«13.8»

380

Описание

Эта книга занимательно рассказывает о том, чего достигла современная наука и чего она еще сможет достичь. В ней описана увлекательная история поиска истинного возраста Вселенной и звезд. По мнению автора, это открытие – одно из величайших достижений человечества, которое доказывает, что современная физика стоит на верном пути к созданию теории всего. Книга будет полезна всем, кто интересуется физикой.



Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

13.8 (fb2) - 13.8 [В поисках истинного возраста Вселенной и теории всего] (пер. Оксана Геннадьевна Ключинская) 1069K скачать: (fb2) - (epub) - (mobi) - Джон Гриббин

Джон Гриббин 13,8. В поисках истинного возраста Вселенной и теории всего

13.8

THE QUEST TO FIND THE TRUE AGE OF THE UNIVERSE AND THE THEORY OF EVERYTHING

JOHN GRIBBIN

Научный редактор Игорь Красиков

Издано с разрешения John and Mary Gribbin Partnership in association with David Higham Associates

Правовую поддержку издательства обеспечивает юридическая фирма «Вегас-Лекс»

© John and Mary Gribbin, 2015.

© Перевод на русский язык, издание на русском языке, формление. ООО «Манн, Иванов и Фербер», 2016

* * *

Эту книгу хорошо дополняют:

Интерстеллар

Кип Торн

Квантовая вселенная

Брайан Кокс, Джефф Форшоу

Почему E=mc²?

Брайан Кокс, Джефф Форшоу

Из космоса границ не видно

Рон Гаран

Удовольствие от x

Стивен Строгац

Введение Самый важный факт

Вселенная имеет начало. Происхождение всего, что мы видим вокруг: звезд, планет, галактик, людей, можно проследить до конкретного момента в прошлом, отстоящего от нас на 13,8 млрд лет назад. Наше поколение стало свидетелем события, когда на главный вопрос, в течение тысячелетий мучивший философов, теологов и ученых, был получен ответ. На то, чтобы идея возникновения Вселенной в конкретный момент времени из гипотезы (не менее, но и не более вероятной, чем идея вечной и бесконечной Вселенной) стала доказанным фактом, ушло почти полстолетия, считая с середины 1960-х годов, когда было открыто реликтовое излучение[1]{1}. С помощью данных космических обсерваторий, в частности спутника «Планк», ученым удалось чрезвычайно точно измерить возраст Вселенной. Но, отмечая этот научный триумф, мы часто забываем, что у всего есть обратная сторона. Именно она делает открытие начала Вселенной столь захватывающим.

Наиболее важный в науке факт заключается в том, что теория микромира (квантовая теория) в точности согласуется с теорией макромира (космологией, или общей теорией относительности), даже несмотря на то, что они развивались независимо друг от друга и что никому до сих пор не удалось соединить их в единую систему – теорию квантовой гравитации. Но уже то, что по отдельности они дают правильные ответы на одни и те же вопросы, подсказывает нам, что вся физика как таковая (и, по сути, вся наука) находится на верном пути. Все сходится.

Что это за главный вопрос? Откуда мы знаем, что теории согласуются? Дело в том, что возраст Вселенной, вычисленный космологами – 13,8 млрд лет, – ненамного больше возраста звезд, определенного астрофизиками. Но, несмотря на то что об этом фундаментальном открытии впору кричать на всех углах, на него мало обращают внимание. Я постараюсь восстановить справедливость.

Последние события в мире науки проливают свет на то, почему была забыта значимость этого совпадения возрастов. Я решил написать эту книгу весной 2013 года, когда в заголовках СМИ появились данные со спутника «Планк». Все писали, что, оказывается, Вселенная старше, чем мы думали. Космологов тогда это возмутило. Да, возраст Вселенной был увеличен, но всего с 13,77 до 13,82 млрд лет, меньше чем на полпроцента (а потом еще и скорректирован до 13,80 млрд лет)! Однако самое важное в этих данных то, что мы вообще сумели узнать ее возраст с такой потрясающей точностью. Поколение наших отцов (хотя они уже знали, что Вселенная имеет начало) могло лишь сказать, что ей примерно между десятью и двадцатью миллиардами лет. Но и точность новейших измерений – только половина научной важности этого открытия как для физики, о которой преимущественно и пойдет речь в книге, так и для других наук (философскую и религиозную стороны вопроса я здесь не затрагиваю).

Судя по возрасту самых старых звезд, они лишь немногим моложе Вселенной. Если этот факт сам по себе недостаточно впечатляет, представьте, что подумали бы ученые, если бы все было наоборот: если бы звезды оказались старше Вселенной! Это значило бы, что по крайней мере одна из двух их любимых теорий – квантовая физика или общая теория относительности – неверна.

Впрочем, не стоит даже представлять себе, что подумали бы ученые в таком случае. Согласование возрастов, о котором я упомянул, стало результатом процесса, начавшегося сразу после Второй мировой войны, то есть – так уж совпало – длившегося всю мою жизнь. Я не только работал в одном из научных коллективов, занимавшихся измерением возраста Вселенной, но и лично знал многих участников этого процесса. Когда я был ребенком, астрономы были уверены, что звезды действительно старше Вселенной. Это было одной из основ модели стационарной Вселенной, воспринимаемой бесконечной и практически неизменной во времени и пространстве. Далее я расскажу, как от этого явного противоречия 1940-х годов удалось прийти к современному согласованию данных, в том числе насколько значимыми оказались результаты наблюдений спутника «Планк», и вы поймете, почему все это так важно. Одновременно я введу вас в курс дела, рассказав историю космологии и астрофизики. Начну с открытий XIX века, указавших путь к пониманию природы звезд и Вселенной, – к самому важному факту.

Пролог 2,712 Измеряя температуру Вселенной

Полвека назад, в 1965 году, американские астрономы Арно Пензиас и Роберт Вильсон[2] сообщили, что им случайно удалось уловить слабый радиошум, поступающий из всего космического пространства. Тогда они еще не знали, что это космическое микроволновое фоновое, или, как его еще называют, реликтовое, излучение было более чем за десять лет до этого описано в рамках модели возникновения Вселенной в результате Большого взрыва Георгием Гамовым[3] и его коллегами. По удивительному совпадению в том же году другой коллектив астрономов под руководством Джима Пиблса[4] самостоятельно (не зная о выводах группы Гамова) пришел к идее существования такого излучения и даже начал строить детектор для его поиска. Когда Пиблс узнал об обнаружении шума, он быстро понял, что это подтверждает теорию Большого взрыва; в своем отчете Пензиас и Вильсон сознательно не упомянули об этом, так как сами они поддерживали модель стационарной Вселенной. Тем не менее практически со дня публикации этого отчета теория Большого взрыва стала основной космологической парадигмой. Температура реликтового излучения на сегодня составляет 2,712 К, или –270,288°С, что свидетельствует о невероятно высокой изначальной температуре Вселенной и убедительно доказывает, что у нее было начало.

Вначале Пензиас и Вильсон не понимали всей значимости собственного открытия. Они проводили опыты в Лаборатории Белла при американской телефонно-телеграфной компании AT&T и использовали антенну на Кроуфордском холме в штате Нью-Джерси, созданную для проверки осуществимости глобальной коммуникации через спутники: политика компании позволяла ученым проводить наряду с прикладными, телекоммуникационными, и чисто научные исследования.

Телефонная лаборатория Белла была основана как исследовательское подразделение AT&T 1 января 1925 года. Спустя всего пару лет два исследователя, Клинтон Дэвиссон и его помощник Лестер Гермер, доказали волновую природу электрона, совершив ключевое открытие в квантовой физике. В результате в 1937 году Дэвиссон стал первым ученым в Лаборатории Белла, удостоенным Нобелевской премии. Первым, но не последним. Здесь же был изобретен транзистор, авторы которого Уильям Шокли и Уолтер Браттейн разделили Нобелевскую премию 1956 года. К началу 1960-х Лаборатория Белла получила широкое признание как центр научной мысли и множество молодых исследователей мечтали там работать.

Арно Пензиас стал одним из них. Его родители, евреи, жили в Германии (отец был родом из Польши). Арно появился на свет в Мюнхене 26 апреля 1933 года; как раз в этот день было создано гестапо. Старший сын в зажиточной семье, он не ощущал сгущающихся над страной туч до 1938 года, когда нацисты стали собирать всех евреев, не имевших германских паспортов, и отправлять их в Польшу. Польские власти питали к евреям почти такую же неприязнь, что и немецкие, и 1 ноября 1938 года закрыли границу, прервав этот новый Исход. Поезд, на котором ехала семья Пензиас, прибыл на несколько часов позже и был отправлен обратно в Мюнхен. Отцу Арно дали полгода на то, чтобы убраться из страны, в противном случае ему грозило преследование. Так в возрасте шести лет Арно и его младший брат, за которым мальчику было поручено присматривать, были отправлены в Англию. Родителям удалось получить визы чуть позже, они чудом успели выбраться из Германии до начала Второй мировой войны. За несколько месяцев до этого глава семьи с удивительной предусмотрительностью купил билеты на океанский лайнер до Нью-Йорка, и семья встретила Рождество и 1940 год посреди Атлантики.

Жизнь беженцев принесла Пензиасам значительные финансовые трудности, но, как впоследствии написал в своей Нобелевской автобиографии Арно, «считалось само собой разумеющимся, что я пойду в колледж и стану ученым». Единственной доступной возможностью оказался Городской колледж Нью-Йорка. Там Арно познакомился со своей будущей женой Анной. По прибытии в Нью-Йорк дети получили имена на американский манер: Арно стал Алленом, а его брат Гюнтер – Джимом, но, чтобы не путать Пензиаса с другим знакомым ей Алленом, Анна стала называть его Арно – так к молодому ученому вернулось его имя, и с тех пор он подписывался «Арно А. Пензиас».

Арно и Анна поженились в 1954 году. В том же году он окончил Городской колледж, а после двух лет службы в армии связистом продолжил обучение в Колумбийском университете. Здесь Пензиас получил докторскую степень, причем его научным руководителем был Чарльз Таунс, которому в 1964 году была присуждена Нобелевская премия за исследования мазера[5] и лазера. Таунс проработал в Лаборатории Белла с 1939 по 1947 год. Именно он рекомендовал Пензиаса, которому удалось получить место в 1961 году. Арно мечтал использовать рупорную антенну на Кроуфордском холме для радиоастрономических экспериментов, но в тот период она все еще была зарезервирована только для работы со спутниками, в частности «Телстаром» (созданным в той же лаборатории и планируемым к запуску в 1962 году), поэтому Пензиас начал работу над другим проектом. Впоследствии оказалось, что антенна для спутника не понадобится, и Пензиас смог начать радиоастрономические опыты. Как раз в это время в лаборатории появился второй астроном – Роберт Вильсон, и в начале 1963 года молодые ученые объединили свои усилия.

Вильсон был немного моложе Пензиаса: он родился 10 января 1936 года в Хьюстоне. Его отец был разведчиком нефтяных месторождений, в свободное время он увлекался починкой радиоприемников, поэтому мальчик с детства разбирался в электронике. Роберт неплохо, хотя и не блестяще, учился в школе и в 1953 году, как он сам свидетельствует в нобелевской автобиографии, «еле-еле поступил» в Университет Райса[6]. Вильсону так понравилось учиться и «испытывать радость побед», что он окончил курс с отличием и в 1957 году поступил в аспирантуру физического факультета Калифорнийского технологического института (Калтех), пока еще не имея четкого представления о теме будущей диссертации. Там он выбрал курс космологии. Его преподавателем был Фред Хойл[7], увлекший молодого ученого идеей стационарной Вселенной (позже я расскажу об этом подробнее); но еще более важную роль в жизни Вильсона сыграло предложение Дэвида Дьюхирста[8] из Кембриджа (их с Хойлом пригласили читать лекции) заняться радиоастрономией, на которое он ответил согласием. Перед началом исследований Роберт провел лето 1958 года в Хьюстоне, где женился на Элизабет Соуин.

В качестве предмета исследования Вильсон выбрал радиокарту Млечного пути, которую составлял с помощью нового телескопа радиообсерватории в долине Оуэнс; эта работа была для молодого ученого идеальным сочетанием электроники и физики. Роберт дописал докторскую в 1962 году. Сначала его научным руководителем был Джон Болтон, австралийский ученый, сыгравший важную роль в создании телескопа. А когда тот вернулся в Австралию, его место занял Мартен Шмидт[9]. За время работы Вильсон «проникся уважением к Лаборатории Белла», ведь там разработали мазер-усилители для использования в телескопе в долине Оуэнс, а еще он слышал о новой рупорной антенне. Роберт присоединился к команде, работающей на Кроуфордском холме, в 1963 году, когда понял, что ему разумнее действовать не в одиночку, а вместе с Арно Пензиасом, единственным радиоастрономом Лаборатории. Сотрудничество получилось крепким: когда из-за финансовых проблем бюджет радиоастрономического направления сократился до одной ставки, оба ученых решили работать на полставки, а освободившееся время посвятить прикладному направлению. Но это случилось уже после их открытия, удостоенного Нобелевской премии.

Форма рупорной антенны предназначена минимизировать помехи с Земли и обеспечить самое точное измерение силы радиошума (подобно свету, он представляет собой часть электромагнитного спектра), поступающего из разных точек космоса, преимущественно с искусственных спутников, но также и от естественных объектов, таких как звезды и газовые облака. Сила такого радиошума измеряется по температуре, калибруемой по температуре радиации, испускаемой так называемым абсолютно черным телом. Этот кажущийся странным термин для обозначения излучающего тела появился потому, что объекты, представляющие собой идеальные поглотители электромагнитного излучения (и потому черные), при нагревании тоже оказываются идеальными излучателями (см. главу 1). Характер этого излучения полностью определяется температурой излучающего объекта.

Ученые измеряют температуру в градусах по шкале Кельвина (К без знака градуса). Размер градуса такой же, как на шкале Цельсия, но 0 К – это абсолютный ноль, наименьшая возможная температура (–273,15°С). Округляя, можно сказать, что средняя температура на поверхности Земли равна примерно 300 К. Тщательно проработанная конструкция рупорной антенны позволяла сократить фиксируемые радиотелескопом помехи с Земли до менее чем 0,05 К. Чтобы оптимально использовать антенну, до начала астрономических наблюдений Пензиас и Вильсон решили построить для нее приемник-радиометр с такой же или, по крайней мере, максимально возможной чувствительностью.

Усилители, использованные в приемнике (похожие на те, что Вильсон применял в Калифорнии), были охлаждены до 4,2 К с помощью жидкого гелия, а для калибровки системы Пензиас придумал «холодную нагрузку», тоже охлажденную жидким гелием примерно до 5 К. Переключая антенну с наблюдений за холодной нагрузкой на наблюдения за небом, ученые смогли измерить воспринимаемую температуру Вселенной (предполагалось, что она равна нулю по Кельвину) и сделать поправку на известные факторы, такие как помехи из атмосферы и от радиометра. Оставшийся шум, как они предполагали, производится самой антенной и может быть устранен разнообразными способами, например полировкой прибора. Разумеется, они рассчитывали, что в итоге никакого лишнего шума не останется вообще и это будет признаком того, что телескоп работает корректно и можно переходить к радиоастрономическим исследованиям.

По сути, нечто подобное этой калибровке уже было сделано ранее (только с меньшей точностью и без необходимой холодной нагрузки) инженерами, создававшими рупорную антенну. Они проверяли, достаточно ли она чувствительна для поставленных целей. Один из них, Эд Ом, опубликовал результаты проверок в «Техническом журнале Bell System»[10] за 1961 год. Он сообщил, что температура измерений телескопа, направленного в небо, составила 22,2 К с точностью до ±2,2 К (то есть в диапазоне 20–24,4 К). Подсчитанное его коллегами количество шума в системе из атмосферы, вызванного остаточным нагревом радиометра и тому подобным, составило 18,9 К с точностью до 3 К (15,9–21,9 К). Если вычесть средние данные друг из друга, температура неба окажется равной 3,2 К. Но в целом два набора величин пересекались, и Ом сделал вывод, что «наиболее вероятная минимальная температура системы» – 21 ± 1 К. Однако по мере выверки системы Пензиасом и Вильсоном ошибок становилось все меньше, а разница между ожидаемыми и реальными измерениями все больше увеличивалась. Вскоре стало очевидно, что излучение, поступающее от антенны в приемник, по крайней мере на 2 К теплее, чем они ожидали.

Оба ученых сделали все возможное для устранения всех источников помех для антенны, даже очистили ее от помета, оставленного построившими рядом гнездо голубями, и приклеили алюминиевую фольгу на все стыки с заклепками. Ничто не помогало. Загадка «избыточной температуры антенны» мучила их весь 1964 год, ставя под угрозу радиоастрономический исследовательский проект как таковой. Впрочем, они находили время и для других задач: в декабре 1964 года на собрании Американской ассоциации содействия развитию науки в Вашингтоне Пензиас познакомился с коллегой-радиоастрономом Бернардом Бёрке из Массачусетского технологического института (МИТ). Три месяца спустя в телефонном разговоре Арно рассказал Бернарду, что слышал о проекте команды ученых Принстонского университета (это всего в получасе езды от Кроуфордского холма) под руководством Джима Пиблса и Роберта Дикке[11]. Кажется, этот проект мог пролить свет на проблему «избыточного» излучения. Обсудив это с Вильсоном, Пензиас позвонил Дикке, который как раз был на встрече с коллегами – Пиблсом и двумя младшими сотрудниками, Питером Роллом и Дэвидом Уилкинсоном. Дикке внимательно выслушал Пензиаса и сделал несколько замечаний. Положив трубку, он повернулся к коллегам и сказал: «Ребята, нас обскакали»{2}.

Пензиас и Вильсон не знали, что коллектив Принстона разрабатывает идею о том, что Вселенная расширялась из исходного горячего и плотного состояния и что она наполнена холодным фоновым излучением – радиошумом микроволнового диапазона. На следующий же день принстонцы отправились за 50 километров на встречу с Пензиасом и Вильсоном для проверки их радиотелескопа. Они моментально поверили, что исследователи Лаборатории Белла уловили именно это реликтовое излучение и что «избыточная» температура никак не связана с антенной, а представляет собой температуру самой Вселенной. Хотя сами Пензиас и Вильсон сомневались в этом и в первую очередь потому, что больше верили в концепцию стационарной Вселенной, утверждавшую, что по своей сути Вселенная вечна и неизменна. Однако они с облегчением восприняли то, что обнаруженное ими явление может быть научно объяснено.

Как же именно оно было объяснено? Совсем коротко идею Дикке можно назвать «Большой взрыв, но не такой, каким мы его знаем». Родившийся в 1916 году Дикке был на поколение старше Пензиаса, Вильсона и своих ассистентов из Принстона. Во время Второй мировой он работал над проблемами радаров и создал так называемый радиометр Дикке для анализа именно того типа микроволнового излучения, которое позднее обнаружили Пензиас и Вильсон. И уже в 1946 году, изучая с помощью этого радиометра излучение атмосферы Земли, выяснил, что любой «шум», поступающий вертикально сверху (то есть из космоса), соответствует температуре до 20 К. Впрочем, в тот период он не помышлял о космологии и к 1965 году уже совершенно забыл об этих измерениях. Дикке вновь вернулся к вопросу фонового излучения, столкнувшись с проблемой происхождения химических элементов; эта тема постоянно поднималась в различных исследованиях, описываемых в этой книге.

К середине 1940-х годов стало ясно (я подробнее расскажу об этом в главе 1), что большую часть видимой материи во Вселенной составляют водород и гелий. Яркие звезды и галактики состоят из водорода примерно на 75 % и из гелия примерно на 24 %. Оставшийся процент – это все остальное, включая состав планеты Земля и наших с вами организмов. Водород – самый простой элемент: каждый его атом состоит всего из одного протона и одного электрона. Исходя из того, что это базовый строительный блок материи, астрофизики не могли понять, как же сформировались прочие элементы.

Первым ученым, который применил космологические идеи в попытке понять происхождение химических элементов, стал Георгий Гамов – физик – эмигрант из СССР, в то время работавший в Университете Джорджа Вашингтона в столице США. Получив подтверждение того, что Вселенная непрерывно расширяется – тогда это открытие только было сделано (подробнее см. главу 6), – Гамов первым всецело поддержал идею, что она образовалась из исходного плотного и горячего состояния под влиянием того, что мы сегодня называем Большим взрывом. Он предположил, что изначально существовал горячий, плотный газ, состоящий из нейтронов. Эти нестабильные незаряженные частицы легко распадаются на один протон и один электрон, образуя атомы водорода. Если перед Большим взрывом температура и плотность были достаточно высокими, протоны (ядра атомов водорода) могли объединяться попарно (этот процесс называется слиянием ядер), образуя вместо водорода дейтерий (тяжелый водород). Дальнейшие столкновения сформировали ядра гелия, состоящие из двух протонов и двух нейтронов. Гамов поручил аспиранту Ральфу Альферу[12] рассчитать, насколько эффективным мог быть этот процесс, и совместно с ним выяснил, что, хотя получить таким образом гелий действительно несложно, более тяжелые элементы просто не успели бы сформироваться до того, как расширяющаяся Вселенная остыла бы до прекращения процесса слияния ядер. Гамова это не смутило. Никогда не сомневавшийся в своих силах ученый заявил, что его теория объясняет происхождение 99 % видимой Вселенной, так что остальное – всего лишь детали, которые можно оставить для выяснения другим исследователям.

Проведенные расчеты легли в основу докторской диссертации Ральфа Альфера и были опубликованы в журнале Physical Review[13] в 1948 году. Неуемный шутник Георгий Гамов решил включить в число авторов своего друга Ганса Бете[14], поскольку ряд «Альфер, Бете, Гамов» напоминал начало греческого алфавита: альфа, бета, гамма. Альфер был огорчен тем, что ему досталась лишь треть признания за эту важную работу, но повлиять на решение руководителя не мог и утешался тем, что его имя стояло первым. Эту работу и сегодня называют «исследование альфа-бета-гамма». Оно стало ключевым шагом в космологии уже потому, что впервые доказало возможность проведения научных расчетов в рамках теории Большого взрыва. Однако вопрос происхождения всех элементов, помимо водорода и гелия, оставался без ответа.

Неясность с происхождением элементов (ядерным синтезом) стала одной из причин, по которой в том же 1948 году Германом Бонди, Томми Голдом[15] и Фредом Хойлом была выдвинута альтернатива Большому взрыву – теория стационарной Вселенной. В основе их концепции лежала идея, что хотя Вселенная и расширяется (скопления звезд, называемые галактиками, отходят дальше друг от друга), она не образовалась в конкретный момент времени из некоего горячего и плотного состояния, а всегда имела приблизительно нынешний вид. По мере расширения в промежутках между галактиками возникает новая материя в виде атомов водорода, которая затем включается в новые звезды и галактики. Далее внутри звезд происходит ядерный синтез. Этот процесс представляется намного более медленным, чем ядерный синтез, описанный Гамовым и его коллегами в рамках теории Большого взрыва, но, поскольку теория стационарной Вселенной предполагает, что она существует неограниченный период времени, это не проблема. Как мы увидим в дальнейшем, Хойл сделал особенно значительный вклад в разработку понимания ядерного синтеза внутри звезд, и некоторое время в конце 1950-х годов ему удавалось отбрасывать теорию Большого взрыва как ненужную (интересно, что он случайно придумал сам термин «Большой взрыв», рассказывая о нем в радиопередаче ВВС). Однако Хойл обнаружил, что, хотя ядерный синтез внутри звезд действительно объяснял возникновение пресловутого 1 % материи, объяснить происхождение всего гелия во Вселенной с его помощью было невозможно. Для интерпретации всех элементов в видимой Вселенной необходимо было использовать еще и идею ядерного синтеза согласно теории Большого взрыва… Однако мы забегаем вперед.

Дикке смущала мысль, что вся материя во Вселенной могла быть создана за долю секунды во время Большого взрыва, но ему не казалось правдоподобным и то, что материя создается непрерывно в промежутках между галактиками. Впрочем, существовал еще и третий вариант – так называемая циклическая Вселенная. Согласно этой теории, количество материи во Вселенной остается неизменным, но после фазы расширения наступает фаза сжатия: Вселенная доходит до горячего и плотного состояния, как перед Большим взрывом, и вновь расширяется, возрождаясь, словно Феникс[16].

К 1950-м годам уже было ясно, что в галактиках, подобных нашему Млечному пути, есть два вида звезд, так называемые Население I и Население II. Население II – это старые звезды, содержащие относительно мало тяжелых элементов (астрономы все элементы тяжелее гелия называют металлами). Они почти полностью состоят из водорода и гелия. Население I – это молодые звезды, включающие относительно высокий процент тяжелых элементов («металлов»). Предполагается, что они появились из материи, полученной при распаде предыдущего поколения звезд и обогащенной (или, если угодно, загрязненной) «металлами», – это явное свидетельство ядерного синтеза внутри звезд. Однако, понял Дикке, в рамках модели циклической, или пульсирующей, Вселенной этап сжатия должен был бы оказаться настолько горячим, что все «металлы» вновь распались бы обратно на водород и гелий. Это соображение привело его к мысли, что Вселенная вокруг нас все-таки действительно развилась из исходного горячего и плотного состояния, даже если это был не единственный в истории Большой взрыв. Примерно в 1964 году ученый предложил только что защитившему докторскую диссертацию коллеге Джиму Пиблсу просчитать необходимую для описанных процессов температуру и вероятную температуру остаточного излучения в наши дни. Примерные расчеты Пиблса показали, что сегодня Вселенная должна быть наполнена микроволновым излучением с температурой менее 10 К, и Ролл с Уилкинсоном уже готовились искать это излучение, когда раздался звонок Пензиаса.

Итогом встречи двух групп исследователей стали две работы, опубликованные в одном и том же июльском номере Astrophysical Journal[17] за 1965 год. Первой шла статья Дикке, Пиблса, Ролла и Уилкинсона с изложением теории реликтового излучения раннего периода существования Вселенной. За ней – труд Пензиаса и Вильсона с осторожным названием «Измерение избыточной антенной температуры на частоте 4080 MГц». В нем не упоминалась потенциальная значимость открытия, на нее намекала лишь одна фраза – «возможное объяснение наличия шумов при измерении температуры дано Дикке, Пиблсом, Роллом и Уилкинсоном в совместной статье в этом выпуске». Они пока не были готовы отказаться от идеи стационарной Вселенной! «Мы считали, – рассказывает Вильсон в своей Нобелевской речи, – что результаты наших измерений не зависят от теории и представляют самостоятельный интерес». Более того, Дикке вспоминал, что «Пензиас и Вильсон вообще не собирались писать статью, пока мы не сказали им, что пишем свою»{3}. Однако в 1978 году, после того как множество измерений, произведенных на самых разных длинах волн многими группами астрономов, подтвердили, что открытое ими излучение действительно реликтовое эхо Большого взрыва, имеющее температуру 2,712 К, Пензиас и Вильсон разделили Нобелевскую премию за свое изобретение. Говорят, они сочли бы для себя достаточным упоминание в качестве пятого и шестого имени в списке после Дикке, Пиблса, Ролла и Уилкинсона[18]. В таком случае премия, видимо, ушла бы Дикке. Но не жалейте ученого: в этой истории и без него есть кого пожалеть.

С момента защиты докторской Ральф Альфер непрерывно думал о Большом взрыве. К тому времени он работал над проверкой очередной гипотезы Гамова с еще одним его протеже, Робертом Херманом. У Георгия Гамова был невероятный, но очень усложняющий жизнь его коллег талант приходить к фундаментальным открытиям на основе неполной или даже полностью неверной информации. В 1948 году его осенила догадка, которую Пензиас впоследствии описал как «некорректную почти во всех детальных предсказаниях», тем не менее она содержала важнейшую истину{4}. Гамов понял, что хотя температура Большого взрыва должна была быть очень высокой, чтобы происходил ядерный синтез, она не могла быть слишком высокой: в противном случае обладающие большой энергией фотоны (частицы света) разрушали бы ядра гелия по мере их образования. Этот фактор накладывает на конец фазы первичного огненного шара, во время которой образовывался гелий, ограничение по температуре примерно в миллиард градусов (109 К) независимо от предшествующих условий. Альфер и Херман проанализировали и уточнили эту идею, скорректировали детали и расширили ее значение, просчитав, что остаточное излучение от этого огненного шара должно до сих пор наполнять Вселенную, имея температуру в несколько кельвинов. Эти результаты были опубликованы в 1948 году в виде краткой заметки в одном из самых читаемых научных журналов – Nature{5}. Ученые пришли к выводу, что «температура Вселенной в настоящее время составляет около 5 К».

Предположение часто приписывают самому Гамову, но это неверно. Альфер и Херман писали: «Хотя наш добрый друг и коллега Гамов сначала не поверил в значимость, пользу и научную обоснованность нашего предположения о пяти кельвинах и прошло несколько лет, прежде чем оно было принято всерьез, впоследствии он посвятил ему несколько работ»{6}. Георгий Гамов известен также как увлеченный популяризатор науки: он описал эту идею в своих книгах, что и привело к массовому заблуждению, будто он ее и придумал, «эффект апостола Матфея»[19], как его называли Альфер и Херман. В своей книге «Создание Вселенной» (1952), к примеру, Гамов пишет: «Мы считаем, что нынешняя температура равна 50 градусам Кельвина». Столь сильная неточность характерна для Гамова, но она не могла не заинтриговать образованных читателей. Удивительно, что Дикке и его коллеги до 1964 года не слышали об исследовании Альфера и Хермана, тем более что в 1940-х годах Дикке работал с микроволновым оборудованием. Если бы ему удалось прочесть работу Альфера и Хермана, то, располагая технологиями того времени (и необходимой холодной нагрузкой), он смог бы обнаружить фоновое излучение, а Альфер и Херман получили бы заслуженную славу. Еще более странно то, что и Вильсон, и Уилкинсон утверждали, что их интерес к науке в свое время был вызван книгами Гамова, однако идея фонового излучения почему-то прошла мимо их внимания{7}.

Разумеется, Гамов, Альфер и Херман были огорчены тем, что столь громкое открытие не связали с их именами: они впервые прочли о нем в передовице New York Times. Последовавшие взаимные обвинения хорошо изложены в работе Джона Мазера и Джона Бослоу, сыгравших в дальнейшем свою роль в изучении реликтового излучения, поэтому нет нужды рассказывать о них здесь{8}. Но, пожалуй, стоит упомянуть о нескольких других упущенных возможностях.

Как я уже рассказывал в книге In Search of the Big Bang («В поисках Большого взрыва»), череда несостоявшихся открытий реликтового излучения тянется в прошлое вплоть до начала 1940-х годов, когда проводились исследования спектров света звезд, проходящего через облака межзвездной материи – смеси газа и пыли. Особенности поглощения этого света, приводящие к линиям в спектре, могут дать представление о температуре этих облаков, и, проведя исследования конкретных свойств молекул циана[20], астроном Эндрю Маккеллар из Доминьонской астрофизической обсерватории в Канаде пришел к выводу, что эта температура составляет от 2 до 3 К. Этот результат был хорошо известен астрономам, но никому не пришло в голову, что температура облаков была именно такой, потому что она поддерживалась фоновым излучением, словно в очень слабой микроволновке.

Персонажи моей любимой истории о «недогадливых» ученых – Фред Хойл и Георгий Гамов. В 1956 году Хойл приехал в Ла-Хойю в Калифорнии, где в тот момент проездом находился и Гамов, который катался по округе на своем новеньком белом кадиллаке-кабриолете (очень типично для него). В этот период Гамов, главный защитник идеи Большого взрыва, утверждал, что Вселенная наполнена излучением с температурой около 5 К, а Хойл, основной агитатор за модель стационарной Вселенной, настаивал, что этого излучения не существует. Этим двоим было о чем поговорить. В статье для журнала New Scientist[21] 1981 года Хойл вспоминал:

Иногда мы с Георгием уезжали вдвоем поспорить. Помню, Георгий возил меня по округе на белом кадиллаке, толкуя о своем убеждении, что во Вселенной должно быть реликтовое излучение, а я отвечал ему, что с такой высокой температурой, как он говорит, излучения быть не может, потому что наблюдения над радикалами CH и CN, проведенные Эндрю Маккелларом, установили для подобного фона верхний предел в 3 К. То ли нас слишком разнежил комфорт кадиллака, то ли захватил спор (Георгий говорил, что температура выше 3 К, а я – что 0 К), но, так или иначе, мы упустили свой шанс. ‹…› И видимо, за грехи мои я еще раз точно так же упустил его, обсуждая с Бобом Дикке проблемы теории относительности в 1961 году, во время 20-й итальянской летней школы физики в Варенне. Я явно просто не был готов открыть реликтовое излучение{9}.

И все остальные, помимо Пензиаса и Вильсона, тоже не были к этому готовы! По сути, Гамову, которого «обскакали», некого было винить, кроме самого себя.

К 1964 году даже Хойл начал сомневаться в стационарной модели Вселенной, по крайней мере, в ее простейших принципах. Выяснилось, что внутри звезд не могло образоваться достаточно гелия, и он начал исследовать возможность его появления в другом месте. Возможно, был не один Большой взрыв, а несколько Маленьких взрывов в разных точках Вселенной? Хойл развил эту гипотезу совместно с младшим коллегой Роджером Тайлером[22]. Они совместно просчитали, что подобная последовательность событий должна была повлечь за собой массу фонового излучения; Хойл, конечно, уже знал о работе Альфера и Хермана, но пришел к аналогичному заключению другим путем. Однако даже в 1964 году он не соотнес свои выводы с наблюдениями Маккеллара. В первом варианте подготовленной к печати статьи Хойл и Тайлер предсказывали открытие космического фонового излучения, но Хойл удалил эту часть перед публикацией, хотя Тайлер, как он сам много позже признавался мне, хотел ее оставить.

Ближе всех к открытию реликтового излучения подошли (и тоже не довели дело до конца!) в СССР. Проделав в течение нескольких месяцев огромную работу, отчет о которой вышел в 1964 году, советские ученые сложили, казалось, все части головоломки, не хватило лишь одной. Яков Борисович Зельдович[23], один из колоссов советской науки, осуществил расчеты, аналогичные тем, что провел коллектив Гамова, и тоже пришел к выводу, что Вселенная должна была начаться с горячего Большого взрыва, оставившего фоновое излучение с температурой в несколько кельвинов. Он даже знал о статье Ома в «Техническом журнале Bell System», но, как мы увидим, неверно интерпретировал выводы автора. Менее известный советский астроном Юрий Смирнов оценил температуру фонового излучения как находящуюся в диапазоне между 1 и 20 К. Отталкиваясь от его расчетов, Андрей Дорошкевич и Игорь Новиков[24] опубликовали статью, в которой отметили, что наилучшим образом подготовленная к обнаружению такого излучения антенна – рупорная антенна на Кроуфордском холме. Почему же советские исследователи не поняли, что Ом уже открыл это излучение? Из-за ошибки в переводе. В статье Ома утверждалось, что измеренная им температура неба составила около 3 К. Это означало, что он вычел все возможные источники радиопомех и что 3 К – это температура оставшегося фона. Однако по случайному совпадению такой же (3 К) была и температура излучения атмосферы, поправку на которую Ом тоже сделал. Советские специалисты ошибочно решили, что именно эти 3 К и остались у Ома после всех предыдущих корректировок, вычли и их и остались ни с чем. В наши дни подобные ошибки понимания легко устранились бы в процессе электронной переписки, но в начале 1960-х годов коммуникация между учеными Советского Союза и Соединенных Штатов была весьма затруднена.

Несмотря на все фальстарты и недопонимания, космическое микроволновое фоновое излучение в итоге удалось открыть. В течение последующих десятилетий его изучали все более глубоко, и некоторые плоды этих исследований будут описаны во второй части этой книги. Главное здесь то, что это излучение, обладающее температурой 2,712 К, подтверждает, что Вселенная в таком виде, в каком она нам известна сегодня, имеет конкретное начало, относящееся к конкретной временной точке. Но какой именно точке? Вот здесь-то и начинается самое интересное…

Часть I Как узнать возраст звезд?

Глава 1 2,898 Предыстория: спектры и природа звезд

В 1835 году философ-позитивист Огюст Конт[25] писал: «Не существует разумного способа, которым мы могли бы когда-либо определить химический состав звезд». Он не знал тогда, что, по сути, первые шаги к этому определению уже предприняты и вскоре после его смерти, в 1857 году, процесс будет завершен.

Чтение по линиям

Эти первые шаги были сделаны в 1802 году, когда Конту было всего четыре года от роду, английским ученым и врачом Уильямом Волластоном[26]. Несмотря на частичную потерю зрения в 1800 году, этот ведущий исследователь того времени смог сделать значительный вклад в оптику. Его открытие 1802 года было сделано во время изучения радужного спектра солнечного луча, пропущенного через узкую щель и стеклянную призму (опыт Исаака Ньютона). Волластон заметил, что между цветами радуги видны темные полосы: он насчитал две в красном спектре, три в зеленом и еще две в диапазоне от голубого до фиолетового. Ученый ошибочно заключил, что это просто зазоры между цветами, и не продолжил исследование феномена. Однако его открытие заинтриговало других исследователей, в особенности немца Йозефа фон Фраунгофера[27], которому в 1810-х годах удалось добиться намного более детального спектра и обнаружить 574 отдельные темные полоски. Сегодня их известно даже больше, они получили название фраунгоферовых линий. Полоски сосредоточены на коротком отрезке спектра и напоминают штрихкод. Но откуда же они взялись?

Отчасти на этот вопрос своими опытами сумели ответить в 1850–1860-х годах немецкие ученые Роберт Бунзен и Густав Кирхгоф[28]. Имя Бунзена известно каждому, кто когда-либо изучал химию, благодаря легендарной бунзеновской горелке, хотя на самом деле придумал ее Майкл Фарадей, а доработал ассистент Бунзена Петер Десага (он использовал имя своего более известного руководителя для продвижения собственной модели устройства). Впрочем, важно, не кто был автором горелки, а что Бунзену и Кирхгофу удалось с ней сделать.

В начале 1850-х годов в Гейдельберге провели трубопровод для снабжения горючим угольным газом (метаном) домов и фабрик, а также научных лабораторий при университете. Это вдохновило Бунзена на эксперименты с пресловутой горелкой. Внутри нее кислород строго определенным образом соединяется с угольным газом, продуцируя прозрачный огонь, идеальный в использовании для «реакции в пламени», идентифицирующий вещества по окраске, которую они придают огню. Изначально Бунзен использовал для калибровки своих наблюдений цветные фильтры, но Кирхгоф решил, что точнее будет проводить анализ с помощью спектроскопа. Они совместно создали аппарат с узкой щелью для света, специальным устройством для сужения луча – коллиматором, призмой для преломления луча и получения радужного спектра, а также линзой, похожей на микроскопную, для изучения спектра. Хотя Фраунгофер тоже применял в работе призму и линзу, только здесь впервые все эти компоненты оказались объединены в один инструмент – спектроскоп.

Гейдельбергские исследователи знали, что при помещении в прозрачное пламя бунзеновой горелки разные вещества окрашивают его в разные цвета. Так, натрий делает огонь желтым, а медь – зеленым или голубым. Ученые проанализировали свет пламени с помощью спектроскопа и обнаружили, что каждый элемент при нагревании образует яркие линии на спектре с конкретными длинами волн: натрий в желтой части спектра, медь в зеленой или голубой и так далее. (Желтые линии натрия были известны и Фраунгоферу: с их помощью он проверял оптические свойства стекла и именно поэтому стал изучать солнечный спектр.) Немецкие специалисты вскоре поняли, что четкие линии на спектре образует любой нагретый предмет. Однажды вечером, находясь в своей гейдельбергской лаборатории, они сумели проанализировать свет от крупного пожара в Мангейме, вспыхнувшего на расстоянии 17 км, и обнаружили в зареве признаки наличия стронция и бария.

Спустя несколько дней Бунзен и Кирхгоф гуляли по городу вдоль реки Неккар, обсуждая эксперимент с пожаром. По легенде, Бунзен сказал Кирхгофу примерно следующее: «Если мы смогли узнать, что горело в Мангейме, то наверняка сможем узнать то же и о Солнце. Только вот люди примут нас за сумасшедших фантазеров».

Тем не менее ученые обратили свое внимание на спектр Солнца и выявили, что многие из темных линий, открытых Фраунгофером, находятся в той же части спектра, точно на тех же длинах волн, что и яркие линии, формируемые различными веществами при нагревании в лаборатории. Естественно было предположить, что эти элементы присутствуют во внешнем слое Солнца, но имеют меньшую температуру, чем более глубокие слои, так что при прохождении света изнутри наружу они забирают его часть из спектра на определенных длинах волн, вместо того чтобы добавить к нему яркие линии. Такое понимание происходящего, в частности, сформулировал Кирхгоф. В то время никто не знал, как образуются эти линии. Чтобы понять это, пришлось ждать разработки квантовой теории структуры атома в XX столетии. Но даже без этого знания уже в 1860-х годах удалось выяснить состав Солнца, а в дальнейшем применить тот же принцип для определения того, из чего состоят другие звезды. Утверждают, что, вспомнив тот разговор на берегу реки, Кирхгоф сказал: «Бунзен, так я сумасшедший!» И тот ответил: «Кирхгоф, я тоже!»{10} Открытие Кирхгофа было представлено Прусской академии наук в Берлине 27 октября 1859 года. Сегодня этот день считается началом истории астрофизики (хотя сам термин появился лишь в 1890 году).

Чтобы опровергнуть Конта, понадобилось всего три десятилетия. Хотя заключения астрономов не всегда были верны. До конца XIX века им удалось доказать наличие в спектре Солнца, а также отчасти и звезд множества элементов, существующих на Земле. После чего они естественным образом пришли к заключению, что состав Солнца близок к составу Земли. Но ученые ошиблись. Звезды намного проще по строению, и сегодня нам известно, что они (включая Солнце) состоят преимущественно из водорода и гелия, а других элементов там совсем немного. Однако в начале 1860-х годов никто еще не знал о существовании гелия. Его открытие дало начало эре солнечной – и звездной – спектроскопии.

Охота на гелий

Важнейшую роль в открытии гелия сыграл английский астроном Джозеф Локьер[29], проводивший в 1860-е годы много времени в наблюдениях за Солнцем (по основной профессии он был клерком Военного министерства в Лондоне). Локьер старался узнать обо всех новостях спектроскопии, поступавших из лаборатории Бунзена и Кирхгофа, и применить передовые приемы в своих наблюдениях. С помощью спектроскопии он доказал, что темные пятна на Солнце свидетельствуют о наличии близ поверхности светила (в солнечной короне) газа с относительно низкой температурой и поглощении им света от горячих газов в предыдущих слоях. Это выдающееся открытие было совершено 20 октября 1868 года, когда Локьер смог проанализировать свет внешних слоев Солнца новейшим спектроскопическим оборудованием.

Буквально за несколько месяцев до этого, 18 августа, внешние слои Солнца удалось спектроскопически изучить во время наблюдаемого с территории Индии затмения. Это было первое изученное затмение с момента публикации предположения Кирхгофа, что фраунгоферовы линии говорят о наличии на Солнце различных химических элементов, и наблюдал его французский астроном Пьер Жансен[30]. В момент, когда Луна перекрыла яркий свет с поверхности Солнца, он смог определить линии в спектре материи, находящейся непосредственно над поверхностью звезды, в так называемой хромосфере. Там обнаружились яркие линии, в том числе желтая полоска, длину волны которой впоследствии определили в 587,49 нанометра, очень близкая к линиям натрия. Спектральные линии были настолько яркими, что Жансен осознал возможность заметить их даже вне периода затмения. Он продолжал наблюдения до момента возвращения в Европу.

Еще не зная о результатах Жансена, 20 октября Локьер обнаружил с помощью своего спектроскопа ту же желтую линию. Уже 26 октября, всего через несколько дней, открытия Жансена и Локьера были представлены Французской академии наук. Вскоре Локьер делает еще один шаг вперед и заявляет, что эта линия, должно быть, признак ранее неизвестного элемента. Он дает ему имя «гелий» в честь греческого бога солнца Гелиоса.

Такое заявление вызвало противоречивые отклики. Многие ученые предпочитали думать, что линия порождена водородом, подвергнутым воздействию колоссальных температур и давления. Но в 1895 году физик Уильям Рамзай[31] обнаружил, что выделявшийся из урана ранее неизвестный газ дает в спектре яркую желтую линию, близкую к натриевым. Сначала он назвал этот газ криптоном, но затем его коллега Уильям Крукс[32] заметил, что линия расположена в том же самом месте, что указали Локьер и Жансен, и Рамзай понял, что неизвестный газ – это гелий. (Позже он все-таки назвал другой газ криптоном.) Таким образом, спектроскопия предсказала открытие гелия на Земле за 27 лет до этого события.

К тому времени Джозеф Локьер уже был профессиональным астрономом. В 1869 году он стал одним из основателей научного журнала Nature и руководил им в течение первого полувека его существования. В 1890 году Локьера назначили директором обсерватории физики Солнца в Южном Кенсингтоне, в этой должности ученый проработал вплоть до своей отставки в 1911 году. В 1897 году, не в последнюю очередь за открытие гелия, Локьер был пожалован рыцарским титулом.

Как показало открытие гелия, прогресс в астрономии во многом обязан открытию звездной спектроскопии, а также другим техническим разработкам. Среди них значительное место занимает фотография, которая, помимо всего прочего, сделала возможным регулярную фиксацию звездных спектров для дальнейшего изучения и сопоставления с другими спектрами. Но прежде чем рассказать об этом, имеет смысл на время перескочить в 1920-е, к новому шагу, сделанному в сторону понимания состава звезд.

Вводные к водороду

Этот новый шаг был сделан ученым, родившимся на стыке веков, в 1900 году. И это была женщина, а в то время представительницы слабого пола редко становились выдающимися учеными.

Сесилия Пейн[33] получила стипендию на обучение в кембриджском Ньюнем-колледже (единственный путь получения университетского образования) в 1919 году. Она изучала ботанику, физику и химию, но случайно посетила лекцию Артура Эддингтона[34] об африканской экспедиции по изучению солнечного затмения, во время которой он «доказал правоту Эйнштейна», измерив отклонение Солнцем света далеких звезд. Лекция разожгла в Сесилии интерес к астрономии, и она посетила день открытых дверей университетской обсерватории. Количество задаваемых ею вопросов заставило Эддингтона заинтересоваться студенткой и предложить ей посещать обсерваторскую библиотеку. Там девушка зачитывалась журналами по астрономии со статьями о последних открытиях.

Завершив обучение (до 1948 года Кембридж не выдавал женщинам дипломы, поэтому, выпустившись, Сесилия не могла получить ученую степень), Пейн начала поиски места, где она могла бы продолжить изучение астрономии. Построить исследовательскую карьеру в Великобритании было невозможно: женщины-ученые в то время могли занимать лишь преподавательские должности. Эддингтон познакомил ее с Харлоу Шепли[35] из Гарварда, который предложил выпускнице поступить в докторантуру (несмотря на формальное отсутствие диплома), и в 1923 году Сесилия уехала в Штаты. Всего два года спустя она защитила блистательно выполненную докторскую и стала первой женщиной, получившей степень в колледже Рэдклифф (за работу, проведенную в обсерватории гарвардского колледжа). В диссертации доказывалось, что Солнце преимущественно состоит из водорода. Однако в духе того времени эта идея не считалась заслуживающей доверия до тех пор, пока два астронома мужского пола не пришли к тому же выводу во время независимых экспериментов.

При изучении солнечного спектра Сесилия Пейн использовала недавнее открытие индийского физика Мегнада Сахи[36]: усложнение рисунка линий в звездном спектре (или фраунгоферовых линий Солнца) происходит в том числе в результате воздействия на разные части атмосферы звезды разных физических условий. К 1920-м годам физики уже знали то, что не могли знать Бунзен и Кирхгоф: атомы состоят из ядер, вокруг которых на некотором расстоянии вращаются электроны. Темные линии в спектре возникают тогда, когда электрон поглощает свет на определенной длине волн и переходит внутри атома на более высокий энергетический уровень. Яркие линии возникают, когда электрон переходит на более низкий энергетический уровень и испускает излучение (сегодня мы бы сказали, фотоны). Атом, потерявший один или несколько электронов, называется ионом. Спектры ионов, соответственно, отличны (и это отличие можно измерить) от спектров исходных атомов. Пейн измерила линии поглощения звездных спектров и продемонстрировала, как температура (преимущественно) и давление в атмосфере звезды влияют на ионизацию ее атомов. Именно она усложняет рисунок линий: неионизированные атомы давали бы более простой рисунок. Спектры разных звезд отличаются друг от друга не вследствие разного состава, а из-за различного уровня ионизации их атмосфер.

Выдающееся достижение Сесилии Пейн состоит в том, что она сумела распутать сложнейшие сочетания сотен фраунгоферовых линий и выяснила, какое соотношение разных элементов на разных стадиях ионизации необходимо для объяснения наблюдений. Получить некоторое представление о сложности поставленной ею задачи можно хотя бы из того, что астроном Отто Струве[37] позднее назвал ее работу «самой блестящей из всех, когда-либо написанных по астрономии». Сесилия выяснила пропорции восемнадцати элементов в составе Солнца и звезд и обнаружила, что везде они почти идентичны. Однако самой большой неожиданностью стало то, что, согласно ее выводам, Солнце и звезды почти полностью состоят из водорода и гелия. Если она права, все остальные элементы вместе взятые составляют всего 2 % не только ближайшей к нам звезды, но и всех прочих. Большая часть материи Вселенной – это всего два самых легких элемента. В 1925 году это открытие казалось невероятным. Пейн была уверена в корректности своих умозаключений, но, когда Шепли отправил черновик ее диссертации в Принстонский университет Генри Расселлу[38], чтобы получить независимый отзыв, тот однозначно назвал выводы диссертации «совершенно невозможными». По совету Шепли, Пейн добавила в работу такие слова: «огромный избыток этих элементов [водорода и гелия] в атмосфере звезд почти наверняка не имеет отношения к реальности». И ее диссертация была принята, она получила степень доктора наук и написала книгу Stellar Atmospheres («Звездные атмосферы»), убеждавшую астрономов в том, что выводы Сесилии, напротив, почти наверняка верны.

Изменению стереотипов способствовало независимое подтверждение результатов Пейн другими астрофизиками. В 1928 году немецкий астроном Альбрехт Унзольд[39] провел детальный спектроскопический анализ солнечного света и обнаружил, что сила водородных линий указывает на наличие в составе Солнца примерно миллиона атомов водорода на один атом любого другого элемента. Год спустя ирландский астроном Уильям Маккри[40] подтвердил эти результаты с помощью другого спектроскопического приема[41]. О чем говорят эти исследования? Прежде всего о том, что, хотя Сесилия Пейн и была выдающимся исследователем, которому принадлежит заслуга первооткрывателя, это открытие должно было свершиться, потому что пришло его время. Техническое развитие в 1920-е годы делало его почти неизбежным. В 1929 году, осуществив подобный анализ с использованием другого подхода, Расселл сам опубликовал статью, в которой согласился с результатами Пейн и отдал должное ее заслугам. К несчастью, из-за высокого авторитета Расселла в астрономической среде какое-то время многие ученые считали автором открытия именно его (им следовало бы лучше разбираться в науке или хотя бы внимательнее читать его статью).

Пейн сделала выдающуюся карьеру астронома. В 1934 году она вышла замуж за астрофизика, русского эмигранта Сергея Гапошкина, и осталась в истории как Сесилия Пейн-Гапошкина. Она проработала в Гарварде всю жизнь, несмотря на свой небольшой «женский» заработок и низкий статус. В течение многих лет ее официальная должность именовалась «технический ассистент», несмотря на передовые исследования и преподавательскую деятельность, присущую профессору. Только в 1956 году она стала первой женщиной в Гарварде, получившей статус штатного профессора. Впрочем, как и большинство ученых, Сесилия не гналась за статусом или доходом. В 1976 году, за три года до ее кончины, Американское астрономическое общество присудило ей престижную премию имени посрамленного ею Генри Расселла. В своей речи на церемонии вручения она сказала, явно намекая на свою диссертацию о звездном спектре: «Главная награда для молодого ученого – это восторг, который испытываешь, понимая, что ты первым в мировой истории увидел или понял что-то». Да, даже если другие говорят, что это «совершенно невозможно».

Но и в конце 1920-х годов астрофизикам еще только предстояло понять всю значимость того факта, что атмосфера Солнца исключительно богата водородом. Пройдет еще почти два десятка лет, прежде чем они узнают, что и внутри звезд, в частности Солнца, тоже в основном находится водород (и отчасти гелий, но более тяжелых элементов там почти нет). Ученые долго пребывали в заблуждении относительно состава звезд, отчасти из-за неудачного совпадения, связанного с попыткой определить их температуру, о чем я расскажу далее.

Сколько градусов на Солнце?

Для нашего понимания природы звезд особенно важны два показателя температуры: на поверхности и в центре Солнца. Дальше с ними можно будет соотнести ряд известных нам физических данных.

Еще нам нужно знать расстояние от Земли до Солнца. Согласно открытым в XVII веке Иоганном Кеплером законам движения планет, расстояние от Солнца до Венеры составляет 72 % расстояния от Солнца до Земли. Но как определить реальное расстояние? К счастью, изредка (в последний раз это случилось в 2012 году) с Земли можно наблюдать Венеру, проходящую непосредственно через диск Солнца. Такие прохождения, или транзиты, в сочетании с законами Кеплера позволили вычислить расстояние от Земли до Солнца с помощью параллакса[42]. Если прохождение наблюдается из двух значительно разнесенных точек на поверхности Земли, то момент пересечения Венерой края солнечного диска наступит для наблюдателей в разные моменты, поскольку они смотрят из разных углов. Зная их положение, с помощью геометрических расчетов несложно выяснить, что от нас до Солнца немногим менее 150 млн км. Из его видимого размера можно заключить, что диаметр Солнца примерно в 108 раз больше диаметра Земли.

