«Идеальная теория. Битва за общую теорию относительности»

1305

Описание

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов. История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.



Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

Идеальная теория. Битва за общую теорию относительности (fb2) - Идеальная теория. Битва за общую теорию относительности (пер. И. Рузмайкина) 1096K скачать: (fb2) - (epub) - (mobi) - Педро Феррейра

Педро Феррейра ИДЕАЛЬНАЯ ТЕОРИЯ. Битва за общую теорию относительности

Благодарности

Эта книга появилась благодаря двум людям. Патрик Уолш (Patrick Walsh) не только убедил меня написать о предмете моей страсти, но и предоставил мне такую возможность. Кортни Янг (Courtney Young) взяла мою рукопись и с удивительным тактом, но одновременно с твердостью превратила ее в книгу, которую хочется прочитать.

Я полагался на замечания, советы и критику, которые мне на протяжении многи хлет давали коллеги, друзья, члены семьи, читатели и писатели. Вот их список (возможно, неполный): Энди Албрехт (Andy Albrecht), Арлен Андерсон (Arlen Anderson), Тесса Бейкер (Tessa Baker), Макс Банадос (Мах Banados), Джулиан Барбур (Julian Barbour), Джон Бэрроу (John Barrow), Адриан Бикрофт (Adrian Beecroft), Яаков Бекенштейн (Jacob Bekenstein), Джоселин Белл Бёрнелл (Jocelyn Bell Burnell), Орфей Бертолами (Orfeu Bertolami), Стив Биллер (Steve Biller), Майкл Брукс (Michael Brooks), Харви Браун (Harvey Brown), Фил Булл (Phil Bull), Алекс Баттерворс (Alex Butterworth), Филипп Канделас (Philip Candelas), Ребекка Картер (Rebecca Carter), Крис Кларксон (Chris Clarkson), Тим Клифтон (Tim Clifton), Фрэнк Клоуз (Frank Close), Питер Коулс (Peter Coles), Аманда Кук (Amanda Cook), Марк Дэвис (Marc Davis), Ксения де ла Осса (Xenia de la Ossa), Сесиль Девитт-Моретт (Cecile DeWitt-Morette), Майк Дафф (Mike Duff), Джо Данкли (Jo Dunkley), Рут Дюрер (Ruth Durrer), Джордж Эфстатиу (George Efstathiou), Джордж Эллис (George Ellis), Грэм Фармело (Graeme Farmelo), Хьюго и Карин Джил Феррейра (Hugo and Karin Gil Ferreira), Эндрю Ходжес (Andrew Hodges), Крис Ишам (Chris Isham), Эндрю Яффе (Andrew Jaffe), Дэвид Кайзер (David Kaiser), Янна Левин (Janna Levin), Рой Маартенс (Roy Maartens), Эд Макъюли (Ed Macaulay), Жуан Магейжу (Joao Magueijo), Дэвид Марш (David Marsh), Джон Миллер (John Miller), Ланс Миллер (Lance Miller), Жозе Мауро (Jose Mourao), Самая Ниссанке (Samaya Nissanke), Тим Палмер (Tim Palmer), Джон Пикок (John Peacock), Джим Пиблс (Jim Peebles), Роджер Пенроуз (Roger Penrose), Жоао Пиментел (Joao Pimentel), Эндрю Понтцен (Andrew Pontzen), Франс Преториус (Frans Pretorius), Димитриос Псалтис (Dimitrios Psaltis), Мартин Рис (Martin Rees), Бернар Шатц (Bernard Schutz), Джо Силк (Joe Silk), Константинас Скордис (Constantinos Skordis), Ли Смолин (Lee Smolin), Джордж Смут (George Smoot), Андрей Старинен, (Andrei Starinets), Келли Стел (Kelly Stelle), Франческо Силос-Лабини (Francesco Sylos-Labini), Кип Торн (Kip Thorne), Нил Турок (Neil Turok), Тони Тайсон (Tony Tyson), Гиза Вешкаль-нис (Gisa Weszkalnys), Джон Уитер (John Wheater), Адам Уишарт (Adam Wishart), Лукас Виловски (Lukas Wilowski), Андреа Вульф (Andrea Wulf) и Том Злосник (Tom Zlosnik). Их вклад неоценим, а за любые ошибки и заблуждения, оказавшиеся в окончательной версии текста, ответственность лежит исключительно на мне.

Команда агентства Conville and Walsh была невероятно доброжелательно настроена к данной книге, а коллеги из Оксфордского университета полны энтузиазма и готовы помочь.

Пролог

Доклад Артура Эддингтона на совместном заседании Королевского и Астрономического обществ 6 ноября 1919 года в корне изменил парадигму гравитационной физики. С торжественной монотонностью кембриджский астроном описал свое путешествие на маленький, поросший буйной зеленью остров Принсипи у западного побережья Африки, где с помощью телескопа он сфотографировал полное солнечное затмение, постаравшись запечатлеть находящееся за Солнцем неяркое звездное скопление. Измерив положение звезд, Эддингтон обнаружил отклонения от закона всемирного тяготения, открытого покровителем британской науки Исааком Ньютоном и безоговорочно принимавшегося в течение более чем двух столетий. Астроном утверждал, что место этого закона теперь занимает новая и более правильная теория, предложенная Альбертом Эйнштейном под названием «общая теория относительности».

