолкование расположения ископаемых останков в толщах горных пород позднее побудило Дарвина задуматься над тем, как организмы изменяются с течением времени. Длившаяся всю жизнь дружба между Лайелем и Дарвином была легендарным примером научного сотрудничества.

Двадцать седьмого декабря 1831 года началось знаменитое путешествие Дарвина на экспедиционном судне королевского флота «Бигль» – десятипушечном бриге длиной в девяносто футов и с командой в семьдесят четыре человека на борту. В качестве спальни Дарвину отвели чрезвычайно тесную кают-компанию, где ему было позволено держать лишь очень немного книг. Он спал в гамаке в комнатке размером 9 на 11 футов с потолком на высоте 5 футов – там было темно и неуютно, к тому же ему приходилось делить помещение с другими. Среди прочих вещей, которые Дарвин взял с собой, был и первый том первого издания новой книги Лайеля «Принципы геологии», опубликованной в 1830 году, а также его личный экземпляр Библии короля Иакова. На судах, где мне приходится работать, я имею возможность ежедневно принимать горячий душ, и, хотя иногда я вынужден жить в тесной каюте вместе с другими людьми, на большинстве исследовательских судов имеется библиотека. Учитывая условия на «Бигле», возможно, не стоит особо удивляться тому, что Дарвин, ссылаясь на морскую болезнь, стремился при любой возможности сойти на берег и пешком покрывал значительные расстояния, чтобы встретить «Бигль» в следующем порту назначения.

Лайель взял на себя нелегкую задачу объяснить заинтересованной публике, как останки одинаковых живых организмов могли оказаться и в Альпах в Центральной Европе, и в холмах Шотландии, а также повсюду на Британских островах. Прежде всего надо было объяснить, как и когда эти останки образовались.

На протяжении столетий было выдвинуто несколько гипотез на этот счет. Одна из них, появившаяся еще в Средние века, гласила, что Бог создал камни похожими на знакомых нам животных, чтобы испытать веру своей паствы. Как бы абсурдно это ни звучало, такое представление до сих пор имеет множество приверженцев, особенно в некоторых областях Соединенных Штатов. Вторая идея заключалась в том, что в древности произошло извержение вулканов, вынесшее животных из океанов на сушу, где они погибли, в результате чего их скелеты оказались запечатлены в камне. Третья гипотеза гласила, что эти животные умерли после Великого потопа, когда уровень океана понизился. И действительно, идея о дилювиальном (то есть потопном) происхождении органических останков приходила в голову и самому Седжвику. Существовало и несколько других гипотез, которые Лайель перечисляет обстоятельно и с подробностями, как адвокат, представляющий дело в суде.

Лайель выдвинул революционную идею: останки морских животных оказались в скальных породах на суше потому, что много лет назад сами эти скалы находились под водой. С течением времени произошел их подъем, и они оказались на суше. Это предположение, проверенное множеством различных способов, оказалось действительно верным, хотя процессы, в результате которых стало возможным такое перемещение, были открыты лишь более чем через сто лет после смерти Лайеля. Одной из главных проблем, вставших перед Лайелем, было определение возраста Земли. Насколько давно было это «много лет назад»?

Возраст Земли был скрупулезно высчитан Джеймсом Ашером, архиепископом Армагским, в его книге Annales Veteris Testamenti, опубликованной в 1654 году. Практически каждый образованный британский гражданин того времени считал, что в ней дано наиболее точное определение времени сотворения мира. Основываясь на буквальной интерпретации Библии, Ашер определил, что Земля была образована вечером в воскресенье, предшествовавшее 23 октября 4004 года до н. э. по юлианскому календарю, то есть около 6000 лет тому назад.

Будучи юристом, Лайель поднаторел в ведении дискуссий, поэтому его забавляло то, как некоторые нелогичные, а порой и иррациональные идеи использовались, чтобы объяснить существование ископаемых животных и изменение их внешнего вида. Понимая могущество аргументированного спора, он писал: «…система схоластических диспутов, поощряемая в средневековых университетах, к несчастью, породила в людях привычку к неограниченным дебатам, так что они зачастую предпочитали защищать абсурдные и сумасбродные положения, поскольку это требовало большего мастерства; результатом и целью подобных интеллектуальных сражений была лишь победа, но не истина». Однако даже самый одаренный адвокат не может выиграть спор против записанного слова Божия.

Лайель понятия не имел, каковы могут быть законы эволюции и тем более как можно измерять геологическое время. Он решил, что теория Жана-Батиста Ламарка о том, что характерные черты приобретаются животными на протяжении жизни и затем каким-то образом передаются будущим поколениям, не хуже любой другой и в любом случае более разумна, чем большинство других. Фактически исследования Ламарка, посвященные видам животных (он был ведущим мировым авторитетом по животным, не имеющим хребта, то есть беспозвоночным), привели его к предположению о том, что организмы могут быть выстроены вдоль временной оси – от простейших к наиболее сложно устроенным. Это Ламарк выдвинул идею о том, что организмы каким-то образом изменяются с течением времени, то есть эволюционируют. Хотя сейчас его работы чаще всего подвергаются незаслуженным насмешкам или игнорируются в учебниках и на уроках биологии, в действительности именно Ламарк был интеллектуальным отцом науки, которую он назвал биологией.

Мысль о том, что ископаемые останки животных распределены в слоях горных пород вдоль временной оси, привела Дарвина к размышлениям о жизни на Земле в таких временных масштабах, какие он едва мог помыслить и практически не мог оценить. Если древнейшие останки находятся на глубине многих метров под другими, сколько времени могло уйти, чтобы сверху отложились такие толщи?

Дарвина приводили в чрезвычайное недоумение самые ранние отложения, обнаруженные Мурчисоном и Седжвиком. Он знал, что ниже слоев горных пород, содержащих останки животных, находятся слои, в которых останков нет, но не мог понять почему. Казалось, будто летопись органической жизни появляется из ниоткуда; эволюция организмов выглядела относительно быстрой. Однако насколько быстрой? И почему ни с того ни с сего в отложениях вдруг появляются останки рыб, в то время как в нижних слоях можно найти лишь организмы, похожие на беспозвоночных? А если посмотреть еще глубже: почему там вообще нет останков живых организмов? Все это походило на геологический эквивалент разворачивающегося турецкого ковра с изображением истории ковчега, однако здесь на половине или большей части ковра не было никаких животных. Дарвин должен был разъяснить эти вопросы сначала для самого себя, а затем для своих коллег. Чтобы найти на них ответы, ему было необходимо датировать горные породы, а для этого ему нужны были часы.

Седьмого сентября 1859 года впервые прозвонил колокол Биг Бен на часовой башне здания парламента. Эти куранты, отличающиеся тщательностью отделки и необычайной точностью, стали символом английского технического гения и мастерства на заре промышленной революции. Спустя два месяца после этого исторического события – 24 ноября, если быть точным, – Джон Мюррей III, почтенный лондонский издатель с Албемарл-стрит, выпустил в свет новую книгу Чарльза Дарвина «Происхождение видов путем естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь».

В девятой главе «Происхождения видов» (более позднее сокращенное название книги) Дарвин делает попытку подсчитать время, требовавшееся вымершим животным для того, чтобы измениться, или эволюционировать, до состояния современных форм. Эта задача не была прямолинейной. Лайель и его предшественник шотландский врач Джеймс Хаттон предполагали, что возраст Земли бесконечно велик. Дарвин не мог знать, верна ли эта гипотеза, но он, несомненно, считал, что Земля старше 6000 лет. Чтобы получить более реалистичную датировку, он разработал довольно интересный, можно даже сказать совершенно новаторский подход к измерению геологического времени.

Часы Дарвина основывались на геологическом феномене – скорости выветривания осадочных пород, а именно того их вида, в котором содержались органические останки. Для наблюдений Дарвин избрал Вельд – хорошо изученный берег Кента, обрывающийся в море утесом, состоящим из меловых и песчаниковых отложений. Дарвин подсчитал, что это образование выветривается со скоростью приблизительно один дюйм за столетие, и, принимая во внимание размеры утеса в то время, определил, что «на денудацию Вельда должно было потребоваться 306 662 400 лет, или круглым счетом триста миллионов лет».

Дарвин не принял во внимание время, потребовавшееся на формирование самого утеса, но это была незначительная деталь. Более того, он не стал рассматривать и породы, залегавшие ниже Вельда, наличие которых лишь делало утес еще более древним, а возможно, и бесконечно древним, по Лайелю. Дарвиновская оценка возраста утеса, конечно же, была смелым умозаключением и в отсутствие других ограничений, несомненно, основывалась на рациональной, физически проверяемой концепции. Вывод был очевиден: Земля невероятно стара – гораздо, гораздо старше, чем по расчетам Ашера, и гораздо старше, чем большинство людей в то время могли себе представить. И если время возникновения жизни на Земле оставалось не определенным (оно не определено и по сей день), тот факт, что под вышележащими слоями существовали породы, не содержащие органических останков, свидетельствовал о том, что оценка Дарвином возраста Земли была еще довольно скромной.

Тем не менее миллионы лет – не тот возраст, который указан в Библии, и он, разумеется, не соответствовал тому, чему тогда учили в школах. Конечно, Дарвин понимал, что его оценка будет встречена скептически, но он и предполагать не мог, во что это выльется. Помимо того что Дарвин вступил в противоречие с освященными библейским авторитетом вычислениями, сделанными в XVII веке архиепископом Армагским, предложенный им возраст Земли подвергся нападкам его собрата-ученого, «Эйнштейна» тех дней, физика Уильяма Томсона, позднее ставшего лордом Кельвином. Томсон задался целью исправить датировку, базируясь на основных принципах физики.

Томсон доказывал, что возраст Земли может быть вычислен с достаточной точностью, если предположить, что планета вначале представляла собой расплавленную массу и впоследствии остывала. Взяв в расчет данные изменения температуры по мере углубления в земную кору, а также результаты собственных экспериментов по определению теплопроводности горных пород, он вывел уравнение, показывающее, насколько быстро Земля могла остыть до ее современного состояния. В 1862 году Томсон объявил, что Земле около ста миллионов лет, хотя признал, что эта цифра весьма неопределенна и что возраст может составлять от двадцати до четырехсот миллионов лет. Со временем он становился все более бескомпромиссным, утверждая, что возраст Земли должен быть ближе к двадцати миллионам лет. Этот вычисленный им промежуток времени казался слишком коротким, чтобы вместить в себя эволюцию жизни, как видел ее Дарвин. Томсон стал одним из жесточайших критиков новаторских идей Дарвина касательно эволюции – не потому, что не верил в эволюцию как таковую, но, скорее, потому, что, будучи физиком, не доверял вычислениям возраста Земли, основанным на таких ненадежных геологических показателях, как скорость выветривания. В конечном счете возражения Томсона заставили геологов разработать более совершенные модели для определения возраста Земли, но на это потребовалось еще почти столетие.

Если Дарвин был хотя бы отдаленно прав, то развитие жизни на Земле заняло очень, очень долгое время – гораздо больше, чем кто-либо предполагал. Однако как происходило это развитие? В наброске на тридцать шестой странице своей записной книжки «B» от 1837 года Дарвин изобразил генеалогическое древо жизни, в котором выразил радикальную идею о том, что организмы связаны между собой общими предками и что это родство может прослеживаться благодаря сходным чертам в их внешнем виде. Эта основополагающая концепция была идентична взглядам Ламарка, которые тот развивал более чем за пятьдесят лет до этого; однако у Дарвина было иное представление о том, как происходил этот процесс.

Изменения форм живых организмов были почти незаметными, а также, если судить по толщине слоев, разделяющих органические останки в геологическом разрезе, по-видимому, происходили очень медленно. Кроме того, чтобы это предположение было допустимым, некоторые организмы, появляющиеся на более ранних участках разреза, должны были вымереть, чтобы быть замененными новыми видами, иначе Земля оказалась бы переполненной все возрастающим числом видов животных и растительных организмов. Другими словами, после того как организм вымирал, он уже не мог появиться в более поздних слоях геологического разреза.

Дарвин понимал, что эта выдающаяся, революционная идея вызовет критику – так оно и случилось. Ископаемые останки явно принадлежали некогда существовавшим животным и растениям, но в горных породах нигде не встречались кости человека. Дарвин ясно осознавал значение «недостающего» человеческого звена – подобно встречающимся в геологической летописи животным, мы также должны были возникнуть в результате некоего процесса, позволяющего одним организмам развиваться в другие на протяжении некоторого неопределенного, но достаточно долгого времени.

Концепция генов и основные положения физического наследования признаков в то время были абсолютно не известны ни Дарвину, ни кому-либо другому. (Грегор Мендель опубликует свою работу по наследованию признаков лишь более чем через шесть лет после выхода в свет первого издания «Происхождения видов» – в 1866 году.) На самом деле, несмотря на путаницу в большинстве трудов по биологии, Дарвин, скорее всего, без особых затруднений принял основную концепцию Ламарка, которая заключалась в том, что организмы могут наследовать признаки благодаря окружающей среде. Главным вкладом самого Дарвина была идея о том, что во всех видах имеются естественные отклонения, которые могут наследоваться. Этим правилом постоянно пользовались заводчики собак и голубей; однако Дарвин предположил, что в природе отбор признаков происходит под влиянием среды, в которой обитают виды.

Рис. 2. Репродукция наброска Дарвина в записной книжке «B» (между 1837 и 1838 годами). Основная идея заключается в том, что ныне живущие виды произошли от вымерших, но также связаны с другими сохранившимися видами, образуя генеалогическое древо жизни. Этот набросок стал ядром теории происхождения видов с последовательными изменениями, ведущими к естественному отбору – основному эволюционному процессу по Дарвину. (Публикуется с разрешения издательства Кембриджского университета, с благодарностью в адрес Питера и Розмари Грант. © 2008, Комитет по изданию записных книжек Чарльза Дарвина.)

Отбор либо улучшает способность организма к воспроизведению, либо нет. Если улучшает, то в таком случае признаки, наиболее подходящие для конкретной среды обитания, передаются последующим поколениям. Концепция происхождения видов с отклонениями, сопровождающимися последующим отбором, занимает шесть глав «Происхождения видов». Это была одна из наиболее выдающихся научных идей, когда-либо выдвигавшихся; до сегодняшнего дня она остается ядром, объединяющим принципом биологии.

Книга «Происхождение видов» была снабжена единственной иллюстрацией, размещенной в конце, на которой было изображено гипотетическое происхождение таксонов. Этот рисунок представлял собой вольную переработку наброска из записной книжки «B». Как ни странно, на иллюстрации был показан не единый источник для всех таксонов, но множество источников, дающих начало новым видам. Концепция происхождения – в смысле начала всего живого – была у Дарвина на уме, но не обсуждалась в книге открыто.

Более десяти лет спустя после выхода в свет «Происхождения видов» в письме Джозефу Хукеру, датированном 1871 годом, Дарвин размышлял о том, как могла зародиться жизнь: «…если… предположить, что в одном из небольших теплых водоемов из всех содержащихся в нем производных аммиака и солей фосфорной кислоты под влиянием света, тепла, электричества и так далее возникло белковое соединение, готовое к дальнейшим более сложным превращениям, то в наши дни оно было бы немедленно поглощено или уничтожено. Однако до того, как появились живые существа, этого произойти не могло».

Через восемьдесят лет после того, как было высказано это замечание, молодой химик Стенли Миллер и его научный руководитель нобелевский лауреат Гарольд Юри действительно сумели создать аминокислоты (строительные «кирпичики» белков) в лаборатории Чикагского университета. Они использовали газообразный аммиак, метан, водород, а также воду и электрический разряд, имитировавший удар молнии. Этот эксперимент, результаты которого были опубликованы в 1953 году, дал повод надеяться, что понимание того, как зародилась жизнь на Земле, уже не за горами. Тем не менее между созданием химических компонентов живых организмов и созданием самих этих организмов лежит целая пропасть. Даже в самых простых организмах химические составляющие представляют собой подобие микроскопических механизмов, запускающих метаболические процессы и позволяющих клеткам делиться. До сих пор еще никому не удалось воспроизвести живой организм с нуля, хотя это и не означает, что такое невозможно.

Самыми простыми живыми организмами являются бактерии – организмы, о существовании которых Дарвин, несомненно, знал; однако он не был уверен в том, каким образом включить их в свою теорию. В самом деле, у Дарвина на «Бигле» был микроскоп (помимо Библии и книг по естественной истории, он взял с собой также два пистолета, дюжину сорочек, две книжки, по которым собирался учить испанский, и кошелек с деньгами). Однако из-за того что микроорганизмы не оставили в геологической летописи следов, ясно видимых невооруженным глазом, Дарвин не мог знать, что толщи, залегающие ниже слоев с различимыми органическими останками, относятся не к периоду в истории Земли, предшествовавшему зарождению жизни, но попросту ко времени, когда еще не было животных и растений. Даже если бы он сумел обнаружить ископаемые бактерии, ему почти наверняка не удалось бы уловить их связь с растениями или животными. Дарвин, как и практически любой ученый XIX столетия, был бы до глубины души удивлен, если бы узнал, что все растения и животные произошли от бактерий и это случилось на протяжении периода, длительность которого в XIX столетии представить было абсолютно невозможно – гораздо более трехсот миллионов лет. В самом деле, о микроорганизмах в Библии прямо ничего не говорится – разве что косвенно, при упоминании о таких заболеваниях, как чума. Нет никаких сомнений в том, что Ной не имел намерения брать их с собой в ковчег, и их изображений не встретишь на тканых турецких коврах с историей Великого потопа.

Несмотря на то что мы весьма продвинулись вперед за те 150 лет, что прошли со времени публикации «Происхождения видов», ученые до сих пор не могут определить, зародилась ли жизнь в маленьком теплом водоеме, глубоководном гидротермальном источнике или где-либо еще. Что могло положить ей начало? Как она развивалась? Как бактерии эволюционировали до растений и животных? Как получилось, что эти организмы так долго оставались незамеченными в нашем поиске истоков и развития жизни на Земле?

На эти вопросы так просто не ответишь, и многие аспекты до сих пор далеки от полного понимания, однако благодаря инструментам, разработанным на протяжении последнего столетия, нам удалось многое узнать. Если бы Дарвину в XIX веке довелось побывать на океанографическом исследовательском судне в Черном море, он, вероятно, заметил бы, что в толще воды ниже верхнего стометрового слоя животные не обитают, и заключил бы, что в глубинных слоях жизни нет. Однако, если бы он был микробиологом, наше представление о происхождении видов могло бы быть совершенно иным. Хотя бактерии в XIX веке были уже хорошо известны, потребовалось еще одно столетие, прежде чем они заняли свое место в наших представлениях об эволюции жизни на Земле. Мы упускали их из виду из-за предвзятости в наших наблюдениях. А ведь бактерии существовали на этой планете за миллиарды лет до того, как на ней появилось первое животное.

Так давайте же познакомимся с этими незаметными микроорганизмами и посмотрим, какую огромную роль они сыграли в том, чтобы эта планета могла функционировать. Без бактерий нас бы здесь не было.

Глава 2. Знакомьтесь: бактерии

Вероятно, один из величайших парадоксов в истории биологии заключается в том, что бактерии, являющиеся древнейшими самовоспроизводящимися организмами на Земле, были обнаружены едва ли не в последнюю очередь и по большей части игнорировались. Их открытие, как часто случается в науке, было связано с развитием новых технологий – в данном случае с изобретением микроскопа и затем генного секвенсора. Недостаток внимания к этим организмам происходит главным образом от нашей собственной предвзятости в наблюдениях: мы склонны не замечать того, чего не можем увидеть. Из-за этого мы смогли добиться величайших успехов в астрономии, наблюдая видимые объекты, удаленные от нас на расстояние сотен миллиардов миль, задолго до того, как сумели осознать роль микроорганизмов, живущих на нашей собственной планете. Давайте коротко рассмотрим историю открытия бактерий.

В XIV столетии в Европе изготавливались примитивные линзы (названные так по форме чечевичного зерна – lens по-латыни, имеющего двояковыпуклый профиль) для коррекции зрения. Тогда же бродячие артисты начали разрабатывать методы проецирования изображений на экран при помощи простейшей камеры-обскуры. Для камеры-обскуры линза не требуется – это ящик или даже небольшая комната с отверстием, пропускающим свет, благодаря чему на заднюю стенку ящика проецируется перевернутое изображение того, что находится снаружи. Внутри такого ящика можно проследить траекторию светового луча. Отслеживая траектории лучей и экспериментируя со стеклянными линзами, расположенными внутри ящика, мастера начали понимать, как изготавливать линзы.

К концу XVI века голландцы начали работать с итальянским стеклом, изготовленным в Венеции. В то время венецианское стекло стоило очень дорого, поскольку оно было наиболее прозрачным и высококачественным из всех возможных вариантов. С его помощью голландцы начали изготавливать линзы относительно высокого качества. В начале XVII столетия двое голландских мастеров, вставив вогнутую и выпуклую линзы внутрь трубы, сконструировали телескоп. Хотя этот инструмент представлял собой не более чем примитивную подзорную трубу с увеличением приблизительно в семь или восемь раз, это был огромный прорыв в технологии того времени. До сегодняшнего дня изготовители приборов используют те же самые основные формулы, разработанные пионерами в этой новой области знаний – оптике – благодаря прослеживанию траектории лучей света в темном ящике.

В 1609 году Галилео Галилей при помощи телескопа, сделанного в Италии по проекту голландского мастера, обнаружил, что спутники Юпитера обращаются вокруг этой планеты, а не вокруг Земли. Хотя инструмент Галилея имел всего лишь приблизительно двадцатикратное увеличение, этого было достаточно, чтобы позволить ученому разглядеть вблизи то, что люди уже могли наблюдать невооруженным взглядом: планеты, звезды и Луну. Его наблюдения поколебали доминирующую в то время птолемеевскую, или геоцентрическую, систему, ставившую Землю в центр Вселенной и утверждавшую, что Солнце и планеты вращаются вокруг Земли, а не наоборот. Однако Галилей открыл для нас нечто более фундаментальное, нежели просто наблюдение за звездами: он показал нам наше место, о котором мы не знали и которое делало нас менее значительными. Земля стала всего лишь одной из планет среди нескольких других, входящих в нашу Солнечную систему. Галилей прекрасно понимал, насколько важным является открытие им спутников, вращающихся вокруг Юпитера. Он изменил представление людей о нашей планете, нас самих и особых отношениях, связывающих нас со Вселенной (а отсюда и о том, что мы занимаем особое место в глазах Бога).

Хотя рассказов о Галилее и его телескопе существует предостаточно, менее известен тот факт, что он являлся также изобретателем микроскопа. К тому времени люди уже несколько лет знали, что, если просто повернуть телескоп с двумя линзами другим концом, можно увеличить объекты, находящиеся вблизи. Вы можете проделать это у себя дома, поглядев с обратной стороны в один из окуляров бинокля и держа какой-либо предмет, скажем кончик вашего пальца, близко к линзе с другой стороны. (Такое использование бинокля может стать великолепным подспорьем в экспедиции.)

Микроскоп Галилея, сконструированный приблизительно в 1619 году, был всего-навсего непреднамеренным дополнением к изобретению телескопа: Галилей перевернул оптическую схему телескопа и поместил ее в новый корпус. По размерам этот микроскоп был меньше своего предшественника телескопа; две линзы располагались в цилиндрическом футляре из дерева и кожи. Впрочем, у Галилея не возникло большого интереса к тому, что он увидел в своем перевернутом телескопе. По-видимому, он почти не делал попыток понять, а тем более интерпретировать представшие перед ним мельчайшие объекты. Фактически это имело для него настолько небольшое значение, что лишь в 1625 году он дал своему изобретению название microscopio. Можно увидеть иронию судьбы в том, что во время эпидемии чумы – бактериального заболевания, переносимого с укусами блох, – Галилей делал зарисовки блох, которых наблюдал под своим микроскопом. Впрочем, эти рисунки не получили большого распространения, и его инструмент продолжал бездействовать в Италии, используемый лишь изредка.

Различие между телескопом и микроскопом заключается не просто в конфигурации линз – оно состоит также в человеческом восприятии и ожидании того, что предполагается увидеть. Хотя недостаток восприятия может быть частично отнесен на счет нашего самомнения, мне кажется, что чаще всего причина заключается в том, что мы не ищем природные закономерности в местах, обычно недоступных для наших ограниченных чувств. Мы можем наблюдать удаленные объекты невооруженным глазом. Кометы, метеориты, планеты, спутники, звезды и даже сверхновые можно увидеть без телескопа, и поэтому, когда мы приближаем их для более внимательного рассмотрения при помощи такого инструмента, как телескоп, эти отдаленные объекты не кажутся нам такими уж загадочными – лишь в некоторой степени. А вот объекты, размеры которых значительно меньше толщины волоса (около десятой доли миллиметра), наши глаза не способны различить без увеличительного приспособления. В масштабах микроскопических структур нас можно считать практически слепыми. Мы видим невооруженным глазом Луну, но не клетки собственного тела. Мы видим звезды, но не видим молекулы. Мы видим далекие галактики, но не видим атомы. Если мы даже не осознаем, что мир микроорганизмов существует, с какой стати нам его искать?

Открытие микроскопического царства, подобно многим другим научным открытиям, было случайностью, которая изменила мир не менее кардинально, чем обнаруженные Галилеем спутники Юпитера. Для этого потребовалась не только настройка инструментов, но также и соответствующая настройка ума. Завеса была приподнята в 1665 году, когда Королевское научное общество опубликовало первый общедоступный научный труд под названием «Микрография» (с подзаголовком: «…или Некоторые физиологические описания мельчайших тел, сделанные при помощи увеличительных стекол, с последующими наблюдениями и изысканиями»). Автором книги был Роберт Гук – тридцатилетний горбун, вздорный, невротичный ипохондрик, являвшийся в то же время блестящим ученым-естествоиспытателем, энциклопедистом и одним из основателей Королевского общества.

Рис. 3. Рисунок Роберта Гука, изображающий тонкий срез пробкового материала. Гук дал мельчайшим пустотам, разделенным перегородками, название «клетки». Рисунок воспроизводится по книге Гука «Микрография», впервые опубликованной в сентябре 1665 года (© Королевское научное общество)

«Микрография» захватила воображение многих людей. Помимо пятидесяти семи превосходных гравюр по детальным иллюстрациям автора, а также подробного описания своего микроскопа, Гук предлагал вниманию читателей строение организма блохи (очевидно, в Англии их водилось не меньше, нежели в Италии), семени тимьяна, глаза муравья, внутреннее устройство губок, микроскопические грибы и мельчайшие «кирпичики», из которых состоят растения. Последние он смог наблюдать, отрезав тонкую пластинку пробки перочинным ножом, «заточенным до остроты лезвия бритвы». В этих тонких пробковых пластинках он нашел миниатюрные структуры, показавшиеся ему похожими на кельи, в которых жили монахи, ввиду чего Гук назвал эти микроскопические структуры «клетками»[1].

Исследуя другие растения, он обнаружил, что эти «клетки» распространены повсеместно – Гук описал их у нескольких других видов растений, включая фенхель, морковь, лопух и т. д. В конечном счете «Микрография» оказалась первым научным бестселлером. Сэмюель Пипс, купивший экземпляр книги вскоре после ее выхода в свет, записал в своем дневнике: «Перед сном я просидел до двух часов ночи в своей комнате, читая “Микроскопические наблюдения” мистера Гука – самую оригинальную книгу, какую мне только доводилось держать в руках». Второе издание «Микрографии» было отпечатано Королевским обществом через два года после того, как было распродано первое. С тех пор книга множество раз переиздавалась; она пользуется спросом и по сей день.

Наблюдения проводились Гуком при помощи относительно простого оптического микроскопа с двумя линзами. В то время мастера, изготавливающие инструменты, имели дело с телескопами и поэтому конструировали микроскопы с двумя линзами, весьма похожие на инструмент Галилея, поскольку определение траектории луча ясно показывало, что такие инструменты должны работать. Однако при этом возникала существенная непредвиденная проблема, которой не было в случае телескопов: в таких простых оптических микроскопах первая линза создавала многоцветное гало, которое затем увеличивалось второй линзой. В результате чем больше было увеличение, тем больше было искажение изображения объекта.

Микроскоп, которым пользовался Гук, был изготовлен Кристофером Коком, весьма искусным лондонским мастером. Это было любовно выполненное, затейливо украшенное изделие, стоившее небольшое состояние, однако оптика в нем оставляла желать лучшего. Такой микроскоп давал сильную оптическую аберрацию, которой тогдашние изготовители линз не могли избежать. Самый лучший инструмент, как бы любовно ни украшал его изготовитель, мог увеличить объект не более чем двадцатикратно; далее он становился почти бесполезен. И даже при столь небольшом увеличении изображение выходило нечетким, так что порой требовалась толика воображения, чтобы восстановить структуру наблюдаемого объекта. Тем не менее мастерские иллюстрации Гука имели в то время ошеломляющий эффект, и выход в свет «Микрографии» возбудил интерес к конструированию более совершенных линз.

В 1671 году, спустя целую жизнь после открытий Галилея и через тридцать шесть лет после его смерти, Антон ван Левенгук, голландский торговец тканями из Дельфта, сконструировал новый телескоп с гораздо более скромной отделкой, оптика которого была проще и, как ни странно, лучше – она допускала гораздо большее увеличение без искажений, характерных для более изощренных и дорогостоящих инструментов. Вместо двух линз Левенгук брал раскаленные стеклянные стержни, вытягивал их в нити и затем, вновь нагревая эти нити, формировал из них маленькие стеклянные сферы диаметром примерно от полутора до трех миллиметров. При изготовлении таких линз приходилось идти на компромисс: чем меньше линза, тем большее увеличение она может дать, однако вместе с тем меньше оказывается и поле наблюдения. Левенгук брал лучшее венецианское стекло и, очевидно, должен был каким-то образом полировать свои линзы – детали технологического процесса оставались секретом, который он так и не раскрыл.

Рис. 4. Изображение микроскопа, которым пользовался Роберт Гук, выполненное самим Гуком и опубликованное в «Микрографии». Этот микроскоп, состоявший из двух линз, удерживаемых в нужном положении затейливо украшенной трубкой, давал приблизительно двадцатикратное увеличение. Свет солнца или масляной лампы мог быть сфокусирован на образце при помощи сферической емкости с водой (© Королевское научное общество)

Левенгук за свою жизнь сконструировал около пятисот микроскопов, так что у него в любой момент имелось под рукой некоторое их количество, чтобы производить необходимые наблюдения. Сами инструменты были относительно просты.

Рис. 5. Изображение микроскопа, изобретенного и применявшегося Антоном ван Левенгуком. Одиночная сферическая линза располагалась в небольшом углублении между двумя пластинами. Образец закреплялся перед линзой при помощи небольшого винта, и наблюдатель, приблизив глаз к линзе, должен был держать микроскоп против света. Несмотря на свою простоту, микроскопы такого типа позволяли получить увеличение вплоть до четырехсоткратного в зависимости от качества и размера линзы

Одиночная сферическая линза помещалась в углублении между парой серебряных пластин. Образец закреплялся позади пластин, и его положение корректировалось винтовым механизмом. Наблюдатель приближал инструмент к своему глазу, держа его так, чтобы свет солнца или свечи освещал объект. Лучшие из таких инструментов позволяли получить приблизительно трехсоткратное увеличение, что почти соответствует мощности того микроскопа, который купил мне отец, когда мне было девять лет. С помощью таких инструментов можно наблюдать клетки крови и спермы животных, а также одноклеточные организмы, включая «анималькули»[2], наблюдавшиеся Левенгуком. Собственно, последние и были теми организмами, которые впоследствии станут называться микробами.

В октябре 1674 года Левенгук заболел и записал в своем дневнике (по-голландски): «Прошлой зимой, когда я чувствовал себя очень плохо и почти лишился вкуса, я рассмотрел внешний вид своего языка, весьма обложенного, в зеркале и рассудил, что потеря вкуса вызвана толстым слоем налета на моем языке». Затем он исследовал при помощи своего микроскопа бычий язык и обнаружил на нем «весьма тонкие остроконечные выросты», содержащие «очень маленькие шарики», – так он описал вкусовые сосочки. После этого он заинтересовался тем, как мы ощущаем вкус, и принялся исследовать водяные настои различных специй, включая черный перец.

В 1676 году Левенгук увидел, что перечная вода в бутыли, стоявшей на полке в его лаборатории на протяжении трех недель, помутнела. Рассматривая мутный осадок в один из своих микроскопов, он с удивлением обнаружил плавающие в воде мельчайшие организмы диаметром всего лишь от одного до двух микрон, что составляет приблизительно одну сотую диаметра человеческого волоса! Левенгук зарисовал эти клетки и записал:

«Я увидел огромное множество живых существ в одной капле воды, количеством не менее восьми или десяти тысяч, и в микроскопе они предстали перед моим взором столь же обыденными, каким песок выглядит для невооруженного глаза».

Рис. 6. Изображение анималькулей, то есть микробов, открытых Антоном ван Левенгуком. В XVII и XVIII веках считалось, что микробы являются микроскопическими животными, у которых имеются головы и желудки, а их потомство возникает в результате сексуального контакта между самцами и самками одного вида

Открытие анималькулей само по себе было непредвиденным. Это было все равно что наблюдать спутники Юпитера, но в отсутствие планеты, вокруг которой они вращаются. Оно указывало на неисчислимое множество невидимых организмов, присутствующих прямо здесь, на Земле. Левенгук не имел ни малейшего представления о том, что эти организмы представляют собой в действительности. Он считал их в буквальном смысле необычайно маленькими животными, у которых есть внутренние органы, такие как желудок и сердце, в точности как у больших животных, которых мы видим невооруженным глазом.

Поистине замечательно, что инструменты с одной линзой, сконструированные Левенгуком, позволяли ему увидеть организмы столь маленького размера, однако даже при помощи самых лучших линз того времени он не смог бы различить их внутреннее строение. Тем не менее Левенгук совершил нечто еще более кардинальное: вслед за открытием организмов в перечной воде он исследовал соскобы с собственной ротовой полости. Каково же было его изумление, когда он впервые обнаружил присутствие анималькулей на своих зубах и деснах! В этом Левенгук поистине опередил других естествоиспытателей – он первым открыл, что мы не единственные, кто обитает в наших телах. Мы являемся носителями анималькулей. И в самом деле, как будет показано позднее, мы и другие подобные нам животные даем прибежище огромным количествам простейших организмов и помогаем им распространяться по поверхности планеты посредством наших экскрементов и выделений. Левенгук заметил также, что, после того как он попил утром горячего кофе, анималькули в его ротовой полости погибли – это было первое наблюдение того факта, что при высокой температуре микробы погибают. Впоследствии Левенгук занялся описанием различных форм и относительных размеров микробов, обнаруженных им в собственной слюне и других водных средах. Его простая зарисовка позднее станет основой для систематизации микроорганизмов.

Когда Левенгук прислал для публикации в «Философских трудах», новом – и первом – научном журнале Королевского общества, свое письмо на семнадцати с половиной страницах, где описывал открытие анималькулей, оно было встречено с огромным скептицизмом. Даже Гук посчитал, что это какая-то ошибка; он послал в Дельфт английского викария и нескольких других достойных доверия наблюдателей, уполномоченных Королевским обществом, чтобы подтвердить отчеты Левенгука. Наблюдатели были поражены не менее, чем сам Гук и его лондонские коллеги. В 1677 году результаты наблюдений Левенгука, теперь удостоверенные комиссией, были опубликованы Королевским обществом (на английском языке – они были переведены с голландского при содействии Гука, выучившего этот язык специально для того, чтобы прочесть записи Левенгука). В 1780 году Левенгука избрали «иностранным членом» Королевского общества, однако он так и не побывал в Лондоне.

Левенгук обладал настоящим творческим даром. Он не имел формального высшего образования и не обучался ни в одном из университетов. Ему не были знакомы ни латынь, ни греческий – два языка, обязательные для всех образованных людей того времени; он писал исключительно по-голландски. Свои микроскопы Левенгук конструировал в качестве развлечения и многие из них раздал знакомым, но никогда не продавал. Двадцать шесть своих инструментов он завещал Королевскому обществу; все они впоследствии оказались «позаимствованы» членами этой достойной коллегии ученых, и с тех пор оригиналов больше не видели. Остальная часть его коллекции была распродана на вес серебра или других металлов, составлявших основу инструментов. За свои девяносто лет жизни Левенгук стал отцом пятерых детей, но лишь одна девочка, Мария, дожила до зрелого возраста, так что его научное наследие почти полностью погибло после его собственной смерти в 1723 году.

Хотя Левенгука часто называют отцом микробиологии, у него был соратник и посредник, приведший его к славе, – Гук. Подобно связи, возникшей на полтора столетия позднее между Лайелем и Дарвином, Гука и Левенгука объединял своего рода симбиоз. Два этих выдающихся человека сыграли решающую роль катализатора в неминуемом открытии невидимого мира. Что касается личных отношений, оба были чрезвычайно великодушны друг к другу вплоть до конца жизни.

Описание и перепись микробов, по всей видимости, поддерживали представление о спонтанном зарождении жизни (в перечном настое, ни больше ни меньше!) – якобы организмы могут возникать из неживых или неорганических источников без очевидной линии наследственности. Так, например, было общепринятым мнение о том, что черви могут зарождаться в мертвом мясе, а осы возникать из закопанных лосиных рогов. В спонтанное зарождение жизни верило большинство людей того времени. Левенгук отрицал это представление, но не мог доказать, что оно неверно. Роль микроорганизмов в биологическом функционировании живых существ практически игнорировалась, и прошло более 200 лет, прежде чем эти организмы вновь удостоились серьезного внимания. Как ни странно, но в то время как фундаментальные научные открытия XVII века – гравитация, световые волны, обращение планет вокруг звезд, а также невероятные вершины научной абстракции, достигнутые в математике, – порождали мощные волны дальнейших открытий в физике и химии, не менее фундаментальные открытия в биологии в целом тащились позади и признавались значительными лишь в связи с проблемами человеческого здоровья.

Ни у Гука, ни у Левенгука не было учеников, и, хотя «Микрография» с успехом распродавалась в 1665 году и еще несколько лет после этого, Левенгук своей книги так и не написал, а его заметки не вызвали особого интереса у читателей. Ни Левенгук, ни Гук не оставили биологических наследников, и в отличие от Галилея ни у одного из них не было и непосредственных наследников интеллектуальных. Интерес к перечной воде постепенно угасал. В XVIII столетии мир микробов снова стал невидимым миром, в то время как естествоиспытатели-натурфилософы обратились к вопросам эволюции растений и животных и последовательностей геологических структур, содержащих органические останки. Стоило ли покупать дорогостоящий и хрупкий микроскоп для того, чтобы стать ученым-любителем, когда для этого требовался лишь молоток, которым можно было отбивать образцы горных пород.

Возрождение в изучении микроорганизмов началось лишь в середине XIX века. Его поборником стал ныне почти позабытый герой – Фердинанд Юлиус Кон. Кон, еврейский мальчик-вундеркинд, родился в прусском городе Бреслау (ныне Вроцлав, Польша) в 1828 году. Рассказывают, что он выучился читать, когда ему еще не минуло двух лет, пошел в среднюю школу в семь и поступил в университет Бреслау в четырнадцать. Несмотря на то что он выполнил все требования для получения степени, университет Бреслау отказался признавать его выпускником из-за повсеместно распространенного в тогдашней Пруссии антисемитизма. Кон завершил свое обучение в Берлинском университете, получив докторскую степень по ботанике в возрасте девятнадцати лет, и в 1849 году вернулся в университет Бреслау. В том же году отец купил ему самый дорогой и лучший из доступных в то время инструментов – микроскоп работы Симона Плёссля. Такой микроскоп наверняка вызвал бы у меня чувство зависти. Плёссль был австрийским инструментальным мастером, который нашел способ скорректировать большинство оптических аберраций, присущих микроскопам и телескопам с несколькими линзами. Изобретенная им конструкция объектива используется и по сей день.

Интерес Кона к микробам еще больше возрос благодаря его собственным наблюдениям, сделанным с помощью отцовского подарка. В Берлинском университете его побуждали к изучению одноклеточных водорослей двое выдающихся профессоров: Иоганн Мюллер и Христиан Эренберг. Последний был одним из известнейших немецких ученых того времени. Именно он определил диатомовые водоросли – один из типов одноклеточных водорослей – в частицах пыли, собранных Дарвином на Азорских островах во время путешествия на «Бигле»; таким образом, впервые было обнаружено, что микроорганизмы могут переноситься в атмосфере на далекие расстояния при помощи ветра. Также именно Эренберг показал, что мел состоит из останков микроскопических организмов, и это наблюдение впоследствии подтолкнуло ученых к поискам ископаемых микроорганизмов в горных породах.

По мере того как энтузиазм Кона возрастал, а оптика в микроскопах совершенствовалась, его все больше начинали интересовать одноклеточные водоросли и бактерии – или, во всяком случае, то, что он считал бактериями. Получив традиционное биологическое образование того времени, он принялся за классификацию бактерий в их связи с другими организмами. Классификация организмов по отношению к прочим организмам – безопасный и самоочевидный путь для биолога, и он остается таковым по сей день. Кон ничего не писал о происхождении жизни или эволюции микроорганизмов, но именно он дал определение бактериям как одноклеточным организмам, лишенным хлорофилла – зеленого пигмента, характерного для одноклеточных водорослей и высших растений. Хотя Кон прекрасно знал, что большинство бактерий не принимают участия в процессе фотосинтеза, он отнес их к одноклеточным водорослям, то есть к растениям. В традициях того времени Кон попытался разделить микроорганизмы на типы, основываясь в первую очередь на их форме, – простая система, изобретенная Левенгуком более столетия тому назад, которая и до сих пор бывает иногда полезна в качестве общего руководства (впрочем, в двадцатом столетии ее роль заняла технология секвенирования молекул).

Вероятно, наиболее важным вкладом Кона было то, что он вновь открыл микробиологию как науку. Как в свое время Левенгук, он показал, что микробы окружают нас повсюду: они находятся в воде, почве и воздухе, в нашей ротовой полости и кишечнике, на наших руках, одежде и в пище. Однако в отличие от большинства своих современников Кон не ограничивался рассмотрением микробов как возбудителей человеческих заболеваний. Действительно, он работал над бактериальными заболеваниями растений и животных и, хотя пользовался гораздо меньшей популярностью, чем Пастер, обладал гораздо большей широтой взглядов. Он увидел в бактериях организмы, способствовавшие формированию химического круговорота Земли – планетарного метаболизма. На ранних этапах моего научного пути Кон служил для меня источником вдохновения. Это был удивительный человек, первопроходец в области микробиологии окружающей среды.

Рис. 7. Изображение различных форм микроорганизмов, описанных Фердинандом Коном в его трактате Über Bakterien: Die Kleinsten Lebenden Wesen, вышедшем в свет в 1875 году. Он охарактеризовал эти организмы как связанные с одноклеточными водорослями и растениями и разделил их по форме на четыре категории: 1) сферобактерии (сферические бактерии); 2) микробактерии (короткие палочки); 3) десмобактерии (прямые нити); 4) спиробактерии (спиральные нити). Эта простая базовая система описательной классификации оказалась состоятельной и сохранилась до настоящего времени

Одним из нововведений, внесенных Коном в микробиологию, был способ изоляции отдельных штаммов, то есть генетически однородных вариаций видов микроорганизмов. Он разработал методику выращивания бактерий в жидкой среде с добавлением определенного питательного вещества, побуждавшего тот или иной штамм к быстрому росту. В 1876 году, два столетия спустя после того, как Левенгук описал открытые им микроорганизмы, Кона посетил немецкий сельский врач Роберт Кох, чтобы спросить совета по поводу своей работы с сибирской язвой. Кох выделил в почвенной вытяжке потенциальную бактерию сибирской язвы в стадии покоя и разработал новую методику для ее выращивания. Его подход отличался простотой, остроумием и уникальностью. В основе лежала изоляция микроорганизмов на поверхности геля, где могли развиваться колонии, выращенные из одной клетки. Основной принцип привел Коха к методике, заключавшейся в том, что питательные вещества растворялись в геле, полученном из морских водорослей (агар) в качестве среды для выращивания колоний. Эта смесь еще в виде разогретой жидкости распределялась по поверхности маленького плоского стеклянного блюдца с такой же крышкой – это приспособление изобрел ассистент Коха Юлиус Петри. Когда среда вместе с питательными веществами достигала комнатной температуры, она образовывала гель, по поверхности которого микроорганизмы распределялись при помощи зубочистки. Затем микроорганизмы образовывали колонии, после чего их можно было отбирать с поверхности геля и выращивать заново. Этот процесс повторялся до тех пор, пока не удавалось изолировать лишь один штамм бактерии. Использование агара и специальных чашек для выращивания бактерий сделало возможным выделение чистого штамма сибирской язвы. Поразительно, что Кох сам не заразился собственными культурами. Сегодня мы пришли бы в ужас, если бы какой-нибудь ученый-любитель принялся выращивать штаммы сибирской язвы в лаборатории у себя дома или в гараже.

Опираясь на методику очищения культур, разработанную им совместно с Петри, Кох выработал ряд постулатов, до нынешнего дня остающихся основой для идентификации инфекционных заболеваний. Они состоят в следующем: 1) микроорганизм должен всегда находиться в больных организмах и отсутствовать во всех здоровых; 2) микроорганизм должен быть выделен и выращен в чистой культуре; 3) очищенный микроорганизм должен быть способен при контакте инфицировать здоровый организм; 4) микроорганизм должен быть идентифицирован и выделен в контактировавшем организме. Применяя эти четыре условия, Кох экспериментально доказал, что бактерия сибирской язвы ответственна за соответствующее заболевание у коров. Это был первый случай, когда без тени сомнения было доказано, что заболевание вызывается микроорганизмами.

На Кона произвели чрезвычайное впечатление логика и скрупулезные методы Коха. Он опубликовал его статью в ботаническом журнале за 1886 год, и Кох, воодушевляемый Коном, принялся за дальнейшие исследования холеры и туберкулеза с целью показать, что они также являются бактериальными заболеваниями. В 1905 году Кох получил Нобелевскую премию, а его постулаты на десятилетие стали основополагающими догмами. Представление Коха о том, что микроорганизмы могут выделяться и выращиваться в виде культур, преобладало в микробиологическом сообществе вплоть до семидесятых годов XX столетия. Это была логичная идея, оказавшая большое влияние на идентификацию микроорганизмов в случаях заболеваний, однако упомянутые выше догматические постулаты совершенно непредумышленно оказали некоторое негативное влияние на исследования в области экологии и эволюции микроорганизмов.

На протяжении десятилетий микробиологи терпеливо выделяли виды микроорганизмов. Без сомнения, изучение индивидуальных организмов в изоляции помогло нам понять основные характеристики того, как тот или иной вид обеспечивает себе жизнь. Но такой подход также привел к предвзятости нашего понимания функционирования микробиотических сообществ. Это все равно что экстраполировать поведение африканских цихлид в моем аквариуме на их поведение в озерах, в их естественной среде обитания. Аквариум не является для них естественной средой. То же можно сказать и о чашке Петри или лабораторной пробирке с жидкой средой, где содержатся питательные вещества в концентрации, в тысячу раз превышающей ту, что существует в океане или озере. Тот факт, что ученые на самом деле не знали, как следует выращивать микроорганизмы, стал очевидным лишь во второй половине XX века, когда стало ясно, что микробы – социальные организмы, живущие в сложных сообществах. Социальную организацию микроорганизмов мы рассмотрим немного позже.