Мы также можем узнать массу Солнца. Количество материи звезды определяет силу ее притяжения, именно оно удерживает на орбитах вокруг Солнца планеты, включая Землю. Наша планета облетает Солнце за один год и находится от него на расстоянии 150 млн км, отсюда можно рассчитать скорость ее движения. Сила, необходимая для удержания планеты на орбите, известна из основ физики, и ее принципы едины, неважно, удерживаются небесные тела с помощью гравитации или, скажем, с помощью натянутой между ними веревочки. Зная эту силу, мы можем применить ньютоновский закон всемирного тяготения и высчитать, что масса Солнца примерно в 332 940 раз больше массы Земли[43]. Поскольку объем Солнца (пропорциональный кубу его радиуса) в миллион с небольшим раз больше объема Земли, средняя плотность Солнца оказывается примерно в три раза меньше плотности Земли и всего в полтора раза больше, чем у воды. Впрочем, как мы увидим, это среднее значение мало о чем нам может сказать.

Итак, нам известно, насколько далеко от нас расположено Солнце и насколько оно велико. Но какова его температура? К этому вопросу можно подойти с двух сторон. Во-первых, можно вспомнить наблюдения физика XVIII века Уильяма Гершеля[44]. Он обратил внимание на то, что тепла полуденного солнца на экваторе достаточно, чтобы растопить слой льда на поверхности земли толщиной в дюйм (2,54 см) за два часа и двенадцать минут. Поскольку Солнце излучает энергию равномерно во всех направлениях, выходит, что за это время оно могло бы растопить ледяную сферу толщиной в один дюйм, окружающую Солнце и удаленную от него на расстояние Земли (300 млн км в диаметре). И чем ближе к светилу находились бы стенки такой сферы, тем быстрее она таяла бы, то есть за указанное время можно было бы растопить более толстый слой льда, но общий объем его в этой сфере оставался бы неизменным. Если мы максимально приблизим ее стенки к поверхности Солнца, их толщина составит больше полутора километров при сохранении времени таяния. Температура поверхности Солнца, необходимая для такого процесса, должна быть чуть ниже 6000 К[45].

Такой оригинальный физический опыт можно поставить для Солнца, но, конечно, не для измерения температуры других звезд. К счастью, есть и другой, более общий прием, который дает тот же ответ при измерении температуры на поверхности Солнца (что доказывает его эффективность). Он берет начало в другом труде много и плодотворно работавшего в различных областях Густава Кирхгофа.

Жар далеких звезд

В 1859 году проведенные исследования излучения горячих объектов позволили ему сформулировать так называемый закон Кирхгофа (не путать с открытыми им же правилами Кирхгофа для электрической цепи). Вот его суть: при любой конкретной температуре скорость, с которой объект излучает электромагнитную энергию (тепло и свет), равна скорости, с которой он поглощает электромагнитную энергию той же длины волн (или частоты). В 1859 году это была лишь вдохновенная догадка, но уже в 1861-м Кирхгоф провел эксперимент, доказавший ее правоту, а в 1862-м представил идею «идеального» излучателя и поглотителя, который получил название «черного тела». Такой объект поглощал бы все поступающее к нему излучение и в ответ, нагреваясь, излучал бы энергию по всему электромагнитному спектру, впрочем, по разным длинам волн неравномерно.

Существует очень простой опыт, позволяющий изучить излучение черного тела в лабораторных условиях. Возьмите металлическую коробку или запечатанную жестяную банку и проделайте в ней крохотное отверстие. Любое излучение, поступающее через него снаружи, будет многократно отражаться внутри от стенок и нагревать их. У вас получился идеальный поглотитель излучения и, как доказал Кирхгоф, такой же совершенный излучатель. «Идеальный» в данном случае означает, что излучение черного тела не зависит от его материала, размера, формы или иных физических характеристик. Значение имеет только температура. По мере нагревания часть излучения выходит наружу через отверстие и может быть изучено с помощью призм, спектроскопов и тому подобного. Можно даже специально активно нагревать коробку, например с помощью бунзеновской горелки. Непринципиально, как именно она нагреется, излучение всегда будет одинаковым. Оно называется излучением черного тела, или черным излучением. Важно понимать, что такое «черное тело» вовсе не обязательно черного цвета. Оно может оказаться мощным излучателем света и тепла. По сути, наше Солнце – почти идеальное черное тело, как и другие звезды.

Отсюда и ключ к измерению их температуры. В 1879 году, изучив результаты ряда экспериментов англичанина Джона Тиндаля, физик Йозеф Стефан[46] сумел измерить общий объем электромагнитной энергии, испускаемой объектами при различных температурах. Он вывел соотношение температуры и энергии и с его помощью рассчитал температуру на поверхности Солнца, она оказалась чуть меньше 6000 К. Обнаруженная Стефаном пропорция была уточнена Людвигом Больцманом[47] в 1884 году: он доказал, что она работает только в применении к черным телам. Сегодня мы называем ее законом Стефана – Больцмана.

В 1893 году Вильгельм Вин[48], работавший в Берлинском университете, довел эту фазу изучения излучения черного тела до логического завершения. График объема энергии, излучаемой черным телом на различных длинах волн, плавно поднимается от более низкого уровня на коротких волнах до пика на средних, затем вновь понижается на длинных. Чем выше температура, тем короче волны, на которых расположен пик энергии. Вин обнаружил, что температуру черного тела можно рассчитать, просто разделив 2,898 на длину волны пикового излучения (в миллиметрах). Это так называемый закон смещения Вина. Так, если пиковое значение энергии наблюдается на длине волны в 4 микрометра (то есть 0,004 мм), температура черного тела будет равна 724,5 К. Хотя этот закон представляется очень конкретным и простым в применении, он остается одним из самых полезных инструментов в астрофизике. С его помощью астрономы могут узнать температуру поверхностей звезд, просто измеряя пиковые длины волн для излучаемой ими энергии. Кстати, закон Вина легко наблюдать в быту.

Всем известно, что при нагревании объекты меняют цвет, а во времена повсеместного распространения каминов это было еще очевиднее: мой отец, например, любил прикуривать от раскаленной кочерги. При комнатной температуре кочерга, разумеется, была черной. По мере нагревания она раскалялась докрасна и отлично подходила для поджигания сигареты. Если отец забывал вовремя вытащить кочергу из огня, она раскалялась еще больше – добела. Я никогда не присутствовал при следующей стадии, но могу предположить, что, оставь он ее в огне еще дольше, кочерга бы расплавилась. Закон Вина придал этому процессу конкретное математическое выражение. Спектроскопия может точно измерить температуру раскаленного докрасна или добела металла, а также более тонких градаций: от еле заметного бордового до ослепительно-синего цвета (и за пределами видимого спектра – в инфракрасный и ультрафиолетовый диапазон). Звезды бывают разных цветов, и красные холоднее голубых. Закон Вина подсказывает нам истинные температуры поверхности звезд. Все они лежат примерно между 3000 и 30 000 К, на этом фоне Солнце выглядит довольно ординарным светилом с невысокой температурой поверхности. Но это лишь часть интриги. А какова температура внутри Солнца и других звезд?

Температура внутри

Оказывается, температура внутри стабильной звезды зависит только от ее массы, яркости (связанной с температурой) и состава. Непринципиально, как именно поддерживается жар внутри звезды: достаточно того, чтобы ее температура поддерживала необходимое для сопротивления гравитационной силе сжатия давление. Масса Солнца известна нам по его воздействию на орбиты планет, и, как только стало понятно, что оно состоит преимущественно из водорода и гелия, удалось рассчитать температуру в центре Солнца – примерно 15 млн К. Если оно обычная звезда, температуры внутри других светил должны иметь сопоставимые значения. Однако, чтобы доказать это, астрономам было необходимо вычислить массу хотя бы еще нескольких звезд. К счастью, это удалось сделать, применив те же законы гравитации, которые определяют орбиты планет вокруг Солнца, к звездным системам, в которых друг вокруг друга вращаются две звезды (двойные звезды) или даже три. Кстати, примерно половина всех видимых на небе звезд – двойные. И снова для этих измерений пригодилась спектроскопия.

Согласно открытию Бунзена и Кирхгофа, каждый элемент порождает в спектре линии с конкретными длинами волн. Но если объект, спектр которого мы изучаем, сдвигается относительно измерительных инструментов, наблюдаемые длины волн этих линий тоже сдвигаются. Если он движется на нас, длины их волн становятся короче (более высокие частоты) – это явление получило название синего смещения, поскольку длины волн синего цвета короче, чем красного. Если же объект удаляется, волны как бы растягиваются (более низкие частоты), становятся длиннее, и это красное смещение[49]. Если объект движется под углом к нам, ситуация усложняется, но терпение и знания помогут разобраться и здесь. Такие сложные смещения называются доплеровскими в честь немецкого физика Кристиана Доплера[50], в 1840-х годах изучавшего этот эффект на примере звуковых волн. Важно, что доплеровские смещения зависят от скорости движения объекта, поэтому для изучения двойных звезд нужно знать, насколько быстро они движутся по орбитам друг относительно друга.

Из основ физики астрономам было известно, что существует довольно ограниченный диапазон возможных масс для ярких звезд. Если газовый шар имеет слишком малую массу: в десять или более раз меньшую, чем Солнце, то он не сможет разогреться в достаточной степени и превратится в холодное тело, похожее на разросшуюся планету Юпитер и известное как коричневый карлик. Однако если масса газового шара будет превышать солнечную больше чем в несколько сотен раз, то в попытке компенсировать эффект сжатия он разогреется так сильно, что взорвется. Сильно округляя, можно считать, что массы ярких звезд ограничены диапазоном от 0,1 до 100 солнечных масс (эти значения в 1920-х годах выведены астрофизиком Артуром Эддингтоном, тем, который вдохновил на занятия астрономией Сесилию Пейн). К счастью для основ физики (и физиков), исследования реальных звезд в двойных системах подтвердили эти выкладки. Но они показали кое-что еще более важное. Между массой звезды и ее истинной яркостью, или светимостью, есть прямая зависимость, и это указывает на то, что звезды с очень разными массами и светимостями имеют сопоставимую внутреннюю температуру.

Термин «истинный» в применимости к яркости принципиально важен. Звезды с одним и тем же показателем этой характеристики могут восприниматься тусклее или ярче в зависимости от расстояния. Сияющая на небе звезда может быть сравнительно тусклой, но очень близкой к нам, а еле заметная – очень яркой, но удаленной. Поскольку существуют способы измерения расстояний до звезд (я подробнее расскажу о них в главе 5), эти сбивающие с толку визуальные эффекты можно устранить, вычислив абсолютную звездную величину, то есть яркость, которую имела бы звезда при рассмотрении с расстояния в 10 парсек (примерно 32,6 световых года).

В зависимости от массы звезды точное соотношение массы и светимости несколько меняется, но для масс в диапазоне от 0,3 до 7 солнечных светимость пропорциональна массе в четвертой степени. Таким образом, звезда, имеющая массу в два раза больше солнечной, окажется в шестнадцать раз ярче него, поскольку 24 = 16. Связанная с этим пропорция показывает, что диаметр звезды, похожей на Солнце, находится в прямой пропорции к ее массе, то есть это гипотетическое светило, будучи в два раза тяжелее Солнца, окажется в два же раза больше него (не в 16 раз!). О том, что соотношение массы и яркости подразумевает схожую внутреннюю температуру звезд, догадался Артур Эддингтон. Сегодня известно, что эта температура равна примерно 15 млн К, но в середине 1920-х годов Эддингтон не знал, что звезды состоят в основном из водорода и гелия: открытие Сесилии Пейн еще не стало общепризнанным фактом. Поэтому его вычисления оказались преувеличенными, в опубликованной в 1926 году книге The Internal Constitution of the Stars («Внутреннее строение звезд») он приводит энергоемкость двух конкретных звезд и пишет, в частности:

В буквальном понимании [это] означает, что звезде необходимо разогреться до 40 млн градусов, чтобы получить необходимые 680 эрг/г (V Кормы) или 0,08 эрг/г (Крюгер 80). При такой температуре она сможет получить неограниченный объем энергии.

Далее в этой же книге он приводит некоторые подробности. При образовании звезды из сжимающегося облака газа, утверждает Эддингтон, она сжимается до тех пор, пока температура в ее центре не достигнет 40 млн градусов и внезапно не высвободится основной запас энергии ‹…› [Затем] звезда должна удерживать при температуре выше критической достаточное количество материи, чтобы обеспечивать необходимый запас энергии.

Важнейший вопрос, возникший в 1926 году, звучал так: откуда же берется энергия, необходимая для света звезд, таких как наше Солнце? Эддингтон считал, что он знает ответ, и вскоре его правота была доказана и открыла возможности для понимания не только современного состояния звезд, но и всего их жизненного цикла, а в итоге и возраста самых старых звезд во Вселенной[51]. Но сначала ученым предстояло понять, сколько лет Солнцу…

Глава 2 0,008 В самом сердце Солнца

С какой-то точки зрения Солнце вовсе и не горячее. Мне очень нравится пример, приведенный Георгием Гамовым в книге 1964 года A Star Called the Sun («Звезда по имени Солнце»). Если бы полностью герметичный кофейник производил тепло с такой же скоростью в расчете на грамм, как в среднем делает Солнце, насколько быстро он нагрел бы воду комнатной температуры до кипения? Ответ поначалу кажется неожиданным: за несколько месяцев! Дело в том, что для повышения температуры 1 грамма воды с 0°С до 100°С требуется 100 калорий энергии, но каждый грамм массы Солнца в среднем производит очень мало тепла. Масса Солнца составляет 2 × 10³³ грамма, а с его поверхности излучается всего 9 × 1025 калорий тепла в секунду, то есть каждый грамм массы Солнца выделяет менее 4,5 × 10−8 калорий в секунду, не дотягивая даже до одной десятимиллионной калории в секунду. Это намного меньше, чем скорость выделения тепла нашим организмом в процессе обмена веществ (но наша кровь никогда не закипит, ведь организм не герметичен и тепло постоянно уходит из него).

Иными словами, проблема не в температуре Солнца. Даже горящие угли могли бы несколько секунд (или несколько тысяч секунд) выделять столько же тепла, сколько оно. В начале XX века астрофизиков мучила другая загадка: как звездам, и Солнцу в их числе, удается оставаться горячими так долго? То, что возраст Земли огромен, стало очевидно в XIX веке по мере развития знаний о геологии и эволюции. Когда стало примерно понятно, сколько лет нашей планете, появилась возможность утверждать, что Солнцу как минимум не меньше, но никакой из известных ученым процессов (даже горение горы угля размером с Солнце) не мог длиться так долго.

Французский след

Первая серьезная попытка вычислить возраст Земли была предпринята в XVIII столетии французским аристократом графом де Бюффоном[52]. Он был чрезвычайно богат и посвятил свою жизнь науке и служению обществу. Граф умер в 1788 году, как раз перед Великой Французской революцией, а его сын, унаследовавший титул, погиб на гильотине в 1794-м. Бюффон многое сделал для науки, в том числе развил наблюдение, сделанное Ньютоном за век до него и упомянутое в знаменитой книге «Принципы». Ньютон сказал, что «кометы иногда падают на Солнце», что вызвало в среде натурфилософов (так в то время назывались ученые) представление о Солнце как о раскаленном железном шаре, от которого ударом кометы когда-то откололась Земля. Сам Ньютон, не проделавший в этом отношении никаких опытов или подробных расчетов, полагал, что шар раскаленного металла размером с Землю не мог бы охладиться до такой температуры, чтобы на нем можно было жить, в течение «более чем 50 тысяч лет». Это утверждение никто не оспорил, хотя из него следовало, что возраст земли в десять с лишним раз больше указанного в Библии, если рассматривать ее текст буквально.

Бюффон дал ход этому рассуждению, проведя эксперименты и оценив скорость остывания железных шаров разной величины. Его опыты были чрезвычайно сложны, но долго не давали информативных выводов. Бюффон измерил скорость перехода металлических шаров от красного каления к температуре, не оставляющей ожогов при прикосновении. По легенде, его ассистентами в этих экспериментах были женщины из аристократических семей, которые нежными ручками в тончайших белых перчатках проверяли, остыл ли металл. Результаты своих расчетов он перенес на масштабы Земли. Выяснилось, что Ньютон был недалек от истины. Бюффон пришел к выводу, что Земле понадобилось бы более 75 тысяч лет, чтобы охладиться до температуры, пригодной для жизни. Это была очень неточная, но научная попытка измерения возраста нашей планеты, опубликованная во второй половине XVIII века. Однако вскоре ее превзошла работа одного из представителей нового поколения великих французских ученых. И возраст Земли, подсчитанный им, был настолько огромен, что даже в начале следующего, XIX века он не стал его предавать огласке, то ли из-за страха преследования со стороны католической церкви, то ли потому, что сам не мог поверить в свои выводы.

Жозеф Фурье был научным советником Наполеона и занимал высокие государственные должности, ему пожаловали титул барона, а затем графа[53]. Свои научные изыскания о распространении тепла в твердом теле он начал в первом десятилетии XIX века в Гренобле в должности префекта департамента Изер. Его труд по теплопередаче был опубликован в 1822 году. Фурье провел множество экспериментов: например, нагревая один конец железного прута и наблюдая распространение тепла до другого конца, он выводил уравнения, описывающие тепловой поток. Затем он применил эти уравнения для вычисления времени охлаждения шара из расплавленного металла размером с Землю. Он внес в рассуждения Бюффона важное уточнение, поняв, что как только земная кора затвердеет, она начнет мешать теплу уходить из середины планеты и значительно замедлит остывание недр. Это одна из причин, по которой центр Земли, как мы знаем сегодня, до сих пор расплавлен (другая причина в том, что ядро Земли продолжает выделять тепло благодаря радиоактивности, о которой вскоре пойдет речь в рассказе о Солнце). Фурье сформулировал уравнения, с помощью которых можно было учесть все эти явления и подсчитать возраст Земли. Он наверняка это сделал, но результат не был опубликован; в архивах ученого не осталось ни клочка бумаги с получившимся числом. Эта оценка возраста Земли – и, вероятно, Солнца – составляла не тысячи и не десятки тысяч, а 100 млн лет! Впрочем, по мере развития науки в XIX веке этот возраст стал казаться астрономам слишком большим, а геологам и биологам-эволюционистам, напротив, слишком малым.

Бесплатный сыр

Примерно в середине XIX столетия физики разработали концепцию термодинамики – законы, определяющие поведение горячих объектов и передачу энергии в виде тепла от одного объекта к другому (причем, что важно, от более теплого к менее теплому, но не наоборот) в рамках естественных систем. Одним из толчков к развитию этого направления физики послужило открытие паровой машины – двигателя индустриальной революции. Разобравшись в принципах ее работы, исследователи дополнительно развили теорию термодинамики, а та, в свою очередь, позволила усовершенствовать паровые машины. Термодинамику можно назвать ключевым разделом физики XIX века, и одной из ее особенностей в тот период стало максимальное применение учеными второго закона термодинамики, получившего звание самого важного в науке. Говоря попросту, этот закон гласит, что все постепенно изнашивается, из ничего нельзя получить нечто, а бесплатный сыр бывает только в мышеловке. Физики поняли, что этот закон применим и к самому Солнцу (и, по правде сказать, ко всей Вселенной) и что поэтому оно не представляет собой вечный источник тепла и света для Земли. В 1852 году британский физик Уильям Томсон, открывший этот закон в 1851 году и впоследствии получивший титул лорда Кельвина[54] (он больше известен нам под этим именем), писал:

Определенный период времени в прошлом Земля наверняка была – и через определенный период времени наверняка снова станет – непригодной для жизни человека в его нынешнем виде.

Но как долго длился этот «определенный период времени»? Не один ум размышлял над этой задачей, но были двое, кто углубились больше других и пришли почти к одному и тому же выводу, – это англичанин Кельвин и немец Герман фон Гельмгольц[55]. Они считали наиболее мощным источником энергии (известным в то время) гравитацию. Кельвин заинтересовался сделанным Джоном Ватерстоном[56] в 1853 году предположением, что температура Солнца поддерживается энергией, высекаемой ударами о его поверхность метеоров. К сожалению, вскоре выяснилось, что высвобождаемой при таких ударах энергии было бы совершенно недостаточно. Даже поглощение Солнцем целых планет не дало бы нужного тепла: если бы ближайшая к нему планета, Меркурий, упала на Солнце, порожденной ею энергии хватило бы на поддержание температуры в течение всего семи лет, и даже Нептун, самая удаленная планета-гигант в Солнечной системе, разогрел бы его лишь на пару тысяч лет.

Кельвин не возвращался к проблеме до конца 1850-х годов, в течение которых Гельмгольц предложил новую идею, связанную с гравитацией. В 1854 году он задался вопросом, не сжимается ли Солнце, высвобождая при этом потенциальную энергию тяготения в виде тепла.

Подобный процесс мы не наблюдаем в обычной жизни, но его легко понять. Представьте камень размером с Солнце, разбитый на мелкие осколки, разнесенные на большом расстоянии, а затем вновь собранный силой притяжения. Соединяясь, осколки будут высвобождать тепло, так же как метеориты выделяют его при ударе о поверхность Земли. Необходимая для разбрасывания осколков по пространству энергия равна высвобождаемой при их соединении. К атомам применимы те же законы, что и к камням. Таким образом, сжимающееся облако газа также превращает энергию тяготения в тепло и разогревается изнутри. Тепло порождает давление изнутри наружу, которое компенсирует сжимающее действие гравитации и замедляет коллапс. Гельмгольц не подсчитал в точности, сколько высвободится энергии при схлопывании газового облака величиной с Солнце, а просто указал, что это количество весьма велико. Этот недочет оставил Кельвину возможность вернуться к проблеме в 1860 году и завершить работу[57], результаты которой были опубликованы пару лет спустя.

Эти расчеты показывают только общий объем энергии, который высвободился бы при коллапсе облака материи, имеющего массу Солнца. В начале 1860-х Кельвин еще не задумывался, каким образом эта энергия может, скажем так, храниться и постепенно высвобождаться в течение долгого времени. Но ему было под силу выяснить максимально возможный возраст Солнца, просто взяв общую энергию и разделив ее на количество, излучаемое в день. Ученый пришел к выводу, что энергия тяготения могла поддерживать сияние Солнца на его нынешнем уровне на протяжении примерно 10–20 млн лет. Допустив, что он мог ошибиться в десять раз, он написал в опубликованной по результатам своей работы статье:

Поэтому представляется в целом наиболее вероятным, что Солнце освещало Землю менее 100 млн лет и почти наверняка менее 500 млн лет. Что касается будущего, мы можем сказать с равной вероятностью, что обитатели Земли не смогут продолжать наслаждаться необходимыми для своей жизни светом и теплом на протяжении многих последующих миллионов лет, если только в великом запаснике творения для нас не приготовлены неведомые пока источники{11}.

Это утверждение появилось в печати спустя три года после публикации «Происхождения видов». Чарльз Дарвин, до увлечения биологией бывший геологом, подвергся значительному влиянию идей геолога Чарльза Лайелла[58]. Труд этого энтузиаста, посвященный возрасту Земли и ее формированию посредством (в том числе) вулканической деятельности, ветров и климатического воздействия, снабдил Дарвина временной шкалой, так необходимой ему для объяснения появления имеющегося сегодня на Земле разнообразия видов в процессе эволюции и естественного отбора. Дарвин читал книги Лайелла по геологии во время своего путешествия на «Бигле». В своем письме к коллеге он пишет: «Мне всегда кажется, что мои книги наполовину порождены умом Лайелла и что я никогда не смогу достойно выразить ему свою признательность». Впрочем, как показывает этот пример, признательность он выражал вполне достойно. Чтобы проиллюстрировать долгую историю нашей планеты, вдохновленный работами Лайелла Дарвин вычислил, сколько времени заняло бы у процессов эрозии формирование меловых холмов и долин региона Уилд на юго-востоке Англии. Из работ таких исследователей, как Лайелл, уже было очевидно, что геологически этот район относительно молодой и сама Земля намного старше, чем рассчитанный Дарвином возраст. Его подсчеты были весьма грубы, а результат слишком велик, но он уже может быть сопоставлен с современными значениями. Кельвин обрушился на результаты Дарвина с нескрываемым сарказмом:

Что же остается думать о таких геологических оценках, как 300 млн лет на «денудацию Уилда»[59]? Более вероятно, что физические параметры солнечной материи отличаются от материи в наших лабораториях в 1000 раз больше, чем нас принуждает думать динамика, или что штормовое море, способное порождать волны огромной силы, должно изменять меловой утес в 1000 раз быстрее, чем предлагаемый господином Дарвином один дюйм в столетие?

В 1862 году Кельвину было всего тридцать восемь лет, и до конца XIX века он лишь все более укреплялся во мнении, что возраст Земли и Солнца намного меньше, чем указываемый геологами и эволюционистами. Он держался точки зрения (в свете знаний того времени вполне разумной), что бесплатный сыр бывает только в мышеловке и что из всех форм энергии, известных науке того времени, снабжать Солнце энергией дольше всего могла сила тяготения. Оценивая возраст Солнца в несколько десятков миллионов лет, Кельвин рассчитал возраст Земли исходя из предположения, что она сформировалась как раскаленный каменный шар в результате столкновения метеоров. Он применил уравнения Фурье и скорректировал результат с помощью данных о том, насколько поднимается температура при спуске в глубокие шахты. У него вышло 98 млн лет – больше, чем возраст Солнца; но Кельвина это не смутило. Зато эта величина отлично согласовывалась с более осторожным предположением, которое он планировал опубликовать. Ученый тактично указал, что возраст Земли может равняться 20 или 200 млн лет, но не больше. Однако шли годы, и его уточненные расчеты отодвигали этот возраст все ближе к нам, в то время как геологи и эволюционисты двигали свои оценки в противоположном направлении.

Окончательные выводы Кельвин представил в виде лекции в лондонском Королевском институте в 1887 году. По сути, они основывались на предположении Гельмгольца от 1854 года, Кельвин лишь добавил числовую базу. Итоговая оценка возраста Солнца (и других звезд) сегодня известна как временная шкала Кельвина – Гельмгольца: она базируется на идее, что Солнце постепенно сжимается под собственным весом и в этом процессе постепенно высвобождает энергию тяготения в форме тепла.

Я уже упоминал ранее об этой модели: космическое газовое облако сжимается под собственным весом и нагревается внутри по мере превращения энергии тяготения в кинетическую энергию сталкивающихся атомов. К тому времени, когда такое сжимающееся облако сократится до размеров Солнца, внутренняя температура составит несколько миллионов градусов (температура поверхности – несколько тысяч) и создаст давление, равное гравитационному сжатию. Именно так сегодняшние астрономы представляют себе возникновение, сжатие и стабилизацию звезд в рамках шкалы Кельвина – Гельмгольца.

Но когда протозвезда[60] достаточно нагреется внутри, ее сжатие сильно замедлится. Пока звезда внутри горячая, она не способна полностью сжаться. Если же она остынет, давление уменьшится и звезда съежится. Сокращаясь в размерах, она высвободит энергию тяготения и вновь разогреется, увеличивая давление и замедляя коллапс. Кельвин сумел рассчитать, на сколько Солнцу необходимо сжиматься ежегодно, чтобы высвободить количество энергии, излучаемое сегодня его поверхностью. Вышло всего 50 см в год, или 50 м каждый век. Сокращаясь со скоростью 50 м в столетие (астрономы XIX века даже не могли измерить столь небольшое изменение), Солнце было способно светить 20–30 млн лет. Но не дольше.

Догматизм Кельвина не иссяк с годами. В 1889 году он писал:

Было бы, думаю, весьма опрометчиво полагать возможным, что в прошлой истории Земли Солнце светило сколько-нибудь дольше, чем 20 млн лет, или же надеяться на более чем пять или шесть миллионов лет его света в дальнейшем{12}.

В 1897-м (году, когда он был возведен в пэры) Кельвин остановился на мнении, что самый вероятный возраст Солнца и Земли – 24 млн лет, и повторил:

Определенный период времени в прошлом Земля наверняка была – и через определенный период времени наверняка снова станет – непригодной для жизни человека в его нынешнем виде, если только не были и не будут предприняты действия, невозможные в рамках законов, управляющих известным и происходящим ныне в материальном мире.

«Определенный период» теперь означал 24 млн лет, и все высказывание было задумано как выпад против геологов и эволюционистов. По сути, «действия», невозможные в рамках известных ему законов, только что были открыты и в XX веке в корне изменили понимание людьми природы звезд.

Источники колоссальной энергии

В 1899 году американский геолог Томас Чемберлен[61], отвечая на поставленную астрономами проблему временной шкалы, писал в журнале Science:

Достаточно ли исчерпывающи современные знания в отношении поведения материи в столь экстраординарных условиях, как имеющиеся внутри Солнца, чтобы мы могли быть уверены, что там нет неизвестных нам источников тепла? Вопрос о внутреннем строении атомов все еще остается открытым. Нельзя считать невозможным предположение, что они имеют сложную организацию и представляют собой источники колоссальной энергии. Безусловно, ни один разумный химик не станет утверждать, что атомы – элементарные частицы или что в них не может быть заключена энергия высшего порядка. Ни один разумный химик не станет ‹…› утверждать или отрицать, что экстраординарные условия в центре Солнца не смогут высвободить часть этой энергии.

Он оказался прав. Действительно, революция, которая перевернула астрофизику (и многие другие направления науки), уже началась – в 1895 году, когда были открыты рентгеновские лучи.

Это открытие было сделано в момент, когда Вильгельм Рентген[62], маститый пятидесятилетний профессор Вюрцбургского университета, исследовал лучи, испускаемые отрицательно заряженной пластиной (катодом – отсюда название «катодные лучи») в стеклянной трубке, из которой был откачан воздух. Сегодня мы знаем, что эти «лучи» на самом деле частицы, называемые электронами, но Джозеф Джон Томсон[63] (однофамилец лорда Кельвина) открыл их чуть позже, в 1897 году. Рентген обнаружил, что при ударе о стенки трубки катодные лучи вызывали иной вид излучения – таинственные Х-лучи, которые мы сейчас называем рентгеновскими. Вскоре выяснилось, что это электромагнитное излучение, подобное свету, но со значительно меньшей длиной волны. Это важное открытие, казалось, не противоречило известным законам физики: энергия катодных лучей заставляла точку на стеклянной трубке светиться и таким образом отчасти преобразовывалась в Х-лучи. Но дальнейшие исследования оказались ошеломляющими.

Открытие Рентгена, о котором было объявлено 1 января 1896 года, сразу же вызвало волну интереса к флюоресценции и подняло вопрос о том, могут ли вещества, флюоресцирующие естественным образом под воздействием солнечного света, производить рентгеновские лучи или некое подобное излучение. Одним из ученых, взявшихся за решение этого вопроса, стал парижанин Анри Беккерель[64]. Как известно, отличительная черта рентгеновских лучей – это способность проникать через такие материалы, как ткань, бумага и даже человеческая плоть. Это выяснил их первооткрыватель. Беккерель обнаружил кристаллы (уранилсульфат калия), которые светились после облучения дневным светом (флюоресцировали) и испускали лучи, засвечивавшие фотопластинки даже при изоляции двумя слоями толстой черной бумаги.

Желая дополнительно исследовать этот феномен, Беккерель подготовил еще одну фотопластинку в двойном слое бумаги, поместил на нее медный крестик, поставил сверху емкость с кристаллами, а затем убрал все это в шкаф в ожидании солнечного дня, когда можно было бы облучить кристаллы и вызвать их свечение. Это было в конце февраля 1896 года, и в Париже долго стояла пасмурная погода. В конце концов, устав ждать, Беккерель решил развлечься, проявив фотопластинку. Отчетливое изображение металлического крестика на ней поразило его. Даже не будучи «заряжены» Солнцем, не флюоресцируя, кристаллы породили лучи, распространявшиеся по прямым линиями и засветившие пластинку везде, кроме мест, где она была закрыта металлом: сквозь него лучи проникнуть не смогли. Это излучение было названо радиоактивным; вскоре выяснилось, что использованные Беккерелем кристаллы испускают его благодаря содержащемуся в них урану, хотя чистый уран и не флюоресцирует. В том же году Беккерель пишет в журнал Comptes Rendus[65]: «Пока еще никому не удалось понять, откуда уран извлекает энергию, которую он излучает с таким постоянством». Эта задача была посложнее загадки рентгеновских лучей, поскольку энергия, казалось, бралась ниоткуда, нарушая один из главнейших принципов физики: нельзя сделать нечто из ничего. Энергию рентгеновских лучей порождали удары электронов о стекло трубки, энергию флюоресценции – солнечные лучи, но откуда появлялась энергия радиоактивности?

Беккерель сделал свое открытие случайно. Обнаруженное им явление было подхвачено и тщательно изучено Марией и Пьером Кюри, также работавшими в Париже. Супруги Кюри, трудившиеся в чрезвычайно сложных (и, как мы теперь знаем, опасных) условиях, выявили и изолировали два других, ранее неизвестных, радиоактивных элемента – полоний и радий. За эту работу все трое ученых были удостоены Нобелевской премии в 1903 году. Это очень известная история, и нет нужды подробно останавливаться на ней здесь. Главное, что в ней имеет отношение к возрасту Солнца и других звезд, – измерения, произведенные Пьером Кюри и его ассистентом Альбером Лабордом в том же 1903 году. Исследователи выяснили количество тепла, производимого образцом радия, помещенным в полностью изолированную среду, без поступления энергии из внешнего мира. Оказалось, что один (каждый!) грамм чистого радия выделяет за один час достаточно энергии, чтобы поднять температуру 1,3 грамма воды с 0 до 100°С или чтобы растопить один грамм льда. Казалось, закон сохранения энергии поколеблен. Не в силах поверить в это, Кельвин, которому к тому времени исполнилось семьдесят девять лет, настаивал, что энергия, должно быть, поступает к радию извне, что «какие-то неосязаемые волны могут поставлять радию энергию». Все это было неверно. Теоретическую базу под происходящее еще только предстояло подвести одному юному техническому ассистенту патентного офиса в городе Берне (Швейцария). Но, прежде чем представить его читателю, я должен завершить рассказ об истории экспериментальных исследований радиоактивности.

Эрнест Резерфорд, новозеландский физик, работавший в Кембридже, также измерил выделяемое радием тепло в 1903 году и пошел дальше, попытавшись выяснить структуру атома. В конце 1890-х, еще будучи аспирантом, Резерфорд работал в той же Кавендишской лаборатории[66], в которой Джозеф Джон Томсон открыл корпускулярную природу электрона. Резерфорд участвовал в доказательстве электромагнитной природы рентгеновских лучей, а затем перешел к исследованию открытой Беккерелем радиоактивности. Он обнаружил, что это излучение состоит из двух составных частей – он назвал их альфа– и бета-лучами. Альфа-излучение имеет очень малую длину пробега и не проникает даже через лист бумаги; бета-излучение имеет большую длину пробега и проникающую силу. Позднее он выявил и третий вид радиоактивности – гамма-лучи. Дальнейшие исследования показали, что альфа-лучи – это поток частиц, идентичных ионам гелия (атомам гелия, от которых откололись два электрона). Это открытие было сделано в 1908 году, в то же время, когда Резерфорд получил Нобелевскую премию, и чуть больше чем через десять лет после того, как гелий был обнаружен на Земле. Бета-лучи представляют собой быстро движущиеся электроны. Гамма-лучи – электромагнитные волны, подобные свету и рентгеновскому излучению, но с еще меньшей длиной волны.

В 1898 году Резерфорд переехал из Кембриджа в канадский Университет Макгилла в Монреале, а в 1907-м вернулся в Великобританию для работы в Манчестерском университете. В Канаде, работая вместе с Фредериком Содди[67], Резерфорд обнаружил, что, испуская альфа– или бета-лучи (сейчас мы назвали бы это процессом радиоактивного распада), атом превращается в атом другого элемента. Так, когда от атома радия отделяется альфа-частица, он становится атомом газа радона. По результатам этих опытов Резерфорд получил Нобелевскую премию по химии «за исследования в области распада элементов в химии радиоактивных веществ». По иронии судьбы, Резерфорд всегда смотрел на химию свысока и однажды даже сказал, что «вся наука – или физика, или коллекционирование марок»{13}. Однако самое важное открытие, за которое ему следовало присудить Нобелевскую премию по физике (увы, этого не случилось), было еще впереди.

Резерфорд и Содди также обнаружили, что радиоактивность, связанная с распадом атомов, не могла создать бесконечный источник энергии. Они продемонстрировали существование особой временной шкалы этого процесса. Половина атомов в образце любого радиоактивного элемента распадется за определенный период времени, присущий именно этому элементу и известный сегодня как период полураспада. За следующий такой же период распадется половина оставшихся атомов (четверть исходных) и так далее. Период полураспада радия по космическим меркам сравнительно невелик: всего 1602 года. Сколько бы этого элемента ни было изначально, со временем уровень радиоактивности и количество выделяемого им тепла сокращаются[68]. Можно было прийти к выводу, что вместилище энергии, присутствующей сегодня в радиоактивных веществах, было создано очень давно в результате некоего неизвестного процесса и сейчас расходуется, примерно так же, как месторождения угля представляют собой конечный запас энергии Солнца, накопленной и отложенной растениями.

На следующий год после получения Нобелевской премии, работая в Манчестере, Резерфорд руководил исследованиями Ханса Гейгера и Эрнеста Марсдена[69], которые с помощью только что открытых альфа-частиц пытались исследовать структуру материи. Направляя лучи альфа-частиц радиоактивного вещества на золотую фольгу, они обнаружили, что почти все частицы проходили ее насквозь, но некоторые словно натыкались на нечто твердое и отскакивали туда же, откуда прилетели. Это побудило Резерфорда создать новую модель атома. В центре расположено небольшое ядро, концентрирующее в себе почти всю массу атома и имеющее положительный заряд, а вокруг него – облако отрицательно заряженных электронов, сквозь которое могут беспрепятственно проникать альфа-частицы (понимаемые теперь как ядра атомов гелия). Отражаются эти частицы лишь в редких случаях столкновения с ядром атома, поскольку положительный заряд ядра отталкивает положительно заряженные альфа-частицы. Это открытие вполне заслуживало Нобелевской премии!

Пока шло исследование, Резерфорд нашел время для обдумывания вопроса об источнике энергии, поддерживающей свет Солнца и других звезд. Уже в 1899 году ученый отзывался о происхождении энергии в радиоактивном излучении Беккереля как о «загадке», а в 1900-м, сотрудничая в университете Макгилла с Р. К. Макклангом, он точно высчитал, сколько энергии переносится различными видами радиоактивных лучей. Примерно в то же время два немецких школьных учителя, Юлиус Эльстер и Ганс Гейтель, доказали, что источник энергии должен находиться в самом радиоактивном материале и она не может поступать извне. Они поместили радиоактивные материалы в вакуумные емкости глубоко в шахте, вдали от любых источников энергии, в том числе Солнца, и не обнаружили снижения их активности. В начале XX века они также выяснили, что вокруг нас, в воздухе и почве присутствует естественная радиоактивность небольшой интенсивности. Другие исследователи обнаружили радиоактивность в каменных породах. Это навело Джорджа Дарвина (одного из сыновей Чарльза Дарвина) и Джона Джоли[70] на мысль о том, что радиоактивность может быть по крайней мере одной из причин солнечного тепла, а Роберта Стратта[71] из Имперского колледжа в Лондоне – на предположение, что присутствие радиоактивных веществ (например, радия) в земной толще может оказаться источником энергии, необходимым для объяснения масштаба геологической временной шкалы. Это было еще до того, как Резерфорд и Содди открыли период полураспада, но Стратт был недалек от истины: радиоактивные элементы с большим периодом полураспада действительно повышают температуру Земли.

Резерфорд еще несколько лет занимался этим вопросом. Вскоре после измерения тепловой отдачи радия, осуществленного Кюри и Лабордом, он совместно с Говардом Барнсом смог доказать, что количество тепла, произведенного радиоактивностью, зависит от количества испускаемых альфа-частиц. Было ясно, что тепло создается альфа-частицами из радиоактивных атомов, которые сталкивались с другими атомами (на самом деле, как вскоре выяснил Резерфорд, с другими атомными ядрами) и превращали кинетическую энергию альфа-частиц в тепловую энергию окружающей среды. Вооруженный этим открытием, Резерфорд предположил, что радиоактивный распад способен помочь в раскрытии загадки возраста Земли. Он представил эту идею на собрании Королевского института в Лондоне, где присутствовал и Кельвин, к тому времени уже почтенный патриарх ученого мира.

Я вошел в полутемную комнату и сразу же заметил в аудитории лорда Кельвина. Я понял, что мне гарантированы проблемы в последней части доклада, где речь идет о возрасте Земли и где мои взгляды расходятся с его. ‹…› Внезапно на меня снизошло вдохновение, и я сказал, что лорд Кельвин определил верхний предел возраста Земли на тот случай, если не будет обнаружен дополнительный источник тепла. Это пророческое заявление касается того, что мы сегодня обсуждаем, – радия! И что же?! Старик буквально расцвел!{14}

Хотя Резерфорд, разумеется, подчеркивал важность собственного вклада в дискуссию, идея о том, что радий может порождать энергию, поддерживающую температуру Солнца, к 1904 году получила широкое распространение. После работы Кюри и Лаборда в журнале Nature за июль 1903 года появилась статья английского астронома Уильяма Уилсона, в которой он доказал, что всего 3,6 г радия на каждый кубический метр солнечного вещества было бы достаточно, чтобы создать все тепло, излучаемое им сегодня; впрочем, в то время он еще не знал о проблеме полураспада. Эта статья вдохновила Джорджа Дарвина, также писавшего для Nature, который с осторожностью предположил, что оценка возраста Солнца лордом Кельвином может быть увеличена в десять или двадцать раз – примерно до миллиарда лет. Но главным аргументом против этой идеи стало то, что спектроскопические исследования не обнаружили на Солнце никаких следов радиоактивных элементов, например урана или радия. Впрочем, уже в 1905 году был открыт возможный главный источник энергии радиоактивности.

Автором открытия стал, конечно, Альберт Эйнштейн с его специальной теорией относительности. В работе, которая представила теорию миру, не было знаменитого уравнения E = mc². Она называлась «К электродинамике движущихся тел» и вышла в свет в конце сентября 1905 года в журнале Annalen der Physik[72]. Но меньше чем через неделю после публикации редактор журнала получил от Эйнштейна еще одну статью, всего в три страницы, которая была опубликована в том же году. В ней ученый разъяснял следствие из специальной теории: материя есть форма хранения энергии, и масса и энергия способны переходить друг в друга. Энергию он обозначил буквой L, а скорость света – V, поэтому и здесь то самое уравнение еще не было приведено в известной нам ныне форме. Идеи Эйнштейна, включая его понимание выводов из сущности радиоактивности, очевидны из письма, написанного им летом 1905 года другу Конраду Хабихту:

Еще один вывод из работы по электродинамике пришел мне на ум. Принцип относительности в связи с уравнениями Максвелла требует, чтобы масса была непосредственной мерой энергии, содержащейся в теле, – свет переносит массу. В случае с радием должно происходить заметное уменьшение массы.

Более горячее место

Таким образом, происхождение энергии, излучаемой Солнцем в космическое пространство, могло быть объяснено постепенным снижением массы звезды. Используя уравнение Эйнштейна, несложно подсчитать, что Солнце должно терять примерно 4 млн тонн каждую секунду. По человеческим меркам, это невообразимо много, но само Солнце столь велико, что, даже уменьшаясь с такой скоростью триллион лет, оно не потеряет и одного процента своей массы. Если верить Эйнштейну (а поначалу ему поверили далеко не все), вопрос временной шкалы геологии и эволюции практически решен. Однако как Солнцу удается преобразовывать массу в энергию?

В данном случае теория обогнала практику, и, чтобы продвинуться в понимании происходящего внутри Солнца и других звезд, необходимо было сначала получить дополнительные данные. Ключевое экспериментальное открытие было сделано в 1919 году Фрэнсисом Астоном[73], работавшим в кембриджской Кавендишской лаборатории. Он разработал инструмент под названием масс-спектрограф, или масс-спектрометр, с помощью которого можно измерять массы атомов конкретного элемента. Сначала атомы ионизируются, а затем луч из полученных ионов отклоняется с помощью магнитного поля. Тот факт, что инструмент использует не отдельные ионы, а луч, не влияет на результат, поскольку все ионы с одинаковой массой отклоняются одинаково, так что отклонение всего луча позволяет определять массу отдельных атомов. За свою работу в 1922 году Астон был удостоен Нобелевской премии. Одним из первых открытий, сделанных с помощью нового прибора, стало то, что масса атома гелия на 0,008 (на восемь десятых процента) меньше четырех атомов водорода, вместе взятых. Другие атомные массы тоже оказались почти (но не совсем) кратными массе атома водорода, что позволяло уточнить предыдущие оценки химиков. Таким образом, распространилось представление, что все элементы в каком-то смысле построены из водорода. Эта идея еще сильнее закрепилась в 1919 году, когда Резерфорд смог превратить ядро азота в ядро кислорода, бомбардируя азот альфа-частицами (трансмутация, или превращение одного элемента в другой).

Артур Эддингтон, который тогда только что триумфально подтвердил общую теорию относительности, сделал из этих результатов далеко идущие выводы в свете специальной теории. Выступая на собрании Британской ассоциации содействия развитию науки в Кардиффе в августе 1920 года, он сделал одно из самых выдающихся предсказаний в истории астрономии[74]:

Только инерция традиции все еще не дает гипотезе сжатия звезд умереть или, вернее, не умереть, а быть наконец похороненной. Однако если мы решимся предать ее земле, необходимо ясно понимать, с чем мы останемся. Звезды черпают энергию из некоего обширного источника неизвестным нам способом. Этот источник вряд ли может быть чем-то иным, кроме как субатомной энергией, которая, как уже известно, присутствует в избытке во всей материи: порой мы мечтаем о том, что однажды человек научится высвобождать ее и использовать для своих целей. Этот источник, если только его удастся вскрыть, представляется почти неистощимым. На Солнце энергии достаточно, чтобы поддерживать подачу тепла в течение 15 млрд лет. ‹…›

Подводя итог, Астон далее показал, что масса атома гелия меньше, чем масса четырех входящих в него атомов водорода, и, по крайней мере в этом, химики с ним согласны. Потеря массы при синтезе равна примерно 1 часть на 120: атомная масса водорода равна 1,008, а гелия – 4. Я не буду останавливаться на этом эффектном доказательстве, поскольку вы, без сомнения, услышите его от него самого. Но масса не может исчезать в никуда, и эта разница может обозначать лишь переход массы в электрическую энергию, высвобождаемую при трансмутации. В связи с этим мы можем сразу же подсчитать количество энергии, высвобождаемой при синтезе гелия из водорода. Если 5 % массы звезды изначально состояло из атомов водорода, постепенно соединявшихся в более сложные элементы, то общее выделяемое тепло окажется более чем достаточным для наших целей и не придется искать никакого другого источника энергии звезд.

Если и вправду для поддержания сияния звезд свободно используется субатомная энергия, этот факт хоть чуть-чуть да приближает нас к воплощению мечты об управлении этой потенциальной мощью во имя процветания человечества или же его гибели.[75]

Это было, конечно, за несколько лет до того, как Сесилия Пейн открыла, что Солнце и звезды преимущественно состоят из водорода, и почти за десятилетие до того, как научный мир принял эту идею. Но если опустить эту деталь, пророчество Эддингтона поразительно точно. Была, впрочем, одна проблема…

К середине 1920-х годов, когда Эддингтон писал книгу «Внутреннее строение звезды», было уже ясно, что превращение водорода в гелий действительно в принципе могло породить достаточно энергии для потребностей Солнца и звезд, однако вычисления, сделанные на основе теории, и результаты экспериментов, например, превращения азота в кислород, показывали, что даже при температуре в десятки миллионов градусов центр Солнца не был достаточно раскален для превращения водорода в гелий.

Чтобы лучше понять эту проблему, представим отталкивание двух положительно заряженных частиц. Ядра водорода состоят из одного протона с положительным зарядом, и когда они сближаются друг с другом, то отталкиваются. Грубо говоря, для осуществления слияния ядер протоны должны физически соприкоснуться. Если это произойдет, они смогут соединиться благодаря короткодействующим силам притяжения (в 1920-х они были еще мало изучены), или ядерным силам, перевешивающим электрическую силу отталкивания. Чем выше температура, тем быстрее движутся протоны и тем больше вероятность их сближения. Однако физики указали астрономам, что условия в центре Солнца недостаточно экстремальны, чтобы протоны смогли сблизиться и соединиться. Эддингтон отверг эти аргументы. Он верил в простые законы физики, которые применял при вычислении температуры внутри Солнца, и был убежден, что превращение водорода в гелий – единственный способ объяснить столь долгое свечение звезд. Поэтому в книге он пишет: «Имеющийся у нас гелий должен был быть когда-то и где-то синтезирован». Сомневающимся он возражал: «Мы не спорим с критиками, настаивающими на том, что звезды недостаточно горячи для этого процесса, но предлагаем им пойти и найти более горячее место». Можно предположить, что таким изящным способом он отправлял критиков куда подальше.

Эддингтон был и прав, и неправ одновременно. Прав в том, что гелий действительно синтезировался внутри Солнца из водорода с выделением энергии по уравнению Эйнштейна, а не прав в том, что весь гелий во Вселенной синтезирован таким образом внутри звезд. Однако нас сейчас волнует именно справедливая часть его утверждения. Астрофизика смогла выйти из тупика благодаря значительному прорыву в другом ответвлении физической науки, появившемуся как раз в то время, когда Эддингтон писал эти строки. В предисловии, написанном в июле 1926 года, Эддингтон указывает: «Сейчас, когда мы говорим об этом, возникает “новая квантовая теория”, дальнейшее развитие которой может оказать значительное влияние на решение проблемы звезд». И в этом он был прав на 100 процентов.

Квант милосердия

Квантовая теория родилась из исследований излучения черного тела, которые дали много материала для понимания природы звезд (как мы уже видели) и всей Вселенной (как мы еще увидим). Все началось с работы немецкого физика Макса Планка[76] в самом конце XIX века. Он показал, что распределение энергии в спектре черного тела может быть объяснено только тем, что атомы испускают и поглощают электромагнитное излучение, в том числе свет, дискретными порциями[77]. Планк отлично понимал, что свет ведет себя как волна, и не мог представить себе, что он существует лишь в виде отрезков или потока отдельных частиц. Однако ученый предположил, что нечто в природе атомов делает для них невозможным взаимодействие с этими волнами иначе, чем с помощью отдельных порций энергии. В 1905 году Альберт Эйнштейн пошел дальше и предположил, что эти порции электромагнитной энергии могут оказаться реальными частицами (сейчас они известны как фотоны). Именно за эту работу он получил Нобелевскую премию. В дальнейших работах 1910-х и 1920-х годов (совместно с Шатьендранатом Бозе[78]) Эйнштейн подробно разработал концепцию света как состоящего из частиц.

Итак, в середине 1920-х годов имелось явное доказательство того, что свет ведет себя как волна (не в последнюю очередь благодаря экспериментам, в которых световые волны заставляли интерферировать, как расходящиеся круги на пруду от брошенного камня, и создавать дифракционные узоры). Однако было также доказано, что свет состоит из частиц (в том числе с помощью опытов, где фотоны выбивали электроны из металлических поверхностей). Но в 1924 году француз Луи де Бройль[79] выдвинул идею (подтвержденную математически и поддержанную Эйнштейном), что если электромагнитные волны одновременно состоят из частиц, то все материальные частицы, такие как электроны, должны обладать волновой природой. Это вскоре было подтверждено специальными экспериментами, проведенными в Англии Джорджем Томсоном (сыном Джозефа Джона Томсона) и в США Клинтоном Дэвиссоном[80] и Лестером Джермером[81]. В результате де Бройлю, Дэвиссону и Томсону присудили Нобелевскую премию (а Джермеру нет, поскольку он был аспирантом и считался ассистентом Дэвиссона). Отличной иллюстрацией к сути квантовой теории может служить то, что Джозеф Джон Томсон получил Нобелевскую премию за доказательство того, что электроны – это частицы, а его сын – за доказательство того, что электроны – это волны, и оба были правы.

И к 1926 году, когда вышла книга Эддингтона, уже становилось ясно, что все квантовые сущности обладают свойствами как волн, так и частиц. Волны, как правило, сосредоточены в малом объеме и представляют собой волновой «пакет»; но и этого более чем достаточно, чтобы усложнить восприятие частицы, например электрона, и придать некоторую нечеткость даже таким объектам, как альфа-частицы, ранее представлявшиеся ученым крохотными шариками. Причина этого связана со знаменитым принципом неопределенности Вернера Гейзенберга[82], но это слишком далекий от астрофизики вопрос и я не буду на нем останавливаться. Для нас сейчас важнее то, что к 1928 году молодой советский ученый Георгий Гамов применил эти идеи для решения важнейшей задачи ядерной физики.

Решенная Гамовым головоломка на первый взгляд кажется противоположной той, с которой столкнулся в 1926 году Эддингтон. Как частицам удается откалываться от ядра в процессе излучения, известном как альфа-распад? Все дело здесь в балансе между ядерными силами притяжения и электрическими силами отталкивания. Совместно они образуют так называемую потенциальную яму, которую можно представить себе как кратер потухшего вулкана. Альфа-частицы и другие частицы, образующие ядро атома, катаются по дну кратера. Если одна из альфа-частиц движется достаточно быстро (обладает достаточной энергией), она может выкатиться из кратера, скатиться по склону вулкана и укатиться прочь. К тому моменту, как она переберется через край кратера, она уже может иметь минимум энергии, главное, что ей удалось преодолеть притяжение и теперь ею управляет сила отталкивания.