В то время теория относительности Эйнштейна была известна не только своим потенциалом в плане объяснения происходящих во Вселенной явлений, но и своей невообразимой сложностью. После церемонии, когда слушатели и докладчики уже готовились выйти в лондонские сумерки, к Эддингтону подошел польский физик Людвиг Зильберштейн. Зильбер-штейн был автором книги о более ограниченной «специальной теории относительности» Эйнштейна и с интересом следил за выступлением Эддингтона. Он сказал: «Профессор Эддингтон, вы, должно быть, один из трех человек в мире, понимающий общую теорию относительности». Заметив замешательство Эддингтона, Зильберштейн добавил: «Не скромничайте». Эддингтон решительно взглянул на него и произнес: «Напротив, я пытаюсь понять, кто же является третьим».

К моменту моего первого знакомства с общей теорией относительности названную Зильберштейном цифру уже можно было скорректировать в сторону увеличения. В начале 1980-х я услышал, как Карл Саган рассказывает о сжатии и растяжении времени и пространства в телесериале «Космос». Я немедленно попросил отца объяснить мне эту теорию. Он ограничился словами о том, что она крайне сложна. «Вряд ли кто-то понимает общую теорию относительности», — вот как он сказал. Но остановить меня было непросто. В этой странной теории с ее искривленными сетками пространства-времени, обернутыми вокруг пустынных впадин небытия, имелось что-то до крайности притягательное. Действие принципа общей относительности можно было наблюдать в старых эпизодах «Звездного пути», когда «черная звезда» отправляла в прошлое космический корабль «Энтерпрайз» или когда Джеймс Т. Кирк путался в измерениях пространства-времени. Неужели понять все это настолько сложно?

Несколькими годами позднее я изучал инженерное дело в Лиссабонском университете, в тяжеловесном здании из камня, железа и стекла, представлявшем собой превосходный образчик архитектуры времен Салазара. Обстановка удивительно подходила для бесконечных лекций, обучающих нас полезным вещам: искусству создания компьютеров, мостов и машин. Некоторые студенты спасались от этого занудства, читая в свободное время материалы по современной физике. И каждый мечтал стать Альбертом Эйнштейном. Время от времени на наших лекциях излагались некоторые из его идей. Мы узнали о связи массы с энергией и о том, что свет на самом деле состоит из частиц. Когда дело дошло до изучения электромагнитных волн, нас познакомили со специальной теорией относительности. Эйнштейн сформулировал ее в 1905 году, когда ему было двадцать шесть, то есть всего на несколько лет больше, чем нам. Один из наиболее просвещенных преподавателей посоветовал нам почитать оригинальные труды Эйнштейна. В сравнении с нудными упражнениями, которые мы были вынуждены делать, это были шедевры выразительности и ясности. Однако общая теория относительности — созданная Эйнштейном грандиозная теория пространства-времени — в нашу программу не входила.

В какой-то момент я решил самостоятельно заняться ее изучением. В библиотеке нашего университета обнаружилась завораживающая коллекция монографий и учебников величайших физиков и математиков двадцатого столетия. Там были Артур Эддингтон, президент Королевского астрономического общества из Кембриджа; Герман Вейль, математик из Геттингена; отцы квантовой физики Эрвин Шрёдингер и Вольфганг Паули, — и у каждого из них было свое мнение о том, как следует преподавать теорию Эйнштейна. Один том выглядел как большая черная телефонная книга и насчитывал более тысячи страниц, уснащенных орнаментами и комментариями тройки американских релятивистов. Другой, написанный физиком-теоретиком Полем Дираком, содержал всего семь десятков глянцевых страниц. Я полностью погрузился в совершенно новую Вселенную идей, населенную самыми увлекательными персонажами.

Понимание этих идей давалось непросто. Пришлось учиться думать по-новому, опираясь на выкладки, которые изначально воспринимались как трудная для понимания геометрия и абстрактная математика. Для расшифровки теории Эйнштейна требуется овладеть математическим языком. Тогда я не знал, что в попытках разобраться в собственной теории Эйнштейну пришлось пройти тот же самый путь. Изучив лексику и грамматику, я пришел в восторг от открывшихся возможностей. И тогда начался мой роман с общей теорией относительности длиною в жизнь.

Это будет сильным преувеличением, но выразиться по-другому я не могу: наградой за покорение общей теории относительности Эйнштейна становится ключ к пониманию истории Вселенной, возникновению времени, эволюции звезд и галактик. Эта теория может рассказать, что находится в самых дальних уголках Вселенной, и объяснить, как это влияет на нашу жизнь. Она проливает свет на возникновение частиц высоких энергий из ничего и объясняет, как появляется ткань реальности, пространства и времени, превращаясь в основу Вселенной.

За месяцы интенсивного обучения я понял, что общая теория относительности оживляет пространство и время. Пространство — это не просто место существования вещей, а время — не только часы, отсчитывающие мгновения. Согласно Эйнштейну, пространство и время переплетены в космическом танце, отвечая за каждый кусочек материи, от частиц до галактик, и соединяясь в сложные структуры, которые порождают самые невероятные эффекты. Предложенная им теория с момента своего появления применялась для исследования окружающего мира, открыв, что Вселенная является динамическим объектом, расширяющимся с головокружительной скоростью и наполненным черными дырами, ужасными пробоями пространства и времени, громадными волнами энергии, каждая из которых сравнима по мощности с энергией целой галактики. Общая теория относительности позволяет заглянуть в такие дали, о которых мы никогда не мечтали.