В 1977 году, через триста лет после того, как Левенгук сообщил о самом существовании микроорганизмов, Карл Вёзе и его коллега Джордж Фокс – оба биохимики и генетики из Иллинойского университета – сообщили о том, что все живые организмы могут быть разделены на три основные категории в зависимости от вида их внутриклеточных структур, называемых рибосомами. К тому моменту было широко известно, что рибосомы существуют у всех микроорганизмов, однако некоторые организмы не содержат внутри своих клеток структуры, покрытые оболочкой, в то время как у других такие структуры есть. Реферат статьи этих ученых, опубликованный в журнале «Труды Национальной академии наук США», состоял из одного предложения: «Филогенетический анализ, основанный на характеристиках последовательностей рибосомных РНК, показал, что все живые системы могут быть отнесены к одной из трех аборигенных линий происхождения: 1) эубактерии, включающие в себя все типичные бактерии; 2) архебактерии, к которым относятся метанообразующие бактерии; 3) уркариоты, не представленные в цитоплазменном компоненте эукариотических клеток».

Еще более важной оказалась очевидная взаимосвязь организмов друг с другом. Мало того что животные и растения представляют собой лишь маленькие отростки на древе жизни – как выяснилось, животные весьма тесно связаны с грибами. На первый взгляд не кажется очевидным, что какой-нибудь шампиньон приходится более близким родственником комару, слону или нам самим, нежели высшим растениям, однако это так и есть. В частности, Вёзе и его коллеги показали, что все живые организмы могут быть размещены на древе жизни в зависимости от истории формирования их механизма синтезирования белков.

Нам всем известны некоторые из белков – это вещество яичного белка, из них состоит наша кожа, наши волосы, наши ногти, волокна наших мышц. Они же являются ферментами – молекулами, превращающими то, что мы едим, в энергию и материал для наших тел. Без белков клетки не смогли бы выполнять никакую работу. А если клетка не может работать, она не может и воспроизводиться.

Ключевым компонентом в формировании белков являются рибосомы. Они представляют собой сложные наномеханизмы, состоящие из белков и рибонуклеиновых кислот, или РНК. Вёзе и Фокс секвенировали молекулы РНК в рибосомах и обнаружили, что в последовательности составляющих их элементов имеются тонкие, но существенные различия (они исследовали двенадцать видов живых организмов, куда входили пять видов бактерий, четыре вида метанпродуцирующих микроорганизмов, экземпляр дрожжей, маленькое растение – ряска, а также клетка из организма мыши). Ученые выяснили, что последовательности РНК в рибосомах бактерий имеют большее сходство друг с другом, чем с таковыми у дрожжей, ряски или мыши, и имеют также отчетливые различия с последовательностями у микроорганизмов с метановым метаболизмом. Эта работа продемонстрировала, что, несмотря на разделение живых существ на три надцарства, все они связаны друг с другом посредством последовательностей РНК в своих рибосомах.

Поскольку рибосомы имеются у всех организмов, Вёзе и его коллеги приняли как аксиому мнение о том, что все организмы на Земле являются потомками одного, ныне вымершего общего предка. В противном случае пришлось бы выдвинуть абсурднейшее и самое невероятное предположение, а именно, что рибосомы развились у миллионов видов независимо, создав весь спектр жизненных форм, которые мы наблюдаем сейчас. В сущности, Вёзе подтвердил идею Дарвина о том, что вся жизнь на Земле восходит к одному древнему прародителю. Информация, сохранившаяся в существующих ныне рибосомах, потенциально позволяет нам воссоздать взаимосвязи между всеми организмами. Изначальная эволюция наномеханизма, ставшего впоследствии рибосомой, пока остается неясной. Однако у бактерий и у нас мог быть лишь один общий предок, и этот предок не мог быть ничем иным, как микроорганизмом. Дарвин, Гук и Левенгук были бы, наверное, поражены до глубины души, узнав, что между всеми живыми существами может быть выстроена взаимосвязь на основе строения их внутреннего механизма, ответственного за выработку белков.

Рис. 8. Древо жизни по Карлу Вёзе и Джорджу Фоксу, где живые организмы соотносятся друг с другом на основании последовательностей рибосомальных РНК. Вёзе и Фокс открыли, что бактерии в действительности составляют два надсемейства ощутимо различающихся между собой организмов – бактерий и архей. Более того, животные и растения являются подгруппами в пределах более крупного семейства эукариотов. Подавляющее большинство организмов, составляющих это древо жизни, являются микроорганизмами В 1990 году, основываясь на последовательностях нуклеиновых кислот в рибосомах, над которыми он и его коллеги работали несколько лет, Карл Вёзе нарисовал универсальное филогенетическое древо жизни. Это древо имело фундаментальные отличия от того, каким оно представлялось Дарвину. Как выяснилось, жизнь на Земле сводится далеко не только к растениям и животным – она представляет собой нечто гораздо, гораздо большее, чем могли себе вообразить Левенгук, Гук или даже Дарвин. Подавляющее большинство живых существ на Земле – это микроорганизмы! И видов микроорганизмов существует гораздо больше, нежели видов всех растений и животных вместе взятых. Мы пока еще не знаем точного числа этих видов, но оно составляет несколько миллионов как минимум. Что мы можем сказать точно, так это то, что базовая структура древа жизни помогла нам понять, что вся ныне существующая на Земле жизнь произошла от одного вымершего микроорганизма.

Однако если у всех живых существ имелся общий микроскопический предок, то когда этот предок мог появиться на Земле?

Глава 3. Мир до начала времен

Через год после окончания докторантуры в Университете Британской Колумбии я поступил на работу в недавно образованный Отдел океанографических исследований при Брукхэвенской национальной лаборатории на Лонг-Айленде. Основными направлениями Брукхэвенской лаборатории являются физика и до некоторой степени химия. Несмотря на то что я не относился ни к физическому, ни к химическому отделу, на протяжении последующих двадцати трех лет я многому научился у моих коллег – физиков и химиков.

Физики ценят простоту. Они стремятся обнажить естественные феномены, раскрывая самое существенное. Одной из точек пересечения физики и химии является ядерная физика, оказавшаяся чрезвычайно полезной для понимания геологических процессов. Проведенные в начале XX столетия фундаментальные исследования в этой области, а в особенности открытие изотопов, сделанное физическим химиком Гарольдом Юри, способствовали проникновению в мир, существовавший до начала времен.

Химический элемент определяется числом положительно заряженных частиц – протонов – в ядре его атома. Изотоп содержит большее или меньшее число нейтронов по отношению к числу протонов. Нейтроны не имеют заряда; их функция состоит в том, чтобы «склеивать» ядра атомов, не давая протонам отталкивать друг друга. У каждого элемента существует несколько изотопов. Так, например, ядро углерода содержит шесть протонов. У наиболее распространенного изотопа углерода имеются шесть протонов и шесть нейтронов, ввиду чего его называют «углерод-12». Однако существует и изотоп углерода, содержащий шесть протонов и семь нейтронов (углерод-13), а также изотоп, содержащий шесть протонов и восемь нейтронов (углерод-14). Первый из них стабилен, то есть может существовать бесконечно долго. Второй радиоактивен, то есть один из его нейтронов постепенно распадается, превращаясь в протон, – так образуется азот-14, который также стабилен и существует бесконечно долго. Когда нейтрон в углероде-14, распадаясь, становится протоном, атом испускает отрицательно заряженную частицу – электрон, часто называемый также бета-частицей. Излучение бета-частиц может быть определено с большой точностью, и поэтому его можно использовать для определения содержания углерода-14 в изначальном веществе. Период полураспада углерода-14 равняется приблизительно 5700 годам, и, значит, примерно через 5700 лет половина атомов углерода-14 в популяции превращается в атомы азота-14. Радиоактивный распад углерода-14 потенциально позволяет датировать содержащие углерод материалы, такие как кости, зубы, дерево и т. п. Однако по прошествии десятков тысяч лет практически весь углерод-14 распадается, и сигнал уже слишком слаб, чтобы быть пригодным для датировки материалов. Уголь и нефть, образовавшиеся много миллионов лет назад, больше не содержат различимых следов углерода-14 – их возраст значительно превышает несколько периодов полураспада этого радиоактивного изотопа. Однако, к счастью, в естественной среде существуют и другие радиоактивные изотопы с периодом полураспада в сотни миллионов и даже миллиардов лет. Два таких вещества являются изотопами урана: это уран-238 и уран-235.

Эти два природных изотопа урана образовались внутри очень горячей, очень недолго просуществовавшей и затем взорвавшейся звезды – так называемой сверхновой, которая дала начало нашей Солнечной системе задолго до того, как наша звезда, Солнце, начала светиться. После того как наша Солнечная система сформировалась, эти изотопы урана оказались в составе метеоритов. Период полураспада урана-238 составляет 4,46 млрд лет, урана-235 – 704 млн лет. В конечном счете эти два изотопа, распадаясь, дают два различных, стабильных (то есть нерадиоактивных) изотопа свинца.

Изучение изотопов урана получило значительную поддержку со стороны национальных лабораторий Соединенных Штатов во время Второй мировой войны по очевидной причине: один из изотопов мог оказаться пригодным для создания атомной бомбы. Однако, как выяснилось, есть множество вариантов практического применения открытых изотопов урана и помимо производства оружия. Именно природная радиоактивность некоторых элементов, содержащихся в горных породах, позволяет нам датировать события ранней истории Земли, включая самые первые свидетельства микроорганической жизни.

В 1953 году тридцатиоднолетний химик Калифорнийского технологического института Клэр Паттерсон исследовал изотопы свинца в метеорите, найденном в каньоне Диабло – кратере в северной части Аризоны, образовавшемся около 50 тысяч лет тому назад в результате столкновения Земли с крупным метеоритом. Поскольку метеориты образовались на протяжении раннего периода формирования нашей Солнечной системы, возраст метеорита должен был приблизительно соответствовать времени возникновения на поверхности Земли застывшей коры.

Паттерсон послал образцы метеоритного вещества в Аргонскую национальную лабораторию для анализа на изотопы свинца, которые, как он знал, должны были образоваться после распада двух описанных изотопов урана. Основываясь на чрезвычайно тщательном анализе, он определил возраст Земли, который составил 4,55 млрд лет – датировка, прошедшая проверку дальнейшими научными исследованиями. Цифра в триста миллионов лет, выдвинутая Дарвином почти за столетие до того, как Паттерсон взялся исследовать изотопы свинца, оказалась заниженной более чем в десять раз!

Что же означает эта датировка, полученная на основе исследования изотопов свинца? Она свидетельствует о том, что более 4,55 млрд лет тому назад на нашей планете образовалась твердая кора. Однако если Земля настолько старше всего того, что когда-либо представлял себе Дарвин, то когда могла появиться на этой планете первая жизнь? Радиоактивный распад урана в метеоритах, подобных тому, который изучал Паттерсон, не чувствителен к изменению температуры, то есть метеорит мог подвергаться значительным нагреванию и охлаждению, а вычисленный возраст оставался бы при этом неизменным. Однако в отличие от метеоритов большинство горных пород на Земле перенесли один или несколько эпизодов изменений, поскольку земные недра раскалены. Этот жар образуется в результате радиоактивного распада урана и двух других элементов тория и калия. Высокая температура в недрах планеты, в свою очередь, является причиной вулканических извержений и землетрясений на ее поверхности. Этот процесс выносит на поверхность Земли новые материалы, одновременно погружая осадочные толщи на дне океанов в глубины планеты, где они вновь расплавляются. Чем дальше мы продвигаемся назад во времени, тем меньше можно найти сохранившихся с тех пор горных пород, поскольку большая часть древнейших пород превратилась в результате эрозии в осадочные толщи, погрузилась в недра Земли, была там расплавлена и преобразована в новейшие формации. Хотя этот процесс занимает сотни миллионов лет, лишь очень немногим породам удалось его избежать; но даже если некоторым это удалось и они не превратились полностью в осадочные породы, зачастую воздействие изменений температуры и давления, которым они подвергались, было достаточно велико, чтобы уничтожить следы любых имевшихся в них органических соединений. Есть некая ирония в том, что те самые элементы, которые позволяют нам реконструировать возраст Земли, уничтожают свидетельства жизни в древнейших горных породах, сохранившихся на поверхности планеты.

На Земле существует совсем немного мест, где можно найти очень старые породы, не подвергавшиеся воздействию экстремальных изменений температуры или других условий, сказавшемуся на их дальнейшем формировании. Древнейшие из таких пород найдены на юго-западе Гренландии, в формации Исуа – одном из интереснейших уголков Земли. Все породы здесь имеют возраст около 3,8 млрд лет, и их очень легко рассмотреть, поскольку они почти не скрыты растительностью. Несколько лет назад я провел там месяц в компании моего друга и коллеги Миника Розинга, изучавшего породы этой формации на протяжении десятилетий. В них трудно увидеть убедительные свидетельства древней жизни: здесь нет следов органических останков как таковых. Тем не менее в формации Исуа существует небольшая прожилка графита. Графит – это одна из твердых форм углерода. В XVI веке этот минерал высоко ценился, поскольку его использовали для изготовления литейных форм – например, для отливки пушечных ядер. И хотя мы можем не иметь представления о том, как делались пушечные ядра, мы все знаем, как выглядит графит: порошок этого минерала в смеси с глиной на протяжении двух прошедших столетий использовался для изготовления карандашных стержней. Графитовые прожилки формации Исуа образовались миллиарды лет тому назад в результате нагрева осадочных пород – пород, отложившихся на дне древнего океана.

Графит в формации Исуа имеет высокое содержание одного из двух стабильных углеродных изотопов – углерода-12. Такое обогащение углеродом-12 кажется любопытным, поскольку главной его причиной в органическом веществе являются процессы фотосинтеза. Все фотосинтезирующие организмы, такие как те бактерии, которых я изучал в Черном море, предпочитают использовать более легкий, стабильный изотоп углерода для строительства своих клеток. Не может ли высокое содержание углерода-12 в графите Исуа означать, что 3,8 млрд лет тому назад в океанах существовали фотосинтезирующие микроорганизмы? Не знаю, сумеем ли мы когда-либо выяснить это наверняка, поскольку горные породы этой области были слишком сильно изменены под воздействием высокой температуры и давления, чтобы по ним можно было заключить что-либо еще; однако существуют и другие, хотя и более молодые породы в других местах, не подвергшиеся столь значительным изменениям за прошедшие времена.

Две другие важные области, где находятся древние породы, расположены в Южной Африке и Западной Австралии. Возраст древнейших пород из этих двух регионов составляет вплоть до 3,6 млрд лет, и в некоторых из них имеются более отчетливые следы жизни в виде органических останков и измененного изотопного состава углерода. Одной из областей, где найдены органические останки, является формация Стрелли-Пул в Западной Австралии, содержащая свидетельства существования микроорганизмов в породах возрастом около 3,4 млрд лет. Хотя обнаружить останки микроорганизмов и удостовериться в их подлинности очень сложно, при гибели любого организма существует бесконечно малая вероятность того, что он оставит биохимический след в осадочной толще. В случае микроорганизмов лучше всего сохраняются следы липидов – жиров, из которых слагаются оболочки их клеток. Эти молекулярные ископаемые были найдены в породах, сформировавшихся за первые 2,7 млрд лет существования Земли. Очень трудно найти более древние породы, которые не были бы переплавлены или изменены и смогли бы благодаря этому сохранить хотя бы какие-то сложные органические соединения. К несчастью, ни рибосомы, ни какие-либо другие нуклеиновые кислоты, ни белки не сохранились в горных породах за прошедшие миллиарды лет – в противном случае наши представления об истории возникновения жизни на Земле были бы гораздо более полными. В более молодых образованиях существуют убедительные свидетельства микроорганической жизни. Уже в породах возрастом приблизительно 2,6 млрд лет имеются ясные, четкие органические останки микроорганизмов и вариации в составе изотопов углерода, азота и серы, являющиеся бесспорным свидетельством наличия в океанах того времени богатой микроорганической жизни.

Основываясь как на молекулярных (главным образом это молекулы – производные липидов), так и на органических останках, можно интерпретировать каменную летопись таким образом, что на протяжении первых 3,5 млрд лет земной истории – а это приблизительно 85 % всего времени, прошедшего с формирования планеты до настоящего момента, – вся жизнь была исключительно микроорганической и почти целиком ограничивалась океанами. Не было ни животных, ни наземных растений, ни настоящих почв, и в течение очень, очень долгого времени практически не было кислорода.

Однако можем ли мы что-либо сказать о том, как, собственно, эти древние микроорганизмы в то время функционировали? И дает ли нам это какие-либо сведения о появлении растений и животных спустя три миллиарда лет?

Аналогом древней микроорганической летописи является Черное море. Действительно, во многих отношениях глубоководные области современного Черного моря, по-видимому, дают прибежище многим типам организмов, сходным с теми, которые могли существовать в океанах около трех миллиардов лет тому назад.

Почему мы считаем, что Черное море является современным аналогом вымершего микроорганического мира?

В 1997 году Билл Райан и Уолтер Питман из Колумбийского университета предположили, что около 7500 лет тому назад, когда растаяли ледниковые щиты в Северном полушарии, воды Средиземного моря прорвались через пролив Босфор и затопили Черное море. Согласно гипотезе ученых, это произошло стремительно и, возможно, послужило истинным источником легенды о Ноевом ковчеге. В любом случае, было ли затопление Черного моря внезапным или более постепенным, как утверждают другие источники, в результате его теплые, очень соленые воды вторглись в бассейн через узкий мелководный пролив, разделяющий европейскую и азиатскую части современной Турции. Плотность этих соленых вод была больше плотности пресной воды, поступающей в бассейн из Дона, Днепра, Дуная и других рек, текущих с севера. Более плотная соленая вода опустилась в придонные области, в то время как относительно легкая пресная осталась наверху. Разница в плотности водных масс сделала практически невозможным выход придонных вод на поверхность, где они могли бы насытиться атмосферным кислородом. Вследствие этого органические соединения, производимые фотосинтезирующими организмами на поверхности, погружаясь в глубины, оказываются поглощены и респирированы микроорганизмами, истощившими весь запас кислорода в глубоководных слоях Черного моря. Фактически глубинные воды Черного моря лишены кислорода уже несколько тысяч лет; это единственный бассейн полузамкнутого типа, остающийся бескислородным так долго. Откуда мы это знаем?

В результате испытаний ядерного оружия в 1950-х и 1960-х годах образовалось большое количество углерода-14, который распространился во всей атмосфере. Некоторая часть этого углерода вошла в контакт с поверхностью океанических вод, и, поскольку водные массы с поверхности перемещались в глубины океанов и морей, можно было с большой точностью измерить и проследить радиоактивный распад изотопа, получив своего рода хронометр. Произведя обратные вычисления, чтобы вернуться к изначальному содержанию углерода-14 в атмосфере, океанографы смогли определить, насколько давно воды того или иного океанического бассейна вступали в контакт с атмосферой. На основании подобного анализа можно утверждать, что глубинные массы вод современного Черного моря в последний раз соприкасались с атмосферой около 1500 лет тому назад, и, хотя по геологическим меркам это не столь уж долгое время, его было достаточно, чтобы весь кислород, продуцированный ниже верхнего стометрового слоя, оказался очень быстро поглощен после того, как эти водные массы вновь погрузились в глубину. Водные массы глубинных слоев современного Черного моря оставались без кислорода на протяжении самое меньшее 8000 лет.

Хоть мы и не можем сказать, что микроорганизмы глубин Черного моря в буквальном смысле существуют миллиарды лет, они являются живыми ископаемыми в том смысле, что у них сохранились метаболические процессы – или, попросту говоря, внутренние механизмы, возникшие на самой заре земной истории. По существу, они донесли до наших дней метаболизм организмов, населявших Мировой океан миллиарды лет тому назад. Попытавшись разобраться в их метаболизме, мы можем получить представление о том, как происходили жизненные процессы в мире, исчезнувшем давно и навсегда. Однако это позволяет не только понять жизненные процессы, происходившие миллиарды лет тому назад, – мы можем и нечто большее: посредством изучения этих древних микроорганических механизмов мы также получаем возможность понять связи между микроорганизмами и всеми существующими растениями и животными, включая нас самих.

Давайте же заглянем «под капот», чтобы увидеть, как работают некоторые из механизмов, дающих жизнь этим невидимым созданиям. Попробуем исследовать, как микроорганизмам удалось создать в своих клетках эти механизмы, ставшие впоследствии двигателями жизни на Земле и ключом к обитаемости нашей планеты.

Глава 4. Маленькие двигатели жизни

Едва ли Роберт Гук мог предвидеть значимость сделанного им описания микроскопических клеток в тонком куске пробки, который он отрезал перочинным ножом. На протяжении более чем трех столетий, минувших с того времени, когда Гук впервые изобразил очертания структур клеток, ученые потратили много времени и усилий, чтобы понять, как же эти клетки – мельчайшая форма жизни, способная к самовоспроизведению, – функционируют. Эти усилия были направлены прежде всего на то, чтобы понять скрытые внутри клетки механизмы, позволяющие ей получать энергию, расти и размножаться. И хотя мы не знаем всех ответов, нам уже известно, что, как в кукле-матрешке, внутри отдельных контейнеров самих клеток имеются контейнеры меньшего размера, выполняющие каждый свою специфическую функцию. За неимением более простого термина я называю эти заключенные в клетках меньшие контейнеры наномеханизмами жизни. Это агрегаты, составленные главным образом из белков и нуклеиновых кислот и выполняющие необходимые функции во всех живых клетках. Я потратил немалую часть своей научной жизни, пытаясь понять, как они работают.

Понимание того, как работают эти наномеханизмы, имеет значение, поскольку их внутренняя работа позволяет нам увидеть, как основные процессы копируются и преобразуются в различных формах. Это аналогично тому, как если бы мы, взяв детали из магазина радиотоваров, собирали усилители, радиоприемники, телевизоры и любые другие устройства, какие можно придумать. В природе встречаются наномеханизмы самых разных типов. Как я уже говорил, одни из древнейших – рибосомы – возникли у предков современных микроорганизмов миллиарды лет тому назад. В пятой главе мы еще вернемся к этому первобытному миру древних микроорганизмов, но сначала давайте рассмотрим другие наномеханизмы и поймем, как они функционируют внутри клеток.

Попытка понять действие механизмов внутри живой клетки до какой-то степени аналогична попытке разобраться, как работает автомобиль, не имея представления о том, что находится под капотом. Мимо нас по улице проезжают машины, и мы понимаем, что внутри них имеются какие-то механизмы, позволяющие им двигаться. Мы можем остановить машину и вынуть ключ из зажигания – тогда машина больше не заведется. Если мы сумеем открыть капот, то, возможно, сможем разобрать находящийся там механизм и рассмотреть все его части – до последнего винтика, последней шайбы и прокладки. И если мы посмотрим еще внимательнее, то увидим, что все части собраны в исключительно точной последовательности; однако у нас нет никакой инструкции касательно того, как их собирать. Если мы не поймем, для чего какая часть предназначена, то никогда не сможем сообразить, как все эти приспособления позволяют машине ехать по дороге. Однако, рассматривая по отдельности поршень или аккумулятор, не говоря уже о компьютере, мы, вероятно, сможем получить какое-то представление о том, какую роль эта конкретная часть выполняет и каковы ее функции в общем механизме.

Параллель между попыткой понять принцип действия автомобиля и исследованием функционирования клетки, разумеется, весьма приблизительна. Клетки устроены гораздо сложнее, нежели автомобили. Автомобили не могут собирать сами себя, не воспроизводятся самостоятельно и, как ни жаль, не умеют сами себя чинить. Поэтому, наверное, не следует чересчур удивляться тому, что, хотя биологи и смогли разобрать клетку на части, чтобы посмотреть, как работают отдельные компоненты, им до сих пор так и не удалось заново собрать эти части с нуля и получить полностью работоспособный, самовоспроизводящийся организм. Нам предстоит еще долгий путь к пониманию того, что находится «под капотом» у клеток. Тем не менее на протяжении трехсот лет, прошедших с тех пор, как Гук описал базовую структуру клеток, мы далеко продвинулись вперед в распознавании многих ключевых элементов и уже начинаем догадываться, как работают эти внутриклеточные наномеханизмы. Это знание позволило нам увидеть закономерности в организации клеток на генеалогическом древе жизни. Собственно, оно дало нам возможность понять, что это вообще такое «жизнь». Однако перед тем как мы начнем детально разбирать «колесики и винтики», давайте вкратце рассмотрим, как эти элементы были обнаружены.

Идентификация отдельных элементов клетки началась в XIX веке благодаря усовершенствованию микроскопов, а также пытливому и терпеливому характеру биологов – как правило, достаточно зажиточных мужчин. В 1831 году шотландский ботаник Роберт Броун при внимательном исследовании под микроскопом выделил темное пятно в центре клетки орхидеи, а впоследствии и в пыльце. В статье, представленной им Линнеевскому обществу в Лондоне, ученый назвал эту структуру ядром (нуклеус); это была первая из идентифицированных внутриклеточных структур. В 1869 году Фридрих Мишер, швейцарский доктор, работавший в Германии, обнаружил, что найденные Броуном внутриклеточные структуры содержат любопытные молекулы, которые не являются белками, и назвал это новое вещество нуклеином. Почти столетием позже обнаружится, что эти молекулы несут информацию, необходимую для строительства новых клеток.

В последней четверти XIX и начале XX века изготовители инструментов принялись разрабатывать все более совершенные объективы и другие компоненты оптических микроскопов, позволившие ученым в буквальном смысле заглянуть внутрь крупных клеток. Еще большей наглядности удалось добиться при помощи разнообразных красителей и пигментов, избирательно окрашивавших те или иные компоненты клетки. Благодаря подобным усовершенствованиям ученые смогли прийти к довольно глубокому пониманию положения некоторых компонентов в эукариотических клетках, то есть клетках, содержащих ядро. Растения и животные по существу представляют собой организованные скопления эукариотических клеток.

Благодаря более совершенным объективам, красителям и микроскопам с еще большим увеличением в течение относительно короткого отрезка времени было сделано несколько открытий. В 1883 году еще один ботаник, немец Андреас Шимпер, обнаружил, что крахмал, окрашивающийся в присутствии йода в темно-бурый цвет, производится в растениях микроскопическими зелеными тельцами, которые он назвал хлоропластами. В 1890 году другой немец, Рихард Альтман, выяснил, что, судя по всему, в любых животных клетках присутствуют скопления маленьких частиц, которым он дал название биобласты – позднее они станут известны как митохондрии. Альтман обнаружил также, что «нуклеин» Мишера имеет кислотную природу, и переименовал это вещество в нуклеиновую кислоту. В 1897 году итальянский врач Камилло Гольджи описал еще одну структуру, получившую впоследствии название «аппарат Гольджи». Вначале ученые сочли, что эта структура является артефактом – побочным эффектом красителей, которые использовал Гольджи, и лишь в середине XX века было подтверждено, что она реально существует. Позднее было описано еще несколько крупных структур; это сделали очень терпеливые наблюдатели, работавшие с лучшими оптическими микроскопами того времени. Однако, как бы ни были хороши объективы, существуют физические ограничения того, что можно увидеть при помощи микроскопа, использующего видимый свет.

Структуры, размеры которых составляют меньше тысячной доли миллиметра (иначе говоря, микрометра), попросту очень трудно разглядеть в деталях при помощи видимого света. Диаметр человеческого волоса составляет около 100 микрометров, диаметр же большинства бактерий и других микроорганизмов – около 1–2 микрометров, а порой даже меньше. Чтобы разглядеть их невооруженным глазом, нужно выстроить в ряд около 100 таких клеток, и тогда их длина будет равна диаметру человеческого волоса. И поскольку эти микроорганизмы так малы, для нас практически невозможно различить находящиеся внутри них структуры. Есть ли там миниатюрные ядра? Митохондрии? Хлоропласты? Эта попытка визуализации внутриклеточных структур может напомнить выдвинутую ранее Левенгуком концепцию анималькулей, которых он представлял как микроскопических животных. На протяжении нескольких десятилетий научный прогресс в области изучения очень маленьких клеток или маленьких частей внутри крупных клеток оказался застопорен из-за ограничений в разрешении и увеличительной способности оптических микроскопов.

Прорыв в этом направлении произошел в 1930-х годах, когда два немецких физика, Макс Кнолль и его студент Эрнст Руска, разработали микроскоп нового типа, в котором использовались высокоэнергичные электроны – они ускорялись в вакууме и как лучи проецировались на образец, который либо поглощал их, либо пропускал, либо рассеивал. Получившееся изображение могло передавать структуры с разрешением в десятые доли микрометра, то есть с более чем в сто раз большим увеличением, чем то, какое было достижимо в оптических микроскопах. Открылся целый новый мир – мир, в котором мы впервые действительно получили возможность заглянуть клеткам «под капот».

Изучение клеток под электронным микроскопом тотчас же подтвердило существование ядер, аппаратов Гольджи, митохондрий и хлоропластов у эукариотических клеток. Однако, к удивлению ученых, оно также раскрыло, что у многих микроорганизмов эти структуры отсутствуют. Судя по всему, число матрешек среди микробов было ограничено. Организмы, внутри которых не были найдены такие автономные, заключенные в мембраны структуры, были объединены учеными в группу, получившую название прокариоты. Тем не менее детальное изучение внутреннего строения клеток открыло некоторые структуры, общие для всех клеток вне зависимости от того, имеется у них ядро или нет. Определенные элементы требовались всем.

Одними из таких универсальных элементов оказались рибосомы. Впервые они были обнаружены в 1955 году румынским биологом Джорджем Паладе, который работал в Рокфеллеровском институте (теперь университете) в Нью-Йорке. При помощи лучших из доступных в то время электронных микроскопов Паладе описал эти структуры в образцах клеток млекопитающих и птиц (и те и другие являются эукариотами). Рибосомы были похожи на очень маленькие ворсистые шарики, которые либо свободно плавали во внутриклеточной жидкости, либо группировались вдоль определенных внутренних мембран. Паладе обнаружил, что эти маленькие шарики содержат как белки, так и нуклеиновые кислоты, но роль этих крошечных компонентов клетки оставалась невыясненной еще более десяти лет. Было очевидно, однако, что та нуклеиновая кислота, которая находится в ядре, представляет собой ДНК, в то время как в рибосомах содержится рибонуклеиновая кислота – другой тип нуклеиновой кислоты с другим сахаром, рибозой, имеющей на один атом кислорода больше, чем дезоксирибоза, найденная в ДНК. Впоследствии эти маленькие шарики стали называть рибосомами, сложив вместе название «рибоза» и греческое слово «сома» (тело).

Рис. 9. Электронная микрофотография тонкого среза клетки зеленой водоросли. Этот организм является эукариотом (см. рис. 8) и, подобно всем эукариотам, содержит несколько внутриклеточных органоидов, ограниченных мембранами. В данной клетке такими органоидами являются хлоропласт (C), митохондрии (M), ядро (N) и аппарат Гольджи (G). (Оригинальная микрофотография, сделанная Майроном Ледбеттером и Полом Фальковски.)

Рис. 10. Схема строения рибозы и дезоксирибозы. Первая содержится в рибонуклеиновой кислоте (РНК), вторая – в дезоксирибонуклеиновой кислоте (ДНК)

Рибосомы – это микроскопические механизмы, которые забирают информацию у последовательности ДНК посредством молекулы-посредника. Такая молекула является зеркальной, или комплементарной, к гену, который представляет собой матрицу белковой последовательности. Комплементарная цепочка РНК называется информационной, или матричной РНК. Информация, содержащаяся в информационной РНК, сообщает рибосоме, какие аминокислоты и в каком именно порядке следует химически прикрепить друг к другу. Получающиеся в результате цепочки аминокислот и становятся теми самыми белками, которые необходимы клеткам, чтобы функционировать, восстанавливать себя и создавать новые клетки.

Поскольку все основные составляющие клеток либо являются белками, либо зависят от белков в своем формировании, можно сказать, что рибосомы – абсолютно необходимые компоненты в каждой клетке. Однако это чрезвычайно сложные механизмы. Их диаметр составляет всего лишь около 20–25 нанометров (нанометр – это 1/1000 доля микрометра, который в свою очередь составляет 1/1000 долю миллиметра), ввиду чего их очень трудно увидеть даже с помощью электронного микроскопа. Перед учеными встала дилемма: как можно исследовать одну из самых основных функций клетки – производство белков, не имея возможности видеть стоящие за этим механизмы? Однако именно здесь подоспели на помощь биохимики и физики.

Биохимики специализируются на описании отдельных компонентов клеток. Их основная методика заключается в том, чтобы вытащить из клетки те или иные части и посмотреть, как они работают. Начинают биохимики обычно с того, что разрушают клетки и разделяют получившийся материал на различные компоненты. Основным инструментом для такого разделения служит центрифуга, которая раскручивает материал на высокой скорости, так что его составляющие разделяются на фракции в соответствии со своей массой: чем тяжелее частица, тем дальше в центрифужной пробирке она окажется. При помощи такой высокоскоростной центрифуги Паладе сумел отделить те самые структуры, похожие на ворсистые шарики, которые он увидел в электронный микроскоп.

Рис. 11. Схема, иллюстрирующая функционирование рибосомы. Этот наномеханизм образует белки при помощи информационной матрицы, изначально закодированной в ДНК и перенесенной при помощи молекулы информационной РНК (иРНК). Молекула иРНК обеспечивает информацию о последовательности аминокислот, необходимой для образования конкретного белка; для каждого белка в клетке имеется собственная иРНК. Рибосома, также содержащая РНК, но образующая более крупную структуру из многих белков, «считывает» информацию с молекулы иРНК и при помощи третьей молекулы РНК с прикрепленной к ней определенной аминокислотой (транспортной РНК, тРНК) выстраивает белки, наращивая их по одной аминокислоте за раз. Белок появляется из рибосомы, чтобы занять надлежащее место внутри клетки

Однако вопрос оставался открытым: как, собственно, функционируют рибосомы? Сумев изолировать рибосомы, Паладе и его коллеги определили, что эти структуры состоят из белков и еще одного типа молекул РНК, отличного от информационной РНК. Вскоре было доказано, что эти крошечные шарики могут образовывать белки прямо в пробирке, если предоставить им необходимые компоненты. Однако даже самые лучшие электронные микроскопы не могли показать, что находится внутри изолированных Паладе рибосом. Для решения этой проблемы требовалось еще более мощное орудие распознавания.

В начале XX столетия, вскоре после открытия радиоактивности, физики обнаружили, что рентгеновские лучи, представляющие собой чрезвычайно высокоэнергетические частицы света, рассеиваются кристаллами строго определенным образом. Рентгеновское излучение гораздо более высокоэнергетичное, нежели электроны, и может отображать совсем крошечные структуры – вплоть до уровня отдельных атомов. Физики и химики сделали множество рентгеновских изображений кристаллов, слегка меняя их ориентацию, благодаря чему смогли определить расположение отдельных атомов внутри кристаллической решетки. Такой же подход впоследствии был применен для описания структуры сепарированных компонентов клетки, и вскоре после Второй мировой войны стало возможным определение расположения атомов в кристаллической решетке белков. Это была чрезвычайно скрупулезная работа: необходимо было получить и наложить друг на друга сотни рентгеновских изображений – все это в отсутствие компьютеров. При помощи обратного вычисления угла рассеяния рентгеновских лучей, прошедших через структуру, физики и химики могли судить о строении молекулы, даже если ее и нельзя было увидеть непосредственно с помощью микроскопа. Постепенно становились доступны компьютеры и рентгеновские источники повышенной мощности – такие, как синхротронные источники излучения, один из которых располагался через улицу напротив моего здания в Брукхэвенской национальной лаборатории, – и ученые описывали структуры все новых и новых белков. Эти описания содержатся в архиве химического факультета моего университета; любой человек, имеющий компьютер, может найти их в Сети.

Рис. 12. Электронная микрофотография, показывающая распределение рибосом (маленькие ворсистые шарики) вдоль системы мембран (эндоплазматическая сеть) в эукариотической клетке. На подобном изображении Джордж Паладе впервые идентифицировал рибосомы, чтобы впоследствии их изолировать

Рибосомы не состоят из одного-единственного белка и не сводятся исключительно к белкам; это гораздо более сложные структуры. Самые простые рибосомы, найденные в прокариотах, содержат, помимо молекул РНК, еще около шестидесяти белков, объединенных в две группы. Сначала считалось, что будет необдуманным пытаться кристаллизовать целую рибосому и тем более получить какую-либо полезную информацию об их структуре при помощи рентгеновского излучения. Тем не менее в конце 1980-х годов двум ученым это удалось. Один из них, Гарри Ноллер, был американцем, другая, Ада Йонат, была израильским биохимиком и работала в Германии и Израиле. Работа потребовала от них немало терпения, усердия и вдохновения, однако они смогли получить первые рентгеновские изображения рибосом.

В течение двух последующих десятилетий несколько групп ученых по всему миру занимались анализом структуры этих удивительных наномеханизмов. На основании тщательнейшего исследования множества рентгеновских изображений им удалось собрать по кусочкам информацию о том, как функционируют рибосомы. Этими учеными были: Ноллер из Калифорнийского университета в Санта-Крусе, Йонат из Вейсмановского института, Томас Стейц из Йельского университета и Венкатраман (Венки) Рамакришнан, сначала работавший в Брукхэвенской национальной лаборатории (мой бывший коллега), а затем перешедший в Кембриджский университет. Трое последних в 2009 году за свои усилия были удостоены Нобелевской премии по химии.

Два основных комплекса, составляющих рибосому, взаимодействуют приблизительно так же, как работает пара рычагов. Аминокислоты переносятся к рибосоме третьей молекулой РНК – транспортной РНК. По мере того как информационная РНК скармливается рибосоме наподобие макаронины, два этих белковых комплекса движутся взад и вперед, прикрепляя одну за другой необходимые аминокислоты, чтобы собрать молекулу белка. Таким образом эта белковая фабрика «штампует» информацию, заключенную в генах. Этот замысловатый механизм работает с невероятной скоростью – за секунду к формирующейся белковой цепочке добавляются от десяти до двадцати аминокислот.

Подобные «белковые фабрики», практически идентичные друг другу, существуют во всех живых клетках. Бывают небольшие отклонения в составе РНК внутри рибосом, однако такие отклонения принято считать нейтральными мутациями, которые постоянно встречаются в природе, – это случайности, возникающие бессистемно и не влияющие на результат процесса. Подобные нейтральные мутации мы можем видеть повсюду вокруг. Отпечатки пальцев каждого из нас несколько отличаются от отпечатков пальцев других людей: там, где у одних завитки, у других можно видеть дуги, гребни или петли. Эти узоры никак не коррелируют с нашей тактильной чувствительностью. Точно так же мутации рибосомальной РНК, как представляется, не влияют на скорость, с которой рибосома производит белок, – не существует суперрибосом и рибосом-аутсайдеров (во всяком случае, мы так не думаем). Фактически строение всех рибосом настолько схоже, что их едва можно различить; тем не менее между последовательностями нуклеиновых кислот в рибосомальной РНК существуют небольшие различия. Эти различия и позволили Карлу Вёзе и Джорджу Фоксу разделить прокариоты на две большие надгруппы – бактерии и археи, которые, в свою очередь, очень сильно отличаются от эукариотов. Однако если различия в последовательностях нуклеиновых кислот в рибосомальной РНК и позволяют нам проследить эволюционную историю всех живых организмов, различия в последовательностях РНК не оказывают влияния на базовую функцию рибосомы. Все клетки производят белки абсолютно одинаковым способом.

Тем не менее производство белков – не такая простая задача. Аминокислоты сами по себе не устанавливают химических связей друг с другом. Для того чтобы такая связь установилась, требуется энергия. Откуда же берется энергия для того, чтобы производить белки? Ее вырабатывает другой комплекс наномеханизмов, расположенный в других частях клетки. Начиная с этого момента мир внутри клетки становится еще более интригующим.

Основной энергетической валютой во всех клетках является молекула, называемая аденозинтрифосфат (АТФ), одиночная молекула нуклеиновой кислоты, присутствующая как в ДНК, так и в РНК и содержащая один из сахаров и три фосфатные группы, соединенные последовательно. Когда эта молекула используется в биохимической реакции, она расщепляется на аденозиндифосфат (АДФ) и одиночный фосфат. Расщепление АТФ сопровождается выделением химической энергии, которая используется для многих целей. Одной из важнейших функций АТФ у всех организмов, а в особенности у микроорганизмов, является участие в синтезе белков. Другая функция – подвижность. Еще одна состоит в прокачке ионов, таких как протоны, натрий, калий и хлориды, сквозь мембраны. Все эти и другие функции можно проследить на протяжении всей истории развития жизни на Земле. Вследствие такой повсеместной распространенности АТФ во всех возможных клетках возникает вопрос: как клетки производят АТФ?

Рис. 13. Основной валютой биологической энергии на протяжении всей истории развития жизни является аденозинтрифосфат (АТФ). При соединении АТФ с водой в ферментах одна фосфатная группа может быть оторвана от молекулы, в результате чего образуется аденозиндифосфат (АДФ) и неорганический фосфат. Такая реакция высвобождает энергию, которую все клетки используют для жизни

Открытие того, как производится в клетках основная часть АТФ, было чрезвычайно дискуссионным и, однако же, одним из важнейших в истории биологии. Много лет, с тех самых пор, как Пастер открыл, что микробы могут использовать глюкозу как источник энергии в анаэробных условиях, было известно, что АТФ может производиться в клетках посредством переноса фосфатной группы некоторых небольших молекул непосредственно к АДФ, формируя АТФ. Долгое время этот процесс, называемый субстратным фосфорилированием, считался единственным источником АТФ, однако числа никак не сходились. Если при отсутствии кислорода количество АТФ, произведенного микроорганизмами, зачастую было небольшим, при наличии кислорода производилось гораздо больше АТФ, чем можно было отнести на счет фосфорилирования субстрата. Должен был иметься еще какой-то источник АТФ.

В 1950-х годах несколько эксцентричный английский биохимик Питер Митчелл, в то время работавший в Кембриджском университете, задался вопросом о том, как ионы переносятся через мембраны. Мембраны выполняют функцию барьеров, препятствующих распространению электрически заряженных атомов или молекул растворимых веществ, известных как ионы. Митчелл знал, что в случае микроорганизмов АТФ может использоваться для транспортировки ионов и других молекул внутрь клеток и наружу из клеток через клеточную мембрану. Однако один из его аспирантов показал, что у бактерий приток сахаров в клетку сопровождается потоком ионов водорода (протонов) из клетки наружу. Оба потока – и сахаров, и протонов – зависели от АТФ. Митчелл подумал, что, если реакция способна происходить в одном направлении, она может сработать и в противоположном, то есть если предоставить клетке дополнительные протоны, это приведет к созданию АТФ вместо его поглощения. Покинув Кембридж, Митчелл принялся экспериментировать вне лаборатории, в небольшом поместье в Корнуолле, которое он незадолго перед этим отреставрировал. Здесь ему пришла в голову оригинальная идея.

К этому времени было известно не только то, что описанная семьдесят лет назад Альтманом структура – митохондрия – ответственна за производство больших количеств АТФ, но также что объем этого производства зависит от присутствия кислорода. Кислород при этом превращается в воду (H2O), а это означает, что к каждому атому кислорода добавляются два атома водорода (H).

Митчелл предположил, что на границе мембран внутри митохондрий действует сила, как-то связанная с концентрацией протонов в этом органоиде. Он обнаружил, что внутри митохондрии имеется сеть мембран и что с одной стороны этих мембран протонов больше, чем с другой. При перемещении протонов со стороны с большей концентрацией на противоположную и создается АТФ. Этот процесс, который Митчелл назвал хемиосмосом, требовал, чтобы внутримитохондриальные мембраны сохраняли свою целостность.

Рис. 14. Аденозинтрифосфат производится в клетках путем генерирования градиента электрического заряда на границе мембраны. У множества клеток в двух органоидах – митохондрии и хлоропласте – градиент заряда образуется благодаря разнице в концентрации протонов (ионов водорода), то есть на одной стороне мембраны протонов больше, чем на другой. По мере просачивания протонов через фактор сопряжения, встроенный в мембрану, может производиться АТФ (см. рис. 15)

Вскоре после того, как в 1961 году Митчелл опубликовал свою гипотезу, молодой исследователь из Корнелльского университета Андре Ягендорф показал, что аналогичный процесс существует в хлоропластах. Ягендорф изолировал хлоропласты из клеток листьев, после чего погрузил органоиды в кислотный раствор, держа их при этом в темноте. Хлоропласты не могли фотосинтезировать из-за отсутствия света, однако внутренняя среда органоидов стала кислой. Затем ученый, все так же в темноте, переместил хлоропласты в нейтральный раствор и показал, что вместе с потоком исходящих наружу протонов в них образуется АТФ. Понадобилось еще два десятилетия, чтобы открыть механизм этого процесса и принцип его действия, однако в 1978 году Митчелл был удостоен Нобелевской премии за свое открытие хемиосмотического процесса выработки энергии.

Фундаментальный принцип феномена, обнаруженного Митчеллом, состоит в том, что жизнь использует электрические градиенты для производства энергии, а энергию – для выработки электрических градиентов. Этот процесс аналогичен тому, как функционирует электрическая батарея. По сути, все организмы представляют собой аппараты по выработке электроэнергии – они работают благодаря перемещению ионов, какими являются и протоны, через мембрану и генерированию собственного электрического градиента. Источником протонов и электронов является водород – самый распространенный элемент во Вселенной. Для возникновения электрического градиента требуется мембрана, без которой не удалось бы достичь разницы в концентрации протонов или других ионов, а следовательно, не было бы и источника энергии для выработки АТФ. Открытие Митчелла помогло вымостить путь к пониманию того, как функционируют структуры, ответственные за выработку АТФ. Эти наномеханизмы называются факторами сопряжения.

Факторы сопряжения – это в буквальном смысле миниатюрные моторы, которые крутят мембраны. Они содержат стержень, представляющий собой группу белков, крутящих мембрану и физически вставленных в группу более крупных белков (головка), расположенную с одного конца стержня. Схематически все это напоминает микроскопическую карусель. Протоны с одной стороны мембраны прикрепляются и движутся вдоль стержня, чтобы пройти насквозь. При этом их поток физически поворачивает стержень против часовой стрелки, наподобие того как вращается мельничное колесо, когда через него течет вода. Поворачиваясь, стержень механически передвигает группу крупных белков (платформу карусели), которые связывают АДФ и фосфат. Платформа вибрирует, и приблизительно через каждые 120 градусов поворота стержня формируется новая молекула АТФ, которая выпускается в клетку для использования в других назначениях. Такой мотор может работать также и в обратном направлении: если в клетке избыток АТФ, он может перекачивать протоны (или другие ионы) через мембрану, причем АТФ преобразуется в АДФ и одиночный фосфат.