В середине 1920-х годов все теоретические и экспериментальные данные были за то, что, по классическим законам физики (выработанным в доквантовую эру), альфа-частицы внутри ядра не могут иметь достаточно энергии, чтобы оторваться от него. И именно Гамов понял, что квантовые принципы меняют эти законы. Он указал, что частицы, имеющие волновую природу, нестабильны и у них нет четких границ. Когда альфа-частица приближается к верхнему краю кратера, где его стенка максимально тонкая, ее волны могут проникнуть сквозь эту стенку и ощутить силу отталкивания. Эта сила способна протащить всю частицу-волну сквозь стенку; ныне этот процесс известен как туннельный эффект, или туннелирование. Принципы квантовой физики позволяют просчитать, насколько вероятен этот эффект для различных типов ядер, и такие расчеты подтверждаются экспериментально.

Это было похоже на образ из мультфильмов, как будто над головами физиков всего мира одновременно зажглись лампочки – эврика! Если альфа-частицы могли вырваться из ядра таким образом, хотя классическая теория утверждает, что для этого у них недостаточно энергии, то, возможно, протоны способны аналогичным образом туннелировать в ядро и наращивать его до ядра гелия, высвобождая альфа-частицу и энергию, и это может происходить внутри Солнца и других звезд, хотя по классической теории там недостаточно высокая температура! Можно вообразить, что две частицы-волны сблизились до такой степени, что их края соприкоснулись, почувствовали мощную силу притяжения и заключили друг друга в объятия. Оставалось лишь уточнить детали процесса. Но это было нелегко. Идея Гамова была опубликована в 1928 году, прежде чем работа Пейн получила широкое признание, и поначалу астрофизики пытались решить задачу, думая, что звезды преимущественно состоят из намного более тяжелых элементов, чем водород.

Глава 3 7,65 Как образовались «металлы»

В 1928 году самое точное, что физики могли сказать о строении ядра атома гелия (альфа-частице), – это что она состоит из четырех протонов и двух электронов, удерживаемых вместе сильным притяжением. Четыре протона были нужны, чтобы объяснить массу альфа-частицы, но в таком случае ядро выходило бы положительно заряженным в два раза сильнее, чем на самом деле. Чтобы сбалансировать уровень заряда, нужны были два легких, но отрицательно заряженных электрона. И только в 1932 году Джеймс Чедвик[83], работавший в Кавендишской лаборатории, открыл незаряженные частицы, известные в наши дни как нейтроны, обладавшие несколько большей массой, чем протоны. Тогда сразу стало ясно, что ядра гелия на самом деле состоят из двух протонов и двух нейтронов, удерживаемых вместе тем же притяжением, а вот чтобы дополнить ядро гелия до целого атома, необходимо добавить два электрона, которые будут находиться относительно далеко от ядра, удерживаемые электрическими силами, ограниченными принципами квантовой физики. Но первые шаги к пониманию слияния ядер – точнее, процессов, удерживающих протоны вместе и обеспечивающих образование гелия и более тяжелых элементов, – были сделаны еще до прорыва Чедвика.

Открытие Гамовым туннелирования вдохновило физиков Роберта Аткинсона и Фридриха (Фрица) Хоутерманса[84]. В работе, опубликованной в 1929 году, они писали: «Не так давно Гамов продемонстрировал, что положительно заряженные частицы способны проникать в атомное ядро, даже несмотря на то что традиционные представления считают их энергию недостаточной для этого». Далее они математически рассчитывают, как тяжелое ядро может таким способом вобрать в себя поочередно четыре протона[85], а затем испустить целую альфа-частицу. Их ошибка, если так можно выразиться, крылась в представлении, что состав Солнца аналогичен составу Земли: что вокруг множество тяжелых ядер, в которых мог происходить аналогичный процесс. Они, как и все ученые того времени, не знали, что ключ к разгадке в непосредственном взаимодействии протонов друг с другом. Но этот пробел в их концепции гораздо менее важен, чем то, что им удалось представить расчеты. С их помощью можно было выяснить, какого количества взаимодействий ядер в секунду было бы достаточно для поддержания сияния Солнца. Число оказалось на удивление небольшим, что, соответственно, делает очень значительным потенциальный возраст такой звезды, как Солнце.

Развивая далее их идею, можно просчитать, что даже в условиях, существующих внутри Солнца (по современным оценкам, температура там составляет около 15 млн К), электрический барьер преодолеют только самые быстрые протоны. При любой температуре частицы в среде, подобной солнечной материи, движутся с разными скоростями, но с ростом температуры их средняя скорость растет. Скорости отдельных частиц могут быть больше или меньше средней в соответствии с хорошо известными законами статистики. Поэтому можно подсчитать, какая их часть движется, например, на 10 %, 20 % или в два раза быстрее среднего и так далее.

Это следствие из расчетов Аткинсона и Хоутерманса показывает, насколько мало ядерных слияний необходимо для того, чтобы Солнце светило. Чтобы внутри Солнца соединились два протона, им нужно столкнуться почти точно «лоб в лоб», при этом один из них должен двигаться впятеро быстрее, чем в среднем. Лишь один протон из 100 миллионов обладает нужной скоростью, и лишь одно столкновение из 10 септиллионов (10 триллионов триллионов, или 1025) приводит к слиянию{15}. В среднем каждый протон летает внутри Солнца, сталкиваясь раз за разом с другими, подобно шарику в безумном космическом пинбольном автомате, 14 млрд лет, прежде чем соединится с другим протоном и примет участие в последующей реакции образования гелия. Слияние ядер – чрезвычайно редкий процесс даже внутри Солнца. Однако там столько протонов, что каждую секунду 616 млн тонн ядер водорода (протонов) превращаются в 611 тонн ядер гелия (альфа-частиц), причем остальные пять миллионов тонн массы превращаются в энергию в соответствии с уравнением Эйнштейна. И в Солнце все еще остается столько водорода, что за 5 млрд лет в гелий преобразуется всего 4 % исходного вещества. Проблема временной шкалы геологов и эволюционистов решилась одним махом.

В 1930-х годах Аткинсон (уже один, поскольку Хоутерманс занялся другой темой) доказал, что слияние двух протонов с образованием ядра дейтерия (дейтрона), состоящего из прочно связанных одного протона и одного нейтрона, действительно наиболее вероятная первая стадия в образовании гелия и источник энергии Солнца. Он выдвинул идею, что в процессе задействованы и более тяжелые ядра, но к 1936 году было очевидно, что Солнце содержит огромное количество водорода и что ключевой момент слияния ядер внутри Солнца – взаимодействие протонов. Несложно понять, отчего это так. Более тяжелые ядра содержат больше протонов, поэтому их положительный заряд больше и электрические силы отталкивания усложняют процесс туннелирования в них для пролетающих мимо протонов. Как оказалось, тяжелые ядра действительно задействованы в процессе слияния, предсказанном Аткинсоном и Хоутермансом, в некоторых других звездах, где условия еще более экстремальны. Но даже в 1936 году все еще было непонятно, сколько же водорода на Солнце.

Эти сомнения порождены неудачным совпадением, которое в начале 1930-х годов повело астрофизиков по тупиковому пути. Начатые Артуром Эддингтоном расчеты, описывающие базовую структуру звезды, подобной Солнцу, в физических терминах шара из раскаленной материи и определяющие температуру в ее центре, зависят от состава звезды. В каждой из них уравновешены сжимающая ее сила притяжения и стремящееся разорвать ее давление, в том числе давление электромагнитного излучения (света и других волн). Давление волн очень важно, поскольку электромагнитное излучение активно взаимодействует внутри звезды с заряженными частицами – отрицательными электронами и положительными ядрами. Если заряженных частиц слишком много, они задерживают излучение внутри звезды и она начинает расширяться. Если их мало, излучение свободно покидает звезду и она сдувается, словно воздушный шарик. Сжимаясь, она разогревается изнутри, производя больше электромагнитного излучения, которое останавливает процесс сжатия; расширяясь, она внутри остывает, излучения становится меньше и расширение прекращается. Но Эддингтона и его современников больше всего интересовало именно состояние равновесия, баланса.

На него влияет еще один фактор – не только число заряженных частиц, но и их расположение. Например, ядро атома самой распространенной формы железа содержит 26 протонов и 30 нейтронов. Если все протоны звезды были бы упакованы в ядра железа, баланс с электромагнитным излучением оказался бы совсем не таким, как если бы все протоны были свободны, хотя в любом случае на каждый протон приходится один электрон (свободно летающий и способный взаимодействовать с электромагнитным излучением).

Важнейший фактор, который стало возможным принимать во внимание только после открытия нейтронов, – это количество электронов на нуклон (это общее название протонов и нейтронов). Если бы звезда полностью состояла из водорода, все нуклоны были бы протонами, и на каждый протон приходился бы один электрон, и коэффициент электронов на нуклон равнялся бы единице. Если бы звезда состояла только из гелия, этот коэффициент снизился бы до 0,5, поскольку в ядре гелия четыре нуклона, но лишь два из них – положительно заряженные протоны, и для поддержания баланса им нужны два электрона. Если бы звезда состояла из железа, коэффициент оказался бы равен 20: 56 ≈ 0,36. Когда астрофизики поняли, что внутри Солнца очень много водорода, они пересмотрели расчеты Эддингтона с учетом данного факта.

Но тут обнаружилась любопытная вещь. Расчеты показали, что в шаре размером с Солнце, имеющем все наблюдаемые извне характеристики (например, температуру поверхности) нашего светила, возможны лишь два стабильных состояния. Либо 35 % его внешнего слоя составляет водород, либо минимум 95 % всего вещества состоит из водорода и гелия с очень низким содержанием всех прочих элементов. Астрофизики, ранее уверенные, что состав Солнца более или менее близок к составу Земли, были вынуждены принять тот факт, что как минимум треть нашего светила – это водород. Но дальше они не пошли: принять, что водород и гелий могут составлять 95 % Солнца (и, следовательно, других звезд), было для них уж слишком. Такое заблуждение, а это было именно оно, определяло ход научной мысли вплоть до 1950-х годов. Однако это не помешало ученым выяснить с точностью, как именно звезды выделяют энергию, превращая водород в гелий, и перейти к первым верным оценкам их возраста.

Циклы слияний

Здесь на сцену вновь вышел Георгий Гамов. В 1938 году он организовал конференцию в Вашингтоне, собрав астрономов и физиков для обсуждения проблемы образования энергии внутри звезд. Одним из участников встречи был тридцатиоднолетний Ганс Бете[86] – один из множества немецких физиков, эмигрировавших в Америку после прихода к власти Гитлера. На конференции обсуждался такой основной вопрос: какие именно процессы слияния ядер могут производить количество тепла, необходимое для поддержания стабильного потока энергии от Солнца при предполагаемой наукой температуре внутри светила. К 1938 году ученые уже могли опираться на достаточно большой свод данных, описывающих скорости различных типов реакций. Так, если бы внутри Солнца было, скажем, много лития, то путем взаимодействия с ядрами водорода он быстро превращался бы в гелий, производя столько энергии, что Солнце бы взорвалось. Напротив, если Солнце преимущественно состояло бы из кислорода и водорода, реакция между ядрами кислорода и протонами происходила бы настолько медленно, что звезда сжималась бы до уровня достаточного разогрева ее внутренней части для активизации взаимодействия ядер. Задачей исследователей было найти комбинацию элементов, которая оказалась бы самой подходящей.

На той встрече никому не удалось решить поставленную задачу, но в написанной буквально через несколько месяцев книге «Рождение и смерть Солнца» Гамов рассказывает, что Бете нашел разгадку в поезде, возвращаясь из Вашингтона к себе в Корнелльский университет. Это характерное для Гамова преувеличение: Бете закончил расчеты уже по возвращении. Чуть раньше в том же году другой немецкий физик, работавший в Берлине Карл фон Вайцзеккер[87], пришел к тому же заключению. Бете, однако, продолжил исследования ядерного слияния внутри звезд и в итоге в 1967 году получил Нобелевскую премию «за весомый вклад в теорию ядерной реакции, в частности за открытия, которые касаются источников энергии звезд». Фон Вайцзеккер во время Второй мировой войны пошел по другому пути и углубился в разработку ядерного оружия вместе с научным коллективом Вернера Гейзенберга.

Им обоим пришла в голову идея, связанная с протонами и ядрами углерода, азота и кислорода. Это очень типично для 1930-х годов – эпохи, когда все еще считалось, будто примерно две трети Солнца составляют элементы тяжелее водорода и гелия[88]. Новая модель известна как углеродно-азотно-кислородный цикл, или CNO-цикл (C – углерод, N – азот, O – кислород). Наше представление об этом механизме лишь немного уточнено с 1938 года; ниже я кратко опишу его современное понимание.

Чтобы понять суть CNO-цикла, вам следует знать несколько дополнительных фактов. Во-первых, химические свойства элемента определяются количеством протонов в ядре его атома, которое равно числу электронов, вращающихся вокруг ядра и представляющих собой своеобразное «лицо» атома. Однако разные варианты (изотопы) одного и того же элемента могут иметь различное количество нейтронов в ядре. Самый простой пример – водород, который может существовать с ядром, состоящим только из протона, а может – с дополнительным нейтроном (это так называемый тяжелый водород, или дейтерий). Углерод существует в нескольких изотопах, каждый с шестью протонами и шестью электронами. У одного (самый частый изотоп) в ядре шесть нейтронов (его называют углерод-12, поскольку в его ядре в общей сложности 12 нуклонов). У другого – семь нейтронов (углерод-13); есть и другие варианты. Во-вторых, нейтрон может превратиться в протон и вылетающий на большой скорости электрон. Однако нельзя сказать, что в нейтроне уже в какой-то форме «содержится» готовый электрон: преобразование происходит в рамках процесса, известного как слабое взаимодействие. Можете сравнить его с превращением гусеницы в бабочку: до окукливания бабочка никоим образом не находится внутри гусеницы. Аналогичным же образом протон может превратиться обратно в нейтрон, как бы вобрав в себя электрон или испустив положительно заряженную частицу под названием позитрон, представляющий собой своеобразный антипод электрона (пример антивещества). Позитроны удалось открыть лишь в 1932 году, и это одна из причин, почему понимание процессов ядерного слияния внутри звезд долго не развивалось. В-третьих и в-последних (на сегодняшний день), существует еще один вид частиц, значимый в наших рассуждениях, – это нейтрино. Он играет важную роль в слабом взаимодействии, превращающем протоны в нейтроны и обратно. Но у нейтрино очень маленькая масса, и они незначительно взаимодействуют с другими формами материи, поэтому, хотя существование этих частиц было теоретически предсказано еще в 1930 году, обнаружить их удалось лишь в 1956-м. Такое подтверждение теоретических выкладок ученых стало настоящим триумфом науки.

Итак, теперь мы лучше сможем понять открытие Бете 1938 года. В его основе – ядро атома углерода-12 внутри звезды. Оно поглощает протон с помощью туннелирования и становится ядром азота-13. Но такое ядро нестабильно: оно испускает позитрон и нейтрино, трансформируясь в другой изотоп углерода – углерод-13 (один из протонов ядра преобразуется в нейтрон). Далее углерод-13 поглощает еще один протон и становится ядром азота-14, затем процесс повторяется и появляется ядро кислорода-15. Как и азот-13, кислород-15 нестабилен и распадается, испуская электрон и нейтрино и становясь ядром азота-15 (с превращением одного протона в нейтрон). Наконец, в завершающей стадии процесса ядро азота-15 снова поглощает протон, но тут же испускает альфа-частицу – два протона и два нейтрона, ядро гелия-4. Остается ядро углерода-12, которое служит катализатором для последующего повторения того же цикла. Это означает, что, какого бы мнения о строении звезды астрономы ни придерживались в 1930-х годах, для CNO-цикла «металлы» нужны лишь в самом небольшом количестве: углерод как таковой при нем не расходуется. И конечно, одновременно в подобных циклах занято очень много ядер углерода-12. В результате каждый раз четыре протона трансформируются в два протона и два нейтрона (четыре ядра водорода – в одно ядро гелия) плюс пару электронов и нейтрино и энергию[89].

У этого процесса, однако, есть любопытный побочный эффект. Как я сказал, углерод при нем не расходуется, но это верно только при сбалансированности цикла. Некоторые реакции в нем происходят быстрее других, и медленные взаимодействия служат своеобразным шлюзом: ядра определенного типа формируются перед ними в большом количестве и «ждут», пока просочившиеся сквозь этот шлюз ядра пройдут очередное преобразование и сбалансируют ситуацию. Из-за такого несовпадения скоростей реакции равновесие достигается тогда, когда относительные пропорции вовлеченных в цикл элементов составляют 5,5 % углерода-12, 0,9 % углерода-13, 93,6 % азота-14 и 0,004 % кислорода-15. Иными словами, даже если изначально в звезде вообще не содержится азота, он быстро сформируется и сможет стать главным участником CNO-цикла (по массе), поскольку скорость конвертации азота-14 в азот-15 намного медленнее, чем его образование из кислорода-15. Таким образом, CNO-цикл представляет собой важнейший источник азота во Вселенной, включая, как мы еще увидим, азот в воздухе, которым мы дышим. Когда-то этот газ образовался в рамках CNO-цикла внутри давно умерших звезд.

В удивительном прорыве Бете была лишь одна проблема. Хотя вычисления показали, что эти взаимодействия могут осуществляться при температуре, существующей внутри Солнца, они все равно были бы довольно редкими (поскольку для них нужны экстремально быстро движущиеся частицы), поэтому не смогли бы породить много энергии. CNO-цикл действует достаточно эффективно как основной источник энергии внутри очень массивных и жарких звезд – но не таких, как Солнце. Этот недостаток CNO-цикла в приложении к Солнцу еще не был очевиден в 1938 году и в течение более чем десяти последующих лет, но в том же году Ганс Бете и его коллега Чарльз Критчфилд[90] разработали теорию альтернативного источника энергии, который впоследствии оказался для Солнца основным. Они отталкивались от открытия Аткинсона, что слияние двух протонов – наиболее вероятный процесс ядерного слияния внутри Солнца. Этот процесс получил название протон-протонного цикла.

Цикл начинается с лобового столкновения двух быстро движущихся протонов и их соединения путем туннелирования, преодолевающего электрическое отталкивание. В итоге один из протонов превращается в нейтрон и образовавшееся ядро дейтерия испускает позитрон и нейтрино. Далее в ядро дейтерия туннелируется еще один протон, формируя ядро гелия-3 (два протона и один нейтрон). Наконец, два ядра гелия-3 сталкиваются и сливаются, почти сразу же отделяя два протона и образуя ядро гелия-4 (два протона и два нейтрона[91]). Как и в CNO-цикле, в итоге четыре протона превращаются в одно ядро гелия-4, высвобождая энергию. Однако важнее всего то, что протон-протонный цикл может успешно осуществляться при температуре внутри Солнца и порождать нужное количество энергии. Оба процесса превращения водорода в гелий известны астрономам как примеры «горения» водорода. Это не горение в традиционном понимании, не химическое соединение веществ с кислородом (в этом смысле водород горит в кислородной среде, образуя воду). Ядерное «горение» высвобождает намного больше энергии, чем химическое. CNO-цикл представляет собой основного поставщика энергии для звезд с внутренней температурой свыше 20 млн К и массой в полтора и более раз большей, чем у Солнца. Протон-протонный цикл относительно эффективен уже при температуре 15 млн К, но именно относительно. Как уже упоминалось, внутри Солнца лишь один из ста миллионов протонов движется с достаточной скоростью для запуска этого цикла, и даже у этих частиц не каждое столкновение приводит к слиянию. По мере того как ученые все больше сходились во мнении, что Солнце действительно в основном состоит из водорода, астрономы вынуждены были рассматривать значительно расширенную временную шкалу Вселенной, а геологи получили возможность сказать: «Ну вот, мы же говорили!»

Каменный век

С точки зрения современного понимания состава Солнца, скорость высвобождения энергии с помощью протон-протонного цикла подсказывает нам, как долго такая звезда, изначально состоящая преимущественно из водорода, способна светить более или менее стабильно, прежде чем большая часть водорода превратится в гелий и изменит ее структуру и вид. Можно подсчитать, что Солнце в его привычном для нас виде способно существовать примерно 10 млрд лет. Да, проблема временной шкалы отпала. Но на каком отрезке этих десяти миллиардов мы находимся сегодня? Здесь в игру вступают геологи и радиохимики.

Эрнест Резерфорд и Фредерик Содди сделали два ключевых открытия относительно радиоактивности: что она заставляет один элемент превращаться в другой и что для каждого радиоактивного элемента существует свой период полураспада. При распаде каждого радиоактивного элемента образуется специфический набор других элементов, известных как продукты распада. Некоторые из них тоже радиоактивны и продолжают распадаться. Когда в лабораторных условиях было изучено достаточное количество радиоактивных процессов, ученые научились анализировать природные материалы, например камни, измеряя соотношения присутствующих в них продуктов распада и определяя, какие радиоактивные элементы содержались в них когда-то (даже если все они уже давно распались). Сегодня возможно при определенных условиях узнать, когда именно в камне присутствовали эти исходные радиоактивные элементы, то есть сколько ему лет.

У некоторых радиоактивных элементов период полураспада очень короткий, и в природном виде их на Земле уже не осталось. У других, например урана и тория, он настолько длинный, что их осталось еще довольно много, несмотря на то что они распадаются с момента образования Земли, сформировавшейся, как мы теперь знаем, из остатков предыдущих поколений звезд, внутри которых эти элементы и были созданы. Если в каменной породе присутствует, например, уран и его соединение с продуктами распада, скажем радием, то по количеству каждого из элементов можно оценить возраст камня. Важно понять отношение каждого вещества к радиоактивному – допустим, свинца к урану. Изящество этого приема заключается в том, что он не зависит от реального количества наличествующих веществ, лишь бы их было достаточно для проведения измерений; важны лишь их пропорции. Получившийся возраст определяется разнообразными факторами, например способом формирования породы (вулканическим и другими); но, разумеется, Земля древнее самого древнего камня, который можно так проанализировать.

Первым этот анализ применил в начале XX века сам Резерфорд, а также американский химик Бертрам Болтвуд[92]. Уже в 1904 году Содди, тогда работавший в Лондоне с Уильямом Рамзаем, измерил скорость образования гелия при распаде урана. Резерфорд, находившийся в Канаде, понял, что это пример альфа-распада, если в процессе распада образуются альфа-частицы (ядра гелия) и каждая притягивает из окружающей среды пару электронов, формируя атомы гелия. Он взял образец урановой руды и измерил количество содержавшегося в нем остаточного урана и гелия. Предположив, что с момента образования породы гелий из нее не уходил, он смог оценить возраст конкретного камня в 40 млн лет. Однако Резерфорд хорошо знал, что на самом деле гелий за эти годы наверняка частично улетучился из руды, поэтому получившаяся величина – это минимальный возможный возраст этой породы (а значит, и нашей Земли). Тем не менее это был важный момент для понимания возможностей радиоактивного анализа.

Болтвуд вдохновился этой темой в том же 1904 году, прослушав лекцию Резерфорда в Йельском университете. Болтвуд знал, что при распаде урана образуется не только гелий, но и радий, а в 1905 году открыл, что распад радия в итоге порождает свинец. Измерив соотношение элементов в этой цепочке распада, он смог оценить возраст различных образцов породы. Его первые оценки, сделанные в том же году, простирались от 92 до 570 млн лет. К сожалению, все они оказались неверны, поскольку основывались на неточных измерениях и неверной оценке периода полураспада радия. Но к 1907 году эти болезни роста были преодолены и удалось более точно указать возраст образцов, которым оказалось от 400 млн до, только представьте себе, двух миллиардов лет! Это превышало указанный Кельвином возраст Земли (все еще уважаемый в астрономической среде, несмотря на противоречие с идеями Дарвина) более чем в десять раз. Но, как часто бывает с подобными открытиями, геологи отнеслись к полученным числам с недоверием, и, поскольку в дальнейшем Резерфорд и Болтвуд перешли к другим исследованиям, радиоактивный анализ так и не воспринимался всерьез до тех пор, пока титанический труд британца Артура Холмса[93] не доказал убедительно его точность.

Холмс поступил в Лондонский королевский научный колледж в 1907 году. На последнем курсе он в рамках выпускного проекта провел оценку породы девонского периода, привезенной из Норвегии, и получил возраст, равный 370 млн лет. Закончив обучение, Холмс устроился на полгода геологом в Мозамбик, желая раздать студенческие долги, а затем вернулся в Королевский колледж (сегодня он называется Имперским) и в 1917 году защитил там докторскую диссертацию. До 1924 года он работал геологом в Бирме, а затем вновь вернулся к научной деятельности, вначале как преподаватель геологии в университете Дарема, потом в Эдинбургском университете. Автор авторитетного учебника «Основы физической геологии» и один из первооткрывателей дрейфа материков, Холмс был одним из самых влиятельных геологов XX века.

Работая в Имперском колледже, Холмс датировал множество образцов камней с помощью описанного приема и обнаружил, что самому старому около 1,6 млрд лет. Кроме того, еще в 1913 году он стал первым, кто применил радиоактивную датировку к окаменелостям и смог оценить абсолютный возраст останков древних животных и растений. Постепенно у него сформировался впечатляющий объем исследований, производимых с большим трудом и тщанием (благодаря его знаниям и с большой точностью), и геологическое сообщество наконец-то согласилось с его оценкой возраста Земли как очень значительного. В 1921 году в рамках дискуссии на ежегодной встрече Британской ассоциации содействия развитию науки геологи, ботаники, зоологи и физики смогли прийти к единому пониманию возраста Земли как исчисляемого несколькими миллиардами лет и признанию радиоактивного анализа дающим наиболее надежные оценки. Пять лет спустя в отчете Национального исследовательского совета Национальной академии наук США этот метод и его результаты были официально одобрены – началась эра радиометрической шкалы времени. С тех пор благодаря уточнениям методов анализа возраст самого древнего из известных земных образцов (сегодня это небольшие кристаллы циркона из Западной Австралии) был отодвинут до 4,4 млрд лет. Эти числа удивительным образом согласуются с возрастом самой старой материи, найденной в метеоритах (каменных образованиях, упавших на Землю из космоса), – 4,5 млрд лет. Поскольку предполагается, что метеориты – это остатки материи, не вошедшие в Солнце и Солнечную систему, все указывает на то, что Солнце и окружающие его планеты, включая Землю, сформировались примерно 4,5 млрд лет назад. В таком случае наше светило находится примерно на середине своего жизненного пути как звезда с горением водорода. В таком случае откуда же взялись исходные радиоактивные элементы, задавшие нам эту шкалу? Как я уже намекал, они создавались внутри звезд. Как именно это происходило, ученым не было ясно вплоть до 1950-х годов.

Через бомбы к звездам

Первое понимание CNO– и протон-протонного циклов появилось в конце 1930-х годов, непосредственно перед Второй мировой войной. Хотя затем чисто научные изыскания временно уступили лидерство прикладному поиску решений для военных целей, сразу после установления мира астрономы сделали скачок вперед в области интерпретации ядерных процессов внутри звезд, не в последнюю очередь благодаря научным данным, накопленным при разработке атомной бомбы[94]. Ключевой фигурой в этих исследованиях был Фред Хойл, еще совсем молодой сотрудник Кембриджского университета, работавший во время войны над созданием радаров для Британского адмиралтейства. Чтобы понять его характер, достаточно вспомнить, что в 1936 году двадцатиоднолетний выпускник выполнил все академические требования для получения докторской степени, но не позаботился о заполнении документов и потому не получил ее[95]. В 1945 году он стал преподавать в Кембридже математику, но до 1958 года, когда его официально назначили профессором, так и работал без чинов и званий. Сейчас это даже трудно представить!

Осенью 1944 года Фред Хойл посетил Соединенные Штаты Америки и Канаду в составе делегации от Адмиралтейства в связи с проектом по радарам. Ему удалось предпринять дополнительную поездку в Маунт-Вилсоновскую обсерваторию в Калифорнии и познакомиться с последними астрономическими данными, а также с разработчиками атомной бомбы. Хотя им было запрещено рассказывать ему подробности их работы, научный опыт и острый ум Хойла позволили ему многое понять из того, что они говорили и о чем умалчивали. Вернувшись в Англию, ученый провел рождественские каникулы в размышлениях об увиденном и услышанном. От калифорнийского астронома Вальтера Бааде[96] он узнал последние соображения относительно самых мощных взрывов звезд, известных в то время, – сверхновых. А из встреч с физиками-ядерщиками, догадываясь о недоговоренном ими, извлек идею, что плутониевую бомбу можно взорвать лишь резким сжатием, так называемым имплозивным способом. Проще говоря, критическая масса плутония окружается взрывчаткой, и та посылает ударную волну внутрь, сжимая плутоний и приводя к неудержимому расщеплению ядер и высвобождению энергии.

Хойл задумался, не происходит ли аналогичный процесс в суперновых: горение водорода останавливается, массивная звезда сжимается под собственным весом, запуская волну ядерных взаимодействий, которые затем взрывают ее изнутри. Он смог просчитать, сколько ядерной энергии при этом высвободится, и примерно представить соотношения различных элементов, которые образовались бы при таком взрыве при разных температурах. Следующим шагом должно было стать сравнение расчетов с реальностью.

В марте 1945 года Хойл под каким-то предлогом изучил кембриджские данные о наличии на Земле различных элементов. Он полагал, что состав нашей планеты должен соотноситься с составом Вселенной как таковой за исключением громадных запасов водорода и гелия в звездах. Он обнаружил, что, если свести данные в единую схему, в среднем чем элемент тяжелее, тем его меньше, за исключением железа и других черных металлов, которых непропорционально больше. Это в точности соответствовало его подсчетам, учитывая, что температура внутри взрывающихся звезд достигала не миллионов, а миллиардов градусов. Война затормозила публикацию этого открытия, но в 1946 году оно появилось в статье под названием «Образование элементов из водорода». К тому времени Хойл доказал, что звезды в основном состоят из водорода, и стал одним из первых астрономов, признавших этот факт. До полного понимания картины Вселенной было еще далеко, но люди уже начинали осознавать, откуда взялись элементы, из которых мы состоим, что, по сути, все вокруг сделано из «звездной пыли». Когда Хойл прочел лекцию на эту тему в британском Королевском астрономическом обществе, среди слушателей была Маргарет Бербидж[97] (тогда Пичи), о которой речь пойдет ниже. Впоследствии она вспоминала:

Я сидела в аудитории, слушая рассказ Фреда, словно завороженная, и переживала чудесное ощущение, как будто завеса невежества приподнимается и обнажает сияющий свет великого открытия{16}.

И хотя на завершение исследования ушло более десяти лет, 1946 год стал важной вехой: с этого момента Хойл начал разрабатывать так называемую стационарную модель Вселенной. Хотя в конце сороковых эту версию рассматривали всерьез (преимущественно из-за того, что Большой взрыв не мог создать тяжелые элементы), работа Хойла по ядерному синтезу в звездах появилась раньше создания стационарной модели и независимо от нее.

И последние станут первыми

Идея Хойла не сразу встретила понимание среди ученых, более того, она осталась почти незамеченной. После войны он и сам сосредоточился на преподавании в Кембридже и не сразу стал развивать свою концепцию. Когда же он нашел на это время и пришел к мысли, ставшей ключом к пониманию работы ядерного синтеза в обычных звездах до их взрыва или менее эффектного уничтожения, ему помешал случай. Преподавая в университете, он должен был руководить студентами докторантуры (хотя сам не имел докторской степени![98]). Среди прочего, в его обязанности входила помощь студентам в формулировании тем диссертации, и в 1949 году Хойл предложил одному из них развить идею Бете о превращении водорода в гелий и найти способ преобразования гелия в углерод внутри обычных звезд при температурах намного ниже тех, которые сам Хойл использовал при изучении физики сверхновых.

Это была многообещающая задача, поскольку уже было известно, что изотопы, число нуклонов в ядрах которых кратно четырем, относительно распространены. Среди таких изотопов можно вспомнить углерод-12 и кислород-16. Создается впечатление, что их ядра формируются из ядер гелия-4. Так и хочется попробовать воспроизвести этот процесс: соединить два ядра гелия-4 и получить бериллий-8, затем добавить еще один гелий-4 и получить углерод-12 и так далее. Такое горение гелия привело бы к высвобождению энергии, как при ядерном горении водорода, только в меньших объемах. Столкнувшись с необходимостью просчета скорости всех реакций по этой цепочке вплоть до кислорода-16, студент вскоре отчаялся и бросил работу. Однако формально он не отказался от докторантуры, и, пока официальные требования учебного заведения не вынудили его признать, что он не станет продолжать работу над темой, академическая этика не позволяла Хойлу самому попробовать решить проблему или передать ее другому исследователю. К 1952 году за эту загадку независимо от Хойла взялись астрономы из других университетов (в частности, Эдвин Солпитер[99] из Корнелля).

Идея образования элементов внутри звезд стала набирать популярность по мере того, как астрономы начали измерять возраст светил (см. следующую главу) и оказалось, что старые звезды содержат меньше тяжелых элементов, чем молодые, выражаясь астрономическим языком, у них ниже «металличность». Напрашивается объяснение: молодые звезды напичканы «металлами», которые создавались в старых и затем каким-то образом были выброшены в межзвездное пространство. Стало казаться, что скоро Хойла обойдут другие исследователи, но он сумел сделать прорыв первым. Злосчастный студент наконец покинул университет, и Хойла пригласили провести часть 1953 года в Калифорнийском технологическом институте и Принстоне. Он собирался читать лекции о проблеме ядерного синтеза в звездах и принялся рассчитывать скорости вовлеченных в этот процесс реакций. Ученый быстро понял, что углерод и, следовательно, все элементы тяжелее него могут создаваться внутри звезд при строго определенных условиях.

Проблема заключалась в том, что бериллий-8 нестабилен и быстро распадается обратно на два ядра гелия-4 (альфа-частицы). За краткий период своего существования ядро бериллия-8, составленного из двух ядер гелия-4, может успеть соприкоснуться с еще одной альфа-частицей, но, вместо того чтобы соединиться с ней в углерод-12, бериллий разрушается от удара. Однако если бы бериллий-8 был стабилен, он мог бы порождать углерод-12 так быстро, что звезда неминуемо взорвалась бы! Оказавшись в патовой ситуации (углерод либо не образуется вообще, либо образуется в чрезмерных количествах), Хойл нашел выход. Ключ был в том, что ядро углерода-12 должно обладать свойством, именуемым резонансом, с энергией 7,65 млн электронвольт[100] (МэВ).

Ядро атома может существовать в так называемом основном состоянии, когда оно обладает минимумом энергии, либо же может поглощать некоторое количество энергии (существующей в виде квантов, как и все в субатомном мире) и подниматься на новые энергетические уровни. Придя в такое возбужденное состояние, ядро рано или поздно избавляется от лишней энергии (обычно испуская гамма-квант) и возвращается в основное состояние. Энергетические уровни похожи на ступени лестницы, по которым перепрыгивает возбужденное ядро: вверх, затем вниз. Хойл предположил, что возбужденное ядро углерода-12 может формироваться от соединения ядер гелия-4 и бериллия-8 только при условии, что на лестнице углерода-12 есть энергетическая ступень, соответствующая сумме энергий этих ядер. Представьте себе, что вы бросили мячик вверх, он преодолел всю лестницу и задержался на верхней ступеньке (а затем мягко скатился вниз). Хойл предсказал, что резонанс ядра составляет 7,65 МэВ. Если он существует, то взаимодействие бериллия и гелия способно создавать возбужденные ядра углерода, которые затем избавятся от лишней энергии и перейдут в основное состояние. Но если резонанса не существует, углерод создать нельзя и нельзя создать нас, ведь мы представляем собой углеродную форму жизни.

Хойл убедил себя в том, что хотя доказательств существования такого возбужденного состояния ядер углерода-12 у него не было, оно реально. Работая в Калифорнии, он показал свои расчеты американскому физику-экспериментатору Уильяму Фаулеру[101] и спросил, может ли тот провести эксперимент и проверить, действительно ли такой энергетический уровень имеется. Сначала Фаулер решил, что это безумие, но Хойл настаивал, пока тот не согласился, – как Фаулер рассказывал мне позднее, «чтобы Фред уже заткнулся и отвязался»[102]. Хойл говорил, что Фаулеру и его команде (в частности, Уорду Уэйлингу) потребовалось десять дней, чтобы, вопреки ожиданиям, понять, что он прав, однако более точные измерения заняли три месяца{17}. В любом случае, его правота была доказана.

Это было сенсационное открытие, важность которого невозможно переоценить. Зная, что углерод существует – что существуем мы! – Хойл предсказал одну из его важнейших характеристик и открыл путь к полному пониманию возникновения элементов внутри звезд. Хойл сделал огромный шаг вперед еще до того, как уехал из Калифорнии весной 1953 года: уже тогда он написал первый вариант работы, опубликованной в 1954 году под названием «I. Синтез элементов от углерода до никеля». Но работа под номером II так и не появилась, вместо нее в 1957 году Фред Хойл издал революционный по своей сути труд в соавторстве с Фаулером и Бербиджами – Джеффри и Маргарет[103], где также использовались независимые исследования канадца Аластера Кэмерона[104]. Авторы перечислялись в алфавитном порядке: Бербидж, Бербидж, Фаулер и Хойл, и эта выдающаяся работа до сих пор известна как B²FH. В 1983 году Фаулер получил Нобелевскую премию в основном именно за нее. Впрочем, сам он в приватных беседах отмечал, что награда по праву принадлежала Хойлу: возможно, тому просто отомстили за открытую критику предыдущих решений Нобелевского комитета{18}. Трудно вспомнить более яркий пример того, как в науке последние становятся первыми. Однако все это мелочи. Важен вклад всех этих ученых в понимание нами сущности звезд.

Звездная пыль

Не буду вдаваться здесь в подробности{19}, но хотя бы общую картину обрисовать очень хочется. Все начинается со звезд чуть побольше Солнца – у нашего светила не хватает массы, чтобы создавать элементы тяжелее углерода. Звезды, которые, подобно Солнцу, поддерживают производство энергии путем горения водорода, соответствуют соотношению массы и светимости, которая обсуждалась в главе 1, и находятся на главной последовательности. Когда звезда истощает внутренний запас водорода, она уже не может сопротивляться силе притяжения, раскаляющей ее центр, и, когда температура доходит примерно до 100 млн К, запускается превращение ядер гелия в углерод, вновь стабилизируя звезду до момента истощения запасов гелия. Когда кончается гелий, она снова сжимается. Для Солнца и звезд меньшей массы это конец истории: звезда заканчивает свое существование в виде охлаждающегося шара из ядер углерода (и отчасти кислорода, поскольку при горении гелия образуется и кислород), окруженных слоем ядер гелия и тонкой атмосферой из водорода. Теперь это белый карлик: звезда размером примерно с Землю и с несколько меньшей, чем у Солнца сейчас, массой.

Однако у более массивных звезд после завершения горения гелия дальнейшее сжатие и повышение температуры могут запустить следующие уровни ядерного горения. По мере вовлечения во взаимодействия более тяжелых ядер процесс усложняется и появляются ядра, состоящие не из целого числа альфа-частиц, а образующиеся путем поглощения нейтронов из окружающей среды или, наоборот, испускания позитронов. Вот почему группе B²FH потребовалась пара лет на уточнение всех деталей, и вот откуда взялись такие изотопы, как азот-14. В широком смысле горение углерода (происходящее при температуре около 500 млн К) образует неон, натрий и магний, горение кислорода (примерно при 1 млрд К) – кремний, серу и другие элементы. Самый важный из них – кремний-28, проходящий сложную серию взаимодействий и в итоге превращающийся в железо. Но на железе и похожем на него никеле процесс останавливается. Железо-56 имеет наиболее стабильное сочетание протонов и нейтронов в ядре и наименьшую энергию из расчета на нуклон.

Элементы, появляющиеся на каждом этапе процесса, не полностью разрушаются на следующем. Каждая фаза ядерного горения (после первичной фазы горения водорода) осуществляется в следующем слое, окружающем ядро, и эти слои образуют подобие луковицы (это сравнение принадлежит Хойлу). Таким образом, внутри старой массивной звезды железное ядро окружено слоем горения кремния, затем слоем горения кислорода, углерода, гелия и, наконец, водорода, а также побочными продуктами горения. Внимательные читатели уже заметили, что в этом описании чего-то не хватает. Да, верно: самых легких и самых тяжелых элементов.

Во Вселенной намного больше гелия, чем могли бы произвести звезды, и в свете работ Гамова и его коллег логично предположить, что он появился при Большом взрыве. Хотя Хойл верил в стационарную модель Вселенной, он был готов рассмотреть и другие варианты и описывал свой подход к решению научных проблем как «разделение». Он говорил мне, что ему нравилось прослеживать ход исследований без попыток оценить их или применить к ним методы другой ветви науки. Одним из результатов такого подхода стало то, что, не разочаровываясь в стационарной модели, он смог предоставить чуть ли не важнейшие данные в поддержку концепции Большого взрыва. Сначала, сотрудничая в начале 1960-х с Роджером Тайлером (работа была опубликована в 1964 году), он в подробностях выяснил, как тот процент гелия, который мы наблюдаем во Вселенной в целом, мог быть образован из водорода при условиях, порожденных Большим взрывом. Затем он обратил внимание на другие легкие элементы. Литий, бериллий и бор должны были бы разрушиться при высоких температурах внутри звезд, но их удается обнаружить в звездной атмосфере. B²FH не смогли объяснить их присутствие. Дальнейшие исследования показали, что бериллий и бор могли образовываться в межзвездных облаках, из которых формируются новые звезды, путем взаимодействия тяжелых ядер с частицами высокой энергии, известными как космические лучи (некоторые из них исходят от вспышек сверхновых). Но в 1967 году Хойл совместно с Робертом Вагонером и Вилли Фаулером доказал, помимо всего прочего, что дейтерий и литий могли образоваться в нужных соотношениях в условиях Большого взрыва. Их работа произвела на меня большое впечатление. Я тогда учился в магистратуре Университета Сассекса и приехал в Кембридж на лекцию Вагонера. Перед его выступлением мне все еще казалось, что теории Большого взрыва и стационарной Вселенной одинаково подходят для объяснения происходящего вокруг нас, но после мне не без сожаления пришлось признать стационарную модель несостоятельной.

С тяжелыми элементами уже в 1957 году было меньше сложностей. Их создание требует расходования энергии схлопывания звезд – вспышек сверхновых, которые когда-то заставили Хойла впервые задуматься о ядерном синтезе внутри звезд. Оставалось додумать некоторые детали, но общая картина была уже ясна. Элементы, образующиеся внутри звезды, во время таких взрывов разлетаются по всему космосу, а если старая звезда имеет небольшую массу и не взрывается, то она может отторгать внешние слои и разбрасывать элементы на меньшие расстояния. Получившаяся смесь элементов пронизывает межзвездные облака водорода и гелия, из которых в итоге формируются новые звезды, планеты и, по крайней мере в одном случае, люди.

«В итоге» – очень важная оговорка. Если материал, из которого сформировались Солнце и Солнечная система, создан именно таким образом, это значит, что хотя бы одно поколение звезд уже завершило свой жизненный цикл и рассыпало по космосу необходимые строительные материалы. Если Солнцу около 4,5 млрд лет, то Вселенной должно быть по меньшей мере на несколько миллиардов больше. К середине 1950-х годов измерения возраста звезд вынудили космологов изменить свои представления о том, сколько лет Вселенной. По сути, звезды давали им намного более жесткие указания на временные рамки своего существования, чем приведенное грубое предположение.

Глава 4 13,2 Возраст звезд

Есть два основных подхода к измерению возраста звезд. Один базируется на понимании того, как звезды изменяются с течением времени, на астрономическом языке это называется эволюцией[105]. Другой применяет к звездам радиометрический анализ, который изобрели Болтвуд и Холмс и который изначально применялся к земным минералам. Оба подхода основаны на идеях, возникших в начале XX века; сначала более плодотворным казался первый, поэтому мы начнем рассказ с него. Два астронома независимо друг от друга открыли способ соотнесения в единой простой системе температуры (или цвета, как мы уже видели, они находятся в прямой зависимости) и светимости звезд. Оказалось, что эта система – один из полезнейших инструментов для астрономии.

Герцшпрунг, Расселл и диаграмма

Первым из этих двух астрономов был датчанин Эйнар Герцшпрунг[106], инженер-химик по образованию и увлеченный астроном. Он работал (бесплатно) в обсерватории Копенгагенского университета с 1902 года и заслужил такую репутацию, что в 1909 году ему предложили должность в Геттингенской обсерватории в Германии. Вторым стал американец, сотрудник Принстонского университета, Генри Расселл, именно он «прославился» попыткой разубедить Сесилию Пейн в реальности ее открытия состава Солнца. В 1905 и 1907 годах Герцшпрунг опубликовал статьи с описанием открытой им взаимосвязи между яркостью и цветом звезд, но в фотожурнале. Астрономы не читали фотожурналы и не заметили его прорыва. Расселл сделал то же открытие немногим позже, но проработал идею подробнее и в 1913 году рассказал о ней в научном журнале. В дальнейшем вклад Герцшпрунга был обнаружен и признан, так что в этом случае (в отличие от B²FH) его имя стоит первым и по алфавиту, и по праву, несмотря на его тогдашний «любительский» статус.

На современном виде диаграммы Герцшпрунга – Расселла (или просто Г – Р[107]) цвета (или температуры, определенные по закону Планка, связанному с черным телом) звезд расположены по оси x с понижением температуры слева направо. На этой оси также показан спектральный класс звезд[108] – эта характеристика относится к спектроскопическому анализу, но действует и для черных тел. По оси y отображена яркость звезд, увеличивающаяся снизу вверх. Здесь имеется в виду не та яркость, которая видна с земли, а абсолютная звездная величина, определяемая по яркости с расстояния в 10 парсек (примерно 32,5 световых года). Разумеется, мы можем выяснить абсолютную звездную величину, только если знаем яркость звезды в небе и ее удаленность от нас, поэтому соотношения диаграммы Г – Р не стали очевидными до тех пор, пока астрономы не научились вычислять расстояния до звезд. Как они это делают, разъясняется в главе 5.

Итак, в левом верхнем углу диаграммы Г – Р расположены самые яркие и горячие звезды, в левом нижнем – горячие, но тусклые, в правом нижнем – холодные и тусклые, а в правом верхнем – холодные, но яркие. Когда астрономы разместили на одной такой диаграмме много звезд, их поразило, что большинство из них лежат единой полосой между правым нижним (холодные и тусклые) и левым верхним (горячие и яркие) углами. Это так называемая главная последовательность, и Солнце, типичный ее представитель, располагается примерно посередине. Сегодня мы знаем, что положение звезды на главной последовательности зависит от ее массы (открыто Эддингтоном в 1920-х годах) и что внутри всех этих звезд горит водород, превращающийся в гелий (это выяснили намного позже). Поскольку массивные звезды в попытке сохранить стабильность сжигают топливо быстрее, они ярче маленьких. Следовательно, чем выше звезда на диаграмме, тем она тяжелее.

Конечно, во втором десятилетии XX века это еще не было очевидно. Для выяснения того, как эволюционируют звезды, потребовалось провести большие сложные исследования, и за следующие полвека наука несколько раз заходила в тупик; здесь не имеет смысла рассказывать обо всех этих перипетиях. Для измерения возраста звезд важно, что примерно к середине 1960-х годов выстроилась цельная картина и приблизительно в то же время Вагонер, Фаулер и Хойл сумели описать, как при Большом взрыве смогли образоваться легкие элементы.

Прах к праху

В нашей Галактике 90 % всех ярких звезд находятся на главной последовательности диаграммы Герцшпрунга – Расселла. Однако существуют яркие и холодные звезды, и это значит, что они должны быть намного больше Солнца: ведь чем меньше тепла излучает поверхность звезды, тем больше должна быть эта поверхность для обеспечения такой яркости. Из-за цвета и размера эти светила называют красными гигантами. Они расположены в правом верхнем углу диаграммы, над главной последовательностью. Еще есть звезды горячие, но тусклые, что означает, что они намного меньше Солнца: их поверхность излучает много тепла, но ее площадь слишком мала, чтобы обеспечить большую яркость. Такие звезды из-за их цвета и размера именуются белыми карликами, они находятся в нижнем левом углу диаграммы Г – Р, под главной последовательностью.

Изучив множество звезд на разных стадиях их жизненного цикла и объединив эти данные с компьютерными симуляциями (моделями) происходящего у них внутри, созданными на базе известных законов физики, астрофизики смогли понять, как по мере старения звезды меняется ее положение на диаграмме Г – Р. Они называют это эволюционным путем. Это все равно что изучать множество деревьев, находящихся на разных стадиях жизненного цикла, чтобы разобраться в жизненном цикле одного дерева.

Эволюционный путь звезды чаще всего начинается с момента, когда находящееся в космосе облако газа и пыли, содержащее «прах» предыдущих поколений звезд в виде некоторого количества «металлов», сжимается под собственным весом и разогревается изнутри (с помощью процесса, описанного Кельвином и Гельмгольцем) достаточно, чтобы начать светиться и запустить горение водорода. Среди факторов, стимулирующих это сжатие, можно назвать магнитные поля, вспышку сверхновой с распространением ударной волны по межзвездным облакам, а также турбулентность внутри них. Независимо от конкретных причин, важно, что такие сжатия иногда происходят. «Иногда» – это даже преувеличение: по оценкам астрономов, в среднем во всей Галактике Млечный Путь образуется одна-две (редко больше) новые звезды в год. После того как светило сформировалось, оно занимает место в главной последовательности в зависимости от своей массы. Более массивные находятся выше в этом ряду, более легкие – ниже. Период пребывания звезды в главной последовательности тоже определяется исключительно ее массой: более тяжелые интенсивнее сжигают топливо для поддержания своей жизнедеятельности, поэтому быстрее истощаются. Массы звезд в главной последовательности варьируются примерно от одной десятой массы Солнца до 50 масс Солнца. Большая часть звезд легче него.

Как я уже упоминал, звезда с массой, подобной солнечной, может оставаться в главной последовательности, поддерживая себя горением водорода с образованием гелия, примерно в течение 10 млрд лет. Звезда с половиной массы Солнца будет иметь яркость в 40 раз меньшую, поверхностную температуру на уровне 4000 К и сумеет продержаться 200 млрд лет. Звезда втрое тяжелее Солнца будет ярче него впятеро, иметь температуру поверхности 7000 К, но останется в главной последовательности всего 3 млрд лет. А звезда с двадцатью пятью массами Солнца окажется в 80 тысяч раз ярче нашего светила, будет сиять с температурой поверхности 35 000 К и сожжет весь свой запас водорода всего за 3 млн лет. Это открывает путь к измерению возраста некоторых звезд. Однако давайте сначала рассмотрим, что происходит со звездами после того, как горение водорода заканчивается и они вынуждены покинуть главную последовательность.

Первое, что при этом происходит, – начало сжатия и разогрева ядра, теперь состоящего преимущественно из гелия, по мере высвобождения энергии притяжения. Это запускает горение водорода в слое вокруг ядра. Дополнительное излучение из ядра и слоя с горящим водородом отталкивает внешние слои звезды и заставляет ее раздуваться, и часть материи в этот момент отторгается в космос. Поскольку звезда увеличивается, даже несмотря на излучение ею большего тепла, чем, например, способно излучить Солнце, на единицу ее поверхности приходится меньше излучения, чем у Солнца, то есть ее поверхность окажется холоднее поверхности звезд из главной последовательности. Таким образом, звезда уйдет из главной последовательности и сдвинется на диаграмме вверх и вправо. Она превратилась в красного гиганта. На каком-то этапе ядро раскалится настолько (примерно до 100 млн К), что начнется горение гелия. В звездах типа Солнца и любых других массой примерно до двух солнечных масс запуск горения гелия происходит неожиданно и называется вспышкой гелия, но в более массивных звездах этот процесс начинается спокойнее. В обоих случаях звезда переходит в состояние, подобное тому, в котором она находилась в главной последовательности, но теперь в ядре происходит горения гелия, а вокруг него – горение водорода[109]. Попутно большая часть внешних слоев звезды отторгается в космос.

Для звезд до четырех масс Солнца на этом все и заканчивается. Когда горение гелия подходит к концу, звезда сжимается до белого карлика: сначала очень горячий, но постепенно остывающий плотный уголек. Звезды тяжелее четырех масс Солнца могут проходить дальнейшие стадии ядерного горения, описанные в предыдущей главе, и выбрасывать в космическое пространство все больше материала (звездного пепла) либо с помощью относительно мягких процессов, либо, если они тяжелее примерно восьми масс Солнца, через мощные взрывы, как сверхновые звезды, разнося тяжелые элементы по всей галактике и оставляя после себя крохотные плотные нейтронные звезды. Все эти явления позволяют нам лучше понять происхождение элементов, составляющих наши собственные тела. Но для понимания возраста звезд важнее всего то, что момент выхода светила из главной последовательности зависит только от его массы. Это означает, что если бы мы взяли группу одновременно образовавшихся звезд и разместили их на диаграмме Г – Р, на ней остались бы незаполненные места. Верхняя часть оказалась бы пустой, потому что все звезды больше определенной массы уже использовали свой водород и вышли из главной последовательности. Точка их выхода – масса последних звезд, еще остававшихся в рамках этой последовательности, – указала бы нам возраст всей группы. К счастью, такие объединения существуют, они называются шаровыми звездными скоплениями. Но выяснить их возраст не так просто, как может показаться на первый взгляд.