При первом знакомстве с общей теорией относительности меня поразил еще один факт. Эйнштейн занимался ее созданием почти десятилетие, но с той поры она не изменилась. Почти целый век она рассматривалась многими как совершенная, служа источником глубокого восхищения для всех, кто имел честь с ней познакомиться. Благодаря своей незыблемости она стала культовой, как центральный элемент современной мысли и как общечеловеческое достижение, наравне с Сикстинской капеллой, сюитами Баха для виолончели и фильмами Антониони. Общая теория относительности лаконично воплощается в наборе уравнений и правил, которые можно легко сформулировать и записать. Они не просто красивы, они кое-что говорят об окружающем мире. С их помощью был сделан ряд прогнозов касательно нашей Вселенной, подтвердившихся впоследствии через наблюдения. Существует твердое убеждение, что эта теория скрывает еще более глубокие секреты, которые только предстоит открыть. Чего еще мне было желать? Почти двадцать пять лет общая теория относительности является частью моей повседневной жизни. Она попала в центр моих исследований и послужила фундаментом многих вещей, которые мы с коллегами пытались понять. Мой первый опыт столкновения с этой теорией был далеко не уникальным; я встречаю людей со всего мира, которых она зацепила настолько, что они посвятили свою жизнь раскрытию ее тайн. Говоря про весь мир, я не преувеличиваю. Из самых разных городов, от Киншасы до Кракова, от Кентербери до Сантьяго, мне регулярно присылают научные работы, авторы которых пытаются искать новые решения или даже вносить изменения в общую теорию относительности. При всей сложности для восприятия теория Эйнштейна очень доступна; ее сложность и неподатливость означают лишь то, что до момента, когда из нее будут получены все возможные выводы, еще работать и работать. И проявить себя на этом поприще может любой, обладающий ручкой, бумагой и упорством.

Я часто слышал, как руководители докторантов отговаривали своих подопечных от погружения в общую теорию относительности, пугая их невозможностью впоследствии найти работу. Для многих она является слишком заумной. Посвящение своей жизни общей теории относительности — это, конечно же, бескорыстный труд и почти безответное призвание. Но те, кто однажды подцепил этот вирус, идут на все, чтобы продолжать свои изыскания в этой области. Недавно я встречался с ведущим светилом в моделировании климатических изменений. Он настоящий пионер, член Королевского общества, эксперт в такой чертовски трудной для исследований сфере, как предсказания погоды и климата. Но он не всегда зарабатывал этим себе на жизнь. В 1970-е годы, еще юношей, он изучал общую теорию относительности. С того времени прошло почти сорок лет, но при нашей первой встрече он, криво улыбнувшись, сказал мне: «На самом деле я релятивист».

Мой друг оставил научную деятельность после почти двадцати лет работы над теорией Эйнштейна. Теперь он трудится в компании, производящей программное обеспечение, и занимается задачами хранения больших объемов данных. Всю неделю он летает по миру, настраивая сложные и дорогие системы в банках, корпорациях и правительственных учреждениях. Но при наших встречах он расспрашивает меня или сам делится последними размышлениями по поводу общей теории относительности. Он не может с ней расстаться.

Общая теория относительности всегда озадачивала меня одним обстоятельством. Каким образом, появившись почти век назад, она продолжает приносить новые плоды? Ей посвящали свое время столь мощные умы, что, казалось, еще десятилетия назад из нее можно было выжать все до последней капли. При всей ее сложности должен же быть предел того, что она в состоянии нам дать? Не достаточно ли нам черных дыр и расширяющейся Вселенной? Однако продолжая исследовать вытекающие из этой теории идеи и встречаться с работающими над ней блестящими умами, я пришел к выводу, что история общей теории относительности представляет собой увлекательное и чудесное повествование, возможно, столь же сложное, как она сама. Чтобы понять, почему эта теория еще не списана со счетов, имеет смысл проследить за почти вековыми перипетиями ее существования.

Эта книга представляет собой биографию общей теории относительности. Идея Эйнштейна об объединении времени и пространства начала жить сама по себе, оставаясь на всем протяжении XX века источником восторгов и разочарований самых гениальных умов. Это теория, постоянно преподносящая сюрпризы, гениальные озарения о природе нашего мира, принять которые было сложно даже самому Эйнштейну. По мере захвата ею все новых умов возникали неожиданные открытия, причем в самых странных ситуациях. Концепция черных дыр была впервые предложена на полях сражений Первой мировой войны и достигла своей зрелости в руках первопроходцев, занимающихся созданием советской и американской атомных бомб. Идею расширяющейся Вселенной первыми предложили священник из Бельгии и метролог из России. Новые и загадочные астрофизические объекты, сыгравшие важную роль в стабилизации общей теории относительности, обнаруживали иногда совершенно случайно. Нейтронные звезды Джоселин Белл открыла среди Кембриджских болот при помощи металлической сетки, натянутой на хрупкую конструкцию из дерева и гвоздей.

Более того, общая теория относительности стала центром ряда основных интеллектуальных сражений XX века. Ее преследовали в гитлеровской Германии, травили в сталинской России и отвергали в Америке 1950-х. Она развела величайших физиков и астрономов по разные стороны баррикад в битве за окончательную модель Вселенной. Они выясняли, началась ли Вселенная с Большого взрыва или же существовала всегда, они пытались понять фундаментальную структуру пространства и времени. Одновременно она объединяла разрозненные сообщества; в разгар холодной войны советские, британские и американские ученые начали вместе работать над проблемой происхождения черных дыр.