Эта базовая схема миниатюрного электромотора для производства АТФ очень древняя. Она возникла у микроорганизмов настолько давно, что мы с трудом можем воссоздать историю ее эволюции. Она встречается в природе повсюду: у всех животных она является ключевой составляющей мышц и нервов, она найдена в корнях и листьях растений, она обнаружена у микроорганизмов. Производство АТФ настолько важно для всех организмов и настолько сильно зависит от мембран, что всем организмам приходится поддерживать по разные стороны своих клеточных мембран электрический градиент. Помимо прочего, электрические градиенты играют существенную роль в транспортировке внутрь клетки необходимых питательных веществ и выводе из нее отходов жизнедеятельности. Однако электрические градиенты, производимые при работе фактора сопряжения в режиме «реверса», сопровождаются поглощением энергии.

Так или иначе, из того или иного источника, но биологические машины должны получать энергию из окружающей среды, чтобы генерировать внутриклеточную энергию, необходимую для создания электрических градиентов, – в противном случае жизнь очень быстро остановится. Энергия, дающая жизнь всему живому на Земле, в конечном счете берется от Солнца. Фотосинтез в процессе эволюции привел к возникновению наисложнейших биологических реакций в природе. Я посвятил основную часть своей научной деятельности пониманию того, как работает этот процесс. Суть этого процесса связана с еще одной группой наномеханизмов, найденной только у фотосинтезирующих организмов.

Рис. 15. Схема, показывающая основной механизм, посредством которого фактор сопряжения производит АТФ из потока протонов. Протоны проходят через стержень в мембране; по мере их продвижения стержень физически поворачивается, и «головка» наномеханизма, расположенная по другую сторону мембраны, вибрирует. Физическая осцилляция позволяет АДФ и неорганическому фосфату (см. рис. 13) прикрепиться к «головке», где они химически связываются, формируя АТФ

В фотосинтезирующих эукариотических клетках таких организмов, как водоросли и высшие растения, ответственные за этот процесс наномеханизмы обнаруживаются только в хлоропластах. Впрочем, впервые основная схема фотосинтетического процесса была открыта у бактерий, которые не расщепляют воду, но вместо этого утилизируют молекулярный водород. Независимо от того, что именно является основанием для процесса фотосинтеза, наномеханизмы, ответственные за превращение лучистой энергии в химическую, носят название реакционных центров. Как и факторы сопряжения, они состоят из групп белков, внедренных в мембраны. Эти белковые группы содержат пигменты, такие как хлорофилл, а также другие молекулы в определенных позициях, чтобы могла произойти фотобиологическая реакция. Эти белки составляют, говоря языком биохимиков, «каркас» для рабочих частей наномеханизма.

Процесс фотосинтеза в чем-то близок к волшебству. Свет поглощается, и создается химическая связь. Что делает волшебный наномеханизм, чтобы преобразовать энергию индивидуальных частиц света (фотонов) в сахар – вещество, которые мы, равно как и практически любой уважающий себя микроорганизм, станем использовать как источник энергии?

При фотосинтезе свет поглощается определенной молекулой – чаще всего это зеленый пигмент, хлорофилл. Поглощение света на определенных длинах волн (или в определенном цветовом спектре) специфическими молекулами хлорофилла приводит к химической реакции. Когда одна чрезвычайно специфическая молекула хлорофилла, встроенная в реакционный центр, поглощает энергию фотона, энергия световой частицы может оторвать от молекулы хлорофилла электрон. Приблизительно на миллиардную долю секунды молекула хлорофилла становится положительно заряженной. (Одно время у студентов были в ходу такие футболки с изображениями схематичных человечков. Один сообщал другому: «Я потерял электрон». Второй спрашивал: «Ты уверен?», а тот отвечал: «Положительно уверен!»)

В клетке не может существовать такого явления, как свободный электрон. После того как электрон высвобождается из молекулы, он должен куда-то деться. Одна возможность состоит в том, что он возвращается к той же молекуле, от которой оторвался, и это действительно происходит время от времени, но нечасто. Однако когда это все же происходит, реакционный центр испускает красный свет – в буквальном смысле начинает светиться. Но чаще всего энергии света оказывается достаточно, чтобы протолкнуть электрон к другой молекуле, которой он на самом деле не нужен, однако которая готова временно его принять. Как это работает?

Рис. 16. Схематическая иллюстрация реакционного центра в производящем кислород организме. Это единственный биологический наномеханизм, способный расщеплять воду. Он состоит из многих белков, и его основной функцией является расщепление при помощи энергии Солнца воды на кислород, ионы водорода и электроны. Эта структура встроена в мембрану, и ионы водорода, образующиеся при реакции расщепления воды, скапливаются по одну сторону мембраны. Они проходят через фактор сопряжения (см. рис. 15) для производства АТФ, чтобы в конечном счете встретиться с электроном по другую сторону мембраны

Давайте представим на мгновение, что вы – электрон, ждущий поезда на платформе метро в час пик. На станцию приходит поезд, но он уже битком набит другими электронами. И вам становится ясно, что, будучи электроном с отрицательным зарядом, вы вовсе не желаете находиться в одном вагоне с толпой других электронов, каждый из которых тоже несет отрицательный заряд. Весь поезд прямо-таки наполнен негативной энергией. Однако когда двери открываются, человек в униформе и в белых перчатках заталкивает вас в вагон (такое действительно происходит в некоторых городах в час пик). Этот человек исполняет ту же роль, что и частица света, – заталкивает вас в среду, в которой вы не хотите находиться, в которой уже находится много других электронов. Из-за всех этих втиснутых в вагоны электронов поезд оказывается чрезвычайно отрицательно заряженным, однако когда он по мере движения подходит к другим станциям, электроны начинают выпрыгивать, привлеченные более свободными пространствами, где электронов меньше. После этого они принимаются за работу в надежде найти места с более положительной энергией. То же самое, но в самом микроскопическом масштабе, случается и в реакционных центрах. Однако там происходит и нечто еще более любопытное.

Электрон, вытолкнутый в реакционном центре из молекулы хлорофилла частицей света, оставляет после себя «дыру», и молекула оказывается положительно заряженной. Чтобы заполнить пустоту, молекула хлорофилла забирает электрон у близлежащих молекул. В случае организмов, выделяющих кислород, таких как сине-зеленые водоросли, эукариотические водоросли и все высшие растения, эти электроны поступают от четверки атомов марганца, удерживаемых специальным приспособлением с одной стороны мембраны. После того как они пожертвовали хлорофиллу свои электроны, эти атомы марганца также нуждаются в заполнении своих электронных пустот. Непосредственно рядом с собой они находят воду и, один за другим, извлекают четыре электрона из двух молекул воды, используя по очереди энергию четырех толчков, полученных от фотонов. По мере того как вода теряет электроны, от нее отделяются и протоны, и в конце концов кислород остается сам по себе и пускается на поиск новых электронов. Кислород славится своим умением находить электроны в природе, и именно поэтому мы называем молекулу, желающую отнять электроны у другой молекулы, окислителем. В фотосинтетических реакционных центрах другого типа источником электронов может быть сероводород (газ с запахом тухлых яиц), еще где-то – одна из форм ионов железа или углеводы (CH2O). В любом случае в конечном счете все источники электронов расположены вне организма, а основным применением всех этих электронов является производство сахаров.

Каким бы ни был источник, электрон неизменно направляется по одному пути, а протон – по другому. Протон, заряженный положительно, тоже может быть использован для выполнения работы. Вначале он помещается по одну сторону мембраны. Мембрана препятствует ему просто перейти на другую сторону, и в конечном счете оказывается, что по одну сторону мембраны расположено гораздо больше положительно заряженных протонов, чем по другую. По существу, это напоминает миниатюрную электрическую батарею, которая может быть использована для производства АТФ. Однако как протоны могут выполнять двойную функцию – как они могут воссоединяться с электронами, чтобы производить водород, этот элемент, необходимый для производства органических соединений? Давайте посмотрим, как работает это микроскопическое устройство.

Вспомним, что реакционные центры встроены в мембраны и что мембраны являются барьерами для свободного движения протонов и других заряженных молекул. После того как из воды или сероводорода извлекаются электроны, протоны сосредотачиваются по одну сторону мембраны. Мембрана представляет собой сплошной лист, нечто наподобие хлеба-питы с протонами, вложенными в карман вместо начинки. Проработав на солнечном свету всего несколько минут, фотосинтетические реакционные центры могут отложить внутрь этого кармана в 1000 раз больше протонов, чем находится во внешней среде; это означает, что положительный заряд по одну сторону мембраны в 1000 раз мощнее, чем по другую. Эти протоны переходят на противоположную сторону мембраны через механизм фактора сопряжения, поворачивая мотор и вырабатывая АТФ. Этот процесс происходит в каждом фотосинтезирующем организме; он является основным биологическим источником существующей в природе электрической энергии.

Однако что же происходит с протонами после того, как они проходят через фактор сопряжения и оказываются по другую сторону мембраны? Они встречаются с электронами, одновременно связываясь с другой модифицированной нуклеиновой кислотой. Эта молекула носит неблагозвучное имя никотинамидадениндинуклеотидфосфат, или НАДФ. Когда к НАДФ добавляются протон и электрон, молекула восстанавливается до НАДФН. Функция НАДФН заключается в том, чтобы транспортировать водород внутри клетки с целью его использования для производства органических соединений. Этот процесс может показаться чрезмерно усложненным, однако если бы клетка вырабатывала водород в свободном виде, этот газ, молекулы которого физически очень малы, мог бы с легкостью покинуть клетку. Путем разделения двух составляющих водорода – электрона и протона – и затем воссоединения их в составе такой крупной молекулы, как НАДФ, клетка может удерживать водород при себе. В фотосинтезирующих организмах атомы водорода, прикрепленные к НАДФН, в конечном счете используются для преобразования углекислого газа (CO2) в сахара, которые большинство прочих живых существ на этой планете используют для того, чтобы получать энергию.

Хотя это потребовало немалого терпения и некоторого везения, однако кристаллическая структура реакционного центра фотосинтезирующей бактерии, не расщепляющей воду, наконец была исследована тремя немецкими биохимиками: Хартмутом Михелем, Иоганном Дайзенхофером и Робертом Хубером. Результаты их работы, опубликованные в 1985 году в английском журнале Nature, ясно показали, как ядро из трех белков в сердцевине реакционного центра удерживает бактериальный хлорофилл и другие молекулы, образуя действующий наномеханизм. В 1988 году ученые получили Нобелевскую премию по химии. Несколько лет спустя были описаны также и кристаллические структуры реакционных центров, расщепляющих воду; сначала это сделала еще одна группа немецких исследователей, а позднее – несколько ученых в других странах. Мы можем видеть отдельные части механизма, но, к несчастью, не можем наблюдать их за работой – пока. Рентгеноскопические анализы не показывают фильм о действии этих механизмов, они могут дать только отдельные кадры. Они запечатлевают механизм в одном конкретном состоянии, но не раскрывают его движение, то, как он функционирует. Однако хотя этот недостаток и препятствует полному пониманию того, как в точности действуют реакционные центры, мы уже прошли немалый путь к осознанию механизма использования световой энергии для расщепления воды и производства кислорода.

Реакционные центры – это нечто особенное: когда они работают, весь наномеханизм превращается в буквальном смысле в микроскопическое светомузыкальное представление. Вспомним, что энергия света проталкивает электрон, взятый у молекулы хлорофилла с донорской стороны белкового комплекса, на акцепторную сторону. В результате на миллиардную долю секунды положительно заряженная молекула и отрицательно заряженная молекула оказываются внутри белкового каркаса, и их разделяет всего лишь миллиардная доля метра. Положительный заряд притягивает отрицательный заряд. Под действием силы притяжения зарядов белковый каркас слегка проседает, и при этом возникает волна сжатия. Такая волна сжатия аналогична хлопку ладоней; каждый раз, когда реакционный центр передвигает электрон, он издает микроскопический хлопок – звук, который в буквальном смысле может быть услышан при помощи очень чувствительного микрофона. Этот феномен, называемый фотоакустическим эффектом, был обнаружен Александром Грэмом Беллом, изобретателем телефона. В 1880 году он использовал этот эффект для генерирования звуковых волн из света и построил специальный аппарат, фотофон, для передачи такого звука. Кто знал, что этот феномен может быть использован для того, чтобы слушать звуки механизмов фотосинтезирующих организмов, выталкивающих электроны? Вместе с моими коллегами и давними друзьями (Дэвидом Мозероллом из Рокфеллеровского университета, Цви Дубински из университета Бар-Илана и Максимом Горбуновым из моей лаборатории) мы разработали прибор для измерения звука, издаваемого фотосинтетическим аппаратом живой клетки. Проведенный нами анализ этих звуков показал, что приблизительно 50 % световой энергии преобразуется в реакционных центрах в электрическую.

Однако существует и другой сигнал, показывающий, как действуют фотосинтетические реакционные центры. Помимо прочего, эти реакционные центры меняют свои флюоресцентные характеристики. Под воздействием синего света хлорофилл испускает красное свечение в процессе флюоресценции. Мы можем наблюдать такое свечение в флюоресцентных красках, на собственных зубах или на модных сейчас футболках, когда нас освещают ультрафиолетовым светом. Однако в фотосинтезирующих организмах интенсивность флюоресцентного красного свечения возрастает, когда все большее число реакционных центров включаются в работу. Коротко говоря, когда водоросли или листья находятся в темноте и затем подвергаются освещению синим светом, интенсивность испускаемого красного флюоресцентного свечения возрастает с большой скоростью. Об этом феномене впервые сообщили в 1931 году двое немецких химиков, Ханс Каутский и А. Хирш, наблюдавшие этот эффект невооруженным глазом. На протяжении последующих семидесяти лет было показано, что этот феномен может использоваться как количественный показатель того, сколько работы производят реакционные центры. В связи с этим он на настоящий момент регулярно замеряется во всем мире при помощи чувствительной аппаратуры для изучения того, сколько солнечного света фотосинтезирующие организмы преобразуют в полезную энергию. Я также на протяжении многих лет своей научной деятельности применял этот метод для исследования эффективности фотосинтетического преобразования энергии в Мировом океане. Собственно говоря, инструменты именно такого типа – способные измерять флюоресцентное свечение – я и брал с собой на Черное море, чтобы изучать фотосинтетические реакции в океанах.

В природе существует множество других наномеханизмов, но в мои намерения не входит описывать их все. Будем надеяться, что этот короткий взгляд «под капот» позволил получить некоторое представление о ключевых компонентах, требующихся для того, чтобы клетки могли функционировать. Все клетки наделены аналогичными механизмами для синтеза белка. У всех клеток имеется некий базовый механизм преобразования энергии, основанный на синтезе АТФ посредством фактора сопряжения. Все клетки обладают неким механизмом для передачи электронов и протонов переносчику водорода и отъема их у него. Все клетки создают электрическое поле по разные стороны мембраны, которая либо производит, либо поглощает АТФ. И наконец, все клетки в конечном счете зависят от фотосинтезирующих организмов, преобразующих солнечную энергию для создания электрического поля, которое генерирует поток электронов и протонов, благодаря чему становится возможной вся жизнь на этой планете, включая и нас с вами.

Как мы видим, наномеханизмы, возникшие еще у первых микробов, обеспечивали функционирование клеток на протяжении всей истории жизни на Земле. Глядя на наследие древних микробиологических наномеханизмов в жизнедеятельности современных, живых клеток, можно поддаться впечатлению, будто микроорганизмы прошли через все эти геологические эпохи, ничуть не изменившись. Однако это совсем не так. Возвращаясь к микроорганизмам древнего мира, мы видим, что за прошедшее время они эволюционировали.

Первые фотосинтезирующие микроорганизмы были аноксигенными, то есть они не могли расщеплять воду. Должно было пройти несколько сотен миллионов лет, прежде чем микроорганизмы развили в себе эту способность. Вода – идеальный источник водорода на поверхности Земли, поскольку она распространена гораздо больше, нежели любой другой потенциальный донор электронов, однако на расщепление воды требуется много энергии. Ответственные за этот процесс наномеханизмы появились у прокариотов лишь единожды: у цианобактерий, или же сине-зеленых водорослей. Когда эти организмы в конце концов получили возможность расщеплять воду, они принялись производить новый газообразный продукт – кислород. И биологическая выработка кислорода навсегда изменила эволюционный путь жизни на Земле.

Глава 5. Суперзаряд двигателей

Кислород присутствует только в земной атмосфере. Этот газ не был найден в достаточно высоких концентрациях ни на одной другой планете нашей Солнечной системы; не обнаружен он до сих пор и в окрестностях других звезд, имеющих планеты. И хотя весьма велика вероятность того, что будут обнаружены и другие планеты с кислородной атмосферой, судя по всему, это не самый распространенный газ на планетах земного типа.

Накопление кислорода было одним из наиболее значимых переходных моментов в истории нашей планеты – это случилось намного позже, чем на ней зародилась жизнь, однако история того, как Земля получила кислородную атмосферу, достаточно сложна. Одну главу в этой истории составляет эволюция микробиологических наномеханизмов, производящих кислород. Однако хотя эволюция этих наномеханизмов и была необходимой для выработки кислорода, самой по себе ее было недостаточно для того, чтобы этот газ стал главной составляющей земной атмосферы. Ее насыщение кислородом во многом зависело от случайностей и совпадений. Как мы вскоре увидим, кислород стал преобладающим газом на Земле благодаря тектонике и погребению останков мертвых микроорганизмов в горных породах. Появившись в атмосфере, кислород стал оказывать определяющее влияние на эволюцию самих этих микроорганизмов и циклы элементов, ответственные за увековечение жизни.

История того, как был открыт кислород, раскрывает важнейшее свойство этого газа: он поддерживает горение. Уже давно было известно, что в воздухе содержится некий компонент, позволяющий гореть пламени. В XVII и XIX столетиях это свойство воздуха было использовано для того, чтобы обнаружить кислород. Впервые этот газ был открыт немецко-шведским аптекарем Карлом Шееле в 1772 году. С позиций сегодняшнего дня это открытие представляется результатом поразительного сочетания удачи и вдохновения. Нагревая окись марганца под стеклянным колпаком, Шееле заметил, что один из продуктов реакции способствует очень быстрому сгоранию угольной пыли. Он повторил опыт с окисью ртути и получил сходный результат. Шееле не имел представления о том, что такое оксид марганца или ртути, – для него это были всего лишь минералы зеленого и красного цвета. Однако невидимое вещество, выходившее из этих минералов при нагревании и способствовавшее горению угля, показалось ему поистине любопытным. Шееле назвал его «огненным воздухом» и написал несколько писем о его необычных свойствах. Однако формально он не был ученым и собрался описать свое открытие в научной статье лишь три года спустя. Из-за этого его эксперименты не получили широкой известности.

В 1774 году Джозеф Пристли в Англии, работая независимо от Шееле, произвел несколько подобных же экспериментов: при помощи увеличительного стекла он фокусировал солнечный свет на окиси ртути. В точности не известно, знал ли Пристли об экспериментах Шееле, но результаты были сходными. Разница была лишь в том, что вместо угля он ставил под колпак свечу. Эта свеча горела ярче и дольше, чем та, что находилась под стеклянным колпаком с обычным воздухом. Более того, с некоторым драматизмом Пристли объявил, что и мышь живет дольше, если ее поместить в этот газ. (Стоит ли говорить о том, что читателям лучше не пытаться повторить эксперимент Пристли, поскольку пары ртути токсичны.) Как и Шееле, Пристли не имел представления о том, что это за газ; однако он знал, что растения могут производить некое невидимое вещество, которому он дал название «дефлогистированный воздух», опираясь на ныне устаревшую теорию о том, что все вещества, способные гореть, содержат невидимое вещество «флогистон». Пристли поместил под стеклянный колпак росток мяты, поставил его на подоконник и показал, что по прошествии некоторого времени может вновь зажечь свечу в закрытом пространстве колпака (при помощи увеличительного стекла, фокусирующего солнечный свет), в то время как без ростка мяты свеча не загорается. Однако чем же было это невидимое, лишенное запаха вещество?

В конце 1774 года Пристли нанес визит Антуану Лавуазье, французскому дворянину, химику и откупщику, имевшему в Париже грандиозную лабораторию. За обедом Пристли описал произведенные им эксперименты, скорее всего подогрев свое красноречие изрядным количеством вина. Лавуазье был заинтригован и повторил эксперименты Пристли по получению «дыхательного» воздуха посредством нагревания окиси ртути. Судя по всему, он был третьим человеком в истории, получившим кислород из минерала, однако он применил другой, более своеобразный и радикальный подход.

Лавуазье, обладавший более утонченным пониманием природных явлений, нежели Пристли, подумал, что если что-то может быть создано посредством химической реакции, то при этом что-то должно быть и потеряно. Эта мысль была простой, но глубокой; впоследствии она легла в основу метода, который мы называем количественным химическим анализом. Нельзя сказать, чтобы она положила начало современной химии, однако именно с нее начался такой подход к исследуемому предмету, который позволял тщательно проверять гипотезы. Будучи чрезвычайно богатым, Лавуазье мог себе позволить платить лучшим французским инструментальным мастерам, чтобы они изготавливали для него точнейшую аппаратуру, какая только была доступна в то время. В число этих инструментов входили необычайно точные весы, сделанные со скрупулезным вниманием ко всем деталям, как если бы это было ювелирное изделие. Они могли регистрировать изменения массы до 1/400 000 доли. Такая точность была исключительной для того времени, и Лавуазье пользовался этими весами с немалым успехом. Тщательно взвесив окись ртути до и после нагревания, он смог определить, сколько вещества было потеряно в процессе. Затем он приступил к обратному действию: нагрел металлическую ртуть в присутствии воздуха, чтобы получить окись ртути, которая весила больше, чем изначальный металл, и показал, что воздух в испытательной камере потерял некоторую долю объема. Он повторил этот опыт с фосфором, получив фосфорную кислоту. Лавуазье также показал, что газ, получаемый при нагревании окиси ртути, является одной из составляющих воды и что атмосфера Земли состоит главным образом из азота и этого нового компонента, которому он дал название oxygène – «рождающий кислоту». Лавуазье был интеллектуальным отцом аналитической химии; он продолжал свои опыты и успел открыть еще несколько новых элементов, прежде чем его обезглавили во время Французской революции в возрасте пятидесяти лет за то, что он собирал налоги для короля.

Лавуазье не понимал, как кислород мог появиться в атмосфере. Он мог происходить от нагрева солнечными лучами горных пород, содержащих окись ртути или другие подобные минералы, но это казалось маловероятным, поскольку не было заметно, чтобы горные породы разлагались под воздействием Солнца. Кроме того, если поместить окись ртути под колпак и попросту выставить его на свет, ничего не произойдет: необходимо нагреть минерал до достаточно высокой температуры, чтобы получить из него кислород.

Частично эта загадка разрешилась в 1779 году, когда голландский физик Ян Ингенхауз, работая в Англии в той же лаборатории, в которой пятью годами раньше работал Пристли, заметил, что на зеленых листьях водных растений образуются пузырьки, если они выставлены на солнце, но этого не происходит, если держать их в темноте. И разумеется, когда газ из пузырьков был с немалым трудом собран, в его присутствии тлеющая свеча вспыхнула ярким пламенем. Ингенхауз обнаружил, что растения производят кислород, но ни он, ни Лавуазье не понимали, что этот кислород берется из воды.

В детстве нам всем довелось узнать, что растения производят кислород, которым мы дышим, и большинство из нас продолжают жить, больше об этом не задумываясь. Однако каменная летопись показывает, что наземные растения появились на этой планете всего лишь около 450 млн лет тому назад. Если возраст Земли составляет по меньшей мере 4,55 млрд лет, означает ли это, что до 450-миллионной отметки кислорода на ней не было?

Как я уже рассказывал, у микроорганизмов выработался сложный наномеханизм, позволяющий им расщеплять воду при помощи солнечной энергии, за миллиарды лет до возникновения наземных растений. Однако хотя это и может показаться удивительным, мы до сих пор имеем очень неясное представление о том, когда появился первый микроорганизм, обладающий таким свойством. До нашего времени сохранилась лишь одна прокариотическая группа фотосинтезирующих микроорганизмов, способных производить кислород, – цианобактерии.

Эволюция цианобактерий до сих пор остается загадкой. Все они генетически тесно связаны между собой и являются единственными среди прокариотов производящими зеленый пигмент, хлорофилл а, используемый всеми образующими кислород организмами для расщепления воды. Однако что, наверное, наиболее интересно, так это то, что они являются единственными фотосинтезирующими прокариотами, имеющими два различных типа фотосинтетических реакционных центров. Один из них очень напоминает реакционный центр, найденный у фотосинтезирующих пурпурных несерных бактерий, но последние не способны расщеплять воду при помощи солнечной энергии и, следовательно, не вырабатывают кислород. Они используют световую энергию, чтобы расщеплять газообразный водород на протоны и электроны и впоследствии производить сахара. Другой тип реакционных центров унаследован от фотосинтезирующих зеленых серных бактерий, наподобие тех, которых я изучал в глубинной части верхнего слоя водной толщи Черного моря. Эти организмы также не расщепляют воду и не вырабатывают кислород; они расщепляют сероводород, используя световую энергию. Как пурпурные несерные, так и зеленые серные бактерии чрезвычайно чувствительны к присутствию кислорода – при контакте с этим газом они теряют свои фотосинтетические способности. Представляется, реакционные центры двух этих очень различных организмов каким-то образом сумели соединиться в одном организме. Как это случилось, остается неясным, однако, скорее всего, это стало следствием многократного обмена генами между различными видами микроорганизмов.

Получившаяся в результате химера, где в зарождающуюся цианобактерию оказались генетически встроены два различных типа реакционных центров, подверглась ряду дальнейших эволюционных преобразований. К реакционному центру, полученному от пурпурных бактерий, был добавлен белок, содержащий четверку атомов марганца, – впоследствии эта конструкция превратится в реакционный центр, где будет расщепляться вода. Взятую у бактерий пигментную систему новая клетка со временем модифицировала, чтобы производить хлорофилл, что позволило реакционному центру использовать свет на более высоких энергетических уровнях для расщепления воды. Второй реакционный центр, унаследованный от зеленых серных бактерий, также претерпел изменения, и модифицированный наномеханизм позволил ему функционировать в присутствии кислорода. Явившаяся в результате новая конструкция, составленная из подобранных где попало наномеханизмов, отличается чрезвычайной сложностью: она состоит из более чем 100 белков и других компонентов, разделенных на два реакционных центра, которые работают по очереди.

Давайте снова обратимся к уже использовавшемуся сравнению электронов с пассажирами в метро. В первом реакционном центре свет в конечном счете забирает электроны у водорода в воде и везет их через ряд промежуточных станций. Электроны прибывают ко второму реакционному центру, где их, снова при помощи энергии света, с большим усилием запихивают в набитый битком поезд, который отправляется через другой ряд промежуточных станций, после чего электроны, наконец, достигают пункта своего назначения. Этим пунктом назначения является маленькая древняя молекула, называемая ферредоксин, состоящая из комплекса железа и серы, идентичного тому, что содержится в минерале пирите, или «золоте дураков». Здесь с помощью специального фермента электрон, наконец, встречает своего партнера – протон, и они образуют НАДФН. Вспомним, что НАДФН является транспортировщиком водорода, и прикрепленный к НАДФН водород может быть использован для превращения углекислого газа в органическое вещество. Весь этот механизм по преобразованию энергии требует участия около 150 генов. Это наисложнейший механизм такого рода, существующий в природе.

Судя по всему, этот механизм, иногда называемый кислородным фотосинтетическим аппаратом, возник в истории Земли лишь единожды. Ввиду того что производство кислорода столь коренным образом изменило весь мир, мой друг и коллега Джо Киршвинк из Калифорнийского технологического института в шутку называл цианобактерии «микробами-большевиками» – и действительно, эти организмы революционизировали планету, но намного раньше и гораздо более радикально, нежели русская революция.

Рис. 17. а,б. (а) микрофотография, сделанная под оптическим микроскопом, – нить цианобактерий (Anabaena sp.). (Публикуется с разрешения Арнольда Тэйтона и Джеймса Голдена.) (б) микрофотография, сделанная под просвечивающим электронным микроскопом, – разрез одиночной клетки цианобактерии (Prochlorococcus). Диаметр этой клетки составляет приблизительно 1 микрометр, и она содержит множество мембран, в которые встроены фотосинтетический аппарат (см. рис. 16) и фактор сопряжения (см. рис. 14 и 15). В отличие от эукариотических водорослей (см. рис. 9), однако, здесь нет заключенных в мембраны органоидов. (Публикуется с разрешения Люка Томпсона, Ники Уотсона и Пенни Грисхольм.)

Эти микроскопические большевики бывают самых разнообразных форм и размеров, от крохотнейшего пикопланктона – клеток диаметром всего лишь около 500 нанометров (они настолько малы, что практически невидимы при использовании обычного оптического микроскопа) – до относительно крупных клеток, соединенных друг с другом в цепочки и легко различимых невооруженным глазом. В современном океане в любой момент присутствует более 1 000 000 000 000 000 000 000 000 (1024) клеток цианобактерий. Однако несмотря на такую их численность, было бы бесполезно ожидать, что настолько миниатюрные клетки сохранятся среди ископаемых останков. Даже самые крупные цианобактерии имеют простые клеточные стенки, которые легко разлагаются. Поэтому нет ничего удивительного в том, что в древнейших геологических разрезах присутствие этих организмов прискорбно малочисленно и противоречиво.

В 1950-х годах Стэнли Тайлер из Висконсинского университета и Элсо Баргхорн из Гарвардского университета заинтересовались микроископаемыми в древних породах. В ходе изысканий ученые обнаружили их присутствие в формации Ганфлинт на западе канадской провинции Онтарио. Вместе с несколькими своими учениками, среди которых были Уильям Шопф, Эндрю Нолл и Стэнли Аврамик, Баргхорн принялся исследовать окаменелости из древнейших разрезов Южной Африки и Западной Австралии. Баргхорн поручил Шопфу, тогда еще студенту, работу с образцами из Западной Австралии, и тот обнаружил в них богатый материал, который никогда не был описан. В 1990-х годах Шопф, к тому времени ставший профессором Калифорнийского университета в Лос-Анджелесе, сообщил о том, что в породах северо-запада Австралии сохранились следы ископаемых организмов, напоминающих нити цианобактерий. Эти породы сформировались около 3,5 млрд лет тому назад. Если эти сведения верны, это означает, что микроорганизмы, обладающие способностью вырабатывать кислород, на самом деле чрезвычайно древние. Однако свидетельства появления животной жизни обнаружены в каменной летописи намного позже – в породах возрастом около 580 млн лет. Неужели между возникновением производящих кислород микроорганизмов – цианобактерий – и выходом на сцену животных действительно был интервал продолжительностью почти в три миллиарда лет? И если это так, то в чем причина?

Работа Шопфа получила широкое признание, и он опубликовал несколько других статей с поразительными изображениями ископаемых организмов, напоминающих структуры цианобактерий, обнаруживаемых в современных озерах. Однако уже в начале нынешнего столетия Мартин Брейзер, палеонтолог из Оксфордского университета в Англии, заново изучил образцы горных пород, которые Шопф отправил в архив при Музее естественной истории в Лондоне, и заключил, что описанные Шопфом ископаемые являются артефактами. То, что Шопф принял за цепочки клеток, по утверждению Брейзера, вообще не являлось останками микроорганизмов, а представляло собой минеральные отложения подводных горячих источников, сформировавших микроскопические структуры, напоминающие внешним видом клетки. Дебаты, разразившиеся между двумя лагерями, не утихают до сих пор, ввиду чего так и не достигнуто согласие относительно датировки древнейших ископаемых останков цианобактерий – впрочем, эти организмы наверняка уже существовали до Кислородной катастрофы (см. ниже), произошедшей приблизительно 2,4 млрд лет тому назад.

В попытке обойти проблему физической сохранности структур микроорганизмов в горных породах ученые, работающие в области химии горных пород (геохимики), предприняли другой подход. Часто случается так, что организмы погибают, однако следы их тел сохраняются в горных породах в качестве своеобразной химической подписи. Собственно, мы уже интуитивно это знаем, поскольку нефть и уголь представляют собой сохранившиеся останки давно погибших организмов. Доказательство того, что ископаемое топливо образовалось из отмерших организмов, было предоставлено в 1936 году немецким химиком Альфредом Трейбсом, показавшим, что нефть содержит молекулы, которые могли произойти только из растительного пигмента хлорофилла. На самом деле, многие ученые, работающие над химическими сигнатурами организмов в геологических разрезах, начинали свою научную деятельность с описания органических компонентов нефти для нефтяных компаний.

Рис. 18. Изображение ископаемых микроорганизмов, напоминающих нить цианобактерий (ср. с рис. 17, а), найденных в формации Гамохан в Южной Африке, возраст которой составляет ~2,5 млрд лет. (Публикуется с разрешения Дж. Уильяма Шопфа, Калифорнийский университет, Лос-Анджелес.)

Хотя в осадочных породах сохраняются и следы других молекул, большая часть химических сигнатур представляет собой липиды (жиры и масла) – молекулы, не очень хорошо растворимые в воде. Так, например, когда погибают животные, включая и нас с вами, то одним из сигнатурных химических соединений является холестерин – молекула, заключающаяся в мембранах клеток животных, но не обнаруженная ни у растений, ни у прокариотических микроорганизмов, таких как цианобактерии. Однако прокариотические микроорганизмы производят ряд молекул, связанных с холестерином, которые называются гопаноидами и содержатся в их мембранах. После гибели таких микроорганизмов гопаноиды в их мембранах сохраняются в горных породах порой на миллиарды лет. Бытует даже мнение, что гопаноиды – наиболее распространенный вид естественно встречающихся органических молекул на Земле.

Цианобактерии производят относительно специфический вид гопаноидов, и продукты распада этих молекул могут сохраняться в горных породах, если они не подвергаются чересчур сильному нагреву и сжатию. Эти молекулы не были найдены в горных породах формации Исуа на юго-западе Гренландии, однако в 1999 году Роджер Саммонс, австралийский геохимик, работавший в Массачусетском технологическом институте, и его коллеги сообщили о присутствии продуктов распада определенной молекулы, найденной у современных цианобактерий, в кратоне Пилбара в Западной Австралии (близко к тому месту, где работал Шопф). Эти породы датируются возрастом от 2,7 млрд лет до настоящего времени. Соответственно, хотя до сих пор существуют противоречивые мнения относительно происхождения цианобактерий, молекулярные данные, по-видимому, свидетельствуют о том, что эти организмы возникли самое позднее 2,7 млрд лет тому назад, а возможно, и раньше. Однако результаты липидного анализа также подвергаются сомнению. Некоторые из биомаркеров могут в действительности быть веществами, привнесенными из масел, использовавшихся при бурении скважины для отбора образцов. Собственно, в этой области мнение ученых постоянно колеблется. Свидетельства о существовании микроорганизмов около 3,5 млрд лет тому назад все чаще принимаются с опасением; неясно, действительно ли это были цианобактерии. Ясно лишь одно: на начальном этапе истории Земли на протяжении приблизительно четырех миллиардов лет какие-либо признаки животной жизни отсутствуют. Если животным для существования требуется кислород, а присутствие кислорода требует существования цианобактерий, то когда же цианобактерии смогли выработать достаточно кислорода, чтобы это оказало воздействие на земную атмосферу? На настоящий момент известно с достаточной достоверностью, что это случилось в пределах 2,3–2,4 млрд лет тому назад. Тем не менее свидетельства в пользу этой датировки несколько туманны.

В природе существует четыре стабильных изотопа серы, и именно на основании их распределения в геологической летописи за последние 3,5 млрд лет мы можем судить о том, когда атмосфера Земли стала кислородной. Более легкие изотопы серы, содержащие меньше нейтронов, вибрируют с большей частотой, нежели более тяжелые. Вследствие более высокой частоты вибрации они чаще сталкиваются с соседними атомами и, следовательно, по сравнению с тяжелыми изотопами имеют больше шансов образовать химические связи с другими элементами. При помощи масс-спектрометра – прибора, способного с высокой точностью определять распространенность того или иного изотопа, – трое ученых, Джеймс Фаркухар, Хуймин Бо и Марк Тименс, в 2000 году показали, что изотопы серы в осадочных породах имеют очень необычное распределение. В слоях, образованных более 2,4 млрд лет тому назад (включая упомянутые австралийские породы, содержащие гопаноидные биомаркеры цианобактерий), изотопный состав серы достаточно случаен; нельзя выделить какую-либо закономерность распределения изотопов в соответствии с их массой. Однако в период начиная с 2,4 млрд лет тому назад и до настоящего времени изотопный состав, несомненно, зависит от числа нейтронов в элементе, то есть поведение элементов определяется их массой: более тяжелые изотопы серы, имеющие больше нейтронов, встречаются в составе минералов горных пород реже, чем более легкие изотопы. Таким образом, можно сделать вывод о том, что приблизительно 2,4 млрд лет тому назад произошло некое событие, изменившее способ образования изотопами серы химических связей. Однако какое отношение все это имеет к кислороду?

Значительная часть серы, находящейся в горных породах, изначально образовалась в вулканах в виде газа сероводорода (SO2). Сероводород – бесцветный газ с резким запахом, который можно почувствовать за несколько километров вокруг целлюлозно-бумажных комбинатов, поскольку для размягчения древесины при производстве целлюлозы часто используются содержащие серу вещества. Химические связи в молекулах сероводорода могут быть разрушены высокоэнергетическим ультрафиолетовым излучением Солнца. Разрушая молекулярные связи, ультрафиолетовое излучение не отличает один изотоп от другого. В результате изотопный состав пород получается таким же, каким был в изначальном материале.

Ультрафиолетовое излучение невидимо для человеческого глаза, однако вызывает ожоги кожи и, если мы подвергаемся облучению слишком долго, может вызывать мутации клеток нашей кожи, приводящие к раковым заболеваниям. Хотя в современном мире некоторая часть ультрафиолетового излучения Солнца доходит до земной поверхности, большая его часть задерживается – поглощается в верхних слоях атмосферы – стратосфере – другим газом, состоящим из трех атомов кислорода. Этот газ называется озоном. Единственный известный механизм, способный привести к образованию озона в стратосфере планеты, требует присутствия в атмосфере свободного кислорода.

Следовательно, изменение закономерностей распределения изотопов серы в горных породах можно интерпретировать как появление около 2,4 млрд лет тому назад в стратосфере нашей планеты озонового слоя. Такое объяснение предполагает, что кислородный фотосинтез цианобактерий в конечном счете привел к увеличению содержания кислорода в атмосфере. Летопись, запечатленная в изотопах серы, недвусмысленно показывает, что мир прошел через некую ключевую переходную точку: ранее временной отметки 2,4 млрд лет тому назад в атмосфере практически не было свободного кислорода, а потом он появился. Геологи поэтически (и даже несколько драматически) назвали этот переход «Кислородной катастрофой». На самом деле эта временная точка «размазана» по периоду длительностью сто миллионов лет или больше. Судя по всему, в истории Земли это событие было исключительным – в том смысле, что больше оно не повторялось. Мы можем сделать такое заключение, поскольку изотопы серы в геологическом разрезе от 2,4 млрд лет тому назад до настоящего времени тщательно разделены на фракции в соответствии с массами изотопов, однако до временной отметки 2,4 млрд лет тому назад фракционирование изотопов серы никак не зависит от их массы. Такая интерпретация изотопов серы предполагает, что на протяжении последних 2,4 млрд лет кислород входил в состав атмосферы нашей планеты. Концентрация кислорода сразу после переходного момента была довольно низкой – вероятно, меньше 1 % от настоящего уровня, и этого было недостаточно для эволюции животных.

Однако для того чтобы обеспечить присутствие кислорода в планетарной атмосфере, необходимо нечто большее, чем эволюция фотосинтезирующего наномеханизма. Чтобы этот газ получил распространение, огромные количества микроорганизмов, наделенных фотосинтезирующим наномеханизмом, должны погибнуть и затем оказаться включенными в состав горных пород. Смерть фотосинтезирующих микроорганизмов на протяжении сотен миллионов лет в конечном счете вымостила дорогу нашему с вами существованию. Давайте рассмотрим этот кажущийся парадокс: почему смерть клеток, производящих кислород, необходима для того, чтобы кислород получил распространение в атмосфере?

Возьмем кислород, которым мы дышим в настоящий момент. Концентрация кислорода в земной атмосфере была неизменной на протяжении всей нашей жизни, а также жизней наших пра-пра-пра-пра-пра-пра– (и вы можете вставить на свое усмотрение еще множество «пра-») дедов. Она составляет 21 % общего объема воздуха Земли и оставалась в высшей степени постоянной в течение сотен тысяч, если не миллионов, лет. Откуда мы это знаем? Да просто мы можем измерить содержание кислорода в пузырьках воздуха в ледяных кернах, отобранных при бурении антарктических ледяных щитов, и с большой точностью и уверенностью определить, что содержание кислорода оставалось в целом неизменным последние 800 тысяч лет. На протяжении этого времени выработка кислорода всеми водорослями и растениями Земли уравновешивалась поглощением кислорода в процессе дыхания всех животных и микроорганизмов. Для того чтобы концентрация кислорода в земной атмосфере изменилась, что-то должно нарушить баланс между фотосинтезом и респирацией.

Однако 2,4 млрд лет тому назад еще не существовало ни растений, ни животных. Собственно, не существовало ничего, кроме микроорганизмов. Вся жизнь на Земле в целом ограничивалась океанами и другими водоемами. Фотосинтезирующие цианобактерии с их кислородобразующими наномеханизмами вырабатывали кислород не ради него самого; кислород был побочным продуктом фотосинтетического процесса. Организмы расщепляют воду, чтобы получить водород, а водород они используют для производства органических соединений. Кислород представляет собой окисленную воду, а органические соединения по существу есть восстановленный углекислый газ и газообразный азот. Органические соединения являются источником энергии, но также могут быть использованы и для производства сахаров, аминокислот, липидов и нуклеиновых кислот; коротко говоря, организмы используют органические соединения для строительства новых клеток. За неимением более простого термина я буду называть органические соединения, производимые клетками, «клеточным веществом». В результате процесса фотосинтеза водород, взятый из воды, перемещается к углекислому газу и азоту для производства клеточного вещества, которое клетки накапливают и которое в конечном счете позволяет им воспроизводиться. При дыхании же организмы используют органические соединения для выработки энергии при отсутствии солнечного света, а также для строительства новых клеток. Дыхание отнимает водород у углерода и прибавляет его к кислороду, высвобождая воду и углекислый газ в качестве отходов. Мы интуитивно понимаем это, когда дышим на холодное стекло – на нем конденсируется водяной пар. При дыхании водород из пищи, которую мы едим, добавляется к кислороду из воздуха, которым мы дышим, в результате чего образуется вода. По сути, вся наша планета существует за счет цикла расщепления воды при фотосинтезе для образования кислорода и производства воды при дыхании.

Для того чтобы кислород смог в больших количествах накопиться в атмосфере, некоторая часть клеточного вещества, производимого фотосинтезирующими микроорганизмами, должна быть спрятана от респирирующих микроорганизмов. Это примерно то же самое, что пытаться спрятать конфеты от детей: если вы хотите, чтобы дети до них не добрались, вам нужно найти для конфет какое-то надежное место. Например, их можно убрать подальше от глаз – на верхнюю полку в дальнем углу темного чулана. Для Земли такой дальней полкой в чулане являются горные породы. Микроорганизмам не так-то просто использовать для дыхания органические соединения, заключенные в камнях, хотя это и не означает, что они не пытаются.

Лишь очень небольшое количество фитопланктона, включая цианобактерии, достигает дна океана. Доля организмов, которым удается погрузиться до низа водной толщи, варьирует в зависимости от глубины океана: чем больше глубина океана, тем меньшая доля микроорганизмов достигает донного грунта. В современных океанах органический углерод практически не достигает дна, если глубина превышает 1000 метров, а это означает, что сейчас в океанических глубинах органический углерод не накапливается. Очевидно, что наиболее значительными областями его отложения являются мелкие моря и прибрежные зоны континентов. Однако даже и там в среднем менее 1 % произведенных фитопланктоном органических соединений достигает дна, и лишь около 1 % этого количества впоследствии оказывается погребенным в осадочных слоях. Это означает, что в действительности на дне отлагается менее 0,01 % произведенной органической материи, но за миллионы и миллионы лет в глобальном масштабе эта мельчайшая доля приобретает существенное значение. Клеточное вещество отмерших организмов смешивается с осадочными отложениями, и, по мере того как над более древними толщами накапливаются более молодые, разлагающиеся тела мертвых микроорганизмов подвергаются сжатию и нагреву. В конце концов они оказываются включены в состав осадочных пород – пород, образованных в процессе эрозии других, материковых формаций. Некоторые части осадочных толщ, содержащих органическое вещество, впоследствии испытывают поднятие и образуют горы в составе континентов. Если бы органическая материя не оказалась погребена, она бы подверглась респирации, и кислород практически не смог бы накопиться. Если бы органическая материя не была затем поднята и вынесена на сушу, она бы погрузилась в результате тектонических процессов в недра Земли, где была бы переплавлена и возвращена в атмосферу в виде углекислого газа из вулканов – и опять бы никакого накопления кислорода не случилось. Итак, по мере медленного накопления органических соединений в осадочных толщах и выноса их на сушу концентрация кислорода в атмосфере медленно увеличивалась. Этот процесс занял долгое время, но без этого мы бы сейчас не дышали кислородом.

Одно из противоречий наших представлений о Кислородной катастрофе состоит в том, что непонятно, действительно ли понадобилось так много времени, чтобы она произошла, или же этот период был менее длительным? Если невероятно сложные наномеханизмы, способные расщеплять воду, возникли у цианобактерий, появившихся где-то незадолго до отметки в 2,4 млрд лет тому назад, то планету они преобразили за период в пределах ста миллионов лет или даже меньше. Однако же, если они возникли гораздо раньше, как доказывает геологическая летопись, почему понадобились сотни миллионов лет, чтобы кислород стал играть значительную роль в земной атмосфере? Ответить на этот вопрос не так просто, и все объяснения, существующие на сегодняшний день, достаточно противоречивы.

Рис. 19. Фотография геологического разреза отложений черного сланца, сформированных около 185 млн лет тому назад. Эта эпоха (нижний юрский период) была отмечена чрезвычайно высокой продуктивностью в океанах и последующим отложением углерода в осадочных толщах. (Публикуется с разрешения Баса ван де Схотбрюге.)

Долгое время я считал, что причиной задержки в сотни миллионов лет между возникновением цианобактерий и распространением в атмосфере кислорода было взаимодействие кислорода с железом и сульфидами, содержавшимися в архейском океане более 2,5 млрд лет тому назад. Кислород – наиболее распространенный элемент в земной коре, но не в виде свободного газа. Кислород очень неразборчив в связях и не любит долго оставаться один. Эта чрезвычайно активная молекула химически сочетается со множеством металлов и других элементов. Если вы положите гвоздь на несколько дней в хорошо аэрируемую воду, на нем образуется ржавчина, которая есть не что иное, как железо в сочетании с кислородом – оксид железа. Три миллиарда лет тому назад в океанах содержалось большое количество растворенного железа, и после возникновения наномеханизмов, расщепляющих кислород, на протяжении последующих нескольких сотен миллионов лет во многих частях океана на дно выпадали оксиды железа (ржавчина). Реакция кислорода с железом продолжалась почти два миллиарда лет, не требуя никакого биологического вмешательства. Железо будет ржаветь вне зависимости от присутствия микроорганизмов: все, что для этого требуется, – кислород и вода. Однако хотя окисление железа и связывало кислород, самые приблизительные подсчеты показывают, что один этот процесс не мог задержать распространение этого газа в атмосфере на сотни миллионов лет. Его накоплению должно было препятствовать что-то другое.