Возраст шаровых скоплений

Как подсказывает нам их название, такие скопления – это плотно организованные шары из сотен тысяч или даже миллионов звезд. Нам известно, что шаровые скопления очень стары, поскольку в их звездах содержится очень немного тяжелых элементов (у них низкая металличность). Можно заключить, что они сформировались вскоре после Большого взрыва, но это не самые первые из появившихся звезд, поскольку в них все же есть некоторое количество «металлов». Вероятно, скопления образовались из остатков звезд первого поколения, то есть их возраст несколько меньше возраста Вселенной, определяемого как время, прошедшее с момента Большого взрыва. Шаровые скопления, в частности, распределены по гало[110], которое окружает нашу Галактику – Млечный Путь, – имеющую форму диска. Такое расположение дополнительно подчеркивает значительный возраст шаровых скоплений: предполагается, что они образовались в облаке материи, из которой сформировалась наша Галактика, еще до того, как она приобрела современную форму. Поскольку шаровые звездные скопления расположены далеко от нас (дистанция измеряется в тысячах парсеков или десятках тысяч световых лет) и по сравнению с этим расстоянием их собственный размер относительно невелик (обычно 10 парсек или 32,5 световых года в диаметре), для нанесения на диаграмму Г – Р можно считать, что все звезды в пределах одного скопления одинаково удалены от нас. Внутри него на один кубический парсек пространства приходится тысяча звезд и даже более, а, например, в кубическом парсеке вокруг нашего Солнца нет ни одной другой звезды. Хотя в видимой Вселенной находится не очень много (менее 200) шаровых скоплений, их распределение в 1920-х годах дало ключ к осознанию природы Галактики и ее взаимодействия с другими галактиками, я расскажу об этом во второй части книги. Но сейчас нас интересует только возраст этих скоплений.

Ключевым моментом для оценки этого возраста является измерение их удаленности от нас. Только зная ее, мы сможем вычислить реальную яркость (абсолютную величину) содержащихся в скоплениях звезд и понять, при какой массе они отойдут от главной последовательности на диаграмме Герцшпрунга – Расселла. Но для этого нужно уметь очень точно измерять расстояния. Если вы ошибетесь в большую сторону, то переоцените яркость звезды, а это значительно повлияет на оценку возраста: погрешность в 10 % от истинного расстояния даст отклонение в почти 2 млрд лет! До недавних пор проделывать эти измерения было очень сложно и оценки возраста шаровых звездных скоплений оставались весьма ненадежными. Один из приемов предполагает анализ света от класса звезд, известных как переменные типа RR Лиры и находящихся как в шаровых скоплениях, так и намного ближе к нам. Яркость всех этих звезд циклично варьируется, это известно из исследований сравнительно близких к нам примеров, расстояние до которых удалось измерить другими способами. Если переменную звезду типа RR Лиры получается обнаружить в шаровом скоплении (и проанализировать периодичность ее яркости), расстояние до нее удается вывести из видимой яркости. Впрочем, этот прием не слишком точен.

Еще одна приблизительная технология предполагает нанесение скопления на диаграмму Г – Р и уточнение величин всех звезд (по сути, приближение и удаление всего скопления) до тех пор, пока их главная последовательность не совпадет со стандартной (выведенной для ближайших к нам звезд). Проблема здесь в том, что стандартная диаграмма Г – Р базируется на звездах, содержащих больше металлов, чем светила в шаровых скоплениях, поэтому у этих скоплений главная последовательность другая, но никто не может точно сказать, до какой степени. Еще одна сложность всех этих методов состоит в наличии в космосе пыли, поглощающей часть света от удаленных объектов и затрудняющей оценку как яркости, так и цвета звезд, который так важен для определения их температуры (мы помним, что диаграмму Г – Р еще называют «цвет – звездная величина»). Аналогичным образом пыль в земной атмосфере изменяет солнечный свет на восходе и закате, окрашивая небо в красные оттенки; эффект космической пыли называют межзвездным покраснением.

Учитывая все эти сложности, неудивительно, что даже в середине 1990-х годов еще существовали большие сомнения относительно возраста шаровых звездных скоплений. С помощью описанных приемов и некоторых более точных методов астрономы в лучшем случае могли выяснить, что им примерно от 12 до 18 млрд лет, вероятнее всего, 15. Но затем все изменилось.

Этими изменениями мы обязаны орбитальной космической обсерватории Hipparcos, запущенной в 1989 году Европейским космическим агентством (ESA). В течение четырех лет этот аппарат смог с высокой точностью измерить расстояния до почти 120 тысяч звезд с помощью параллакса, к которому я еще вернусь в главе 5. Создатели Hipparcos описывали точность измерений как аналогичную той, с которой телескоп, установленный на вершине Эйфелевой башни, мог бы оценить размер мячика для гольфа, находящегося на крыше Эмпайр-стейт-билдинг. За четыре года наблюдений было накоплено более терабайта данных, регулярно отправлявшихся на Землю. Однако информация собиралась таким образом, что астрономы не могли определить расстояние до конкретной звезды, не дождавшись завершения всего проекта и не увидев все данные одновременно. Даже после этого обработка информации заняла почти столько же времени, сколько длилось наблюдение: результаты миссии Hipparcos были опубликованы лишь в 1997 году.

Обсерватории удалось напрямую измерить расстояние до множества различных видов звезд, включая переменные типа RR Лиры и обычные светила в главной последовательности. Это дало значительный толчок развитию целого ряда направлений астрономии и космологии, о некоторых я упомяну далее. Однако наиболее важным результатом проекта Hipparcos стало уточнение возраста шаровых звездных скоплений: было скорректировано наиболее вероятное значение и уменьшилась возможная погрешность. Оказалось, что скопления находятся от нас значительно дальше, чем предполагалось до 1997 года и что поэтому звезды в них ярче, чем было принято считать. Если звезды ярче, значит, они сжигают свой запас топлива более интенсивно и объяснить их современный вид можно, лишь уменьшив их вероятный возраст: молодая горячая звезда перерабатывает ядерное топливо быстрее, чем прохладная и тусклая. По итогам миссии Hipparcos наиболее вероятный возраст шаровых скоплений лежит в диапазоне примерно между 10 и 13 млрд лет, а еще точнее – 12 млрд лет. Совсем недавно Брайан Чабойер и Лоуренс Краусс[111], участвовавшие в проекте Hipparcos, обобщили все известные методы определения возраста шаровых скоплений и пришли к выводу, что наиболее старым из них в нашей Галактике, очень возможно, 12,6 млрд лет. К счастью, это отлично согласуется с возрастом очень старых звезд, подсчитанным совершенно иными способами[112].

Возраст белых карликов

Следующий метод подсчета понравился бы графу де Бюффону или даже Исааку Ньютону, знай они о жизненном цикле звезд. Он тесно связан с идеей подсчета возраста остывающего железа путем измерения его нынешней температуры. Железом в нашем случае будут белые карлики.

Белый карлик – это звезда в конце своей эволюции, когда все ядерное горение внутри нее завершилось. По сути, это раскаленный шар из углерода, не имеющий внутренних источников тепла. В нем ничего не происходит, он просто постепенно остывает навсегда. Возраст белого карлика можно высчитать, зная его изначальную температуру (она определяется с помощью моделей звездной эволюции и равна примерно 200–250 тыс. К), скорость остывания и нынешнюю температуру. Поскольку массы звезд на этом этапе находятся в достаточно узком диапазоне, вычисления не слишком сложны. Если масса больше восьми солнечных, звезда взрывается как сверхновая и оставляет после себя нейтронную, в которой содержится больше массы, чем в Солнце, при крохотных размерах (примерно с Джомолунгму), так что она не может стать белым карликом. Если звезда намного легче Солнца, она либо продолжит находиться в главной последовательности до нашего времени, либо же (как мы увидим) превратится в красного гиганта. Самые старые белые карлики из известных обладают остаточной массой примерно в 50–75 % от массы Солнца. Их внешний слой, включая все «металлы», унесло в космос. Единственное, что необходимо измерить, – их яркость (или светимость) и температуру: чем тусклее звезда, тем она старше.

Кажется, что понять процесс остывания такой звезды очень сложно, но структура белого карлика чрезвычайно проста и температура внутри нее почти одинакова по всей толще[113]. Процесс остывания тоже очень несложен за исключением двух небольших затруднений, которые тоже можно просчитать. В частности, в начале своего существования как белого карлика звезда может слегка сжаться, выделяя энергию притяжения в виде тепла, а позже внутренняя часть кристаллизуется, также выделяя немного тепла. После такого затвердевания скорость охлаждения звезды несколько повышается; все эти процессы хорошо известны физикам. В результате можно начертить теоретическую кривую охлаждения – график, сопоставляющий возраст белого карлика и температуру его поверхности, из которого, зная ее, можно вывести возраст звезды.

Существуют и другие детали, в которые я не стану углубляться, но один из главных результатов вычислений состоит в прогнозе относительного количества белых карликов на каждом уровне светимости. Реальное «распределение белых карликов по светимости», наблюдаемое для звезд в диске Млечного Пути, почти точно совпадает с этим прогнозом за исключением очень тусклых белых карликов. Их видно меньше, и очевидная причина этого заключается в том, что звезды Млечного Пути еще просто не дошли в своей эволюции до нужного возраста. Очень четкий «провал» в этом распределении указывает на то, что самые старые белые карлики на диске Млечного Пути остывают уже 9 млрд лет. Массы звезд, задействованных в этом исследовании, составляют около 0,8 массы Солнца, и расчеты их эволюции говорят о том, что звезды предыдущего поколения, из остатков которых они образовались, затратили на эволюцию около 300 млн лет. В итоге возраст диска Млечного Пути оказывается равным 9,3 млрд лет (плюс-минус примерно миллиард). Однако в нашей Галактике существуют и более старые белые карлики.

Млечный Путь, как я уже намекнул, состоит из двух звездных компонентов. Это, собственно, сама Галактика, представляющая собой уплощенный диск из звезд, и окружающее ее сферическое гало из шаровых звездных скоплений (подробнее об этом читайте во второй части книги). Тут важно помнить, что звезды в гало сформировались раньше Млечного Пути и их возраст больше, чем у звезд внутри диска. Таким образом, если мы сможем найти белых карликов внутри шаровых скоплений или в других частях гало вокруг Галактики, они будут наиболее старыми в Млечном Пути. Трудность заключается в том, что звезды гало, как правило, расположены далеко от нас и светят очень тускло (а именно тусклые звезды самые старые!), так что их очень сложно наблюдать. Но у нас есть для этого возможности.

Если мы сможем их обнаружить и проанализировать их свет, белые карлики внутри шаровых скоплений дадут возможность измерить и расстояния до этих скоплений, и их возраст. Но, чтобы это произошло, ученым пришлось ждать запуска космического телескопа «Хаббл» и, в частности, установки на него в 1993 году, в рамках экспедиции по обслуживанию, ультрачувствительной камеры WFPC2. Но даже тогда белых карликов удалось изучить лишь в нескольких самых близких к нам шаровых скоплениях. Сложность в осуществлении таких наблюдений подчеркивается тем, что наблюдаемая с Земли яркость этих светил составляет менее чем одну миллиардную яркости самой тусклой звезды, заметной невооруженным глазом. Чтобы получить от них достаточно света для проведения анализа, камере пришлось несколько дней собирать его буквально по фотону.

Анализ с таким трудом собранного света был несколько облегчен тем, что атмосфера белых карликов состоит либо из чистого водорода, либо преимущественно из гелия. Металлов, которые могли бы изменить эту картину, там нет. Структура атмосферы звезды зависит от силы притяжения на ее поверхности, которая влияет на звездный спектр. Если достаточно точно рассчитать спектр, можно выяснить и силу притяжения звезды (а отсюда массу), и температуру ее поверхности. Возраст шарового скопления можно затем узнать по возрасту самых старых и тусклых белых карликов, входящих в его состав.

В начале XXI века наблюдения за белыми карликами в рамках шарового скопления М4 примерно в 5600 световых годах от нас[114] позволили оценить их возраст в 12,1 млрд лет (плюс-минус 0,9 млрд). Удалось изучить еще пару шаровых звездных скоплений, их возраст оказался сопоставимым. Все эти измерения отлично согласуются с наиболее точными оценками самых старых шаровых скоплений, обнаруженных миссией Hipparcos, – 12,6 млрд лет. Таким образом, очень вероятно, что астрофизики находятся на верном пути и нас ждут новые открытия.

Расстояние в 5600 световых лет для шаровых звездных скоплений – это совсем не много. Но не существует ли астрономически более близких к нам белых карликов? Можно было бы измерить их возраст намного проще и точнее. К счастью, сегодня нам известны две такие звезды. Первая, SDSS J1102, в 2008 году была осторожно описана как «кандидат в белые карлики из старого гало» с опорой на наблюдения проекта цифрового картирования неба фонда Альфреда Слоуна[115] (SDSS). К 2012 году ее статус был подтвержден и удалось обнаружить еще одну подобную звезду – WD 0346. Обе они относятся к населению гало, но, так случилось, сейчас проходят (довольно быстро) через наш участок Галактики. Внимание астрономов сначала привлекла именно их скорость, подтвердившая, что это звезды из гало: те, что находятся в диске, движутся по более или менее круглым орбитам вокруг центра Галактики, как бегуны по стадиону, а гости из гало быстро проносятся сквозь эту упорядоченную структуру под разными углами. В настоящее время J1102 находится на 50 парсек выше диска галактики, а WD 0346 – в 9 парсеках в сторону от него.

Звезда J1102, расположенная в направлении Большой Медведицы, движется по небу со скоростью 1,75 угловой секунды в год. WD 0346, устремленная к созвездию Тельца, перемещается на 1,3 секунды в год. Для сравнения: видимый с Земли угловой диаметр Луны составляет 30 минут, или 1800 секунд. Таким образом, J1102 преодолеет по небу расстояние, равное диаметру Луны, чуть больше чем за тысячу лет. По сравнению с движением других звезд, это очень быстро и означает, что звезда не только стремительная, но и близкая к нам. Она приближена настолько, что расстояние до нее может быть измерено напрямую с помощью параллакса – метода, который я опишу позднее и который дает результат немногим более 100 световых лет (около 34 парсек). Это менее 2 % от расстояния до шарового звездного скопления М4. А чтобы перемещаться по небу со скоростью 1,75 секунды в год, звезда должна пролетать примерно 260 км в секунду (936 тыс. км в час). Зная точную дистанцию до нее, все прочие параметры J1102 (в частности, абсолютную величину) можно высчитать с достаточным приближением. С помощью параллакса также с уверенностью можно определить, что расстояние до WD 0346 чуть меньше, 28 парсек, и что она пересекает пространство со скоростью 150 км в секунду (540 тыс. км в час).

Выясняется, что J1102 – это белый карлик в 0,62 массы Солнца с температурой поверхности 3830 К. WD 0346 обладает несколько большей массой – 0,77 массы Солнца – и температурой 3650 К. Учитывая период, проведенный в главной последовательности, и время остывания, общий возраст каждой из звезд составит, соответственно, чуть менее 11 млрд лет для J1102 и 11,5 млрд лет для WD 0346. Эти величины подтверждают принадлежность звезд к гало, а не к диску Млечного Пути и хорошо согласуются с возрастом самых старых шаровых скоплений, определенных Hipparcos и исследователями белых карликов. Есть и еще одно преимущество: исследования этих близких к нам звезд помогают лучше понять объекты такого рода и уточнить возраст белых карликов из шаровых скоплений. Однако и это еще не все, что можно сказать об измерении возраста звезд.

Радиометрический возраст и самые старые из известных звезд

На звание самой старой известной звезды в Галактике претендуют несколько кандидатов – это связано с неточностями, неизбежными при столь сложных измерениях и их интерпретации в свете современных теорий звездной эволюции. Различные оценки, сделанные уже в нынешнем столетии, пересекаются друг с другом и составляют примерно 13–14 млрд лет. Это уже само по себе фундаментальное и чрезвычайно важное открытие, которое могло бы изумить и впечатлить предыдущие поколения астрономов. Тем не менее точно указать самую старую из ныне существующих звезд невозможно. Ниже я расскажу то, что известно о нескольких вероятных кандидатах и моей личной фаворитке (в свете современных данных). К тому времени, как вы прочтете это, могут обнаружиться другие кандидаты, но, надеюсь, описание всей этой дискуссии позволит вам самим судить о том, с какой уверенностью ученые выдвигают версии в данном отношении.

Первый кандидат – это относительно близкая к нам звезда HD 140283, как раз сейчас покидающая главную последовательность, чтобы превратиться в красного гиганта. Именно эта стадия ее эволюции напрямую зависит от возраста. Поскольку она находится рядом с нами (всего примерно в 60 парсеках, или 190 световых годах, согласно измерениям, сделанным «Хабблом» с помощью параллакса[116]), свет от этой звезды не подвергается эффекту покраснения; это облегчает задачу астрономов. Она достаточно близка, чтобы ее разглядеть в хороший бинокль – нужно только знать, в какой части созвездия Весов искать. Однако, подобно приближенным к нам белым карликам WD 0346 и J1102, звезда HD 140283 – лишь гость в нашем районе Галактики: это быстроногий гонец из гало, пересекающий небосвод с огромной скоростью – 0,13 угловой миллисекунды в час. Иначе говоря, «Хаббл» может зафиксировать ее перемещение на фотографиях, разнесенных во времени всего на несколько часов. Учитывая расстояние, можно подсчитать, что звезда преодолевает примерно 350 км в секунду (1 млн 260 тыс. км в час). HD 140283 была отмечена как обладающая удивительной скоростью еще в 1912 году и стала первой звездой, спектроскопия которой показала наличие меньшего количества тяжелых элементов, чем в Солнце; на астрономическом языке это называется «низкая металличность». Сначала это качество позволило узнать о значительном возрасте звезды, а затем помогло измерить его. Изучив орбиту, астрономы сделали вывод, что звезда, вероятно, образовалась в небольшой «карликовой» галактике, которая чересчур приблизилась к Млечному Пути и была разрушена его притяжением, причем ее звезды втянулись в нашу Галактику и приобрели вытянутые орбиты, то проникающие в глубь диска, то выходящие далеко в гало.

«Металлы» составляют примерно 1,6 % массы Солнца. Астрономы измеряют металличность звезд, сравнивая с помощью спектра пропорции водорода и тяжелых элементов, таких как железо. Металличность Солнца принята за точку отсчета, и эта характеристика других звезд измеряется в единицах, каждая из которых равна степени десяти: если в звезде в 10 раз больше железа (относительно водорода), чем в Солнце, то показатель ее металличности равен 1, если в 100 – то 2 и так далее. Если металличность звезды ниже солнечной, те же коэффициенты применимы и в обратную сторону: –1 означает в 10 раз меньшее содержание металлов, чем в Солнце, – 2 – стократно ниже и так далее. Металличность HD 140283 меньше солнечной в 250 раз.

Астрономы способны измерить как металличность звезды, подобной HD 140283, относительно Солнца, так и пропорции различных тяжелых элементов в ней. Их наличие зависит от возраста звезды, которым определяется количество каждого элемента, созданного в процессе ядерного синтеза. Надежным указателем возраста становится, в частности, соотношение кислорода и железа. В HD 140283 коэффициент кислорода равен –1,5, а железа – 2,3. С помощью этих и других данных в 2013 году коллектив ученых во главе с Говардом Бондом, работавшим тогда в государственном университете штата Пенсильвания, оценил возраст звезды в 14,5 млрд лет. Газеты запестрели заголовками, в которых ее назвали самой старой, но на этом история не закончилась. Оценку можно считать сомнительной, поскольку наблюдения за звездой представляют сложность и принципы расчета не вполне точны. Так, если мы увеличим показатель для кислорода на 0,15, то останемся в пределах погрешности измерений, однако возраст звезды снизится до 13,3 млрд лет. Эффект покраснения тоже может сократить предполагаемый период ее жизни. Таким образом, наиболее точно в настоящее время возраст HD 140283 можно оценить как 14,5 плюс-минус 0,8, то есть от 13,7 до 15,3 млрд лет. Это вытесняет с пьедестала звезду CS 22892-052, ранее известную как старейшую. Впрочем, о ней стоит упомянуть отдельно, чтобы продемонстрировать, насколько серьезные изменения в нашем понимании свойств звезд произошли за последние десятилетия. Мне импонирует простота метода оценки возраста звезд, примененного к CS 22892-052, и его связь с самыми первыми попытками напрямую оценить возраст Земли. Я расскажу о нем ниже.

В 1996 году, когда я писал книгу The Birth of Time («Рождение времени»), как раз завершились сложные и весьма точные спектроскопические исследования этой звезды, включая измерение наличия в ней множества элементов, в частности тория и европия, которые позволили оценить ее возраст в 15,2 плюс-минус 3,7 млрд лет. К 2003 году дополнительное изучение той же звезды, объединившее наблюдения с Земли и «Хаббла», уточнило оценку возраста тория и европия до 12,8 плюс-минус 3 млрд лет, а нескольких разных элементов – до 12–13,5 млрд лет. Это похоже на нижнюю границу оценок для HD 140283, а датировка других звезд по торию и европию в начале нынешнего столетия дала аналогичные результаты. Но как же это работает?

Граф де Бюффон и Исаак Ньютон могли бы с легкостью понять принципы оценки возраста белых карликов, а Бертрам Болтвуд и Артур Холмс не испытали бы сложностей с последним методом, который я опишу в приложении к определению возраста звезд. Это простая радиометрическая датировка, примененная не к геофизическим, а к астрофизическим объектам. Метод, работающий с белыми карликами, может использоваться только в отношении звезд, начавших свое существование с большей, чем у Солнца, массой и эволюционировавших быстрее, а радиометрическая датировка способна помочь и в случае со звездами, которые имели вначале массу меньше солнечной, развивались медленнее и, несмотря на свой огромный возраст, до сих пор находятся в стадии красных гигантов.

В главе 3 я вскользь упомянул, что элементы существуют в различных вариантах, называемых изотопами и имеющих разные массы (из-за неодинакового числа нейтронов в ядрах), но аналогичные химические характеристики (благодаря одинаковому числу протонов и, соответственно, электронов). Обычный водород и дейтерий (тяжелый водород) – разные изотопы водорода, а гелий встречается в виде гелия-3 и гелия-4: у первого в ядре два протона и один нейтрон, у второго два протона и два нейтрона. Все это важно для радиометрической датировки, поскольку у некоторых тяжелых элементов есть стабильные и нестабильные изотопы. Говоря о радиоактивном распаде элемента, мы подразумеваем распад конкретного изотопа.

Возраст Млечного Пути можно напрямую грубо определить с помощью радиометрической датировки, и она даст нам один очень важный результат. Имеющиеся вокруг нас сегодня пропорции различных изотопов могут рассказать о том, каковы они были у радиоактивных изотопов во времена формирования Солнечной системы, даже если эти изотопы уже давно распались: ведь в результате образовались другие, которые можно найти и проанализировать. Итак, мы приблизительно знаем, какое сочетание радиоактивных элементов присутствовало в облаках межзвездной пыли в период образования Солнечной системы, и можем применить эти оценки для расчета времени образования такой комбинации веществ. Самая простая из возможных догадок: все они сформировались одновременно при рождении Млечного Пути. Это явно неверно, поскольку мы знаем, что сверхновые взрываются и в наши дни. Исключение такого варианта очень полезно. Оно указывает нам минимально возможный возраст Млечного Пути – 8 млрд лет. Наша Галактика не может быть моложе, и, соответственно, не может быть моложе и вся Вселенная. Это важно иметь в виду, переходя ко второй части книги.

Несколько более продвинутая догадка: с момента образования Млечного Пути сверхновые взрывались с одинаковой частотой каждый год (или, скорее, тысячу лет, поскольку это происходит примерно раз или два в столетие) и таким образом обогащали космические облака новым радиоактивным материалом и другими веществами. Думая так, мы наверняка отодвинем нужную дату слишком далеко в прошлое, поскольку в прежние периоды, когда Млечный Путь был еще молод, взрывы сверхновых наверняка происходили чаще. Но таким образом можно получить оценку примерно в 13 плюс-минус 3 млрд лет, это вполне совпадает с диапазонами возрастов некоторых старых звезд. И тут наконец я могу перейти к моей любимой версии.

Последний прорыв, который я опишу, – это обнаружение спектроскопических особенностей урана-238 в звездном спектре. При предыдущих измерениях возраста звезд использовался торий-232: его период полураспада, 14,1 млрд лет, столь велик, что даже в тех масштабах, о которых идет речь, он не успел значительно распасться. Его период полураспада, в частности, втрое больше возраста Земли. Поэтому продукты распада тория почти невозможно обнаружить и проанализировать. Астрономы знали, что уран-238 с периодом полураспада «всего-навсего» в 4,5 млрд лет (это близко к возрасту Земли) и хорошо изученными, легко выявляемыми продуктами распада мог бы стать намного более качественным ориентиром, если бы удалось обнаружить его следы в спектре звезд. В начале 2001 года их ждала удача: группа астрономов, использовавшая телескоп Европейской южной обсерватории высоко в горах Чили, сообщила об обнаружении явных следов урана-238 в спектре звезды CS 31082-001. В этой звезде было в тысячу раз меньше железа, чем в Солнце (коэффициент равнялся –3), имелись торий и уран, то есть можно было оценить ее возраст сразу по двум радиоактивным веществам. Пропорции тория и урана позволяют сделать это достаточно точно, и возраст звезды оказался равен 12,5 плюс-минус 3 млрд лет. Вряд ли она самая старая из известных, тем не менее одна из старейших, исследованных с помощью этого метода, который я считаю наиболее надежным. Наконец, в 2008 году внимание оказалось приковано к звезде HE 1523–0901.

Это красный гигант, расположенный в гало, примерно в 7400 световых лет от Земли в сторону созвездия Весов. Его масса составляет около 80 % от массы Солнца, коэффициент металличности равен –2,95. Анна Фребель, работавшая в то время в Техасском университете (город Остин), и ее коллеги заявили, что с помощью спектроскопического анализа и Очень большого телескопа[117] Европейской южной обсерватории в свете этой звезды они обнаружили не только уран и торий, но и европий, осмий и иридий. Это позволило им получить целый набор пропорций: урана к торию, тория к иридию, тория к европию, тория к осмию. Чем больше подобных соотношений удается проанализировать, тем надежнее оценка возраста звезды. Сложив все данные, ученые пришли к значению в 13,2 плюс-минус 3 млрд лет. Это несколько больше, чем оценка для CS 31082-001, но провести границу сложно: незначительная разница между соотношениями урана к торию у CS 31082-001 и HE 1523–0901 позволяет предположить, что первая из звезд все-таки несколько старше, что к тому же укладывается в погрешности оценок. Впрочем, как пишут сами исследователи, «с учетом того, что наблюдаемые погрешности превышают [разницу возрастов], нынешний возраст этих двух звезд предполагает их образование примерно в одно и то же время. Это также подтверждается их почти идентичной металличностью».

Можно сделать общий вывод, что все эти возрасты, подсчитанные тремя разными способами: с помощью шаровых звездных скоплений, белых карликов или радиометрии, – согласуются друг с другом. Из этого можно вывести два следствия. Во-первых, астрофизика непротиворечива: астрономы движутся в нужном направлении. Во-вторых, самой старой звезде в нашей Галактике немногим более 13 млрд лет. Теперь посмотрим, как это соотносится с нашим пониманием Вселенной в целом.

Часть II Как узнать возраст Вселенной?

Глава 5 31,415 Предыстория галактик и Вселенной в целом

Звезды играют определяющую роль в нашем космическом окружении. Сегодня мы знаем почему: потому, что мы живем в большом их скоплении – Галактике Млечный Путь. С увеличением масштаба оказывается, что определяющую роль во Вселенной, по крайней мере визуальную, играют как раз галактики. Хотя звезды отчетливо видны на ночном небе, они находятся так далеко, что даже относительно близкие к нам галактики выглядят как туманные светящиеся области, без телескопа почти неразличимые. Неудивительно, что первое в Европе описание этих областей – туманностей – появилось лишь в 1614 году, вскоре после изобретения телескопа. Его автором стал Симон Марий (Мариус)[118] – немецкий астроном, по моде того времени латинизировавший свою настоящую фамилию Майр. Он не только открыл галактику (туманность) Андромеды для европейцев (к тому времени она уже была известна арабским астрономам), но и почти одновременно с Галилеем заметил четыре крупнейших спутника Юпитера, правда, не сразу придал огласке свои наблюдения[119]. Прошло еще сто лет, прежде чем Эдмунд Галлей[120] (тот самый, давший имя комете) опубликовал в 1716 году в журнале «Философские труды Королевского общества»[121] статью о туманностях, введя изучение этих объектов в научный обиход. Правда, его объяснение этого феномена было неверным.

Не менее чудесны некоторые светящиеся точки или пятна, открывающиеся лишь в телескоп и представляющиеся невооруженному глазу мелкими неподвижными звездами, но в реальности они не что иное, как свет, исходящий от невероятно огромного космоса в эфире, через который рассеивается носитель света, сияющий собственным блеском.

Галлей не понял, что многие из этих туманностей (галактик) состоят из звезд и светятся именно поэтому. На протяжении двух последующих веков это было камнем преткновения при изучении природы туманностей, в том числе потому, что они бывают двух типов. Для нас сейчас интересны те, которые оказались другими галактиками, в целом напоминающими Млечный Путь; но есть еще истинные туманности – облака газа и пыли между звездами нашей Галактики, которые во многих случаях светятся из-за находящихся в них горячих звезд. Например, такова известная туманность в созвездии Ориона. Кстати, она стала первой в списке, составленном Галлеем, второй была туманность Андромеды. Сегодня термин «туманность» применяется именно к облачным образованиям, а галактики так больше не называют. Для ясности я буду всегда говорить «галактики», даже если Галлей и его последователи в свое время сказали бы «туманности».

В одном Галлей оказался прав: в отличие от планет, наблюдаемые туманности не движутся между звезд, поэтому они наверняка находятся на очень большом от нас расстоянии. И раз они выглядят расплывчато, в отличие от четких бусинок звезд, то наверняка очень велики. Это наблюдение породило множество провидческих, но не вполне научных рассуждений о размере и масштабе Вселенной.

Сила чистого разума

Сначала появилась работа мыслителя XVIII века Томаса Райта[122] из английского графства Дарем. В 1750 году он опубликовал книгу с замечательным названием: «Оригинальная теория, или Новая гипотеза о Вселенной, основанная на законах природы и объясняющая с помощью математических принципов наиболее важные явления видимого мироздания, в частности Млечного Пути»{20}. В ней верные утверждения были смешаны с нелепыми, философия и теология – с наукой, но присутствовала одна очень важная мысль. Райт предположил, что внешний вид Млечного Пути – тянущаяся через небо лента – может быть объяснен тем, что входящие в него звезды образуют диск, подобный мельничному колесу, и отдельные светила «все движутся в одном направлении, не сильно отклоняясь от единой плоскости, как планеты в своем гелиоцентрическом движении». Согласно этой модели, звезды вращаются вокруг оси Млечного Пути подобно планетам, вращающимся вокруг Солнца. Райт пошел еще дальше и указал, что, возможно, вокруг других звезд тоже обращаются планеты. А если существуют другие солнечные системы (или, как он выразился, звездные системы), почему бы не быть другим млечным путям? Далее он рассуждает, используя термин «мироздание» там, где мы сказали бы «галактика»: «Поскольку видимое мироздание, вероятно, наполнено звездными системами и планетами-мирами, то, соответственно, неизмеримая необъятность есть безбрежное пространство мирозданий». Другими словами, бесконечная Вселенная содержит неисчислимое количество галактик, подобных Млечному Пути. Он уточняет, что туманности «могут оказаться внешними мирозданиями». Эта мысль влечет за собой размышления о человечестве в космосе:

В этом великом небесном мироздании катастрофа мира, подобного нашему, или даже полное разрушение системы миров может, по-видимому, быть для великого Творца Природы не более чем обыденнейшим случаем в Его жизни, и, по всей вероятности, подобные окончательные и всеобщие концы света могут оказаться в нем столь же частыми, как рождения и смерти для нас на этой Земле.

Из уст верующего в существование Творца это рассуждение звучит несколько неожиданно.

Упомянутые идеи были извлечены из довольно запутанной книги Райта философом Иммануилом Кантом[123] и вдохновили его на попытку продвинуться еще на шаг вперед и объяснить происходящее в наблюдаемой Вселенной терминами законов Ньютона, не прибегая к понятию Руки Божией. К 1755 году Кант закончил книгу, в которой изложил намного более наукообразное понимание туманностей как «островных вселенных» и пояснил, что дискообразные системы звезд выглядят круглыми, если смотреть на них прямо, и эллиптическими под углом. Он поддерживал идею беспредельной, вечной Вселенной и предполагал, что нынешнее ее состояние развилось из некоего исходного вида. К сожалению, эти идеи не получили заслуживающего внимания в его время, поскольку издатель Канта обанкротился и книга так и не была распространена. Внедрил эту идею в умы (и прославился как ее первооткрыватель) Пьер-Симон Лаплас[124], представивший в своей работе «Изложение системы мира» от 1796 года (и более развернуто в пятом томе знаменитого «Трактата о небесной механике», начатого в 1799 году) так называемую гипотезу туманностей. Он утверждал, что туманности должны содержать миллиарды звезд, подобных светилам Млечного Пути, и что сам Млечный Путь с большого расстояния выглядел бы так же, как эти туманности. Иными словами, наше место во Вселенной вовсе не уникально. Трактат прославился и описанием того, что мы сегодня называем черными дырами, и ответом Лапласа на вопрос Наполеона о том, почему в книге не упоминается Бог: «Sire, je n’avais pas besoin de cette hypothèse-la»[125]. Но в конце XVIII века теория и чистый разум еще не могли пойти дальше этого. Теперь были необходимы многочисленные и более точные наблюдения, и в XIX веке они появились, правда, не совсем так, как можно было ожидать.

Шаг вперед и два назад

Первый принципиальный шаг был сделан уже к моменту публикации изысканий Лапласа. В середине 1780-х годов передовой астроном и конструктор телескопов Уильям Гершель сообщил о ряде наблюдений за туманностями через новый зеркальный телескоп. Апертура[126] более 45 см и фокусное расстояние более 6 м делали это устройство самым мощным из существовавших в то время. С его помощью Гершель смог не только разглядеть множество новых туманностей (к 1784 году их число выросло почти до пятисот), но и обнаружить, что некоторые из ранее классифицированных как туманности объектов на самом деле представляют собой скопления звезд. Благодаря схожести с шарами, наполненными звездами, некоторые из этих скоплений получили название шаровых, а другие, менее плотно набитые, сегодня известны как открытые. Все эти скопления должны были относиться к Млечному Пути. Но изначально Гершель не сомневался в том, что остальные туманности лежат вне нашей Галактики. В 1785 году он заявил, что некоторые туманности «могут значительно превосходить наш Млечный Путь в грандиозности», и предположил, что изначально звезды могли распределяться по Вселенной равномерно, но впоследствии объединились в туманности (галактики) под действием гравитации. В 1786 году Гершель писал:

Для обитателей туманностей из этого каталога наша звездная система может выглядеть как небольшое туманное пятно, как вытянутая полоса молочного света, как крупная неоднородная туманность, как очень плотное скопление едва различимых мелких звезд или как огромное собрание крупных разбросанных звезд различных размеров. Конкретный вид будет зависеть от их собственного расположения на той или иной удаленности от нас.

Ученый заявлял, что Млечный Путь наверняка отделен от туманностей большими космическими пустотами, и пытался высчитать размер нашей Галактики.

Его усилия не принесли плодов из-за проблемы, которая мешала астрономам вплоть до XX века. Гершель не знал, что между звездами Млечного Пути есть пыль, мешающая нам видеть свет удаленных звезд. Мы словно окружены прозрачным туманом. Стоя на поле, укутанном дымкой, вы видите во все стороны, но лишь на определенное расстояние, что создает впечатление, будто поле маленькое и круглое. Но если туман рассеется, может оказаться, что поле большое и квадратное, а вы стоите в его углу. Аналогичным образом межзвездная пыль заставляет нас думать, будто мы находимся в центре диска Млечного Пути, но, как станет ясно из дальнейшего повествования, современные наблюдения (в том числе на инфракрасных волнах, способных проникать через пыль) доказывают, что мы расположены достаточно далеко от центра, ближе к краю галактического диска. Тем не менее Гершель предпринял достойную попытку, даже несмотря на слишком заниженную оценку размеров Млечного Пути: диаметр диска он счел равным в современных единицах примерно 2200 парсекам, а толщину – 520 парсекам.

Впоследствии Гершель сделал шаг назад. До этого он признавал, что туманности бывают нескольких видов: некоторые находятся далеко, вне пределов Млечного Пути, другие в его рамках, а некоторые, так называемые планетарные туманности, «оставляют меня почти в сомнениях относительно того, куда их отнести». Планетарные туманности получили такое название потому, что через небольшой телескоп они выглядят как круглые световые пятна, похожие на планеты, а не как точечные источники света, ассоциируемые со звездами. Сегодня мы знаем, что они представляют собой облака материи, отторгнутой звездами на поздних этапах их эволюции, после отхода от главной последовательности. Первым это засвидетельствовал именно Гершель. В 1791 году, наблюдая за туманностью, впоследствии получившей название Хрустальный Шар, или NGC 1514, он заметил нечто похожее на «звезду, заключенную в сияющий флюид[127], совершенно неизвестной нам природы». По мере обнаружения других подобных объектов Гершель разочаровался в мысли, что туманности представляют собой другие галактики. Его привлекла идея о том, что планетарные туманности могут оказаться точками рождения звезд (что прямо противоположно истине!), и в 1811 году астроном написал, что, хотя до этого он «помышлял, будто туманности есть не что иное, как скопления звезд, скрытые от нас огромным расстоянием», продолжительные изыскания «не допускают общего принятия такого принципа». Следующий гигантский скачок в качестве научных наблюдений еще больше запутал ученых.

В 1845 году Уильям Парсонс[128], третий лорд Росс, завершил сооружение огромного телескопа в своем ирландском замке Бирр. Из-за размеров этот механизм прославился как «Левиафан» из Парсонстауна и оставался самым большим в мире до строительства 2,5-метрового телескопа Хукера в 1917 году. Зеркало «Левиафана» имело 1,8 м в поперечнике, 13 см в толщину и весило три тонны. Остальные части телескопа были столь же грандиозными. Его труба длиной 16,5 м весила около 12 тонн и устанавливалась под нужным углом к горизонту и в меньших пределах по азимуту. Лорд Росс создал этот телескоп, будучи большим поклонником феномена туманностей и достаточно богатым человеком, чтобы позволить себе любые прихоти. Он решил исследовать максимально возможное число туманностей. Именно Парсонс открыл, что некоторые из них имеют форму спирали, к 1850 году он обнаружил четырнадцать спиральных туманностей, что вынудило его указать в опубликованной Королевским обществом работе, что «по мере накопления наблюдений объект стал, по крайней мере, по моему мнению, еще более таинственным и неприступным».

И действительно, к этому моменту туманности загадали астрономам множество загадок. Одни закручивались спиралью, другие выглядели как скопление планет, а некоторые (как, например, туманность Ориона) казались просто светящимися облаками на Млечном Пути. Лорд Росс решил отказаться от попыток объяснить их сущность. Но прорыв в этой области не заставил себя долго ждать.

Спектроскопия туманностей

Росс умер в 1867-м, а уже в следующем году исследователи Жансен и Локьер обнаружили спектроскопические признаки присутствия гелия в атмосфере Солнца. Тремя годами ранее, в 1864 году, было сделано первое важное открытие в области спектроскопических исследований туманностей. Уильям Хаггинс[129], еще один астроном-любитель, построивший частную обсерваторию в южной части Лондона, заинтересовался новостью об открытиях Кирхгофа и с помощью своего соседа Уильяма Миллера решил исследовать спектры звезд и туманностей. Они обнаружили сходство между спектрами звезд и Солнца, а в 1864 году Хаггинс опубликовал статью, где описал любопытное наблюдение: в спектре планетарных туманностей не было линий, характерных для звездных спектров, и вообще почти не было линий, словно в спектре простого облака газа. Но в спектрах других туманностей «звездные» линии были, среди них спиральная (как выяснил Росс) туманность Андромеды (М31).

К 1866 году Хаггинсу удалось собрать достаточно данных для прорывного доклада на ежегодном собрании Британской ассоциации содействия развитию науки, проводившемся в тот год в Ноттингеме. Он сообщил, что многие туманности, включая планетарные, состоят из газа, хотя в центре некоторых из них и может находиться одиночная звезда. Но все объекты, изначально определенные как туманности и впоследствии благодаря современным телескопам оказавшиеся звездами (в частности, шаровые скопления), имеют, как легко догадаться, спектр, аналогичный спектру звезды. Важно, что многие из туманностей, которые не удается рассмотреть в телескоп как скопления звезд, в том числе спиральные туманности Росса, имеют спектр, аналогичный спектру шаровых скоплений. Все данные указывают на то, что такие туманности – тоже агломерации звезд, просто находящиеся слишком далеко, чтобы разглядеть в них отдельные светила. Хаггинс не утверждал это прямо, но почти дошел до этого вывода.

Пока астрономы привыкали к мысли, что вне Млечного Пути могут существовать другие галактики – «иные вселенные», технологии продолжали подталкивать их в нужном направлении. Во второй половине XIX века к зрительным наблюдениям за звездным небом добавилась фотография. Вместо того чтобы зарисовывать увиденное, астрономы могли теперь сделать снимок – более точное изображение, которое можно было рассмотреть в удобных условиях. У фото было и другое преимущество. Привыкнув к темноте, глаз может долго следить за объектом, но так и не увидит ничего, кроме того, что сумел разглядеть в первые несколько минут. А фотопластинка продолжает накапливать свет и создавать изображение на протяжении очень долгого времени. Это позволяет замечать больше деталей, чем может различить человеческий глаз, и даже фотографировать то, что мы увидеть вовсе не способны. Если прикрепить к телескопу спектроскопическую камеру, то можно запечатлеть на будущее точные спектры тусклых объектов и изучить их под микроскопом, чтобы исследовать самые мелкие детали линий спектра.

Одним из пионеров этой техники был Юлиус Шейнер[130], работавший в Потсдамской обсерватории. Он выяснил спектр туманности Андромеды, экспонируя фотопластинку в такой камере в течение семи с половиной часов, и его данные полностью подтвердили открытие Хаггинса. В 1899 году Шейнер сообщил, что поскольку «предыдущие соображения о том, что спиральные туманности, или звездные скопления, теперь нашли подтверждение, сама собой напрашивается идея о сопоставлении этих систем с нашей звездной системой, особенно учитывая ее удивительную схожесть с туманностью Андромеды». Иначе говоря, Млечный Путь и туманность Андромеды оказались спиральными галактиками. Полигон для науки XX века был подготовлен. Следующий ключевой шаг был сделан уже после строительства 2,5-метрового телескопа Хукера на горе Маунт-Вилсон, но даже до этого, в первые два десятилетия нового века, фотография и спектроскопия вызвали новый всплеск интереса к туманностям, особенно спиральным. Астрономы вступили на новый путь открытий – долгий и довольно запутанный.

Первые шаги

По словам Конфуция[131], путешествие длиной в тысячу миль начинается с первого шага. Этот шаг по дороге от Земли к Вселенной в целом был сделан в 1761 году, когда астрономы использовали наблюдения редкого явления – прохождения Венеры по диску Солнца – и геометрические измерения, чтобы рассчитать расстояние до светила. Для этого надо было точно зафиксировать время наблюдения, в частности моменты, когда Венера будет «касаться» края Солнца, в значительно удаленных друг от друга точках на Земле. Зная расстояние от Земли до Солнца (современные измерения оценивают его в 149,6 млн км), диаметр орбиты Земли (чуть меньше 300 млн км) можно использовать как основу для измерения расстояний до ближайших звезд. Дело в том, что ближайшие светила несколько «сдвигаются» относительно «неподвижных», то есть более далеких, по мере того как Земля движется вокруг Солнца. Этот эффект параллакса можно наблюдать прямо сейчас, вытяните руку и посмотрите на палец то одним, то другим глазом: вам покажется, что он движется. Но сдвиги, измеряемые астрономами, менее заметны. Для сравнения можно взять угловой диаметр Луны, равный 30 угловым минутам или 1800 секундам. Даже для самых близких к нам звезд эффект параллакса намного меньше. Расстояние до звезды, которая сдвинется на одну угловую секунду на фотографиях, снятых с разницей в шесть месяцев, называется парсек (от «параллакс» и «секунда»), оно равно примерно 3,26 световых года. Ближайшая к нам звезда находится в 1,32 парсека (4,29 световых лет), то есть все исследования звезд предполагают наблюдения за их перемещениями менее чем на одну угловую секунду, если округлить, менее чем на одну двухтысячную часть видимой Луны. До появления астрофотографии это, конечно, было невозможно.

Есть и другие, менее точные приемы для определения расстояний до открытых звездных скоплений на основе наблюдений за их движением по небу или интерпретаций описанной ранее диаграммы Герцшпрунга – Расселла. Ключевой шаг на пути к масштабу Вселенной был предпринят в Гарварде в 1912 году Генриеттой Суон-Ливитт[132] – опытной ассистенткой астронома Эдварда Пикеринга[133]. Она окончила учебу в Обществе преподавания наук женщинам (впоследствии колледж Рэдклифф, ныне в составе Гарвардского университета) в 1892 году, накануне своего двадцатичетырехлетия, и через год стала работать в Гарвардской обсерватории под руководством Пикеринга поначалу как волонтер. Она занималась анализом фотопластинок в целях определения величины (яркости) звезд и стала настоящим экспертом в интерпретации поведения неодинаковых по яркости светил и оценке разницы между ними. В 1896 году Суон-Ливитт отправилась на два года в поездку по Европе, а по возвращении Пикеринг предложил ей оплачиваемую работу и она стала полноценным профессиональным астрономом (с зарплатой 30 центов в час), членом специально нанятого «гарема Пикеринга» – коллектива женщин, занимающихся кропотливыми расчетами и систематизацией данных.

Исследуемые Суон-Ливитт переменные звезды изначально считались двойными, а изменения в их яркости объяснялись прохождением одного светила перед другим. Становилось очевидно, что это одинарные звезды, которые действительно со временем изменяют яркость, причем иногда эти периоды длятся много месяцев. Хотя ее работа часто прерывалась из-за болезней, в 1904 году Суон-Ливитт оказалась в нужное время в нужном месте: ей попалась коробка фотопластинок, доставленных в Гарвард из южной наблюдательной станции обсерватории, расположенной в городе Арекипа в Перу. На пластинках были запечатлены две туманности, видимые лишь из Южного полушария и известные как Магеллановы облака; первым европейцем, описавшим их, был Фернан Магеллан. В одной из этих туманностей – Малом Магеллановом облаке – исследовательница быстро обнаружила десятки переменных звезд, а когда в том же году из Перу прибыли новые пластинки, их стало еще больше, и вскоре они исчислялись уже сотнями. В 1908 году Генриетта опубликовала статью, в которой подводила итог проделанной работе, с характерным заголовком «1777 переменных в Магеллановых облаках». Ключевое открытие, прославившее ее, находится в самом конце этой чуть более чем двадцатистраничной статьи: «Стоит отметить, что более яркие переменные имеют больший период».

Как указывает биограф Суон-Ливитт Джордж Джонсон, для астрономии эта фраза имеет такое же значение, как для биологии ремарка Фрэнсиса Крика и Джеймса Уотсона[134] в конце их знаменитой работы о ДНК: «От нашего внимания не укрылось то, что специфическое спаривание, которое мы постулировали, одновременно позволяет сделать предположение о механизме копирования генетического материала». Их открытие стало ключом к пониманию сути самой жизни, а открытие Ливитт – ключом к пониманию сути Вселенной.

Ее фраза так важна потому, что если периоды (время, проходящее между пиками яркости) некоторого класса переменных звезд связаны с их яркостью, то для определения яркости достаточно измерить продолжительность периода светила. Однако здесь есть сложность. Это соотношение необходимо калибровать. Нужно найти как минимум одного представителя конкретного семейства звезд, расстояние до которого каким-то образом уже известно. Найдя на Млечном Пути звезды, подобные этим переменным, мы можем с помощью соотношения периода и яркости утверждать, что одна из них, скажем, вдвое ярче другой и потому должна находиться дальше от нас, чтобы выглядеть так тускло, как она смотрится сейчас, но точные расстояния до каждой из них без такой калибровки мы узнать не сможем. Однако если знать расстояния до нескольких таких звезд, можно узнать их абсолютную величину и использовать измерения периодов других членов того же звездного семейства, чтобы измерить их абсолютные величины и сопоставить их с воспринимаемой яркостью, чтобы получить расстояния. В случае с Магеллановыми облаками делать поправку на ухудшение видимости из-за расстояния не приходится, потому что эти туманности (как мы знаем сейчас и как догадывалась Суон-Ливитт и ее современники) находятся настолько далеко от нас, что это ухудшение можно считать единым для всех звезд в этих туманностях. Расстояние от одного края Магеллановых облаков до другого составляет лишь небольшой процент от расстояния от нас до них. Обнаруженное исследовательницей семейство звезд сегодня известно как цефеиды: источником названия послужил классический пример такого светила, находящегося в созвездии Цефея и известного как Дельта Цефея. В 1780-х годах ее изучал английский астроном Джон Гудрайк[135].

Работа Суон-Ливитт продвигалась чрезвычайно медленно, поскольку она была очень слаба здоровьем, к тому же в 1911 году потеряла отца. Но к 1912 году ей удалось найти в Малом Магеллановом облаке 25 переменных звезд, демонстрировавших четкое соотношение между яркостью и периодом, которое можно было изобразить на простом графике. Этого было бы достаточно, чтобы применить такое соотношение для измерения расстояний по всему Млечному Пути, если бы дистанцию между нами и хотя бы одной ближней цефеидой удалось измерить напрямую. К сожалению, на достаточно близком к нам расстоянии не нашлось ни одной звезды, дистанцию до которой можно было определить с помощью параллакса доступными тогда телескопами[136], не подошла даже самая близкая Полярная звезда. Поэтому важнейший первый шаг на пути калибровки расстояний до цефеид был сделан (Эйнаром Герцшпрунгом) с помощью более грубой и прямой техники под названием «статистический параллакс». Это ловкий и на удивление точный метод, если применить его к достаточному количеству звезд. Он предполагает довольно пристальное наблюдение за множеством светил, например, в открытом звездном скоплении, чтобы измерить их движение от года к году в угловых единицах. Все звезды движутся примерно в одном направлении, но они приближаются к нам или удаляются от нас с разной скоростью. Она может быть измерена напрямую с помощью уже знакомого нам доплеровского эффекта, а отсюда можно получить представление о масштабе скоростей звезд в отношении друг друга. Логично сделать вывод, что скорость, с которой светила смещаются по небу относительно наблюдателя, в среднем аналогична той, с которой они приближаются или удаляются. Таким образом, вычтя из скорости смещения относительно наблюдателя доплеровское смещение, получаем истинную скорость смещения относительно наблюдателя. А ее уже можно соотнести с углом, на который звезды смещаются каждый год, и получить расстояние до них.

В 1913 году Герцшпрунг применил этот прием, чтобы измерить расстояние до нескольких цефеид, откалибровать шкалу расстояний Суон-Ливитт и определить удаленность от нас Малого Магелланова облака. Он получил ответ в 30 тысяч световых лет (почти 10 тыс. парсек), но из-за опечатки в его статье был опубликован результат в 3000 световых лет. Для астрономов того времени оценка в 30 тысяч световых лет была невообразимо огромной. И хотя по разным причинам впоследствии оказалось, что истинное расстояние почти в десять раз больше, эти измерения положили начало переоценке размеров Млечного Пути и нашего места во Вселенной.

Долгий и сложный путь

К началу XX века в понимании природы Млечного Пути астрономы недалеко ушли от Гершеля, а в чем-то и сделали шаг назад. Поэтому в 1906 году голландский астроном Якобус Каптейн[137] начинал практически с нуля, разрабатывая план исследований структуры Млечного Пути путем подсчета числа звезд с различными величинами, спектральными типами, радиальными (доплеровскими, лучевыми) скоростями и боковым (истинным) движением в различных частях неба. В проекте использовались данные более чем сорока обсерваторий, он шел к завершению больше десяти лет. Но в его вычислениях содержалась серьезная ошибка. Хотя к тому времени было известно, что между звездами присутствует материя, Каптейн недостаточно учитывал вызываемое ею потускнение звезд (межзвездное покраснение); впрочем, этот эффект оставался малоизученным вплоть до 1930-х годов. И когда в 1920 году Каптейн опубликовал результаты, они содержали примерно ту же «туманную» картину окружающего нас мира, которую описывал Гершель, только с большей детализацией. Млечный Путь все еще представлялся ученым звездной системой в виде диска с Солнцем где-то возле его центра. Считалось общепринятым, что если Млечный Путь и не заключает в себе всю Вселенную, то все «внешние» туманности наверняка представляют собой его относительно небольшие и близкие спутники. Но уже к тому времени, когда Каптейн опубликовал свои выводы, картина начинала меняться. Сначала появилось понимание, что Солнце не находится в центре Млечного Пути.