История общей теории относительности связана не только с прошлым. За последние десять лет стало понятно, что если общая теория относительности верна, то большая часть нашей Вселенной является темной. Ее заполняет материя, которая не только не излучает свет, но даже не отражает и не поглощает его. Существует огромное количество эмпирических данных. По всей видимости, почти треть Вселенной состоит из темной материи: тяжелого, невидимого вещества, роящегося по галактикам, как множество рассерженных пчел. Остальные две трети имеют вид эфирной субстанции, темной энергии, которая раздвигает пространство в стороны. И только четыре процента Вселенной состоит из привычных для нас атомов. Нас практически не видно. Но это в случае, если теория Эйнштейна верна. Однако существует вероятность, что мы просто достигли пределов ее применимости, где теория начинает давать сбои.

Теория Эйнштейна имеет важное значение для новой фундаментальной теории природы, из-за которой физики-теоретики рвут друг другу глотки. Теория струн, пытающаяся зайти дальше, чем Ньютон с Эйнштейном, и объединить все природные явления, опирается на сложные варианты пространства-времени, приобретающие при увеличении размерности странные свойства. Эту теорию, куда более запутанную, чем любые построения Эйнштейна, одни прославляют как окончательную победу, другие же считают скорее романтической фантазией, чем наукой. Хотя теория струн не появилась бы без общей теории относительности, многие практикующие релятивисты смотрят на нее весьма скептически.

Темная материя, темная энергия, черные дыры, теория струн — все эти порождения теории Эйнштейна доминируют в физике и астрономии. Читая лекции в университетах, посещая семинары и участвуя в заседаниях Европейского космического агентства, отвечающего за важнейшие научно-исследовательские спутники, я понял, что мы находимся на пороге важных преобразований в современной физике. У нас есть талантливые молодые ученые, рассматривающие общую теорию относительности с позиций опыта, накопленного за век работы гениальных людей. Они анализируют теорию Эйнштейна, вооружившись беспрецедентными вычислительными мощностями, рассматривая альтернативные варианты теорий, способные опровергнуть концепции Эйнштейна, и пытаясь найти в космосе неизвестные объекты, позволяющие подтвердить или оспорить основные положения общей теории относительности. Еще более широкое научное сообщество разом получило стимул к созданию грандиозных машин, позволяющих заглянуть глубже в космос и получить более четкую картину, спутников, настроенных на поиск доказательств того, что предсказала нам теория Эйнштейна.

История общей теории относительности необыкновенна и всеобъемлюща, поэтому ее следует рассказать миру. Ведь даже войдя в XXI век, мы продолжаем сталкиваться с множеством порожденных ею великих открытий и оставшихся без ответа вопросов. В ближайшие годы должно произойти что-то действительно важное, и нужно понимать, откуда оно придет. Я подозреваю, что если XX век стал веком квантовой физики, то в XXI в полной мере проявит себя общая теория относительности.

Глава 1. Человек в свободном падении

Осенью 1907 года Альберт Эйнштейн работал в стрессовых условиях. Ежегодник Electronics and Radioactivity попросил его прислать полный обзор теории относительности. Обобщить столь солидный труд за короткий срок было непросто, особенно если учесть, что работать приходилось исключительно в свободное время. С 8 утра до 6 вечера с понедельника по субботу Эйнштейн находился в Федеральном бюро патентования изобретений в только что построенном здании почты и телеграфа, где он тщательно изучал схемы вновь придуманных электрических устройств и пытался определить, есть ли в них какая-либо ценность. Начальник советовал ему: «Взяв в руки заявку, представь, что все написанное изобретателем — вранье», и Эйнштейн старательно следовал этому совету. Большую часть дня заметки и расчеты, связанные с его собственными теориями, лежали во втором ящике стола, который Эйнштейн называл своей «кафедрой теоретической физики».

Обзор Эйнштейна был призван закрепить торжественное объединение механики Галилео Галилея и Исаака Ньютона с теориями электричества и магнетизма Майкла Фарадея и Джеймса Клерка Максвелла. Он объяснял бы открытое несколькими годами раньше замедление хода часов при движении и уменьшение размеров движущихся тел. Он проливал бы свет на странную формулу, демонстрирующую взаимозаменяемость массы и энергии и утверждающую, что превысить скорость света невозможно. Обзор принципа относительности показал бы, что почти вся физика должна определяться новым общим набором правил.

За несколько месяцев 1905 года Эйнштейн написал ряд работ, которые преобразовали физику. Во вдохновенном порыве он продемонстрировал, что свет ведет себя как пучки энергии, напоминающие частицы материи. Также им было показано, что хаотичные перемещения пылинок на поверхности налитой в блюдце воды вызваны молекулами воды, вибрирующими и отскакивающими друг от друга. Кроме того, он решил проблему, досаждавшую физикам почти полвека: почему кажется, что действие физических законов зависит от того, каким образом мы на них смотрим. Все это Эйнштейн систематизировал в своем принципе относительности.

И эти ошеломляющие открытия Эйнштейн сделал, работая скромным патентным экспертом в Берне и попутно анализируя научные и технические разработки того времени. В 1907 году он все еще находился там, так и не попав в, казалось бы, избегающие его высокие академические круги. На самом деле Эйнштейн мало напоминал человека, способного переписать часть основных физических законов. Во время обучения в высшей технической школе Цюриха он пропускал не интересующие его лекции и восстанавливал против себя людей, которые могли бы пестовать его гений. Один из профессоров сказал ему: «Вы очень умный мальчик… Но у вас есть один недостаток: вы никогда не позволяете, чтобы вам на что-либо указывали». Из-за того, что научный руководитель запретил Эйнштейну работать над самостоятельно выбранной темой, его финальная работа оказалась столь унылой, что заслужила крайне низкий балл, впоследствии помешавший ему получить должность ассистента во всех университетах, куда он посылал заявки.