Продукция кислорода создала благоприятные возможности для развития у микроорганизмов новых метаболических путей. Эти новые возможности привели к изменениям в распределении и распространенности нескольких других элементов, в первую очередь серы и азота. До массовой продукции кислорода большая часть серы в океанах содержалась в форме сероводорода, газа с запахом тухлых яиц, который в то время, как и сейчас, поставлялся в океаническую толщу из глубоководных вулканов – гидротермальных источников, называемых «черными курильщиками». Вода, вытекающая из этих подводных трещин, чрезвычайно горяча – температура ее составляет около 300 ℃ – и содержит большие количества сульфидов и железа; охлаждаясь, они образуют минеральные трубки, состоящие из «золота дураков», пирита. В присутствии кислорода некоторые микроорганизмы развили у себя набор новых наномеханизмов, позволивший им забирать водород у сероводорода и использовать его для связывания углекислого газа и создания органических молекул. Благодаря кислороду образовался электрический градиент между богатыми электронами потоками и газами, выходящими из подводных расщелин, и бедным электронами газообразным кислородом и другими молекулами, содержащимися в океанических водах вокруг «черных курильщиков». Этот электрический градиент обеспечил движущую силу для нового типа метаболизма. В отличие от фотосинтезирующих зеленых серных бактерий наподобие тех, что живут в Черном море, эти сульфидокисляющие микроорганизмы гидротермальных источников могут расщеплять сероводород, не используя непосредственно энергию Солнца. Их механизм связывания углерода практически идентичен тому, что найден у цианобактерий, однако метаболическая инновация, получившая название хемоавтотрофии (то есть способности питать себя химическим путем), позволяет связыванию углерода происходить в глубинных, темных слоях океана – но лишь потому, что цианобактерии производят кислород в освещенной солнцем части океана на сотни и тысячи метров выше.

Основная концепция заключается в том, что, если водород непосредственно связан с кислородом, как в случае воды, необходимо большое количество энергии, чтобы разрушить эту связь. Единственным источником энергии, используемым для того, чтобы извлечь водород из воды биологическим путем, является видимая часть спектра излучения Солнца. Водород же, связанный с серой, извлечь гораздо проще. Чтобы извлечь водород из сульфида, требуется лишь около 10 % энергии, необходимой для извлечения его из воды, однако в присутствии кислорода сера может быть трансформирована микроорганизмами с образованием оксид-сульфата, в котором атом серы связан с четырьмя атомами кислорода.

Является ли микробиологическое окисление сероводорода той ключевой реакцией, которая может объяснить задержку в распространении кислорода? Долгое время я считал, что это возможно. Однако, когда мы узнали немного больше о поступлении серы в древние океаны и провели некоторые простые расчеты, такое представление стало казаться все более и более невероятным. Увеличение содержания кислорода могло бы превратить в ржавчину все железо и окислить до сульфатов все сульфиды, однако никогда бы не потребовалось трехсот миллионов лет или более на то, чтобы кислород распространился в атмосфере. Что-то здесь было не так. И снова эксперименты в Черном море предоставили ключ к разгадке.

В водяном столбе Черного моря имеется место, где кислород исчезает, а содержание сероводорода начинает повышаться. У меня ушло несколько лет на то, чтобы понять, как этот переходный момент в химизме Черного моря отражает химизм Земли и распространение в атмосфере кислорода. Даже несмотря на то, что возраст глубин Черного моря составляет всего лишь 1500 лет, здесь имеется переход в микробиологическом метаболизме от верхних, насыщенных кислородом слоев воды к глубинным слоям. Я чувствовал, как будто возвращаюсь во времени к моменту Кислородной катастрофы.

Наиболее распространенный газ на Земле – азот, однако он присутствует в форме, отличающейся чрезвычайной химической стабильностью. Молекула газообразного азота в атмосфере нашей планеты состоит из двух атомов этого элемента, связанных друг с другом тремя химическими связями. В отличие от кислорода газообразный азот (N2) практически инертен. Если бы атмосфера Земли состояла исключительно из азота, газеты на наших тротуарах никогда бы не желтели и не разлагались, железо никогда бы не ржавело, а свечи не горели. Однако если бы водород не соединялся с азотом, жизни бы на Земле не существовало, поскольку без азота, связанного с водородом, микроорганизмы не смогли бы производить ни аминокислоты, ни нуклеиновые кислоты. По счастью, микроорганизмы могут прикреплять водород к азоту, хотя это и требует большого количества энергии.

Я понял, что азотный цикл, который полностью зависит от деятельности микроорганизмов, почти в точности повторяет цикл серы. Азот требуется для производства белков и других необходимых молекул, нужных клеткам. Однако, чтобы заполучить азот в свои клетки, организмы должны либо добывать его из окружающей среды в виде ионов, либо каким-то образом химически изменять атмосферный азот. Задолго до появления газообразного кислорода на Земле развились микроорганизмы, которые могли прикреплять водород к азоту, содержащемуся в атмосфере (или же растворенному в воде), при помощи сложного и чрезвычайно древнего наномеханизма – фермента, называемого нитрогеназой. Продуктом этой реакции является аммоний. Он представляет собой одиночный атом азота с прикрепленными к нему четырьмя атомами водорода (NH4+). В отсутствие кислорода аммоний весьма стабилен, однако, когда кислород стал доступен, микроорганизмы выработали другой набор механизмов, позволивших им отрывать водород от азота и использовать его для превращения углекислого газа в органические соединения, не используя энергию Солнца. Подобно своим собратьям из океанских глубин, эти микроорганизмы также являются хемоавтотрофами: они используют для жизни электрический градиент между насыщенной электронами молекулой аммония и обедненной электронами молекулой кислорода. Эти окисляющие аммоний микроорганизмы не могут добывать себе средства к существованию без присутствия в окружающей среде свободного кислорода. Продуктами их реакции являются азотные соединения, содержащие кислород, в первую очередь нитраты (NO3–), представляющие собой атом азота с тремя атомами кислорода, непосредственно связанными с ним. Так же как и в случае с серой, в отсутствие кислорода другие микроорганизмы могут использовать нитраты для респирации; однако, в отличие от случая с серой, анаэробная респирация нитратов не ведет к образованию молекулы с прикрепленным к ней водородом, наподобие аммония, – ее результатом является выработка газообразного азота.

Рис. 20. Вертикальный профиль распределения двух форм азота – нитратов (NO3) и аммония (NH4) – в водах Черного моря. Отметим, что на тех глубинах, где содержание кислорода становится исчезающе низким (см. рис. 1), обе эти формы азота также встречаются чрезвычайно редко

Анализ химических соединений азота, содержащихся в водах Черного моря, показывает, что в верхних, насыщенных кислородом слоях широко распространены нитраты и нет аммония, в то время как в глубинных слоях, где кислород отсутствует, а воды насыщены сероводородом, аммоний становится единственной формой связанного азота. Однако более внимательное рассмотрение вертикального распределения кислорода и сероводорода в Черном море заставило меня задуматься. В той точке, где кислорода уже совсем мало, в то время как сероводорода тоже еще почти нет, и нитраты, и аммоний практически отсутствуют. Это место, где микроорганизмам очень трудно выживать. Цианобактерии, производившие кислород в древних океанах, по-видимому, помогали другим микроорганизмам использовать оксиды азота для респирации, однако в отличие от серного цикла, где продуктом респираторной реакции являлись сульфаты, то есть ионы, в случае с азотом это были два газа, которые возвращались обратно в атмосферу. Азотный цикл, полностью приводимый в действие микроорганизмами, и предотвращал на протяжении долгого времени появление кислорода на планете. В самом деле, мои исследования в Ратгерском университете, проведенные совместно с моими коллегами, и прежде всего с Линдой Годфри, показывают, что как минимум за 300 млн лет до Кислородной катастрофы цианобактерии уже производили кислород, который в конечном счете использовался другими микроорганизмами для превращения аммония в нитраты и затем высвобождения азота в виде газа. В результате этого процесса океаны теряли связанный азот. Без связанного азота фитопланктон не мог производить большое количество клеточного вещества, и образование органического углерода не происходило с такой легкостью. Если органический углерод почти не образуется, он и не откладывается в геологических пластах. Однако при отсутствии погребенного органического углерода в атмосфере не может накапливаться кислород. По сути, возникает ощущение, как будто вся система микроорганической жизни в древних океанах была настроена на такую цепь обратных реакций, чтобы оставаться бескислородной. Почти нет сомнений в том, что жизнь возникла в бескислородных условиях и микроорганический метаболизм поддерживал на планете бескислородную среду на протяжении первой половины истории Земли. В какой-то момент началась выработка N2 и N2O (закись азота, или веселящий газ). Оба газа покидали пределы океанов, однако около 2,4 млрд лет тому назад выработка цианобактериями кислорода наконец перевесила потребление этого газа другими микроорганизмами, и атмосфера начала насыщаться кислородом. Возможно, это покажется удивительным, но мы до сих пор не знаем наверняка, как это произошло.

Эволюция планеты, содержащей в своей атмосфере кислород, была кульминацией сотен миллионов лет эволюционных преобразований наномеханизмов, которые в конечном счете смогли приспособить солнечную энергию для расщепления воды. Однако распространение кислорода также оказало сильнейшее воздействие на эволюцию самих микроорганизмов.

Будучи чрезвычайно химически активным газом, кислород является замечательной, но в то же время и опасной средой для помещения в нее водорода при респирации. Замечательной – поскольку реакция водорода с кислородом позволяет извлечь большое количество энергии. В самом деле, если вы зажжете спичку в газовой смеси водорода и кислорода, вы вызовете мощный взрыв. Эти два газа вместе в буквальном смысле представляют собой ракетное топливо. Мир, богатый кислородом, – мир высоких энергий. Микроорганизмам, использовавшим кислород для дыхания, потребовалось проделать лишь относительно небольшие изменения в своем респираторном аппарате, чтобы при присоединении водорода в процессе респирации клеточного вещества он не вступал с кислородом в реакцию настолько бурную, чтобы буквально сжечь сами клетки. Для того чтобы взять эту реакцию под контроль, потребовалось возникновение другого наномеханизма – такого, который очень аккуратно присоединял бы к кислороду электроны и протоны. Энергия этой реакции была огромной: благодаря ей микроорганизмы смогли генерировать в восемнадцать раз больше АТФ на каждую респирированную ими молекулу сахара, чем получали при помощи древней анаэробной респираторной системы. Мы позаимствовали этот процесс, чтобы использовать в наших собственных внутриклеточных наномеханизмах для выработки энергии – митохондриях. Производство кислорода в буквальном смысле привело к суперзаряду двигателей жизни!

Рис. 21. Графики изменений со временем содержания кислорода, азота и сероводорода. Можно представить ход изменений в химизме океана в период, предшествующий Кислородной катастрофе (~2,4 млрд лет тому назад), а также изменений, последовавших за насыщением атмосферы и океанов кислородом

Эволюция наномеханизмов также сыграла критическую роль в развитии циклов элементов, по сей день способствующих продолжению жизни на Земле. Благодаря теплу, вырабатываемому при радиоактивном распаде элементов в недрах земной коры, происходит постоянное пополнение необходимых для жизни элементов посредством выбрасывания вулканами газов, выветривания горных пород и накопления отмерших микроорганизмов в осадочной толще. Этот процесс не останавливался начиная с момента формирования нашей планеты 4,55 млрд лет тому назад, и он будет продолжаться еще несколько миллиардов лет в будущем. Тем не менее эволюция микробиологических наномеханизмов и связанное с ней распространение кислорода изменили циклы обращения этих элементов в планетарном масштабе. А именно такая эволюция позволила организмам на всей планете наладить взаимосвязь через свои внутренние механизмы, образовав единый гигантский электронный контур. Этот контур в значительной степени опирается на перенос водорода туда и обратно между четырьмя из шести главных элементов – углеродом, азотом, кислородом и серой.

Для обеспечения связи между метаболизмом различных организмов требуется нечто наподобие «проводов», и двумя такими важнейшими «проводами» для Земли являются океан и атмосфера. Нам даже не надо вставать со своих кресел, чтобы увидеть, как это работает.

Сделайте глубокий вдох. Кислород, который вы только что вдохнули, не был произведен в той комнате, где вы находитесь. За окном не стоит великан с огромной лупой, через которую он фокусирует энергию Солнца на оксидах металлов, и мы не таскаем за спиной культуры водорослей. Мы дышим кислородом зимой, несмотря на то что в нашем непосредственном окружении нет фотосинтезирующих растений. Кислород, который мы вдыхаем, возможно, был произведен миллионы лет назад и любезно доставлен нам из дальних краев земной атмосферой. Давным-давно где-то на Земле неведомые для нас растения и фитопланктон выработали кислород, которым вы и я сейчас дышим. Мы живем благодаря милости незнакомцев. Впрочем, наше дыхание в свою очередь вырабатывает углекислый газ и воду – очень слабенькую газировку (которая, кстати, тоже была изобретена Пристли). Выдыхаемый нами углекислый газ используется фитопланктоном и растениями для выращивания новых растений и фитопланктона в других местах планеты.

Океан также служит проводником для планетарного метаболизма. Океанические течения выносят оксиды азота на поверхность, где фитопланктон поглощает их, чтобы производить новые клетки, некоторые из них погружаются в глубины, становясь источником питания и энергии для микроорганизмов и других форм жизни в глубинах океана. Поскольку океан является огромным взаимосвязанным жидким телом, циркулирующим в глобальном масштабе, воды в глубинных слоях океана получают кислород из атмосферы. В двух важнейших областях океана – Северной Атлантике за Гренландией и в Антарктическом океане – на протяжении зимнего периода образуются очень холодные водные массы. Холодные воды более плотные и поэтому стремятся погрузиться в глубину (наибольшую плотность вода имеет при температуре 4 ℃). Чем холоднее вода, тем больше кислорода она может поглощать. Холодные, плотные, насыщенные кислородом потоки разносят этот газ по всему океану медленным конвейерным течением из Атлантики в Индийский океан, затем через Тихий и обратно. Один оборот такого кольца занимает около тысячи лет. Благодаря этому конвейерному течению микроорганизмы придонных областей океана могут использовать сульфиды или аммоний для связывания углерода благодаря кислороду, выработанному миллионы лет назад в дальних краях. Когда кислород наконец стал доступен и замкнул биологические циклы серы, азота и углерода, он, вполне возможно, также вызвал глобальное изменение климата Земли и соответственно первое массовое вымирание видов на планете.

Существуют убедительные свидетельства того, что приблизительно через 200 млн лет после Кислородной катастрофы в нескольких областях земного шара сформировались массивные ледяные щиты, которые не таяли около 300 млн лет. Это было самое длительное и, может быть, одно из самых обширных оледенений в истории Земли – лед покрывал не только сушу, но также поверхность всех океанов, возможно, вплоть до экватора (так называемая Земля-снежок). Что же вызвало это глобальное изменение климата?

Одной из возможных причин этой климатической подвижки было накопление кислорода в атмосфере. В то время как недра Земли разогреваются радиоактивными процессами, ее поверхность нагревается Солнцем. Солнечное излучение в конечном счете отражается обратно в космос, однако некоторая его часть задерживается покрывалом из газов в атмосфере Земли. В настоящее время наиболее важную роль в захвате тепла играют водяной пар и углекислый газ. Фактически, если бы не присутствие в атмосфере этих так называемых парниковых газов, земные океаны и сейчас были бы покрыты льдом. Однако 2,4 млрд лет тому назад ситуация была еще более экстремальной. В то время Солнце светило приблизительно на 25 % менее ярко, чем сейчас, а это означает, что оно давало меньше тепла. Для того чтобы поверхность океанов оставалась жидкой, парниковые газы должны были быть очень распространены; при этом они должны были очень хорошо поглощать солнечную энергию, в особенности инфракрасное излучение (тип энергии, который мы не можем видеть, однако можем чувствовать кожей, поскольку инфракрасное излучение – это тепло). Одним из газов, наиболее эффективно поглощающих инфракрасное излучение, является метан.

В настоящее время метан занимает относительно скромное место среди парниковых газов, однако 2,4 млрд лет тому назад он почти наверняка был распространен гораздо больше. Метан – очень простой газ, он состоит из одного атома углерода, связанного с четырьмя атомами водорода (CH4). В присутствии кислорода он очень хорошо горит, что означает, что в связях этого газа запасено большое количество энергии. Метан образуется как продукт респирации некоторых микроорганизмов в строго анаэробных условиях: при отсутствии кислорода некоторые микроорганизмы могут при помощи специального наномеханизма извлекать водород из сахаров и других органических молекул и соединять его с углекислым газом, производя метан. Такие микроорганизмы называются археями – это вторая по величине группа прокариотов, открытая Вёзе и Фоксом. Наномеханизмы метанпродуцирующих бактерий чрезвычайно чувствительны к кислороду: даже небольшая концентрация кислорода тотчас останавливает выработку ими метана. В наши дни метаногенные микроорганизмы можно обнаружить в самых разных местах, включая желудки коров и других жвачных животных, а также приблизительно 40 % людей. Однако 2,4 млрд лет тому назад эти организмы, очевидно, имели чрезвычайно широкое распространение в прибрежных водах по всему миру.

Рис. 22. Схема, демонстрирующая различие между метаном (CH4) и углекислым газом (CO2). Обе молекулы представляют собой невидимые газы без запаха. В присутствии кислорода метан превращается в CO2 и воду как в атмосфере, так и посредством действия микроорганизмов

Даже в присутствии кислорода некоторые виды бактерий могут использовать метан как источник энергии и для выращивания клеток. Поглощение метана микроорганизмами – один из наиболее быстрых и эффективных путей уничтожения этого газа. По мере развития у них этой способности аппарат разрушения метана, по-видимому, ощутимо уменьшил приток этого вещества из океанов в атмосферу, а газообразный кислород при помощи солнечного света довершил уничтожение метана в атмосфере. Важнейший из газов, поглощающих инфракрасное излучение, перестал существовать, и слабое молодое Солнце не могло предоставить достаточного количества тепла, чтобы уберечь океаны от замерзания. Последовавшее за этим образование ледяной корки, или шуги, на всей поверхности Мирового океана почти наверняка должно было сократить ареал роста фотосинтезирующих микроорганизмов и одновременно воспрепятствовать обмену газами между океаном и атмосферой. Геологическая летопись показывает, что за этим последовали несколько продолжительных периодов, на протяжении которых океаны были холодными и не были приспособлены для жизни. Киршвинк – тот самый, что окрестил цианобактерии микробами-большевиками, – также в порыве вдохновения придумал для состояния, когда ледяные щиты покрывали всю поверхность океанов, название «Земля-снежок». Если все действительно происходило по описанному сценарию, то это был первый случай в геологической истории Земли, когда микроорганизмы полностью нарушили планетарный климат.

Условия, превратившие планету в «снежок», судя по всему, возникали на ней не единожды. Последний раз это случилось около 750 млн лет тому назад. Невероятно, но во всех случаях небольшому числу выживших микроорганизмов были каким-то образом переданы инструкции по созданию всех основных наномеханизмов. Эти организмы были пионерами, пронесшими жизнь через долгие периоды планетарного опустошения.

Глава 6. Защита важнейших генов

Жизнь на Земле – вещь очень хрупкая, неизбежно краткосрочная и вместе с тем невероятно стойкая. Время от времени случаются катастрофические события далеко за пределами контроля любых живых организмов, ведущие к массовой гибели целых видов. Летопись ископаемых останков за последние 550 млн лет показывает по меньшей мере пять крупных эпизодов вымирания морских животных. За одним исключением все эти случаи плохо объяснимы. Исключение, о котором идет речь, случилось 65 млн лет тому назад, и с большой долей вероятности его причиной стало столкновение Земли с крупным метеоритом, упавшим в районе нынешнего побережья полуострова Юкатан в Мексике. Это был несчастливый день для динозавров и многих видов растений. Однако микроорганизмы преспокойно пережили эту катастрофу, в точности так же, как пережили все предыдущие катастрофы, охватывавшие большие промежутки времени в истории Земли. Каким же образом природа устроила так, чтобы инструкции по созданию важнейших наномеханизмов оставались в сохранности, невзирая на все ужасные события, способные приводить к уничтожению животных и растений в огромных количествах?

Инструкции по воспроизводству основных наномеханизмов закодированы в генах. Гены – это наборы последовательностей из четырех молекул дезоксирибонуклеиновых кислот, используемых всеми организмами в качестве инструкций по производству белков. У прокариотов, таких как бактерии, несколько миллионов дезоксирибонуклеиновых кислот прикреплены одна к другой, в результате чего формируется большая замкнутая в виде окружности молекула, в которой содержатся инструкции по созданию нескольких тысяч белков. Эти белки в свою очередь состоят из двадцати определенных аминокислот, также прикрепленных друг к другу в определенном порядке. Эти двадцать аминокислот, используемых для синтеза белков, присутствуют в любом живом организме на Земле.

Наборы из трех дезоксирибонуклеиновых кислот, расположенных в определенном порядке, составляют код для определенной аминокислоты, а белки производятся древнейшими наномеханизмами, о которых уже шла речь, – рибосомами. Сами белки используются для производства наномеханизмов, которые позволяют организму вырабатывать энергию и размножаться. Размножение клеток зависит от воспроизводства генов, а воспроизводство генов зависит от способности организма вырабатывать энергию, выживать и расти.

Основополагающее открытие того, что генетическая информация передается по наследству, приписывается Грегору Менделю, австрийскому монаху, исследовавшему цветовые закономерности цветов и семян, форму стручков и так далее у приблизительно 29 тысяч растений гороха. Его работа была опубликована в Германии в 1865 году, через шесть лет после того, как Дарвин выпустил в свет первое издание своего «Происхождения видов». Само собой разумеется, что Дарвин ничего не мог знать о генах. Работа Менделя оставалась практически незамеченной вплоть до начала XX века, когда ее вновь обнаружил и, можно сказать, возродил к жизни британский биолог Уильям Бэтсон – тот, что пустил в оборот сам термин «генетика». Бэтсон не имел представления о том, как генетическая информация передается из поколения в поколение, однако же признал, основываясь на работе Менделя, что для потомства спаривающихся организмов существуют некоторые основные, предсказуемые закономерности. И лишь во второй половине XX века ученые поняли, что именно нуклеиновые кислоты отвечают за передачу инструкций относительно того, как должны производиться белки и какие характерные особенности должны передаваться.

Существование естественной изменчивости видов и возможность ее отбора путем селекции стали одним из главных озарений Дарвина. Например, люди, несомненно, использовали естественные изменения у собак, чтобы выращивать новые породы с новыми характеристиками; однако все это были собаки. Если люди могут проделывать это с собаками, лошадьми или голубями, почему не может природа? В то время существовало четкое определение вида: вид в применении к животным и растениям (а ничто другое тогда не принималось во внимание) представлял собой организм, способный размножаться половым путем и давать жизнеспособное потомство, то есть потомство, также способное размножаться половым путем. Голуби могут давать жизнеспособное потомство, совокупляясь с другими голубями, но гибрид, возникший при скрещивании голубя и орла, если даже и будет жизнеспособным, уже не сможет размножаться. Результатом скрещивания самца осла и самки лошади является мул – стерильное животное. Голуби и орлы, лошади и ослы – различные, четко распознаваемые виды.

Вариации видов, по утверждению Дарвина, отбираются путем соревнования внутри вида, постепенно приводя к таким изменениям, что новый вид больше не может воспроизводиться совокупно с последним предком нового вида и давать жизнеспособное потомство. Это представление – о наследовании с изменениями, за чем следует отбор и видообразование – формирует теоретический базис дарвиновской эволюции. Передача генов от родителя к потомку, или наследование по происхождению, представляет собой концепцию вертикального наследования. Организмы, размножающиеся главным образом посредством половой рекомбинации, передают гены именно таким путем. Однако это не единственный способ передачи генов через долгие временные периоды, в особенности для микроорганизмов. Однако, прежде чем мы углубимся в вопросы микробиологической эволюции и того, как наномеханизмы передаются новым поколениям, давайте обратимся к вопросу, почему, собственно, вообще существует изменчивость внутри видов, поскольку без изменчивости не могло бы быть эволюции, как мы ее понимаем.

Время от времени в процессе репликации генов клетка допускает ошибку, и копия гена оказывается слегка измененной по отношению к оригиналу. Это очень похоже на монахов, переписывающих книги: ошибки почти всегда заключаются в неправильном «написании» последовательностей нуклеиновых кислот в процессе репликации. В ДНК заключаются четыре нуклеиновые кислоты – аденин, гуанин, цитозин и тимин, обозначающиеся буквами A, G, C и T. ДНК состоит из двух нитей, и каждой Т в одной нити соответствует А в другой. Точно так же каждая С в одной нити имеет парную G в другой нити. Однако, например, при высоком уровне ультрафиолетового излучения имеется вероятность выше среднего, что вместо совмещения Т с А энергия излучения вынудит Т совместиться с соседней Т в противоположной нити. И если такая мутация не будет исправлена, организм передаст ее следующим поколениям.

Могут случаться и другие типы однонуклеотидных мутаций, и большинство таких ошибок не оказывает фундаментального воздействия на способность клетки расти и размножаться. Как уже было сказано, ошибки подобного типа (нейтральные мутации) могут вести к отклонениям, но не наделяют организм какими-либо преимуществами или недостатками. У некоторых людей глаза голубые, а у некоторых карие, у одних волосы вьются, а у других прямые, у одних нос большой, у других маленький. Такие отклонения могут оказать лишь очень небольшое влияние на способность человека размножаться; они попросту присутствуют у данного индивида по причине незначительных генетических «ошибок», или отклонений, передающихся по наследству. Нейтральные мутации по определению не оказывают влияния на способность организма воспроизводиться и иметь жизнеспособное потомство; такие мутации просто передаются из поколения в поколение.

Тем не менее некоторые ошибки могут быть весьма пагубными. У людей встречается множество однонуклеотидных мутаций, которые могут приводить к очень серьезным и порой летальным заболеваниям, таким как муковисцидоз, гемофилия и болезнь Тея – Сакса. В подобных случаях носители мутации редко доживают до репродуктивного возраста или, если это случается, зачастую не способны размножаться. То же относится и к микроорганизмам: такие однонуклеотидные, или точечные, мутации, вызывающие, например, неспособность клетки производить белки, дышать или эффективно вырабатывать АТФ, неизбежно ведут к гибели этого организма. Они не передаются по наследству.

Помимо точечных мутаций нуклеотидов встречаются и другие виды ошибок. Иногда организмы ошибочно производят серийные копии генов (это называется тандемная дупликация), которые порождают пару повторяющих друг друга белков, слипающихся вместе. Такой процесс генной дупликации – нечто вроде сиамских близнецов, которых нельзя разделить, только на молекулярном уровне. В других случаях кусочки одного гена попадают в середину или в конец другого. Такие ошибки могут вести к изменению длины молекулы белка, однако если основной механизм остается работоспособным, гены для этого нового белка могут сохраняться. Во многих случаях такой тип мутации может привести к появлению новых функций данного гена.

Ошибки постоянно и спонтанно возникают во всех генах у всех организмов, и порой они оказываются благоприятными. Если ошибка позволяет организму обогнать других в соревновании по получению энергии или увеличению ареала обитания, при этом не мешая ему давать жизнеспособное потомство, говорят, что такой организм был наделен селективным преимуществом. Как оказывается, множество генов испытывают границы разнообразия посредством мутаций. Это означает, что множество таких весьма отличающихся друг от друга генов успешно передаются от поколения к поколению и сохраняются в потомстве при условии, что они дают организму преимущество или по меньшей мере не оказываются для него неблагоприятными.

Последствием всех этих постоянно случающихся ошибок явилось огромное число отклонений в генах, и почти все эти отклонения относятся к микроорганизмам. Вычислено, что в любой момент времени на Земле живет приблизительно 1000 000 000 000 000 000 000 000 (то есть 1024) микроорганизмов. Это невероятное количество самовоспроизводящихся организмов. Для сравнения скажу, что число существующих на настоящий момент микроорганизмов примерно в 100 000 раз превышает число всех звезд в видимой Вселенной. Каждый микроорганизм содержит в себе приблизительно 10 000 генов. Посредством технологий генного секвенирования и компьютерного анализа людям удалось идентифицировать более 25 миллионов существующих в природе генов, и каждый год добавляются миллионы новых. Мы не имеем представления о том, сколько генов существует на Земле, и, возможно, их число вообще не поддается вычислению, поскольку гены непрестанно изменяются. Оценка численности генов в чем-то сродни попытке сосчитать число капель дождя, ежедневно выпадающих на поверхность планеты. По наиболее правдоподобным оценкам, число генов составляет приблизительно от 60 до 100 миллионов.

Функция приблизительно 40 % генов, которые были идентифицированы, неизвестна. То, что они сохраняются в организме, с большой долей вероятности означает, что эти гены для чего-то используются – мы просто не знаем, для чего. Функции других 60 % предполагаются на основе их сходства с генами, действие которых было ранее идентифицировано в каком-либо организме. При классическом отборе по Дарвину каждый ген должен со временем случайным образом мутировать, оптимизируя свою функцию, чтобы организм – носитель этого гена мог более эффективно добывать ресурсы и размножаться. Однако на деле это работает не совсем так.

Не все гены созданы равными. Хотя большинство генов действительно мутируют, со временем постепенно изменяясь и накапливая отклонения между различными организмами, те гены, в которых закодированы очень узкоспециализированные компоненты ключевых наномеханизмов, вообще почти не меняются. Например, у фотосинтезирующих организмов различные белки, образующие основную структуру этого аппарата, должны соответствовать друг другу и работать вместе, а также удерживать другие компоненты в индивидуальных позициях и ориентациях, иначе аппарат не будет функционировать. Каждый из белков, составляющих основную структуру этого аппарата, закодирован в особом гене. Внимательное исследование этих генов обнаруживает, что они практически идентичны – от древнейших существующих организмов, выделяющих кислород в процессе фотосинтеза (цианобактерий), до лишь совсем недавно выведенных наземных растений. Собственно, один из важнейших белков, называемый D1, обнаруженный в фотосинтетическом реакционном центре, расщепляющем воду, на 86 % идентичен у всех производящих кислород фотосинтезирующих организмов. Это не означает, что при копировании генов для D1 не происходит ошибок, но это означает, что даже очень небольшие ошибки часто заканчиваются фатальным исходом для организма, наследующего мутировавшие гены. Отсутствие отклонений в генах, кодирующих информацию для этих наномеханизмов, указывает на наличие абсолютной необходимости того, чтобы эти белки формировались с высокой точностью, так, чтобы все части максимально соответствовали друг другу, иначе аппарат не будет функционировать так, как надо.

Многие из белков, формирующих структурные компоненты в ключевых механизмах, имеют сходные небольшие отклонения. Это относится к механизмам, ответственным за респирацию, за синтез белков, за производство АТФ, за связывание азота, выработку метана и так далее. По моей оценке, существует всего лишь около 1500 основных генов, требующихся для синтеза всех наномеханизмов в природе. Все они встречаются у микроорганизмов. Эта оценка может показаться довольно скромной; однако, даже если допустить, что она неверна на порядок, это будет означать, что из приблизительно 60–100 млн генов, встречающихся в природе, лишь 0,015–0,025 % содержат критическую для жизни информацию. Остальные 99,98 % генов связаны с функционированием конкретных организмов. Огромное большинство из этих 99,98 % генов не постоянны: у одних групп они могут эволюционировать, приобретая новые функции, у других – исчезнуть или же просто изменяться нейтральным порядком по мере развития организмов во времени. Тем не менее ключевые гены не могут быть потеряны или претерпеть значительные изменения. Если бы это случилось, это было бы катастрофой. В случае если в относительно скором времени не возникнет какого-либо механизма на замену, потеря такого ключевого гена потенциально может нарушить циркуляцию на планете нескольких важнейших элементов.

Ввиду того что гены, кодирующие части основных наномеханизмов, настолько строго охраняются, я называю их «застывшие метаболические случайности». Хотя эти гены могли появиться совсем для других целей или в сильно отличающихся обстоятельствах, они с тех пор передаются в практически неизменном виде от одного поколения микроорганизмов к другому и от одного микроорганизма к другому. Это не обязательно означает, что они совершенны, – просто они работают. А природа выработала несколько программ для сохранения генов, кодирующих ключевые механизмы, даже если эти механизмы не совершенны.

Часто встречается неверное представление об эволюции и оптимизации в природе. Идея состоит в том, что естественный отбор, действуя на протяжении миллионов лет, оптимизирует процессы, критические для выживания организма и его способности размножаться. Давайте рассмотрим эту основную идею на примере трех наномеханизмов.

Белок D1 в реакционном центре всех производящих кислород фотосинтезирующих организмов произошел от почти идентичного белка, найденного у пурпурных несерных фотосинтезирующих бактерий, которые не могут расщеплять воду, чтобы производить органические соединения. В отсутствие кислорода, и только при этом условии, эти пурпурные бактерии фотосинтезируют, но в качестве источника электронов и протонов они используют водород или углеводы. Эволюционный предок D1 у этих бактерий чрезвычайно стабилен, но во всех фотосинтезирующих организмах, вырабатывающих кислород, этот белок разрушается после того, как переработает около 10 тысяч электронов. «Разрушается» здесь означает не просто то, что он перестает функционировать, – он в буквальном смысле начинает распадаться на части. Этот процесс занимает около 30 минут.

Каково же было решение этой проблемы? Вместо того чтобы заново создавать в процессе эволюции новую версию белка D1, фотосинтезирующие организмы, расщепляющие воду, развили сложный механизм его восстановления. Этот восстанавливающий аппарат включает в себя распознавание поврежденного D1, удаление его из остального механизма, пока он еще находится в работе, и замену его новым белком, подходящим к тому месту, где находился поврежденный. Можно сравнить это с ситуацией, когда при каждой поездке на машине приходится брать с собой бригаду механиков, и через каждые 10 тысяч оборотов каждого колеса механикам приходится свешиваться наружу, чтобы выяснить, какая из шин повреждена, и потом заменять ее прямо во время движения. В случае с D1 это потребовало значительных эволюционных уловок. Однако это также позволило старому аппарату, унаследованному от пурпурных фотосинтезирующих бактерий, продолжать действовать в новых условиях – в присутствии кислорода.

Повреждение D1 вызывается присутствием определенных форм кислорода – тех, которым не хватает электронов, или, наоборот, тех, у которых их слишком много. Такие частицы кислорода – их называют активными – могут вызывать у белков большие повреждения, и в процессе эволюции возникли несколько ферментов, чтобы их детоксифицировать. Однако кислород и сам по себе также высокоактивен, в особенности когда вступает в контакт с наномеханизмами, содержащими железо. Одним из таких механизмов является фермент нитрогеназа, о котором мы уже говорили выше. Как и фотосинтетический аппарат, нитрогеназа несколько напоминает машину Руби Голдберга; она состоит из двух крупных белков, совместно поставляющих электроны и затем протоны к газообразному азоту. В отсутствие кислорода нитрогеназа функционирует вполне неплохо, однако при наличии кислорода атомы железа начинают «ржаветь», механизм перестает работать и вся система нуждается в замене. Можно было бы подумать, что по прошествии пары миллиардов лет, то есть с тех пор, когда на Земле появился кислород, природа должна была найти какой-то эволюционный способ, чтобы позволить нитрогеназе функционировать в присутствии кислорода, или, возможно, должен был появиться механизм другого типа, выполняющий ту же функцию. Однако ничего подобного не произошло.

Рис. 23. Изображение гетероцисты. В некоторых образующих нити видах цианобактерий (см., например, рис. 17, а), когда клетки начинают восстанавливать (связывать) атмосферный газообразный азот (N2) до аммония (NH4), они образуют особую клетку – гетероцисту, в которой отсутствует реакционный центр, испускающий кислород (фотосистема II). Нитрогеназа – фермент, отвечающий за связывание азота, – обнаруживается исключительно в гетероцистах, где она защищена от повреждения кислородом. Это один из самых ранних примеров дифференциации клеток в биологии. (Публикуется с разрешения Арнольда Тэйтона и Джеймса Голдена.)

В случае с нитрогеназой решением было физически отделить механизм от кислорода. В некоторых случаях клетки, содержащие фермент, были ограничены анаэробной средой; в других случаях развились специализированные клетки, которые были несколько менее проницаемы для кислорода, чем для азота (а это очень непросто, поскольку физический размер молекул этих газов практически одинаков). Еще в каких-то случаях были добавлены специальные процессы, поглощавшие или физически удалявшие кислород из аппарата нитрогеназы. Ни в одном из этих случаев решение нельзя назвать совершенным. В современных океанах в каждый отдельно взятый момент времени из-за кислорода бездействует около 30 % всей нитрогеназы. Это означает постоянное пополнение свалки использованных деталей, которые в конечном счете должны быть возвращены в оборот для производства новых наномеханизмов.

Последний пример еще более ошеломляющ. Он относится к очень старому наномеханизму – рубиско (акроним, образованный из названия рибулозобифосфаткарбоксилаза/оксигеназа). Рубиско представляет собой белковый комплекс, отвечающий за связывание углекислого газа во всех производящих кислород фотосинтезирующих организмах, а также у ряда других микроорганизмов, включая многих хемоавтотрофов. Иногда говорят, и не без основания, что рубиско – самый распространенный белок на планете; тем не менее, хотя он и отвечает за образование большей части клеточного вещества на Земле, это довольно неэффективный фермент.

Рубиско не так уж сложен, однако представляет собой большой белковый комплекс: он подразделяется на две подсистемы, которые должны работать вместе. Когда фермент работает как надо, он забирает углекислый газ, растворенный в воде, и присоединяет его к пятиуглеродному сахару, имеющему две фосфатные «рукоятки» (рибулозобифосфат), образуя две идентичные трехуглеродные молекулы. Этот процесс считается, хотя и небесспорно, самой важной биохимической реакцией на Земле. Это первый шаг, ведущий к фотосинтетическому образованию приблизительно 99 % органических соединений, от которых зависит вся остальная жизнь. Само существование всех животных, включая нас с вами, полностью зависит от рубиско.

Как и D1 с нитрогеназой, рубиско возник задолго до того, как в атмосфере нашей планеты появился кислород, но, кроме того, это произошло в те времена, когда концентрация углекислого газа была во много раз выше, нежели сейчас. В тех условиях рубиско функционировал вполне неплохо. В присутствии кислорода, однако, фермент часто ошибочно принимает его за углекислый газ, хотя это и довольно сложно себе представить, поскольку у этих двух молекул совершенно различная структура. Тем не менее, если рубиско допускает эту ошибку, он включает в свой состав кислород, вырабатывая бесполезный продукт. Такое случается примерно в 30 % случаев у всех растений и представляет собой напрасную трату большого количества энергии.

Подливает масла в огонь еще и то, что этот связывающий углерод наномеханизм работает очень, очень медленно. Каждая молекула рубиско выдает продукт всего лишь около пяти раз за секунду – примерно в 100 раз медленнее, чем большинство других ферментов в типичной фотосинтезирующей клетке. Даже наиболее эффективные, последние из появившихся в процессе эволюции аппараты рубиско очень неторопливы по сравнению со многими другими наномеханизмами клеток.

Можно было бы подумать, что, имея настолько медленный, неэффективный механизм и несколько сотен миллионов лет на его преобразование при помощи мутаций и последующего отбора, природа должна была изобрести более совершенную систему. Примечательно, однако, что этого так и не произошло. Хотя некоторые незначительные усовершенствования и имели место, основное решение оставалось тем же: клетки продолжали вырабатывать этот фермент. Это крупное капиталовложение для фотосинтезирующего организма. Для выработки рубиско требуется много азота, которому могло бы найтись лучшее применение. Так, новые клетки можно было бы строить гораздо быстрее, если бы не несовершенства наномеханизма, отвечающего за связывание углерода.

Принимая во внимание несовершенства этого и многих других ключевых аппаратов клетки, можно задаться вопросом, почему эти механизмы не эволюционировали, чтобы стать более эффективными. Почему гены, кодирующие эти «застывшие метаболические случайности», неспособны выработать более работоспособный аппарат? Ответ, судя по всему, достаточно прост и прямолинеен. В большинстве случаев наномеханизмы состоят из нескольких компонентов, действующих как единое целое, – это в буквальном смысле механизмы, которые физически двигаются. Движение и ориентация всего этого комплекса зависят от его отдельных компонентов. И если незначительные изменения в одной из частей могут никак не влиять на способность всего наномеханизма к движению, то крупные изменения в одном компоненте без одновременных изменений в других могут привести к потере возможности функционировать. В конечном счете решение, найденное природой, было аналогично тому, которое приняла компания Microsoft. Когда в Microsoft была разработана операционная система для компьютеров, программное обеспечение вполне подходило для первых машин, однако, по мере того как машины становились все сложнее, Microsoft добавлял все новые и новые апдейты, модифицирующие старую операционную систему, вместо того чтобы заново разрабатывать ее с нуля. Так же и природа, вместо того чтобы заново строить с нуля клеточные механизмы, пускает в оборот старые, слегка их модифицируя или разрабатывая набор новых компонентов, помогающих им функционировать в изменяющейся среде. По сути, природа так же добавляет новые «апдейты» к уже имеющимся механизмам.

В то время как гены, отвечающие за ключевые наномеханизмы, чрезвычайно консервативны, многие из остальных 99,98 % имеющихся в живых организмах генов обладают высокой изменчивостью. Это означает, что ключевые механизмы обнаруживаются у очень широкого круга организмов, зачастую имеющих очень отдаленных друг от друга эволюционных предков. Например, у микроорганизмов нитрогеназа найдена у множества групп бактерий и нескольких групп архей (но ни в одной из известных групп эукариотов). Точно так же рубиско найден у многих организмов, имеющих очень мало общего. Одна форма рубиско, превалирующая у бактерий, также была найдена у динофлагеллятов, являющихся водорослями-эукариотами, но у других эукариотов ее нет. На самом деле закономерности распределения большинства ключевых наномеханизмов на генеалогическом древе жизни зачастую непредсказуемы.

Рис. 24. Распределение генов нитрогеназы на генеалогическом древе жизни. Отметим, что закономерности этого распределения не коррелируют с происхождением видов от общего предка; фактически эти закономерности не так легко предсказуемы. Эти гены (как и многие другие) были получены посредством горизонтального переноса генов внутри домена бактерий и между бактериями и археями. В геномах эукариотических клеток азотфиксирующие гены найдены не были. (Публикуется с разрешения Эрика Бойда.)

Построение генеалогий живых организмов относительно нитрогеназы, рубиско и многих других ключевых генов ясно показывает, что дарвиновская модель эволюции по происхождению с вариациями здесь неприменима. Может быть, предложенная Дарвином концепция эволюции вообще неверна?

В эпоху все более быстродействующих, дешевых и качественных компьютерных технологий и генного секвенирования были проанализированы целые геномы тысяч микроорганизмов. Исследование распределения генов в геноме ясно показало, что многие гены не были унаследованы вертикально, то есть не получены от предыдущих поколений. Такой способ наследования называется горизонтальным (или латеральным) переносом генов. Горизонтальный перенос генов не является биологическим курьезом; у микроорганизмов это основной способ эволюции. Говоря попросту, гены, предварительно адаптированные посредством отбора в одном организме, могут каким-то образом передаваться другому, никак с ним не связанному организму без половой рекомбинации. По существу, это в какой-то мере тоже эволюция – организм, не имевший способности связывать азот, может приобрести азотфиксирующие гены из своего окружения – и вот в следующий момент он уже может связывать азот!

Горизонтальный перенос генов едва ли можно назвать постепенным. Наборы генов могут передаваться в микроорганическом мире за несколько десятилетий. На самом деле, этот процесс пугающе стремителен. Один из самых первых примеров горизонтального переноса генов был обнаружен в Японии, когда было замечено, что патогенные бактерии приобретают сопротивляемость антибиотикам гораздо быстрее, чем можно объяснить с помощью классической модели вертикального наследования. Когда эпоха генного секвенирования вступила в свои права, очень быстро выяснилось, что гены, отвечающие за сопротивление многим распространенным антибиотикам, распространены во всем микробиологическом мире. Было замечено также, что множество других генов находятся не на своем месте внутри генома. Два микроорганизма, которые, если судить по последовательностям нуклеиновых кислот в рибосомах, должны быть абсолютно идентичны, почти наверняка будут иметь различное расположение генов. Можно даже подумать, будто многие гены вставляются в геном в случайном порядке. Часто бывает так, что один или несколько генов оказываются посередине набора других генов, не имея очевидной связи с теми генами, что находятся спереди или сзади от них. Такие присоединенные гены зачастую бывают приобретены у совершенно постороннего организма посредством горизонтального переноса генов.

Полученные таким образом гены прошли предварительный процесс эволюции в других организмах, после чего были перенесены, словно трансплантируемый орган, пересаженный ничего не подозревающему новому владельцу, который даже не знал, что у него не хватает какого-то органа. Такие гены функционируют; это проверено. Они функционировали в организме, от которого были получены, на протяжении сотен тысяч (если не миллионов, а в некоторых случаях и миллиардов) лет. С ними не нужно долго возиться, чтобы заставить их работать. Если организм, непреднамеренно их получивший, в них не нуждается, они отбрасываются. Если они увеличивают функциональные возможности организма, он их использует. Таким образом, для микроорганизмов окружающая среда оказывается чем-то наподобие глобального генетического супермаркета: прошедшие предварительную адаптацию наборы генов доступны для любого организма, который может себе позволить их приобрести. Каждый из организмов так или иначе получал гены посредством горизонтального переноса, включая и нас с вами.

Каким же образом гены передаются от микроорганизма к микроорганизму?

Существуют три известных механизма, позволяющих генам передаваться по горизонтали, но как в точности они работают и является ли один из них более значительным, нежели другие два, остается неясным. Тот из механизмов, который проще всего описать, был открыт в начале 1940-х годов тремя американскими биохимиками и носит название трансформации. Он возмутительно прост: гены (или любая ДНК) попросту забираются организмом из окружающей среды. Немного времени – и новоприобретенные гены уже встроены в организм нового хозяина и передаются по наследству его потомкам. В то время как этот процесс работает в лаборатории (а эти эксперименты фактически подвели твердое основание для понимания того, что именно нуклеиновые кислоты, а не белки, содержат информацию о наследуемых признаках), остается неясным, откуда берется так много свободной ДНК в реальном мире. Ведь клетки не могут просто извергать из себя ДНК – для этого они должны погибнуть, и погибнуть таким образом, чтобы их ДНК перешла в окружающую среду неповрежденной. Что подводит нас к другому возможному механизму переноса генов по горизонтали.