Человеком, осознавшим это, был Харлоу Шепли, работавший тогда в калифорнийской обсерватории Маунт-Вилсона. Он быстро воспользовался открытием Суон-Ливитт о соотношении периода и яркости цефеид, однако сначала зашел в тупик; но мы не будем останавливаться на этом. В 1918 году Шепли сообщил, что ему удалось измерить расстояние до нескольких относительно близких к нам шаровых звездных скоплений с помощью этого соотношения, а используя расстояние, он смог определить яркость (абсолютную величину) самых ярких звезд в этих скоплениях. Они оказались очень близки друг к другу (это неудивительно, поскольку величина звезд имеет ограничения: на каком-то этапе разрастания они взрываются), и ему удалось рассчитать расстояния до других шаровых скоплений, измерив яркость самых ярких звезд в них. Затем, уже с меньшей точностью, он оценил расстояния до еще более удаленных звездных скоплений, предположив, что у них всех сопоставимый диаметр и расстояние до них можно определить по воспринимаемому размеру. Эти измерения не нуждались в серьезных поправках на межзвездное покраснение, поскольку шаровые скопления находятся выше и ниже самой плотной и самой запыленной части нашей Галактики. Изучив распределение шаровых скоплений в космосе, Шепли пришел к выводу, что они образуют сферу с центром в точке, расположенной в направлении созвездия Стрельца. Эта точка, указал он (и был прав), видимо, и есть истинный центр Млечного Пути, в то время как Солнце и его система располагаются на периферии Галактики.

Шепли также использовал измеренные им расстояния, чтобы определить дистанцию от нас до центра Млечного Пути, но здесь он серьезно промахнулся. Сегодня мы знаем, что звезды, использованные им на первом этапе расчетов, были на самом деле не цефеидами, а похожей на них семьей переменных звезд типа RR Лиры. Они более тусклые, чем цефеиды, поэтому расположены ближе, чем думал Шепли. В итоге его вычисления представили нашу Галактику слишком большой. Он полагал, что центр Млечного Пути расположен от нас в 20 тысячах парсеках (примерно 65 тысяч световых лет), а диаметр всего галактического диска составляет около 90 тысяч парсек (300 тысяч световых лет). Это в сто раз больше, чем думали предшественники. Мысль о том, что Галактика столь огромна, придавала вес идее о том, что все прочие туманности – лишь спутники Млечного Пути, и Шепли поддержал эту аргументацию, рассчитав яркость того, что он счел новыми звездами во внешних туманностях.

Новые – это звезды, которые взрываются в конце своей эволюции, перед этим ненадолго начиная сиять намного ярче, чем любые звезды главной последовательности. У яркости новых есть предел, хорошо известный по наблюдениям за ними на Млечном Пути. Если бы спиральные туманности были галактиками, подобными нашей, примерно с таким громадным диаметром, какой рассчитал Шепли, то, чтобы объяснить, почему они выглядят на небе как крохотные пятна, нам пришлось бы согласиться, что расстояние до них составляет сотни миллионов световых лет, а это намного дальше, чем расстояние видимости с Земли даже для новой, если бы она взорвалась. И все же, по сообщению Шепли, в спиральных туманностях наблюдались новые звезды. Если бы они имели ту же яркость, что и новые Млечного Пути, это означало бы, что спиральные туманности расположены непосредственно за внешними границами этой огромной галактики. В итоге выходила картина необъятного Млечного Пути – самой большой агломерации во Вселенной, летящей сквозь пространство в сопровождении эскорта из небольших туманностей и, возможно, постоянно поглощающей их. Но имели ли те новые, что он нашел в спиральных туманностях, ту же яркость, что и новые, обнаруженные на Млечном Пути? К несчастью для Шепли, впоследствии оказалось, что взрывающиеся звезды, которые он заметил во время исследований, были вообще не новыми, а еще более яркими взрывами звезд, неизвестными в то время, – сверхновыми.

С интерпретацией данных, предложенной Шепли, не согласился его соотечественник Гебер Кертис[138]: его картина Вселенной была совсем иной. Два этих мнения были представлены на встрече Национальной академии наук США (NAS) 26 апреля 1920 года и вылились в знаменитый «Большой спор»[139]. Он закончился ничем, но задал условия для дальнейшего развития темы строения Вселенной.

Неразрешенный спор

В 1910-х годах, работая в Ликской обсерватории в Калифорнии, Кертис предпринял подробное исследование спиральных туманностей. Опираясь на их число, видимое в телескоп (так называемый рефлектор Кроссли с зеркалом в 91,44 см в диаметре) в разных частях неба, он подсчитал, что всего этому инструменту доступен примерно миллион туманностей. Для астрономов того времени это звучало почти фантастически, но в наши дни известно намного больше галактик. Изучая темные полосы (характерный признак спиральной структуры этой туманности), Кертис заключил, что относительно бедные звездами области Млечного Пути наверняка представляют собой аналогичные участки нашей Галактики, а сама она – просто одна из множества типичных спиральных. К этому выводу он пришел, измерив расстояния до спиральных туманностей на основе своих исследований новых звезд. Случилось так, что новые, которые исследовал он, действительно были аналогичны новым Млечного Пути (вспомним ярчайшие суперновые, смутившие Шепли). Таким образом, Кертис вычислил расстояния от нас до внешних туманностей и даже оказался близок к современным представлениям о них: это десятки миллионов световых лет даже до относительно близких галактик. Он стал верным апологетом идеи «островных вселенных» и писал в вышедшей в 1917 году статье:

Если исходить из равенства абсолютной величины галактических и спиральных новых, то последние, будучи на 10 величин тусклее, находятся примерно в 100 раз дальше от нас, чем первые. Таким образом, спиральные туманности, содержащие новые, находятся далеко за пределами нашей звездной системы, и эти конкретные спиральные туманности, несомненно, исходя из их относительно больших угловых диаметров, наиболее близки к нам.

Пока вроде бы все логично. Но, как и Шепли, Кертис допустил принципиальную ошибку. Он просто не мог – или не хотел – принять оценку Шепли относительно расстояний до шаровых звездных скоплений. Он соглашался, что они должны быть распределены в сферическом объеме с центром, совпадающим с центром Млечного Пути, но полагал, что наша Галактика имеет в диаметре лишь около 30 тысяч световых лет, а Солнце находится примерно в 10 тысячах световых лет от ее центра.

Расхождения между мирами Шепли и Кертиса спровоцировали организованное NASA в 1920 году обсуждение масштабов Вселенной. «Большой спор» был на самом деле совсем не похож на спор, элемент дискуссии в нем был минимальным. Каждый из ученых описал собственный взгляд на Вселенную и опубликовал свою работу, оставляя выбор аудитории и читателям. И, несмотря на название встречи, Шепли в принципе не так уж и интересовался масштабами Вселенной, его волновал преимущественно Млечный Путь. Более того, перед отъездом в Вашингтон на встречу он написал коллеге, что не собирается долго рассуждать о спиральных туманностях: у него недостаточно аргументов, чтобы подтвердить свои идеи. На встрече основная мысль Шепли заключалась в следующем: «Недавние исследования [шаровых] скоплений и связанных с ними объектов, как мне кажется, не оставляют никакой альтернативы мнению, что галактическая система по меньшей мере в десять раз больше в диаметре и по меньшей мере в тысячу раз больше в объеме, чем предполагалось еще не так давно».

Основная цель Кертиса на этом собрании, напротив, состояла в продвижении идеи, что спиральные туманности, независимо от их размера, представляют собой галактики, подобные Млечному Пути. Но он сказал и о том, что «теория островных вселенных имеет косвенное влияние на основной предмет галактических измерений», поскольку:

Если спиральные туманности – это островные вселенные, кажется разумным и наиболее вероятным предположить у них размеры того же порядка, что и у нашей Галактики. Если, однако же, их размеры достигают 300 тысяч световых лет, то островные вселенные должны располагаться на столь громадных расстояниях, что находящимся в этих объектах новым придется обладать невозможно большими абсолютными величинами.

Эти «невозможно большие» величины впоследствии оказались не такими уж невозможными: были открыты сверхновые. Но в 1920 году Кертиса вряд ли можно было упрекать за незнание этого. Он также подчеркнул, что оптический спектр спиральных туманностей тот же, что и общий спектр Млечного Пути.

В одном отношении Кертис, кажется, был несколько более открытым, чем Шепли. Он признавал, что, «конечно, вполне возможно придерживаться и теории островных вселенных, и веры в громадные размеры нашей Галактики, сделав не такое уж невероятное предположение, что наша собственная островная Вселенная случайным образом оказалась в несколько раз больше средней». Именно такой подход (в смягченной форме) владел умами ученых на удивление долго, отчасти, возможно, из-за неосознанного желания считать именно наше место жительства во Вселенной каким-то особенным. Лишь в 1998 году научный коллектив Сассекского университета, в который входил и ваш покорный слуга, опираясь на данные телескопа «Хаббл», раз и навсегда установил, что Млечный Путь – по крайней мере в том, что касается размеров, – совершенно средняя спиральная Галактика{21}.

Измеряя ее, Шепли получил слишком большие числа, а Кертис – слишком маленькие. Но Кертис допустил значительно более серьезную ошибку, поместив Солнце относительно близко к центру Млечного Пути. В отношении природы спиральных туманностей Кертис был прав, а Шепли нет. Но принять верную точку зрения о строении Вселенной астрономам мешала еще одна загадка.

Путаницу, без всякого на то умысла, внес голландский астроном Адриан ван Маанен[140], работавший в Маунт-Вилсоновской обсерватории вместе с Шепли. Они, как потом выяснится, к несчастью, были друзьями, и идеи ван Маанена в 1920-х годах всерьез влияли на воззрения Шепли. Ван Маанен исследовал спиральные туманности (в частности, известную под кодом М101), используя фотографии, сделанные между 1899 и 1915 годом. Исследователь выявил в этой туманности отличительные черты (яркие пятна света) и сопоставил снимки разных лет, используя прибор, быстро менявший два изображения, чтобы человеческий глаз замечал разницу между ними (так называемый блинк-компаратор). Ван Маанен решил, что в некоторых случаях эти яркие пятна с течением лет немного сдвигаются, то есть что туманности вращаются. Это предполагаемое вращение было медленным: примерно один поворот за 200 тысяч лет (М101 смещалась на 0,02 угловых секунды в год). Если туманности имели тот же размер, что и Млечный Путь, и расстояния, предполагаемые идеей островных вселенных (если смотреть с Земли, то М101 имеет размер примерно в полградуса, сопоставимый с Луной), это означает, что внешний слой туманностей должен двигаться быстрее скорости света! Ван Маанен и вслед за ним Шепли решили, что такой вывод невозможен и доказывает обратное: туманности не могут вращаться быстрее скорости света, следовательно, они должны быть намного меньше, чтобы этот парадокс не возникал, а значит, и намного ближе, относительно недалеко от нас.

Когда другие астрономы попытались воспроизвести результаты ван Маанена, им не удалось это сделать. Но голландец утверждал, что прав, и Шепли верил ему. Никто точно не знает, где именно ван Маанен допустил ошибку, но можно предположить, что, поскольку его наблюдения опирались на измерения внешних областей туманностей, у края обзора прибора, его могла подвести оптика. Или, может быть, он увидел то, что хотел увидеть. Так или иначе, в начале 1920-х годов еще существовало множество сомнений в том, что идея островных вселенных верна. Но владеть умами им оставалось уже недолго.

Разрушение Вселенной

Человеком, который развенчал идею, будто Млечный Путь – самое большое образование во Вселенной, а спиральные туманности – лишь его спутники, стал Эдвин Хаббл – фигура такого размаха (отчасти благодаря его умению подать себя), что его стоит представить как следует.

Хаббл родился в 1889 году, окончил школу и университет в Чикаго. Он был неплохим спортсменом (но не таким хорошим, каким хотел казаться) и, безусловно, лучшим учеником. Он осваивал не только естественные науки и математику, но и французский язык и античную литературу, а затем, после выпуска из университета в 1910 году, выиграл престижное право два года изучать юриспруденцию в Оксфорде. Там он влюбился в тот образ жизни денди, который ярко описан в книгах Вудхауза[141], и превратил себя в копию английского джентльмена: имитировал британский акцент и усвоил жаргонные словечки, которые вечно раздражали его коллег. Хаббл так и не стал юристом; поработав вместо этого какое-то время школьным учителем и решив семейные проблемы, возникшие после безвременной кончины его отца в 1913 году, он устроился в Йеркскую обсерваторию близ Чикаго астрономом-стажером. Там же в 1917 году он защитил докторскую диссертацию. Хаббл поставил себе цель сфотографировать как можно больше тусклых туманностей с помощью телескопа-рефрактора диаметром один метр, в те годы одного из лучших в мире. Еще до завершения работы ему предложили должность в Маунт-Вилсоне, где вот-вот должен был появиться 2,5-метровый рефлектор. Но в тот год США вступили в Первую мировую войну, Хаббл попросил отложить его трудоустройство до возвращения из армии и отбыл в Европу.

Военная карьера Хаббла не была выдающейся. По официальным записям, он прибыл во Францию буквально накануне окончания войны и ни разу не участвовал в сражениях. В том нет его вины. Тем не менее в дальнейшем Эдвин любил намекнуть, что был ранен, поэтому у него плохо работает локтевой сустав правой руки. Такая проблема у него и правда была, что бы ни было ее истинной причиной. После заключения мира новоиспеченный майор Хаббл (он очень любил, чтобы даже в мирной жизни к нему обращались по званию) сумел задержаться в обожаемой им Англии довольно надолго, чтобы довести до бешенства коллег в Маунт-Вилсоне, где уже давно начали работу на новом телескопе. Вернулся он в сентябре 1919 года, незадолго до тридцатилетия, и какое-то время сотрудничал с Шепли, перебравшимся в Гарвард в 1921 году. Отношения двух астрономов нельзя назвать сердечными: Шепли был простым в общении, а Хаббл донельзя вычурным, к тому же смотрел на Шепли откровенно свысока.

Первой значительной работой Хаббла стало развитие идей его докторской, приведшее к классификации туманностей (галактик) по внешнему виду. Ключевым достижением здесь было разделение их на два типа: уже знакомые нам спиральные и эллиптические, не имеющие спиральной структуры и варьирующиеся по форме от сфер (громадные шаровые звездные скопления) до сигар. Сейчас предполагают, что эллиптические галактики образуются от слияния спиральных. Этим проектом Хаббл занимался до 1923 года и стал настоящим экспертом в применении нового телескопа. А затем он обратил свое внимание на проблему измерения расстояний до туманностей.

Вооруженный двумя лучшими в мире телескопами – 1,5– и 2,5-метровыми рефлекторами, Хаббл располагал всеми возможностями, чтобы проверить идею островной вселенной. Она казалась ему убедительной, но ученый не был готов поддержать ее, не имея надежных доказательств. Он начал поиск новых звезд в туманностях и летом 1923 года обнаружил в неправильной туманности NGC 6822 несколько переменных. Дальнейшие исследования показали, что в ней содержится одиннадцать цефеид, позволяющих оценить расстояние до NGC 6822 примерно в 700 тысяч световых лет. Это было даже дальше, чем размеры супергалактики Шепли. К моменту завершения расчетов Хаббл уже сделал огромный шаг к постижению Вселенной.

Возможно, под впечатлением от открытия цефеид в NGC 6822 Хаббл с еще большим энтузиазмом взялся за поиски спиральных галактик. И 4 октября 1923 года, несмотря на неудобные для наблюдений условия, Хабблу удалось получить через больший телескоп фотографию туманности Андромеды (М 31). На ней через облачную структуру просвечивала яркая вспышка. «Предполагаю новую», – записал он в рабочем дневнике. На следующую ночь астрономические условия были лучше и вспышка на фотографии была все еще видима. «Подтверждаю новую», – записал Хаббл. Более детальное изучение фотопластинки выявило не одну, а целых три предположительные новые. Хаббл начал искать туманность в фотоархиве, чтобы убедиться, что перед ним действительно новые, а не нечто ранее не увиденное. Две звезды действительно оказались новыми. Третья уже присутствовала на ранних фотографиях, но явно не была верно интерпретирована. Ее яркость менялась во времени, это была так называемая переменная звезда. Но переменная какого типа? Чтобы выяснить это, надо было постоянно следить за ней.

В феврале 1924 года постоянный контроль представил Хабблу необходимые доказательства. В течение трех ночей он наблюдал, как звезда удвоила яркость, и смог сопоставить эту информацию с архивными данными и собственными предыдущими наблюдениями, чтобы определить период переменной. Это была цефеида с периодом в 31,415 суток. Девятнадцатого февраля, желая уязвить соперника, он написал Шепли о своем открытии: «Тебе будет интересно узнать, что я нашел переменную цефеиду в туманности Андромеды». Дальше, усугубляя триумф, он указал, что, если использовать то же соотношение, которое Шепли применял для подсчета расстояний до шаровых скоплений, туманность Андромеды должна отстоять от нас на миллион световых лет или больше, если принимать в расчет межзвездную пыль. Это действительно была островная вселенная, подобная Млечному Пути, а сам он, соответственно, был просто одной из галактик, но не всей Вселенной. Вскоре после получения этой новости в лабораторию Шепли зашла Сесилия Пейн-Гапошкина. Она вспоминала, как он говорил ей: «Это письмо разрушило мою вселенную… Я верил результатам ван Маанена… Он же был моим другом».

Для Хаббла следующий шаг был очевиден. Ему предстояло измерить расстояния до максимального числа галактик, а для этого понадобился бы помощник. Новый проект должен был привести к еще более удивительному открытию, но первые шаги на пути к нему были сделаны, когда Хаббл еще не защитил докторскую и, конечно, еще не знал расстояния до М 31.

Глава 6 575 Открытие расширяющейся Вселенной

Расширение Вселенной – одно из основополагающих научных открытий, ведущее прямо к пониманию того, что у известной нам Вселенной было начало. Первые подвижки к пониманию этого были сделаны Весто Мелвином Слайфером[142], работавшим во втором десятилетии XX века в Лоуэлловской обсерватории в Флагстафе.

Удивительные скорости

Слайфер, родившийся в 1875 году, приехал в Аризону во Флагстафф в 1901 году, сразу по окончании учебы в университете Индианы, и получил задание ввести в работу новый спектрограф, созданный директором обсерватории Персивалем Лоуэллом[143]. Происходивший из богатой бостонской семьи Лоуэлл основал обсерваторию в 1894 году, изначально для доказательства своей теории о том, что марсианские «каналы» представляют собой признаки деятельности представителей цивилизации, живущих на Красной планете[144]. Новый инструмент был сначала призван измерить вращение Венеры, которая его тоже интересовала. Изучение планет занимало Слайфера следующие несколько лет, и за это время он стал настоящим экспертом в использовании спектрографа. В 1906 году по предложению Лоуэлла (который, как и многие из его современников, полагал, что спиральные туманности могут оказаться расположенными на Млечном Пути «роддомами» для новых планетарных систем, подобных Солнечной) Слайфер предпринял попытку измерить спектры спиральных туманностей. Она не увенчалась успехом, но в 1909 году[145], услышав, что этой же проблемой занялись другие астрономы, решил попробовать еще раз.

Оборудование для наблюдений у Слайфера было довольно скромное: шестидесятисантиметровый телескоп-рефрактор и уже старенький (но отлично знакомый) спектрограф. Хотя к тому времени звездная спектроскопия была общепринятым методом, выявление спектров тусклых туманностей вызывало трудности, никто до тех пор не преуспел в получении надежных результатов даже с более крупными телескопами. Но после многих месяцев терпеливых экспериментов с разными условиями, на которые он тратил свободное от работы на Лоуэлла время, астроном подобрал настройки телескопа и спектрографа, которые позволили получить спектры туманностей, в том числе Андромеды. К январю 1913 года с новой линзой для спектрографа Слайфер получил четыре фотопластинки, на которых удалось измерить спектральные линии, видимые в свете от туманности. К своему удивлению, он обнаружил, что линии смещены к синему концу спектра. Ученый предположил, что это из-за доплеровского эффекта, означающего, что туманность Андромеды летит в нашу сторону со скоростью 300 км в секунду. Это значительно превышало доплеровские скорости звезд, поэтому неудивительно, что сообщение об открытии было встречено со скепсисом.

Однако Слайфер стоял на своем. К 1914 году он измерил спектры пятнадцати туманностей и в августе того же года сделал доклад на встрече Американского астрономического общества, где указал, что три из них демонстрировали синее смещение, а одиннадцать – красное. Это было очевидно значимое открытие: сообщалось, что в конце доклада аудитория устроила исследователю овацию. К этому времени его наблюдения стали подтверждать и другие астрономы. Впрочем, возможности устаревшего телескопа, бывшего в распоряжении Слайфера, вскоре оказались исчерпаны, и в наиболее полном его труде на эту тему, опубликованном в 1917 году, упоминалось десять новых спектров туманностей: всего 25, из них четыре с синим смещением и двадцать одна с красным. Скорости, на которые указывало смещение, варьировались от 150 до 1100 км в секунду, и можно было сделать вывод, что спиральные туманности, чем бы они ни были, не могут находиться в гравитационном поле Млечного Пути. К 1917 году сам Слайфер уже не сомневался в этом:

Уже давно выдвигаются предположения, что спиральные туманности – звездные системы, находящиеся на большом расстоянии от нас. Это так называемая теория островных вселенных, которая рассматривает нашу звездную систему и Млечный Путь как громадную спиральную туманность, наблюдаемую нами изнутри. Нынешние исследования, как мне представляется, подтверждают эту теорию.

У его наблюдений была и еще одна интересная особенность, которой часто не уделяют должного внимания. Красные смещения, если рассуждать о них как о скоростях, подразумевали, что галактики разлетаются от нас во все стороны. Точнее, не именно от нас. Когда Слайфер усреднил скорости, оказалось, что все спиральные галактики, которые он проанализировал, движутся относительно Млечного Пути или, вернее, что сам Млечный Путь движется через пространство, как и другие туманности, в некотором направлении относительно спиральных галактик со скоростью около 700 км в секунду. Он назвал такое движение «дрейфом сквозь космос» (ничего себе дрейф!), и оно стало еще одним фундаментальным открытием, поскольку дополнительно доказывало, что Млечный Путь – обычная галактика, которая, помимо всего прочего, не является неподвижным центром Вселенной.

Тем не менее наблюдения Слайфера не смогли окончательно решить вопрос о природе спиральных туманностей, и, как мы уже видели, дискуссии на эту тему продолжились в 1920-х годах. Одной из причин было то, что Шепли и другие защитники идеи громадного и всепоглощающего Млечного Пути, окруженного мелкими туманностями, еще находили аргументы в свою пользу. Они утверждали, что спиральные туманности – небольшие объекты, отторгнутые Млечным Путем в окружающий космос. К сожалению, хотя Слайфер продолжил измерять спектры туманностей и к 1922 году изучил уже сорок одну и почти все они (36) демонстрировали красное смещение, он не предавал огласке свои данные. Все они лежали в архиве Лоуэлла в виде внутренних отчетов, их не читали и не использовали – хотя астрономы Артур Эддингтон и Густав Штромберг[146] сумели их получить. Но все изменилось, когда Хаббл начал измерять расстояния до изученных Слайфером туманностей, а затем (вместе с коллегой Милтоном Хьюмасоном[147]) дистанции до более далеких галактик и их красные смещения.

Краденый успех

Хаббл знал о работах Слайфера, в 1928 году он побывал на научной встрече в Лейдене, где обсуждал с Виллемом де Ситтером[148] новые теории Вселенной на базе общей теории относительности Альберта Эйнштейна (подробнее об этом чуть позже). Хаббл также знал, что туманности, которые виднелись на небе меньше и тусклее, имели большее красное смещение, чем выглядевшие крупнее и ярче. Если допустить, что все спиральные туманности похожи по размеру, то можно сделать вывод, что красное смещение показывает расстояние: чем больше смещение, тем дальше от нас галактика. И действительно, в предыдущем 1927 году Хаббл поручил подчиненному наблюдателю в Маунт-Вилсоне Милтону Хьюмасону измерить красные смещения двух ближайших галактик (ближайших по данным метода цефеид), чтобы проверить наблюдения Слайфера, и Хьюмасон подтвердил, что их красное смещение относительно велико, что согласовывалось с идеей корреляции расстояний и смещений.

Причины красных смещений не слишком интересовали Хаббла, но его увлекала перспектива использовать их для измерения расстояний: красные смещения можно было вычислить для таких тусклых (и, предполагал он, таких далеких) галактик, которые не допускали применения метода цефеид. Чтобы доказать, что между красным смещением и расстоянием есть четкая связь, надо было измерить их по методу цефеид для максимума галактик, используя все возможности 2,5-метрового телескопа. Работа предстояла кропотливая и долгая, и Хабблу понадобилась помощь. Если он оценит расстояния по цефеидам и другим имеющимся методам, а коллега уточнит красные смещения, можно будет сложить обе части паззла и выяснить соотношение между красным смещением и расстоянием. В качестве напарника был выбран Хьюмасон, не только потому, что он был первоклассным наблюдателем, отлично знавшим телескоп, но и потому, что был намного ниже по статусу, чем Хаббл, а значит, тот мог по своей привычке присвоить себе в случае успеха львиную долю заслуг (если не все).

Хьюмасон родился в Миннесоте в 1891 году, но вскоре его семья переехала на Западное побережье США. В Маунт-Вилсон он впервые попал с родителями в 1905 году, когда обсерватория только строилась. Юноше так понравилась гора, что он убедил родителей разрешить ему бросить школу и устроиться в местный отель посыльным и разнорабочим. Но отель располагался довольно низко на склоне, и вскоре Милтон нашел место погонщика мулов, доставлявших стройматериалы и оборудование для возводимой обсерватории по горным тропам. Сначала там построили полутораметровый, а затем и 2,5-метровый (стодюймовый) телескоп Хукера, его создание спонсировал бизнесмен из Лос-Анджелеса Джон Хукер[149]. В 1911 году Хьюмасон женился на дочери одного из ведущих инженеров проекта Хелен Доуд, но продолжал привычную работу до 1913 года, в котором у него родился первенец. Тогда молодой человек решил найти достойную должность, чтобы содержать семью, какое-то время трудился садовником, а в 1916 году смог приобрести фруктовый сад (в Калифорнии такие называют цитрусовыми ранчо) близ Пасадены. Однако такая работа была ему не слишком по душе, и, когда большой телескоп был готов, а в обсерватории стали набирать дополнительный штат, он тут же нашел себе там место ночного сторожа, отчасти благодаря связям тестя.

Работа была, конечно, незавидная; но стоял ноябрь 1917 года, в Европе бушевала война. Астрономы поручали Хьюмасону самые разные задания – от фиксации телескопа под нужным углом до приготовления кофе и проявления фотопластинок. За это он получал всего 80 долларов в месяц, с бесплатным проживанием и едой. История не сохранила реакцию на все это его жены, но Милтон оказался настолько способным, что вскоре его сделали ночным ассистентом и позволили самостоятельно проводить некоторые наблюдения. Несколько астрономов, включая Шепли, ввели его в курс дела, а один из них, Сет Николсон, даже подтянул Хьюмасона по математике, ведь он рано бросил школу и мало что знал. Впоследствии Шепли вспоминал, что Хьюмасон был «одним из лучших наблюдателей, которые у нас когда-либо работали», и в 1922 году дал ему рекомендацию и помог получить официальный статус «астронома-ассистента»; фактически к тому времени Милтон уже несколько лет бесплатно работал в этой должности.

Незадолго до этого случился один из самых поразительных промахов в истории астрономии. Шепли тогда как раз собирался покинуть Маунт-Вилсон и перебраться в Гарвард. В те годы фотоизображения галактик и других астрономических объектов формировались на хрупких стеклянных пластинках, покрытых специальным химическим составом. Пластинки приходилось экспонировать много часов и проявлять в темноте и холоде купола телескопа, а затем фиксировать изображение с помощью других химикатов. Таким образом, на одной стороне пластинки появлялось изображение, а другая оставалась чистой. На ней астрономы порой писали или рисовали, отмечая интересующие их объекты. В начале своей карьеры, еще не будучи официально астрономом, зимой 1920–1921 годов двадцатидевятилетний Хьюмасон получил от Шепли задание изучить серию фотографий туманности Андромеды, по большей части сделанных за последнюю пару лет самим Шепли, и проверить, изменилась ли она за прошедшее с тех пор время, в частности, нет ли признаков ее вращения. На этих снимках, которые, по сути, были негативами (яркие объекты отображались на них как черные), Хьюмасон обнаружил несколько точек, похожих на звезды. И самое любопытное, некоторые из них присутствовали только на части пластинок, что наводило на мысль о переменных и, возможно, даже цефеидах. Он пометил оборот одной из таких пластинок чернилами, чтобы выделить особенно интересный объект, и показал его Шепли. Тот, убежденный, что спиральные туманности – это облака материи внутри Млечного Пути (максимум небольшие образования совсем рядом с ним), вынул из кармана платок, стер пометки и снисходительно объяснил Хьюмасону, что в туманности Андромеды не может быть переменных звезд. Милтон не счел себя вправе спорить с ним и долгие годы не упоминал об этом случае. А ведь Шепли мог высчитать расстояние до галактики Андромеды, понять структуру Вселенной и прославить свое имя навеки еще в 1921 году. Урок для всех нас: нужно строить теории на наблюдениях, а не подводить наблюдения под теоретические домыслы.

Когда в конце 1928 года Хаббл поручил Хьюмасону измерять красные смещения, тот не слишком обрадовался. Ему пришлось получать фотографии спектров (а это намного сложнее, чем просто фотографировать галактики) при большой выдержке в обжигающем холоде гористой местности. Зима была оптимальным временем для подобной работы, поскольку ночи в это время самые долгие и морозные, а купол телескопа не должен нагреваться, чтобы колебания теплого воздуха не мешали видимости. Хотя телескоп был оборудован механизмом для автоматического отслеживания движения объектов по небу по мере вращения Земли, это устройство было несовершенно: наблюдателю приходилось постоянно сидеть за большим телескопом и, ориентируясь на маленький телескоп наведения, подстраивать механизм, чтобы он всегда был нацелен в нужную область неба. Даже при этих условиях для получения детального снимка, необходимого Хьюмасону, одной ночи не хватало. В конце наблюдения, пока еще темно, пластинку надо было вынуть из спектрографической камеры и поместить в светонепроницаемый футляр, а на следующую безоблачную ночь так же, в темноте, снова вставить ее в камеру, направить телескоп в точности на то же самое место и снова погрузиться в кропотливую работу, требующую постоянного напряжения глаз и адаптации к холоду. Как бы Хьюмасон ни ненавидел этот процесс, он был отличным наблюдателем и никто не справился бы лучше него. Он стал измерять красные смещения тусклых галактик, не различимых телескопом Слайфера.

А Хаббл в это время измерял расстояния – сначала до галактик, красные смещения которых уже изучил Слайфер. Хабблу удалось измерить методом цефеид расстояния до шести из них и использовать полученные данные для доказательства того, что самые яркие звезды в этих галактиках были почти равны по блеску. Это дало ему возможность оценить расстояния до более удаленных галактик (где нельзя было различить цефеиды), предположив, что и в них самые яркие звезды обладают той же средней яркостью (абсолютной величиной), и определяя дистанцию до них по видимому блеску. Так удалось получить еще четырнадцать расстояний, всего двадцать. Из этого списка он вывел среднюю яркость для галактики и с ее помощью оценил примерные расстояния еще до четырех. К 1929 году был сформирован список из двадцати четырех галактик, красные смещения двадцати из которых измерил Слайфер, а четырех – Хьюмасон. Хабблу было этого достаточно, чтобы опубликовать свое знаменитое открытие: расстояние от нас до галактики находится в точной пропорции со скоростью, высчитанной на основе ее красного смещения. Эта пропорция получила название закона Хаббла. Он представил его в выпуске «Трудов Национальной академии наук США», но с одним принципиальным изменением.

Хотя в работе Хаббла от 1929 года труд Слайфера не упоминается (что само по себе поразительно и, безусловно, сделано умышленно; историк Дон Лаго утверждает, что «в молчании Хаббла нет ничего случайного», а Шепли описывал Эдвина как «до абсурда тщеславного и напыщенного»{22}), он вычел из подсчитанных скоростей 700 км в секунду – скорость нашего «дрейфа сквозь космос», открытого Слайфером. Оставшиеся скорости показывали, что на каждые 500 км в секунду приходится расстояние в миллион парсек (1 мегапарсек, или Мпк), на 1000 км в секунду – 2 Мпк и так далее. Этот коэффициент – 500 км в секунду на 1 Мпк – прославился как постоянная Хаббла (Н), а его точное значение стало предметом горячих дискуссий на годы и десятилетия. Однако важно отметить и еще один момент: хотя красное смещение измеряется в единицах скорости (км в секунду), Хаббл нигде не упоминает, что эти смещения представляют собой результат доплеровского эффекта. Он хотел использовать их просто как индикаторы расстояний и в 1929 году даже сказал в интервью газете Los Angeles Times, что «в реальность этих скоростей трудно поверить».

После опубликования закона Хаббла и вычисления постоянной Хаббла ее стало возможно использовать для измерения расстояния до любой галактики, чье красное смещение поддавалось анализу. В отдельной статье, опубликованной параллельно с работой Хаббла, Хьюмасон сообщил, что наиболее значительное красное смещение на тот момент обнаружено у галактики NGC 7619, расположенной в направлении созвездия Пегаса. Данные о ней собирались несколько ночей, в течение 33 часов, а дополнительная обработка заняла еще 45 часов. В результате было получено красное смещение, соответствующее скорости 3779 км в секунду, что более чем вдвое превышает самое большое смещение, полученное Слайфером, и соответствует расстоянию примерно в 8 Мпк, или более чем 25 млн световых лет. Вследствие этого прорыва владельцы Маунт-Вилсоновской обсерватории решили выделить средства на усовершенствованный спектрограф, который наряду с изобретением более чувствительных фотопластинок позволил Хьюмасону продвинуться еще дальше во Вселенную и несколько упростить себе работу. За следующие два года удалось проанализировать еще 40 галактик и обнаружить среди них удаленные от нас на 100 млн световых лет. И за все это, как показывают названия закона и постоянной, слава досталась Хабблу, хотя красные смещения первым открыл Слайфер, а заслуга наиполнейшего для того времени использования этого открытия принадлежит Хьюмасону. Но что все это должно было означать? Фактически (Хаббл не мог этого не знать) к 1928 году уже имелись теоретические основания для предположения, что Вселенная расширяется или, по крайней мере, что красное смещение и расстояние взаимосвязаны.

Русская революция

Эйнштейн разработал общую теорию относительности в конце 1915 года и почти сразу же применил ее для создания математической модели Вселенной. Это был не такой громадный прыжок в науке, как может показаться, поскольку общая теория описывает взаимодействие между пространством, временем и материей и, строго говоря, применима только к полному набору этих элементов – Вселенной. При попытке применить ее для описания части Вселенной[150], например природы орбиты Меркурия вокруг Солнца, получается что-то приблизительное, хотя и точное настолько, насколько нужно исследователю. Эйнштейн опубликовал свою прорывную космологическую работу под названием «Вопросы космологии и общая теория относительности» в 1917 году. Он находился под сильным влиянием общепринятого тогда воззрения, что вся Вселенная есть Млечный Путь, а также видимого факта, что звезды Млечного Пути движутся относительно мало и бессистемно, не образуя входящего или исходящего потока. Он склонялся к идее, что Вселенная замкнута аналогично поверхности Земли или иной сферы, которая, как известно, имеет конкретную площадь поверхности, но не имеет конца. Сферическая вселенная обладает конечным объемом, но не имеет границ: направившись в любую сторону по прямой, вы в конце концов обогнете ее и вернетесь в исходную точку.

Однако здесь есть затруднение. Такая замкнутая вселенная должна сужаться, поскольку вся материя в ней притягивается друг к другу по закону всемирного тяготения, это соответствует как закону Ньютона, так и общей теории относительности. Поэтому Эйнштейн добавил к своим уравнением дополнительный элемент, названный космологической константой и обозначенный буквой греческого алфавита – лямбдой (Λ), который означал некую «упругость» пространства, компенсировавшую гравитацию. В результате получилась математическая модель замкнутой сферической вселенной, содержащей материю, но стабильной, о чем, по мнению Эйнштейна, свидетельствовали небольшие скорости звезд.

В 1916 году, формулируя свои идеи, Эйнштейн обсуждал их с голландским астрономом Виллемом де Ситтером, который вскоре издал собственные размышления на ту же тему. Голландия соблюдала нейтралитет в Первой мировой войне, так что новости от Эйнштейна без серьезных преград добирались из Германии до де Ситтера, а затем – к английским друзьям, в частности к Артуру Эддингтону. Де Ситтер опубликовал свою работу в ежемесячных «Заметках Королевского астрономического общества». Это привлекло внимание англоязычных астрономов к прорыву Эйнштейна, но также показало, что идея богаче, чем думал автор. Де Ситтер обнаружил, что уравнения общей теории относительности также могут использоваться для описания стабильной, но пустой вселенной – космоса, не содержащего материи. Такая вселенная не сжималась бы по причине отсутствия вызывающей гравитацию материи. Для нее космологическая постоянная была не нужна, но при желании ее можно было использовать. Де Ситтер, однако, хотел узнать, не может ли оказаться, что наша Вселенная настолько велика, что даже можно пренебречь наличием в ней звезд и считать пригодной для ее описания модель пустой вселенной. Он внес в пустую вселенную математический эквивалент небольшого количества материи («пробные частицы») и пришел к неожиданному выводу. Если эти частицы излучали свет, то длина его волн растягивалась по мере удаления от частиц; как выразился сам де Ситтер, «частота световых вибраций уменьшалась». Эта форма красного смещения, являющаяся свойством пространственно-временного континуума во вселенной де Ситтера, не является эффектом Доплера, и из нее не следует, что Вселенная расширяется. Но де Ситтер знал о работе Слайфера и стал одним из первых астрономов, поддержавших идею о том, что спиральные туманности находятся на большом расстоянии от Млечного Пути. Эйнштейн был озадачен и написал де Ситтеру, что не может осмыслить происходящее. Но худшее (или с современной точки зрения лучшее) было еще впереди: обнаружилось, что возможных моделей вселенных может быть несколько.

В течение последующих лет несколько ученых пытались использовать уравнения общей теории, применяя их к вселенной или вселенным. Но человеком, который смог буквально взять эти уравнения за шиворот и встряхнуть, придав им новый смысл и определив релятивистскую космологию как науку, стал россиянин Александр Фридман[151].

Фридман родился в 1888 году в Санкт-Петербурге в семье балетного танцовщика и пианистки, которые поженились, когда ему было девятнадцать, а ей всего шестнадцать, и музыкальную карьеру она так и не сделала. В 1896 году, когда Александру исполнилось восемь лет, его родители расстались, отец повторно женился, и мальчик воспитывался с мачехой. Артистическое происхождение не помешало ему увлечься физикой, и в начале XX века он уже был хорошо знаком с последними исследованиями квантовой теории и релятивистики. Александр, как и его родители, рано создал семью – в 23 года, едва окончив Санкт-Петербургский университет. Он продолжал работать в альма-матер еще пару лет, а в 1913 году занял должность метеоролога в Главной геофизической обсерватории в Павловске. Когда разразилась Первая мировая, он вступил добровольцем в авиационный отряд и участвовал в организации аэронавигационной и аэрологической службы русской армии, в том числе совершал опасные для жизни полеты в качестве пассажира и наблюдателя над вражеской территорией (австрийский фронт) и пережил как минимум одну аварийную посадку, был удостоен орденов Святого Георгия и Святого Владимира с мечами. Фридман не пострадал от революции 1917 года, поскольку с юности поддерживал левых и приветствовал новую власть. Он получил место профессора в Пермском университете, но был вынужден бежать, когда во время гражданской войны город заняли белые. В итоге в 1920 году ему удалось поселиться в родном городе, теперь носившем имя Петроград, и заняться метеорологическими исследованиями при Академии наук. Вскоре Фридман уже руководил всеми метеорологическими наблюдениями на территории Советского Союза. Увы, ученого ждала ранняя смерть от тифа[152], подхваченного во время поездки в Крым в 1925 году (к тому времени Санкт-Петербург был переименован еще раз – в Ленинград), всего через три года после публикации его революционных идей в области космологии.

Метеоролог по профессии, Фридман следил за всеми новостями релятивистской теории, включая общую теорию относительности, несмотря на всю сложность исторического периода их развития. Представляется, что он начал размышлять о космологических следствиях из общей теории еще в 1917 году, едва познакомившись с ключевой работой Эйнштейна. Он был занят на основной работе, в стране царил хаос, и на формулировку и публикацию своих умозаключений у ученого ушло несколько лет. Но их появление произвело эффект разорвавшейся бомбы, к тому же, несмотря на строгую математическую форму, ключевые идеи работы Фридмана легко объяснить на популярном уровне.

Главным открытием Фридмана было то, что уравнения Эйнштейна описывают не одну-единственную уникальную вселенную, но допускают создание множества ее моделей. Стационарная вселенная Эйнштейна и пустая вселенная де Ситтера – лишь примеры подобного множества. Одни такие модели выглядят подобно нашей Вселенной, другие отличны от нее. После полного принятия этих идей научным сообществом (в результате публикаций Хаббла и Хьюмасона) ключевым вопросом космологии стал поиск модели, наиболее точно соответствующей реальному миру. В некоторых из моделей использовалась космологическая константа, другие не требовали ее – среди них были самые интересные (то есть самые, кажется, адекватные нашей Вселенной), хотя в 1922 году это, конечно, еще не было очевидно.

Если отбросить наиболее экзотические и представляющие интерес в основном для математиков варианты, модели Фридмана предлагают три основные альтернативы описания Вселенной: все они естественным образом расширяются и не требуют лямбда-члена. Главное, как указывает Фридман, что такое расширение вызывается растяжением самого пространства, а не движением сквозь него какой-то материи. Во вселенной первого типа такое расширение происходит постоянно, хотя и замедляясь со временем из-за гравитации находящейся в ней материи. Поэтому такую вселенную называют открытой. Однако может существовать закрытая вселенная, которая какое-то время расширяется, но затем гравитация становится сильнее этого процесса и заставляет ее снова сжаться. Те и другие могут быть разных видов, с разной скоростью расширения. Но существует и третий, уникальный тип вселенной, находящийся точно посредине. Такая вселенная непрерывно расширяется, постоянно замедляясь, но никогда не останавливаясь окончательно. Она получила название плоской по аналогии с поверхностью сферы или Земли, которая из-за больших размеров может представляться совершенно плоской. Не выдавая слишком много тайн, могу пока сказать, что наша Вселенная неотличима от плоской, хотя может оказаться и открытой, и закрытой.

Перед публикацией своей работы в 1922 году Фридман написал Эйнштейну, прося его одобрения. Ответ коллеги Гамов впоследствии назвал «ворчливым»: Эйнштейн не оценил идеи Фридмана. Но статья была опубликована, и Эйнштейн ответил на нее крохотной заметкой (всего 11 строк!), утверждая, что результаты Фридмана не согласуются с его уравнениями. Затем он обдумал все еще раз и в 1923 году опубликовал еще одну заметку, где брал свои слова назад. Кажется, в тот период Эйнштейн рассматривал решения Фридмана для своих уравнений поля как чисто математически любопытные умозаключения, не имеющие отношения к реальному миру. В сохранившемся в его архиве черновике к заметке 1923 года есть несколько важных слов, не попавших в официальный вариант. Он пишет, что моделям Фридмана «вряд ли можно приписать значимость для физики». Уже через десять лет он будет вынужден изменить свое мнение.

Если бы Фридман продолжал свои исследования, это могло бы случиться и раньше. В 1923 году он изложил свои идеи в книге «Мир как пространство и время»[153], где рассматривал уравнения как таковые, включая очевидное следствие из них, что если Вселенная расширяется, то в прошлом она была меньше, а изначально могла быть очень маленькой. Ему нравилась идея циклической вселенной, которая расширяется из очень небольшого размера (возможно, точки), достигает определенного размера и затем снова сжимается в точку, запуская новый цикл. Он пишет:

…возможны случаи, когда радиус кривизны мира, начиная с некоторого значения, постоянно возрастает с течением времени; возможны даже случаи, когда радиус кривизны меняется периодически. В последнем – Вселенная сжимается в точку (в ничто), затем, снова из точки, доводит свой радиус до некоторого значения, далее опять, уменьшая радиус своей кривизны, обращается в точку и так далее. ‹…› Бесполезно, за отсутствием надежных астрономических данных, приводить какие-либо числа, характеризующие жизнь нашей Вселенной; если все же начать подсчитывать, ради курьеза, время, прошедшее от момента, когда Вселенная создавалась из точки до теперешнего состояния, начать определять, следовательно, время, прошедшее «от сотворения мира», то получатся числа в десятки миллиардов наших обычных лет{23}.

И этот текст был опубликован в 1923 году! Это не что иное, как первая научная дискуссия о том, что сейчас известно как Большой взрыв, и первая космологическая оценка возраста Вселенной (преувеличенная всего в несколько раз). Однако в начале 1920-х годов не только Эйнштейн, но и весь научный мир был не готов к революции Фридмана, и после его безвременной кончины некому было продолжить его дело, пока аналогичные идеи не пришли в голову другому ученому.

Заступничество святого отца

Жорж Леметр[154] был моложе Фридмана на шесть лет. Он родился в бельгийском городе Шарлеруа в 1894 году и учился в иезуитском колледже. В 1914 году ему было двадцать лет, он планировал стать гражданским инженером, но пошел добровольцем в армию. Участие в Первой мировой войне, за которое он был награжден Военным крестом, произвело на Жоржа огромное впечатление и побудило молодого человека совместить карьеру ученого с духовным поприщем (хотя первые мечты о священстве появились у него еще в девять лет). В 1920 году он защитил докторскую диссертацию по физике в Левенском университете (тогда в Бельгии это была, скорее, магистерская степень), изучил теологию и в 1923 году был посвящен в сан аббата. Одновременно с богословскими изысканиями Леметр подготовил работу по теории относительности и получил право на годичное бесплатное обучение в Кембридже (1923–1924) у Артура Эддингтона. Последний говорил, что это «блистательный студент, быстро схватывающий, дальновидный и с огромными способностями к математике»{24}. Из Кембриджа Леметр отправился в Гарвардскую обсерваторию, где в 1924–1925 академическом году работал с Харлоу Шепли (к тому времени спор о спиральных туманностях подходил к концу) и, среди прочих, Сесилией Пейн. В Америке Леметр познакомился со Слайфером, побывал на собрании в Вашингтоне, где было объявлено об измерении Хабблом расстояния до туманности Андромеды, и лично посетил ученого, чтобы больше узнать о том, как он рассчитывает дистанции между нами и туманностями. Утверждения коллеги разожгли в нем интерес к применению общей теории относительности в качестве модели реальной Вселенной. Он сразу же заинтересовался физическим значением измерений красного смещения.

Проведенные Леметром в Гарварде исследования привели к присуждению ему докторской степени. Так же как Пейн получила свою степень от колледжа Рэдклифф, поскольку обсерватория в те годы не имела права вручать их, Леметру присвоили ученое звание не там, а в Массачусетском технологическом институте в 1927 году за диссертацию «Гравитационное поле в жидкой сфере однородной инвариантной плотности согласно теории относительности». Соответствующие уравнения применимы, конечно, и к вселенной однородной плотности, но здесь все самое интересное происходит, когда плотность не инвариантна, а меняется с течением времени. Часть этой работы была опубликована в статье 1925 года. В ней Леметр показывает, что радиус такой вселенной рос бы со временем: расстояния между всеми точками в пространстве постоянно увеличивались. Он был первым, кто стал утверждать это относительно реального расширения пространства. Однако никто не обратил на это внимания. К тому времени как американская докторская степень была присуждена, Леметр уже вернулся в Бельгию и начал работу в Левенском университете. Там он глубже занялся проблемой согласования космологических моделей на основе общей теории относительности с красными смещениями в работах Слайфера.

В подходах Леметра и предыдущих исследователей, таких как Фридман (о его работах он в то время еще не знал) и де Ситтер, была принципиальная разница. Ученый с самого начала старался не просто развивать математические модели как таковые, а сопоставлять их с практическими наблюдениями.

Леметр первым предположил, что галактики можно рассматривать как эквивалент частиц в расширяющейся вселенной де Ситтера, но он развил работу де Ситтера (и, что важнее всего, независимо достиг тех же результатов, что и Фридман), найдя решения для уравнений Эйнштейна, в которых размер вселенной (измеренный в смысле расстояний между пробными частицами или, выражаясь технически, в смысле параметра кривизны, иногда называемого радиусом вселенной) претерпевает различные изменения. Он отдавал предпочтение модели закрытой вселенной, в которой этот размер меняется во времени, так что она растет или сжимается. Зная о работах Слайфера, он счел расширяющиеся модели возможным описанием реальной Вселенной, но сохранил космологическую константу, позволявшую ему создавать большое разнообразие возможных вселенных.

Утверждение Слайфера о том, что красное смещение больше для тусклых и далеких галактик, заставило Леметра склоняться к одной конкретной разновидности космологических моделей, в которой скорость[155] галактики пропорциональна расстоянию до нее (закон Хаббла). Он должен был бы называться законом Леметра, но был впервые опубликован в 1927 году в бельгийском журнале, мало известном за пределами страны, и из-за цепочки случайностей не получил широкого распространения вплоть до 1931 года.

Впрочем, название статьи явно должно было привлечь интерес ученых из соответствующих разделов физической науки: «Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей». Леметр даже отправил экземпляр Эддингтону, на которого ложится большая часть вины за нераспространение информации об этой статье. А распространять было что. Вот ключевой момент текста:

Когда вводят координаты и разделение на пространство и время, сохраняющее однородность вселенной, оказывается, что поле перестает быть статичным и что вселенная формы, предложенной Эйнштейном, может быть получена при радиусе, более не являющемся постоянным, а изменяющимся со временем по некоторому определенному закону.

Это именно тот закон, который ныне известен как закон Хаббла. Леметр использовал красные смещения Слайфера («радиальные скорости»), собранные Густавом Штромбергом в статье 1926 года, и расстояния на основе формулы, выведенной Хабблом в отношении воспринимаемой яркости (величины) галактики к расстоянию до нее. Это был очень грубый способ оценки расстояний, но для Леметра его было достаточно, чтобы определить соотношение между красным смещением и расстоянием: он пришел к результату в 575 км в секунду на 1 Мпк (сейчас он известен как постоянная Хаббла). Леметр тоже вычел скорость движения Млечного Пути, открытую Слайфером. Его результат настолько близок к полученному Хабблом пару лет спустя, что это вызывает резонные подозрения. Как пишет космолог Джим Пиблс в книге «Современная космология», «между этими двумя числами должна быть определенная связь». Правда ли, что тщеславный и напыщенный Хаббл решил вычеркнуть из истории Леметра так же, как он попытался сделать это со Слайфером? Если и так, это вполне в его духе.

Леметр вскоре получил возможность обсудить свою работу с Эйнштейном на научном собрании (Сольвеевской конференции[156]) осенью 1927 года. Тридцать лет спустя в радиоинтервью он вспомнит, что Эйнштейн описал его модель как «недопустимую» с физической точки зрения, что бы там ни говорили уравнения[157], и показался ему очень плохо информированным об астрономических достижениях, в том числе красных смещениях Слайфера. Почти наверняка именно во время бесед с Эйнштейном Леметр впервые узнал о работах Фридмана. Несколько месяцев спустя, в 1928 году, на встрече Международного астрономического союза, де Ситтер тоже отмахнулся от малоизвестного бельгийского аббата[158].

Не огорчившись (или не слишком огорчившись), Леметр продолжил развивать свои идеи. Он не предпринимал титанических усилий по их продвижению, но 3 января 1929 года, пока Хаббл еще не опубликовал первые работы по красным смещениям и расстояниям, изложил на конференции в Брюсселе свое убеждение, что само пространство с течением времени расширяется и порождает красное смещение: это не доплеровский эффект, вызванный движением галактик сквозь космос. Как выразился ученый в работе 1927 года, красные смещения – это «космический эффект расширения вселенной».

Предав свои взгляды огласке и не получив признания, Леметр был по понятным причинам несколько разочарован, когда работы Хаббла и Хьюмасона всего несколько месяцев спустя были приняты научным сообществом и произвели фурор. Он написал Эддингтону, напомнив ему о своей статье 1927 года. Один из студентов Эддингтона Джордж Маквитти впоследствии вспоминал: «Я хорошо помню тот день, когда Эддингтон несколько смущенно показал мне письмо Леметра ‹…› Эддингтон признался, что, прочитав работу Леметра еще в 1927 году, совершенно забыл о ней и не вспоминал до того самого момента»{25}. Желая восстановить справедливость, 7 июня 1930 года Эддингтон опубликовал в журнал Nature письмо, в котором привлекал внимание общественности к работам Леметра, и организовал перевод на английский язык несколько пересмотренной версии работы 1927 года (теперь в ней упоминался Фридман, но, что интересно, отсутствовала оценка постоянной Хаббла) и ее публикацию в «Заметках Королевского астрономического общества» за 1931 год. Но еще до обнародования англоязычного варианта эта работа успела обрести популярность благодаря упоминаниям Эддингтона и де Ситтера, узнавшего о ней от Эддингтона. Именно тогда Леметр был признан крупнейшим ученым-космологом, и именно он смог вывести исследования на новый уровень, представив идею Большого взрыва.

Глава 7 75 Шумы в сердце Вселенной

В начале 1930-х годов после публикации работ Хаббла и Хьюмасона идея расширяющейся вселенной получила широкое признание (хоть и не у самого Хаббла, который предпочитал делать наблюдения и измерения, а не формулировать гипотезы). Даже Эйнштейн наконец смирился с очевидным и признал это публично в апреле 1931 года на научном собрании в Пасадене. Но из какого исходного состояния расширяется Вселенная? В 1927 году Леметр предположил, что наблюдаемое расширение началось из стационарного состояния, как у вселенной Эйнштейна, и что до такого расширения Вселенная колебалась на грани его начала неопределенный период времени (возможно, вечность). Это был один из наиболее мистических вариантов, допускаемых использованием космологической постоянной. Но ко времени одобрения со стороны Эйнштейна ученый уже работал над другой идеей.