С момента выпуска в 1900 году до поступления на работу в патентное бюро в 1902 карьера Эйнштейна представляла собой цепь неудач. Довершил его разочарование тот факт, что отправленная в 1901 году в Цюрихский университет докторская диссертация годом позже была отклонена. В представленной рукописи Эйнштейн опровергал ряд идей, выдвинутых одним из величайших физиков-теоретиков конца XIX века Людвигом Больцманом. Попытка иконоборчества потерпела фиаско. И докторскую степень он получил только в 1905 году за работу «Новое определение размера молекул». Для себя же Эйнштейн обнаружил, что степень «значительно облегчает взаимоотношения с людьми».

Пока он пробивал себе путь, его друг Марсель Гроссман шел к должности достопочтимого профессора кратчайшим путем. Именно благодаря дисциплинированному, старательному и любимому учителями Гроссману, который подробно и тщательно вел конспекты лекций, Эйнштейну удалось удержаться в университете. Во время обучения в Цюрихе Гроссман стал близким другом Эйнштейна и его будущей жены Милевы Марич. Все трое окончили университет одновременно. В отличие от карьеры Эйнштейна, карьера Гроссмана с самого начала шла гладко. В 1902 году он был назначен ассистентом в Цюрихе и в 1902 получил докторскую степень. После недолгой преподавательской деятельности Гроссман стал профессором начертательной геометрии в Швейцарской высшей технической школе в Цюрихе. Эйнштейну же не удавалось устроиться даже на место школьного учителя. И только благодаря рекомендации отца Гроссмана, знакомого с главой Федерального бюро патентования изобретений, Эйнштейн был взят на должность патентного эксперта.

Работа в бюро патентов стала для Эйнштейна благословлением. После долгой финансовой нестабильности и зависимости от отца он, наконец, смог жениться на Милеве и начать семейную жизнь в Берне. Относительная монотонность работы с четко определенными задачами и отсутствием отвлекающих факторов создала идеальную среду для размышлений. За несколько часов Эйнштейн справлялся с текущими делами и мог сконцентрироваться на собственных проблемах. За маленьким деревянным столом в компании немногочисленных книг и бумаг со своей «кафедры теоретической физики» он мог мысленно ставить эксперименты. И в процессе этих, как он называл их по-немецки, gedanken experimenten, Эйнштейн воображал ситуации и конструкции, позволяющие исследовать физические законы. В отсутствие настоящей лаборатории он прокручивал в голове тщательно моделируемые игры, инсценируя события, которые затем детально изучал. Эйнштейн хорошо знал математику и мог изложить результаты таких экспериментов на бумаге, создавая изысканные шедевры, в конечном счете поменявшие путь развития физики.

Владельцы патентного бюро были довольны работой Эйнштейна и повысили его до эксперта II класса, и это никак не было связано с появившейся у него научной репутацией. Эйнштейн все еще корпел над ежедневными порциями патентов, когда в 1907 году немецкий физик Йоханесс Штарк поручил ему обзор «О принципе относительности и вытекающих из него следствиях». На эту работу было отведено два месяца, и за это время Эйнштейн осознал, что выведенный им принцип относительности не универсален и требует тщательного пересмотра.

Статья в ежегоднике предполагалась как краткое изложение исходного принципа относительности, который гласил, что законы физики должны быть одинаковы в любой инерциальной системе отсчета. Лежащая в основе принципа идея была не нова и эксплуатировалась столетиями.

Законы физики и механики описывают движение, ускорение и замедление объектов под действием сил. В XVII веке английский физик и математик Исаак Ньютон сформулировал законы, объясняющие реакцию объектов на механические силы. Они последовательно демонстрировали, что произойдет при столкновении двух бильярдных шаров, вылете пули из ружья или при подбрасывании мяча в воздух.

Инерциальной называется система отсчета, движущаяся с постоянной скоростью. Если вы читаете эту книгу, сидя на одном месте, например дома в кресле или за столиком в кафе, вы находитесь в инерциальной системе отсчета. Другим классическим примером является равномерно перемещающийся скорый поезд с закрытыми окнами. Находящийся внутри человек после достижения постоянной скорости движения не сможет определить, движется поезд или стоит. Обнаружить разницу между двумя инерциальными системами в принципе невозможно, даже если одна перемещается с большой скоростью, а вторая покоится. Результат измерения действующих на объект сил будет тождественным в любой из инерциальных систем. Законы физики работают во всех этих системах одинаково.

Девятнадцатый век породил совершенно новые законы, объединившие две основные силы: электричество и магнетизм. На первый взгляд эти явления не связаны друг с другом. Электричество — это лампочки у нас дома или молнии во время грозы, а с проявлениями магнетизма мы сталкиваемся, прикрепляя магнитики к холодильнику или определяя направление по компасу. Шотландский физик Джеймс Клерк Максвелл показал, что эти две силы можно рассматривать как различные проявления общей базовой силы, электромагнетизма, восприятие которой зависит от того, как именно движется наблюдатель. Человек, сидящий рядом с магнитным бруском, столкнется с магнетизмом, но не с электричеством. А вот при быстром круговом движении можно ощутить не только магнетизм, но и толику электричества. Максвелл скомпоновал две силы в одну, не зависящую от положения и скорости наблюдателя.