Наиболее явными «торговыми агентами» чужеродных генов являются вирусы, которые могут быть самых различных форм и размеров. Многие из них выглядят как суперкрошечные шарики, созданные Бакминстером Фуллером, другие похожи на микроскопические лунные модули. Вне зависимости от их физической формы вирусы не являются живыми в традиционном смысле, то есть они не обмениваются с окружающей средой никакими газами, не имеют механизма для выработки собственной энергии и, самое главное, не могут самостоятельно воспроизводиться. У них нет ни АТФазы, ни рибосом, а следовательно, они не могут производить белки или что-либо другое без клетки-хозяина. Тем не менее вирусы переносят генетическую информацию в форме ДНК или иногда РНК, упакованной в белковую оболочку. На Земле существует невероятно огромное количество вирусов – в верхних слоях океана насчитывается несколько сотен миллионов вирусов на каждый миллилитр морской воды; это более чем в десять раз превышает количество всех бактерий и других микроорганизмов, вместе взятых.

Подавляющее большинство вирусов описаны не очень подробно, а в некоторых случаях, особенно для вирусов-переносчиков РНК, их генетическая информация меняется настолько быстро, что пытаться их описать для микробиолога – все равно что играть в «Прибей крота»: вирус, описанный вами на прошлой неделе, на этой зачастую оказывается уже совершенно другим вирусом. Если в прошлом году вам делали прививку от гриппа, скорее всего, это не означает, что сейчас вы защищены от болезни.

Рис. 25. Микрофотография морской вирусной частицы. Генетическая информация заключена в голове вируса, в то время как стебель используется для прикрепления к клетке-хозяину (например, бактерии). Вирус внедряет свой генетический материал в хозяина и с помощью его внутренних механизмов начинает воспроизводиться в больших количествах. Обратите внимание на то, что размер этой частицы приблизительно в десять раз меньше размера мельчайшей из цианобактерий (см. рис. 17, б). (Публикуется с разрешения Дженн Брам и Мэтью Салливана.)

Осуществляют ли вирусы перенос генов? В принципе, да, но большинство способны покрывать лишь короткие эволюционные расстояния. Вирусы прикрепляются к клеткам и внедряют в них свой генетический материал, но, как правило, их хозяева отбираются согласно довольно строгим требованиям. Вирусы распознают будущих хозяев по особым белкам на поверхности их клетки; найдя подходящего хозяина, они могут прикрепиться к нему и начать внедрять свою ДНК или РНК в его клетки. Став частью организма хозяина, этот генетический материал заимствует его наномеханизмы для производства белков и нуклеиновых кислот, чтобы создавать новые вирусы. В некоторых случаях вирус попросту продолжает вечно воспроизводиться в клетке хозяина – такой вирус становится частью генома этой клетки. Для людей вирусы такого типа могут означать полную катастрофу. Примерами таких нонлитических (поскольку они не вызывают лизиса, растворения клетки) вирусов могут служить ВИЧ и гепатит С. После поражения ими человека их уже почти невозможно удалить из генома.

В других случаях, однако, внедренная генетическая информация позволяет новым вирусам расти внутри клетки-хозяина до тех пор, пока они не достигнут определенного порога численности, после чего клетка-хозяин вскрывается, выпуская новые вирусы в окружающую среду. Такой сценарий «вторжения похитителей тел», довольно широко распространенный в микробиологическом мире, приводит к гибели многих микроорганизмов. Такие литические (поскольку приводят к лизису, растворению клетки) вирусы, как выясняется, также поражают людей – однако, как ни странно, они менее смертоносны для них, нежели вирусы, не убивающие клетки окончательно. Среди вирусов этого типа числятся возбудители обычной простуды. Лизис не ведет к непосредственной передаче генов новому хозяину, но позволяет клетке-хозяину выбрасывать свою генетическую информацию в окружающую среду, где она может быть подхвачена другими микроорганизмами, ищущими объедки в генетическом мусорном ведре.

Третий тип такого процесса называется конъюгацией – в этом случае микроорганизмы обмениваются ДНК путем прикрепления друг к другу и формирования моста между двумя клетками. Этот процесс происходит у микроорганизмов, тесно связанных друг с другом, но остается неясным, как и почему перенос генов может происходить также и у организмов, имеющих лишь отдаленную связь.

Вне зависимости от его механизма, горизонтальный перенос генов чрезвычайно затрудняет определение происхождения организмов в глубине времен, и, что даже еще важнее, из-за него концепция вида у микроорганизмов становится трудноопределимой, если не вообще несущественной.

Представьте себе, что вы хотите выяснить свою собственную родословную. Вы находите место рождения ваших родителей, затем отыскиваете их родителей и так далее. Однако вообразите, что тридцать или пятьдесят поколений назад гены, отвечающие за переработку углеводов, содержащихся в морских водорослях, были внедрены в микробиотическую среду в желудках ваших предков, поскольку им часто приходилось есть суши. Теперь вы лучше приспособлены к поглощению морских водорослей. Микроорганизмы в ваших внутренностях имеют новые гены, приобретенные от другого микроорганизма посредством горизонтального переноса генов. Такой с виду абсурдный сценарий порой действительно имеет место. Микроорганизмы в желудках японцев обладают генами, помогающими им переваривать морские водоросли; у микроорганизмов европейских желудков такие гены не обнаружены.

В океане существует множество вирусов, переносящих гены белка D1 в своем геноме, однако это не означает, что они эволюционируют до фотосинтезирующих организмов. Дело в том, что ген белка D1 содержит инструкции для быстрого воспроизведения. Вирусы пользуются этими инструкциями, чтобы с их помощью стремительно штамповать большое количество себе подобных в зараженной клетке хозяина. Однако время от времени копии гена D1 от одной цианобактерии находят у организма, лишь отдаленно с ней связанного. Скорее всего, они попали туда посредством вирусной инфекции.

На заре истории Земли, задолго до появления животных и растений, горизонтальный перенос генов среди микроорганизмов был основным механизмом, успешно переправлявшим гены через продолжительные отрезки геологического времени. Индивидуальные черты отдельных организмов не имеют значения, и путаница в генах для жизни на самом деле не так уж критична. До тех пор пока организмы переносят информацию, позволяющую энергии из внешнего мира преобразовываться в состояние, далекое от термодинамического равновесия, а клеткам размножаться, жизнь продолжается.

То, что ключевые гены оказались разбросаны как попало среди множества микроорганизмов, в других отношениях лишь отдаленно связанных между собой, позволило гарантировать, что заключенная в них информация сохранится хотя бы в одной клетке где-либо на пространстве Земли. Организмы недолговечны – можно сказать, несущественны, но про 1500 ключевых генов этого сказать нельзя. Эти вестники жизни передавались, словно эстафетная палочка; организмы проносили их через огромные пространства геологического времени и передавали новым организмам. Отдельные организмы могли перестать существовать, но до тех пор, пока они передавали свои ключевые гены каким-либо другим организмам, жизнь этих генов продолжалась.

Горизонтальный перенос генов, вероятно, имел большое значение для начального этапа эволюции многоклеточных организмов, таких как растения и животные, однако сейчас он не является основным эволюционным режимом. Если какие-то из генов, помогающих при переваривании суши, были проглочены вашими пра-пра-пра-пра-пра-… – родителями, встроены в их гены и перенесены в их яйцеклетки или сперму, весьма возможно, что и вы будете иметь гены от микроорганизмов, развивших у себя ген для переваривания суши. Однако этот сценарий появляется теперь не так уж часто. Ему препятствует половое размножение.

Из-за полового размножения горизонтальный перенос генов стал существенно менее распространен. Гены, полученные от других организмов, как правило, не попадают в наши репродуктивные клетки. Половое размножение не давало горизонтально перенесенным генам попадать в зародышевые клетки – клетки, создающие новые организмы в результате половой рекомбинации. Для большинства микроорганизмов вариант половой рекомбинации чаще всего не рассматривается; как правило, они размножаются путем «простого» деления клетки, и каждая образовавшаяся дочерняя клетка почти всегда является точной копией материнской. Половое размножение изменило такое положение вещей. Половое размножение смешивает гены двух родительских линий. Каждая новая клетка имеет новую комбинацию генов. Однако хотя половое размножение и позволило большую генетическую вариативность и стало доминирующим процессом в эволюции животных и растений, этот процесс не взялся невесть откуда за один день. Сначала было другое, более массированное вторжение похитителей тел. Эволюция эукариотов – это история горизонтального переноса генов в невероятном масштабе – в прямом смысле нашествие одного организма на другой. Давайте посмотрим, как это произошло.

Глава 7. Сокамерники

Одна из стратегий, используемых природой, чтобы удостовериться в том, что ее интеллектуальная собственность достаточно устойчива перед лицом потенциальных глобальных катастроф, состоит в распространении риска среди широкого круга микроорганизмов. Инструкции для наномеханизмов распространяются при помощи горизонтального переноса генов. И хотя горизонтальный перенос генов является для микроорганизмов основным эволюционным режимом, этот процесс не полностью случаен и лишен системы. Один из основных его двигателей – экологический: это симбиотическое объединение микроорганизмов для оптимизации потребления скудных питательных веществ. Этот двигатель хорошо послужил эволюции жизни на планете.

Микроорганизмы не живут в изоляции, большинство из них – симбионты, то есть они живут вместе и зависят друг от друга в добывании ресурсов. Говоря более конкретно, микроорганизмы используют в пищу продукты жизнедеятельности друг друга. Такое использование продуктов жизнедеятельности, также называемое рециркуляцией (ресайклингом) элементов, является одной из основных концепций в экологии, и оно сильно повлияло на эволюцию микробиологических наномеханизмов. У микробиологов ушло немало времени на то, чтобы оценить взаимодействия своих предметов наблюдения в глобальном масштабе, но в конечном счете такая оценка привела к гораздо лучшему пониманию эволюции жизни на Земле.

В течение десятилетий основной подход, использовавшийся микробиологами для изучения микроорганизмов, состоял в том, чтобы изолировать единичные клетки от их среды и пытаться вырастить их как чистую культуру. Такие клоны – колонии клеток, произведенные от одной материнской клетки, считались золотым стандартом, и их применение было утверждено Кохом в числе четырех принципов, доказывающих, что конкретный организм ответствен за конкретное заболевание. Такой подход не лишен ценности. Зачастую очень незначительные вариации внутри популяции одного вида микроорганизмов ведут к большим изменениям в способности клона вызывать заболевание. Классический пример – пищевое отравление, вызываемое распространенной бактерией Escherichia coli, имеющейся в кишечнике у любого из нас.

Рис. 26. Электронная микрофотография бактерии Escherichia coli – возможно, наиболее изученного микроорганизма в биологии. Она находится в кишечнике человека, однако патогенные штаммы (с виду идентичные непатогенным) зачастую вызывают у людей пищевые отравления. Эти организмы имеют жгутики, позволяющие им плавать в жидкой среде

E. coli – вероятно, наиболее изученный в биологии организм. Ее очень легко выращивать, она широко распространена, благодаря чему стала образцовой моделью для микробиологов-генетиков. Небольшие изменения в генах этого организма, передающиеся с пищей, могут вести к обширным и порой очень тяжелым вспышкам кишечных заболеваний и даже к смерти людей. В таком контексте изучение пищевых запросов клона, скорости его роста, чувствительности или сопротивляемости к антибиотикам и так далее становится вопросом первостепенной важности. Однако при широком применении генного секвенирования быстро стало очевидным, что неболезнетворные штаммы E. coli могут очень быстро стать патогенными и вызывать обширные внутренние кровоизлияния при попадании внутрь человеческого организма. Они приобретают патогенные гены от других штаммов посредством горизонтального переноса генов, путем конъюгации – аналога полового акта у микроорганизмов, который в данном случае позволяет болезнетворному штамму распространять гены, вызывающие заболевания у людей. Для того чтобы сделать E. coli патогенной, требуется лишь небольшое число генов. Патогенные штаммы отделились от неболезнетворных около четырех миллионов лет назад, однако до наступления эпохи генного секвенирования было очень сложно точно установить различия между этими двумя штаммами самого изученного из микроорганизмов. Если мы не можем отличить друг от друга два штамма E. coli, не изолируя их в чистой культуре и не секвенируя их геномы, как мы собираемся понять жизнь микроорганизмов в окружающем нас мире?

Более 99 % микроорганизмов в океанах, почвах, на поверхности горных пород и даже в наших собственных кишках, идентифицированные посредством генного секвенирования, не были изолированы и не выращивались в лабораторных культурах. Предпринималось множество попыток изолировать триллионы микроорганизмов из океанов, почв, гидротермальных источников на океаническом дне, из наших кишечников и ротовых полостей, а также множества других сред. Иногда эти попытки были удачными, и микроорганизм удавалось уговорить расти в чистой культуре, но чаще всего они проваливались. Долгое время считалось, а зачастую считается и сейчас, что причина нашей неспособности изолировать микроорганизмы как чистые клонированные культуры состоит в том, что ученые попросту не знают, какие питательные вещества требуются этим предположительно хрупким конкретным организмам для их роста. Сколько сахаров и какого типа, какие аминокислоты и сколько соли необходимо для каждого конкретного вида? Число комбинаций практически бесконечно. В этом отношении у людей нет почти никакого представления о том, как функционируют микроорганизмы. И поэтому в лабораториях, где цель обычно состоит в том, чтобы заставить множество микроорганизмов расти как можно быстрее, им предоставляют в избытке сахара, аминокислоты и все остальное, что нужно, чтобы убедить их расти. Концентрации питательных веществ в лабораторном бульоне чаще всего в тысячи раз превышают то, что можно наблюдать в реальном мире. Сахара, аминокислоты и другие питательные вещества, за очень небольшими исключениями, имеются в природе в очень скудных количествах, и у микроорганизмов уходит много энергии на то, чтобы их добыть. Понимание того, как микроорганизмы добывают себе пропитание в реальном мире, потребовало нового подхода. Микробиологи-экологи стали по сути социологами, изучающими взаимодействия между микроскопическими организмами.

Для того чтобы минимизировать затраты энергии, уходящей на добывание питательных веществ, микроорганизмы в природе стремятся образовывать сообщества, в которых, к примеру, сахар, выделяемый одним организмом, потребляется другим, в то время как сам потребитель сахара предоставляет другим членам сообщества аминокислоты. Получается, что в общем и целом микроорганизмы, как и мы сами, являются социальными существами. Если им не хватает сложных форм поведения, то они искупают это инновационным метаболизмом, в большой степени основанным на гибкости их наномеханизмов и их способности приспосабливаться к изменениям в окружающей среде.

Микробиотические сообщества, или консорции, представляют собой микроскопические джунгли, в которых десятки и даже сотни видов микроорганизмов обитают в пределах одного ареала. Следует отметить, что часто бывает трудно строго определить, что является «видом» для микроорганизма. Традиционное определение этого слова, исходящее из жизнеспособности потомка половой рекомбинации особей и легко проверяемое у животных и растений, для микроорганизмов чаще всего неприменимо. Дело не только в том, что у большинства микроорганизмов сложно определить пол – горизонтальный перенос генов делает само понятие «вида» несколько расплывчатым. Тем не менее для того чтобы лучше вникнуть в функционирование микробиотической консорции, мы будем говорить о «видах» микроорганизмов в контексте какой-либо наблюдаемой биологической функции, в первую очередь метаболизма. Представим себе, что один микроорганический вид выделяет в окружающую среду какой-либо секрет или газ, который другой вид может использовать как источник энергии. Затем второй вид выделяет собственные секреты и газы, которые могут быть возвращены первому виду или переданы дальше другим видам, или и то и другое одновременно. Результатом является возникновение микроскопического микробиотического сообщества, которое по сути представляет собой миниатюрный биологический рынок электронов.

Представление о рынке электронов в микробиотической консорции – не метафора. Микроорганизмы внутри консорции в буквальном смысле обмениваются газами и другими материалами, имеющими избыток или недостаток электронов. Например, и у метана, и у сероводорода избыток электронов. Эти восстановленные молекулы могут вырабатываться несколькими различными участниками консорции и выделяться в окружающую среду. Другие микроорганизмы используют такие богатые электронами молекулы как источник энергии. В свою очередь, продукты их секреции, например углекислый газ и сульфат, могут подвергнуться рециркуляции или же быть потеряны сообществом, уйдя во внешнюю среду. Микробиотические консорции могут сохранять стабильность на протяжении дней, декад или даже дольше; мы попросту не знаем этого, но ответ может скрываться в том, что написано выше. Тем не менее мы знаем кое-что об основных законах такой консорции.

Одно из правил микробиотической консорции состоит в том, что ни один ее член не может превзойти остальных вплоть до их исключения. Если эта установка будет нарушена, консорция развалится и «победивший» микроорганизм окажется в энергетическом проигрыше, ему придется закупать дефицитные питательные вещества на отдаленных рынках, вместо того чтобы жить и обедать, наслаждаясь роскошью прямой доставки продуктов местного производства прямо к своим микроорганическим дверям.

Означает ли это, что все микробы «играют честно»?

Микроорганизмы могут быть социальны, но также способны проявлять агрессию и стремиться победить. Часто они производят молекулы, убивающие другие микроорганизмы. Собственно, большая часть самых действенных антибиотиков, борющихся с инфекционными болезнями, производится микроорганизмами. Однако в контексте микробиотической консорции такие молекулы зачастую служат только для защиты от захватчиков и не применяются против членов самой консорции. Другими словами, чтобы нам было полностью понятно, существует джентльменское соглашение: определенные микробы с определенными функциями имеют допуск в клуб обедающих, в то время как все остальные из него исключены.

Эта гипотеза легко подвергается проверке. Люди рождаются без каких-либо микроорганизмов в своем кишечнике. Однако очень быстро мы приобретаем их из окружающей среды. Мы получаем их, когда, едва родившись, трогаем свою маму и сосем ее грудь; мы едим сырую пищу; мы едим грязь; мы даже можем попробовать на вкус свои какашки. Фактически одним из первых микроорганизмов, колонизирующих наш кишечник, является E. coli – будем надеяться, неболезнетворный штамм.

Со временем каждый из нас начинает выращивать в своем кишечнике микробиологический зоопарк, уникальный для каждого – возможно, даже более уникальный, нежели последовательность ДНК. Общее число микроорганизмов в кишечнике любого человека приблизительно в десять раз превышает общее количество клеток в его теле. Дело не только в том, что микрофлора нашего кишечника приспособлена к нашей персональной диете и окружению – состав консорции также чрезвычайно важен для нашего личного здоровья. Консорция помогает нам получать питательные вещества из пищи, способствуя расщеплению сложных углеводов и жиров, помогает производить для нас витамины, а также не дает «плохим» микроорганизмам вызывать у нас болезни, препятствуя их росту. Мы все так или иначе знаем об этом. Любой, кому случалось во время путешествия по незнакомой стране заболеть, попив воды из-под крана, удивлялся, почему все местные жители не умирают еще в детском возрасте. Фактически возможно, что для многих все тем и закончилось, но у выживших в кишечнике имелись микроорганизмы, защитившие их от болезнетворных микробов в воде, которую они пили. Вы же у себя дома не имели возможности получить из пищи или воды таких же защитников. Если бы вы прожили в чужой стране подольше или были там рождены, у вас бы они тоже были – в противном случае вас ждало бы истощение, смерть или по меньшей мере неудачи при попытках размножения.

В наше время часто случается так, что мы в какой-то момент нашей жизни заболеваем, и врач выписывает нам антибиотик или даже два. Мы принимаем курс антибиотиков, одним из побочных эффектов которого часто является гастроэнтерит – сопутствующий ущерб от приема антибиотиков состоит в гибели многих микроорганизмов в нашем кишечнике. Для нас это означает не просто плохое самочувствие; это также изменяет характер взаимодействия микроорганизмов в нашей кишечной консорции. Порой необходимо несколько месяцев для того, чтобы консорция вернулась к тому состоянию, в котором находилась до приема антибиотиков. У некоторых людей она может не восстановиться даже через год. В других случаях нам бывает сложно приспособиться, у кого-то возникает неадекватная реакция на пищу, которую мы привыкли употреблять, и это продолжается какое-то время после приема курса. Наши персональные взаимоотношения с нашими кишечными микроорганизмами, на которые в целом приходится около двух килограммов массы нашего тела, могут рассматриваться как микрокосм, миниатюрная модель того, что микроорганизмы делают в глобальном масштабе.

Консорции представляют собой микроскопический образ глобального электронного рынка; однако каждой конкретной группе микроорганизмов внутри консорции неизбежно не хватает одного или нескольких ключевых метаболических путей, чтобы соблюдать в группе энергетический баланс. Например, какая-либо группа может обладать способностью связывать азот, но эта функция может быть не востребована, если в консорции имеется избыток азота. Другая группа может связывать углерод, но этот элемент может не ограничивать рост консорции. Одной (а чаще нескольких) ключевых реакций всегда не хватает или же они не сбалансированы. Из этого следует, что кругооборот питательных веществ и газов внутри консорции всегда далек от совершенства, и консорция, чтобы сохранять жизнеспособность, принуждена постоянно копаться на электронном рынке.

Между микробиотической консорцией и окружающей ее средой всегда существует измеримый конечный обмен газами. Например, консорция может либо поглощать, либо производить кислород, углекислый газ, метан, сернистый газ, сероводород, азот или какой-либо другой газ. Фактически, отслеживая такой обмен газами с окружающей средой, часто можно определить, какого рода микроорганизмы составляют консорцию. Хотя консорции и обладают относительной независимостью, они неизменно выделяют газы во внешний мир. Эти газообразные отходы их жизнедеятельности затем распространяются через атмосферу или океаны, которые эффективно действуют как проводники, связывающие метаболизм микроорганизмов на всей поверхности планеты.

Давайте рассмотрим эту концепцию на локальном, персональном уровне – вновь заглянув в наш собственный кишечник. Не углубляясь в интимные подробности, скажем, что наши личные микробиотические консорции также явно не пребывают в сбалансированном состоянии. Большая часть нашего газообмена с внешним миром происходит через нос и рот. Тем не менее у нас имеется и другой путь обмена газами, и этот способ может очень много рассказать нам о наших микробиотических консорциях. Практически все газы, выходящие из анаэробных кишечников всех млекопитающих, являются окисленными – и здесь однозначно преобладают азот и углекислый газ. Однако некоторые из газов оказываются восстановленными, и из них сульфиды наиболее очевидны для нашей обонятельной системы. Два других восстановленных газа, не имеющие заметного запаха, – это метан и водород. Приблизительно у половины из нас в толстой кишке имеются метанообразующие бактерии, и почти все мы испускаем газообразный водород. Оба эти газа могут гореть. Все газы, произведенные микроорганизмами нашего кишечника, являются побочными продуктами метаболизма, не сбалансированного с окружающей средой. Если бы это было не так, газы были бы идентичны тем, что содержатся в планетарной атмосфере, а в данном случае ничего подобного не наблюдается. Если смесь газов в нашем кишечнике не находится в равновесии с атмосферой планеты, из этого следует, что совокупность всех консорций микроорганизмов в кишках всех животных не находится в равновесии с метаболическими путями на планете. Чтобы обмен электронами между триллионами микробиотических консорций был действенным в глобальном масштабе, необходимы какие-то глобальные же механизмы проверки и балансировки – ученые часто называют их метаболическими обратными связями.

За немногими исключениями изменения концентрации и состава газов в планетарной атмосфере по причине исключительно естественных процессов обычно не могут быть измерены по временной шкале столетий. Микроорганизмы создают глобальный рынок электронов, который стабилизируется благодаря интеграции метаболизма сотен миллиардов консорций, распространенных по всей планете – от поверхностных пленок на озерах до осадочной толщи и горных пород океанического дна на глубине сотен метров. Метаболизм Земли – это продукт консорции консорций, для которого индивидуальные консорции не имеют большого значения, но механизмы всех реакций передачи электронов распределяются неслучайным образом, в зависимости от наличия и доступности ресурсов. Природная система страхования состоит в распространении рисков, прежде всего, путем инвестирования в глобальный микробиологический электронный хеджевый фонд. Это инвестирование заключается в потенциальной возможности наномеханизмов работать, основываясь на доступности в окружающей среде любой молекулы, которая может послужить либо источником, либо потребителем электронов.

В микроскопическом масштабе организмы, составляющие консорцию, живут в очень тесной близости. В такой обстановке возможности для горизонтального переноса генов многократно увеличиваются. А значит, внутри консорции перенос генов зачастую допускает распространение метаболических наномеханизмов среди многих групп микроорганизмов, тем самым делая возможным строгий контроль потоков элементов между организмами. В глобальном масштабе функционирование этих наномеханизмов привело к формированию макроскопического аппарата жизнеобеспечения, контролирующего потоки основных газов.

Контролирующие устройства встроены в химические сигналы, которыми микроорганизмы обмениваются внутри сообщества и которые несут информацию о том, кто чем занят и где сколько микроорганизмов находится. Система межклеточной сигнализации, называемая кворумным восприятием, возникла в результате эволюции определенных молекул, производимых и использующихся микроорганизмами для оценки плотности их собственной популяции, а также для передачи своим собратьям сигналов о том, кто они такие и где находятся. Такой способ межклеточной коммуникации пока остается для нас довольно неясным, хотя мы знаем, что некоторые клетки высылают специальные молекулы, которые пребывают в свободном плавании до тех пор, пока не прикрепятся к специальным рецепторным участкам на мембране другого микроорганизма. Примерно того же пытаются добиться парфюмерные компании: чтобы все мужчины ощущали присутствие женщины, и наоборот; так же и эти молекулы, производимые микроорганизмами, сигнализируют другим организмам, кто они и где находятся.

После прикрепления такая молекула принимается за работу по изменению экспрессии содержащихся в клетке генов. Кворумное восприятие позволяет консорции устанавливать пространственную модель микробиологического метаболизма, которая в дальнейшем повышает эффективность рециркуляции питательных веществ. Однако так же она может изменять и поведение консорции.

Здесь вы можете задать резонный вопрос: разве у микробов есть «поведение»? Ответ утвердительный. У них нет мозга, но имеются сенсорные системы, которые зачастую могут быть весьма сложными. Они могут воспринимать сигналы из окружающей среды и друг от друга, передавать сигнал к рецептору и порождать ответную реакцию. Давайте рассмотрим один пример, который и привел к обнаружению кворумного восприятия.

Кворумное восприятие является примером эмерджентного (внезапно возникающего) свойства в социальных взаимоотношениях микроорганизмов. Оно было случайно открыто в 1979 году двумя друзьями и коллегами – Кеном Нильсоном, в то время работавшим в Океанографическом институте Скриппса, и Дж. Вудландом (Вуди) Хастингсом из Гарвардского университета. Этих ученых интересовало, как функционируют люминесцентные бактерии, живущие в светящихся органах некоторых морских рыб. В таких органах бактерии расположены с необычайно большой плотностью – свыше 100 млрд клеток на кубический миллиметр. Когда микроорганизмы из этих органов были изолированы и выращены в чистой культуре с низкой плотностью популяции, люминесценции не было; однако по мере того как клетки росли и плотность популяции увеличивалась, колонии начали светиться. Нильсон и Хастингс знали, что у бактерий имеется особый набор генов, необходимый для вырабатывания света. Эти гены каким-то образом выключались, когда концентрация выращиваемых клеток была низкой, и начинали работать, когда концентрация повышалась. Исследователи обнаружили, что сигнал, дающий генам команду функционировать, представляет собой особое химическое соединение, выделяемое клетками, и когда его концентрация становится достаточно высокой, клетки в буквальном смысле зажигаются.

Впоследствии над кворумным восприятием работали многие микробиологи, и, хотя многое об этом феномене нам пока еще не известно, некоторые из основных принципов уже понятны. Не вызывает сомнения тот факт, что микроорганизмы используют химические сигналы, чтобы «включать» и «выключать» различные функции внутри собственной популяции, а также одновременно в нескольких популяциях других микроорганизмов. Эти химические сигналы являются предвестниками возрастающей сложности, но они далеко не обязательно требуют возникновения новых наномеханизмов. Микробиологическая коммуникация посредством химических сигналов – ключевой механизм для регулирования метаболизма среди различных групп организмов внутри консорции. Однако может случиться и кое-что еще.

Ситуация, когда много различных организмов живут в тесной близости друг к другу, может привести к самым неожиданным последствиям. По-видимому, что-то подобное произошло более двух миллиардов лет тому назад, когда один микроорганизм поглотил другой, однако не только сохранил в себе набор генов поглощенного организма – он оставил весь этот организм. Такой процесс тотального горизонтального переноса генов получил название эндосимбиоза – это симбиотическая связь внутри клетки, или, более точно, симбиотическая связь между двумя клетками, одна из которых размещается внутри другой.

Изначальная концепция может быть прослежена вплоть до статьи, опубликованной в 1883 году Андреасом Шимпером – тем самым немецким ученым, который впервые описал хлоропласты. Он заметил, что хлоропласты в клетках растения делятся таким же образом, каким это делают цианобактерии, и логически вывел, что хлоропласты – на самом деле цианобактерии, живущие внутри клетки. Гипотезу Шимпера подхватил русский ботаник Константин Мережковский, который изучал лишайники, представляющие собой симбиотическую ассоциацию фотосинтезирующих микроорганизмов (зачастую это цианобактерии) и грибов. В 1905 году Мережковский опубликовал статью на русском и немецком языках под названием «О природе и происхождении хроматофор в растительном царстве», в которой высказал предположение о том, что хлоропласты являются симбионтами внутри растительных клеток. Его работа была практически забыта во время Первой мировой войны и последовавшей за ней русской революции – не вследствие самих этих событий, но из-за связанной с ученым скандальной истории. Мережковского обвинили в педофилии, и в 1918 году он бежал сначала во Францию, а затем в Швейцарию. Он продолжал писать о симбиозе, но в 1921 году покончил с собой, и его идеи были преданы забвению.

Идею о том, что внутриклеточное тело может представлять собой ранее самостоятельную бактерию, впоследствии поглощенную клеткой-хозяином, также разрабатывал в 1927 году американский биолог Айвен Уоллин, работавший на соответствующем факультете медицинского колледжа в университете Колорадо. Он заявил, что митохондрии могут быть выращены за пределами своих клеток-хозяев. Позднее было доказано, что образцы митохондрий, предоставленные Уоллином, на самом деле были заражены бактериями, что сильно дискредитировало его работу.

Развитие гипотезы эндосимбиоза получило новый толчок в начале 1960-х годов, когда было обнаружено, что и хлоропласты, и митохондрии содержат в себе свою собственную ДНК, имеющую явственные отличия от ДНК ядра клетки, а также содержат собственный набор рибосом. Таким образом, модель клетки, представляющая ее как куклу-матрешку, получила сильный довод в свою пользу; однако вместе с тем было очевидно, что ни хлоропласты, ни митохондрии не могут воспроизводиться вне своих клеток-хозяев. Более того, анализ последовательностей рибосомальной РНК, проведенный Вёзе и Фоксом как в хлоропластах, так и в митохондриях, показал, что обе эти органеллы произошли от бактерий. Этот анализ однозначно доказал, что гипотезы Шимпера и Уоллина в основе своей были верны: хлоропласты действительно имеют отношение к цианобактериям, а митохондрии имеют родственные связи с другим типом бактерий, представители которого, что любопытно, являются анаэробными фотосинтезирующими организмами.

Представление об эндосимбиозе в конце концов заслужило уважение и широкое признание, когда в 1967 году американский биолог Линн Маргулис написала статью, возрождая гипотезу Мережковского, – не на основе новых данных, но с теоретических позиций. Впоследствии она продолжила выступать с доводами в пользу этой концепции в различных статьях и нескольких книгах. Маргулис была исключительно здравомыслящим ученым и моим хорошим другом. На протяжении большей части своей выдающейся научной карьеры она превозносила концепцию эндосимбиоза как движущей силы эволюции жизни на Земле. Частично она была права.

Феномен эндосимбиоза встречается относительно часто, но очень редко приводит к образованию новой органеллы. Фактически единственные две органеллы, в происхождении которых в результате такого процесса мы можем быть абсолютно уверены, – это митохондрия и хлоропласт; однако события, которые привели к включению этих двух организмов в клетку хозяина, изменили весь ход эволюции. Если бы не эндосимбиоз, нас бы не существовало. В обоих случаях процесс начался в океанах задолго до того, как появились сколь-нибудь значительные свидетельства наземной жизни, и в обоих случаях химическая сигнализация сыграла важнейшую роль.

Загадка истории эволюции эукариотов пока что не до конца разгадана. Представляется, однако, что микроорганизм, послуживший в качестве клетки-хозяина, принадлежал к археям – организмам, похожим на те, что обитают в нашем кишечнике, продуцируя метан. Согласно одному из возможных сценариев, проглоченный организм был близким родственником ныне живущих пурпурных несерных фотосинтезирующих бактерий. Эти бактерии более древние, нежели цианобактерии, и могут использовать световую энергию для фотосинтеза только в том случае, когда в их окружении нет кислорода. В таких условиях они при помощи световой энергии перемещают электроны по замкнутому контуру и выстраивают протонный градиент по разные стороны мембраны. Затем поток этих протонов может проходить через фактор сопряжения, синтезируя АТФ. Это в точности тот же самый наномеханизм, что был описан нами ранее.

При наличии кислорода, однако, электрический контур подавляется, и клетки теряют свою способность синтезировать пигменты, поглощающие свет. Чтобы выжить, они «меняют проводку» в своих внутренних электронных контурах так, чтобы кислород мог стать акцептором водорода, получаемого из органических соединений. Та же самая бактерия, которая днем, в анаэробных условиях, играет роль фотосинтезирующего доктора Джекилла, в аэробных условиях может стать респирирующим мистером Хайдом. На протяжении дня она может использовать солнечную энергию, становясь чистым спонсором органического вещества в микробиотическом мире – но только если поблизости нет кислорода. При наличии кислорода бактерия преображается в потребителя органического вещества и использует энергию его молекул для своего роста. Другими словами, в присутствии кислорода несерные бактерии респирируют, точно так же, как делаем мы и все остальные животные. Животные сохранили в себе внутриклеточного мистера Хайда – митохондрии.

Рис. 27. Схема, отображающая два основных эндосимбиотических события, которые привели к созданию эукариотических клеток. Во время первого события клетка-хозяин (одна из архей) поглотила пурпурную несерную бактерию, которая, возможно, была фотосинтезирующей (значительно позже эта бактерия эволюционирует в митохондрию). Второе событие состояло в том, что клетка, содержащая протомитохондрию, поглотила также цианобактерию (из этих цианобактерий впоследствии разовьются хлоропласты). Два этих первичных симбиотических события являются основой эволюции микроскопических организмов, таких как зеленые водоросли (см. рис. 9), доминировавших в океанах задолго до начала эволюции животных и растений

Каким же образом поглощенная анаэробная фотосинтезирующая бактерия в конечном счете превратилась в поглощающую кислород митохондрию? Наномеханизмы пурпурных фотосинтезирующих бактерий – это в точности те же самые наномеханизмы, при помощи которых мы генерируем энергию в каждой клетке нашего тела, причем это не совпадение, а закономерность. Наши источники энергии – митохондрии – были унаследованы от пурпурных несерных бактерий задолго до того, как появились первые животные. Тем не менее те первоначальные анаэробные пурпурные несерные микроорганизмы, что были поглощены и удержаны клетками архей, почти наверняка не являлись крупными источниками энергии наподобие современных митохондрий. Скорее всего, они представляли собой всего лишь ловушку для питательных веществ, выделяемых клеткой-хозяином. Таким образом, эта эндосимбиотическая анаэробная фотосинтезирующая органелла должна была обладать способностью утилизировать питательные вещества, такие как аммоний или фосфаты, которые в противном случае были бы извергнуты клеткой-хозяином в океан. Я предполагаю, что такая симбиотическая связь была избрана ради сохранения питательных веществ внутри новой, одноклеточной консорции.

Это исключительное событие – поглощение и удержание пурпурной несерной фотосинтезирующей бактерии внутри клетки археи – в конечном счете привело к возникновению первых эукариотических клеток. Лишь гораздо, гораздо позднее одиночные, самостоятельные эукариотические клетки сами образуют организованные консорции, которые впоследствии станут животными и растениями. Однако прежде, чем это могло произойти, механизмы этих протомитохондрий должны были быть запущены в обратную сторону. Весь электронный контур пурпурных несерных бактерий был настроен на производство органических соединений. Современные митохондрии больше этим не занимаются – наоборот, они поглощают органические соединения. Для обращения вспять электронного контура был нужен кислород, однако ни пурпурные несерные фотосинтезирующие бактерии, ни клетка-хозяин не умели его вырабатывать. Такое разделение труда требовало другого набора умений. Однако для того, чтобы это соглашение работало и на хозяина, и на новопоглощенную клетку, двум партнерам было необходимо как-то общаться друг с другом.

По приобретении анаэробной пурпурной фотосинтезирующей бактерии клетка-хозяин должна была как можно быстрее получить контроль над внутриклеточным организмом. Представьте себе, что было бы, если бы внутриклеточный организм рос хотя бы чуточку быстрее, нежели клетка-хозяин. Спустя несколько поколений он перерос бы хозяина, и внешняя клетка бы погибла. Теперь представьте себе обратное: новоприобретенный внутриклеточный организм рос медленнее, чем хозяин. В таком случае хозяин был бы принужден замедлить свой рост и, возможно, не смог бы участвовать в соревновании за получение питательных веществ наравне со своими ничем не обремененными сородичами, не получавшими никакого внутриклеточного организма. Контроль за новоприобретенным внутриклеточным организмом включал в себя перемещение его ключевых генов в клетку-хозяина и потерю внутриклеточным организмом многих других генов. Новая клетка, теперь ставшая эукариотом, превратилась, таким образом, в консолидированную микробиотическую консорцию, в которой клетка-хозяин успешно поработила своего внутриклеточного партнера-эндосимбионта. Со временем внутриклеточный организм потерял столько генов, что больше уже не мог воспроизводиться за пределами клетки-хозяина; тем не менее он сохранил некоторые гены, относящиеся к ключевым наномеханизмам, вырабатывающим энергию, а также отвечающим за способность синтезировать белки. Теперь в пределах одной клетки оказались две фабрики по производству белка.

Контроль за тем, чтобы одна белковая фабрика не вырастала быстрее другой, поначалу, прежде чем были осуществлены перенос и потеря генов, потребовал некоторых усилий. Для этого была необходима система химической сигнализации между двумя клетками – процесс, который до сих пор до конца не выяснен. Химические сигналы посылаются от митохондрии к ядру клетки-хозяина, и одновременно другая сигнальная система действует в обратную сторону. В конечном счете митохондрии превратились в очень сложные механизмы. Они могут «включать» и «выключать» гены в ядре хозяина, усиливать определенные метаболические пути и изменять поведение хозяина. Этой сигнальной системе было дано неудачное название ретроградной сигнализации, но по сути своей она очень похожа на кворумное восприятие – в данном случае у двух клеток, делящих одно пространство, так сказать, сокамерников[3]. Таков был первый шаг к эволюции сотрудничества множества подобных же клеток, функционирующих как единый комплекс. Однако, прежде чем это могло произойти, случилось второе эндосимбиотическое событие.

Второе эндосимбиотическое событие заключалось в том, что анаэробная клетка, уже содержавшая фотосинтезирующую пурпурную бактерию (протомитохондрию), взяла себе еще одного жильца. На этот раз им была кислородпродуцирующая цианобактерия. Вероятно, такая трехэлементная схема была испробована неоднократно, поскольку почти наверняка большинство попыток заканчивалось гибелью анаэробной пурпурной фотосинтезирующей бактерии. За всю историю своей эволюции пурпурные фотосинтезирующие бактерии, скорее всего, ни разу не подвергались воздействию значительного количества кислорода, не говоря уже о целом нескончаемом потоке этого газа, изливавшемся, когда светило Солнце. Давайте проследим логику этого миниатюрного микробиологического зоопарка и посмотрим, как же все это получилось.

Продукт жизнедеятельности цианобактерий кислород должен был использоваться одним из двух других партнеров, который и без того уже был неплохо устроен. В интересы пурпурной фотосинтезирующей бактерии вообще не входило брать нового жильца, но теперь она была поставлена перед угрозой потенциального отравления кислородом, вырабатываемым цианобактерией в той же самой клетке-хозяине. Хозяин, несомненно, был неразборчив, но зачем ему пытаться убить своего первого эндосимбионта, который вполне успешно справлялся со своей задачей по рециркуляции питательных веществ? Чтобы избежать гибели и потенциального исчезновения с лица Земли, пурпурной фотосинтезирующей бактерии необходимо было эволюционировать так, чтобы научиться каким-то образом использовать кислород. Она обнаружила, что кислород, хороший акцептор электронов, может с готовностью принимать электроны от органических соединений, но, для того чтобы этот процесс заработал, необходимо было появление еще одного наномеханизма – такого, который смог бы переносить электроны и протоны к кислороду. Этот наномеханизм, цитохром с-оксидаза, отличался чрезвычайной сложностью; его отдельные части возникли задолго до того, как цианобактерии начали вырабатывать кислород. Из собранных вместе древних компонентов был составлен новый сложный наномеханизм; это происходило путем восстановления и перераспределения компонентов других, более простых наномеханизмов, которые были обнаружены как у бактерий, так и у архей. Цитохром с-оксидаза почти наверняка не был изначально предназначен для транспортировки электронов к кислороду; скорее всего, его эволюционной задачей было удалять кислород из клетки. Современная инкарнация цитохрома с-оксидазы содержит до 13 белковых субкомплексов и использует медь для осуществления своих химических реакций. После появления на эволюционном поле этого наномеханизма мир уже никогда не мог стать прежним.

Благодаря кислороду клетки смогли получить поистине суперзаряд энергии. Использование электрического поля, возникающего по обе стороны от митохондриальной мембраны, позволило синтезировать 36 молекул АТФ из одной молекулы глюкозы. Теперь клетки получили возможность привести в действие маленькие моторчики, вращавшие волосоподобные структуры – жгутики, благодаря чему клетки приобрели невиданную доселе подвижность. Они открыли для себя новые метаболические пути, пользуясь преимуществом обладания кислородом и энергией для создания сложных липидов, таких как холестерин, а также многих других, более сложных молекул. Таким образом, и приобретатели, и приобретенные организмы пришли к тому, чтобы стать «сокамерниками» навечно.

В этой новой клетке, построенной усилиями самих заключенных, имелись потенциальные бонусы для всех участников, однако для того, чтобы механизм мог функционировать, сокамерники должны были научиться работать сообща. При таком новом устройстве в одной клетке заключались целых три набора генетической информации: свой набор генов был у хозяина, свой у протомитохондрии и свой у новоприобретенной цианобактерии – зародыша хлоропласта. Все эти генетические комплекты должны были действовать заодно, так, чтобы ни один из эндосимбионтов не перерос своего хозяина, а хозяин не перерос эндосимбионтов; а для этого требовались некоторые изменения и система сигнализации.

Одной из первых внесенных корректировок была массовая потеря генов новоприобретенной цианобактерией – в точности то же, что мы уже видели в случае с пурпурной фотосинтезирующей бактерией. Цианобактерии было позволено сохранить некоторые из своих генов, чтобы синтезировать важнейшие белки, в особенности те, из которых формируются наномеханизмы фотосинтетических реакционных центров, но многие из генов, позволявших ей расти вне клетки-хозяина, были попросту выкинуты или перемещены в хозяйскую клетку.

Два эндосимбиотических события, заложивших основу для развития эукариотических клеток, являются примерами чисто горизонтального переноса генов, наделившего новую фотосинтезирующую клетку качествами, которые бы она иначе никогда не приобрела. Возникновение зародышевых хлоропластов в клетке, содержащей протомитохондрию, впоследствии дало толчок эволюции многих новых видов – от отдельных лишайников до крупных деревьев. Однако независимо от формы тела все эукариотические фотосинтезирующие организмы используют абсолютно одинаковые древние наномеханизмы для того, чтобы вырабатывать энергию, синтезировать белки и строить новые клетки.

В дальнейшем этим новым организмам предстояло становиться все более сложными и процветающими. И действительно, после Кислородной катастрофы останки эукариотических клеток в осадочной толще встречаются все в больших количествах. С эволюцией эукариотических клеток фаза исследования и развития ключевых наномеханизмов жизни по существу закончилась.

После этого история эволюции уже была связана со строением организмов, то есть в организмах с каким строением наномеханизмы будут размещаться. Эукариотические клетки сами могли формировать консорции и приобретать новые формы. Они могли плавать быстрее и дольше, чем их прокариотические родственники, которых они теперь пожирали, добывая из них питательные вещества. Однако в новых эукариотических клетках также развились новые, более сложные системы коммуникации. Эти системы восприятия представляют собой биллионы химических соединений, обеспечивающих внутри– и межклеточный обмен сигналами – усложненный вариант кворумного восприятия. На протяжении последующих 1,5 млрд лет этим коммуникационным системам предстояло развиться в сложные интегрированные многоклеточные консорции – животных и, позднее, растений.

Давайте теперь посмотрим, как и почему наномеханизмы, развившиеся за 2,5 млрд лет из микроорганизмов, сохранились в макроскопических консорциях эукариотических клеток – животных и растениях, которые были столь же знакомы Дарвину, сколь и любому из нас.

Глава 8. Крупномеры страны чудес

Как и почему микроорганизмы превратились в организованные макроскопические организмы – животных и растения, столь знакомые нам по нашей повседневной жизни? На первый взгляд для такой эволюционной трансформации необходимы огромные затраты. У животных и растений размножение происходит гораздо медленнее, метаболический репертуар гораздо более ограничен, и они гораздо хуже адаптируются к изменениям внешних условий, нежели микроорганизмы. Тем не менее эти очевидные недостатки не стали препятствием на пути эволюции крупных, многоклеточных организмов. Давайте рассмотрим эволюцию сложных, или «высших», организмов и то, как они были составлены из более мелких строительных деталей, возникших тремя миллиардами лет раньше у микроорганизмов.

Датировка возникновения животных и растений опирается на две независимые линии доказательств. Первая – это органические останки. Останки одноклеточных эукариотических организмов, называемых акритархами (это название в переводе с греческого означает «сомнительного происхождения»), получили относительное распространение между приблизительно 1,8 и 1,5 млрд лет тому назад. У них имелась клеточная стенка, состоящая из молекул, аналогичных молекулам целлюлозы, а также шипы и другие внешние черты, напоминающие покоящиеся споры некоторых ныне существующих одноклеточных эукариотов, таких как динофлагелляты. Хотя некоторые из акритарх, возможно, и образовывали многоклеточные колонии, до значительно более позднего времени не существует явных свидетельств существования действительно многоклеточных животных или растений.

Рис. 28. Ископаемый акритарх (Tappania plana). Этот и другие ныне вымершие организмы были предшественниками современного эукариотического фитопланктона. Этот экземпляр был найден в Северной Австралии и датируется периодом 1,4–1,5 млрд лет тому назад. Он был довольно крупным: диаметр данной клетки составляет приблизительно 110 микрометров. (Публикуется с разрешения Эндрю Нолла.)

Появление многоклеточных животных в геологической летописи выглядит так, словно они возникли ниоткуда. Дарвин понимал, что появление многих органических останков в глубочайших (а следовательно, и древнейших) из известных тогда геологических отложений в Уэльсе – в кембрийских слоях – выглядит сомнительно с эволюционной точки зрения, но он понятия не имел, как это можно объяснить.