В январе 1931 года Эддингтон выступил на собрании Британской математической ассоциации с лекцией, позже опубликованной в журнале Nature. В ней он представил расширяющуюся Вселенную в ретроспективе: галактики постепенно сближаются и в конце концов сливаются воедино. Мысль о том, что у Вселенной когда-то было начало, он назвал «совершенно невыносимой». Позже в том же году Леметр ответил ему в том же журнале статьей под броским названием «Начало мира с точки зрения квантовой теории», в которой писал, что начало Вселенной «настолько далеко от современного положения вещей в природе, что совсем не кажется невыносимым», и рассуждал, что «мы можем представить начало вселенной в форме уникального атома, из атомного веса которого происходит вся масса вселенной. Этот в высшей степени нестабильный атом разделился на все меньшие и меньшие атомы посредством некоторого вида сверхрадиоактивного процесса». Это была просто догадка, и Леметр говорит здесь, скорее, о первичном атомном ядре, а не о целом атоме. Но вся обозримая Вселенная могла бы расшириться из первичного объекта, при ядерной плотности имеющего диаметр всего в 30 раз превышающий диаметр Солнца и вмещающийся в орбиту Земли. «Естественно, – пишет Леметр, – не стоит придавать слишком много значения этому описанию первичного атома». Он признавал, что «по мере совершенствования наших познаний об атомном ядре его наверняка придется изменить». Главной идеей его работы было то, что Вселенная образовалась из сверхплотного состояния путем мощного воздействия – «фейерверка», как он сам его назвал.

Леметр развил свои идеи и ввел термин «космическое яйцо» для описания сверхплотного объекта, из которого возникла Вселенная в современном виде. В итоге появилась книга «Гипотеза первичного атома», опубликованная в 1946 году. Идеи Леметра сильно повлияли на работу Георгия Гамова и его коллектива над тем, что сейчас называется теорией Большого взрыва (см. Пролог). Однако и в 1930-х, и в 1940-х, и даже позже эта идея казалась чрезмерно сложной. Ее временные рамки были слишком короткими. Если использовать значение обнаруженной Леметром и Хабблом постоянной Хаббла, то время, прошедшее с прорыва космического яйца (или Большого взрыва), составит всего примерно миллиард лет – намного меньше, чем уточненный к тому времени возраст Солнца и звезд. Леметр предположил, что обойти эту проблему можно с помощью космологической постоянной. Согласно уравнениям, вселенная могла начать расширяться из сверхплотного состояния, потом замедлить скорость расширения почти до нуля и колебаться в этом состоянии сколь угодно долго до начала дальнейшего расширения[159]. Но даже в 1930-х это выглядело уже натянуто. Тем не менее интересно, что Леметр, для которого всегда была очень важна физическая значимость уравнений Эйнштейна, никогда не исключал из моделей лямбду и считал, что она представляет реально существующий физический компонент Вселенной – энергию вакуума. Однако идея расширения Вселенной в ее ныне общепринятой версии, с новой силой поднявшая вопрос о возрасте звезд, была сформулирована в 1932 году и оставалась незыблемой до конца XX века. Одним из ее авторов стал сам Эйнштейн, хотя изначально, втайне от коллег, он вынашивал более радикальную идею.

Пропавшая модель Эйнштейна

В 1931 году, вскоре после посещения Маунт-Вилсона и встречи с Хабблом, Эйнштейну пришла в голову идея стационарной вселенной, бесконечно старой и вечно расширяющейся, в которой непрерывно создается новая материя, или новые галактики, заполняющие зазоры между существующими по мере растягивания пространства. Он даже написал черновой вариант статьи на немецком языке под названием «О космологической проблеме», но затем решил, что в аргументацию вкралась ошибка, и отложил работу до лучших времен. Этот документ сохранился в архивах ученого и был обнаружен после его смерти, однако в течение долгих десятилетий считался наброском к другой публикации с тем же заголовком и не изучался или изучался без должного внимания. Лишь в 2013 году ее значимость осознали Кормак О’Раферти и Брендан Макканн из Уотерфордского технологического института, и в 2014 году она была переведена на английский и опубликована.

В начале 1931 года Эйнштейн уже понимал разумность идеи расширения Вселенной, но, не желая смириться с тем, что она изменяется со временем, продолжал искать способ примирить эти две концепции. Теория стационарной Вселенной кажется очень подходящей: наблюдаемый из любой галактики космос всегда выглядит приблизительно одинаково, даже несмотря на угасание одних галактик и появление других. Можно сравнить ее с древним лесом или джунглями: они существуют тысячи лет в, казалось бы, неизменном виде, но за это время выросли, засохли, рухнули и были замещены новыми множество поколений деревьев. Сама по себе идея достаточно очевидная, но Эйнштейн со своим характером желал облечь ее в математическую структуру общей теории относительности.

Он смог сделать это, манипулируя космологической постоянной, которая уже не нужна была ему для остановки расширения пространства. Или, выражаясь его собственными словами, «от этого решения [теперь] почти наверняка необходимо отказаться для теоретического понимания пространства в его истинном виде». Ошибаясь в написании фамилии Хаббла, как он это делал во всех своих работах того времени, он продолжает:

Чрезвычайно важные наблюдения Хаббела показали, что внегалактические туманности обладают двумя следующими качествами:

В рамках точности наблюдений они распределены в пространстве равномерно.

Они демонстрируют доплеровский эффект[160], пропорциональный расстоянию.

Эйнштейн предположил, что расширение вселенной стимулируется появлением новой материи, необходимой для поддержания общей плотности вселенной на постоянном уровне. Он пишет:

Представим себе физически ограниченный объем: частицы материи будут непрерывно покидать его. Чтобы сохранить постоянную плотность, внутри этого объема из пространства должны постоянно образовываться новые частицы материи.

Это удивительно похоже на идею «полей творения» (C-field), предложенную в конце 1940-х годов Фредом Хойлом, не имевшим ни малейшего представления о неопубликованной работе Эйнштейна. В отличие от Хойла, вместо того чтобы вводить отдельное поле, Эйнштейн описал процесс творения с помощью космологической постоянной. Однако в этот момент, как он вскоре понял, его аргументация развалилась. Подходящим решением уравнений с таким применением постоянной стало бы пустое пространство (с нулевой плотностью) и в силу этого невозможностью создания материи! Рукописные пометки автора доказывают, что он понял свою ошибку, но современные читатели остаются в недоумении, почему он не ввел отдельное поле творения, как Хойл. Вероятнее всего, это связано с убеждением Эйнштейна, что Вселенная должна быть простой (вспомним, что впоследствии он называл введение космологической постоянной своим величайшим промахом). Эта любовь к простоте вскоре проявилась еще в одной космологической модели, которую ученый разработал совместно с голландским астрономом Виллемом де Ситтером и опубликовал в 1932 году.

Чем проще, тем лучше

В том же 1932 году Джеймс Джинс[161], британский физик и знаменитый популяризатор научного знания, писал:

Снаружи кажется, что вся вселенная равномерно расширяется, подобно поверхности надуваемого воздушного шара, со скоростью, удваивающей ее размеры каждые 1400 млн лет ‹…› Если космология относительности Эйнштейна верна, у туманностей нет вариантов: свойства пространства, в котором они находятся, вынуждают их разлетаться.

Здесь подчеркнута разница между моделью Эйнштейна – де Ситтера и идеями каждого из них по отдельности до исследований Хаббла (и Леметра). Одной из ключевых особенностей модели, разработанной Эйнштейном и де Ситтером, стала ее согласованность с наблюдениями, а не с чистым интересом к математическому аспекту общей теории относительности, как это было в ранних работах Фридмана, де Ситтера или даже Эйнштейна. Совместная статья Эйнштейна и де Ситтера, написанная в январе и опубликованная в марте 1932 года, называлась «О соотношении расширения и средней плотности Вселенной». В ней всего две странички, и в некотором смысле в работе не говорится о космологических моделях ничего нового, не сказанного ранее Фридманом и Леметром. Поэтому иногда приходится слышать, будто она была опубликована и замечена лишь из-за громкого имени Эйнштейна. Однако это неверно. Важность статьи заключается в попытке описания реальной Вселенной, а не абстрактной математической модели. В ее названии упомянута Вселенная, а не вселенная. Это важнейший шаг вперед.

Эйнштейн и де Ситтер знали, что Вселенная расширяется – им даже была известна скорость этого процесса (постоянная Хаббла), хотя сегодня мы знаем, что она значительно преувеличена. Другой поддающейся наблюдению характеристикой Вселенной, как они понимали, была плотность, для оценки которой следовало подсчитать число галактик (и количество вещества во всех звездах в них) на единицу космического пространства. Этих двух чисел хватило бы для определения судьбы Вселенной: расширяется ли она достаточно быстро, чтобы преодолевать гравитационное сжатие и продолжать это расширение вечно (открытая Вселенная с отрицательной кривизной), или же ее плотность достаточно велика, чтобы вначале остановить расширение, а затем вынудить Вселенную сжаться обратно в сверхплотное состояние (закрытая Вселенная с положительной кривизной). Однако существует всего один особый случай – чуть ли не самое простое решение уравнений, – именно он привлек внимание Эйнштейна и де Ситтера.

Вселенная, находящаяся точно между состояниями открытой и закрытой (так называемая плоская вселенная), может быть достаточно просто описана математически с помощью уравнений общей теории относительности. Кроме того, в самом простом виде эта вселенная гомогенна (однородна) и изотропна (одинакова во всех направлениях). Как мы уже видели, Фридман первым открыл плоскую модель вселенной наряду с другими возможными математическими построениями. Но он не увязал ее с наблюдениями за реальной Вселенной. Не сделал этого и Леметр. Именно это выделяет работу Эйнштейна – де Ситтера 1932 года. Они указали, что если значение постоянной Хаббла известно, то можно рассчитать плотность плоской Вселенной и сравнить ее с реальными наблюдениями. Для постоянной Хаббла в 500 км в секунду на мегапарсек требуемая плотность равнялась бы 4 × 10−28 грамма материи на кубический сантиметр пространства. Поскольку современные оценки постоянной Хаббла по причинам, которые скоро станут очевидны, сегодня почти в десять раз меньше, чем думал сам Хаббл, современный вариант этих вычислений дает меньшую плотность – чуть больше 10−29 грамм на кубический сантиметр. Если бы вся эта материя имела форму атомов водорода и была распространена равномерно, она была бы аналогична одному атому на миллион кубических сантиметров космоса.

Стоит отметить, что эти рассуждения в свое время использовались как мощный аргумент в пользу стационарной Вселенной. Чтобы заполнить появляющиеся пустые пространства в расширяющейся вселенной, достаточно создавать по нескольку атомов водорода то тут, то там. Как повторял Фред Хойл, это в принципе не более сомнительно, чем мысль, что вся материя во Вселенной появилась одновременно при Большом взрыве. В наши дни Хойла порой представляют безумным ученым со странными идеями, но (как подтверждает и тот факт, что схожие концепции обдумывал и Эйнштейн) в его время (вплоть до открытия реликтового излучения) стационарная модель рассматривалась как полноправная альтернатива модели Большого взрыва.

В 1930-е годы было уже ясно, что даже во всех ярчайших звездах видимых галактик не хватит материи, чтобы утверждать, что Вселенная плоская. Но было также ясно, что объем материи ненамного меньше, чем требуется, конечно, с учетом разнообразия математических конструкций. Космологи не рассуждали терминами числа атомов водорода на миллион кубических сантиметров, они использовали так называемый параметр плотности, обычно обозначаемый греческой буквой «омега» (Ω), исходя из того, что в плоской вселенной Ω = 1. Если во Вселенной вдвое меньше материи, чем нужно для ее плоской модели, то Ω = 0,5; если там всего треть необходимого объема, то Ω = 0,3 и так далее. Количество видимой материи в нашей Вселенной дает приблизительно Ω = 0,1, то есть мы наблюдаем примерно в десять (или чуть более) раз меньше вещества, чем требовалось бы для того, чтобы считать нашу Вселенную плоской. Разница кажется значительной, но уравнения допускают любое значение Ω в моделях вселенных – например, она могла бы равняться одному миллиарду или одной миллиардной, триллиону триллионов или одной триллионной части одной триллионной части и так далее. Поэтому еще в начале 1930-х годов, когда космология впервые стала искать количественные выражения своих принципов, стало очевидно, что плотность реальной Вселенной подозрительно близка к значению, необходимому для ее плоского состояния{26}. Эйнштейн и де Ситтер сочли разумным предположить, что она и есть плоская, просто мы видим не все ее содержимое. Хотя оценки плотности Вселенной в 1932 году не вполне соответствовали этой модели, ученые писали:

Она, безусловно, имеет нужный порядок величины, и мы должны заключить, что в настоящее время можно представить факты, не оценивая кривизну трехмерного пространства. Эта кривизна, впрочем, в принципе определяема, и увеличение точности данных, извлекаемых из наблюдений, поможет нам в будущем уточнить порядок и определить значение.

Чтобы добиться значения Ω = 1, достаточно обнаружить необходимое количество невидимой материи (сейчас мы называем ее темной), дополняющей материю ярких звезд. Хотя в тот момент идея темной материи, обеспечивающей Вселенной плоскую модель, не была принята всерьез, существует и другой способ примирить наблюдения с концепцией плоской Вселенной – уточнить постоянную Хаббла в надежде, что тот ее переоценил. Если ее значение окажется достаточно малым, то Вселенная сможет быть признана плоской даже без сокращения ее плотности (это также повысит оценку времени, прошедшего с момента Большого взрыва, и, возможно, согласует между собой оценки возраста Вселенной и звезд). В итоге модель Эйнштейна – де Ситтера (плоская, гомогенная и изотропная) стала краеугольным камнем космологии (отчасти из-за ее максимальной простоты). Ее преподавали многим поколениям студентов (в том числе и мне), несмотря на неясность значения Ω и постоянной Хаббла[162]. В течение нескольких десятилетий усилия космологов ограничивались поисками постоянной Хаббла, поскольку более ничего предпринять было нельзя. Затем, как мы увидим, стало возможным оценить количество темной материи во Вселенной и точно выяснить значение Ω.

Сквозь Вселенную

Вдвое дальше

Космология Эйнштейна – де Ситтера привлекательна еще и потому, что предлагает простой способ рассчитать возраст Вселенной с опорой на постоянную Хаббла (Н). Если Вселенная расширяется с постоянной скоростью начиная со времени Большого взрыва, то ее возраст (время, прошедшее после взрыва) равен единице, деленной на Н: и километры, и мегапарсеки – единицы расстояния, и при делении мы получаем секунды, а из них годы. Получившийся «возраст» известен как время Хаббла. Но расширение Вселенной с момента Большого взрыва замедлилось, поэтому значение Н за это время уменьшилось. Постоянная Хаббла постоянна в том смысле, что она одна и та же для любой точки Вселенной в определенный момент (одну и ту же космическую эпоху), но не во времени вообще. Поэтому иногда астрономы называют ее не постоянной, а параметром Хаббла или говорят, что постоянная Хаббла есть значение параметра Хаббла для конкретной эпохи. Поскольку в прошлом Вселенная расширялась быстрее, то для достижения ею нынешнего состояния понадобился меньший период, чем время Хаббла. Но насколько он был меньше? Здесь нам как раз пригодится простота модели Эйнштейна – де Ситтера.

В космологической модели Эйнштейна – де Ситтера возраст Вселенной составляет всего две трети от времени Хаббла. Это дает нам период немногим более чем миллиард лет при значении Н в 500 км в секунду на Мпк, что находится в явном противоречии с уже известным в 1930-е годы возрастом Земли (и в несколько менее явном противоречии с возрастом звезд).

В большом значении постоянной есть и еще одна странность, помимо конфликта между предполагаемым возрастом Вселенной и возрастом звезд, но в 1930-е годы ее мало кто заметил. Значение постоянной Хаббла определялось путем точного измерения расстояний до галактик и сопоставления этих данных с их красным смещением. Получив значение этой постоянной, с ее помощью можно определять расстояния; именно поэтому Хаббл изначально и заинтересовался измерением красных смещений. Постоянную Хаббла можно использовать для оценки масштабов Вселенной. Чем меньше расстояния до других галактик, тем больше значение постоянной Хаббла, поскольку расширение пространства быстрее разнесло галактики на их нынешние расстояния. И наоборот, чем больше эта постоянная, тем меньше расстояния между галактиками. Измерения Хаббла, начавшиеся с цефеид и продолженные в других частях Вселенной, явно доказывают, что спиральные туманности – не звездные облака внутри Млечного Пути, а галактики вне его пределов. Согласно тем же измерениям, эти галактики все же расположены довольно близко к нам и друг к другу, что означает: если сопоставить их видимые размеры с расстоянием до них, то они должны быть значительно меньше Млечного Пути. Может быть, мы все-таки живем в самой большой Галактике во Вселенной?

Такое предположение в начале 1930-х годов не казалось совсем уж невероятным, но нашелся человек, подвергший его сомнению, – Артур Эддингтон. В своей книге «Расширяющаяся Вселенная», опубликованной в 1933 году и содержавшей чуть ли не первое популярное изложение новейших астрономических открытий, он поясняет:

Астрономия так часто преподносила нам урок смирения, что мы почти автоматически принимаем точку зрения, что наша собственная Галактика не представляется какой-то особенной, она не более важна в структуре природы, чем миллионы других островных галактик. Но астрономические наблюдения, кажется, это не подтверждают. Согласно последним измерениям, спиральные туманности, в целом похожие на нашу систему Млечного Пути, оказываются значительно меньше ее. Высказывается мнение, что если спиральные туманности – это острова, то наша Галактика – континент. Может быть, моя скромность чрезмерна, но я склонен не согласиться с предположением, что мы принадлежим к вселенской аристократии. Земля – средненькая планета: не гигант вроде Юпитера, но и не мелкая сошка наподобие астероида. Солнце тоже средняя звезда: не великан, как Капелла[163], но намного крупнее самых малых звезд. Кажется неверным думать, что мы случайно оказались принадлежащими к совершенно исключительной Галактике. Говоря откровенно, я не верю в это: слишком много совпадений. Я думаю, что отношение Млечного Пути к другим галактикам – вопрос, дополнительный свет на который прольют дальнейшие наблюдения, и что в итоге мы обнаружим множество галактик такого же размера, как наша, и даже крупнее.

Это пример того, что называется принципом заурядности Земли: он гласит, что в нашем положении во Вселенной нет ничего исключительного. Эддингтон значительно опередил свое время, и до конца 1930-х годов на его замечание не обращали особого внимания. Но если принять как данность, что Млечный Путь – средняя по размеру спиральная галактика, и скорректировать масштаб расстояний (изменив постоянную Хаббла), отодвинув другие спиральные галактики на достаточное расстояние, чтобы их средний размер был сопоставим с размером Млечного Пути, значение постоянной Хаббла придется сократить примерно в десять раз и таким образом увеличить расчетный возраст Вселенной с миллиарда с чем-то до десяти с чем-то миллиардов лет. Эддингтон, однако, остановился на пороге этого открытия[164]. В период, когда он писал книгу, другим способом доказать принцип заурядности мог бы стать поиск галактик размером с Млечный Путь, окруженных мелкими спиральными туманностями, за пределами досягаемости имевшихся тогда телескопов. Определить, какой ответ на вопрос о нашем месте во Вселенной верен, можно было лишь постфактум, изучив большое количество галактик. Оценка постоянной Хабблом и Леметром действительно оказалась завышенной. Первая и самая серьезная корректировка ее значения произошла в результате дальнейших наблюдений в 1940-х годах, примерно тогда, когда Георгий Гамов с энтузиазмом стал пропагандировать идею Большого взрыва.

Этим прорывом мы частично обязаны периоду Второй мировой войны и беспомощности немецкого астронома Вальтера Бааде во всем, что не касалось астрономии. Бааде родился в Шреттингхаузене в 1893 году, всего на четыре года позже Хаббла. Он получил докторскую степень в Геттингене в 1919 году и одиннадцать лет проработал в Бергедорфской обсерватории при Гамбургском университете, а затем переехал в США, поскольку наиболее сильные телескопы в те годы находились именно там. Он устроился наблюдателем в Маунт-Вилсон вскоре после того, как Хаббл и Хьюмасон опубликовали первые работы по взаимосвязи красного смещения и расстояний до туманностей. Совместно с Хабблом и другими исследователями Бааде изучал сверхновые и отдаленность других галактик и приобрел репутацию отличного наблюдателя. Его жизнь вне работы, однако, была гораздо менее успешной, и хотя ученый намеревался получить американское гражданство и в 1939 году даже начал оформлять документы, при переезде он потерял нужные бумаги и вынужден был начать все заново. Прежде чем он успел сделать это, в декабре 1941 года японцы атаковали Пёрл-Харбор и Германия, союзница Японии, объявила Соединенным Штатам войну. Таким образом, формально Бааде оказался подданным враждебного государства и поначалу подпал под действие особого комендантского часа, запрещавшего ему покидать жилище между 20:00 и 6:00. Таким образом, он потерял возможность наблюдать за звездами по ночам[165].

В течение нескольких последующих месяцев много исследователей (включая Хаббла) были призваны в армию или на работы для нужд фронта, и в итоге Бааде оказался самым старшим из оставшихся в Маунт-Вилсоне астрономов. К тому времени он был признан не несущим опасности для страны, но непригодным для участия в обороне, что позволило ему возобновить наблюдения с помощью 2,5-метрового телескопа. Как раз в это время появилась новая, более чувствительная фотопластинка, а в Лос-Анджелесе по ночам стали отключать электричество: в распоряжении Бааде был лучший в мире телескоп, передовые фототехнологии и максимально темное небо. Это лишь незначительно облегчило исследование тусклых звезд в галактиках за пределами Млечного Пути, но к 1943 году Бааде был уже наблюдателем высшего класса и смог сфотографировать намного менее яркие объекты, чем это удавалось Хабблу, и даже начать подробное исследование туманности Андромеды.

Вальтер сумел обнаружить отдельные звезды не только во внешнем слое этой галактики (где Хаббл отыскал цефеиды), но и в ее глубине, которая до этого на фотографиях отображалась как неясное пятно. Его первым крупным открытием стал факт, что туманность Андромеды состоит из звезд двух типов. Это могло означать, что все спиральные галактики, включая Млечный Путь, имеют аналогичную структуру. Один вид звезд (Бааде назвал его Населением I) расположен ближе к краю галактики – в диске и спиральных рукавах. Это горячие молодые звезды голубого или желтого цвета, несущие большие объемы тяжелых элементов. Звезды в центральной области галактики – утолщенном ядре – получили название Населения II: это более старые и холодные красные звезды с очень низкой металличностью. Аналогичный тип звезд присутствует в шаровых звездных скоплениях. Дальнейшие исследования показали, как уже говорилось в первой части книги, что звезды Населения II сформировались из первичного материала, входившего в состав предыдущих поколений звезд, что действительно все спиральные галактики устроены так же и что наше Солнце, относительно богатое тяжелыми элементами, относится, безусловно, к Населению I.

В 1944 году Бааде также обнаружил, что переменные цефеиды тоже делятся на два типа, связанных с Населениями. Цефеиды Населения I сегодня известны как классические, а Населения II – как тип W Девы (по характерному представителю). Каждый вид обладает особым соотношением периода и светимости, но в целом цефеиды типа W Девы более тусклые, чем классические. В 1944 году это открытие не изменило представления астрономов о космологической шкале расстояний, поскольку Хаббл изучал классические цефеиды, подобные находящимся в нашей части Млечного Пути, и это не вызвало противоречий в его работе. Но, как только появились более современные технологии, были сделаны открытия, изменившие астрономическую картину Вселенной.

На этот раз новой технологией стал еще более крупный и совершенный телескоп – пятиметровый рефлектор на горе Паломар[166], введенный в строй в 1948 году и на протяжении последующих сорока пяти лет остававшийся самым мощным прибором такого типа на Земле (он и сейчас работает и приносит большую пользу науке). Перенеся весь свой опыт на новую технику и применяя лучшие из доступных фототехнологий, Бааде с уверенностью взялся за исследование переменных типа RR Лиры в галактике Андромеды. Эти звезды менее яркие, чем цефеиды, но очень удобны для определения расстояний. Их часто можно найти в шаровых скоплениях, и Бааде был уверен, что обнаружит их и в туманности Андромеды. Но не обнаружил. Он смог вычленить в шаровых скоплениях самые яркие звезды, но тусклых переменных типа RR Лиры не увидел. Если допустить, что красные гиганты, наблюдаемые Бааде в шаровых скоплениях галактики Андромеды, обладают теми же характеристиками, что и находящиеся в шаровых скоплениях нашей Галактики, переменные типа RR Лиры действительно нельзя было бы обнаружить доступными астроному приборами из-за их тусклости. Но чтобы быть столь тусклыми, красные гиганты должны находиться на значительно большем расстоянии, чем то, которое Хаббл определил для туманности Андромеды. Причина ошибки вскоре стала ясна, и она отсылала ученых к изначальному процессу определения дистанций до цефеид, который придумал Шепли за тридцать лет до того.

В ходе поиска логики в расстояниях Шепли использовал данные для каждой цефеиды, которую смог найти. К сожалению, ему попадались цефеиды и из Населения I, и из Населения II – к концу 1940-х годов это стало понятно. Эти звезды Населения I ярче, и можно подумать, что это сделало бы ошибку Шепли очевидной. Но они находятся в диске Млечного Пути, где много пыли (больше, чем предполагалось во времена Шепли), что мешает их рассмотреть. Цефеиды Населения II располагаются выше и ниже галактического диска, пыли там меньше. Шепли просто не повезло: наблюдаемые им более яркие звезды оказались затемненными пылью почти точно до уровня светимости менее ярких. Выходит, что Хаббл рассматривал цефеиды Населения I (классические), применяя к ним принципы расчета расстояний, в действительности относящиеся к цефеидам Населения II (типа W Девы). Использованные в его вычислениях звезды были ярче, чем ему казалось. Чтобы выглядеть настолько тускло, они должны быть значительно дальше от нас. Выходило, что туманность Андромеды находится на примерно вдвое большем расстоянии от нас, чем предполагал Хаббл, и что точно такой же коррекции следует подвергнуть всю шкалу расстояний во Вселенной, сократив постоянную Хаббла примерно до 250 км в секунду на Мпк. Объявленный в 1952 году результат исследований Бааде произвел эффект разорвавшейся бомбы и попал на первые полосы газет: размеры Вселенной внезапно удвоились! Но, что даже еще более важно, удвоился ее возраст: он составил почти 4 млрд лет, что уже не так сильно отличалось от ранее рассчитанного возраста Земли. Даже в 1952 году еще не было точно известно, сколько лет звездам, и 5 млрд представлялись разумным предположением: оставшийся разрыв не вызывал особых сомнений. Но в течение 1950-х годов оценки возраста Вселенной продолжили расти, а для звезд они росли еще быстрее; при этом противостоящая теории Большого взрыва стационарная модель Вселенной не собиралась сдавать позиции.

Наследник Хаббла

Коррекции возраста Вселенной в большую сторону в 1950–1960-х годах основывались на уточнении постоянной Хаббла. Основной вклад в этот процесс внес еще один американец, Аллан Сэндидж[167], ставший научным наследником Хаббла и доведший использование пятиметрового телескопа до совершенства.

Сэндидж еще в юности знал, что Вселенная расширяется. Он родился в Айова-Сити в 1926 году, всего за год до появления работы Леметра о взаимосвязи красного смещения и расстояния и за три года до признания этой идеи законом Хаббла. Он открыл для себя астрономию в девять лет, когда посмотрел на ночное небо через телескоп школьного товарища. В старших классах Аллан прочел книгу Хаббла «Царство туманностей» и эддингтоновскую «Расширяющуюся Вселенную». В 1944 году он был призван на флот и вынужден прервать учебу, но после демобилизации в 1945-м пошел в Иллинойсский университет, окончил его в 1948 году и поступил в аспирантуру Калтеха. Интерес молодого ученого к космологии возник благодаря Фреду Хойлу, который во времена его студенчества читал в Калтехе курс как приглашенный лектор. Сэндидж защитил диссертацию под руководством Вальтера Бааде в 1953 году, как раз когда тот «удвоил размер Вселенной». К этому моменту он уже трудился в Маунт-Вилсоне и Паломаре над проектом Эдвина Хаббла, одного из героев своих школьных лет. Сэндидж проработал в этой обсерватории всю свою жизнь.

Проект, в котором был задействован Сэндидж, был попыткой измерить, насколько Вселенная плоская, то есть соответствует ли истинная Вселенная модели Эйнштейна – де Ситтера. По сути, это была трехмерная аналогия подсчета степени плоскости двухмерной поверхности, например листка бумаги. На плоской поверхности, как нас учат в школе, сумма углов треугольника равняется 180 градусам, и, если нам известны длины сторон треугольника, мы можем узнать его площадь. На поверхности замкнутой сферы сумма углов треугольника больше 180 градусов, а его площадь, соответственно, больше привычной. На незамкнутой поверхности, изогнутой наподобие седла или горного ущелья, сумма углов треугольника меньше 180 градусов, а площадь меньше привычной.

В трехмерной модели измеряются не площади, а объемы. Если пространство выпуклое или вогнутое, число галактик на различных расстояниях от нас будет отличаться от их количества в плоском пространстве. Сэндиджу был поручен подсчет галактик с помощью фотопластинок, отснятых широкоугольным телескопом под названием камера Шмидта[168]. Этот прибор мог снимать на одну пластинку большой участок неба, в то время как пятиметровый телескоп был способен видеть дальше, но лишь в одной точке. Пластинки Шмидта не содержали информации о красном смещении, но Хаббл полагал (и был прав), что в качестве первого приближения более тусклые галактики можно считать более удаленными. Подсчет и сортировка были как раз подходящим заданием для аспиранта: кропотливая, скрупулезная механическая работа, дающая шанс на упоминание в конце научного труда руководителя.

Сначала Сэндидж выполнял подсчеты, даже не посещая саму обсерваторию. Затем, летом 1949 года, Хаббл перенес инфаркт и врачи временно запретили ему подниматься в горы. Сэндидж и еще один аспирант Хэлтон Арп[169] были отправлены на обучение самостоятельным наблюдениям под руководством Вальтера Бааде, поскольку было очевидно: даже если Хаббл сможет вернуться к работе, ему потребуется помощь[170]. Они занялись проектом с применением фотографирования и анализа шаровых скоплений с помощью сначала полутораметрового телескопа, а затем, доказав свою состоятельность как наблюдатели, 2,5-метрового. Именно за это исследование Сэндидж получил докторскую степень, проявив себя первоклассным наблюдателем. В 1952 году он первым изучил технику на основе времени отхода от главной последовательности, которая, как показано в главе 4, стала ключом к измерению возраста шаровых скоплений.

К тому моменту, однако, Сэндидж уже работал ассистентом Хаббла. Последний собирался организовать массированную атаку на шкалу космических расстояний, опираясь на открытие Бааде и пытаясь дополнительно уточнить значение постоянной Хаббла, что помогло бы (хотя такой цели он себе и не ставил) определить возраст Вселенной. Сэндидж уже работал с пятиметровым телескопом, осуществляя наблюдения, которые Хаббл собирался провести сам, но уже не мог, хотя с октября 1950 года врачи и разрешили ему иногда подниматься в обсерваторию. В 1952 году Сэндиджа официально назначили на платную должность астронома-ассистента, но он уехал на год в Принстон, чтобы развить там свое открытие закономерностей отхода от главной последовательности. Он намеревался перейти от него к изучению звездной эволюции. Но вскоре после его возвращения в Калтех в сентябре 1953 года Хаббл умер от второго инфаркта, немного не дожив до своего шестидесятичетырехлетия. Хьюмасону и Бааде тоже было уже за шестьдесят, и пора было передавать бразды правления следующему поколению астрономов, наиболее перспективным из которых и был Сэндидж. Он принял руководство из чувства долга, без особого желания:

Я ощущал груз ответственности за продолжение работы по шкале расстояний. [Хаббл] начал ее, а я был наблюдателем и знал каждый шаг продуманного им процесса. Было ясно, что на прояснение открытия Вальтером Бааде ошибки шкалы расстояний надо было потратить 15–20 лет – я уже тогда знал, что это будет очень долгий процесс. И я сказал себе: «Я должен сделать это». Если бы я не взялся за тему, ничего вообще не было бы сделано. Другого телескопа не существовало, работать с нашим умели всего двенадцать человек, и никто из них не был вовлечен в этот проект. Так что мне пришлось заняться этой темой из чувства ответственности{27}.

В тот момент Сэндиджу было всего 27 лет.

Взятый астрономом на себя проект предполагал полный пересмотр шкалы космологических расстояний, определенной Хабблом. Для начала надо было подробнее изучить еще большее число цефеид. Как и в исходном проекте Хаббла с 2,5-метровым телескопом и в соответствии с его планом для пятиметрового, после определения расстояний до ближайших галактик с помощью техники цефеид Сэндидж смог идентифицировать самые яркие объекты в этих галактиках и откалибровать их яркость в сравнении с цефеидами, чтобы в дальнейшем использовать их как стандартные свечи – эталонные единицы силы света – для определения расстояний до более отдаленных галактик. На этом этапе исследования обнаружилось, что Хаббл допустил вполне объяснимую ошибку. Он использовал в качестве стандартных свечей те объекты других галактик, которые считал очень яркими звездами и которые при изучении через пятиметровый телескоп оказались светящимися облаками газа, известными как области HII. Такие места есть и в нашем Млечном Пути, что позволило калибровать их яркость. Оказалось, их максимальная яркость имеет пределы; таким образом, выявив наиболее яркие области HII в галактике и измерив их видимую яркость, можно получить достаточно точное представление о расстоянии. Однако области HII ярче звезд, с которыми их сравнивал Хаббл, что означает, что галактики дальше от нас, чем он предполагал. Как и в случае с коррекцией Вальтером Бааде шкалы расстояний, это подразумевало, что постоянную Хаббла надо сократить еще больше, чем предлагал Бааде.

Первое достижение Сэндиджа базировалось на данных о красном смещении и яркости, собранных по 850 галактикам за два предыдущих десятилетия при участии Милтона Хьюмасона и молодого коллеги Николаса Мейола[171]. В 1956 году вышла работа всех троих ученых, в которой показывалось, что закон Леметра – Хаббла (о пропорциональности красного смещения и расстояния) верен, насколько можно судить, для красных смещений, соответствующих скоростям до 100 тыс. км в секунду (треть скорости света). В целом, если учесть коррекцию Бааде и объединить измерения с данными об областях HII, само это открытие означает, что галактики втрое дальше от нас, чем полагал Хаббл, и что значение постоянной Хаббла не может превышать 180. Однако это был лишь первый шаг, который задал логику всех проектов Сэндиджа в 1950-х годах и позже: каждое следующее уточнение, сделанное с помощью пятиметрового телескопа, сокращало постоянную Хаббла. С годами она становилась все меньше и меньше.

Шаровые звездные скопления также оказалось возможным использовать в качестве стандартных свечей, поскольку после измерения расстояния до ближайших галактик стало ясно: у наиболее ярких шаровых скоплений примерно одинаковая яркость, в какой бы галактике они ни находились. Постепенно и очень медленно наращивая базу данных, Сэндидж понял, что для ориентиров расстояний можно использовать даже целые галактики, поскольку в рамках крупных кластеров обычно присутствует одна очень яркая галактика и ее истинная яркость примерно одинакова для всех таких кластеров.

Ключевым шагом во всех этих исследованиях стало измерение расстояний до большого скопления галактик, лежащего в направлении созвездия Девы (но намного дальше его), поэтому известного как скопление Девы. Наш Млечный Путь, его спутники Магеллановы облака и галактика Андромеды входят в небольшую группу галактик (Местную группу), объединенную гравитацией аналогично тому, как связаны ею звезды внутри Млечного Пути. Хотя измерение расстояний внутри Местной группы полезно, например, для калибровки яркости других объектов в сопоставлении с цефеидами, эти измерения ничего не говорят нам об отношении красного смещения и расстояний: галактика Андромеды движется в нашу сторону и ее свет демонстрирует не красное, а синее смещение. В этой ситуации сила тяготения преодолевает расширение пространства. Полностью эффект расширения пространства можно наблюдать только между галактическими кластерами (или между ними и нашей Местной группой), которые можно считать точками (или пробными частицами, говоря языком космологии) на поверхности воображаемого наполняющегося шара Джеймса Джинса, удаляющимися друг от друга все сильнее по мере растягивания материала шара. Скопление Девы включает более 2500 галактик и многочисленные шаровые скопления, на которые можно опираться при исчислении расстояний. После выяснения расстояния до скопления Сэндидж смог сделать следующий шаг в еще более отдаленный космос. С помощью пятиметрового телескопа и цефеид астроному удалось углубиться в пространство на 5 млн световых лет, области HII позволили ему заглянуть за десяток, а скопление Девы – добраться примерно до 65 млн световых лет. В итоге оценки расстояний Сэндиджа преодолели планку в 300 млн световых лет за счет использования галактик в роли стандартных свечей. При такой выборке можно было не сомневаться, что Вселенная изучена достаточно для уверенных выводов относительно истинного соотношения красных смещений и расстояний.

К 1958 году он смог прийти к заключению, что значение постоянной Хаббла составляет около 75 в обычных единицах, но, поскольку на всех этапах исследований были некоторые неопределенности, оно может оказаться и чуть меньше 50, и чуть больше 100. Однако до общепризнанности это значение прошло еще долгий путь.

Проблема заключалась в отсутствии согласия ученых относительно постоянной Хаббла. Другие астрономы применяли свои приемы и учитывали иные допуски для таких явлений, как межзвездное покраснение, соответственно, у них выходили иные величины, причем обычно намного превышавшие данные Сэндиджа: он единственный учитывал максимум корректирующих факторов. На начало 1960-х годов существовали как минимум три другие оценки значения постоянной от уважаемых исследователей. Одни считали, что оно находится в диапазоне от 143 до 227, другие – от 120 до 130, третьи – от 130 до 140. И даже абсолютный авторитет Сэндиджа в этой области и применение им самого передового пятиметрового телескопа не смогли преодолеть убеждение астрономического сообщества, что, поскольку большинство думает иначе, постоянная должна быть выше, чем он полагает. К тому времени, когда я сам начал всерьез изучать астрономию (середина 1960-х годов[172]), большинство космологов использовали значение в 100 км в секунду на Мпк: они признавали, что оно может оказаться завышенным, зато с таким круглым числом было очень удобно работать.

С этим значением, однако, были связаны две проблемы. Первую все знали, но игнорировали: Н = 100 давало возраст Вселенной менее 9 млрд лет, при этом возраст шаровых скоплений в то время определялся примерно в 15 млрд лет с некоторыми допусками, которые, впрочем, однозначно не разрешали опустить это число ниже 10 млрд. О другой проблеме никто, кажется, не знал или не задумывался. Будучи студентом, я прочел комментарии Эддингтона о заурядности размеров Млечного Пути и был впечатлен. Но если Н = 100, то Млечный Путь примерно вдвое больше других спиральных галактик. И вообще при любом значении больше 70 оказывается, что и Млечный Путь, и туманность Андромеды больше, чем любые галактики из скопления Девы. Сегодня это звучит уже не столь радикально, но в юности меня очень смущало. Однако я не чувствовал себя вправе спорить с преподавателями, которые, стоило мне заикнуться о проблеме, покровительственно советовали не трогать этот вопрос и оставить его более серьезным специалистам. Эта ситуация вскрывает очень серьезный момент: в начале 1960-х никто (кроме, может быть, Георгия Гамова и Жоржа Леметра, оба они были еще живы) в глубине души не верил, что Большой взрыв действительно был. Космология все еще оставалась некой научной игрой, которой развлекали себя избранные умы с помощью абстрактных уравнений. Соответствовали ли их результаты реальности, мало кого волновало.

Конечно, именно проблема возраста Вселенной поддерживала авторитет стационарной модели Вселенной на протяжении всех 50-х и даже отчасти 60-х годов XX века, пока Пензиас и Вильсон не вышли на сцену и не вытащили из цилиндра реликтовое излучение. Этот фокус моментально сделал космологию не просто игрой: Большой взрыв оказался самой вероятной моделью, а о возрасте Вселенной стали задумываться намного серьезнее. Но прежде чем перейти к современным оценкам постоянной Хаббла и истинному возрасту Вселенной, нужно прояснить, что именно подразумевалось под стационарной моделью Вселенной. Для этого давайте ненадолго вернемся в прошлое.

Еще один Большой спор

В 1947 году Королевское астрономическое общество попросило молодого австрийского исследователя Германа Бонди, работавшего тогда в Кембриджском университете, обобщить космологические знания того времени. В итоге появилась чрезвычайно важная статья, стимулировавшая развитие космологической мысли в Великобритании[173]. Бонди включил в нее все описанные здесь идеи (и не только), сделав акцент на огромном потенциале общей теории относительности в приложении к космологии. Он также указал на важнейший научный вопрос своего времени: «Некоторые модели вселенной предполагают ее рождение из катастрофы, в то время как другие теоретики более консервативны и не допускают концепции возникновения вселенной в результате взрыва». Обратите внимание, что в конце 1940-х годов консервативный взгляд заключался в том, что взрыва не было. При подготовке статьи Бонди обсудил ее содержание с Хойлом и американским астрономом и физиком австрийского происхождения Томми Голдом. Бонди и Хойла особенно волновал тот факт, что разработанные в 1920–1930-х годах математические решения уравнений Эйнштейна не содержали объяснений существования материи (кроме фейерверков Леметра, которые представлялись им неудовлетворительными с философской точки зрения). Но у Голда появилась отличная идея, которая навела их на разработку стационарной модели.

Как-то вечером все трое коллег отправились в кино на фильм ужасов «Глубокой ночью»[174], построенный на идее повторяющегося кошмара. У сюжета нет начала и конца: с какого бы места вы ни начали смотреть, в итоге этот эпизод повторится и впечатление от фильма не будет нарушено. Несколько дней спустя Голд предположил, что аналогично может быть устроена и Вселенная. Ее тоже можно «начать смотреть» с любого места, и она, вероятно, не имеет ни начала, ни конца. Так появилась альтернатива леметровским фейерверкам: расширяющаяся вселенная, которая в целом постоянно выглядит одинаково, где в промежутках между разбегающимися галактиками возникает новая материя – постепенно, а не вся сразу[175]. Поначалу идея непрерывного творения внушила им отвращение[176], но затем они убедили себя, что их вариант ничем не хуже: в конце концов, должна же была материя откуда-то взяться.

Сначала ученые хотели опубликовать единую работу под всеми тремя именами. Но быстро выяснилось, что их позиции разнятся: Бонди и Голд больше интересовались некими философскими аспектами модели, в то время как Хойл пытался увязать ее с общей теорией относительности. Чтобы добиться этого, он ввел уже упоминавшееся в начале этой главы понятие поля творения (C-field) в контексте расширения вселенной. В книге воспоминаний «Дом там, где дует ветер» Хойл находит изящное объяснение: чтобы компенсировать положительную энергию вновь созданных частиц, поле творения привносит во Вселенную отрицательный заряд, и это вызывает расширение пространства. Хойл утверждал, что этот вывод сам собой родился из уравнений и «очень удивил» его. Стационарная вселенная расширяется именно потому, что творение непрерывно и в общем и целом ее энергетический заряд сбалансирован: он не становится ни меньше, ни больше. В 1948 году ученый заявил, что новые частицы, вероятнее всего, представляют собой нейтроны (поскольку нейтроны спонтанно распадаются на протоны и электроны – составные части атомов водорода) и создаются в расширяющемся пустом пространстве со скоростью, равной одному атому водорода на кубический метр за 10 млрд лет. Этот тезис, в свою очередь, заставил его исследовать синтез других элементов внутри звезд… Итак, в 1948 году в свет вышли две отдельные работы: одна Бонди и Голда, другая Хойла.

Суть подхода Бонди и Голда хорошо отражена в предложенном ими понятии «совершенного» космологического принципа. Обычный космологический принцип гласит, что Вселенная выглядит отовсюду практически одинаково и к ней везде применимы единые законы физики. «Совершенный» космологический принцип добавляет, что Вселенная выглядит практически одинаково еще и в любой момент времени. Хойл ненавидел это название и в своих отзывах о работе Бонди и Голда предпочитал называть их версию космологического принципа расширенной. Историк Саймон Миттон суммировал различие подходов ученых следующим образом: Бонди и Голд шли от философии и пытались подобрать к ней модель, а Хойл шел от уравнений и пытался уже на них основать философию.

Итогом стала развернувшаяся в 1950-е годы дискуссия между теориями Большого взрыва и стационарной, или стабильной, Вселенной, которые сначала считались практически равнозначными (правда, в стационарную модель верило больше ученых). К счастью, существовал способ проверить, какая из этих моделей лучше описывает реальную Вселенную. Если справедлива стационарная версия, число галактик в заданном объеме пространства (численная плотность) должно быть стабильным во все времена. Если же верна теория Большого взрыва, то раньше эта плотность была больше. Вопрос в том, можно ли утверждать, что плотность галактик увеличивается с ростом их удаленности от нас, ведь удаленные галактики мы видим такими, какими они были много миллионов лет назад.

Как раз в это время, после изобретения радара во время Второй мировой войны, появилась радиоастрономия и было обнаружено, что некоторые галактики излучают значительно больше энергии на длинах радиоволн, чем в форме видимого света. Это означало, что их можно «увидеть» на значительно большем расстоянии, чем обеспечивает телескоп. Тогда не существовало способов измерения расстояний до этих «незримых» галактик, но в принципе представлялось разумным, что чем сильнее сигнал, тем ближе такая радиогалактика к нам; аналогичный принцип исповедовал Хаббл в отношении видимых галактик.

Подсчет тусклых радиогалактик был начат группой кембриджских радиоастрономов под руководством Мартина Райла[177]. Хойл и Райл находились в отношениях, далеких от дружеских, и Райл постарался сделать так, чтобы теоретики ничего не знали о его исследованиях до момента обнародования результатов. В 1955 году он выступил в Оксфордском университете с лекцией, на которой заявил: «Представляется, что наблюдения никак не могут быть объяснены в рамках стационарной теории». Впрочем, это заключение было преждевременным. В том же году австралийские радиоастрономы сообщили, что их подсчеты галактик соответствуют предсказаниям стабильной модели. Оказалось, что в кембриджские расчеты вкралась ошибка[178] – стремление Райла посрамить Хойла сделало его слишком самоуверенным. Чтобы решить наконец проблему, необходимо было провести намного более масштабное исследование с использованием самых передовых телескопов с максимальным разрешением, позволяющих заглянуть насколько возможно далеко в глубь Вселенной и веков. В начале 1960-х годов дискуссия начала подкрепляться результатами подобных исследований: они медленно (и не совсем верно) стали сдвигать баланс мнений в сторону стационарной модели. Но все эти исследования померкли (по крайней мере, в контексте происхождения Вселенной) перед открытием космического микроволнового фонового излучения. Примерно на этом месте мы начали повествование в нулевой части книги, пришла пора пойти дальше.

Глава 8 13,8 Исследования и спутники

Хотя открытие и исследование реликтового излучения склонило множество ученых к модели Большого взрыва, в середине 1960-х годов все еще велись споры относительно значения постоянной Хаббла и явного противоречия между предполагаемым возрастом Вселенной и расчетным возрастом самых старых звезд. В течение последующих лет наблюдения постепенно уточнялись, внося некоторую ясность, однако должно было пройти еще три десятилетия, прежде чем новейшая технология привела к столь же важному прорыву, каким было открытие Хаббла и Хьюмасона. Этой новой технологией стал космический телескоп «Хаббл» (Hubble Space Telescope, HST), позволяющий ученым увидеть Вселенную в недостижимых ранее подробностях и завершить калибровку шкалы расстояний на основе цефеид, начатую самим Хабблом. Важность этого аспекта миссии телескопа подчеркнута коллективом работающих с ним исследователей: они назвали своим ключевым проектом определение значения переменной Хаббла с точностью до 10 % или менее с использованием в целом тех же основных приемов, которые применял Хаббл. Все остальное в работе HST, включая прославившие его великолепные фотографии космических объектов, не столь важно.

Долгий триумфальный путь

Заявленной целью Ключевого проекта было использование измерений расстояний по цефеидам до двух десятков галактик (в каждой из них было изучено множество звезд) для калибровки шкалы расстояний и выяснения значения Н. Это был небыстрый процесс. Каждую цефеиду приходилось изучать сразу на двух длинах волн, чтобы нивелировать затемняющий эффект космической пыли, и каждое из таких наблюдений занимало два оборота вокруг Земли (более трех часов). Затем наблюдения приходилось повторять через несколько недель или месяцев, чтобы выяснить период конкретной цефеиды. Уже после запуска HST в апреле 1990 года в оптике телескопа обнаружился дефект. Его удалось устранить лишь в декабре 1993 года, направив к спутнику миссию с людьми на борту, таким образом, Ключевой проект, по сути, начался лишь в 1994 году. Когда телескоп начал передавать первые результаты и они были донесены до научного сообщества (хотя на их основе еще нельзя было сделать вывод о значении постоянной Хаббла), дискуссии о шкале расстояний во Вселенной вновь оживились. На этом этапе свой скромный вклад в эту историю удалось сделать и вашему покорному слуге.

Первые результаты Ключевого проекта позволяли оценить значение постоянной Хаббла примерно в 80 обычных единиц, но с погрешностью примерно в 20 %, то есть истинное значение могло составлять и 64, и 96. Вспомнив замечание Эддингтона о заурядности Млечного Пути, я с уверенностью заявил коллегам по Сассекскому университету, что если Млечный Путь – лишь обычная спиральная галактика, то наиболее вероятное значение лежит ближе к нижней границе этого диапазона (мое замечание было сделано после семинара по этой теме, ведущий которого настаивал на более высоком значении). Чем больше величина Н, тем ближе должны находиться окружающие галактики и тем мельче оказывается их истинный размер, делая нашу Галактику континентом среди островков.

К моему удивлению, двое коллег, Саймон Гудвин и Мартин Хендри, взялись проверить мою случайную ремарку. Они предложили использовать данные «Хаббла» и другие наблюдения, чтобы узнать, действительно ли Млечный Путь – средняя по размеру спиральная галактика, и если так и окажется, то использовать этот факт для выяснения значения Н. Подробнее об этом проекте я рассказывал в книге The Birth of Time («Рождение времени»), но даже краткое описание будет несложно понять. Сначала, изучив семнадцать ближайших к нам спиральных галактик, расстояния до которых определены достаточно точно (до некоторых по наблюдениям с Земли, до других – с HST), и выяснив их реальные размеры на основе видимых, мы обнаружили, что наша Галактика чуть меньше средней (диаметр Млечного Пути составляет 26,8 килопарсек при среднем показателе 28,3). Надеемся, Эддингтон одобрил бы наши усилия. Затем мы воспользовались данными из каталога RC3 (сокращение от английского названия третьего издания Реферативного каталога ярких галактик), где указаны красные смещения для 3827 спиральных галактик. Используя компьютерное моделирование, мы меняли значение Н и положение галактик относительно Млечного Пути, пока не нашли значение, при котором средний размер тысяч этих галактик не стал равным среднему размеру галактик из нашей местной выборки (17 штук плюс сам Млечный Путь). Значение постоянной Хаббла, к которому мы пришли и которое опубликовали в 1997 году, получилось примерно равным 60. На самом деле наши подсчеты были достаточно грубыми, но самым значимым выводом проекта стало то, что, говоря статистически, шанс, что Н больше 75, равен всего одному к двадцати. Мы точно выяснили, что истинное значение Н лежит ближе к нижней границе диапазона, найденного сотрудниками HST.

Чем больше данных наблюдений за галактиками отправлял на Землю «Хаббл», тем яснее становилось, что по мере уточнения расчетов Ключевой проект приведет к аналогичным выводам. Окончательные его результаты были обнародованы в 2001 году и основывались на данных цефеид и других объектов, откалиброванных с помощью расстояний до этих звезд на дальность до 400 млн парсек (Мпк). Были и другие индикаторы расстояний, откалиброванные по цефеидам, например сверхновые звезды. В итоге удалось прийти к заключению, что метод цефеид, взятый отдельно, дает значение Н = 71 ± 8, а с учетом других измерений, включая данные по сверхновым, выходит 72 ± 8. Так был завершен проект, начатый Эдвином Хабблом более чем за 70 лет до этого. Путь традиционных способов определения Н (и, соответственно, возраста Вселенной) через измерение расстояний до галактик с учетом красных смещений был пройден до конца. В начале XXI века были внесены небольшие уточнения, но они не изменили общей картины[179].

Впрочем, вы могли заметить, что в полученном значении кроется проблема. Во вселенной Эйнштейна – де Ситтера значение Н = 72 предполагает, что возраст Вселенной составляет около 9 млрд лет – намного меньше, чем у самых старых звезд, как его понимали в то время. К 2001 году стало очевидно, что наша Вселенная просто не соответствует этой модели. Доказательства были получены из различных источников, не в последнюю очередь из спутниковых наблюдений за реликтовым излучением.

Не слишком ли идеально?