При попытке объединить ньютоновские законы движения с описывающими электромагнитное взаимодействие законами Максвелла возникает проблема. Если бы окружающий мир и в самом деле подчинялся этим законам, из магнитов, проводов и блоков можно было бы создать инструмент, не ощущающий воздействия сил в одной инерциальной системе, но способный регистрировать силу в другой, нарушая постулат о неразличимости инерциальных систем. Соответственно, создавалось впечатление, что законы Ньютона противоречат законам Максвелла. Эйнштейн хотел устранить эту «асимметрию».

За предшествующий публикациям 1905 года срок, проведя серию направленных на решение данной проблемы мысленных экспериментов, Эйнштейн разработал компактный принцип относительности. Результатом его умственных упражнений стали два постулата. По-новому был сформулирован сам принцип: проявления законов физики должны выглядеть одинаково в любой инерциальной системе отсчета. Второй постулат был более радикальным: в любой инерциальной системе отсчета скорость света всегда одинакова и составляет 299 792 километра в секунду. Именно эти постулаты позволили скорректировать ньютоновскую механику и законы движения таким образом, что при их объединении с законами электромагнитного взаимодействия Максвелла инерциальные системы оставались бы неразличимыми. Кроме того, новый принцип относительности Эйнштейна привел к ошеломительным результатам.

Последний постулат требует корректировки законов Ньютона. В классической Вселенной Ньютона скорость аддитивна. Свет фар движущегося автомобиля перемещается быстрее, чем свет стационарного источника. А во Вселенной Эйнштейна это не так. Существует предельная космическая скорость, равная 299 792 километрам в секунду. Этот барьер не в состоянии преодолеть даже самая мощная ракета. Но возникает странный эффект. К примеру, человек, путешествующий в поезде, движущемся со скоростью, близкой к скорости света, будет стареть медленнее, чем человек, стоящий на платформе и наблюдающий, как этот поезд проходит мимо. А размер такого поезда во время движения оказывается меньше, чем во время стоянки. Время растягивается, а пространство сжимается. Эти странные вещи показывают, что в мире относительности время и пространство переплетены друг с другом и взаимозаменяемы.

Казалось бы, принцип относительности Эйнштейна упростил физику, но последствия при этом получались странные. И осенью 1907 года в процессе подготовки обзора ему пришлось признать, что хорошо работающая на первый взгляд гипотеза пока далека от завершения. В картину не укладывалась теория тяготения Ньютона.

До появления Альберта Эйнштейна Ньютон считался богом в мире физики. Его работы демонстрировались как пример ошеломляющего успеха современной мысли. В конце XVII века Ньютон объединил действующую на очень маленькие и на очень большие объекты силу тяжести в одно простое уравнение. Оно объясняло как космические явления, так и нашу повседневную жизнь.

Закон всемирного тяготения Ньютона, или «закон обратных квадратов», на удивление прост. Он гласит, что гравитационное притяжение между двумя объектами прямо пропорционально массе каждого из объектов и обратно пропорционально расстоянию между ними. При увеличении массы одного из объектов в два раза сила гравитационного притяжения также удваивается. А если в два раза увеличить расстояние между объектами, притяжение ослабнет в четыре раза. На протяжении двух веков закон Ньютона использовался для объяснения любых физических явлений. Наиболее ярким примером его применения стало обоснование орбит существующих планет, а также предсказание новых.

Во второй половине XVIII века появились данные о странной неустойчивости орбиты Урана. По мере накопления эмпирических сведений астрономы могли все больше уточнять маршрут движения этой планеты. Предсказание орбиты Урана — задача нетривиальная. Нужно в соответствии с законом всемирного тяготения Ньютона рассчитать влияние на Уран других планет, корректируя орбиту то с одной, то с другой стороны и все более ее усложняя. Астрономы и математики публиковали данные о перемещениях Урана в форме таблиц, позволяющих предсказать положение планеты в любой день и год. Но предсказания необъяснимо отличались от результатов последующих наблюдений.

Французский астроном и математик Урбен Леверье имел большой опыт расчетов астрономических орбит. Именно он рассчитал траектории перемещения различных планет Солнечной системы. Сосредоточив свое внимание на Уране, он первым делом предположил, что теория Ньютона верна. Ведь с другими планетами она дала прекрасные результаты. В этом случае единственным объяснением происходящего могло быть наличие некоего неучтенного до сих пор фактора. И Леверье сделал смелый шаг, предсказав существование новой условной планеты и рассчитав ее астрономическую таблицу. К его восторгу, немецкий астроном из Берлина Готтфрид Галле направил свой телескоп в соответствии с указанными в таблице координатами и обнаружил неизвестную большую мерцавшую планету. Как выразился Галле в письме к Леверье: «Месье, планета, положение которой вы указали, действительно существует».

Леверье воспользовался теорией Ньютона глубже, чем кто-либо другой, и был вознагражден за свою дерзость. Десятилетиями Нептун называли «планетой Леверье». Марсель Пруст в цикле «В поисках утраченного времени» использовал открытие Леверье как аналогию процесса над парламентской коррупцией, а Чарльз Диккенс упомянул его при описании напряженной работы сыщиков в рассказе «Сыскная полиция». Ведь это был прекрасный пример применения фундаментальных правил научной дедукции. Греющийся в лучах славы Леверье обратил свои взоры к Меркурию. Орбита этой планеты тоже казалась странной и неожиданной.