В 1868 году шотландский геолог Александр Мюррей открыл на острове Ньюфаундленд новые ископаемые останки, залегавшие ниже кембрийских слоев. Ископаемые организмы были явно многоклеточными, но Мюррей не представлял себе, что это могло быть. Многие палеонтологи отвергли находку, считая ее артефактом. Лишь в 1957 году ископаемые, найденные в Эдиакарских холмах в Южной Австралии, были признаны как доказательство существования животной жизни в докембрийский период. Ископаемые этого периода, названные эдиакарской фауной, впоследствии были найдены в нескольких других местах земного шара, включая Белое море в России и Мистейкен-Пойнт на Ньюфаундленде – в той самой области, что была описана Мюрреем столетием раньше.

Древнейшие останки животных датируются возрастом приблизительно в 580 млн лет. Судя по всему, эти животные возникли после последнего глобального оледенения («Земля-снежок»). Вся сохранившаяся эдиакарская фауна имела морское происхождение; это были мягкотелые организмы – они не образовывали раковин, скелетов, каких-либо биоминералов или твердых частей, которые мы могли бы различить. Они существовали на протяжении около 90 млн лет. Эдиакарский период (эдиакарий) закончился 543 млн лет тому назад и был первой из наблюдавшихся эпох массового вымирания животных в геологической летописи.

В 1909 году американский геолог Чарльз Уолкотт из Смитсоновского института случайно обнаружил в Скалистых горах на юго-востоке канадского штата Британская Колумбия крупную свиту морских ископаемых. В целом ему удалось собрать в этом районе около 65 тысяч образцов ископаемых останков. Спустя более чем пятьдесят лет Гарри Уиттингтон и два его аспиранта опубликовали работу, в которой ясно показали, что этот разрез горных пород – сланцы Берджес-Шейл – содержит останки, представляющие самые разнообразные типы строения организма, включая древнейших двустворчатых моллюсков, кольчатых червей и вымершие простейшие организмы с примитивными структурами, напоминающими позвоночник. Берджесские сланцы, сформировавшиеся около 505 млн лет тому назад, содержат необычайно разнообразный спектр ископаемых. На протяжении многих лет шли споры, был ли так называемый кембрийский взрыв – с виду стремительная кардинальная перемена телесного строения животных организмов, зафиксированная в геологической летописи, – артефактом захоронения ископаемых или же действительно являлся периодом увеличения животного разнообразия. Весьма вероятно, что некоторые представители эдиакарской фауны, которым удалось избежать вымирания 542 млн лет тому назад, послужили зачатками животной жизни в кембрийском периоде, однако сами эти виды-основатели до сих пор не идентифицированы.

Рис. 29. Ископаемое Dickinsonia – вымершее животное, найденное в Эдиакарских холмах в Южной Австралии. Этот и другие представители эдиакарской фауны являются древнейшими ископаемыми животными; они появились около 600 млн лет назад в океанах. (Публикуется с разрешения Джири Липпса.)

Вторая линия доказательств относительно возникновения животной жизни не настолько однозначна. Она основывается на представлении о том, что может быть определена скорость мутаций в определенных генах, их отдельных частях или группах генов. Если мы будем знать скорость мутаций, то, сосчитав число мутаций, произошедших начиная с вымерших членов какой-либо группы организмов, мы можем сделать заключение о скорости эволюции этой группы. Такие молекулярные часы можно использовать для обратной экстраполяции событий к точке происхождения организмов. Более поздние модели принимают во внимание вариации скорости мутаций, ввиду чего они потенциально более точны. При возможности молекулярные часы сверяют с ископаемыми отложениями, но чем дальше во времени мы пытаемся экстраполировать конкретную модель, тем она неизбежно становится все более ненадежной. Модели, основывающиеся на молекулярных часах, почти всегда показывают зарождение организмов в более раннее время, нежели свидетельства, опирающиеся на первое появление органических останков в геологической летописи.

Используя модель молекулярных часов, сверенную с ископаемыми отложениями, группа ученых во главе с одним из лучших палеонтологов – специалистов по беспозвоночным Дугом Эрвином из Смитсоновского музея в Вашингтоне датировала возникновение животных временем около 700 млн лет тому назад, то есть началом эдиакария.

Однако это не самый важный из их выводов. Более значительным является то, что Эрвин и его коллеги смогли также предоставить убедительные доказательства в поддержку скачкообразной эволюции животных. Таким образом, «кембрийский взрыв», судя по всему, был реально существовавшим периодом эволюции для многих новых животных форм. И хотя датировка возникновения животных имеет относительно жесткие рамки, эволюционные изменения, вызвавшие к жизни этот феномен, пока до конца не понятны.

Размышляя над тем, почему животные вообще появились на планете, я часто приходил к очень простой гипотезе. Многоклеточное строение было стратегией, направленной на экологический успех в среде, содержащей очень скудное количество пищи. Попросту говоря, двигателем эволюционного отбора был голод. Нам трудно себе представить энергетику одноклеточного организма, живущего в океане. В знаменитом прекрасном эссе, написанном в честь великого физика-теоретика Виктора Вайскопфа, его коллега Эдвард Парселл в захватывающем маленьком очерке «Жизнь в мире малых чисел Рейнольдса» описывает, какие ощущения должны испытывать микроорганизмы, пребывая в жидкости. Оказывается, для микроскопического организма вода является относительно вязкой средой. Чтобы передвигаться в такой среде, необходимо затрачивать много энергии. Парселл проводит аналогию, говоря, что клетка человеческой спермы, плывущая в воде, ощущает среду так же, как человек, плывущий в патоке. При таких условиях мы смогли бы передвигаться всего лишь на несколько метров в неделю. Однако если бы клетки смогли работать все вместе, сообща, они бы с гораздо большей эффективностью преодолевали физические барьеры, поставленные перед ними вязкостью среды их обитания.

Для того чтобы объединиться в многоклеточный животный организм, клеткам было необходимо развить у себя четыре основных свойства. Им был необходим общий для всех источник энергии. Они должны были научиться с большой точностью прикрепляться друг к другу. Они должны были распределить между собой функции, общие для всего организма, а не заботиться лишь о своих потребностях. И наконец, им надлежало воспроизводить эту схему снова, снова и снова. Все эти четыре свойства должны были работать сообща, словно отрепетированная театральная пьеса; если бы многоклеточный организм не смог выполнить хотя бы одну из этих функций, он перестал бы существовать.

Вопрос об источнике энергии был наиболее критичен. За очень немногими исключениями животным, чтобы извлекать энергию из пищи, необходим кислород. У одноклеточных эукариотов кислород добирается до производящей энергию системы, митохондрии, посредством диффузии – процесса, при котором молекулы, находящиеся в постоянном хаотическом тепловом движении, перемещаются в ту сторону, где концентрация кислорода ниже. Поскольку кислород внутри митохондрий поглощается, в этой части клетки поддерживается низкая его концентрация, так что кислород перемещается из внешней среды – которой 1,8 млрд лет назад являлся океан – внутрь клетки.

Диффузии вполне хватает на то, чтобы добывать кислород для одноклеточных организмов. Однако если одиночные клетки начинают укрупняться, а концентрация кислорода не очень высока, клетка будет получать недостаточно кислорода, и ее рост будет затруднен. Эта проблема еще более обостряется, когда клетки начинают формировать колонии и пытаются превратиться в многоклеточный организм.

Предположим, что существует организм, представляющий собой сплошную плоскость (типа бумажного платка), живущий на поверхности какой-либо среды – скалы или илистой осадочной толщи. Предположим, что, подобно сложенному платку, этот организм состоит из слоев, однако вместо тонкой бумаги эти слои состоят из респирирующих клеток, как у эдиакарских ископаемых животных. Кислород проникает в верхний слой, 90 % его поглощается клетками, составляющими этот слой, и для следующего слоя клеток остается лишь 10 %. Следующий слой поглощает 90 % этих оставшихся 10 %, и третьему слою остается уже меньше 1 %. Понятно, что клеткам, расположенным у основания, кислорода почти не достанется, и они не будут функционировать как надо.

Рис. 30. Проблема диффузии кислорода в многоклеточном организме. Без какой-либо системы циркуляции кислород мог поступать в клетки только посредством диффузии. Если животное живет на морском дне, единственным источником кислорода является вышележащая водная толща. Кислород, достигающий первого слоя клеток, уходит на нужды респирации, и второй слой получает гораздо меньше кислорода, чем первый, и так далее. Почти не вызывает сомнений тот факт, что именно диффузия кислорода послужила одной из причин эволюционного отбора плоских организмов в начале эдиакария

Ситуацию можно исправить, если изначальная концентрация кислорода будет высокой, а клетки будут организованы в такую форму, которая позволит кислороду поступать и с других сторон, или же если клетки разовьют какую-либо систему эффективного распределения кислорода. Все эти варианты решений в конечном счете были реализованы в процессе эволюции, но изначальное условие требовало значительного увеличения концентрации кислорода в атмосфере Земли.

Погребение органического вещества в океанических донных отложениях и сопутствующий приток кислорода в земную атмосферу получили резкое ускорение с эволюцией фитопланктона. В отличие от своих предков-прокариотов, которые почти не могли погружаться в океанические глубины, поскольку были слишком малы (вязкость воды удерживала их на поверхности), эукариотический фитопланктон погружался довольно быстро. Эволюция этих организмов и последующие гибель и погребение их в донных толщах древних океанов привели к долговременной изоляции органического вещества, вследствие чего произошел скачок концентрации кислорода в планетарной атмосфере (см. главу 5). Этот скачок произошел около 700 млн лет тому назад, приблизительно через 1,7 млрд лет после Кислородной катастрофы. Второе увеличение содержания кислорода, несомненно, сыграло решающую роль в эволюции животных.

Никто не знает наверняка, каким было содержание кислорода, когда на Земле появились животные, но самые достоверные реконструкции показывают, что на кислород приходилось от 1 до 5 % объема атмосферы. На сегодняшний день это значение достигает 21 %. Есть нечто парадоксальное в том, что гибель и погребение эукариотического фитопланктона ускорили развитие кислородной атмосферы, и это привело к эволюции многоклеточных животных организмов, которые впоследствии стали питаться этим же фитопланктоном.

С увеличением концентрации кислорода одноклеточные эукариоты смогли начать объединяться в колонии, поскольку проблема диффузии уже была настолько серьезной. Однако такое объединение предполагало возможность какого-то сцепления, некоего межклеточного «клея» – второе свойство, необходимое для эволюции многоклеточных животных. Адгезивную функцию предоставлял набор из двух типов белков – коллагенов и интегринов, которые затем получат распространение среди всех животных организмов. Эти два белка действуют как пластичные эпоксидные смолы – они скрепляют клетки вместе, а также служат цементом для многих клеточных продуктов, таких как зубы, кости и раковины. Существует много типов коллагенов, однако для всех характерно наличие трех параллельных спиралей, похожих на микроскопические шурупы. Древнейшие их формы найдены у прокариотов. Коллагены известны всем – эти высушенные белки в смеси с ароматизаторами и подсластителями продаются в качестве желатиновых десертов. Коллагены стыкуются с интегринами – белками, прикрепленными к клеточным мембранам у животных. Это не единственные скрепляющие агенты, но наиболее значимые. У животных на долю коллагенов может приходиться до 25 % всех белков, имеющихся в организме.

Рис. 31. Современная реконструкция содержания атмосферного кислорода на протяжении геологического времени. Обратите внимание на то, что для концентрации кислорода используется логарифмическая шкала. Концентрация кислорода на протяжении первой половины земной истории была исчезающе мала, порядка 0,0001 % современного атмосферного уровня (САУ). Во время Кислородной катастрофы (2,4 млрд лет тому назад) концентрация, вероятно, повысилась до приблизительно 1 % современного уровня и затем до примерно 10 % в эдиакарский и кембрийский периоды (600–500 млн лет тому назад). На протяжении последних 500 млн лет содержание кислорода оставалось относительно высоким и относительно стабильным, варьируя между приблизительно 50 и 150 % современного значения

И коллагены, и интегрины в той или иной форме появились в самом начале эволюции животных. Они встречаются у губок – древнейшего вида животных, где удерживают клетки в определенных положении и ориентации. По мере эволюции животного мира молекулярные клеящие средства приобретали все более важное значение, делая возможными новые, более сложные формы тела.

Третье свойство – разнообразие клеточных функций – один из наиболее интересных моментов в биологии животных и растений. Даже у простейших животных и растений имеется несколько различных типов клеток. У животных существуют различные виды нервных клеток, клеток кожи, пищеварительных клеток и так далее. У растений клетки листьев, корней и побегов различаются между собой. Все эти разнообразные клетки взрослого организма происходят от одной-единственной – оплодотворенной яйцеклетки. Независимо от того, какова функция клеток во взрослом организме, в каждой из клеток, сохранивших ядро, генетический материал идентичен тому, что содержится в остальных клетках. Вот почему мы можем взять клетки из нашей слюны, кожи, кости, печени или легких и анализировать собственный геном. Однако каждый из этих типов клеток призван выполнять свой собственный набор функций, и эти функции закодированы в генах каждого организма. Процесс, при котором клетка получает свою специализацию внутри консорции, называется дифференциацией. У животных клетки, которым еще не была определена собственная специфическая функция, называются стволовыми клетками – это клетки, которые можно убедить стать той или иной из множества типов клеток: нервной клеткой или клеткой печени и так далее. Однако откуда взялись все эти различные типы клеток в многоклеточных организмах?

У цианобактерий, формирующих колонии, существуют такие клетки, которые теряют свою фотосинтезирующую способность и начинают специализироваться на связывании азота. Этот новый тип клеток крупнее, имеет более толстую клеточную стенку, а также является единственным типом клеток внутри колонии, который может связывать азот, образуя аммоний. Кроме того, такую клетку невозможно убедить снова начать фотосинтезировать – даже несмотря на то, что у нее сохранились все необходимые для этого гены.

Существует несколько других примеров дифференциации. Многие одноклеточные эукариоты подвергаются тому или иному виду генетической рекомбинации и при этом трансформируют свои клетки из одной формы в другую. Генетическая рекомбинация – это такое модное словечко, означающее секс: две клетки, каждая из которых имеет половину хромосомного набора родительской клетки, комбинируют генетическую информацию, формируя новую клетку, которая начинает воспроизводиться. У одноклеточных эукариотов зародышевые клетки часто совершенно не похожи на родительские. В действительности зачатки полового размножения уходят далеко к истокам эволюционной истории; они найдены в современных эукариотических водорослях. «Споры», или зародышевые клетки, имеют половинный набор хромосом – индивидуальных сегментов генетической информации, хранящейся в ядре каждой клетки – от родительской клетки, и зачастую имеют очень различные формы.

Дифференциация клеток стала фирменным знаком как животной, так и растительной эволюции. По мере развития многоклеточных организмов отдельные клетки приобретали определенные функции. У низших животных и большинства растений организм может воспроизводиться без половой рекомбинации – можно просто взять какую-либо часть организма и вырастить ее, если иметь достаточно энергии и источников питания. В таких случаях клетки сохраняют достаточную гибкость для приобретения новых функций. Тем не менее в процессе эволюции все более и более сложных животных организмов эта гибкость была потеряна, и единственным путем возникновения новых организмов осталась половая рекомбинация – четвертое из перечисленных свойств.

Половое размножение ведет к формированию оплодотворенной единичной клетки – зиготы, в которой затем происходит дифференциация в новые типы клеток по мере ее деления и развития в эмбрион. Информационная система, отвечающая за развитие и организацию клеток у животных и растений, достигла небывалой сложности, однако основной набор инструментов был позаимствован у их одноклеточных прародителей и аналогичен кворумному восприятию в микробиотических сообществах.

У животных развился набор молекул, направляющий транскрипцию генов в клетках. Эти транскрипционные факторы, со временем ставшие весьма изощренными, размещают развивающийся организм животного вдоль некоторой оси и направляют деление и функционирование клеток. Так, например, у животных набор генов гомеобокса (или, на научном жаргоне, Hox-генов) включает и выключает сотни генов во время развития эмбриона; транскрипционные факторы наподобие Hox-генов зачастую невероятно консервативны. Впервые они были открыты в 1984 году у плодовой мушки дрозофилы, но впоследствии ученые поняли, что такие же гены встречаются во всем животном царстве – от медуз до человека.

Абсолютно другой набор транскрипционных факторов развился у растений. Их представителями являются гены MADS-бокс, организующие развитие репродуктивного аппарата. Существуют и другие, участвующие в развитии корней и побегов на ранних стадиях прорастания семян. То, что транскрипционные факторы животных и растений принадлежат к различным типам, при повсеместном распространении тех и других в соответствующих царствах, указывает на то, что молекулы, отвечающие за контроль за телесным строением этих двух групп макроскопических организмов, появились уже после того, как эти организмы пошли разными путями от последнего общего предка. Поскольку и у растений, и у животных имеются, по-видимому, совершенно одинаковые митохондрии, маловероятно, чтобы прародителем животных был какой-либо из протистов, потерявший пластиду. Это снова приводит нас к принуждающим факторам эволюционного отбора, которые изначально и привели к возникновению животных.

Древнейшие ископаемые останки, принадлежащие к эдиакарскому периоду, не имеют очевидной связи с какой-либо из современных форм животной жизни, однако изучение молекулярного состава показывает, что губки, сохранившиеся в геологическом разрезе начиная с кембрия, являются древнейшим из существующих типов животных. (В данном контексте под типом подразумевается просто группа животных или растений, характеризующихся сходным телесным строением. Губки принадлежат к типу Porifera; это слово означает «имеющие поры».) Строение современных губок относительно несложно. По существу эти организмы представляют собой каркас для миллионов пор, через которые протекает вода. Губка является гигантской консорцией эукариотических клеток. Их строение и стратегия питания дают ключ к вопросу о том, как и почему эти организмы возникли в эволюционном процессе. И именно здесь может оказаться информативным данное Парселлом описание жизни маленького одноклеточного организма в вязкой жидкости наподобие воды.

В губках имеются клетки, по-видимому тесно связанные с группой ныне живущих одноклеточных жгутиковых организмов, – хоанофлагелляты. У хоанофлагеллят имеется маленький воротничок, состоящий из микроворсинок, являющихся небольшими выростами клеточной мембраны. Эти организмы используют свои жгутики (от которых они и получили свое латинское название: слово flagellum означает «хлыст»), чтобы прогонять воду через эти воротнички, где микроворсинки отфильтровывают бактерии и другие мелкие органические частицы, чтобы клетка могла их поглотить. Сами жгутики представляют собой древние наномеханизмы; они найдены не только у эукариотов, но также у прокариотов, хотя строение жгутика у этих двух групп различается. У эукариотов, таких как хоанофлагелляты, жгутик состоит из девяти двойных нитей белка динеина, окружающих центральную двойную нить, состоящую из тех же молекул. Динеин – это молекулярный мотор: одна из нитей гидролизует АТФ и в этом процессе изгибается и скользит относительно соседней нити. Представим себе, как взбираемся на руках по канату (динеин): одна рука (мотор) перемещается к другой, ухватывается над ней, после чего та скользит поверх нее и ухватывается за канат, и так повторяется снова и снова. В результате жгутик хлещет взад и вперед, перегоняя воду. Жгутики такого типа появились у одноклеточных эукариотов и используются ими для передвижения в воде и питания, при котором поток частиц направляется к клетке. Этот важнейший наномеханизм впоследствии станет отвечать за множество других процессов у животных – от передвижения сперматозоидов до переваривания пищи в кишечнике. Большинство членов семейства хоанофлагеллят являются автономными одноклеточными организмами, но несколько видов могут образовывать колонии. И хотя колониальные формы одноклеточных эукариот встречаются не так уж редко, у некоторых видов хоанофлагеллят имеются гены, позволяющие им прикрепляться друг к другу с чрезвычайно высокой точностью.

Рис. 32. Изображение колонии хоанофлагеллят (слева), где видны жгутики, при помощи которых они проталкивают бактерии и другие органические частицы внутрь воротничка для дальнейшего поглощения, а также поразительно сходные типы клеток – хоаноциты, найденные у губок (справа)

В 1841 году, за девятнадцать лет до выхода в свет «Происхождения видов», французский биолог Феликс Дюжарден заметил некоторое сходство между хоанофлагеллятами и морфологией клеток, выстилающих внутренние полости губок. Он назвал эти клетки хоаноцитами. Хоаноциты губок двигают своими жгутиками в едином ритме, перекачивая через внутреннюю полость губки десятки литров воды в день. Во внутренней полости губок хоаноциты отфильтровывают из проходящей воды бактерии и органические частицы, используя свои жгутики для захвата и поглощения строительного материала для колонии. Движение жгутиков синхронизировано, чтобы создавать единонаправленный поток воды через тело животного, точно так же, как гребцы на триремах синхронизировали свои гребки, чтобы судно могло двигаться по воде. Это может показаться удивительным, но у губок нет нервной системы. Остается неясным, каким образом отдельные хоаноциты сообщаются друг с другом и какие сигналы отвечают за координацию движений миллионов жгутиков. В любом случае синхронизированное движение миллионов жгутиков способствует перемещению больших объемов воды – и в результате эта макроскопическая колония клеток более не действует так, как если бы пребывала в жидкости, вязкой как патока.

Губки представляют собой микроскопический зоопарк. Поглощая от 75 до 90 % микроорганизмов, которые они фильтруют из воды, они вместе с тем дают прибежище тысячам различных микроорганизмов, с которыми находятся в отношениях взаимовыгодного симбиоза. Эти микроорганизмы обнаруживаются повсюду в миллионах мелких пор, из которых состоит тело животного. Некоторые из них обеспечивают своему хозяину пропитание, например поставляя ему витамины и другие соединения, в точности так, как поступают микроорганизмы в нашем кишечнике. Другие микроорганизмы производят токсины, защищающие животное от хищников. Собственно говоря, некоторые из наиболее токсичных молекул в животном царстве найдены именно у губок. В других случаях жильцами губки оказываются фотосинтезирующие водоросли, которые предоставляют ей источник питания, одновременно рециркулируя отходы жизнедеятельности хозяина. Сотрудничество микроорганизмов с губками стало предшественником более широких взаимовыгодных отношений, связывающих макроскопический и микроскопический миры.

Эволюция губок предвещала потенциальные выгоды перехода к многоклеточному существованию. Хотя в океанах и озерах и по сей день остались хоанофлагелляты и другие эукариотические гетеротрофные организмы, координированное движение миллионов хоаноцитов позволяло губке перерабатывать гораздо больший объем воды, нежели любой одиночной клетке. По существу, даже несмотря на то что губки всю свою жизнь не сходят с одного места, благодаря ежедневной перекачке через их тела десятков литров воды их ареал добывания бактерий и других питательных частиц оказывается на несколько порядков больше, чем у их предков – плавающих одноклеточных эукариотов. Поскольку питание теперь распределялось между миллионами клеток, количество усилий, затрачиваемых на добывание пищи одной клеткой, значительно уменьшилось. Более того, благодаря тому что через организм постоянно протекал такой поток воды, снабжения кислородом оказалось достаточно для поддержания высокой скорости обмена веществ. И вдобавок ко всему, поскольку губки давали пристанище как питающим, так и токсичным микроорганизмам, они оказались более самодостаточны и защищены от хищников. Клеточное взаимодействие показало свои преимущества.

Развитие строения тела животных было одним из краеугольных камней эволюции даже до эпохи Дарвина. Представление о том, что животное, создающее раковину, например двустворчатый моллюск, фундаментально отличается от животного, имеющего позвоночник, например змеи, птицы или человека, кажется очевидным на макроскопическом уровне. В этом смысле можно сказать, что мотоцикл, автомобиль, восемнадцатиколесный грузовик, океанский лайнер и реактивный самолет имеют различное строение тела, но они все имеют моторы, требующие источника энергии и использующие одно и то же топливо. Эти рукотворные машины возникли на протяжении 150-летнего периода, и их эволюция, хотя ретроспективно она и кажется невероятно быстрой, основана на тех же основных принципах: использование однотипных механизмов для приведения в движение транспортных средств различной формы. Тот же самый принцип верен и в отношении эволюции животных.

Ключевые наномеханизмы – факторы сопряжения, фотосинтетические реакционные центры, цитохромы и переносчики электронов – отвечают за поддержание жизни у всех растений и животных и развились у микроорганизмов миллиарды лет тому назад. Весь этот аппарат перешел ко многим телесным формам, прежде всего у животных. Животные – небольшая, относительно незначительная ветвь на древе жизни; они подобны множеству версий мотоциклов, машин и грузовиков, использующих в целом одинаковые моторы для того, чтобы двигаться. Фактически метаболический аппарат у животных и растений гораздо менее разнообразен, нежели он был у их микробиотических предшественников; животные не имеют доступа ко многим видам «топлива», которыми пользовались (и до сих пор пользуются) эти микроорганизмы. Зато им удалось заполучить другие инновационные процессы, отделяющие животных от их микроскопических предков.

Эти инновационные процессы имели большое значение, и, хотя едва ли так уж важно перечислять их все, я хотел бы сосредоточиться на нескольких ключевых нововведениях, позволивших животным добиться такого успеха. Среди наиболее важных процессов нужно отметить продолжительную подвижность и сенсорную систему, а также формирование нервной системы и мозга. В каждом из этих случаев у системы имелся оригинал или аналог в микробиологическом мире; животные модифицировали уже существовавшие гены, им не приходилось начинать все заново.

Подвижность – одна из самых ранних инноваций в эволюции животных. Хотя губки большей частью неподвижны, их близкие родственники гребневики могут плавать. Эти маленькие животные похожи на миниатюрные прозрачные футбольные мячики, но у них есть восемь рядов клеток с очень большим количеством жгутикоподобных образований – ресничек, проходящих вдоль их внешней поверхности. Эти реснички все бьются в унисон, создавая волну вдоль внешней поверхности животного, что позволяет ему перемещаться в толще воды. В какой-то мере строение этой двигательной системы аналогично вывернутой наизнанку губке. Такая система, унаследованная от одноклеточных организмов, не особенно эффективна, и организмы по мере увеличения их размеров отказались от нее. Тем не менее ее было вполне достаточно, чтобы преодолеть проблему вязкости в мелких масштабах, с которой сталкивались в воде все одноклеточные организмы; гребневики – наиболее крупные организмы, использующие эту систему для передвижения. С развитием стрекающих – медуз и прочих – для движения стала использоваться струя воды, выталкиваемая наружу через их ротовые отверстия.

Гидродинамические свойства миниатюрного футбольного мячика не так уж хороши. Все моряки мира знают это: для передвижения сквозь толщу воды подводных лодок, представляющих собой по существу вытянутые мячи, требуются большие затраты энергии. С эволюцией билатерально-симметричных животных, таких как черви, насекомые, рыбы, рептилии, птицы и мы сами, значительная доля клеток была преобразована в мышцы, контролируемые нервами – клетками другого типа, которые благодаря скоординированным действиям способны очень эффективно двигать своего хозяина в воде или в воздухе. Для эволюции всех этих систем понадобился ряд молекулярных моторов – эта позиция была заполнена набором белков, называемых миозинами, использующими АТФ для того, чтобы «идти» по другому белку – актину. Длительное время считалось, что гены, кодирующие миозиновые белки, существуют только у животных, особенно билатерально-симметричных. Однако по мере того как становились известны все новые и новые генетические последовательности, выяснилось, что гребневики и медузы не только содержат миозины, но что гены этих белков произошли от одноклеточных эукариотов, в первую очередь от хоанофлагеллятов. Фактически животные переняли и вторично воспользовались генами, появившимися за сотни миллионов лет до них. Механизмы одноклеточных организмов спустя миллионы лет стали снабжать энергией животных, в миллионы раз превышающих их по массе.

Та же схема была обнаружена и в отношении эволюции сенсорных систем. Многие прокариотические микроорганизмы развили у себя хемосенсорную систему, являющуюся аналогом органов вкуса и обоняния у животных. Зрение – один из классических примеров того, какие трудности пришлось преодолеть, чтобы использовать унаследованные из микромира системы для более сложных организмов. На протяжении многих лет эволюция органов зрения считалась настолько сложной, что глаза могли сформироваться не иначе как под руководством божественного провидения. По всей видимости, Дарвин тоже занимался проблемой эволюции глаз, но его размышлениям по этому вопросу препятствовал недостаток информации. В первом издании «Происхождения видов» Дарвин писал:

Предположение о том, что глаз со всеми его несравненными приспособлениями для фокусировки на различные расстояния, для пропускания различного количества света, для корректировки сферической и цветовой аберрации мог быть сформирован в результате естественного отбора, признаюсь откровенно, кажется в высочайшей степени абсурдным. Тем не менее здравый смысл говорит мне, что если будет доказано, что существуют многочисленные градации от совершенного и сложного глаза до глаза весьма несовершенного и простого, притом что каждая градация окажется полезной для ее обладателя (а это, несомненно, так и есть); если, далее, глаз понемногу изменяет свое строение и эти изменения наследуются (что также несомненно); если любая вариация или модификация этого органа оказывается полезной для животного в изменяющихся условиях его жизни – тогда препятствие, мешающее нам поверить, что совершенный и сложно построенный глаз мог сформироваться путем естественного отбора, хотя и непреодолимое для нашего воображения, едва ли можно считать существующим в действительности.

Дарвин не мог знать, что у микроорганизмов имеется несколько типов органов, чувствительных к свету. В глазах животных присутствует пигмент ретиналь (получаемый из витамина А), связанный с белком опсином. Опсины составляют весьма обширное семейство белков, которые все имеют одинаковое базовое строение – семь спиралей, охватывающих клеточную мембрану. У животных белок, содержащий ретиналь, является светочувствительным датчиком, но очень похожие пигменты, связанные с другими белками-опсинами, найдены также у многих микроорганизмов. Эти пигменты, родопсины, чрезвычайно распространены во всем Мировом океане. Произошли ли эти два пигментно-белковых комплекса от одного общего предка? По всей видимости, ответ отрицательный. Опсины, судя по всему, эволюционировали независимо и по меньшей мере в два отдельных временных периода. У прокариотов и некоторых одноклеточных эукариотов они часто служат для подкачки протонов, используемых для генерации электрического градиента по разные стороны клеточной мембраны. Эти пигментно-белковые комплексы также имеют семь трансмембранных спиралей, но их аминокислотные последовательности совершенно не похожи на опсины в глазах животных. У микроорганизмов этот пигментно-белковый комплекс используется для выработки энергии. При помощи родопсинов микроорганизмы продвигают протоны через свои клеточные мембраны. Протоны вытекают через вращающийся фактор сопряжения, позволяя клетке синтезировать АТФ при наличии света. Однако те же самые пигментно-белковые комплексы могут также действовать как светочувствительные датчики. У многих одноклеточных эукариотов родопсины дают клетке возможность плыть в направлении света определенных цветов. Этот пигмент большей частью сохранился и был вновь использован в совокупности с другими белками, обладающими примечательно сходным строением, у широкого круга одноклеточных эукариотов, а позднее и у животных, где он был связан с еще одним белком.

Стигмы, или глазки, найденные у нескольких типов одноклеточных водорослей, представляют собой примитивные оптические датчики, содержащие родопсины. Гены этих опсинов, по-видимому, передавались горизонтальным путем через несколько микробиотических линий. Опсины найдены также у кораллов, где эти пигментно-белковые комплексы ощущают свет, и это служит животному знаком для начала размножения. В процессе эволюции настоящего глаза, способного не только чувствовать свет, но также фокусироваться на изображении, родопсины подобного типа образуют прослойки внутри мембран. Линза, состоящая из коллагена, исполняет роль оптического «объектива», соединенного с сенсорными системами, в свою очередь связанными с мозгом – сложным органом, способным регистрировать изображения и сравнивать их с предыдущими записями. При эмбриологическом развитии позвоночных глаза формируются как непосредственное продолжение мозга.

Как уже говорилось, все живые клетки поддерживают электрический градиент по разные стороны своей клеточной мембраны. Этот градиент играет важнейшую роль в транспортировке питательных веществ из окружающей среды внутрь клетки и отходов жизнедеятельности из клетки обратно в окружающую среду, но также действует и в качестве сенсорной системы, позволяя клеткам ощущать градиенты освещения, температуры или содержания питательных веществ. У животных развились специальные клетки – нейроны, координирующие поведение посредством передачи электрической энергии. В процессе эволюции животных сенсорные системы, такие как органы вкуса, обоняния и зрения, также генерировали электрический сигнал и должны были быть скоординированы с движением, чтобы животное могло ловить добычу, совокупляться с животными противоположного пола своего вида, убегать от хищников и учиться.

Эти основные функции, насущные для выживания любого животного, унаследованы от клеточных мембран, сформировавшихся за миллиарды лет до них. Однако для создания внутри животных «электропроводки» и мозга были необходимы значительные обновления. Клетка должна была наладить селекцию информации, то есть научиться включать «рубильник» для генерирования электрического разряда и передачи сигнала по «проводам» всего лишь на мгновение. Сигнал должен был иметь направленность – пересылаться по проводу только в один конец, но не в другой. И кроме того, клетка должна была уметь передавать сигнал другой клетке, чтобы расширять или координировать коммуникационную сеть, а это требовало развития химической коммуникационной системы. Химические сигналы основываются на простых молекулах, многие из которых произошли от аминокислот, и такая коммуникационная система в животных клетках строится на основе кворумного восприятия у микроорганизмов. Все эти эволюционные новшества привели к созданию нервной системы и в конечном счете мозга, который собирал информацию и контролировал пути передачи сигнала в двухстороннем режиме – и ощущая, и отвечая на сигналы.

По мере продолжения эволюционного процесса у животных нервная система и мозг становились все более сложными. Эти свойства являются эмерджентными, то есть непредвиденными. Они развивались аналогично разработке первых компьютеров: сначала они работали медленно и имели очень небольшую память, но по мере накопления навыков ученые и разработчики стали создавать все более быстрые, компактные, дешевые и гораздо более сложные системы. Такой же процесс происходил и с нервной системой у животных, и он привел к глобальным изменениям образа жизни планеты. Однако до того как мы углубимся в этот вопрос, необходимо разобраться с концепцией симбиоза на планетарном уровне.

Эволюция животных, судя по всему, опережала эволюцию наземных растений приблизительно на 200 млн лет; тем не менее обе группы организмов развивались весьма сходными путями. Предком наземных растений была определенная группа зеленых водорослей; они начали завоевывать сушу около 450 млн лет тому назад. Лишенные постоянного источника воды и питательных веществ, эти пионеры растительной жизни были вынуждены развить у себя ряд новых особенностей, позволивших им выжить в жестких, засушливых наземных условиях. Подобно животным, растения изобрели нечто наподобие клея, обеспечивавшего сцепление клеток друг с другом, но в данном случае основой для клея послужил полисахарид целлюлоза, без труда вырабатываемый растениями. Для производства целлюлозы не требуется ни азота, ни фосфора – только углерод, кислород и водород, в избытке имеющиеся в окружающей среде. Кроме того, целлюлоза и ее производные устойчивы к разрушению большинством микроорганизмов. Животные не могут переваривать бумагу – в их кишечнике на это способны лишь несколько отдельных микроорганизмов. Целлюлоза дала растениям структуру, поддерживающую их на суше; когда же наземное растение погибает, некоторая часть целлюлозы включается в состав почвы, а другая часть смывается в океан, где включается в состав донных отложений.

Так же как и в случае с погребенными одноклеточными фотосинтезирующими эукариотами за 500 млн лет до этого, эволюция и гибель наземных растений повысила содержание кислорода в земной атмосфере – и намного. Наземные растения тоже стали биологическими большевиками своего времени. Вычислено, что благодаря возникновению и гибели крупных наземных растений – предшественников современных деревьев – концентрация кислорода в земной атмосфере 350 млн лет тому назад была приблизительно на 35 %, а то и на 67 % выше, чем в настоящий момент. Каковы же были последствия?

Повышение содержания атмосферного кислорода привело к массовому заселению суши морскими животными. Черви, ракообразные, улитки и позвоночные животные благополучно выползли на берег и принялись заселять новый ландшафт. В отличие от возникновения растительной жизни, появление на суше животных было результатом многократных вторжений множества различных морских организмов. За исключением самых древних животных форм – губок, медуз и их родственников – почти всем представителям животного мира удалось успешно колонизировать сушу.

Повышение содержания атмосферного кислорода, подстегиваемое развитием наземных растений, позволило животным ввести у себя некоторые новшества. Ракообразные и их родственники эволюционировали в насекомых. У насекомых кислород поставляется посредством диффузии через небольшие отверстия вдоль боков тела. В ископаемых этого периода найдены останки стрекоз с размахом крыльев в полметра. Такие крупные насекомые могли существовать только в условиях чрезвычайно высоких концентраций кислорода. Древнейшие наземные рыбы в конечном счете эволюционировали в земноводных и пресмыкающихся и, гораздо позднее, в динозавров (включая птиц) и млекопитающих. Но это потребовало введения еще нескольких поправок. Хотя морские животные уже разработали у себя системы транспортировки кислорода к внутренним органам, благодаря чему стали больше и сложнее, такая система циркуляции не смогла бы с той же легкостью функционировать на суше ввиду больших потерь жидкости. Диффузия кислорода в воде происходит медленно, но зато организмы могут получать его посредством прямого обмена через клетки или через специальные органы, такие как жабры, имеющие чрезвычайно большую площадь поверхности. В воздухе такие системы газообмена не могут быть столь же эффективны – организм очень быстро лишится воды. Чтобы справиться с этой проблемой, газообменные процессы были переведены внутрь организма, а внешние поверхности изменены так, чтобы препятствовать воде попросту диффундировать в окружающую среду. Далее газообмен был ускорен посредством циркуляционной системы, в которой участвовала жидкость, транспортировавшая кислород в отдаленные части организма. Для такой системы требовался некий насос, чтобы сделать процесс газообмена эффективным, – и вместо скоординированной системы снабженных жгутиками клеток, перекачивающих жидкость, как у губок, из одиночных клеток были собраны молекулярные моторы для выполнения специализированных клеточных функций, в особенности в мышечных и нервных тканях.

Мышцы используют огромные количества АТФ для ежесекундного перемещения миллиардов молекул миозина по их актиновым направляющим. Нейроны затрачивают огромное количество энергии для работы своих клеток. В сравнении с микроорганизмами животные представляют собой биологический эквивалент гигантского авиалайнера в мире велосипедистов-любителей. Это может показаться парадоксом: если мы возьмем любое животное и измерим его энергопотребление, оно окажется гораздо ниже, чем если бы данный организм был размазан по гигантской чашке Петри слоем толщиной в одну клетку. Причина в том, что отдельные клетки у животных в конечном счете ограничены диффузией кислорода. Тем не менее общая выработка энергии у животных чрезвычайно высока, даже у холоднокровных, таких как черепахи или змеи. У очень активных животных, температура тела которых выше, таких как птицы и млекопитающие, энергетические потребности в четыре – восемь раз больше, чем у рептилий.

Все животные в энергетическом отношении зависят от фотосинтезирующих организмов. В океанах львиная доля питательных веществ приходится на фитопланктон, добывать который большинству крупных животных очень нелегко. Поэтому энергетические запасы фитопланктона доставляются к ним посредством более мелких организмов, таких как мелкие рачки и креветкообразные организмы – зоопланктон. Такое посредничество имеет свою цену: после каждого переноса энергии вверх по пищевой цепи на следующий трофический уровень остается всего лишь около 10 % энергии. К примеру, 100 фунтов фитопланктона приведет к образованию около 10 фунтов зоопланктона, а этих 10 фунтов зоопланктона хватит на образование всего лишь примерно 1 фунта рыбы. В океанах концентрация фитопланктона выше всего в тех местах, где питательные вещества из глубоководья поднимаются к поверхности, чаще всего благодаря ветровым течениям. Эти области подъема глубоководных вод встречаются вдоль континентальных окраин и в мелководных морях – вот почему в таких местах наиболее распространен рыболовный промысел. Однако в результате средний срок жизни клетки фитопланктона составляет пять дней. Все клетки делятся приблизительно раз в пять дней, и одна из дочерних клеток оказывается съеденной. В океанах содержится всего лишь около 0,2 % планетарной фотосинтетической биомассы. На суше же большая часть остальных 99,8 % фотосинтетической биомассы не съедается – листья в основном остаются на деревьях. Однако на суше действует тот же закон трофического переноса вещества, что и в океане: сотня фунтов травы дает около десяти фунтов лошади. Впрочем, поскольку травостой, как правило, имеет высокую скорость роста и большую плотность, бизоны смогли стать крупными животными и сформировать многочисленные стада. Число трофических звеньев в наземных экосистемах в целом меньше, чем в океанах, и эволюция трав предоставила значительное преимущество для эволюции крупных млекопитающих за последние 50 млн лет.

Избыток доступных источников энергии привел к серьезной перестройке органов чувств – в соревновательных целях и в качестве ответной реакции на развитие моторов; это произошло в форме эволюции сенсорных систем обоняния, зрения, вкуса и слуха. Животные развивали у себя все более сложные системы выбора съедобных растений или доступной добычи, а у растений развивались все более сложные системы, использующие не только отходы жизнедеятельности животных для собственного роста, но и самих животных для опыления цветов и распространения семян. Совместная эволюция растений с растениями, растений с животными и животных с животными привела к развитию адаптивной системы все возрастающей сложности и увеличению числа взаимодействий.

Для того чтобы поддерживать в стабильности систему с возрастающей сложностью, необходимо, чтобы каждый вид со временем адаптировался, иначе его старые эволюционные свойства окажутся устаревшими и вид вымрет. Почему? Потому что среда в масштабе геологического времени постоянно меняется, и естественный отбор действует так же постоянно.

Американский эколог-эволюционист Ли ван Вален в 1973 году в шутку назвал представление о том, что организмы непрерывно эволюционируют, «гипотезой Черной Королевы», памятуя об одном из эпизодов «Алисы в Зазеркалье»[4]. Исходная предпосылка ван Валена заключалась в том, что каждый конкретный вид должен «бежать на месте», чтобы поддерживать свой эволюционный тонус. Дубы, которые мы видим сегодня, не похожи на те дубы, что росли пять миллионов лет назад. Это ведет к эволюционной игре в кошки-мышки и к поддержанию разнообразия посредством относительно постепенного продвижения биологических инноваций в постоянно меняющемся экологическом ландшафте.

Биологическое разнообразие организмов имеет критическое значение для переноса генов, кодирующих ключевые, необходимые для поддержания жизни наномеханизмы, через обширные промежутки геологического времени, чреватые экзистенциальными угрозами. Однако само разнообразие также со временем меняется, и эволюция тех или иных конкретных свойств обладает способностью к адаптации лишь на протяжении коротких периодов в истории планеты. Организмы – преходящие сосуды, которыми можно пренебречь. Гены – отнюдь нет.

Один организм, появившийся в истории планеты случайно, но прошедший отбор благодаря некоторым очень специфическим чертам, очень быстро, в совсем недавнем прошлом, добился доминирующей позиции и взялся за разрушение планеты в масштабах, невиданных со времен Кислородной катастрофы 2,4 млрд лет тому назад или эволюции наземных растений около 400 млн лет тому назад. По соседству с крупными организмами со сложной системой взаимодействий люди стали новыми животными на планете и очень быстро стали новыми эволюционными большевиками. Мы склонны считать, что настолько отличаемся от других организмов, что можем игнорировать историю нашей планеты. Но так ли это?

«– У нас, – сказала Алиса, с трудом переводя дух, – когда долго бежишь со всех ног, непременно попадёшь в другое место.

– Какая медлительная страна! – вскричала Королева. – Ну а здесь, знаешь ли, приходится бежать со всех ног, чтобы только остаться на том же месте». – Примеч. пер.

Глава 9. Хрупкие виды

Когда я был маленьким, мой отец летом часто водил меня гулять в Риверсайд-парк, который находился в пятнадцати минутах ходьбы от нашего дома в муниципальном микрорайоне Гарлема. Более чем за пятьдесят лет до рождения моего отца, в 1901 году, Риверсайд-парк представлял собой большое кладбище. Оно было официально открыто в 1842 году распоряжением муниципалитета города Нью-Йорка в связи с увеличением смертности, связанным с эпидемиями холеры, оспы и брюшного тифа, что привело к переполнению кладбищ ближе к центру города. И хотя распоряжение позднее позволило городу использовать Риверсайд-парк как место массового захоронения солдат, погибших в гражданской войне, имелся прецедент погребения усопших в этой земле более чем за сто лет до названного времени.

В незаметном тихом уголке, как раз напротив мавзолея генерала Гранта, стоит небольшой памятник, посвященный «возлюбленному чаду», умершему в 1797 году в возрасте пяти лет. Место погребения отмечено обнесенным оградой гранитным монументом в память Сент-Клэра Поллока. Могила находится на выступе берега, откуда открывается вид на Гудзон и береговые утесы Палисадов Нью-Джерси. В 1797 году это место, несомненно, было великолепным для упокоения – панорама, должно быть, была одной из прекраснейших во всем мире.

Я был очень болезненным ребенком и однажды провел шесть месяцев в больнице. Я выжил и с тех пор почти не болел, но потом часто вспоминал могилу «возлюбленного чада» и размышлял о том, почему раньше дети так часто умирали в столь нежном возрасте. Также я часто думал о том, как мне повезло, что я не умер в той больнице.

Мы, люди, уже долгое время сосуществуем с микроорганизмами. И хотя в какой-то степени история нашего сосуществования может показаться достаточно мирной, за мирными аспектами всегда стояла непрерывная, глубинная война между нами и микробиологическими захватчиками, эволюционно запрограммированными на наше уничтожение. Однако мы и сами обладаем парой приобретенных в процессе эволюции навыков, дающих нам некоторые преимущества в этой войне. На протяжении человеческой истории сама эта война оказала большое влияние на эволюционный путь как людей, так и микроорганизмов. Давайте рассмотрим один из таких навыков, дающих нам преимущество в противоборстве с микробами.

Развитие у нас сложной речевой системы и абстрактного мышления – один из интереснейших и важнейших навыков, отличающих нас от всех остальных животных, но лишь частично осознаваемый на механистическом уровне. Ключевым эволюционным изменением, по всей видимости, послужили две мутации на пути от нашего последнего прародителя-примата к человеку, – мутации, которые привели к изменениям в двух аминокислотах, кодирующихся геном FOXP2 на 7-й хромосоме нашего генома. Белок, кодирующийся геном FOXP2, представляет собой фактор транскрипции, контролирующий экспрессию множества генов во время развития зародыша. У людей этот ген критичен для развития нескольких областей мозга, включая центр Брока, отвечающий за речь. Мутации в ключевых зонах гена FOXP2 могут вести к потере способности говорить, членораздельно произносить слова или понимать речь. Этот так называемый языковой ген, возникший в результате небольших и незначительных с виду мутаций на пути от приматов к человеку, сыграл преобразующую роль в нашей эволюции.

Несомненно, существуют и другие гены, участвующие в способности людей говорить и сообщать друг другу сложные, абстрактные идеи, но каковы бы они ни были, именно они ответственны за эволюцию другого типа – ту, которую антропологи называют культурной эволюцией; сам я предпочитаю называть этот феномен горизонтальным переносом информации. Способность беглой передачи таких идей является исключительной и исключительно важной. Люди – единственные животные, способные передавать сложную информацию от поколения к поколению практически мгновенно. Следовательно, приобретенное знание может сохраняться без какого-либо генетического отбора. Горизонтальный перенос информации потенциально позволил людям избежать ограничения «Черной королевы». Например, если благодаря горизонтальному переносу информации мы можем контролировать наше взаимодействие с микроорганизмами, способными нас уничтожить, или выработать относительно них какую-либо жизненную стратегию, можем ли мы нанести упреждающий удар и уничтожить их первыми? И если да, то изменим ли мы таким образом эволюционный путь этих микроорганизмов?