Первым спутником Земли, запущенным специально для изучения реликтового излучения еще в 1983 году, стал советский «РЕЛИКТ-1». Он доказал осуществимость подобных миссий, но был недостаточно чувствительным, чтобы подтвердить неоднородность излучения в разных точках неба. А сделать это было необходимо, ведь если излучение действительно было отзвуком Большого взрыва, оно должно хранить следы колебаний ранних дней Вселенной, которая развивалась, порождая галактики, которые мы видим сегодня. К началу 1980-х годов космологов уже тревожила кажущаяся излишняя равномерность реликтового излучения: вытекавшая из нее плоскостность Вселенной – баланс между расширением и сжатием – казалась слишком идеальной моделью. Критическая плотность, необходимая для плоскостности Вселенной, должна меняться со временем (она неодинакова для разных космических эпох). Уравнения Эйнштейна говорят нам, что если вселенная рождена из Большого взрыва и ее плотность чуть-чуть больше необходимой для плоской модели, то это отклонение со временем будет возрастать, поскольку наличие излишней материи станет замедлять расширение и поддерживать высокую плотность пространства. И наоборот, если изначально плотность вселенной чуть меньше критической, эта разница начнет увеличиваться в другую сторону, заставляя материю распределяться все менее и менее плотно. Абсолютная плоскостность – наименее вероятная модель из всех возможных[180].

Хотя все и раньше знали об этой проблеме, никто не придавал ей большого значения до тех пор, пока Роберт Дикке и Джим Пиблс, два принстонских исследователя, занимавшихся обнаружением реликтового излучения в середине 1960-х годов, в конце 1970-х не привлекли к ней внимание ученых. В попытках объяснить плоскостность современной Вселенной, ранее исследователи пришли к выводу, что плотность во время Большого взрыва должна была составлять не более одной квадриллионной (1/1015) от критической плотности для того времени. Было очевидно, что этот показатель может сообщить нам нечто важное о рождении Вселенной, но никто не знал, что именно, – вплоть до 6 декабря 1979 года. Алан Гут[181], молодой исследователь из Корнелльского университета, весной того же года присутствовал на лекции Дикке о проблеме плоской Вселенной. Заинтригованный этой загадкой мироздания, он все время держал ее в голове и старался читать о космологии как можно больше. В октябре он на год переехал в Стэнфорд для работы в Центре линейных ускорителей. Знания о физике частиц стали увязываться в его голове с космологическими данными, и 6 декабря после обсуждения любимой темы с приехавшим из Гарварда Сидни Коулманом[182] его осенило. Он просидел за рабочим столом до утра и в пятницу, 7 декабря 1979 года, внес в записную книжку под громким заголовком «ПОТРЯСАЮЩЕЕ ПРОЗРЕНИЕ» свое действительно важное открытие. Он понимал, что натолкнулся на нечто очень важное.

Гут понял, что при создании Вселенной в первую долю секунды произошел процесс, называемый нарушением симметрии, и в его рамках – фазовый переход, подобный тому, как пар конденсируется в воду и выделяет энергию. Именно мощное выделение энергии запустило процесс стремительного расширения – Гут назвал его инфляцией, буквально «раздуванием», – закончившийся Большим взрывом. (Инфляцию часто включают в понятие Большого взрыва, но важно понимать, что она предшествовала ему.) В процессе этого раздувания размер Вселенной увеличивался по экспоненте, удваиваясь каждую 10−38 долю секунды, то есть все в наблюдаемой нами Вселенной «надулось» из некоего первичного состояния в миллиард раз меньше протона до размера баскетбольного мяча примерно за 10−30 секунды (при этой скорости за примерно такой же срок теннисный мячик мог бы увеличиться до размеров видимого космоса). И только тогда произошел Большой взрыв[183]. Видимая нами Вселенная столь однородна потому, что она образовалась из столь крохотного состояния, в котором не было условий для разницы плотностей. Эта модель также решает и проблему плоскостности: инфляция уплощает Вселенную таким же образом, как становится плоской поверхность надуваемого шарика или любой другой растущей сферы. Поверхность теннисного мячика, представляющая собой двухмерный объект, обернутый вокруг третьего измерения, явно имеет круглую форму, но если мы надуем его до размеров видимой Вселенной и попытаемся исследовать его поверхность, то никакие измерения не смогут заметить ее отклонение от плоскостности. То же происходит и с реальной Вселенной (только в трех, а не в двух измерениях[184]). Само же первичное состояние в рамках этой модели может объясняться так называемой квантовой флуктуацией – небольшим искажением ткани пространственно-временного континуума, которое не успело исчезнуть и подверглось инфляции.

В довершение всего во время инфляции в зарождающейся Вселенной возникают новые квантовые флуктуации, которые тоже подвергаются инфляции, оставляя рябь на структуре материи, с которой затем происходит Большой взрыв. Эта рябь, часто именуемая анизотропией, становится зачатком таких структур, как галактики (точнее, скопления и сверхскопления галактик), и она должна была оставить свой след в реликтовом излучении. Если попытаться отследить историю Вселенной, основываясь на флуктуациях наблюдаемого сегодня излучения, надо ориентироваться на разницу в температуре этого излучения в разных частях неба. Она составляет примерно одну стотысячную часть, то есть для температуры около 2,7 К колебания составят ±0,00003 К. Если же идти от теории инфляции, можно предсказать, где именно на небе будут видны следы этих «раздутых» квантовых флуктуаций. Инфляция должна была оставить на небосклоне явный отпечаток, если только у нас есть достаточно точные датчики, чтобы уловить его. Неудивительно, что «РЕЛИКТ-1» (кстати, «РЕЛИКТ-2» так и не был запущен) не сумел зафиксировать эти тончайшие отклонения. Но уже у следующего спутника, запущенного для изучения реликтового излучения, были более чувствительные датчики.

Спутник COBE (COsmic Background Explorer – исследователь космического фона) был запущен НАСА в ноябре 1989 года. Даже небольшие по масштабу радиочастотные датчики удобнее размещать на орбите, а не вести наблюдения с Земли: так проще устранить помехи от газа и пыли Млечного Пути. На коротких длинах волн (вплоть до инфракрасных) эти помехи слабее, но там вступают в игру водяные испарения, наполняющие нашу атмосферу. Они мешают излучению достичь поверхности Земли. Поэтому спутники наблюдения приобретают в чувствительности намного больше того, что теряют, уменьшившись в размерах относительно земных телескопов. (Кстати, по той же причине обсерватории располагают на вершинах гор, либо в холодном сухом воздухе Антарктики, либо поднимают аппаратуру на воздушных шарах.)

Первые наблюдения COBE показали, что спектр реликтового излучения представляет собой кривую излучения идеального черного тела, соответствующего температуре в 2,725 К. Результаты были представлены на встрече Американского астрономического общества 13 января 1990 года. Когда Джон Матер[185], основатель проекта СОВЕ, открыл слайд, демонстрирующий впечатляющую согласованность теории и наблюдений, аудитория разразилась овацией. Но это было лишь начало[186]. Предстояло проделать большую, трудоемкую работу.

На сканирование всего неба у датчиков на спутнике ушло больше года: каждый из трех приборов произвел 70 миллионов измерений. На анализ полученных данных и объединение измерений в единую карту неба, отображающую колебания температуры реликтового излучения, коллективу проекта понадобилось несколько месяцев. Наконец в 1992 году они объявили, что такие колебания действительно существуют: самые «горячие» точки неба на три стотысячных градуса теплее, а «холодные» холоднее среднего. Эти колебания однородны: например, нельзя сказать, что крупные горячие точки теплее малых, и так далее. Наблюдения в точности соответствовали предсказаниям о виде и размере тех флуктуаций, которые должны были отпечататься на Вселенной в момент инфляции, доказывая присутствие в первый период существования Вселенной небольших неоднородностей в плотности материи (из которых затем образовались скопления галактик). Вселенная оказалась не такой уж и идеальной. Что же еще могли обнаружить исследования реликтового излучения? Успех миссии СОВЕ спровоцировал ряд нацеленных на более подробное изучение экспериментов на земле, в стратосфере и космосе. Но подобные проекты всегда занимают много времени: так, Матер задумал СОВЕ еще в 1974 году, всего через десять лет после открытия реликтового излучения и за пятнадцать лет до реального запуска спутника. Поэтому за время планирования проектов наши представления о Вселенной порой успевали измениться.

Темная сторона

Астрономы (по крайней мере, некоторые из них) еще с 1930-х годов знали, что далеко не все во Вселенной подвластно нашему зрению. Но лишь в конце XX века они поняли, что на самом деле то, что мы можем увидеть и из чего состоим мы сами, так называемая барионная материя[187], составляет лишь незначительную часть Вселенной.

В 1930-х голландский астроном Ян Оорт[188] изучал движение звезд в пределах Млечного Пути и нашел свидетельства того, что материя в нем далеко не ограничивается той видимой, из которой состоят звезды. Светила, подобные Солнцу, движутся по приближенным к окружности орбитам вокруг центра Галактики, внутри диска Млечного Пути, сдвигаясь в рамках этих орбит то кверху, то книзу, иногда выходя из основной массы галактики и возвращаясь в нее. Движение отдельных звезд нельзя изучать на протяжении тысяч лет, но, как обычно, можно попытаться сделать это с помощью статистики распределения звезд и их скоростей. А эта статистика говорит о том, что движение ярких звезд определяется не только притяжением других светил, но и некой невидимой, темной материи. В 1930-е годы никто не придал этому большого значения, поскольку предполагалось, что между звездами много газа и пыли. Но сейчас мы знаем, что этот тип темной материи, по сути близкий к тому, из чего состоим мы (барионная материя – то же, что атомная, то есть включающая протоны, нейтроны и электроны), имеет примерно ту же массу, что и все яркие звезды в Галактике. Но даже эта масса недостаточна для объяснения движения звезд Млечного Пути.

Проводя исследования в намного более крупном масштабе, швейцарский астроном Фриц Цвикки[189], работавший в те же годы в Калтехе, получил доказательства существования темной материи путем изучения скоплений галактик. Массу можно предсказать по яркости галактики, а та зависит от числа входящих в нее звезд. Сложив массы галактик, получаем массу всего скопления. Скорости взаимного движения отдельных галактик в скоплении определяются по доплеровскому эффекту (за вычетом космологического красного смещения для всего скопления). Цвикки указал, что во многих скоплениях галактики движутся быстрее, чем допустимо для поддержания единства скопления с помощью гравитации. Такие скопления давно, еще в начале существования Вселенной, должны были разлететься на отдельные галактики; видимо, их держит вместе большое количество также невидимой темной материи, содержащейся в скоплении. И вновь никто (кроме самого Цвикки) не задумывался над этим открытием до самых 1960-х годов. Даже в то время, когда я был студентом, ученого все еще считали несколько одержимым темной материей, хотя его работы по другим темам были весьма авторитетны. Это объясняется тем, что вплоть до 1960-х годов модель Большого взрыва не была общепризнанной. Кроме того, считалось, что причиной обнаруженных Цвикки явлений могут оказаться невидимые, но привычные объекты, например тусклые звезды – коричневые карлики, облака газа или многочисленные планеты типа Юпитера. Однако по мере признания теории Большого взрыва и особенно после выяснения Хойлом и коллегами деталей ядерного синтеза в его рамках во второй половине 1960-х ситуация начала меняться.

Количество образованных во время Большого взрыва гелия и дейтерия связано с его температурой (она определена по особенностям реликтового излучения), плотностью барионов в тот момент и скоростью расширения и остывания Вселенной в процессе ядерного синтеза. И наоборот, измерив пропорции этих элементов в звездах в наши дни (что очень непросто!), можно выяснить плотность барионов в Большом взрыве. Эти вычисления были проведены, и ученые обнаружили, что плотность барионной материи намного ниже, чем критическая плотность, необходимая для поддержания плоскостности Вселенной. В тот момент эти данные сочли свидетельством того, что Вселенная открыта и будет расширяться вечно. Многие космологи не были готовы признать, что может существовать другой, небарионный, вид материи и что, возможно, именно он определяет поведение Вселенной. Но уже начиная с 1970-х годов стали появляться доказательства того, что все обстоит именно так. Исследования вращения других спиральных галактик показали, что все они удерживаются темной материей. Компьютерные симуляции формирования галактик в расширяющейся Вселенной демонстрируют, что для создания гравитационных «долин», в которые, подобно горным потокам, могли устремиться барионы, образуя звезды и галактики, необходимо огромное количество темной материи. Без такого вещества, получившего название холодной темной материи[190], барионы оказались бы разбросаны по расширяющейся Вселенной, и никогда не соединились бы, и не могли бы образовать ни звезды, ни нас самих. Появлялось все больше данных (не считая теории инфляции), что Вселенная все-таки плоская. К середине 1980-х стало ясно, что темная материя определяет ее поведение и что мы никогда не видели по меньшей мере 90 % всего, что нас окружает, и минимум 90 % всего мироздания состоит вовсе не из того, из чего мы сами.

Оказалось, что даже холодной темной материи (ХТМ) недостаточно, чтобы объяснить внешний вид Вселенной. Я не стану вдаваться в подробности: достаточно будет одной детали, чтобы понять причины открытия, привлекшей внимание к проблеме не только космологов, но и самой широкой аудитории. Эта деталь – барионная катастрофа[191].

Барионной катастрофой называется одна из загадок физики. Исследования горячего газа в скоплениях галактик показывают, что отношение барионной к темной материи во Вселенной слишком велико, чтобы допустить существование точно такого количества всех видов материи, которое в своей совокупности соответствует модели простейших версий инфляции и плоской модели пространственно-временного континуума.

Точно установлено, что большая часть материи во Вселенной находится в некой невидимой для нас форме. Теоретики с радостью углубились в сложные математические модели и сыплют названиями вроде холодной, горячей, смешанной темной материи, а также слабовзаимодействующих массивных частиц, однако практические наблюдения постепенно обнаруживают весьма неудобную правду. Во Вселенной, безусловно, присутствует темная материя, но, возможно, ее меньше, чем предполагают некоторые популярные модели. Не исключено, что Вселенная состоит не только из материи, как бы необычно это ни выглядело.

Классическая модель Большого взрыва (включая идею инфляции, предполагающую фазу стремительного расширения за первую долю секунды существования Вселенной) предполагает, что Вселенная содержит количество материи, близкое к критическому, необходимому для плоскостности пространственно-временного континуума и предотвращения ее вечного расширения. Однако теория образования легких элементов в начале существования Вселенной (первичного ядерного синтеза) ограничивает плотность обычных барионных частиц (протонов, нейтронов и других) до примерно одной двадцатой этой критической массы. Остальное – подавляющее большинство массы Вселенной – состоит (в классической модели) из какого-то вида небарионного вещества – экзотических частиц с названиями вроде аксионов. Эти частицы никогда не фиксировались непосредственно, хотя их существование предсказывается классическими теориями физики частиц. В наиболее вероятной модели Вселенной с ХТМ гравитационное влияние темных частиц на барионные формирует космические структуры по мере развития Вселенной.

Доказательства существования темной материи находятся в наблюдениях разного масштаба. В нашей Галактике Млечный Путь невидимой материи как минимум столько же, сколько содержится в видимых звездах. Наблюдения за гравитационным искривлением лучей звезд в Магеллановых облаках заставляют предположить, что этот конкретный компонент темной материи может оказаться барионным: либо крупные планеты, либо тусклые звезды с низкой массой (коричневые карлики). Есть также доказательства наличия вокруг галактик обширных гало из темной материи, основанных на скорости, с которой звезды и газовые облака облетают внешние части их дисков, но и здесь это может доказать барионное вещество. В каждом конкретном случае предполагать наличие ХТМ нет необходимости.

Тем не менее нет и оснований считать, что содержимое галактик аналогично содержимому всей Вселенной. При первом коллапсе протогалактики она должна была содержать универсальное сочетание барионной (в виде горячего ионизированного газа) и темной материи. Эта материя холодна в том смысле, что отдельные ее частицы движутся медленно по сравнению со скоростью света, однако, как и барионное вещество, они обладают достаточной энергией, чтобы создать давление, заставляющее их распределяться по значительному пространству космоса. Барионы теряют энергию из-за электромагнитного излучения и очень быстро остывают; теряя термальную поддержку, барионный компонент облака попадает в центр протогалактического гало и формирует современную галактику. Это заставляет неспособную остыть (не испускающую электромагнитные лучи) темную материю распространяться на значительно большее пространство.

Таким образом, чтобы найти наиболее типичную смесь материи, нам нужно обратить внимание на крупные и не так давно сформировавшиеся структуры, в которых еще не произошло значительное остывание. Это скопления галактик. Классическое крупное скопление может содержать около тысячи галактик. Они компенсируют силу притяжения скоростью движения, которая может достигать более чем тысячи километров в секунду и измеряется с помощью доплеровского эффекта, образуемого движением и смещающим характеристики спектра к красному или синему краю. (Оно не зависит от красного смещения, вызванного расширением Вселенной, которое при расчетах следует вычитать.) Сбалансировав кинетическую энергию галактики и потенциальную энергию ее гравитации, можно вычислить ее общую массу. Фриц Цвикки, впервые сделавший это в 1930-х годах, пришел к удивительному для тех лет выводу, что галактики составляют лишь небольшую часть общей массы Вселенной. Это было столь необъяснимо, что на протяжении ряда десятилетий астрономы просто игнорировали открытие Цвикки.

Не располагая экспериментальным опытом в физике частиц или доступными сегодня космологическими моделями, не принявшие всерьез наблюдения Цвикки астрономы могли бы счесть логичным, что эта недостающая материя есть не что иное, как горячий газ. Однако этот вывод сделан не был, вероятно, потому, что в то время еще не существовало способов обнаружить такой газ в условиях космоса. Частицы газа движутся со скоростями, сопоставимыми со скоростью галактик, то есть температура такого газа составляет около 100 млн градусов. При таких условиях от атомного ядра должны улететь все электроны, кроме наиболее тесно связанных с ним, и сформироваться положительно заряженные ионы. Такой ионизированный газ испускает преимущественно рентгеновские лучи, вбираемые атмосферой Земли. Только после запуска спутниковых обсерваторий для изучения рентгеновского излучения космоса в 1970-х годах удалось обнаружить, что скопления галактик представляют собой очень активные источники таких лучей, и понять, что горячий газ, или межгалактическую среду, невозможно игнорировать.

Межгалактическая среда оказалась очень важным компонентом скоплений галактик. Она содержит больше материи, чем сами галактики, а отслеживать гравитационное поле и, следовательно, общую массу скопления на основе ее температуры и пространственного распределения можно намного точнее, чем на основе данных одних галактик. Чтобы получить общую массу газа, нужно взглянуть на уровень излучения. Источник этого излучения – столкновения противоположно заряженных частиц (ионов и электронов), поэтому его уровень пропорционален квадрату плотности газа. Мы наблюдаем только спроецированное излучение, как если бы скопление галактик было раздавлено о небосклон, однако исходя из сферической симметрии относительно несложно «вывернуть» наблюдения и выяснить изменение плотности по мере удаления от центра скопления. Газ распространяется на расстояния, значительно превышающие размеры галактик, и порой отслеживается на расстояниях в несколько миллионов световых лет от центра скопления. Хотя в центре скопления доминируют галактики, газа в нем минимум в три раза больше (мы можем сомневаться в массе галактик, но не в массе газа). Однако даже массы газа и галактик не дают в совокупности общей массы скопления, иными словами, в нем содержится множество темной материи. Ее давление удерживает горячий газ от гравитационного коллапса в скоплении. Чтобы понять, по какому принципу падает давление при удалении от его центра, нам надо знать изменение температуры. Обычно считается, что газ изотермичен (то есть имеет одинаковую температуру по всему скоплению). Это соответствует как наблюдениям, так и числовым симуляциям, которые демонстрируют незначительные изменения как температуры газа, так и скоростей галактик независимо от положения внутри скопления. Бывает, что во внешних частях скопления температура газа все-таки падает, и это снижает оценку его массы.

Опубликованное в 1995 году исследование Дэвида Уайта и Энди Фабиана[192] из Института астрономии Кембриджского университета содержит анализ данных космической обсерватории «Эйнштейн» для девятнадцати ярких скоплений галактик. Ученые сравнили массу газа с общей массой скопления и сделали вывод, что газ оставляет от 10 до 22 % всей массы таких объектов, в среднем примерно 15 %. Прибавляя массу галактик, получим дополнительно 1–5 % (от общей массы). Таким образом, общий барионный состав скоплений намного больше, чем 5 %, предсказанные классической моделью ХТМ для плоской Вселенной. Темная материя все равно нужна (к облегчению ученых, занимающихся физикой частиц), но ее всего в пять, а не в двадцать раз больше, чем барионной. Поскольку модели Большого взрыва предполагают, что барионное вещество может составлять лишь 5 % критической плотности, то при условии, что распределение вещества в скоплениях галактик характерно для Вселенной в целом, общая плотность составляет всего лишь примерно 30 % от критической плотности, даже с учетом темной материи. Другими словами, ХТМ впятеро больше, чем барионов. Чтобы удержать общий показатель плотности на высоком уровне, придется допустить, что барионы составляют значительно больший процент во Вселенной, но это запрещено принципами первичного ядерного синтеза.

Как разрешить эту проблему? Во времена написания книги Companion to the Cosmos между астрономами все еще велись оживленные дебаты о точном значении постоянной Хаббла. В приведенном выше подсчете я предположил, что она равна 50 км в секунду на Мпк, то есть находится ближе к нижнему концу диапазона, что соответствует большой и старой Вселенной.

В космологических моделях по мере понижения значения постоянной Хаббла барионный компонент повышается. Но предполагаемая доля барионов, образуемых в результате первичного ядерного синтеза, увеличивается еще больше, таким образом, несоответствие между ними сокращается. Если снизить постоянную Хаббла достаточно сильно, можно добиться приведения этих параметров к балансу, но задолго до этого момента показатель барионности дойдет до единицы. Поскольку подняться выше 100 % от массы Вселенной барионная материя не может, этот аргумент можно не рассматривать и установить, что показатель постоянной Хаббла не может быть ниже примерно четырнадцати в обычных единицах. Но даже в 1996 году никто из известных мне ученых не решился бы на такую крайность.

Итак, необходимо было отказаться от какой-то из привычных характеристик модели, считавшейся тогда классической. Вероятно, наименее важной из них было то, что темная материя должна быть холодной. Горячая темная материя, состоящая из частиц (например, нейтрино), возникших в результате Большого взрыва и имеющих скорости, близкие к световой, не способна кластеризоваться: частицы не успевают устанавливать связи. На первый взгляд кажется, что огромные объемы такой материи могут заполнять пространство между скоплениями галактик и превосходить их в массе. Однако горячая темная материя не может составлять более одной трети всей темной материи, поскольку ее взаимодействие с барионным веществом замедляет и отодвигает во времени возникновение таких структур, как галактики и скопления, что противоречит наблюдаемому количеству удаленных (старых) радиогалактик и квазаров[193].

Ученые также пытались развивать идею неклассического ядерного синтеза, например, допускали различную концентрацию барионной материи в разных точках космоса. Это позволило бы несколько повысить верхний предел процента барионов во Вселенной, но такие модели несовершенны и не настолько работоспособны, как классическая.

Итак, к середине 1990-х осталось два простых и вероятных объяснения ситуации. Первое – массовая плотность Вселенной действительно намного меньше критической. Если верить наблюдениям, Вселенная может содержать 5 % барионного вещества (по массовой плотности) и примерно 30 % от критической плотности в виде всех форм материи вместе (то есть темной материи примерно в пять раз больше, чем барионной). Сами барионы представлены преимущественно горячим газом в скоплениях галактик (треть от всего объема) и непосредственно галактиками (две трети). Оставшееся содержимое Вселенной может оказаться преимущественно холодной темной материей – возможно, с небольшими вкраплениями горячей. В этом случае постоянная Хаббла может составлять больше 50, что соответствует данным Ключевого проекта HST и измерениям СОВЕ. Однако это означает, что Вселенная не плоская, и противоречит идее инфляции.

Второе объяснение исследователям было известно давно, но не слишком нравилось. Как я писал в 1996 году, «если космологи желают сохранить идею пространственно плоской Вселенной, предсказанной теориями космической инфляции, им придется вернуться к использованию космологической постоянной». Не успел я дописать книгу, как появились реальные доказательства существования космологической постоянной, поразившие ученых (ничего не знавших о моих предсказаниях).

Сверхновые и сверхрасширение

Две группы исследователей, сделавших новое открытие, изучали далекие области Вселенной, а именно сверхновые звезды с очень значительным красным смещением. Предыдущие наблюдения галактик, достаточно близких к нам для оценки расстояний другими методами, позволили откалибровать яркость класса сверхновых, известных как Sn1a (сверхновая типа 1а), имеющих примерно одинаковую истинную яркость. Предполагается, что причина этого – их формирование из белых карликов, которые постепенно набирают массу (видимо, от компаньона по двойной звезде), становясь все тяжелее, до достижения каждой из них одной и той же критической массы (независимо от изначального масштаба звезды). В этой точке давление внутри светила запускает неконтролируемую ядерную реакцию, выделяющаяся энергия срывает внешние слои звезды и на небольшой промежуток времени заставляет ее сиять примерно как четыре миллиарда Солнц. Для космолога сам механизм взрыва сверхновой не так важен, как то, что все сверхновые типа 1а обладают одинаковой яркостью[194], то есть могут быть использованы как стандартные свечи. Видимая яркость сверхновой типа 1а указывает на расстояние до нее и, соответственно, может быть изучена в контексте красного смещения.

Во второй половине 1990-х годов два больших коллектива исследователей (объединявших по несколько десятков ученых, работавших в разных точках мира) стремились с помощью имеющихся технологий (лучших наземных и спутниковых телескопов, современных датчиков CCD[195], мощных компьютеров) как можно лучше картировать распределение в пространстве самых тусклых и удаленных из видимых сверхновых и, следовательно, распределение галактик, в которых они находятся. Поскольку красное смещение обозначается буквой z, один из коллективов назвал себя High-z Supernova Search Team («Команда поиска сверхновых с высоким z»), во главе стояли Брайан Шмидт (Австралийский национальный университет) и Адам Рисс (Университет Джона Хопкинса). Им противостояла группа Supernova Cosmology Project («Проект космологии сверхновых») под руководством Сола Перлмуттера (Калифорнийский университет, Беркли). Полученные выводы были столь масштабны, что факт параллельного проведения исследований двумя коллективами пошел на пользу: совпадение результатов заставило научный мир поверить в них.

Сверхновые звезды типа 1а редки. В типичной галактике вроде Млечного Пути за тысячу лет взрываются две-три такие звезды. Но, сфотографировав десятки участков неба, в каждом из которых содержатся сотни тусклых галактик, оба коллектива гарантированно могли застать несколько таких случаев. Если принять, что в одной галактике за тысячу лет появляются две сверхновых, то, изучив 50 тысяч галактик, можно с уверенностью ожидать увидеть примерно 100 взрывов в год. Это позволит изучить Вселенную на очень значительных дистанциях, что из-за ограниченности скорости света предполагает ее изучение в отдаленной исторической перспективе. Ученые рассчитывали, что среди прочих полученные данные можно будет использовать для измерения степени замедления расширения Вселенной по мере влияния гравитации на ускорение, приданное ей Большим взрывом.

Результаты обоих исследований начали публиковаться в 1998 году: среди них были данные по сверхновым, вспыхнувшим в период, когда Вселенной было примерно вдвое меньше лет, чем сейчас. К удивлению обоих научных коллективов, у них получилось, что галактики, в которых расположены далекие сверхновые, удаляются от нас с меньшей скоростью, чем предполагаемая их красным смещением (если исходить из того, что постоянная Хаббла всегда имела значение, определенное на основе данных более близких к нам галактик). Иными словами, в прошлом Вселенная расширялась не быстрее, чем сейчас, а медленнее – этого никто не ожидал[196]. Если она расширялась медленнее, то достичь современного состояния она должна была за более долгий, чем ранее предполагалось, промежуток времени. Другими словами, данные сверхновых говорят, что возраст Вселенной значительно больше 9 млрд лет. Насколько больше, об этом должно было сказать новое поколение спутниковых телескопов.

Если в прошлом Вселенная расширялась медленнее, значит, сейчас она расширяется быстрее. «Расширение Вселенной ускоряется» – именно так выглядели заголовки массмедиа после публикации выводов исследования. Что-то толкает Вселенную изнутри с силой, которая (почти наверняка) достаточна, чтобы превозмочь гравитацию и заставить ее расширяться вечно и все быстрее. Это что-то получило название темной энергии.

Самое простое объяснение этого понятия сводится к тому, что темная энергия есть воплощение космологической постоянной, лямбды (Λ)[197]. Если она действительно постоянна и имела одно и то же (небольшое) значение с момента Большого взрыва, то в каждом кубическом сантиметре пространства всегда должно было содержаться одно и то же количество темной энергии. «Новая» темная энергия создается по мере расширения Вселенной, чтобы заполнить возникающее дополнительное пространство. Кажется, мы это уже где-то слышали?.. С математической точки зрения это та же идея, от которой отказался Эйнштейн и которую развивал Фред Хойл в виде космологии полей творения (C-field), только С в уравнениях надо будет заменить на Λ и принять, что плотность материи по мере расширения Вселенной сокращается, а плотность темной энергии остается стабильной[198]. Темная энергия придает космосу некую упругость, толкая его наружу, а гравитация стягивает его обратно. Поначалу, сразу после Большого взрыва, сила притяжения имеет преимущество, потому что темной энергии еще не так много. Это замедляет расширение Вселенной. Но плотность темной энергии сохраняется независимо от сокращения плотности материи, и это ослабляет действие гравитации. В какой-то важный момент, миллиарды лет назад, темная энергия пересилила, и с этого времени расширение Вселенной ускорилось.

Но это еще не все. Эйнштейн учил, что материя и энергия – одно и то же. Имеющаяся во Вселенной темная энергия с точки зрения гравитации выступает подобно материи, несмотря на пружинистость, сообщаемую ею космосу. Грубо говоря, количество темной энергии, необходимое для объяснения наблюдаемой ситуации, в гравитационном плане должно быть примерно вдвое больше, чем количество материи (барионной и темной вместе) во Вселенной. Если Вселенная все-таки плоская и примерно одну треть из ее содержимого составляет материя, а две трети – темная энергия, связанная с космологической постоянной, то все сходится и никакой барионной катастрофы не существует. В 2011 году руководители обоих научных коллективов получили за свою работу Нобелевскую премию. В официальной аннотации к премии говорится: «Открытие стало полной неожиданностью даже для самих лауреатов». Однако оно не стало полной неожиданностью для космологов, которые уже поняли, что космологическая постоянная все-таки пригодится науке.

Это открытие стало той недостающей деталью головоломки, которая позволила сложить принятую ныне классическую космологическую модель, получившую название ΛCDM (лямбда-си-ди-эм, от космологической постоянной и холодной темной материи – cold dark matter), поскольку в нее входят оба понятия. История космологических изысканий первых пятнадцати лет XXI столетия стала историей довольно успешных попыток уточнить параметры этой классической модели, в том числе возраст Вселенной. Этим мы во многом обязаны экспериментам, проведенным на борту двух спутников, известных как WMAP и «Планк»[199].

«Прослушка» Вселенной

Мысль о том, что всего примерно 5 % Вселенной состоит из знакомой нам барионной материи, еще около 25 % приходятся на долю холодной темной материи, которая не похожа ни на что известное нам, а все остальное имеет форму темной энергии, не укладывается в головах даже у тех, кто вроде меня думал о космосе с детства. Иногда меня спрашивают, почему раньше никто ничего подобного не замечал? В таких случаях лучшее, что я могу сделать, – это записать на доске, насколько мало темной энергии содержится в каждом кубическом сантиметре пространства.

Материя не распределена по Вселенной равномерно, а образует сгустки, из которых формируются галактики, звезды и люди. Но поле Ʌ однородно и эквивалентно 10−27 грамма на кубический сантиметр, причем это не сантиметр пустого пространства, а любой кубический сантиметр во Вселенной. Существующие в настоящий момент технологии не позволяют уловить столь микроскопический уровень энергии. В объеме всей нашей планеты содержится количество темной энергии, примерно равное количеству электроэнергии, которое расходовал средний гражданин США за год в начале XXI века. В сфере, имеющей размер Солнечной системы вплоть до орбиты Урана, столько темной энергии, сколько электромагнитной энергии (тепла и света) излучает Солнце за пару часов. Чтобы прочувствовать влияние космологической постоянной, нужно мыслить в масштабах всей Вселенной, и здесь нам на помощь приходят спутники.

Наблюдения за реликтовым излучением могут указать нам на момент, когда Вселенная стала прозрачной и электромагнитные лучи начали свободно проникать через космос. Это произошло чуть менее чем через 400 тысяч лет после той доли секунды, в которую произошла инфляция. До этого момента Вселенная была столь горячей, что нейтральные атомы не могли существовать и кругом было море заряженных частиц – электронов и ядер (преимущественно водорода и гелия), взаимодействовавших с электромагнитным излучением. Помимо всего прочего, такие взаимодействия зафиксировали открытые СОВЕ квантовые флуктуации; эти первичные случаи анизотропии сохранились во время инфляции, в первую долю секунды жизни Вселенной. Когда она остыла примерно до нынешней температуры Солнца (около 6000 К), смогли образоваться незаряженные атомы и излучение начало распространяться беспрепятственно. По той же причине внешней частью Солнца при этой температуре испускается электромагнитное излучение, образующее его видимую поверхность. В случае с Вселенной место, где это происходит, получило название «поверхности последнего рассеяния»[200]. Неоднородности в излучении были, однако, результатом не только анизотропии, сохранившейся в результате инфляции. Излучение не оставалось без влияний в период между инфляцией и последним рассеянием. То, как в первые несколько сотен тысяч лет существования Вселенной по ней распределялась материя, оставило после себя небольшой след в виде вторичных флуктуаций реликтового излучения. Этот след невелик и не составляет даже одной стотысячной от первичных флуктуаций, но вдохновленные успехом СОВЕ ученые решили попытаться измерить его, чтобы лучше понять происхождение и эволюцию Вселенной.

Истинная природа этих случаев анизотропии – флуктуаций – определяется соотношением двух противоречащих друг другу явлений расширяющейся Вселенной. Концентрированные множества барионов (по сути, находящиеся внутри объемов темной материи, которая, впрочем, не взаимодействует с электромагнитным излучением) образуют гравитационное сжатие и усугубляют проявления анизотропии. Но пока материя достаточно горяча, чтобы взаимодействовать с электромагнитным излучением, быстро движущиеся фотоны (частицы электромагнитного излучения) имеют тенденцию к разглаживанию неоднородностей в распределении барионов. Противостояние этих двух явлений приводит к таким эффектам, как барионные акустические осцилляции (БАО). Это своеобразные волны давления (звука) в веществе юной Вселенной. Из-за взаимного влияния материи и излучения одни длины волн усиливаются, а другие затухают. Получающаяся комбинация длин волны несет в себе множество данных о Вселенной, если человек в состоянии ее интерпретировать.

Для интерпретации нужно найти способ выяснить, какие длины волн присутствуют в реликтовом излучении и насколько они интенсивны. К счастью, у астрономов как раз есть подходящий для этого инструмент. Техника, позволяющая распутать различные регулярные вариации, соединенные в сложный узор, называется анализом энергетического спектра. Она работает почти безупречно, если такой сложный узор действительно состоит из комбинации простых. Так, если на гитаре взять аккорд, каждая из шести струн будет звучать своей нотой, что создаст кажущееся сложным сочетание волн давления, которое мы воспринимаем как особый звук. Этот звук можно записать с помощью микрофона, перевести в электрические сигналы и вывести, например, на экран компьютера в виде запутанного нагромождения осциллограмм. Анализ энергетического спектра способен разобрать эту путаницу на отдельные ноты, взятые на каждой струне. Он также определит, насколько громкой была каждая нота (насколько интенсивен каждый компонент спектра). Если датчик реликтового излучения достаточно чувствителен, то «аккорды», формируемые этим микроволновым излучением, можно проанализировать аналогичным образом и определить, какие «ноты» играли в момент фиксации узора БАО на поверхности последнего рассеяния, когда материя «развязывалась» с электромагнитным излучением.

Из осцилляций можно извлечь много интересного. Если провести другую аналогию и уподобить флуктуации нотам, производимым трубами церковного органа, то можно сказать, что физик может по ним узнать многое о строении органа (например, длину труб), не видя самого инструмента. Энергетический спектр реликтового излучения обычно выглядит как график, на котором отложено количество энергии в разном масштабе (для осцилляций разной интенсивности): более крупные левее, мелкие правее. Пиковые значения графика соответствуют точкам с мощными осцилляциями, «провалы» – со слабыми. На графике бывает один крупный пик и, правее, постепенно сходящий на нет ряд мелких. Первый пик не удавалось уловить даже СОВЕ, хотя в последующие годы он с достаточной точностью отмечался приборами, поднимаемыми на воздушных шарах, и некоторыми наземными наблюдениями. К 2000 году положение главного пика отслеживалось уже очень хорошо, и из него можно было сделать вывод о кривизне Вселенной и получить важнейшее доказательство того, что Вселенная плоская, а также засвидетельствовать ее плотность и существование темной материи и темной энергии. Теоретики знали, что соотношение высоты первого и второго пиков может сказать нам о том, какой процент материи на самом деле барионный (независимо от доводов вроде тех, что базируются на «барионной катастрофе»), а в третьем содержится информация о плотности темной материи. Но у СОВЕ не было нужной чувствительности, чтобы узнать об этих пиках больше, и даже аппаратура на воздушных шарах давала только грубые ориентиры (эксперименты с ней задействуют не все небо; к тому же шары не могут работать так долго, как спутники). Все, что можно было сделать, – это объединить самые точные измерения мелких случаев анизотропии, которые удастся сделать с Земли и шаров (на отдельных участках неба), с точными измерениями крупных проявлений анизотропии во время исследований всего неба. И тут появилось новое поколение спутников.

Истинная правда

Первым из таких спутников стал WMAP (дабл-ю-мэп – от первой буквы фамилии Wilkinson и английского слова «карта»), запущенный 30 июня 2001 года. Изначально MAP расшифровывалось как Microwave Anisotropy Probe (зонд микроволновой анизотропии), но в 2003-м к сокращению добавили W в честь умершего незадолго до этого Дэвида Уилкинсона, одного из руководителей проекта. Миссия была запланирована в 1995 году, одобрена в 1997-м и готова к 2001-му – скорость развития событий доказывает ее важность и то, насколько успех СОВЕ активизировал эту область исследований. Датчики WMAP были в 45 раз чувствительнее датчиков СОВЕ: они могли «разглядеть» объекты с угловым размером в 35 раз меньше, чем их предшественники, то есть всего в одну пятую градуса, примерно треть видимого размера полной Луны[201]. WMAP к тому же мог проводить наблюдения на пяти длинах волн. Изначально планировалось использовать его два года, но он показал себя так хорошо, что исследования были продлены еще и еще раз и в итоге спутник проработал девять лет. После завершения работ в 2010 году он был перемещен на орбиту захоронения, где находится и поныне, не мешая работе следующих поколений спутников и совершая оборот вокруг Солнца 14 раз за 15 лет.

Уже с самого начала наблюдений WMAP превзошел все ожидания. Данные со спутника четко указывали на возраст Вселенной в 13,4 ± 0,3 млрд лет при значении постоянной Хаббла в 72 ± 5, с менее чем 5 % от массы Вселенной в виде барионов и общей массе материи примерно в 28 % от необходимой для плоскости Вселенной (то есть на долю темной энергии приходятся 72 %). Узор флуктуаций в целом совпал с прогнозом по инфляции[202].

Когда данные WMAP были сопоставлены с измерениями из других источников, в том числе с воздушных шаров, космологические параметры удалось еще больше уточнить, и по мере накопления объема наблюдений WMAP результаты продолжали сужать допуски. Одно из важнейших дополнительных измерений было сделано при изучении галактик, которое показало влияние БАО на распределение по небу миллионов звездных миров. По итогам девяти лет работы с WMAP его данные без учета других наблюдений указывали на возраст Вселенной, равный 13,74 ± 0,11 млрд лет, значение Н, равное 70,00 ± 2,2, барионную плотность 4,6 %, плотность ХТМ 24 % и массовую долю темной энергии 71 %. Эта оценка Н полностью независима от традиционной, основанной на методе цефеид. Совпадение (в пределах погрешности) этих результатов стало поразительным подтверждением того, что вся модель ɅCDM достоверно описывает Вселенную. Чтобы доказать это, добавлю, что кривизна пространства была уточнена в пределах 0,4 % от полной плоскостности. Учет данных от других видов наблюдений корректирует эти величины очень незначительно: возраст Вселенной повышается до 13,772 ± 0,059 млрд лет. …Но когда срок работы WMAP истек, на орбиту был выведен новый спутник – «Планк», запущенный Европейским космическим агентством. Он продолжил сужать рамки погрешностей.

Спутник «Планк», названный в честь первооткрывателя природы излучения черного тела, был одним из двух чрезвычайно успешных спутников, выведенных на орбиту одной ракетой «Ариан-5» 14 мая 2009 года. Первое предложение по созданию этого спутника поступило в ESA в 1993 году (за два года до подачи идеи WMAP в НАСА), таким образом, на всю подготовку проекта ушло шестнадцать лет. Столь тщательный подход вылился в создание очень чувствительного спутника с самой передовой аппаратурой. Его датчики «видели» в три с лишним раза лучше датчиков WMAP, то есть могли фиксировать отклонение температуры реликтового излучения на одну миллионную градуса, обрабатывали более широкий спектр длин волн и могли обнаруживать горячие и холодные точки размером всего в 1/12 градуса – в два раза лучше WMAP. Результативность спутника «Планк» стала новым стандартом космологии, пока на орбите не появились еще более чувствительные приборы. Второй спутник, «Гершель», занимался исследованием Вселенной в инфракрасных лучах. Некоторые из моих коллег по Сассекскому университету входили в его команду, и я вместе с ними наблюдал за запуском «Ариан-5» онлайн на большом экране в университете (я тактично не сообщил коллегам, что спутник «Планк» мне более интересен). После ряда маневров «Планк» достиг рабочей орбиты 3 июля 2009 года и продолжал наблюдения до октября 2013 года, когда у него закончился запас охлаждающего жидкого гелия и топлива, его перевели на «кладбище» спутников и отключили.

Первые подробные результаты исследований «Планка» всего неба были опубликованы в марте 2013 года: они слегка уточняли результаты WMAP. Именно тогда везде стали писать, что возраст Вселенной равен 13,82 млрд лет, и именно тогда я задумался над написанием этой книги. Если быть точным, в то время данные спутника «Планка» предполагали возраст в 13,819 млрд лет. При добавлении данных о влиянии БАО на галактики и других выходило, что самое вероятное значение – 13,798 ± 0,037 млрд лет. Еще более подробный анализ данных «Планка», завершенный в конце 2014 года и обнародованный в феврале 2015-го, показал, что значение постоянной Хаббла составляет 67,8, а нашей Вселенной 13,799 млрд лет. При добавлении данных от сверхновых типа 1а и БАО значение постоянной Хаббла снижается до 67,74, но возраст Вселенной остается на уровне 13,799 с погрешностью до +0,021 млрд лет. Округляя до десятых для ясности, можно утверждать, что с максимальной вероятностью нашей Вселенной 13,8 млрд лет. Возможно, это число еще изменится, и нам стоит сделать паузу, чтобы уместить в голове тот факт, что на конец 2015 года космологические дискуссии вращаются вокруг уже второго порядка после запятой, а не вокруг принципиальных расхождений в теории. Данные «Планка» и WMAP отлично согласуются друг с другом, просто первые чуть точнее вторых. Важно отметить, что это согласование намного важнее наличия расхождений. Даже если сравнить их основные показатели без учета погрешностей, оба комплекта наблюдений выдают значения, различающиеся всего примерно на 100 млн лет – из 14 миллиардов! «Ошибка» составляет менее 1 %.

Впрочем, не все данные так идеально стыкуются друг с другом. В 2013 году при сопоставлении данных «Планка» и других источников количество темной энергии во Вселенной вышло равным 69,2 ± 0,01 % (уточнено в декабре 2014 года до 68,3 %), а плотность материи в целом оценивалась в 31,5 ± 1,7 % (уточнено до 31,7 %, а барионное вещество составляет всего 4,9 %, менее одной шестой), причем соответствующее значение Н оказалось эквивалентным 67,8 ± 0,77 (в декабре 2014 года, до уточнения, 67,15). Это означает, что Вселенная расширяется несколько медленнее, чем мы полагали. Хотя новые данные пересекаются с нижним пределом погрешности показателей WMAP, а полученные им результаты согласуются с традиционным методом в другом пределе погрешности, данные «Планка» и традиционных методик не пересекаются вообще (по состоянию на 2014 год уточненное значение Н на основе метода цефеид и сверхновых составляло 73,8 ± 2,4). Это может означать, что модель ΛCDM все-таки не идеально описывает Вселенную. Хотя Франсуа Буше, ведущий специалист в научном коллективе спутника «Планк», подчеркивает, что «мы не располагаем надежными доказательствами ничего, выходящего за рамки классической модели ΛCDM», детали такого рода могут однажды заставить нас обратиться к более сложным построениям, упомянутым ранее в примечании 198. Они способны оказаться сигналом какого-то отклонения от простейшей модели, которого мы пока не понимаем. Одним из вариантов объяснения – чисто умозрительным, но вполне возможным – может быть так называемый пузырь Хаббла. Возможно, мы живем в такой части Вселенной, плотность которой несколько ниже средней. По сравнению со всей Вселенной даже оценка по сверхновым относится лишь к небольшому участку космоса (это одна из причин, по которой измерения реликтового излучения дают более надежные показатели возраста Вселенной), и если этот участок несколько менее плотен, чем другие, то возможно, что материя вне его пределов притягивает к себе видимые нами галактики, что выглядит похоже на действие несколько большей, чем в действительности, постоянной Хаббла[203]. Обратите внимание, что это лишь догадка, которая может не оправдаться, а также, что любая коррекция модели ΛCDM, необходимая для объяснения расхождений, наверняка окажется незначительной. Однако сегодня эта загадка будоражит ученых. Если все наблюдения вдруг совпадут с предсказаниями теоретиков, жизнь станет слишком скучной, а наблюдая противоречия, мы можем изыскивать все новые объяснения для их устранения.

Тем не менее тот факт, что возраст самых старых звезд почти равен (на самом деле чуть меньше, что очень важно) возрасту Вселенной, есть одно из величайших научных открытий в истории. Оно позволяет с уверенностью предположить, что общая теория относительности и квантовая механика верны в своей основе и однажды могут слиться воедино. Особенно потрясает то, что, если верить данным спутника «Планк», мы знаем возраст Вселенной с точностью до менее чем одного процента. В этом знании воистину воплощена «истинная правда» науки и надежное доказательство того, что именно наука представляет собой лучший способ понимания мироустройства.

Глоссарий

[204]

Абсолютная величина – яркость звезды при наблюдении с расстояния точно в 10 парсек.

Альфа-частица – «частица», состоящая из двух протонов и двух нейтронов, связанных друг с другом настолько плотно, что во многих случаях они ведут себя как единый объект. Идентична ядру атома гелия.

Антиматерия – форма материи, ключевые свойства которой (например, электрический заряд) противоположны таковым у привычного нам вещества. Так, положительно заряженный позитрон представляет собой античастицу – аналог отрицательно заряженного электрона.

Антропный принцип – идея о том, что существование жизни во Вселенной (в особенности человека) способно наложить ограничения на особенности ее функционирования и развития до нынешнего состояния.

Атом – самый маленький компонент привычной нам материи, участвующий в химических реакциях. Все элементы, такие как кислород или железо, состоят из специфических атомов; каждый из них состоит из расположенного в центре сравнительно небольшого ядра, окруженного облаком электронов.

Барионная материя – термин, обозначающий материю, состоящую из протонов, нейтронов и электронов и аналогичную привычной нам земной. Строго говоря, электроны не относятся к барионам, и их масса очень мала в сравнении с массой протонов и нейтронов.

Белый карлик – один из типов «мертвых» звезд. Солнце в конце жизненного цикла превратится в белого карлика размером примерно с нынешнюю Землю. Один кубический сантиметр вещества белого карлика весит около тонны.

Временная шкала Кельвина – Гельмгольца – период времени, в течение которого звезда, подобная Солнцу, может продолжать излучать энергию за счет медленного сжатия под собственным весом, составляет около 20–30 млн лет. В середине XIX века астрономы и физики задумались, каким образом Солнце поддерживает внутреннюю температуру стабильной. Они поняли, что если оно состояло бы из угля, горящего в атмосфере чистого кислорода, то сгорело бы целиком менее чем за 100 тысяч лет, и заподозрили, имея геологические основания, что Земля обогревается Солнцем намного дольше. Герман Гельмгольц (Германия) и Уильям Томсон, и позднее лорд Кельвин (Великобритания), независимо друг от друга пришли к одному и тому же решению проблемы, показав, что просто за счет постепенного сжатия Солнце могло бы светить с нынешней яркостью на протяжении нескольких десятков миллионов лет, превращая энергию гравитации в тепло.

Галактика – крупный космический конгломерат звезд, содержащий порой сотни миллиардов объектов, подобных Солнцу. Применительно к нашей Галактике Млечный Путь слово иногда пишется с заглавной буквы – Галактика.

Гравитация, или сила всемирного тяготения, – сила, заставляющая материальные объекты притягиваться друг к другу. Так, например, Земля притягивает наши тела, но и наши тела тоже притягивают Землю. Альберт Эйнштейн объяснил действие гравитации через общую теорию относительности.

Двойная система, или двойная звезда, – пара звезд, вращающихся друг вокруг друга.

Дейтерий – «тяжелый» водород, ядро каждого атома в котором состоит из одного протона и одного нейтрона.

Дисковая галактика – система из сотен миллиардов звезд, оформленная в виде плоского диска и часто (но не всегда) имеющая спиральную структуру. Наш Млечный Путь представляет собой дисковую и спиральную галактику.

Доплеровский эффект – вызванное движением изменение длины волны (или частоты) света. Если объект перемещается по направлению к нам, длина волны сжимается (синее смещение), если от нас, то растягивается (красное смещение). Примечание: космологическое красное смещение не является доплеровским эффектом!

Закон Кирхгофа – при заданной температуре скорость испускания объектом электромагнитной энергии равна скорости поглощения объектом электромагнитной энергии той же длины волны (частоты). Этот закон впервые сформулирован Густавом Кирхгофом в 1859 году и доказан им же в 1861-м. На следующий год Кирхгоф логично пришел к следующей идее – черного тела и излучения черного тела, что в свою очередь навело Макса Планка на открытие важнейшего для физики понятия квантов.

Закон смещения Вина – соотношение, позволяющее рассчитать температуру черного тела исходя из длины волны, на которой оно излучает максимальное количество энергии в своем спектре. Название дано по фамилии немецкого физика Вильгельма Вина (1864–1928), получившего в 1911 году Нобелевскую премию за работы, посвященные законам, управляющим тепловым излучением.

Звезда – горячий газовый шар, во много раз превышающий по размеру планеты и светящийся за счет происходящих внутри него ядерных реакций с выделением большого количества энергии. Солнце представляет собой звезду.

Звезда главной последовательности – звезда, находящаяся в стабильном «расцвете лет», например наше Солнце.

Звездная величина – яркость звезды, измеряемая астрономами по шкале, названной в честь английского астронома Нормана Погсона. Чем более тусклой выглядит звезда, тем больше ее значение по шкале Погсона. По традиции, разница величин в 5 единиц эквивалентна утверждению, что один объект в 100 раз ярче (тусклее) другого.

Звездная спектроскопия – изучение спектра света звезд. Столкновения стремительно движущихся в горячем газе атомов возбуждают электроны, которые, успокаиваясь, порождают эмиссионные линии в спектре. Если газ холодный, то электроны возбуждаются, поглощая фоновый свет. Звездный спектр показывает, атомы каких элементов присутствуют в звезде, то есть каков ее состав.

Излучение черного тела – лучи, испускаемые черным телом.

Инфляция – ранняя фаза развития Вселенной, во время которой крохотная квантовая флуктуация расширилась (раздулась) примерно до размера баскетбольного мяча за ничтожную долю секунды.

Ион – атом (иногда молекула), потерявший один или более электронов и оказавшийся положительно заряженным. Спектры ионов имеют измеримые отличия от спектров породивших их атомов. Атом также может приобрести лишний электрон и стать отрицательно заряженным ионом.

Квантовая физика – законы и уравнения, описывающие поведение мелких частиц, таких как электроны и атомы.

Классическая физика – принципы и уравнения, применимые к объектам намного большего масштаба, чем атомы.

Корпускулярно-волновой дуализм – подтвержденная экспериментами идея, что квантовые объекты могут вести себя в зависимости от обстоятельств и как частицы, и как волны. Это не означает, что они представляют собой волны или частицы: в настоящий момент у нас нет способов точно выяснить их истинную природу и мы можем лишь выстраивать картину происходящего в рамках конкретного эксперимента, проводя аналогии с объектами привычного мира, в частности волнами и частицами.

Космическое микроволновое фоновое излучение, или реликтовое излучение, – излучение, оставшееся от Большого взрыва и наблюдаемое в наши дни в форме слабого радиошума, поступающего из всего космического пространства. Представляет собой почти идеальное излучение черного тела.

Космологическая постоянная – число, указывающее на количество темной энергии во Вселенной. Обозначается греческой буквой лямбда (Λ).

Космологическое красное смещение – изменение в длине световой волны от удаленных объектов, вызванное растягиванием пространства в процессе расширения Вселенной. Смещает характеристики света к красному краю спектра.

Красный гигант – звезда на поздней стадии эволюции, раздувающаяся примерно до диаметра орбиты Земли.

Критическая плотность – плотность, при которой пространственно-временной континуум Вселенной оказывается плоским. Критическая плотность соответствует наличию в каждом кубическом метре пространства примерно пяти атомов водорода.