В рамках ньютоновской механики изолированная планета должна вращаться вокруг Солнца по простой замкнутой орбите, имеющей форму сплющенного круга, то есть эллипса. Планета бесконечно следует по одной траектории, то подходя ближе к Солнцу, то удаляясь от него. Ближайшая к Солнцу точка планетарной орбиты, называемая перигелием, со временем не меняется. Орбиты некоторых планет, например Земли, представляют собой практически окружности, в то время как, к примеру, Меркурий движется по более эллиптическому контуру.

Учтя влияние всех прочих планет на орбиту Меркурия, Леверье обнаружил, что движение этой планеты не подчиняется закону всемирного тяготения; ее перигелий смещается примерно на 40 угловых секунд в столетие. (Угловой секундой называется внесистемная астрономическая единица измерения малых углов; небесный купол состоит из 1,3 миллиона угловых секунд, или 360 градусов.) Эту аномалию, известную как смещение перигелия Меркурия, Леверье не смог объяснить при помощи законов Ньютона. Присутствовало влияние дополнительного фактора.

И снова постулировав корректность законов Ньютона, Леверье в 1859 году предположил наличие недалеко от Солнца планеты Вулкан, размер которой примерно совпадал с размерами Меркурия. Это была крайне дерзкая и нелепая гипотеза. Как выразился сам Леверье: «Неужели очень яркую и расположенную недалеко от Солнца планету нельзя было заметить во время полного солнечного затмения?»

Гипотеза Леверье спровоцировала настоящую гонку за новой планетой. В течение десятилетий то и дело поступали сведения об обнаружении рядом с Солнцем некоего объекта, но при внимательном изучении информация не выдерживала критики. Поиск продолжался даже после смерти Леверье, но объяснить аномалию удалось и без помощи невидимой планеты.

Когда в 1907 году гравитационными взаимодействиями заинтересовался Эйнштейн, ему требовалось согласовать теорию Ньютона с собственным принципом относительности. В глубине души он понимал, что одновременно следует найти объяснение аномальной орбите Меркурия. Это была тяжелая задача.

Теория гравитационных взаимодействий Ньютона противоречила обоим постулатам красивого и лаконичного принципа относительности. Сила тяжести действует мгновенно. Как только два объекта оказываются рядом, между ними возникает гравитационное взаимодействие — время для его передачи от одного объекта к другому не требуется. Но как быть с тем, что в соответствии с принципом относительности ничто, никакой сигнал и никакой эффект не могут перемещаться со скоростью, превышающей скорость света? Фактически согласовавший механику и электромагнетизм, принцип относительности Эйнштейна не распространялся на гравитационные взаимодействия. Более того, ньютоновская гравитация по-разному выглядела в разных инерциальных системах отсчета.

Первый шаг на длинном пути к устранению данного противоречия и обобщению теории относительности был сделан в патентном бюро, где Эйнштейн сидел, погрузившись в собственные мысли. Годы спустя он вспоминал идею, позволившую ему распространить свою теорию на гравитационные взаимодействия: «В свободном падении человек не чувствует собственного веса».

Поставьте себя на место провалившейся в кроличью нору Алисы, падению которой ничто не в силах помешать. Так как вы падаете под действием силы тяжести, скорость движения будет равномерно увеличиваться. Ускорение точно совпадает с гравитационным притяжением, и в результате ваше падение будет ощущаться как не требующее усилий — вы не почувствуете, что вас что-то подталкивает или тянет, хотя такое падение, без сомнения, внушит вам ужас, ведь вы мчитесь сквозь пространство. А теперь представьте, что вместе с вами падает ряд предметов: книга, чашка чая, белый кролик, пребывающий в такой же панике, как и вы. Движение всех этих объектов также будет равноускоренным, компенсируя силу тяжести. В результате они начнут парить вокруг вас в процессе вашего совместного падения. Если поставить эксперимент и попытаться определить движение этих объектов относительно вас и измерить силу тяжести, это ничего не даст. Вы будете чувствовать себя невесомым, невесомыми будут выглядеть и падающие вместе с вами объекты. Все это указывает на наличие тесной взаимосвязи между ускоренным движением и силой тяжести — в данном случае одно полностью компенсирует другое.

Возможно, свободное падение — излишне радикальный эксперимент. Слишком много отвлекающих факторов: в ушах свистит воздух, а мысль о том, что рано или поздно вы достигнете дна, мешает ясности мышления. Проделаем более простые и куда более спокойные действия. Представьте, что вы вошли в лифт на первом этаже высотного дома. В первые несколько секунд подъема, пока лифт ускоряется, вы чувствуете, что стали немного тяжелее. И наоборот, представьте движение в лифте вниз с последнего этажа. В первый момент, пока он набирает скорость, вы ощутите легкость. Разумеется, после достижения максимальной скорости перемещения ваш вес меняться уже не будет. Но ускорение и замедление лифта сдвигают ваше восприятие собственного веса, а значит, и силы тяжести. Другими словами, ощущение силы тяжести зависит от того, разгоняетесь вы или тормозите.