Можно выдвинуть резонное возражение, что люди и микроорганизмы совместно стремительно эволюционировали последние 20 тысяч лет, а возможно, это началось даже раньше. Несомненно, и для нас, и для них это было выгодно. Например, согласно археологическим данным, племена первых охотников-собирателей обладали умением сбраживать зерно, получая из него те или иные алкогольные напитки, возможно пиво. Встречающиеся в естественной среде микроорганизмы – дрожжи – способны превращать содержащиеся в зерне сахара в алкоголь. К 3500 году до н. э. пиво уже было популярным напитком в Самарии и других областях колыбели цивилизации. Вино также предположительно появилось еще до начала письменной истории. Археологические данные свидетельствуют о том, что его делали в Китае еще примерно в 7000 году до н. э., а к 3200 году до н. э. вино производилось на всем Ближнем Востоке. Умение сбраживать зерно и фрукты для производства алкоголя в конечном счете распространилось по всей Азии и Европе. Это было началом микробиологического бума в человеческой культуре.

Процессы брожения под влиянием микроорганизмов стали использоваться независимо во многих культурах и применительно ко многим видам пищи – для производства сыров, для изготовления продуктов из соевых бобов (например, пасты мисо и соевого соуса), для приготовления множества других продуктов из бобов, зерновых, фруктов и овощей, рыбы и даже мяса.

Процесс брожения может быть примером нашего «мирного» сосуществования с микроорганизмами, и с человеческой точки зрения оно служит, как минимум, трем целям. Оно обеспечивает сохранность продуктов гораздо более длительное время. Это было особенно важно во времена, когда поставка продуктов была сезонной, а другие средства их сохранения не были доступны. Кроме того, брожение зачастую повышает питательную ценность продуктов. Благодаря осуществляемому людьми отбору, из соображений вкуса или по другим параметрам, определенные микроорганизмы культивировались в используемых людьми продуктах задолго до того, как было обнаружено, что именно эти организмы отвечают за процесс брожения. Также брожение помогает людям усваивать пищу. Микроорганизмы разрушают трудноусваиваемые компоненты, делая продукты более доступными для человеческого пищеварения. Какао-бобы и кофейные зерна могут послужить примером пищевых продуктов, в которых мякоть, окружающая зерна, должна подвергнуться естественному разложению микроорганизмами, прежде чем продукт будет употреблен в пищу и пройдет дальнейшую переработку у нас в кишечнике.

Микроорганизмы возглавляют класс существ, способных на такие трюки, которые человек готов подвергнуть отбору. Очень небольшое их подмножество стало для человека, по сути, невидимыми «домашними питомцами», каждый из которых выполняет собственный уникальный фокус – например, преобразуя один определенный сахар в определенную кислоту при производстве конкретного вида сыра, пива, хлеба и так далее. Однако порой эти «хорошие» микроорганизмы уступают в борьбе другим микроорганизмам, и продукты оказываются отравленными – при их употреблении мы заболеваем и даже можем умереть.

В прошлые столетия преждевременная смерть от бактериальных инфекций была чрезвычайно распространенной – заранее предполагалось, что более половины рождающихся в любом семействе детей не доживет до возраста половой зрелости. Так, в Византийской империи в VI веке, при императоре Юстиниане I, вспышка бубонной чумы, вызываемой бактерией Yersenia pestis и переносимой блохами, унесла жизни приблизительно 50 млн людей. В XIV веке другая эпидемия чумы привела к гибели почти половины всего населения Европы. В Англии, Италии, Испании вспышки этого заболевания продолжались вплоть до середины XVII столетия.

В XIX веке на всей территории Азии были чрезвычайно распространены унесшие жизни десятков миллионов людей эпидемии холеры, возбудителем которой является бактерия Vibrio cholera. Это заболевание, разносимое с фекальным загрязнением питьевой воды, наводнило Европу, погубив много миллионов жизней в Венгрии, России, Британии и Франции и дойдя с иммигрантами даже до Америки. Холера погубила Джеймса Полка в июне 1849 года, три месяца спустя после того, как он оставил должность президента Соединенных Штатов. Множество людей погибли в XIX столетии от тифа, оспы, туберкулеза, пневмонии и гриппа (который называли тогда инфлуэнцей). Не вызывает сомнений, что микроорганизмы могут представлять огромную угрозу для здоровья человека.

Микроорганизмы попадают в наш организм через рот с пищей и водой, через легкие с воздухом, которым мы дышим, через половые контакты, укусы насекомых и даже через мелкие порезы. Они вызывают катастрофические разрушения в нашей дыхательной, кровеносной и пищеварительной системах и служат причиной серьезных заболеваний, с легкостью распространяющихся в широких слоях населения.

Микроорганизмы могут синтезировать чрезвычайно мощные нейротоксины, энтеротоксины и триллионы других соединений, поражающих определенные функции организма. Порой мы оказываемся в состоянии контролировать токсичное воздействие – например, когда мы используем ботулотоксин, поражающий нейроны и мышцы, в качестве терапевтического и косметического средства, ослабляя мышечные спазмы и убирая морщины. Тем не менее гораздо чаще действие этих чрезвычайно мощных токсинов трудно контролировать после того, как микроорганизмы оказались в теле человека.

Коротко говоря, вплоть до XX столетия микроорганизмы в целом держали под контролем численность человеческой популяции посредством уничтожения множества людей. Однако в настоящее время, хотя бактериальные заболевания все еще поражают многих из нас, в особенности в неразвитых и развивающихся странах, два крупных открытия в корне изменили наши отношения с микроорганизмами.

Первым было осознание того факта, что заболевания можно избежать, уменьшив контакт человека с определенным видом микроорганизмов. В этом отношении одной из важнейших перемен стал способ доставки воды в жилища человека и ее удаления оттуда. За последние столетия угроза переносимых с водой заболеваний была значительно снижена благодаря как предварительной обработке питьевой воды, так и уменьшению контакта людей со сточными водами. Кипячение воды с добавлением трав или других вкусовых добавок стало общепринятым во всей Азии, равно как и добавление алкогольных субстанций, полученных путем сбраживания зерна и фруктов. Эти два процесса в разных ипостасях применялись на протяжении веков с целью сделать воду более безопасной для питья. Системы отвода сточных вод стали использоваться значительно позже и еще больше снизили риск контакта с болезнетворными микроорганизмами. Некая база знаний о доставке воды и удалении бытовых отходов, быстро распространившаяся в XIX столетии во многих странах, является признаком развитой культуры.

Вторым открытием было обнаружение естественных метаболитов, убивающих микроорганизмы. Термин антибиотик был введен в употребление Зельманом Ваксманом, ученым, открывшим стрептомицин – молекулу, производимую микроорганизмом, который был изолирован из небольшого образца почвы, взятого прямо напротив моей лаборатории. Это открытие позволило излечиться бесчисленным миллионам больных людей. Практически невозможно найти в развитой стране взрослого, который бы за свою жизнь ни разу не принимал курса антибиотиков.

В середине XX века также было обнаружено, что если давать антибиотики животным, это ведет к увеличению производства мяса и молока. Приблизительно 80 % всех антибиотиков, потребляемых в США, используются для нужд животноводства, а не здравоохранения. В настоящее время применяется так много антибиотиков, в особенности в животноводстве, что многие микроорганизмы приобрели иммунитет к наиболее распространенным из них – и снова противодействуют нам, пытаясь нас уничтожить. Они смогли приобрести иммунитет благодаря мутациям. Из-за того что микроорганизмы воспроизводятся очень быстро – в масштабах нескольких часов или даже быстрее, естественные мутации накапливаются стремительно; а затем эти мутации подвергаются отбору благодаря нашему применению антибиотиков. Микроорганизмы, которые смогли уцелеть, продолжают жить и, будучи отобранными, быстро распространяют свои гены в триллионах микробиологических сообществ благодаря горизонтальному переносу. Эти болезнетворные микроорганизмы предприняли против нас контрнаступление. По сути, микроорганизмы отвечают ударом на удар; мы оказались в эволюционном цикле «Черной королевы», где эскалация защиты с нашей стороны привела к эскалации нападения со стороны микроорганизмов.

Независимо от того, кто в конечном счете окажется победителем в цикле «Черной королевы», человеческое знание, приобретенное и распространенное по земному шару посредством горизонтального переноса информации, несомненно, оказалось в высшей степени эффективным, позволив людям временно получить контроль над планетой. Наша непрекращающаяся война с микроорганизмами привела людей к великим победам. Хотя микроорганизмы и становятся все более устойчивыми к антибиотикам, ограничения, налагаемые ими на человеческую жизнь, хотя и не вовсе несущественны, все же гораздо менее значимы, нежели всего лишь столетие назад. Эволюция языка и быстрая передача информации помогли снизить микробиологический контроль за ростом численности населения. Кажется, что мы сумели временно избежать ограничения «Черной королевы» и при этом вошли в фазу экспоненциального роста человеческой популяции.

В студенческие годы я работал в микробиологической лаборатории при Городском колледже Нью-Йорка, выращивая штаммы водорослей для экспериментов. В лаборатории рост единичного микроорганизма в культуре – бульоне с питательными веществами – происходит по простой схеме. На протяжении некоторого периода после инокуляции (посева культуры) клетки растут медленно – это называется латентной фазой. Однако через какое-то время клетки постепенно привыкают к своей новой среде обитания и начинают расти быстрее. На протяжении этой фазы траектория роста популяции представляет собой экспоненту: две клетки превращаются в четыре, четыре – в восемь и так далее. В конце концов какого-либо из питательных веществ в среде начинает не хватать, и клетки принимаются соревноваться друг с другом за этот ограничивающий ресурс. Когда это происходит, темп роста снова замедляется, и кривая роста популяции выходит на плато.

Существует также и четвертая стадия, которую редко упоминают в статьях. Когда график роста клеток достигает плато и питательные вещества оказываются на какое-то время ограничены, клетки порой сталкиваются с трудностями при производстве основных наномеханизмов, необходимых для выживания, и многие из них «совершают самоубийство». Этот феномен я случайно обнаружил много лет назад, будучи студентом, но не вспоминал о нем на протяжении многих лет, он носит название самопроизвольной гибели клеток.

В реальном мире эта траектория выглядит гораздо более сложной – микроорганизмам неизбежно приходится соревноваться со множеством других микроорганизмов за ресурсы, кроме того, всегда присутствуют хищники и вирусы, контролирующие каждую конкретную популяцию микроорганизмов. В действительности отдельные виды очень редко выходят за пределы фазы экспоненциального роста, чтобы занять доминирующую позицию в океане или ландшафте – разве что они являются привнесенными видами, для которых не существует хищников, или же имеют какие-либо другие уникальные свойства, позволяющие им победить в соревновании с туземными организмами.

Рис. 33. Типичная кривая роста микроорганизмов. После инокуляции клетки переживают латентную фазу, прежде чем начинается экспоненциальный рост. В какой-то момент какое-либо из питательных веществ или других ресурсов (например, свет в случае водорослей) становится ограничивающим фактором, темпы роста снижаются и в конце концов рост прекращается. Это стационарная фаза. В дальнейшем, будучи оставлены на долгий период без пополнения запаса питательных веществ или внесения свежих клеток, клетки начнут гибнуть

Основная концепция о контролирующих и уравновешивающих факторах роста микроорганизмов применима к любому другому организму, включая и нас с вами. Согласно вычислениям ученых, в 1 году н. э. по григорианскому календарю на земном шаре проживало от 250 до 300 млн человек. В 1809 году, когда родился Дарвин, население Земли составляло около 1 млрд. К концу XIX столетия людей было около 1,6 млрд, и общая средняя продолжительность жизни составляла всего лишь около 30 лет. К концу XX столетия численность людей на планете составляла более 6 млрд, а общая продолжительность жизни увеличилась более чем вдвое – до 65 лет. По оценкам, к 2050 году нашу планету будут населять более 9,5 млрд человек, каждому из которых потребуются пища, вода, энергия и одежда. Демографы надеются, что в это время численность человеческой популяции выйдет на плато, но особой уверенности в этом нет.

Рис. 34. Кривая роста человеческой популяции начиная с 1000 года н. э. До промышленной революции и открытия необходимости отделять сточные воды от питьевых человеческая популяция была относительно постоянной, что идентично латентной фазе в микробиотической культуре (см. рис. 33). С середины XIX столетия, однако, человеческая популяция начинает расти по экспоненте. По оценкам демографов, к середине XXI столетия она выйдет на плато при численности приблизительно от 9,5 до 10 млрд человек. Ср. с рис. 33

С учетом такого грандиозного прироста населения возникает вопрос: как мы сможем обеспечить себя всем необходимым? Что-то, несомненно, должно ограничить рост нашей популяции. Будет ли это пища? Вода? Энергия? Жизненное пространство? Достигнет ли рост сопротивляемости микроорганизмов нашим самым современным антибиотикам такой точки, где они снова станут способны убивать нас en masse? Или же мы внесем в микробиотический химизм нашей планеты такие необратимые изменения, в результате которых она станет менее гостеприимной для людей?

Давайте рассмотрим небольшое происшествие, которое привело к значительному изменению нашей планеты, вызванному нами.

В 1859 году – в тот год, когда Биг-Бен прозвонил в первый раз, а лондонское издательство «Джон Мюррей и сыновья» отправило в печать первое издание «Происхождения видов», – по другую сторону Атлантики американский железнодорожный служащий Эдвин Дрейк пробурил первую большую нефтяную скважину возле Титусвилля, штат Пенсильвания. Это событие впоследствии отметит начало современного бума нефтеразведки и в конечном счете нефтедобычи. В то время рынок нефти (английское слово petroleum буквально означает «каменное масло») был весьма невелик. Она применялась главным образом для производства лампового масла – керосина.

Керосиновая лампа была разработана в США Робертом Дитцем, мелким изобретателем из Бруклина, у которого была собственная фабрика по производству масляных ламп. Дитц придумал такую лампу, которая горела ярко и почти не давала дыма. Его лампы оказали на жизнь людей того времени не меньшее влияние, чем изобретенные через сорок лет лампы накаливания; однако непосредственно после их введения в производство Дитцу потребовался источник дешевого топлива. В те времена ламповое масло делалось главным образом из ворвани, особенно той, что добывалась из кашалотов. Титусвилль с успехом предоставил новый источник сырья, из которого можно было делать керосин. В совокупности с выходом на рынок керосиновых ламп Дитца это привело к мгновенному распространению таких ламп по всей стране. Возникновение новой для того времени технологии привело к снижению спроса на китовую ворвань, непреднамеренным результатом чего был полный упадок китобойного промысла во второй половине XIX века. Однако хотя можно считать, что применение керосина в качестве источника освещения спасло китов от полного истребления охотниками, у этого события были и другие, непредвиденные последствия.

К первым десятилетиям XX века нефтяная промышленность стала двигателем экономического роста для стран, в которых стремительно происходила индустриализация. Одним из побочных продуктов дистилляции керосина была высоколетучая жидкость – бензин. В то время на него не было спроса, поэтому его сжигали как отход производства. Однако в конце XIX столетия несколько конструкторов параллельно изобрели, в той или иной форме, двигатель внутреннего сгорания. В 1876 году, после более десяти лет экспериментов, немецкий инженер Николаус Отто с помощью многочисленных коллег успешно разработал двигатель внутреннего сгорания, способный работать на продуктах перегонки нефти. Бензин был настолько дешев, что очень скоро стал наиболее доступным для использования топливом. Бензиновые двигатели оказались гораздо более эффективными, нежели работавшие на угле паровые или газогенераторные, и были быстро приняты к использованию для транспортных целей. Появление новых двигателей привело к огромному спросу на отходы керосиновой промышленности, и для удовлетворения этого спроса нефтяные компании принялись вкладывать крупные суммы в инфраструктуры по очистке нефти и транспортного топлива.

Непреднамеренным и совершенно непредвиденным последствием стремительного сжигания нефти и других ископаемых видов топлива, однако, стало увеличение содержания парниковых газов, в первую очередь углекислого газа. С каждым галлоном сжигаемого бензина из выхлопной трубы автомобиля извергается около 20 фунтов углекислого газа. По дорогам всего мира ездит более миллиарда автомобилей; но это только часть проблемы. На земном шаре существуют обширные запасы угля и природного газа. Все это ископаемое сырье было произведено миллионы лет тому назад и представляет собой резервуар находящихся на хранении энергетических связей. В частности, для нефти эти запасенные энергетические связи являются производными ископаемых водорослей. Мы разработали очень эффективные способы извлечения этих видов топлива. За один год мы можем освоить запас нефти, накопленный за миллион лет; другими словами, водоросли и высшие растения фотосинтезировали на протяжении миллиона лет, чтобы создать количество топлива, которое мы сжигаем за один год.

С начала промышленной революции в середине XIX века концентрация углекислого газа в атмосфере возрастала в геометрической прогрессии – от 280 частей на миллион в 1800 году до более 400 частей на миллион в 2014 году, и в обозримом будущем никакого плато не предвидится. Продолжающееся использование ископаемых видов топлива значительно увеличивает потенциальную вероятность долгосрочного изменения глобального климата, включая потепление и закисление верхних слоев океана, таяние ледников, подъем уровня океана и увеличение частоты и силы штормов. Мы начали вырабатывать собственные отходы, оказывающие губительное влияние на планету, но не знаем легкого способа разрешить эту проблему. Удастся ли нам разработать возобновляемый углеродно-нейтральный вид топлива, который будет экологически устойчив, экономически жизнеспособен и сможет непосредственно заменить нефтепродукты, используя существующую инфраструктуру? Как мы вскоре увидим, большие надежды в деле нашего спасения возлагаются на помощь микроорганизмов. Однако непредвиденные последствия использования ископаемых видов топлива на этом не заканчиваются.

Рис. 35. Изменение концентрации углекислого газа в атмосфере Земли начиная с 1000 года н. э. До промышленной революции концентрация CO2 была относительно постоянной и составляла приблизительно 280 частей на миллион по объему (то есть 0,028 %, в то время как содержание кислорода – 210 тысяч частей на миллион, или 21 %). С началом промышленной революции содержание углекислого газа в атмосфере стало возрастать почти экспоненциально и к 2014 году достигло 400 частей на миллион. В отличие от азота и кислорода углекислый газ относится к парниковым газам, то есть удерживает тепловое излучение. Даже такая относительно небольшая концентрация этого газа в земной атмосфере имеет решающее значение в контролировании климата. Кривая изменения содержания углекислого газа поразительно напоминает график роста населения Земли (см. рис. 34)

Разработка ископаемых видов топлива привела к коренному изменению применяемых нами способов выращивать, убирать, перерабатывать и транспортировать наши продукты питания. На полях, которые прежде распахивались при помощи быков или лошадей, сейчас используются машины с двигателями внутреннего сгорания, работающими на нефтепродуктах. Уборка пшеницы, кукурузы и других зерновых, прежде требовавшая непосильного труда людей, теперь может производиться при помощи механизмов. Зерно может перевозиться на сотни и даже тысячи миль к крупным населенным пунктам, где расположены другие двигатели внутреннего сгорания, обслуживающие центры переработки продуктов. Стоимость продуктов питания снизилась, равно как и число людей, необходимых для их производства. Одновременно стремительно возросла потребность людей в других секторах новой экономики, сначала на большей части территории Европы и Соединенных Штатов, а затем и в других странах. Новые населенные пункты вырастают, становясь крупными городами. Крупные капиталовложения в инфраструктуру, в особенности в системы доставки чистой питьевой воды и удаления сточных вод, повысили продолжительность жизни, а следовательно, теперь появилось гораздо больше ртов, которые нужно кормить.

В конце XIX столетия серьезную озабоченность вызывал тот факт, что в мире могут закончиться удобрения, абсолютно необходимые для производства продуктов питания для индустриализированного мира. Первоначальной формой удобрений, применявшихся во второй половине XIX века, было гуано – высушенный птичий помет. За тысячи лет этот материал скопился во многих местах на побережьях всего мира, и экспорт гуано из Чили, Флориды и нескольких других прибрежных регионов превратился в крупную отрасль промышленности. Однако с ростом численности населения гуано стало потребляться быстрее, чем его могли производить птицы. Стоимость гуано начала возрастать, и пришло понимание необходимости заменителя. Однако чем его можно было заменить?

Одним из наиболее важных растительных питательных веществ, содержащихся в гуано, является аммоний и другие так называемые продукты связывания азота. Изначально азот «связывался» в сложные соединения микроорганизмами в океанах, после чего последовательно переходил к водорослям, затем к мелким животным и в конечном счете к рыбе, которой питаются птицы. В конце XIX века люди не очень хорошо представляли себе, что такое связывание азота. Лишь в 1901 году голландский микробиолог Мартин Бейеринк показал, что бактерии, ассоциированные с корнями бобовых, способны превращать содержащийся в воздухе газообразный азот в форму, которую растение может использовать для роста. Хотя севооборот и помогал возвращать азот в почву (эта методика используется и до сих пор), стало понятно, что без добавления связанного азота извне мы не сможем выращивать достаточно пищи, чтобы прокормить себя.

В 1898 году недавно избранный председатель Лондонского королевского общества – той самой почтенной организации, которая за 274 года до этого издала «Микрографию» Роберта Гука, – опубликовал объявление: «Необходимо найти заменитель аммонию… [ради спасения] Англии и всех цивилизованных стран». Председатель, сэр Уильям Крукс – известный ученый Викторианской эпохи, первооткрыватель химического элемента таллия, интересовавшийся также спиритизмом, – был обеспокоен тем, что, если люди не смогут отыскать способ связывать азот для нужд сельского хозяйства, цивилизованный мир начнет голодать уже в 1930-х годах. Под «цивилизованным миром» сэр Крукс понимал народы, употребляющие в пищу пшеницу, а не «низшие» зерновые – рис и т. п. Оставалось невыясненным, как именно растения связывают азот, но было очевидно, что запасов гуано не хватит навечно. Вызов сэра Крукса был принят учеными-химиками.

В Германии сварливый немецкий еврей Фриц Хабер проделал кропотливую работу, чтобы отыскать химический катализатор, который позволил бы, взяв относительно инертный газ – азот, составляющий 78 % земной атмосферы, – и соединив его с водородом в условиях высоких температуры и давления, получить аммиак, который, будучи растворен в воде, становится ионом аммония. Через несколько лет работы Хабер мог синтезировать около стакана аммония в час при помощи механизма размером с большую коробку. Разумеется, это кажется не таким уж большим достижением, однако реакция работала. Катализатор производился на основе железа; его синтез был относительно несложен, однако чтобы выпустить реакцию на рынок, требовались крупные капиталовложения. Хабер не интересовался продажей чего-либо, будь то аммиак или что-то другое, – он был ученым.

Для Карла Боша, химика-инженера, работавшего в немецкой промышленной химической компании BASF, открытие Хабера явилось мощным стимулом. Он убедил директоров компании заложить опытный завод по производству аммония, который потребовал много энергии, но тем не менее работал. Требовавшийся для реакции водород добывался из угля, который также использовался для нагрева обоих газов в реакционном сосуде для производства аммония. Угля в Германии было много, и BASF предстояло немало обогатиться благодаря владению секретным способом производства удобрений. Реакция Хабера – Боша и по сей день остается – с незначительными поправками – основой мировых ресурсов связанного азота для производства удобрений. Без этого процесса мы почти наверняка не смогли бы прокормить 7,5 млрд людей или даже надеяться прокормить еще на два миллиарда больше в середине XXI столетия.

По существу, человечество изобрело крупные механизмы для связывания азота, обойдя необходимость заботиться о наномеханизмах, разработанных природой в микроорганизмах для абсолютно того же процесса на миллиарды лет раньше. Наши рукотворные машины – самолеты, поезда и автомобили, фабрики по связыванию азота, системы отвода сточных вод, сталелитейные заводы и прочие энерго– и материалоемкие процессы являются относительно недавними творениями. Практически все они были созданы за два последних столетия, с начала промышленной революции, но они не были приспособлены для того, чтобы быть совместимыми с биогеохимическими процессами, установившимися на протяжении последних нескольких сотен миллионов лет земной истории. В результате эти созданные человеком машины стали вносить стремительные изменения в химизм планеты. Понадобится несколько сотен, если не тысяч лет, чтобы микроорганизмы смогли восстановить Землю относительно нового баланса.

Объемы связывания человеком азота значительно превосходят работу всех микроорганизмов на планете, и этот связанный азот смывается с полей всего мира в реки, откуда попадает в прибрежные зоны океанов, где стимулирует цветение водорослей. Цветение водорослей зачастую достигает таких масштабов, что, когда эти организмы гибнут, погружаются и оказываются съеденными другими микроорганизмами, происходят значительные потери кислорода, гибнет рыба и выделяются такие газы, как закись азота – веселящий газ.

В веселящем газе нет ничего особенно веселого. Каждая молекула закиси азота обладает в 300 раз большей способностью задерживать тепловое излучение, нежели молекула углекислого газа; это чрезвычайно мощный парниковый газ. Тем не менее есть и другая сторона проблемы, связанная с поддержанием на Земле сбалансированного рынка электронов в планетарном масштабе.

Во время Первой мировой войны, когда Германия сражалась с французами и британцами, стало не хватать пороха. Ключевым ингредиентом в порохе является селитра, представляющая собой нитрат, калийную соль азотной кислоты.

Рис. 36. Изменение общего количества связанного азота за последнее столетие. До открытия реакции Хабера – Боша по связыванию азота весь азот связывался микроорганизмами, небольшой вклад также вносили молнии. Природное биологическое связывание азота составляет приблизительно 100 тераграмм (1012 грамм) в год (более темная область на рисунке). После введения в эксплуатацию реакции Хабера – Боша производство человеком связанного азота резко увеличилось и в настоящее время превышает природное биологическое связывание азота почти в два раза (более светлая область)

Нитраты – еще один вид молекул со связанным азотом; они образуются, когда микроорганизмы совмещают ион аммония с тремя атомами кислорода. В мире очень немного мест, где можно промышленно добывать нитраты. Соли азотной кислоты хорошо растворимы в воде, и когда идет дождь, нитраты размываются дождевой водой и впитываются в почву или утекают в реки и озера. Основным источником нитратов для Германии был природный резервуар в пустыне Атакама в Чили, самом засушливом месте в мире.

Германии было необходимо защищать свои запасы нитратов во время их транспортировки из Южной Америки в Европу. В 1915 году, во время Первой мировой войны, британский флот уничтожил немецкие военные корабли, защищавшие нитраты. Поставка нитратов в Германию была остановлена, в результате чего застопорилось производство пороха и возник недостаток боеприпасов. Возможно, это послужило ключевым фактором поражения Германии в Первой мировой войне. Однако Гитлер, придя к власти в Германии, потребовал, чтобы компания BASF нашла способ превращать аммиак в нитрат. Немецкие химики повиновались, и в результате основным источником удобрений на мировом рынке по сей день является нитрат аммония – вещество, не существующее в природе (и чрезвычайно взрывоопасное). В основе производства нитрата аммония лежала реакция Хабера – Боша, которая обошла все микроорганические реакции в природе.

Куда в конечном счете девается весь излишек азота, синтезированного людьми ради пропитания? За удаление избыточного азота из озер, рек и океанов мира отвечают микроорганизмы. Это они, сами того не зная, являются переработчиками наших отходов в глобальном масштабе. В целом микроорганизмы превращают около 25 % азота, применяемого нами как удобрение, в нитраты и затем далее в газообразный азот; кроме того, небольшая часть уходит на образование закиси азота. Тот же процесс происходит при переработке стоков.

Расхищая во все возрастающих масштабах планетарные ресурсы ради производства пищи и удовлетворения своих нужд и прихотей, человек повлиял не только на углеродный и азотный циклы, но практически на все природные циклы химических элементов. Результатом стало стремительное и масштабное искажение основных биогеохимических циклов на всем земном шаре. Равновесие в этих циклах, контролируемое и поддерживаемое главным образом микроорганизмами в совокупности с геологическими процессами, было подорвано людьми в беспрецедентном масштабе на протяжении очень короткого временного периода. В результате природные циклы углерода, азота, серы и многих других элементов оказались разъединены – под этим я подразумеваю, что изменения циклов становятся все более независимы друг от друга. Так, до эволюционного развития человека углеродный и азотный циклы были теснейшим образом связаны. В те времена не было массового смыва азота в реки и океаны. В индустриальном мире производство аммония не имеет прямой связи с темпом сжигания ископаемых видов топлива.

Не катимся ли мы по наклонной плоскости? Могут ли люди населять планету совместно с микроорганизмами, не истребляя так много ресурсов и не нарушая химизм Земли так стремительно? И если да, то как нам вступить на этот путь?

Один подход, воспринимаемый все более серьезно, состоит в том, чтобы убедить микроорганизмы выполнять наши задания. Появилась отдельная научная отрасль – синтетическая биология, посвященная попыткам перестроить метаболизм микроорганизмов так, чтобы они могли связывать азот на порядки быстрее, чем делают это естественным путем, или же найти замену нефтепродуктам, или синтезировать белок, который смог бы послужить сырьем для искусственного мяса. Давайте проследим, как такой подход смог заронить в людях надежду.

Глава 10. Саботажники

В процессе человеческой эволюции мы превратились в маньяков, одержимых стремлением контролировать весь окружающий мир. Тысячелетиями мы выращивали и отбирали животных и растения, расчищали землю, создавали новые материалы, строили здания. Мы повернули русла рек, чтобы контролировать распределение воды на континентах, построили стены, чтобы сдерживать море. Мы сконструировали машины для перевозки пищи, материалов и нас самих во все уголки планеты. И разумеется, не следует удивляться, что на протяжении нескольких коротких десятилетий мы пришли также к тому, чтобы самим программировать микроорганизмы. Как будет показано далее, современные ученые пытаются перемещать, совершенствовать или блокировать гены с целью заставить микроорганизмы работать на нас без необходимости возиться с естественным отбором. Мы станем творцами микробиотического метаболизма и будем конструировать микроорганизмы для выполнения наших приказов. У нас есть соответствующие возможности, но эти возможности, судя по всему, не сопровождаются пониманием потенциальных сокрушительных последствий таких действий для эволюции микробиотической жизни, не говоря уже о нашей роли в изменении вектора развития планеты.

Более двух десятилетий я работал в правительственной национальной лаборатории, финансируемой в первую очередь министерством энергетики и его дочерними агентствами. Национальные лаборатории были задуманы и разработаны с намерением воплощать в жизнь перспективные идеи в физике и химии; многие справедливо связывают их с разработкой и изготовлением атомного оружия, что и было их изначальной целью. Тем не менее национальные лаборатории также часто оснащены мощными компьютерами и другими приборами, такими как высокоэнергетические коллайдеры, предназначенные для выяснения природы материи, и невероятно мощными микроскопами; там инженеры работают совместно с учеными над развитием технологий, ведущих к новым открытиям.

Каждую неделю я обедал вместе с химиками и физиками, работавшими над созданием атомной бомбы вместе с Оппенгеймером, Ферми, Юри и Сиборгом. Как правило, большинство моих сотрапезников смотрело на биологию как на нечто побочное, второстепенное. В отличие от физиков биологам редко требовалась аппаратура, на постройку которой были нужны десятки, если не сотни, миллионов долларов. Они не мыслили столь крупномасштабно, как физики или даже химики. Однако в начале 1980-х годов несколько ученых в министерстве энергетики поставили перед биологами важную задачу: секвенировать человеческий геном. Основная идея состояла в том, чтобы разработать технологии для быстрого и дешевого определения последовательностей геномов живых организмов и извлечь из этих последовательностей полезную информацию.

Первоначальный ответ был не очень обнадеживающим. Предложение не было основано на какой-либо конкретной гипотезе – а большинство биологов привыкло планировать свои исследования именно так – скорее, просто на желании собрать и проанализировать большое количество генетической информации. Однако когда эта идея понемногу прижилась в умах, она не только преобразовала наше представление о человеческом геноме, но также в корне изменила наш взгляд на микроорганизмы в окружающем мире. Зарождающаяся отрасль молекулярной биологии начала стремительно развиваться, впоследствии превратившись в один из краеугольных камней биологических исследований.

Множество ученых внесли свой вклад в развитие молекулярной биологии со времен ее первоначальной фазы экспоненциального роста, и попытка перечислить основные исторические вехи неизбежно будет изобиловать пропусками. Тем не менее можно назвать три основных открытия, которым немало способствовали другие фундаментальные открытия XX столетия и которые дали нам возможность произвольно осуществлять горизонтальный перенос генов у микроорганизмов и тем самым потенциально изменять ход эволюции. Концепция горизонтального переноса генов очень проста: как мы уже видели, микроорганизмы постоянно перемещают гены из одного организма в другой. Однако мысль о том, что это сможет делать человек, не связываясь с запутанными проблемами пола и естественного отбора, означала, что мы потенциально имеем возможность «конструировать» микроорганизмы. Мой выбор ключевых событий, которые привели к зарождению и развитию генной инженерии, основывается на представлении о том, что история отражает наше будущее как вида и наши надежды на то, что микроорганизмы окажутся нашими спасителями.

Одно из важнейших открытий было сделано врачом Освальдом Эйвери, канадцем по происхождению, работавшим в Рокфеллеровской больнице (сейчас она входит в состав Рокфеллеровского университета – там же работал и Паладе, первооткрыватель рибосом), который совместно с Колином Маклаудом и Маклином Маккарти в 1944 году сообщил, что ДНК является носителем генетической информации. Первые эксперименты были достаточно просты, но весьма содержательны. Эйвери и его коллеги прибегли к методике трансформации, открытой в 1928 году и по сей день являющейся краеугольным камнем экспериментов по горизонтальному переносу генов. Выше мы уже упоминали трансформацию, когда говорили о горизонтальном переносе генов в консорциях, но не описывали в подробностях, как она работает.

Уже много лет микробиологи знали, что существует несколько штаммов, или серотипов, микроорганизмов, имеющих общее генетическое прошлое. В самом деле, в случае Escherichia coli, которая впервые была открыта в 1895 году немецким врачом Теодором Эшерихом в фекалиях здорового человека, позднее выяснилось, что некоторые разновидности, казалось бы, той же самой бактерии при попадании в пищу могут привести к смерти. Аналогичным образом британский микробиолог Фредерик Гриффит обнаружил, что бактерия Streptococcus pneumoniae, возбудитель пневмонии, присутствует и у здоровых людей, не вызывая заболевания.

Гриффит изолировал болезнетворный штамм, убил микроорганизмы посредством нагревания, после чего ввел их мышам. Мыши выжили. Однако когда он смешал убитый теплом болезнетворный штамм с безопасным, но живым и ввел эту смесь мышам, те погибли. Гриффит не имел представления о том, что происходит на молекулярном уровне, и назвал это явление «феноменом трансформации». По сути, Гриффит смог трансформировать неболезнетворную форму микроорганизмов в болезнетворную при помощи взвеси мертвых болезнетворных микроорганизмов. Это выглядело почти как магия. Он опубликовал полученные результаты в 1928 году, указав в качестве места своей работы «патологическую лабораторию министерства», – очевидно, ироническое значение слова «патологический» также эволюционировало за последнее столетие.

Освальд Эйвери, чрезвычайно скептически настроенный относительно экспериментов Гриффита, взялся их повторить. Потратив довольно много времени, он заключил, что Гриффит, который был весьма скрупулезным исследователем, оказался прав. Так что же произошло?

Для того чтобы идентифицировать агент трансформации, Эйвери и его коллеги культивировали бульон с мертвыми бактериями, изолированными из болезнетворного штамма, совместно с ферментами, которые могли переваривать белки. В то время большинство биохимиков считали, что именно белки являются носителями генетической информации, поскольку они были найдены в хромосомах эукариотических клеток и, будучи составлены из двадцати различных аминокислот, обладали достаточной вариативностью для объяснения наследуемости свойств; таким образом, логично было заключить, что эти молекулы несли в себе ключ к генетической информации. Эйвери и его сотрудники повторили эксперимент Гриффита, но с поправкой: когда они культивировали убитый теплом болезнетворный штамм бактерий вместе с ферментами, поглощавшими белки или РНК, и затем вводили раствор мышам, мыши погибали; однако если они добавляли фермент, поглощавший ДНК, мыши оставались живы. Эйвери сделал вывод, что именно ДНК передавала генетическую информацию от мертвого болезнетворного штамма безопасному штамму. Это было замечательным открытием, поскольку благодаря ему внимание научного мира было обращено на природу ДНК. Однако не менее примечательным был и тот факт, что Эйвери и его сотрудники практически не добились признания современников – и это еще мягко сказано. Их работа была почти проигнорирована. Представление о том, что белки являются носителями генетической информации, было настолько укоренившимся, что результаты Эйвери и его коллег сочли ошибкой в эксперименте. Это может служить примером когнитивного диссонанса в современном академическом мире. Многие биохимики решили, что трансформанты, полученные Эйвери и его сотрудниками, скорее всего, содержали следы белков.

И здесь на сцену выходит Джошуа Ледерберг, гениальный сын раввина, уроженец Нью-Джерси, выросший в нью-йоркском районе Вашингтон-Хайтс и проведший большую часть своей молодости в библиотеках. Приняв доклад Эйвери всерьез, Ледерберг решил отыскать действующий фактор трансформации и в своем поиске в буквальном смысле трансформировал биологию, открыв миру «магию» микробиологической трансформации. Вместе со своей женой Эстер он внедрял в бактерии частицы вирусов, содержащие генетическую информацию, – процесс, который мы сейчас называем трансдукцией, ставший фирменным знаком генной инженерии. В основе этого процесса лежит внедрение в бактерию кольцевого участка ДНК – Ледерберг назвал эти частицы плазмидами. Плазмида могла воспроизводиться внутри бактерии, но только вне ее хромосом. Она являлась чужеземным захватчиком, способным воспользоваться репликационной системой бактерии, чтобы реплицировать свою чужеродную молекулу внутри микроорганизма-хозяина. Ледерберг обнаружил, что плазмиды могут сделать бактерию-хозяина устойчивой к смерти от антибиотиков. С этим открытием Ледерберг стал пионером искусственного горизонтального переноса генов в лаборатории, что дало людям новый способ вмешиваться в эволюцию микроорганизмов. Ледерберг был удостоен Нобелевской премии в возрасте тридцати трех лет.

На основе работ Ледерберга и других ученых нынешние биологи могут намеренно внедрять гены практически в любой организм по своему выбору. В принципе, люди могли бы стать владыками биологической вселенной. Впоследствии за геномами организмов начнут охотиться, словно за дикими животными, ради собственной пользы – чтобы отыскать новое лекарство или ген, который сможет обеспечить долгую жизнь, сопротивляясь болезням или излечивая их. (Есть некоторая ирония в том, что Ледерберг умер в возрасте восьмидесяти двух лет от пневмонии – заболевания, возбуждаемого первым микроорганизмом, который он изучил, будучи студентом.) Однако для того чтобы конструировать организмы посредством трансформации, необходимо было понять, как именно ДНК кодирует определенные белки. Будучи генными инженерами, мы должны были выяснить, как природа создает гены.

История открытия структуры ДНК стала легендой, и оно поистине было легендарным. ДНК – это полимер, состоящий всего лишь из четырех повторяющихся циклических молекул – нуклеотидов, соединенных пятиуглеродным сахаром при помощи фосфатных связей и формирующих цепочку. Единственные вариации в пределах этой цепочки возможны в основаниях – и с учетом того, что их всего лишь четыре, ДНК может показаться не очень интересным соединением. Однако если Эйвери и Ледерберг были правы, то структура ДНК должна была открыть людям «магию». Тем не менее поначалу ничего подобного не случилось.

Знания о фундаментальной структуре молекулы ДНК основывались на одном-единственном дифракционном рентгеновском снимке, сделанном в 1952 году Розалиндой Франклин и Реймондом Гослингом из лондонского Королевского колледжа. В следующем, 1953 году, 25 апреля, уважаемый английский журнал Nature опубликовал серию последовательных статей. Первая из них, написанная Фрэнсисом Криком и Джеймсом Уотсоном из Кембриджского университета, предлагала модель структуры ДНК, основанную на до той поры не опубликованных рентгеновских изображениях, сделанных Уилкинсом и Франклин. Вторая статья, написанная независимо, была от лаборатории Мориса Уилкинса в Лондонском королевском колледже – в ней вниманию читателей предлагалось грубое рентгеновское изображение этой молекулы. К третьей статье, написанной Франклин и Гослингом, прилагался более четкий дифракционный снимок, полученный ими самими. Во всех трех статьях делалось заключение о том, что молекула, вероятно, представляет собой спираль, но Уотсон, Крик и Уилкинс предположили также, что спираль может быть двойной. За открытие структуры ДНК Крик, Уотсон и Уилкинс в 1962 году разделили между собой Нобелевскую премию. Франклин умерла в 1958 году от рака яичников в возрасте тридцати семи лет, ввиду чего не смогла войти в число кандидатов на ее получение.

К тому времени стало очевидно, что молекула ДНК является ключом к наследованию информации. Каким-то образом она кодировала последовательность аминокислот в белках, но реконструкция на основе анализа рентгеновских дифракционных снимков оставляла совершенно не очевидным ответ на вопрос, как может структура ДНК содержать необходимую информацию для синтеза белков. В ДНК содержится всего лишь четыре различных нуклеотида. Как могут четыре нуклеотида кодировать информационную систему, приводящую к образованию белков, имеющих двадцать аминокислот в весьма определенных последовательностях?

Истолкование генетического кода было, возможно, еще более хитроумной задачей, нежели истолкование структуры ДНК. Вслед за работой Эйвери и его коллег и структурным анализом двойной спирали, проведенным Франклин, Гослингом, Уилкинсом, Уотсоном и Криком, быстро пришло понимание того, что если в ДНК содержится всего лишь четыре нуклеотида, а в белках – двадцать аминокислот, то каждую аминокислоту должен кодировать больше чем один нуклеотид. Нуклеотидов должно было быть самое меньшее три – такая логика основывалась на простых расчетах. Если бы нуклеотидов было только два, то все возможные комбинации давали бы 42 = 16 аминокислот, а этого далеко не достаточно. Если же, однако, взять три нуклеотида, то возможных комбинаций будет 43 = 64, и этого уже более чем достаточно. Используя метод внедрения и последующего удаления одиночного нуклеотида в вирус, заражавший E. coli, команда ученых под руководством Фрэнсиса Крика, включавшая в себя также известного борца с традициями Сиднея Бреннера, расшифровала генетический код этой бактерии. Они показали, что набор из трех нуклеотидов в очень специфической последовательности ДНК определяет конкретную аминокислоту. Их работа была в буквальном смысле расшифровкой кода, этого Розеттского камня, ради понимания механизма наследования жизни. Тем не менее возникли и некоторые затруднения.

Для большинства аминокислот более чем один набор из трех нуклеотидов, составляющих последовательность, кодирует одну и ту же аминокислоту. Зная последовательность ДНК, можно вывести аминокислотную последовательность белка, кодирующегося этим геном. Однако эта информация будет вырожденной, то есть мы не можем вывести точную последовательность ДНК, зная последовательность белков. Знание «слов» одного языка в мире ДНК определяет одно значение в аминокислотном мире белков. Но знание «слов» аминокислот белков не обеспечивает адекватного перевода на язык ДНК. Главная проблема понимания того, как функционируют все живые организмы, очевидно, заключалась в том, какие инструкции закодированы в ДНК. И эта проблема вела к новой технической задаче – секвенированию ДНК.

Белки, РНК и ДНК являются полимерами, а секвенирование любого биологического полимера представляет собой серьезный вызов: реакция должна отсекать каждый из мономеров родительского полимера в определенном порядке. Секвенирование же ДНК имело еще одну дополнительную сложность, поскольку этот полимер имеет двойную структуру, и, хотя можно было секвенировать однонитевую РНК, основы ее химизма неприменимы к ДНК непосредственно.

Рис. 37. Кодоновое колесо – Розеттский камень, указывающий, как индивидуальные основания, или нуклеотиды, в составе ДНК кодируют конкретные аминокислоты в белке. Код каждой аминокислоты содержится в последовательности из трех нуклеотидов, которая называется кодоном. Двигаясь от центра колеса наружу, можно определить, какая аминокислота закодирована каждой из последовательностей ДНК. Например, последовательность AGC кодирует аминокислоту серин, а последовательность ACC – треонин. Для всех аминокислот, за исключением метионина и триптофана, существует более одного возможного кодона

За эту проблему брались несколько ученых-химиков, первым среди которых был Фредерик Сэнгер, английский биохимик из Кембриджского университета, уже получивший в 1958 году Нобелевскую премию по химии за разработку методики секвенирования белков. Сэнгер и его коллеги разработали метод секвенирования ДНК, предполагавший вначале разделение двух нитей и затем химическое разбиение последовательности в случайном порядке, на любом из четырех нуклеотидов в цепочке. После этого было необходимо найти молекулярную массу того, что осталось после химической реакции. Молекулярная масса продуктов определялась посредством отделения каждого из них согласно размеру в большом объеме геля. Через гель пропускался электрический ток, ввиду чего разрезанные кусочки ДНК были принуждены двигаться через гель. Самые маленькие кусочки двигались быстрее и, следовательно, дальше, чем более крупные; измеряя, насколько далеко продвинулся тот или иной кусочек, можно было вычислить, какой нуклеотид оказался на первом месте, какой – на втором, третьем и так далее. Применив эту методику, Сэнгер и его коллеги смогли секвенировать вирус PhiX174, содержащий 5375 нуклеотидов.

Их работа, опубликованная в 1977 году, была первой в истории записью геномной последовательности ДНК. Метод Сэнгера в конце концов привел к появлению технологии, позволившей секвенировать геном человека. В 1980 году Сэнгер получил вторую в своей жизни Нобелевскую премию по химии, разделив ее с Уолтером Гилбертом, независимо от него открывшим другой, несколько более трудоемкий метод секвенирования ДНК. Был и третий участник, разделивший с ними премию, – Пол Берг, биохимик из Стэнфордского университета, открывший процесс создания молекул ДНК из двух или более источников – молекул, не существующих в природе. Такие рукотворные молекулы ДНК называются рекомбинантной ДНК. Открытия этих трех ученых изменили мир не меньше, а, вероятно, даже больше, чем открытие структуры ДНК.

Разработанная Сэнгером базовая методика секвенирования посредством «обрыва цепи» не могла применяться к длинным последовательностям ДНК. Для того чтобы подступиться к проблеме секвенирования человеческого генома, содержащего 23 хромосомы, ДНК следовало разрезать на более мелкие куски. Отдельные куски уже можно было секвенировать, после чего перекрывающиеся случайные последовательности сверялись и по ним реконструировался весь геном. Этот метод, которому было дано название «метод дробовика» (термин, предложенный самим Сэнгером), был вначале разработан для микроорганизмов, а затем его применил к человеческому геному Дж. Крейг Вентер с коллегами. В самом деле, если технические аспекты секвенирования были сами по себе достаточно сложны, то реконструирование порядка генов в каждой хромосоме представляло собой еще более трудную задачу. Эта работа, на завершение которой ушло несколько лет, показала, что наш геном содержит более 3,2 млрд пар оснований, но лишь около 1,5 % из них кодируют белки. Это был один из самых больших сюрпризов, преподнесенных проектом по секвенированию человеческого генома, – у нас, оказывается, всего лишь около 20 тысяч генов, кодирующих белок, – гораздо меньше, чем предсказывалось до того, как геном был секвенирован, и всего лишь на один-два порядка больше, чем у обычных червей. Таким образом, более 97 % нашего генома содержат некодирующие области, которых нет у микроорганизмов.