Модель Мультивселенной – концепция, согласно которой вся наблюдаемая Вселенная может оказаться лишь одним «пузырьком» в более крупной системе – Мультивселенной.

Нейтрон – электрически нейтральная частица, входящая в состав ядра атома.

Нейтронная звезда – объект, представляющий собой остатки старой сжавшейся звезды и почти полностью состоящий из нейтронов. Чаще всего нейтронные звезды несколько тяжелее Солнца, но имеют диаметр всего лишь около 10 км.

Новая (звезда) – внезапная вспышка (увеличение яркости) звезды, придающая ей вид нового небесного объекта.

Нуклон – родовое название протонов и нейтронов.

Общая теория относительности – разработанная Альбертом Эйнштейном теория, описывающая отношения между материей и силой тяготения в терминах кривизны пространства и времени.

Параллакс – видимое движение объекта по небосклону при наблюдении с двух разных точек. Может использоваться для расчета расстояния до объекта методом триангуляции. Параллакс легко представить наглядно: вытяните руку с поднятым пальцем и закрывайте то один, то другой глаз, и вам покажется, что палец перемещается в стороны по отношению к более удаленным предметам. При желании, измерив угол смещения пальца, можно узнать длину руки (хотя здесь параллакс нельзя считать самым удобным методом расчета).

Парсек – используемая астрономами мера длины, равная 3,2616 светового года или расстоянию, с которого Земля и Солнце будут восприниматься под углом в 1 угловую секунду.

Планета – крупный шар из твердых пород или газа, достаточно объемный для придания ему гравитацией сферической формы и облетающий звезду по орбите.

Поле лямбды (Λ) – другое название темной энергии.

Постоянная Хаббла, или параметр Хаббла, обозначается латинской буквой Н, определяет скорость расширения Вселенной.

Принцип заурядности Земли – утверждение, что мы не занимаем во Вселенной особого места и что окружающее нас пространство типично для звездной системы в рамках дисковой галактики.

Протон – положительно заряженная частица, составная часть ядра атома.

Реакция в пламени – простой способ определения наличия различных элементов в неизвестном веществе. Чистая проволочная петля окунается в вещество (обычно составное, например хлорид натрия) и раскаляется в пламени бунзеновой горелки. Тепло огня возбуждает атомы (строго говоря, ионы) вещества, и те начинают излучать видимый свет определенного цвета (в случае с натрием – желтого).

Световой год – расстояние, преодолеваемое светом за один год – 9,46 трлн км. Световой год – мера длины, а не времени.

Сверхновая (звезда) – взрыв и экстремальное увеличение яркости одного из типов звезд при превышении определенной массы в конце жизненного цикла. В этот период одна звезда способна непродолжительное время светиться так же ярко, как целая галактика звезд, подобных Солнцу. Сверхновая вырождается в нейтронную звезду или черную дыру.

Сингулярность – точка с нулевыми размерами или линия нулевой ширины.

Скорость света – предельная скорость движения через пространство, составляет 299 792 458 м в секунду (почти точно 300 тыс. км в секунду).

Слияние ядер – процесс соединения легких ядер (преимущественно водорода) в более тяжелые (преимущественно гелия). При слиянии ядер выделяется энергия, что заставляет звезды, подобные Солнцу, светиться.

Спектр – радужный рисунок, образующийся при пропускании луча белого света через призму. Традиционно видимые в спектре цвета подразделяются на красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый: у красного самая большая длина волны, у фиолетового самая маленькая.

Спектроскопия – метод выяснения состава объекта путем анализа исходящего от него света. Каждый элемент, например водород или углерод, дает определенные линии спектра, столь же уникальные, как отпечаток пальца или штрихкод. Линии солнечного спектра были впервые изучены Йозефом фон Фраунгофером.

Стационарная (стабильная) модель Вселенной – представление о том, что Вселенная всегда и в любой момент времени была такой же, как теперь. Успех теории Большого взрыва исключил возможность правдивости модели в ее изначальной форме, но в контексте Мультивселенной и инфляции эта модель может оказаться применимой.

Телескоп-рефлектор – телескоп, собирающий свет и увеличивающий изображение с помощью специального зеркала.

Телескоп-рефрактор – телескоп, собирающий свет и увеличивающий изображение с помощью линз.

Темная материя – вещество, наличие которого определяется лишь по его силе тяготения, которое влияет на движение галактик и расширение Вселенной. Темной материи в пять-шесть раз больше, чем барионной.

Темная энергия – форма энергии, наполняющая весь космос и опознаваемая лишь по ее влиянию на расширение Вселенной. Примерно две трети всей массы Вселенной имеет эту форму.

Температурная шкала Кельвина – температурная шкала, нулем в которой считается абсолютный ноль (–273,15°С), а размер градуса соответствует градусу на шкале Цельсия. Градусы Кельвина (кельвины) не сопровождаются знаком градуса. 0°С соответствует 273,15 К.

Теория Большого взрыва – широко принятая в научном мире и подтверждаемая наблюдениями (например, наличием реликтового излучения) идея, что Вселенная в ее современном виде образовалась из первичного горячего и плотного состояния.

Туманность – в современном значении межзвездное облако газа и пыли. Прежде чем было установлено, что объекты, ныне известные как галактики, находятся вне Млечного Пути, некоторые из них, например галактика Андромеды, также носили имя туманностей. Однако сейчас данное значение термина устарело.

Туннельный эффект, или туннелирование, – следствие принципа неопределенности квантовой физики, позволяющее частицам (например, электронам или альфа-частицам) покидать атомное ядро или проникать в него, несмотря на отсутствие у них требуемой классической теорией физики энергии. Эффект связан с двойственностью природы квантов, представляющих собой одновременно частицы и волны (корпускулярно-волновым дуализмом).

Фотон – частица света или любого электромагнитного излучения.

Холодная темная материя (ХТМ) – доминирующий материальный компонент Вселенной, примерно впятеро превосходящий по массе привычную для нас материю. Присутствие ХТМ обнаруживается благодаря ее влиянию на гравитацию, однако ученые пока не могут точно сказать, каковы ее свойства.

Цефеида – тип переменных звезд, циклически изменяющих яркость: эти циклы позволяют астрономам выяснить среднюю яркость этих звезд и, следственно, расстояние до них.

Черное тело – гипотетический объект, поглощающий все попадающее на него электромагнитное излучение. Горячее черное тело – идеальный излучатель электромагнитной энергии. Солнце и звезды очень близки к состоянию черного тела.

Шаровое скопление – имеющий сферическую форму комплекс достаточно близко друг к другу расположенных отдельных звезд, иногда исчисляемых миллионами.

Электромагнитное излучение – любая форма излучения, состоящего из электричества и магнетизма, в том числе свет, радиоволны, рентгеновское излучение. Описывается набором уравнений, названных в честь Джеймса Максвелла[205].

Электрон – отрицательно заряженная частица. Электроны образуют внешний слой атома.

Элемент – субстанция, состоящая из атомов с одинаковым числом протонов в ядре и, следовательно, одинаковым числом электронов вокруг ядра (что определяет химические свойства элемента). Некоторые из ядер могут иметь другое число нейтронов, образуя различные изотопы одного элемента.

Эллиптическая галактика – крупная звездная система без очевидной внутренней структуры, по форме напоминающая мяч для регби.

Благодарности

Сассекский университет предоставил мне отличную базу для работы, а коллектив кафедры астрономии выделил много времени на проведение очень продуктивных дискуссий о различных аспектах этой науки. Кроме того, Вирджиния Тримбл из Калифорнийского университета помогла мне не допустить ошибок в исторической части, а Франсуа Буше из парижского Института астрофизики рассказал о новейших открытиях спутника «Планк». Я также благодарен Фонду Альфреда Мангера за регулярную финансовую поддержку.

Об авторе

Джон Гриббин родился в 1946 году в городе Мейдстон, графство Кент (Великобритания). Он изучал физику в Сассекском университете, там же получил степень магистра астрономии, а над докторской диссертацией работал в Институте астрономии Кембриджского университета.

Получив опыт работы в журналах Nature и New Scientist, Джон сосредоточился на написании книг на научные темы – от тайн Вселенной и Мультивселенной до истории науки; его труды неоднократно удостаивались наград в Великобритании и США. Перу Гриббина принадлежат биографии Альберта Эйнштейна, Стивена Хокинга, Ричарда Фейнмана, Галилео Галилея, Бадди Холли и Джеймса Лавлока.

С 1993 года Гриббин читает лекции по астрономии в Сассекском университете.

Сноски

Сноски

1

Реликтовое, или космическое микроволновое фоновое, излучение, – равномерно заполняющее Вселенную тепловое излучение, возникшее в эпоху первичной рекомбинации водорода. Прим. ред.

(обратно)

2

Арно Пензиас (р. 1933) – американский астрофизик, профессор, лауреат Нобелевской премии по физике (1978) за открытие космического микроволнового фонового излучения. Роберт Вильсон (р. 1936) – американский физик, лауреат Нобелевской премии по физике (1978) за открытие космического микроволнового реликтового излучения. Прим. ред.

(обратно)

3

Георгий Гамов (1904–1968) – советский и американский физик-теоретик, астрофизик и популяризатор науки. Прим. ред.

(обратно)

4

Джим Пиблс (р. 1935) – канадский и американский физик, работающий в области теоретической космологии. Прим. ред.

(обратно)

5

Квантовый генератор, излучающий когерентные электромагнитные волны сантиметрового диапазона (микроволны). Название maser – аббревиатура фразы «Усиление микроволн с помощью вынужденного излучения» (microwave amplification by stimulated emission of radiation) – было предложено в 1954 году Чарльзом Таунсом, одним из его создателей. Прим. ред.

(обратно)

6

Частный исследовательский университет США, расположенный в Хьюстоне. Основан в 1912 году и назван в честь Уильяма Райса – человека, вложившего все свое состояние в создание университета, который открылся уже после его смерти. Прим. ред.

(обратно)

7

Сэр Фред Хойл (1915–2001) – известный британский астроном и космолог, автор нескольких научно-фантастических романов. Прим. ред.

(обратно)

8

Дэвид Дьюхирст (1926–2012) – астроном и библиотекарь обсерватории в Кембридже и Институте астрономии с 1950 года до выхода на пенсию в 1993 году. Прим. ред.

(обратно)

9

Мартен Шмидт (р. 1929) – голландский астроном, измеривший расстояния до астрономических объектов, именуемых квазарами. Лауреат премии Кавли (2008) в области астрофизики. Прим. ред.

(обратно)

10

Периодическое издание американской телефонно-телеграфной компании AT&T, посвященное освещению научно-технических аспектов электрической связи. Выходил под этим названием с 1922 до 1983 год и под разными другими названиями до 1995 года. Прим. ред.

(обратно)

11

Роберт Дикке (1916–1997) – американский физик, член Национальной академии наук США с 1967 года; известен своими работами в области астрофизики, атомной физики, космологии и гравитации. Прим. ред.

(обратно)

12

Ральф Альфер (1921–2007) – американский космолог; наиболее известен новаторской работой начала 1950-х гг. по теории Большого взрыва, в том числе большого нуклеосинтеза взрыва и предсказаний космического микроволнового фонового излучения. Прим. ред.

(обратно)

13

Американский научный журнал, публикующий аспекты теоретических и экспериментальных исследований в области физики. Издается Американским физическим обществом с 1913 года. Прим. ред.

(обратно)

14

Ганс Бете (1906–2005) – американский астрофизик, лауреат Нобелевской премии по физике (1967). Прим. ред.

(обратно)

15

Сэр Герман Бонди (1919–2005) – англо-австрийский математик и космолог. Томас Голд (1920–2004) – астрофизик австрийского происхождения, профессор астрономии Корнелльского университета, член американской Национальной академии наук, а также Лондонского королевского общества. Прим. ред.

(обратно)

16

Модель «пульсирующей Вселенной» Дикке на самом деле несколько сложнее, но, поскольку она оказалась несостоятельной, я не стану углубляться в ее детали.

(обратно)

17

Научный журнал, издаваемый в США, в котором публикуются статьи по астрофизике и астрономии. Прим. ред.

(обратно)

18

Об этом говорил то ли Пензиас, то ли Вильсон, но я не могу сейчас найти источник.

(обратно)

19

«Ибо всякому имеющему дастся и приумножится, а у неимеющего отнимется и то, что имеет» (Мф. 25:29).

(обратно)

20

Бесцветный газ с резким запахом. Прим. ред.

(обратно)

21

Еженедельный научно-популярный журнал на английском языке; с 1996 года также поддерживается сайт, на котором публикуются современные исследования для широкого круга читателей. Прим. ред.

(обратно)

22

Роджер Тайлер (1929–1997) – британский астроном; внес важный вклад в исследования строения и эволюции звезд, устойчивости плазмы, нуклеогенеза и космологии. Прим. ред.

(обратно)

23

Яков Зельдович (1914–1987) – советский физик и физикохимик, академик АН СССР, доктор физико-математических наук, профессор. Трижды Герой Социалистического Труда (1949, 1954, 1956). Прим. ред.

(обратно)

24

Андрей Дорошкевич – советский астрофизик. Игорь Новиков (р. 1935) – российский астрофизик-теоретик и космолог. В середине 1980-х годов сформулировал принцип самосогласованности Новикова, ставший важным вкладом в теорию путешествий во времени. Прим. ред.

(обратно)

25

Огюст Конт (1798–1857) – французский философ, социолог, методолог и популяризатор науки, преподаватель Парижского политехникума, основатель школы позитивизма, социальный реформатор, оставивший большое литературное наследие, в том числе шеститомный «Курс позитивной философии» (1830–1842). Прим. ред.

(обратно)

26

Уильям Волластон (Уолластон) (1766–1828) – английский ученый, который открыл палладий (1803) и родий (1804), впервые получил (1803) в чистом виде платину. Прим. ред.

(обратно)

27

Йозеф Фраунгофер (1787–1826) – немецкий физик, знаменитый оптик, сын бедного стекольщика, работавший в мастерской отца. Прим. ред.

(обратно)

28

Роберт Бунзен (1811–1899) – немецкий химик-экспериментатор. Густав Кирхгоф (1824–1887) – один из великих физиков XIX века. Прим. ред.

(обратно)

29

Джозеф Локьер (1836–1920) – английский астроном. С 1885 года по 1913 год работал директором обсерватории физики Солнца в Южном Кенсингтоне, а с 1913 года – в частной обсерватории в Сидмуте. Прим. ред.

(обратно)

30

Пьер Жансен (1824–1907) – французский астроном, член Парижской АН (1873), член Лондонского королевского общества (1875), директор обсерватории в Медоне. Прим. ред.

(обратно)

31

Сэр Уильям Рамзай, или Рэмзи, (1852–1916), – английский химик и физик, лауреат Нобелевской премии по химии (1904). Прим. ред.

(обратно)

32

Уильям Крукс (1832–1919) – английский химик и физик, член (с 1863 года) и президент (1913–1915) Лондонского королевского общества, от которого он получил Королевскую золотую медаль (1875). Прим. ред.

(обратно)

33

Сесилия Пейн-Гапошкина (1900–1979) – американский астроном. Родилась в Уэндовере (Англия), в 1923-м окончила Кембриджский университет и в том же году переехала в США. Прим. ред.

(обратно)

34

Артур Эддингтон (1882–1944) – английский астрофизик. Прим. ред.

(обратно)

35

Харлоу Шепли (1885–1972) – американский астроном. В 1911 году окончил Миссурийский университет, специализируясь на журналистике, затем продолжил образование в Принстонском университете, где изучал астрономию под руководством астрофизика Генри Расселла. Прим. ред.

(обратно)

36

Мегнад Саха (1893–1956) – индийский физик и астрофизик. Основатель Института ядерной физики в Калькутте (1951) и его почетный директор. Член Лондонского королевского общества (1927). Прим. ред.

(обратно)

37

Отто Струве (1897–1963) – российско-американский астроном, один из крупнейших астрофизиков XX века. Директор Йеркской обсерватории в 1932–1947 гг. Член Национальной академии наук США. Президент Американского астрономического общества в 1946–1949 гг. Прим. ред.

(обратно)

38

Генри Расселл (1877–1957) – американский астрофизик, разработавший одну из первых теорий эволюции звезд. Первым определил содержание химических элементов в атмосфере Солнца, получил оценки содержания химических элементов во Вселенной, занимался исследованием связи между спектрами звезд и их светимостью. Прим. ред.

(обратно)

39

Альбрехт Унзольд (1905−1995) – немецкий астрофизик, развил теорию звездных атмосфер. Прим. ред.

(обратно)

40

Сэр Уильям Маккри (1904–1999) – британский астроном и математик. Прим. ред.

(обратно)

41

А еще много лет спустя Маккри вошел в состав комиссии на защите моей докторской диссертации.

(обратно)

42

Изменение видимого положения объекта относительно удаленного фона в зависимости от положения наблюдателя. Прим. ред.

(обратно)

43

Масса Земли известна с конца XVIII века, когда английский физик Генри Кавендиш измерил силу притяжения в ряде очень точных экспериментов.

(обратно)

44

Уильям Гершель (1738–1822) – английский астроном немецкого происхождения. Прославился открытием планеты Уран, а также двух ее спутников – Титании и Оберона. Он также первооткрыватель двух спутников Сатурна и инфракрасного излучения. Менее известен двадцатью четырьмя симфониями, автором которых он был. Прим. ред.

(обратно)

45

Не забудьте, что физики измеряют температуру в градусах Кельвина, отсчет которых ведется от абсолютного нуля (–273°С), то есть 0°С равен 273 К и т. д.

(обратно)

46

Джон Тиндаль (1820–1893) – английский физик, член Лондонского королевского общества (1852). Йозеф Стефан (1835–1893) – австрийский (родившийся в семье этнических словенцев) физик и математик. Член Австрийской академии наук (1865). Прим. ред.

(обратно)

47

Людвиг Больцман (1844–1906) – австрийский физик-теоретик, основатель статистической механики и молекулярно-кинетической теории. Прим. ред.

(обратно)

48

Вильгельм Вин (1864–1928) – немецкий физик, лауреат Нобелевской премии по физике (1911) за открытия в области законов, управляющих тепловым излучением. Прим. ред.

(обратно)

49

Есть и другой способ осуществить красное смещение. Он важен для космологической дискуссии, изложенной во второй части книги, поэтому я приведу его там.

(обратно)

50

Кристиан Доплер (1803–1853) – австрийский математик и физик, профессор, первый директор Института физики Венского университета, почетный доктор Пражского университета. Член Королевского научного общества Богемии и Венской академии наук. Наиболее известен своими исследованиями в области акустики и оптики. Прим. ред.

(обратно)

51

Астрофизики высокопарно называют жизненный цикл каждой звезды «эволюцией».

(обратно)

52

Жорж-Луи Леклерк, граф де Бюффон (1707–1788) – французский натуралист, биолог, математик, естествоиспытатель и писатель XVIII века. Высказал идею о единстве растительного и животного мира. Прим. ред.

(обратно)

53

Полное имя – Жан-Батист Жозеф Фурье, но первое имя часто опускают.

(обратно)

54

Уильям Томсон, лорд Кельвин (1824–1907) – британский физик и механик. Известен своими работами в области термодинамики, механики, электродинамики. Прим. ред.

(обратно)

55

Герман фон Гельмгольц (1821–1894) – немецкий физик, врач, физиолог, психолог, акустик. Прим. ред.

(обратно)

56

Джон Ватерстон (1811–1883) – шотландский физик, незаслуженно забытый пионер кинетической теории газов. Прим. ред.

(обратно)

57

Буквально годом ранее вышла книга Чарльза Дарвина «О происхождении видов». Возможно, именно чтение этого труда вдохновило Кельвина вернуться к теме возраста Солнца.

(обратно)

58

Чарльз Лайелл (1797–1875) – британский ученый, основоположник современной геологии. Прим. ред.

(обратно)

59

От лат. denudatio – обнажение, совокупность процессов сноса и переноса (водой, ветром, льдом, непосредственным действием силы тяжести) продуктов разрушения горных пород в пониженные участки земной поверхности, где происходит их накопление. Прим. ред.

(обратно)

60

Звезды на завершающем этапе своего формирования, вплоть до момента загорания термоядерных реакций в ядре, после которого сжатие протозвезды прекращается и она становится звездой главной последовательности. Прим. ред.

(обратно)

61

Томас Чемберлен (1843–1928) – авторитетный американский геолог и педагог. В 1893 году основал Journal of Geology, редактором которого был на протяжении многих лет. Прим. ред.

(обратно)

62

Вильгельм Рентген (1845–1923) – выдающийся немецкий физик. Первый в истории физики лауреат Нобелевской премии. Прим. ред.

(обратно)

63

Сэр Джозеф Джон Томсон (1856–1940) – английский физик, лауреат Нобелевской премии по физике 1906 года с формулировкой «за исследования прохождения электричества через газы». Прим. ред.

(обратно)

64

Антуан Анри Беккерель (1852–1908) – французский физик, лауреат Нобелевской премии по физике и один из первооткрывателей радиоактивности. Прим. ред.

(обратно)

65

Французский научный журнал, который издается с 1666 года и публикует труды Французской академии наук. Прим. ред.

(обратно)

66

Физический факультет Кембриджского университета. Лаборатория создана в 1874 году как первая в мире учебно-научная лаборатория, где студенты могли и учиться, и проводить исследования вместе с сотрудниками университета. Прим. ред.

(обратно)

67

Фредерик Содди (1877–1956) – английский радиохимик, член Лондонского королевского общества (1910), лауреат Нобелевской премии по химии (1921). Прим. ред.

(обратно)

68

Радий сохранился на Земле до наших дней лишь в виде одного из продуктов распада намного дольше живущих атомов урана.

(обратно)

69

Ханс Гейгер (1882–1945) – немецкий физик, первым создавший детектор альфа-частиц и других ионизирующих излучений. Изобрел в 1908 году счетчик Гейгера. Эрнест Марсден (1889–1970) – новозеландский физик, член Королевского общества Новой Зеландии (в 1947 г. – президент). Прим. ред.

(обратно)

70

Джон Джоли (1857–1933) – ирландский геолог, один из основоположников радиогеологии. Профессор геологии и минералогии колледжа «Тринити» и Дублинского университета, иностранный член-корреспондент АН СССР, почетный доктор Кембриджского университета. Прим. ред.

(обратно)

71

Роберт Стратт (1875–1947) – британский физик, пэр, открыл «активный азот». Прим. ред.

(обратно)

72

«Анналы физики» – немецкий научный журнал, издается с 1799 года. Прим. ред.

(обратно)

73

Фрэнсис Астон (1877–1945) – английский физик, член Лондонского королевского общества (1921), член-корреспондент АН СССР (1924), лауреат Нобелевской премии по химии (1922). Прим. ред.

(обратно)

74

Обратите внимание, что атомная масса гелия в его примере равна четырем, а прочие атомные веса рассчитываются относительно него.

(обратно)

75

Эддингтон говорит с такой позиции, помня об ужасах Первой мировой войны.

(обратно)

76

Макс Планк (1858–1947) – немецкий физик-теоретик, основоположник квантовой физики. Прим. ред.

(обратно)

77

Это кажущееся простым утверждение стоило Планку огромной работы (см. мою книгу In Search of SchrÖdinger’s Cat [ «В поисках кота Шрёдингера»]).

(обратно)

78

Шатьендранат Бозе (1894–1974) – индийский физик, специализировавшийся в математической физике. Один из создателей квантовой статистики, теории конденсата Бозе – Эйнштейна. В его честь назвали бозон. Прим. ред.

(обратно)

79

Луи де Бройль (1892–1987) – французский физик-теоретик, один из основоположников квантовой механики, лауреат Нобелевской премии по физике (1929), член Французской академии наук и ее постоянный секретарь, член Французской академии. Прим. ред.

(обратно)

80

Клинтон Дэвиссон (1881–1958) – американский физик, лауреат Нобелевской премии по физике (1937) за экспериментальное открытие дифракции электронов на кристаллах. Прим. ред.

(обратно)

81

Лестер Джермер (1896–1971) – американский физик, подтвердил вместе с другими учеными гипотезу де Бройля о корпускулярно-волновой природе микрочастиц в ходе эксперимента, который получил название Опыт Дэвиссона – Джермера, изучал термионику, эрозию металлов, контактную физику. Прим. ред.

(обратно)

82

Вернер Гейзенберг (1901–1976) – немецкий физик-теоретик, один из создателей квантовой механики, лауреат Нобелевской премии по физике (1932). Прим. ред.

(обратно)

83

Сэр Джеймс Чедвик (1891–1974) – английский физик, известный открытием нейтрона и фотоядерной реакции, член Лондонского королевского общества (1927). Лауреат Нобелевской премии по физике (1935). Прим. ред.

(обратно)

84

Роберт Аткинсон (1898–1982) – британский астроном, физик и изобретатель. Фридрих «Фриц» Хоутерманс (1903–1966) – немецкий ученый (специалист по ядерной физике и космохимии) из Нидерландов, работавший в Германии, Швейцарии и краткое время в СССР. Прим. ред.

(обратно)

85

И два электрона (их модель была создана до открытия нейтрона).

(обратно)

86

Ганс Бете (1906–2005) – американский астрофизик, лауреат Нобелевской премии по физике (1967). Прим. ред.

(обратно)

87

Карл фон Вайцзеккер (1912–2007) – немецкий физик и философ, выходец из швабской семьи, давшей многих известных теологов, ученых и военных. Прим. ред.

(обратно)

88

Как я упоминал, астрономы условно называют все элементы тяжелее водорода и гелия металлами, проявляя тем самым характерное безразличие к принятым в других науках терминам.

(обратно)

89

Небольшой процент ядер оказывается вовлеченным в другие взаимодействия, которые не относятся к нашей теме.

(обратно)

90

Чарльз Критчфилд (1910–1994) – американский физик, специалист по математической физике. Прим. ред.

(обратно)

91

Небольшой процент ядер гелия-3 вступает в более сложные взаимодействия, но, как и в случае с CNO-циклом, мы позволим себе опустить их в этой книге.

(обратно)

92

Бертрам Болтвуд (1870–1927) – американский ученый. Проходил стажировку в Англии у Эрнеста Резерфорда. Доказал, что радий – продукт распада урана. Прим. ред.

(обратно)

93

Артур Холмс (1890–1965) – британский геолог, член Лондонского королевского общества (1942). Прим. ред.

(обратно)

94

По сути, ее вернее было бы назвать ядерной бомбой (ср. «ядерное оружие»).

(обратно)

95

Сам Хойл утверждал, что, оставаясь формально студентом, он уклонялся от уплаты подоходного налога по полученному в то время гранту.

(обратно)

96

Вальтер Бааде (1893–1960) – немецкий астроном и астрофизик; жил в США (1931–1958) и работал на крупнейших телескопах Маунт-Вилсоновской и Паломарской обсерваторий. Прим. ред.

(обратно)

97

Маргарет Бербидж, урожденная Пичи (р. 1919) – англо-американский астроном и астрофизик. Прим. ред.

(обратно)

98

Один из студентов Хойла впоследствии курировал мою диссертацию, так что я могу назвать себя его «научным внуком».

(обратно)

99

Эдвин Солпитер (1924–2008) – американский физик-теоретик и астрофизик (занимался также биофизикой), член Национальной АН США, один из основоположников современной теории строения и эволюции звезд. Прим. ред.

(обратно)

100

Внесистемная единица энергии, используемая в атомной и ядерной физике, физике элементарных частиц и близких и родственных областях науки (биофизике, физической химии, астрофизике и им подобных). Прим. ред.

(обратно)

101

Уильям Фаулер (1911–1995) – американский физик и астрофизик. Лауреат Нобелевской премии по физике (1983) за теоретическое и экспериментальное исследование ядерных реакций, имеющих значение для образования химических элементов Вселенной. Прим. ред.

(обратно)

102

Я знаю всех участников этой истории, однако в конце 1960-х и начале 1970-х годов я работал в Кембридже как самый младший сотрудник и никогда не лез к ученым с вопросами, о чем теперь сожалею. Фаулер был одним из двух оппонентов на защите моей докторской, вторым был Билл Маккри, один из первых исследователей, осознавших важность водорода для строения Солнца. К счастью, Бербиджей, Фаулера и Хойла позже расспросил Кен Кросвелл: их рассказ обо всем этом можно прочесть в главе 9 его книги The Alchemy of the Heavens («Алхимия небес»).

(обратно)

103

Англо-американские астрономы, супруги. Прим. ред.

(обратно)

104

Аластер Кэмерон (1925–2005) – канадский астрофизик и исследователь космоса, выдающийся ученый, сотрудник отделения астрономии Гарвардского университета. Прим. ред.

(обратно)

105

С привычным безразличием к традициям других научных дисциплин астрономы называют эволюцией и жизненный цикл конкретной звезды, и развитие групп звезд, галактик и всей Вселенной. Приношу от их имени извинения всем биологам, которых это задевает.

(обратно)

106

Эйнар Герцшпрунг (1873–1967) – датский астроном, его именем назван кратер на Луне. Прим. ред.

(обратно)

107

Или диаграмма «цвет – звездная величина».

(обратно)

108

Спектральные классы слева направо обозначаются буквами OBAFGKM, запомнить этот поможет фраза Oh, be a fine girl, kiss me!

(обратно)

109

Одним из тех, кто пришел к пониманию эволюции красных гигантов, был ученый Джон Фолкнер – ученик Фреда Хойла, впоследствии мой научный руководитель в период работы над докторской.

(обратно)

110

Невидимый компонент галактики, основная часть ее сферической подсистемы. Прим. ред.

(обратно)

111

Астрономы из США. Прим. ред.

(обратно)

112

В декабре 2013 года ESA запустило следующий проект – Gaia. Планируется, что аппарат пробудет в космосе пять лет и сможет измерить параллаксы с точностью до 0,0001 угловой секунды (10 микросекунд), что соответствует 100 тысячам парсек или примерно 320 тысячам световых лет. Ожидается, что Gaia измерит параллакс более миллиарда звезд.

(обратно)

113

Теория, лежащая в основе этого подхода, была разработана в начале 1950-х годов британским астрономом Леоном Местелом, с которым я впоследствии работал в одной лаборатории.

(обратно)

114

В сторону созвездия Скорпиона, но намного дальше него.

(обратно)

115

Американская благотворительная некоммерческая организация, основанная Альфредом Слоуном (1875–1966), президентом и генеральным директором автомобильной корпорации General Motors (1923–1937). Прим. ред.

(обратно)

116

«Хаббл» измеряет параллаксы отдельных звезд очень точно, но, в отличие от Hipparcos, не способен одновременно отмечать параллаксы большого числа небесных тел.

(обратно)

117

Very Large Telescope – комплекс из четырех отдельных 8,2-метровых оптических телескопов (UT1-UT4): Анту (Antu), Куйен (Kueyen), Мелипал (Melipal), Йепун (Yepun), объединенных в одну систему, построенную и управляемую Европейской южной обсерваторией. Часть Паранальской обсерватории на Серро-Параналь, на высоте 2635 м в Чили. Прим. ред.

(обратно)

118

Симон Марий (1573−1624) – немецкий астроном. Прим. ред.

(обратно)

119

Впрочем, именно Марий придумал современные названия этих спутников: Ио, Европа, Ганимед и Каллисто.

(обратно)

120

Эдмунд Галлей (1656–1742) – английский астроном, геофизик, математик, метеоролог, физик и демограф. Прим. ред.

(обратно)

121

The Philosophical Transactions of the Royal Society – научный журнал, издаваемый Лондонским королевским обществом. Старейший научный журнал англоязычного мира. Выходит с 6 марта 1665 года без перерывов, что делает его старейшим непрерывно издающимся научным журналом в мире. Прим. ред.

(обратно)

122

Томас Райт (1711–1786) – английский астроном, математик, создатель инструментов, архитектор и дизайнер садовых ландшафтов. Прим. ред.

(обратно)

123

Иммануиил Кант (1724–1804) – немецкий философ, родоначальник немецкой классической философии, стоящий на стыке эпохи Просвещения и романтизма. Прим. ред.

(обратно)

124

Пьер-Симон, маркиз де Лаплас (1749–1827) – французский математик, механик, физик и астроном; известен работами в области небесной механики, дифференциальных уравнений, один из создателей теории вероятностей. Прим. ред.

(обратно)

125

«Сир, я не нуждался в этой гипотезе» (фр.).

(обратно)

126

Апертура (лат. apertura – отверстие) в оптике – характеристика оптического прибора, описывающая его способность собирать свет и противостоять дифракционному размытию деталей изображения. Прим. ред.

(обратно)

127

В физике состояние вещества с параметрами выше критических, а также гипотетическая жидкость, которой до XVIII века объясняли такие явления, как тепло, магнетизм, электричество. Прим. ред.

(обратно)

128

Уильям Парсонс, третий лорд Росс (1800–1867) – британско-ирландский астроном и общественный деятель, известен как создатель ряда мощных телескопов-рефлекторов, крупнейший из которых, «Левиафан», построенный в 1845 году, оставался крупнейшим телескопом мира до начала XX века. Прим. ред.

(обратно)

129

Сэр Уильям Хаггинс (1824–1910) – английский астроном-любитель, построил частную обсерваторию и наблюдал за спектральными линиями излучения и поглощения различных небесных объектов. Прим. ред.

(обратно)

130

Юлиус Шейнер (1858–1913) – немецкий астроном, автор трудов по спектральному и спектрофотометрическому исследованию звезд. Прим. ред.

(обратно)

131

По другим источникам, это слова древнекитайского философа Лао-Цзы. Прим. ред.

(обратно)

132

Генриетта Суон-Ливитт (1868–1921) – американский астроном, известная своими работами по изучению переменных звезд. Прим. ред.

(обратно)

133

Эдуард Пикеринг (1846–1919) – американский астроном, член Национальной АН. Прим. ред.

(обратно)

134

Фрэнсис Крик (1916–2004) – британский молекулярный биолог, биофизик и нейробиолог. Лауреат Нобелевской премии по физиологии и медицине (1962) совместно с Джеймсом Уотсоном и Морисом Уилкинсом с формулировкой «за открытия, касающиеся молекулярной структуры нуклеиновых кислот и их значения для передачи информации в живых системах». Джеймс Уотсон (р. 1928) – американский биолог. Лауреат Нобелевской премии по физиологии и медицине (1962) совместно с Фрэнсисом Криком и Морисом Уилкинсом за открытие структуры молекулы ДНК. Прим. ред.

(обратно)

135

Джон Гудрайк (1764–1786) – английский астроном-любитель, член Лондонского королевского общества. Прим. ред.

(обратно)

136

Сейчас ситуация изменилась благодаря спутникам, таким как Hipparcos.

(обратно)

137

Якобус Каптейн (1851–1922) – голландский астроном, получивший известность благодаря проведенным обширным исследованиям Млечного Пути. Прим. ред.

(обратно)

138

Гебер Кертис (1872–1942) – американский астроном. Участвовал в одиннадцати экспедициях для наблюдений солнечных затмений. Прим. ред.

(обратно)

139

В истории астрономии «Большой спор» между Харлоу Шепли и Гебером Кертисом был важнейшей дискуссией, которая касалась природы спиральных туманностей и размера Вселенной. Основной вопрос в рамках обсуждения формулировался так: представляют ли собой далекие туманности относительно небольшие объекты, лежащие в пределах нашей Галактики, или же это большие, независимые галактики, подобные Млечному Пути. Прим. ред.

(обратно)

140

Адриан ван Маанен (1884–1946) – голландский и американский астроном. Прим. ред.

(обратно)

141

Сэр Пэлем Гренвилл Вудхауз (1881–1975) – популярный английский писатель, драматург, комедиограф. Рыцарь-командор ордена Британской империи. Прим. ред.

(обратно)

142

Весто Мелвин Слайфер (1875–1969) – американский астроном, член Национальной АН (с 1921 года). Прим. ред.

(обратно)

143

Персиваль Лоуэлл (1855–1916) – американский бизнесмен, востоковед, дипломат, астроном и математик, исследователь планеты Марс, открыл астероид (793) Аризона (1907). Прим. ред.

(обратно)

144

Сегодня известность обсерватории связана с телескопом канала Discovery, который на самом деле расположен более чем в 60 км к юго-востоку от Флагстафа в местечке Хэппи-Джек.

(обратно)

145

В том же году он получил докторскую степень в университете Индианы: иногда он прерывал работу у Лоуэлла и писал на основе проделанных исследований диссертацию.

(обратно)

146

Густав Штромберг (1882–1962) – американский астроном. Прим. ред.

(обратно)

147

Милтон Хьюмасон (1891−1972) – американский астроном, выходец из семьи крупного банкира. Прим. ред.

(обратно)

148

Виллем де Ситтер (1872–1934) – голландский астроном. Прим. ред.

(обратно)

149

Джон Хукер (1838–1911) – американский фабрикант, ученый-любитель, астроном и меценат. Прим. ред.

(обратно)

150

Условно говоря, Вселенная – это реальный мир, в котором мы живем, а вселенная – это математическая модель возможного мира, допускаемого законами физики, но не обязательно совпадающего с имеющимся.

(обратно)

151

Александр Фридман (1888–1925) – выдающийся российский и советский математик, физик и геофизик, создатель теории нестационарной Вселенной, проректор (1919–1920), декан физико-математического факультета (1919) Пермского университета. Прим. ред.

(обратно)

152

По крайней мере, такова официальная версия. Вечный оригинал, хотя и большой выдумщик Георгий Гамов, учившийся у Фридмана, утверждал, что тот умер от пневмонии: простудился во время высотных метеорологических наблюдений в открытой корзине воздушного шара. Действительно, за два месяца до смерти, в июле 1925 года, Фридман принял участие в полете на высоту 7400 м.

(обратно)

153

Фридман А. Мир как пространство и время. М.: Наука, 1965.

(обратно)

154

Жорж Леметр (1894–1966) – бельгийский католический священник, астроном и математик. Прим. ред.

(обратно)

155

По сути, это псевдоскорость, поскольку не столько галактики движутся сквозь космос, сколько само пространство растягивается.

(обратно)

156

Сольвеевские конгрессы (Сольвеевские конференции) – ряд международных конференций по обсуждению фундаментальных проблем физики и химии, проводимых в Брюсселе международными Сольвеевскими институтами физики и химии с 1911 года. Прим. ред.

(обратно)

157

«Ваши расчеты верны, но ваши физические воззрения недопустимы».

(обратно)

158

Есть еще одна любопытная причина, по которой физики могли единодушно игнорировать эти оригинальные идеи. Все это происходило как раз во время великого прорыва в квантовой теории, преобразившей понимание человеком субатомного мира. На этих исследованиях было сосредоточено столько внимания, что общая теория относительности и космология рассматривались как запутанные экстравагантные вопросы, не имеющие практического значения.

(обратно)

159

Как доказывает этот пример, если разрешить выбирать любую космологическую постоянную, можно получить вселенную, которая делает почти все, что вам нужно, в плане расширения, сжатия или колебания. Это делает постоянную совершенно бесполезной в случаях, когда нужно получить прогноз о реальном состоянии Вселенной.

(обратно)

160

Поразительная небрежность: если кто и должен был догадаться, что это вовсе не доплеровский эффект, то это Эйнштейн!

(обратно)

161

Джеймс Джинс (1877–1946) – британский физик-теоретик, астроном, математик. Прим. ред.

(обратно)

162

Де Ситтер не дожил до этого времени. Он умер от пневмонии в Лондоне в ноябре 1934 года в возрасте 62 лет.

(обратно)

163

Капелла (Альфа Возничего) – самая яркая звезда в созвездии Возничего, шестая по яркости на небосклоне и третья по яркости на небе Северного полушария. Прим. ред.

(обратно)

164

Рассуждения Эддингтона получили подтверждение много лет спустя.

(обратно)

165

Через это прошли многие американцы немецкого происхождения, но им повезло больше, чем японцам: с теми обращались весьма некорректно и помещали их в лагеря для интернированных лиц.

(обратно)

166

Телескопы на горах Вилсон и Паломар относятся к единой системе обсерваторий при Калтехе.

(обратно)

167

Аллан Сэндидж (1926–2010) – американский астроном, известный многолетними исследованиями по определению постоянной Хаббла. Прим. ред.

(обратно)

168

Тип астрономического телескопа с широким полем зрения, предназначенный исключительно для фотографического использования. Он был изобретен Бернардом Шмидтом в 1930 году. Роль коллектора света выполняет сферическое зеркало. Прим. ред.

(обратно)

169

Хэлтон Арп (1927–2013) – американский астроном, получивший известность благодаря созданному им Атласу пекулярных галактик, в котором перечислено большое количество пекулярных и взаимодействующих галактик. Прим. ред.

(обратно)

170

Кстати, если вы ждете ответа: кропотливый подсчет показал, что Вселенная действительно плоская или, как осторожно формулируют эксперты, что ее кривизна не находит подтверждения.

(обратно)

171

Николас Мейол (1906−1993) – американский астроном. Прим. ред.

(обратно)

172

Впервые я заинтересовался этой темой значительно раньше, когда в середине 1950-х прочел книги Георгия Гамова.

(обратно)

173

Лет двадцать спустя, когда я решил стать космологом, Бонди порекомендовал мне начать с какой-нибудь более здравой темы, прежде чем ступать на эту зыбкую почву. Я послушался и написал докторскую по звездам, хотя до сих пор не уверен, что здравым был сам совет Бонди.

(обратно)

174

«Глубокой ночью» (Dead of Night) – классический британский киноальманах в жанре фильма ужасов, состоящий из пяти рассказов. Фильм снят в 1945 году на лондонской студии Ealing четырьмя режиссерами. Прим. ред.

(обратно)

175

Голд всегда порождал и умело продвигал множество идей. В 1960-е годы после открытия пульсаров в Кембридже (где я как раз старался не ступать на зыбкую почву космологии) велось множество разговоров о том, как их можно объяснить, в том числе выдвигалось предположение, что они могут оказаться вращающимися нейтронными звездами. Насколько я помню, эта идея возникла в общей дискуссии за чашкой кофе. Но именно Голд быстро опубликовал статью на эту тему в журнале Nature и был признан автором открытия.

(обратно)

176

По словам самого Хойла.

(обратно)

177

Сэр Мартин Райл (1918–1984) – британский радиоастроном, разработавший революционные системы радиотелескопов и использовавший их для точного обнаружения и записи слабых радиосигналов. Лауреат Нобелевской премии по физике (1974) вместе с Энтони Хьюишем за пионерские исследования в области радиофизики. Прим. ред.

(обратно)

178

Тамошний радиотелескоп не мог различить близко находящиеся источники сигнала, и в ряде случаев они считали две галактики одной.

(обратно)

179

К 2009 году эти уточнения позволили свести значение Н к 74,2 ± 3,6 (то есть диапазону от 70,6 до 77,8).

(обратно)

180

В конце карьеры Аллан Сэндидж привлек внимание коллег к похожей загадке – проблеме горизонта, указывая на нее в конце 1980-х годов как на «самую важную в области [космологии]». Она сводится к вопросу, почему Вселенная на противоположных сторонах неба (горизонтах) выглядит одинаково, хотя с момента Большого взрыва у света (или чего-либо еще) не хватило бы времени, чтобы пройти через всю Вселенную и обратно. Как, в таком случае, противоположные горизонты «знают», как соответствовать друг другу?

(обратно)

181

Алан Гут (р. 1947) – американский физик и космолог, впервые предложивший идею космической инфляции. Прим. ред.

(обратно)

182

Сидни Коулман (1937–2007) – американский физик-теоретик; известен работами в области физики высоких энергий. Прим. ред.

(обратно)

183

Эту идею дальше развил американец русского происхождения Андрей Линде и другие исследователи, но здесь мы уже выходим за пределы темы книги. См. мою книгу In Search of the Big Bang («В поисках Большого взрыва»).

(обратно)

184

Такая модель также предлагает решение проблемы горизонта, поскольку далеко разнесенные части Вселенной оказываются связанными ранее, но разделенными сверхбыстрым растяжением пространства. Это растяжение происходило в определенном смысле быстрее скорости света, но ничто не может двигаться через пространство быстрее света. Это убедительное доказательство существования инфляции обнаружил Сэндидж, а затем оно было подтверждено наблюдениями.

(обратно)

185

Джон Матер (р. 1946) – американский физик, лауреат Нобелевской премии по физике (2006) совместно с Джорджем Смутом за открытие анизотропии и чернотельной структуры энергетического спектра реликтового излучения. Работает в НАСА в центре космических полетов имени Годдарда. Прим. ред.

(обратно)

186

В 2006 году Матер и его коллега Джордж Смут получили за работу над СОВЕ Нобелевскую премию.

(обратно)

187

Материя, состоящая из барионов (нейтронов, протонов) и электронов, привычная форма материи, вещество. Прим. ред.

(обратно)

188

Ян Оорт (1900–1992) – голландский астроном, член АН Нидерландов. Прим. ред.

(обратно)

189

Фриц Цвикки (1898–1974) – американский астроном швейцарского происхождения, большую часть своей жизни работал в Калифорнийском технологическом институте в США (с 1925 г.); внес большой вклад в теоретическую и наблюдательную астрономию. Прим. ред.

(обратно)

190

Истинная природа холодной темной материи остается предметом активных дебатов и исследований, лежащих вне темы данной книги. Но вы можете представить ее как море частиц, наполняющее Вселенную, но взаимодействующее с барионной материей лишь с помощью силы тяготения.

(обратно)

191

Объяснение барионной катастрофы дано по моей книге Companion to the Cosmos («Компаньон космоса»), вышедшей в 1996 году.

(обратно)

192

Эндрю Фабиан (р. 1948) – британский астроном и астрофизик. Был директором Института астрономии Кембриджского университета с 2013 года. Прим. ред.

(обратно)

193

Класс астрономических объектов, один из самых ярких в видимой Вселенной, мощность его излучения иногда в десятки и сотни раз превышает суммарную мощность всех звезд таких галактик, как наша. Прим. ред.

(обратно)

194

На самом деле одинаковую яркость имеет только определенный подтип сверхновых 1а, но их можно надежно отличить с помощью тщательных наблюдений, поэтому для нас это непринципиально.

(обратно)

195

CCD-матрица (сокр. от англ. Charge-Coupled Device) – специализированная аналоговая интегральная микросхема на основе кремния, состоящая из светочувствительных фотодиодов, использующая технологию приборов с зарядовой связью (ПЗС). Прим. ред.

(обратно)

196

Когда научное исследование выдает результат, противоположный ожидаемому, это всегда очень хороший признак: значит, никто не подтасовывал факты и не выдавал желаемое за действительное!

(обратно)

197

Как обычно, можно выразиться более сложно и точно, но здесь это не требуется.

(обратно)

198

Представьте, что случилось бы, если бы анализ сверхновых был произведен до открытия реликтового излучения. Результаты могли бы быть расценены как доказательство в пользу модели стационарной Вселенной!

(обратно)

199

WMAP (Wilkinson Microwave Anisotropy Probe) – космический аппарат НАСА, предназначенный для изучения реликтового излучения, образовавшегося в результате Большого взрыва. Запущен 30 июня 2001 года. «Планк» – астрономический спутник Европейского космического агентства (ЕКА), созданный для изучения вариаций космического микроволнового фона – реликтового излучения. Запущен 14 мая 2009 года ракетой-носителем «Ариан-5». Прим. ред.

(обратно)

200

Термин «поверхность» здесь не вполне уместен. Процесс, видимо, происходил на протяжении примерно ста тысяч лет и завершился, когда Вселенной исполнилось почти полмиллиона лет.

(обратно)

201

Датчики СОВЕ обладали угловым разрешением в семь градусов, это в 14 раз больше лунного диска. Таким образом, они отслеживали только крупные флуктуации.

(обратно)

202

Следует отметить, что нижеследующий анализ основан на самом простом понимании данных. Всегда можно проработать более сложные сценарии, например с меняющейся во времени космологической постоянной, но я не вижу смысла этим заниматься, если только нас не заставят вновь появившиеся данные.

(обратно)

203

Любопытно, что в 1999 году группа исследователей в Сассекском университете (я входил в нее) предположила, что подобный пузырь Хаббла может вообще устранить необходимость в применении лямбды. Мы пришли к выводу, что «если мы живем в участке с пониженной плотностью, то популярные в свое время космологические теории, не нуждавшиеся в космологической постоянной, например концепции открытой или обладающей критической плотностью материи Вселенной, могут оказаться приемлемыми». См. Саймон Гудвин и др. The local to global H0 ratio and the SN2 1a results, 10 июня 1999 года, arXiv: astro-ph/9906187.

(обратно)

204

См. также мою книгу Companion to the Cosmos, которая сама по себе один большой глоссарий!

(обратно)

205

Джеймс Максвелл (1831–1879) – британский физик, математик и механик. Прим. ред.

(обратно) (обратно)

Комментарии

1

Лучший рассказ об истории исследований этого вида излучения содержится в книге Родри Эванса The Cosmic Microwave Background: How It Changed Our Understanding of the Universe (Springer, 2015).

(обратно)

2

См. Маркус Чоун, Afterglow of Creation.

(обратно)

3

См. Чоун.

(обратно)

4

Нобелевская лекция.

(обратно)

5

За ноябрь 1948 года.

(обратно)

6

См. Ральф Альфер, Роберт Херман, Genesis of the Big Bang.

(обратно)

7

См. Чоун.

(обратно)

8

Джон Мазер и Джон Бослоу, The Very First Light.

(обратно)

9

Перепечатано в сборнике Observing the Universe под ред. Найджела Хенбеста. Оксфорд: Blackwell, 1984.

(обратно)

10

См. журнал Nature, том 65 (1902): 587.

(обратно)

11

Macmillan’s Magazine от 5 марта 1862 г.

(обратно)

12

Джо Берчфилд, Lord Kelvin and the Age of the Earth, Лондон: Macmillan, 1975.

(обратно)

13

Цит. по Rutherford at Manchester под ред. Джона Беттли Беркса, Манчестер: Heywood & Co., 1962.

(обратно)

14

Цит. по книге Берчфилда.

(обратно)

15

См. Кеннет Ланг, Essential Astrophysics, Гейдельберг: Springer, 2013.

(обратно)

16

См. Саймон Миттон, Fred Hoyle.

(обратно)

17

См. Миттон.

(обратно)

18

См. Кен Кросвелл, The Alchemy of the Heavens.

(обратно)

19

Они приведены в книге Кросвелла и в моей книге Stardust, Лондон: Allen Lane, 2000.

(обратно)

20

Доступно факсимильное издание под ред. Майкла Хоскина, Лондон: Allen Lane, 2000.

(обратно)

21

См. Саймон Гудвин, Джон Гриббин и Мартин Хендри, The relative size of the Milky Way, журнал The Observatory, том 118 (1998): 201–8.

(обратно)

22

См. Origins of the Expanding Universe: 1912–1932 под ред. Майкла Уэя и Дейдр Хантер.

(обратно)

23

Перевод на английский Ари Беленького в книге Майкла Уэя и Дейдре Хантер.

(обратно)

24

См. Гарри Нуссбаумер, Лидия Бьери, Discovering the Expanding Universe.

(обратно)

25

Цит. по Джону Фарреллу в книге Уэя и Хантер.

(обратно)

26

Рассуждения о том, почему это должно быть так, см. в моей книге In Search of the Multiverse.

(обратно)

27

См. Алан Лайтман и Роберта Броэр, Origins.

(обратно) (обратно)

Оглавление

  • Эту книгу хорошо дополняют:
  • Введение Самый важный факт Пролог 2,712 Измеряя температуру Вселенной
  • Часть I Как узнать возраст звезд? Глава 1 2,898 Предыстория: спектры и природа звезд
  •     Чтение по линиям
  •     Охота на гелий
  •     Вводные к водороду
  •     Сколько градусов на Солнце?
  •     Жар далеких звезд
  •     Температура внутри
  •   Глава 2 0,008 В самом сердце Солнца
  •     Французский след
  •     Бесплатный сыр
  •     Источники колоссальной энергии
  •     Более горячее место
  •     Квант милосердия
  •   Глава 3 7,65 Как образовались «металлы»
  •     Циклы слияний
  •     Каменный век
  •     Через бомбы к звездам
  •     И последние станут первыми
  •     Звездная пыль Глава 4 13,2 Возраст звезд
  •     Герцшпрунг, Расселл и диаграмма
  •     Прах к праху
  •     Возраст шаровых скоплений
  •     Возраст белых карликов
  •     Радиометрический возраст и самые старые из известных звезд
  • Часть II Как узнать возраст Вселенной?
  •   Глава 5 31,415 Предыстория галактик и Вселенной в целом
  •     Сила чистого разума
  •     Шаг вперед и два назад
  •     Спектроскопия туманностей
  •     Первые шаги
  •     Долгий и сложный путь
  •     Неразрешенный спор
  •     Разрушение Вселенной Глава 6 575 Открытие расширяющейся Вселенной
  •     Удивительные скорости
  •     Краденый успех
  •     Русская революция
  •     Заступничество святого отца
  •   Глава 7 75 Шумы в сердце Вселенной
  •     Пропавшая модель Эйнштейна
  •     Чем проще, тем лучше
  •     Сквозь Вселенную
  •       Вдвое дальше
  •       Наследник Хаббла
  •     Еще один Большой спор
  •   Глава 8 13,8 Исследования и спутники
  •     Долгий триумфальный путь
  •     Не слишком ли идеально?
  •     Темная сторона
  •     Сверхновые и сверхрасширение
  •     «Прослушка» Вселенной
  •     Истинная правда
  • Глоссарий
  • Благодарности
  • Об авторе
  • Fueled by Johannes Gensfleisch zur Laden zum Gutenberg

    Комментарии к книге «13.8», Джон Гриббин

    Всего 0 комментариев

    Комментариев к этой книге пока нет, будьте первым!

    РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

    Популярные и начинающие авторы, крупнейшие и нишевые издательства