Как ни парадоксально, секвенирование человеческого генома раскрыло, как относительно небольшие генетические изменения могут привести к более высокой организационной структуре животного. Важнейшие инструкции по сборке механизмов, снабжающих нас энергией и обеспечивающих синтез белков, транспортировку ионов и основной метаболизм, – все опираются на генетические платформы, унаследованные от микроорганизмов и сложившиеся миллиарды лет тому назад.

Благодаря материальной поддержке, оказанной министерством энергетики проекту по секвенированию человеческого генома, появилась возможность вкладывать крупные суммы в создание аппаратуры, которая позволила бы автоматизировать процесс секвенирования ДНК. Действительно, для меня и моих коллег в Ратгерском университете секвенирование генома является повседневной работой, и стоимость этой операции невообразимо мала. Когда Сэнгер впервые начал секвенировать ДНК, она составляла около 75 центов за нуклеотид, а к 2014 году упала до менее чем 0,001 цента. В 2002 году, когда проект «Геном человека» находился на стадии разработки, было определено, что стоимость секвенирования человеческого генома составит 100 млн долларов; сейчас эта цифра приближается к 1000 долларов и почти наверняка еще более снизится в ближайшие годы.

Невероятному снижению стоимости секвенирования содействовало огромное увеличение мощности компьютерной техники и взаимосвязанности компьютеров. Используя Интернет, последовательности ДНК теперь можно пересылать в реальном времени, так что подбор наилучшего соответствия с уже секвенированными молекулами ДНК занимает миллисекунды, и для только что расшифрованной последовательности сразу может быть определена ее вероятная функция внутри клетки.

С возросшими способностями компьютерной техники пришли более эффективные и дешевые технологии секвенирования и новые алгоритмы поиска генов. Фактически технологии стали настолько дешевыми, а аппаратура – настолько распространенной, что в национальных лабораториях США образовались избыточные мощности. Этот избыток мощностей секвенирования вскоре стремительно распространился по всему миру – на Францию, Германию, Великобританию, Китай, Японию, Корею и Индию. Как его использовать?

Вскоре после того, как проект «Геном человека» начал воплощаться в жизнь, Дэвид Галас, возглавлявший эту программу в министерстве энергетики в Вашингтоне, посетил Брукхэвенскую национальную лабораторию, чтобы узнать, чем занимаются тамошние биологи. Директор лаборатории попросил меня подготовить короткую презентацию, посвященную моей работе по выяснению механизма, позволяющего определенному виду одноклеточных водорослей синтезировать большее или меньшее количество определенных белков в ответ на изменение освещения – феномен, чрезвычайно важный для океанического фитопланктона. Галас спросил, не соглашусь ли я провести встречу, чтобы рассмотреть вопрос о том, как новые технологии секвенирования и компьютерные технологии могут применяться для изучения распределения микроорганизмов в окружающей среде. Я с радостью принял это предложение.

На заседании, где присутствовало около шестидесяти моих коллег из разных частей страны, я выступил с обстоятельным докладом. В конечном счете мы пришли к массовому секвенированию ДНК микроорганизмов в океанах, почвах, воздухе, озерах, горных породах, ледниках – практически во всех возможных местах обитания. В результате геномные последовательности океанических микроорганизмов анализируются с немыслимой скоростью; уже идентифицированы десятки миллионов новых генов. По существу эта информация представляет собой сокровищницу нетронутого биологического потенциала, который может быть мобилизован с целью выполнения любых поставленных нами задач в области генной инженерии микроорганизмов.

Буквально одним щелчком электронного прибора последовательность гена или множества генов – да что там, целого генома – может быть переслана через весь мир для анализа, переформирования и перераспределения. Едва ли не любой из генов может быть синтезирован и внедрен в микроорганизм. Такой свободный обмен генными функциями не знает границ; он привел к дальнейшему наращиванию войны с микроорганизмами.

Ввиду того что секвенирование генов и геномов к началу XXI столетия стало настолько дешевым и эффективным, ученые перешли от секвенирования геномов одиночных организмов к секвенированию геномов естественных микробиотических сообществ практически в любых местообитаниях, представляющих потенциальный интерес. Списки генов, определенных компьютерными алгоритмами, стали стремительно пополняться. На планете были идентифицированы десятки миллионов генов микроорганизмов, и пока не похоже, чтобы темпы их обнаружения замедлялись. Эта генная библиотека представляет собой «список запчастей», из которых можно сделать любой созданный природой белок, присутствующий в ныне живущих организмах. Но можем ли мы создавать новые части – такие, которые не существуют и никогда не существовали в природе?

Коротко говоря, да.

Одна из отраслей биологической науки сейчас ищет способы конструировать микроорганизмы, направлять обмен веществ и запускать внутри микроорганизмов новые процессы, чтобы добиться от них большей эффективности или придать им новые качества, которых они не имели прежде. Сможем ли мы создать организм, который сможет перерабатывать пластмассу? Или нейтрализовать радиоактивные вещества в почве? Получится ли у нас разработать альтернативный вид топлива? Или новый тип строительных материалов? Все эти вопросы – не плод теоретических размышлений. Все это уже происходит в реальности.

Тысячи лабораторий по всему миру используют плазмиды Ледерберга и рекомбинантную ДНК Пола Берга, чтобы внедрять один или несколько генов в микроорганизмы. Подавляющее большинство этих экспериментов безвредны и проводятся для проверки гипотез касательно функционирования конкретных генов. Однако значительная часть горизонтальных генных переносов осуществляется для манипуляции теми или иными природными реакциями, которые мы хотим изменить, например создав с нуля новый фотосинтезирующий организм.

Секвенирование человеческого генома обнаружило, что у нас практически нет уникальных генов. Если людей не станет, мир микроорганизмов будет по-прежнему функционировать, придя к новым устойчивым состояниям, и благодаря их метаболизму наша планета будет оставаться обитаемой. В самом деле, с эволюционной точки зрения человеческая эволюция представляет собой лишь временное нарушение биологически выраженного круговорота химических реакций. Коротко говоря, мы – выродки природы, нарушающие естественные геохимические циклы. Тем не менее мы нуждаемся в микроорганизмах.

Мы саботируем микробиологическую эволюцию – и сами не понимаем, что делаем. Попытки, предпринятые в этом направлении, все еще остаются чисто теоретическими упражнениями, но они не тривиальны. Так, Дж. Крейг Вентер со своими коллегами работал над созданием микроорганизма, в котором генетическая информация будет полностью сконструирована человеком при помощи компьютерных технологий, синтезирована в лаборатории и введена в клетку-хозяина, генетически запрограммированную на уничтожение собственной генетической информации. Клетка-хозяин превращается всего лишь в контейнер для полностью рукотворного генома.

Биологов, занимающихся синтезом, чаще всего не заботит состояние экосистем Земли – они сосредоточены на том, чтобы создать микроорганизм, который будет более эффективно фиксировать азот, или, еще лучше, запихнуть гены, отвечающие за связывание азота, непосредственно в зерновые культуры, от которых зависит наше пропитание. Они хотят сделать такой рубиско, который сможет отличать углекислый газ от кислорода, и распространить этот новый и «лучший» рубиско по всему растительному миру. Список изменений, которые ежедневно пытаются навязать микроорганизмам и другим живым существам, практически бесконечен. Большинство из этих попыток совершаются с благородными целями в стремлении к такому будущему, которое обеспечит выживание людям, но при этом очень редко принимаются во внимание непредвиденные последствия подобного недомыслия для эволюционного пути жизни на Земле.

Человек – животное, живущее на этой планете лишь временно, и за нашу короткую историю мы стали одной из наиболее разрушительных биологических сил, начиная с тех пор, когда цианобактерии стали производить кислород в качестве побочного продукта своего метаболизма. Мы – современные биологические большевики. Подобно цианобактериям, мы можем открыть ящик Пандоры, выпустив на волю множество непреднамеренных последствий. Я утверждаю, что, вместо того чтобы вмешиваться в жизнедеятельность организмов, гораздо лучше было бы применить наши интеллектуальные способности и технологические возможности, чтобы добиться лучшего понимания ключевых наномеханизмов, возникших в процессе эволюции, и того, как эти механизмы распространились по всей планете и стали двигателями жизни. Почему это так?

Микроорганизмы – служители этой планеты, и мы почти не понимаем, как они смогли развиться в систему по перемещению электронов и элементов по ее поверхности. А ведь в конечном счете этот поток электронов сделал Землю обитаемой и для нас. Мы имеем лишь самые поверхностные представления о том, как работает этот электронный круговорот, и тем более не знаем, как его контролировать, однако наша гордыня и неистощимая потребность в новых ресурсах заставляют нас вмешиваться в его работу, которую мы неосторожно нарушаем. К счастью, в контролируемый микроорганизмами электронный круговорот встроено столько избыточной информации, что для нас практически невозможно нанести ему серьезные повреждения, но мы не прекращаем попытки это сделать.

В ходе своей эволюции микроорганизмы сделали эту планету обитаемой как для самих себя, так и в конечном счете для нас. Мы лишь пассажиры в этом путешествии; тем не менее мы позволяем себе вмешиваться в действия тех, кто его контролирует. Если мы не будем сдерживать себя, то рано или поздно неизбежно создадим и выпустим на волю микроорганизмы, способные фундаментально нарушить баланс электронов в глобальном электронном круговороте. Это чревато катастрофой.

Глава 11. Бактерии на Марсе и бабочки на Венере?

В науке немного вопросов настолько же фундаментальных, как вопрос: «Одни ли мы в этом мире?»

Ответ на этот вопрос, возможно, навсегда изменит наши представления о самих себе. Если мы не одни, то какие формы жизни еще существуют? Как они возникли? Каковы условия на их родной планете? Пытаясь понять, как возникла жизнь на нашей планете и как получилось, что различные случайно образовавшиеся наномеханизмы оказались внедрены во все организмы, когда-либо существовавшие и продолжающие жить на Земле, мы также спрашиваем себя: «Возможно ли, что подобные же наномеханизмы возникли и на других планетах нашей Солнечной системы или на планетах, обращающихся вокруг других звезд в далеком космосе? И если да, то как мы можем это выяснить?»

С тех пор как Галилей обнаружил, что луны Юпитера обращаются вокруг этой планеты и что Земля не является центром Вселенной, мы прошли долгий путь к осознанию того, что наша планета – всего лишь островок жизни в океане небесного тумана. Для нас почти невозможно во всей полноте осознать порядки величин, необходимые, чтобы достичь границ света, испускаемого звездами, которые были рождены в одном изначальном взрыве около 14 млрд лет тому назад. Хотя наши телескопы стали невероятно сложными приборами, глядящими в бесконечное пространство, их разрешение все так же не позволяет разглядеть планеты, находящиеся в нескольких световых годах от нас, как и разрешение лучших телескопов в начале XXI столетия. Мы можем видеть, как объекты движутся, и оценить их размеры, но по-прежнему не можем сказать, существует ли жизнь вне Земли. Мы по-прежнему так и не знаем, одни ли мы во Вселенной.

Исходя из научных данных (которые лишь немногие люди до конца понимают, если понимают вообще) теперь принято считать, что Вселенная расширяется и что она содержит в себе миллиарды галактик. Однако на данный момент мы можем утверждать, что наша планета, судя по всему, является уникальной. Это единственная из всех известных нам планет, где существует жизнь. И каждая мельчайшая частица этой жизни обязана своим существованием тем микроорганическим наномеханизмам, что вырабатывают газы, являющиеся прямым признаком существования жизни. Эта планета не только пригодна для обитания – она обитаема.

Вопрос об исключительности Земли преследовал меня почти всю жизнь, как и многих из нас. Это вопрос, который задают многие дети по всему миру, когда глядят на звезды и гадают, как зародилась жизнь на нашей планете. Это вопрос, на который возможно найти ответ, и этот ответ, несомненно, заключен в истории эволюции микроорганизмов и их наномеханизмов, создавших глобальный электронный рынок, который в свою очередь изменил состав планетарной атмосферы, а тем самым и саму планету.

В нашей Солнечной системе есть две соседние с нами планеты, которых мы можем достичь в обозримый период времени при помощи спускаемых аппаратов с ракетным двигателем, – Венера и Марс. Сейчас эти две планеты очень сильно отличаются от Земли, но, возможно, около трех миллиардов лет тому назад это было не так.

Хотя масса Венеры составляет немногим больше 80 % массы Земли, на ее поверхности нет жидкой воды. В настоящий момент Венера покрыта чрезвычайно плотным слоем углекислого газа, выбрасываемого тысячами вулканов. Слой газов настолько толстый, что атмосферное давление на поверхности Венеры приблизительно в 100 раз превышает земное. Если бы мы оказались на поверхности Венеры, то испытали бы на себе давление, сравнимое с тем, что существует в земных океанах на глубине 1000 м. Нас расплющило бы до одной десятой нашего нынешнего размера. Правда, при этом мы бы еще и сварились.

Поскольку углекислый газ принадлежит к числу парниковых, его толстый слой задерживает и поглощает солнечное излучение, делая Венеру самым жарким местом в нашей Солнечной системе. Там настолько жарко, что свинец на ее поверхности сразу бы расплавился. Однако существуют свидетельства того, что в своей ранней истории Венера была гораздо холоднее и, возможно, на ее поверхности имелась жидкая вода. Существовала ли там когда-либо жизнь – вопрос открытый, но в настоящий момент ввиду чрезвычайно высокой температуры на ее поверхности и изменениям, произошедшим в рельефе, весьма маловероятно, что беспилотный посадочный модуль сможет найти какие-либо свидетельства некогда существовавшей там жизни. С Марсом, однако, другая история.

Сегодня Марс – очень холодная и сухая планета с очень тонким слоем атмосферы. Однако она также гораздо меньше Земли, и в ее радиоактивном ядре закончилось топливо, разогревавшее внутренности планеты в достаточной степени, чтобы извергать наружу углекислый и другие газы, столь необходимые для жизни. На Марсе сколь-нибудь значимая вулканическая активность отсутствует уже более 500 млн лет. Его поверхность покрыта лавовыми потоками от прежних вулканических извержений и частицами песка и пыли, а также усеяна валунами и кратерами. На протяжении нескольких десятилетий Марс был первоочередной целью для проектов по изучению внеземной жизни. Судя по всем параметрам, жизнь могла бы развиться и на Марсе, и на Венере, так же как и на Земле, – но, по-видимому, только Земля выиграла в этой лотерее.

Хотя мы, возможно, и одержимы стремлением все контролировать, вместе с тем мы чувствуем себя неуверенно и желаем удостовериться в том, что если мы разрушим эту планету, то сможем найти себе дом на одной из соседних. Марс кажется наиболее подходящим кандидатом для этой цели.

В 1975 году, шесть лет спустя после того, как человек впервые в истории ступил на поверхность Луны, НАСА с трехнедельным промежутком отправило к Марсу два спутника. Эти два космических аппарата, «Викинг-1» и «Викинг-2», были на то время самым амбициозным предприятием в космической программе. Каждый из них состоял из двух составляющих – орбитальной станции и спускаемого модуля. За последующие четыре года орбитальные станции сделали более 50 тысяч фотографий Марса и картировали поверхность планеты. Модули тоже не были просто объектами для демонстрации – они были экипированы инструментами, предназначенными для поиска признаков жизни на красной планете, существующей сейчас или существовавшей в прошлом. Говоря конкретнее, эти инструменты были сконструированы для поиска свидетельств существования микроорганизмов посредством отслеживания в марсианской почве газов, которые те потенциально могли вырабатывать, а также выяснения, какие типы органических соединений они могли потреблять или синтезировать.

Биологические аспекты программы были крайне амбициозными. Проект возглавлял Джеральд (Джерри) Соффен – биолог, прошедший обучение в Принстоне. Во время Второй мировой войны Джерри, безоружный шофер санитарной машины американской армии, говоря на идише с кливлендским акцентом, сумел убедить взвод немецких солдат сдаться, чтобы избежать истребления наступающими советскими войсками. Имея такой опыт, ему было нетрудно убедить руководство НАСА в необходимости попытки доказать существование – нынешнее или в прошлом – жизни за пределами Земли.

На тот момент отправка «Викингов» на Марс стоила более миллиарда долларов. Джерри собрал научный консультативный совет, в который вошли Джошуа Ледерберг и Гарольд Юри. Более того, ему хватило прозорливости распорядиться, чтобы инженеры построили такую аппаратуру, которая сможет работать в экстремальных марсианских условиях, позаботившись о том, чтобы она была достаточно легкой для запуска в космос, но и достаточно прочной, чтобы противостоять многолетнему облучению мощными дозами радиации. Эти жесткие условия было не так просто выполнить.

Несмотря ни на что аппаратура функционировала превосходно; были взяты образцы марсианской почвы на признаки органического вещества, которое было бы первым указанием на существование жизни. Первоначальные результаты были мучительно многообещающими, однако после более глубокого изучения стало очевидно, что на поверхности Марса нет явных признаков жизни, ни нынешней, ни существовавшей в прошлом. Единственное, что удалось найти, – это свидетельства существования жидкой воды и вулканической активности, двух ингредиентов, которые некогда почти наверняка способствовали формированию жизни на Земле. На протяжении последующих десятков лет главным лозунгом НАСА стало: «Следуйте за водой». С тех самых пор мы следуем этому указанию. За прошедшие годы было реализовано еще несколько программ по исследованию Марса, однако к настоящему моменту так и не удалось найти убедительных свидетельств существования там жизни.

Команда «Викинга» поняла, что существует по меньшей мере одна потенциальная – и потенциально решаемая – проблема, связанная с поиском доказательств существования жизни на Марсе. Эта проблема заключается в занесении заражения с нашей собственной планеты. Тот или иной микроорганизм неизбежно должен был проникнуть «зайцем» на запускаемом спутнике. НАСА приняло все меры, чтобы этого не произошло при поиске жизни посредством спускаемой на планету аппаратуры. Посадочные модули «Викингов» были простерилизованы и тщательно исследованы, чтобы – если признаки жизни на Марсе будут все же обнаружены – не оказалось, что мы попросту фиксируем деятельность наших собственных «пассажиров» с Земли. Однако проблема становилась еще более значимой в случае доставки образца с Марса с целью изучения на Землю.

На третьем этаже штаб-квартиры НАСА в Вашингтоне, округ Колумбия, есть кабинет с возбуждающей воображение табличкой: «Офис планетарной защиты» (Planetary Protection Officer, PPO). В обязанности главы этого подразделения входит контроль за тем, чтобы была минимизирована возможность микробиологического заражения наших спускаемых аппаратов на Марсе и других планетах, лунах, бывших планетах и им подобных. Также этот чиновник должен следить за тем, чтобы, в случае если мы доставляем на Землю образцы с этих небесных тел, они не послужили причиной нашей гибели или необратимых изменений на нашей планете. Это увлекательная работа, и я уверен, что она дает возможность говорить грандиозные тосты на вечеринках с коктейлями; однако, кроме того, это работа серьезная, и для того есть свои причины.

Если мы все же найдем доказательства жизни на Марсе, следует ли нам также ожидать, что эволюционные процессы и здесь приведут к появлению в точности такого же строения наномеханизмов? Это весьма и весьма маловероятно, разве что наши предки были родом с Марса и перенеслись на Землю с каким-нибудь метеоритом, или наоборот. Такое предположение может показаться слегка натянутым, но метеориты марсианского происхождения действительно находят на Земле. Один из наиболее знаменитых был обнаружен в 1984 году в Антарктиде группой геологов, путешествовавших на снегоходах через район Алан-Хиллз. Далеко не сразу удалось определить, что этот четырехфунтовый кусок скалы не является обычным метеоритом.

Метеорит Алан-Хиллз, обозначаемый ALH84001, ведет свое происхождение от марсианских горных пород, сформировавшихся около 4,1 млрд лет тому назад. Этот метеорит был вышвырнут из гравитационного поля Марса в результате столкновения с другим метеоритом и приземлился на Землю около 13 тысяч лет тому назад. Понадобилось около десяти лет, чтобы осознать потенциальную значимость этой находки. В 1996 году Дэвид Маккей и его коллеги из Джонсоновского космического центра НАСА, расположенного в Техасе поблизости от Хьюстона, на основе микроскопического анализа метеорита предположили, что он содержит свидетельства существовавшей на Марсе жизни.

Каковы же были эти свидетельства? Их можно распределить по нескольким направлениям. Прежде всего, в метеорите были найдены микроскопические гранулы солей угольной кислоты. Формирование углекислых солей на Земле требует присутствия воды. На тот момент мысль о том, что на Марсе в ранние эпохи могла иметься вода, была довольно шокирующей, но еще более шокирующим был тот факт, что в этих карбонатных гранулах были обнаружены мельчайшие червеобразные структуры, напоминавшие ископаемые микроорганизмы. Это, несомненно, поражало; структуры были настолько малы, что было трудно поверить в то, что они действительно могут представлять собой ископаемые микроорганизмы. Ни один из известных микроорганизмов на Земле не был настолько мал, как эти структуры, найденные в метеорите, и простые вычисления подсказывали, что, если бы такие клетки действительно существовали, их геном был бы невероятно модернизирован. Тем не менее существовала и третья линия доказательств, основанная на присутствии в веществе метеорита очень мелких зерен магнетита – оксида железа, который часто находят в геологических разрезах. Форма этих зерен настолько совершенна, что они напоминают продукт жизнедеятельности магнитотактических бактерий. Более того, эти бактерии при вырабатывании магнетита формируют внутри своих клеток крошечные цепочки кристаллов этого минерала, напоминающие микроскопические нити жемчуга, – такие магнетитовые нити позволяют бактериям чувствовать магнитное поле. Так вот, некоторые из найденных в метеорите магнетитовых кристаллов выстроены в цепочки, очень напоминающие те, что обнаруживаются в магнитотактических бактериях. Они, судя по всему, представляют собой наиболее сильный довод в пользу существования жизни на Марсе.

Статья, описывающая предполагаемые доказательства существования жизни на Марсе, была опубликована 6 августа 1996 года в журнале Science – одном из самых уважаемых научных журналов в мире. Она, несомненно, привлекла внимание читателей и снова пробудила огромный интерес к поискам жизни на красной планете. Тогдашний президент Соединенных Штатов Билл Клинтон через день после выхода в свет статьи созвал пресс-конференцию на Южной лужайке Белого дома, заявив: «Сегодня этот камень под номером 84001 говорит с нами через разделяющие нас миллиарды лет и миллионы миль.

Рис. 38. Вверху: электронная микрофотография цепочки магнитных (магнетитовых) частиц. Они выстроены внутри бактерии и формируют магнетосому – структуру, позволяющую клетке чувствовать направление магнитного поля. Такие структуры чрезвычайно малы, характеризуются совершенной формой и высокой упорядоченностью; они вырабатываются и контролируются бактерией. (Публикуется с разрешения Ацуко Кобаяси.) Внизу: сделанная под сканирующим электронным микроскопом микрофотография полированного образца из метеорита Алан-Хиллз (ALH84001). В верхнем правом углу обнаруживается цепочка продолговатых магнетитовых частиц (показана стрелкой). Такая структура аналогична тем, которые находят в магнитотактических бактериях. (Публикуется с разрешения Я. Вешхоса и К. Аскаско.)

Он говорит о возможности жизни. Если это открытие подтвердится, оно, несомненно, станет одним из самых ошеломляющих научных открытий относительно окружающей нас Вселенной. Трудно себе представить, настолько далеко идущими и впечатляющими будут его последствия. И хотя это открытие обещает нам дать ответы на некоторые из самых давних наших вопросов, оно тут же ставит новые, еще более фундаментальные». Это выступление появилось на передовицах всех ведущих газет мира и обозначило новое направление деятельности НАСА.

Хотя интерпретация микроскопических структур в метеорите Алан-Хиллз остается чрезвычайно неоднозначной, она привлекла большое внимание к двум ключевым вопросам науки: «Где впервые возникла жизнь?» и «Одни ли мы во Вселенной?» Многие ученые добавляют также: «Не марсиане ли мы?» Джо Киршвинк порой принимается доказывать, что вся жизнь на Земле произошла в результате заражения нашей планеты организмами, занесенными с марсианским метеоритом.

Последующие анализы ALH84001 трудно примирить с нашими знаниями о том, что такое жизнь. Большинство геологов сейчас отказались от идеи о том, что этот метеорит содержит убедительные следы ископаемых микроорганизмов, однако процесс, который привел к возникновению идеально оформленных магнетитовых цепочек, остается загадкой. В любом случае открытие этого метеорита, несомненно, послужило стимулом для новых поисков потенциальных следов существовавшей ранее или ныне существующей жизни на Марсе.

Джерри Соффен убедил руководителя НАСА Дэна Голдина послать на Марс новые посадочные модули и развернуть поиски жизни в других местах Вселенной. Однако чтобы удостовериться в том, что для НАСА это не будет просто преходящим интересом, Джерри убедил НАСА разработать программу по астробиологии и в 1998 году курировал создание Астробиологического института НАСА. Одной из наиболее интересных и сложных задач, поставленных перед этим институтом, был поиск свидетельств существования жизни в границах нашей Солнечной системы и за ее пределами.

В новом тысячелетии НАСА успешно доставило на поверхность Марса несколько новых вездеходов, и каждый последующий из них был оборудован все более сложной аппаратурой, предназначенной для поиска следов жизни. Было приложено множество усилий, чтобы найти такие газы, как метан или закись азота, наличие которых указывает, хотя и не бесспорно, на существование микробиотической жизни. До настоящего момента не было получено положительных результатов, не говоря уже об окончательных выводах. Эти исследования будут продолжаться на протяжении последующих десятилетий; также планируется доставить образцы марсианской почвы и горных пород на Землю для более тщательного анализа. Эти исследования требуют большого напряжения инженерной мысли, и нам удалось многое узнать о марсианской истории. Однако вместе с тем мы смотрим дальше вперед, не переставая задаваться вопросом: «Одни ли мы во Вселенной?»

В 1972 году в рамках программы «Аполлон» НАСА запустило первый телескоп космического базирования. Этот инструмент фиксировал ультрафиолетовое излучение, которое не доходит до поверхности Земли вследствие того, что атмосфера поглощает большую часть излучения в этой части спектра. Это положило начало серии самых значительных открытий относительно нашей Вселенной с тех пор, как Галилей впервые описал луны Юпитера.

Телескопы предназначены для того, чтобы распознавать свет; однако, не имея помехи в виде земной атмосферы, космические телескопы могут получать изображения очень отдаленных объектов в хорошем разрешении. Они способны обнаруживать чрезвычайно малые различия в свете звезд нашей Галактики Млечный Путь.

В 1988 году три канадских астронома, Брюс Кэмпбелл, Гордон Уокер и Стивенсон Янг, сообщили о периодических изменениях длин волн излучения двойной звезды Гамма Цефея, расположенной на расстоянии приблизительно 45 световых лет от Земли. Системы двойных звезд содержат две звезды, обращающиеся вокруг общего центра масс; они встречаются довольно часто. Изменение длин волн, зафиксированное астрономами, было результатом того, что регистрируемый свет доходил то быстрее, то медленнее в результате доплеровского смещения. Ученые предположили, что причиной доплеровского смещения является планета, вращающаяся вокруг одной из звезд и тем самым принуждающая звезду изменять собственную орбиту. Они назвали эту планету «Гамма Цефея Ab». Их сообщение было встречено скептически, и лишь в 2002 году оно подтвердилось. Гамма Цефея Ab была первой планетой, обнаруженной за пределами нашей Солнечной системы, однако к 2014 году имелось уже около двух тысяч подтвержденных сообщений о планетах вне Солнечной системы, и каждый год открываются сотни новых. Однако как узнать, есть ли на планете жизнь? Все они находятся настолько далеко, что мы не сможем доставить вездеходы даже на ближайшую из таких планет ни при нашей жизни, ни при жизни наших детей, внуков и правнуков. Давайте рассмотрим, почему.

Два спутника, «Вояджер-1» и «Вояджер-2», запущенные в 1977 году, в настоящий момент покидают пределы нашей Солнечной системы, пролетев около 18 млрд километров со средней скоростью около 500 млн километров в год, или около 35 тысяч миль в час. При такой скорости они смогут достичь ближайшей к Земле звезды Проксима Центавра, находящейся на расстоянии 4,2 световых года от нас, приблизительно через 80 тысяч лет. Не думаю, что мы готовы ждать так долго, чтобы выяснить, одни ли мы во Вселенной, особенно если у этой звезды не окажется обитаемых планет. К счастью, у астрономов имеются и альтернативные методы поиска жизни за пределами нашей Солнечной системы.

Один из них связан с только что упоминавшимся доплеровским смещением света звезды из-за изменений ее орбиты, вызванных соседством обращающегося вокруг звезды небесного тела. Этот метод достаточно однозначен: любая звезда, вокруг которой обращается планета, сама тоже имеет орбиту. Орбита планеты может быть обнаружена по изменениям длины световых волн, возникающим в спектральных линиях звезды. Когда звезда смещается немного в нашу сторону (то есть в сторону нашего космического телескопа), спектральные линии смещаются в сторону голубой части спектра (более короткие волны). Когда она удаляется, спектральные линии смещаются в сторону красной части спектра (более длинные волны). Чем крупнее планета, тем заметнее этот эффект, поэтому большинство планет, обнаруженных на настоящий момент, являются гигантами наподобие Юпитера или Сатурна. Масса этих планет в сотни раз превышает массу Земли, и на большинстве из них нет суши или океанов – они состоят из газа. Трудно себе представить, чтобы на таких планетах могла существовать жизнь.

Однако имеется и другой метод опознавания планет. Он основан на невообразимо крошечном количестве света, который блокируется, когда планета проходит перед звездой. Как ни трудно в это поверить, и космические, и наземные телескопы способны фиксировать этот момент так называемого транзита, даже в случае звезд, находящихся от нас на расстоянии десятков световых лет, что по астрономическим меркам означает практически у нас во дворе. Принцип измерений относительно прост: когда планета проходит перед звездой, свет звезды немного менее ярок, чем тогда, когда планета находится с другой стороны от звезды. Разница в количестве света, зафиксированном при наличии и при отсутствии планеты между звездой и нашим телескопом, предоставляет основу для расчета размеров планеты: чем крупнее планета, тем больше света она блокирует. Если определить размер планеты исходя из ее транзита и массу планеты исходя из доплеровского смещения за счет орбитальной скорости, то по соотношению этих двух величин – массы и размера – можно сделать заключение о плотности планеты.

Планеты с большой плотностью – это скалистые планеты, наподобие нашей, и на скалистых планетах потенциально может существовать жизнь. Но есть и еще несколько характеристик, которые мы можем выяснить, используя результаты наблюдений с помощью телескопа. Одной из важнейших среди них является время, затрачиваемое на транзит планеты вокруг своей звезды. Земля, третья по счету планета от Солнца, имеет период обращения 365,26 земных солнечных суток. Для Венеры эта цифра составляет 224,7 суток, в то время как Марс совершает полный оборот вокруг Солнца за 697 земных солнечных суток. Фактически, если рассмотреть периоды обращения всех планет нашей Солнечной системы, время их обращения имеет прямую связь с расстоянием между планетой и Солнцем независимо от массы планеты. Самый большой период обращения имеет Нептун (поскольку Плутон больше не считается планетой) – 60 200 земных суток, что соответствует приблизительно одному обороту за 164 земных года. Другими словами, один человек за свою жизнь не успеет увидеть полный оборот Нептуна вокруг Солнца. Как бы там ни было, если время транзита планеты связано с ее удаленностью от звезды, то мы можем определить, сколько солнечного излучения планета может потенциально получать, – а это очень важная информация.

Два наших ближайших соседа, Венера и Марс, больше не имеют на своей поверхности жидкой воды. На одной из планет для этого слишком жарко, на другой слишком холодно. В нашем же умеренном мире совершенная планета Земля смогла сохранить относительно постоянную температуру, что позволило воде на ее поверхности оставаться в жидком состоянии на протяжении всего известного нам времени. Одна причина этого заключается в том, что мы находимся не слишком близко к нашей звезде, другая – в том, что парниковые газы в нашей атмосфере со временем внесли свои коррективы. И это само по себе примечательно.

Три миллиарда лет тому назад, когда Солнце светило не так ярко, концентрация парниковых газов, и в первую очередь углекислого газа и метана, была, по-видимому, гораздо выше. На Венере концентрация углекислого газа продолжала возрастать, поскольку вулканы выбрасывали этот газ в атмосферу. Из-за этого вода испарялась, и в верхних слоях атмосферы водяной пар под воздействием ультрафиолетового излучения Солнца разлагался, образуя водород и кислород. Водород, будучи самым легким из элементов, вероятно, вырывался за пределы гравитационного поля планеты, и его уносило в открытый космос. Кислород в таком случае должен был вступать в реакцию со скальными породами на поверхности планеты. В результате этих процессов океаны Венеры со временем должны были выкипеть. Нечто подобное с большой вероятностью происходило на этой планете на протяжении нескольких миллиардов лет, пока наша звезда медленно нагревалась и увеличивала яркость своего свечения. Однако наша планета обитаема более четырех миллиардов лет, в то время как на Марсе и Венере больше нет жидкой воды.

Одной из причин, по которым жидкая вода так надолго осталась на поверхности Земли, явилось взаимодействие между эволюцией микроорганизмов и развитием земной атмосферы. По мере того как микроорганизмы постепенно развивали глобальный электронный круговорот, газовый состав атмосферы менялся. Углекислый газ из атмосферы был удален, и часть его (около 20 %) превратилась в органические соединения и захоронена в горных породах. В то же время кислород, не являющийся парниковым газом, накапливался. Благодаря этим изменениям на Земле смогла появиться животная жизнь.

Хотя мы можем быть совершенно уверены в том, что на Венере при существующих там сейчас условиях бабочки не водятся, а скорее всего, никогда и не водились, но все же – есть ли за пределами нашей Солнечной системы планеты, на которых существует жизнь? И если да, что может послужить этому свидетельством?

Если бы мы могли определить состав атмосферы планеты наряду с ее массой и расстоянием от ее звезды, то имели бы потенциальную возможность заключить, существует ли жизнь за пределами нашей Солнечной системы. Как ни удивительно, эта задача, по-видимому, вполне выполнима. Самый простой метод определить состав атмосферы планеты – это воспользоваться прохождением планеты перед звездой, которая с точки зрения наблюдателя будет в этот момент в затмении. На протяжении затмения свет от звезды будет просвечивать через тонкую пленку планетарной атмосферы. Атмосферные газы поглощают свет, и разница в спектрах излучения звезды самой по себе и во время затмения ее планетой может быть использована для вычисления газового состава атмосферы планеты. Существуют несколько сложных методов, при помощи которых можно убрать сияние звезды на заднем плане и очень точно определить спектр света, зафиксированного телескопом. Однако для таких измерений требуются не только значительные капиталовложения в аппаратуру, но также большое количество драгоценного времени телескопических наблюдений. Ввиду этого мы обладаем гораздо меньшим количеством информации об атмосферах внесолнечных планет, нежели о самих этих планетах. Мы смогли различить атмосферы планет, содержащие водяной пар, угарный газ (CO) и углекислый газ (CO2), метан и даже ацетилен. Большинство этих планет являются газовыми и расположены очень близко к звезде. Они имеют большие размеры и очень высокую температуру. Ни одна из обнаруженных до сих пор планет не находится в обитаемой зоне своих звезд, и ни одна не годится в кандидаты на возможное существование на ней жизни, но это почти наверняка должно измениться на протяжении следующих десяти с чем-то лет, поскольку мы открываем все новые планеты, а наши наблюдательные приборы становятся все более сложными.

Критерием того, может ли на внесолнечной планете существовать жизнь, служит равновесное состояние газового состава атмосферы. Термин «равновесное состояние» предполагает, что образование этих газов может быть отнесено исключительно за счет геологических условий на планете. Так, например, на Земле вулканы извергают углекислый газ и метан, а под влиянием жара от Солнца жидкая вода испаряется вне зависимости от того, есть ли на планете жизнь; сами по себе эти газы не могут служить индикаторами наличия жизни. Тем не менее изменение состава нашей атмосферы микроорганизмами задолго до появления растений и животных дает нам некоторое представление о том, какие газы следует искать на внесолнечных планетах в обитаемой зоне – том месте, где планета находится в достаточной степени близости к своей звезде, чтобы вода на ее поверхности могла сохраняться в жидком состоянии.

Одним из очевидных индикаторов является присутствие молекулярного кислорода, которое привело на Земле к образованию стратосферного озонового слоя. Обнаружение озона на планете земного типа в пределах обитаемой зоны будет сложно объяснить чем-то, кроме присутствия там жизни. Озон не принадлежит к числу газов, которые могут вырабатываться любым из механизмов, понимаемых нами под условиями поддержания равновесного состояния. Еще одним кандидатом, не входящим в равновесное состояние, является веселящий газ (N2O). Если в атмосфере планеты земного типа будут обнаружены и веселящий газ, и метан, это почти наверняка будет указывать на наличие жизни.

В январе 1613 года, через четыре года после того, как Галилей открыл, что луны Юпитера вращаются вокруг этой планеты, он обнаружил в нашей Солнечной системе другую планету, которую нельзя было увидеть невооруженным глазом. Эта планета, Нептун, находится на расстоянии 4,5 миллиарда километров от Земли и так же, как и Земля, вращается вокруг Солнца. Спустя четыреста лет астрономы установили, что в одной галактике Млечный Путь имеется около 144 миллиардов планет. И хотя эта цифра может быть неточна, в известной Вселенной насчитывается более 100 миллиардов галактик. Таким образом, вероятность того, что мы одни в этом мире, поистине мала. Если жизнь существует только на нашей планете, это означает, что Земля выиграла в лотерее жизни из более чем 1022 возможных исходов. Я бы поставил на то, что и в нашей собственной Галактике имеются другие победители, помимо нас, – но я никогда не бьюсь об заклад.

С учетом имеющихся шансов открытие газов, далеких от равновесного состояния, на планете земного типа в обитаемой зоне почти неизбежно. Такое открытие будет играть преобразующую роль для нас как представителей человеческой расы. Оно заставит нас задуматься над тем, что делает нашу планету такой исключительной и вместе с тем, возможно, не такой уж и исключительной. Однако при этом оно приведет нас к пониманию того, что жизнь может появляться независимо во многих местах множество раз. Мы будем знать, что некоторые из наномеханизмов возникли и в других местах, чтобы начать перемещение электронов по поверхности планеты и тем самым изменить газовый состав атмосферы. И хотя мы никогда не сможем утверждать это с уверенностью, мы можем предполагать, что именно комплекс микроорганизмов сделал эту планету благоприятной для жизни и, возможно, даже для высших форм жизни.

Построенные нами модели филогенетического древа жизни ограничиваются этой планетой. Трудно поверить в то, что мы можем иметь общего предка с формами жизни на планетах, расположенных на расстоянии многих световых лет отсюда. Однако если это так, возможны ли несколько вариантов ответов на вопрос о происхождении жизни?

Жизнь, отпущенная на волю, должна найти способ существовать и на другой планете. Но как?

Пока функционируют основные системы, на этой планете будут оставаться некоторые реакции, сохраняющиеся независимо от всей остальной жизни в небесном тумане. Эти системы включают в себя геологическую рециркуляцию некоторых веществ, необходимых для жизни организмов. На Земле таким процессом является тектоника. Никто не говорит, что это единственный процесс, однако это единственный из известных нам процессов, работающий во временных масштабах миллиардов лет. Также сюда должна входить и атмосфера или какая-либо жидкая среда, выполняющая роль проводника, объединяющего метаболизм всех организмов на всей поверхности планеты.

Жизнь на Земле одновременно и хрупка, и устойчива. Я совершенно уверен, что на этой планете живут бабочки и что эти хрупкие с виду организмы существуют здесь уже более двухсот миллионов лет. Однако, как и мы, они зависят от микроорганических механизмов, обеспечивающих их существование. Поблагодарим же микробов за то, что они превратили этот комочек грязи посреди звездной пыли Вселенной в замечательное место обитания для своих чрезмерно выросших родичей – животных и растений, временно украшающих собой эту мельчайшую пылинку, которую они арендуют у своих микроорганических предков, сохраняющих ее для своих потомков.

Цепь взаимосвязанных случайностей, которые привели к возникновению жизни, несомненно, не откроется нам во время поездки на лифте в нью-йоркской многоэтажке. Однако такие случайности позволяют нам исследовать мир, в котором мы живем, и искать жизнь за пределами нашей планеты – там, откуда идет к нам свет далеких звезд и их планет. Удастся ли нам найти «разумную» жизнь – вопрос другой. Разумная жизнь, возможно, является очень редким товаром в окрестностях нашей Галактики. Она появилась на Земле лишь за последнюю пару миллионов лет, и только на протяжении последнего столетия нам удалось разработать технологии, которые преобразовали планету навсегда.

Если мы одиноки, то нам следует понять и принять свою уникальность. Если мы не одиноки, то нам следует быть скромнее. В любом случае скажу вам как один эукариот другим эукариотам: все мы являемся макроскопическими организмами и наше существование стало возможным только благодаря эволюции микроскопических наномеханизмов, появившихся давным-давно у микроорганических форм жизни. Они – наши истинные предки и настоящие служители жизни на Земле.

Дополнительная литература

Глава 1

The 1785 Abstract of James Hutton’s Theory of the Earth. C.Y. Craig, editor. 1997. Edinburgh University Press.

Darwin and the Beagle. Alan Moorhead. 1983. Crescent Press.

Measuring Eternity: The Search for the Beginning of Time. Martin Gorst. 2002. Broadway Publisher.

On the Origins of Species. Charles Darwin. 1964. Harvard University Press.

Principles of Geology. Charles Lyell. 1990. University of Chicago Press.

Seashell on a Mountaintop: How Nicolas Steno Solved an Ancient Mystery and Created a Science of the Earth. Alan Cutler. 2004.

Глава 2

“The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, fellows of the Royal Society.” H. Gest. Notes Rec. R. Soc. Lond. (2004) 58: 187–201.doi: 10.1098/rsnr.2004.0055.

Microbe Hunters. Paul de Kruif. 1926. Harvest Press.

Micrographia – Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses with Observations and Inquiries Thereupon. Robert Hooke. 1665. Reprinted 2010.

Глава 3

The Age of Everything: How Science Explores the Past. Mathew Hedman. 2007. University of Chicago Press.

Darwin’s Lost World: The Hidden History of Animal Life. Martin Brasier. 2010. Oxford University Press.

Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Andrew Knoll. 2004. Princeton University Press.

Глава 4

Aquatic Photosynthesis. P.G. Falkowski and J.A. Raven. 2007. Princeton University Press.

Life’s Ratchet: How Molecular Machines Extract Order from Chaos. Peter M. Hoffmann. 2012. Basic Books.

“There’s plenty of room at the bottom: An invitation to enter a new field of physics.” R.P. Feynman. 1960. Онлайн-версия .

What Is Life? The Physical Aspect of the Living Cell. Edwin Schrodinger. 1944. Cambridge University Press. Онлайн-версия -is-Life.pdf.

Глава 5

Cradle of Life: The Discovery of Earth’s Earliest Fossils. J. William Schopf. 1999. Cambridge University Press.

Eating the Sun: How Plants Power the Planet. Oliver Morton. 2007. HarperCollins.

Oxygen: A Four Billion Year History. D.E. Canfield. 2014. Princeton University Press.

Oxygen, The Molecule That Made the World. Nick Lane. 2002. Oxford University Press.

Глава 7

Microcosmos: Four Billion Years of Microbial Evolution. Lynn Margulis and Dorian Sagan. 1997. University of California Press.

Глава 8

Lives of a Cell: Notes of a Biology Watcher. Lewis Thomas. 1978. Penguin Press.

Power, Sex, Suicide: Mitochondria and the Meaning of Life. Nick Lane. 2005. Oxford University Press.

Wonderful Life: The Burgess Shale and the Nature of History. Stephen J. Gould. 1989. W.W. Norton.

Глава 9

The Alchemy of Air: A Jewish Genius, a Doomed Tycoon, and the Scientific Discovery That Fed the World but Fueled the Rise of Hitler. Thomas Hager. 2008. Three Rivers Press.

From Hand to Mouth: The Origins of Human Language. Michael C. Corballis. 2003. Princeton University Press.

The Genesis of Germs: The Origin of Diseases and the Coming Plagues. Alan L. Gillen. 2007. Master Books.

Microbes and Society. Benjamin Weeks. 2012. Jones and Bartlett Learning.

Глава 10

The Double Helix: A Personal Account of the Discovery of the Structure of DNA. James D. Watson. 1976. Scribner Classics.

Introduction to Systems Biology: Design Principles of Biological Circuits. Uri Alon. 2006. Chapman and Hall/CRC Press.

Life at the Speed of Light. J. Craig Venter. 2013. Viking.

Regenesis: How Synthetic Biology Will Reinvent Nature and Ourselves. George Church and Edward Regis. 2014. Basic Books.

Rosalind Franklin and DNA. Anne Sayre. 1975. W.W. Norton.

Глава 11

How to Find a Habitable Planet. James Kasting. 2010. Princeton University Press.

The Life of Super-Earths: How the Hunt for Alien Worlds and Artificial Cells Will Revolutionize Life on Our Planet. Dimitar Sasselov. 2012. Basic Books.

Rare Earth: Why Complex Life Is Uncommon in the Universe. Peter Ward and Donald Brownlee. 2000. Copernicus Books.

Сноски

1

Английское слово cell означает как «келью», так и «клетку». – Примеч. пер.

(обратно)

2

Маленькие зверушки (лат.). – Примеч. ред.

(обратно)

3

Автор обыгрывает разные значения слова cell (англ.), которое может означать как биологическую клетку, так и тюремную камеру. – Примеч. пер.

(обратно)

4

Имеется в виду следующий диалог (пер. Н. Демуровой):

(обратно)

Оглавление

  • Благодарности
  • Пролог
  • Глава 1. Незамеченные микроорганизмы
  • Глава 2. Знакомьтесь: бактерии
  • Глава 3. Мир до начала времен
  • Глава 4. Маленькие двигатели жизни
  • Глава 5. Суперзаряд двигателей
  • Глава 6. Защита важнейших генов
  • Глава 7. Сокамерники
  • Глава 8. Крупномеры страны чудес
  • Глава 9. Хрупкие виды
  • Глава 10. Саботажники
  • Глава 11. Бактерии на Марсе и бабочки на Венере?
  • Дополнительная литература Fueled by Johannes Gensfleisch zur Laden zum Gutenberg

    Комментарии к книге «Двигатели жизни», Пол Фальковски

    Всего 0 комментариев

    Комментариев к этой книге пока нет, будьте первым!

    РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

    Популярные и начинающие авторы, крупнейшие и нишевые издательства