В тот день 1907 года, когда Эйнштейн представил себе падающего человека, он понял, что между силой тяжести и ускорением существует тесная связь, которая и послужит ключом к двери, открывающей гравитационным взаимодействиям путь в его теорию относительности. Если отредактировать принцип относительности таким образом, чтобы сделать законы физики инвариантными по отношению не только к системам отсчета, движущимся с постоянной скоростью, но и к ускоряющимся или замедляющимся системам, он позволит добавить к комбинации механики и электродинамики еще и гравитационные взаимодействия. Полной уверенности в правильности выбранного пути не было, но именно это гениальное озарение стало первым шагом на пути к универсальной теории относительности.

Под давлением немецкого редактора Эйнштейн написал обзор «О принципе относительности и вытекающих из него следствиях». Туда он включил раздел, описывающий, что произойдет, если подправить принцип с учетом гравитационных взаимодействий. Вкратце были отмечены некоторые следствия, например то, что наличие гравитации меняет скорость света и заставляет часы двигаться медленнее. Обобщенный принцип относительности позволял объяснить даже дрейфующую орбиту Меркурия. Все эти перечисленные в конце статьи эффекты можно было использовать для проверки высказанной идеи, но их следовало проработать более тщательно и подробно. Все это могло подождать. И на несколько лет Эйнштейн оставил свою теорию.

К концу 1907 года великолепная безвестность Эйнштейна завершается. Медленно; но верно опубликованные в 1905 году работы начинают привлекать к себе внимание. Начинают приходить письма от выдающихся физиков с просьбами прислать копии статей и с обсуждениями выдвинутых Эйнштейном идей. Взволнованный всем этим Эйнштейн говорит друзьям: «Мои работы получили большое признание и дают мне стимул к дальнейшим исследованиям». Один из его поклонников съязвил: «Должен признаться; я был поражен, прочитав, что вам приходилось по восемь часов высиживать в офисе. Но история полна дурными шутками!» Жизнь Эйнштейна нельзя назвать плохой. Работа в Берне позволила ему создать семью с Милевой. В 1904 году у них родился сын Ганс Альберт. График работы в патентном бюро позволял Эйнштейну проводить время дома, мастеря игрушки для ребенка, хотя он уже был готов ворваться в научный мир.

В 1908 году Эйнштейн наконец получает возможность читать факультатив в университете Берна. Он счел преподавание ужасно обременительным и как лектор заработал ужасную репутацию. Тем не менее в 1909 году его пригласили на должность экстраординарного профессора в университет Цюриха. Там он оставался чуть больше года. Уже в 1911 году он получает предложение возглавить кафедру в Немецком университете в Праге. На этот раз преподавательская деятельность не вошла в его обязанности. Без этого груза ум Эйнштейна вернулся в то состояние, которое владело им в упорядоченной и изолированной атмосфере патентного бюро. Он снова мог размышлять над тем, как сделать теорию относительности более универсальной.

Глава 2. Самое ценное открытие

Однажды Альберт Эйнштейн признался своему другу и коллеге Отто Штерну: «Занимаясь расчетами, ты попадаешь впросак, прежде чем успеваешь это осознать». Это вовсе не означает, что он недостаточно хорошо знал математику. Он прекрасно успевал по этому предмету во время учебы и без проблем мог изложить свои идеи на бумаге. В его работах соблюдался совершенный баланс между физическими обоснованиями и их представлением в математической форме. Но сделанные в 1907 году расчеты обобщенной теории в плане математики оказались не совсем удачными — один из цюрихских профессоров сказал, что работа Эйнштейна является «математически громоздкой». На математику Эйнштейн посматривал свысока, называя ее «избыточным умственным багажом», и иронизировал: «С тех пор как на теорию относительности обрушилась математика, я перестал ее понимать». Но в 1911 году, пересматривая концепции из своего обзора, Эйнштейн понял, что развить их дальше поможет именно математика.

Рассматривая свой принцип относительности, он в очередной раз подумал про свет. Представьте, что вы находитесь в летящем вдалеке от планет и звезд космическом корабле. Луч далекой звезды проникает внутрь через маленький иллюминатор справа, пересекает корабль и через аналогичное окошко слева выходит наружу. Бели космический корабль неподвижен, траектория движения луча не изменится, входить и выходить свет будет под прямым углом. А вот при очень быстром перемещении с постоянной скоростью к моменту, когда луч достигнет противоположной стены, корабль сместится вперед, и выход луча наружу произойдет уже через окно, расположенное дальше по борту. Со своей точки наблюдения вы увидите луч, вошедший под непрямым углом и прошедший через внутрикорабельное пространство по прямой. Совсем другая картина нарисуется при ускорении: световой луч опишет дугу и выйдет наружу где-то в задней части корабля.

Вот тут нам и пригодится озарение Эйнштейна о природе силы тяжести. Мы испытываем одинаковые ощущения в движущемся с ускорением корабле и в корабле, стоящем на месте, когда на нас действует земное тяготение. Эйнштейн понял, что на простейшем уровне ускорение неотличимо от силы тяжести. Человек, сидящий в покоящемся на поверхности планеты корабле, и человек в корабле, движущемся с ускорением, увидят одно и то же: луч света, изогнутый под действием силы тяжести. Другими словами, Эйнштейн понял, что гравитация, как линза, отклоняет световые лучи.

Однако выявить такое отклонение можно только при очень сильном гравитационном притяжении — одной планетой тут не обойтись. Эйнштейн предложил простую проверку с применением более массивного объекта: нужно было измерить отклонение луча далекой звезды в момент его прохождения рядом с Солнцем. Угловые позиции далеких звезд должны слегка измениться в момент прохождения перед ними Солнца — примерно на одну четырехтысячную градуса. Существовавшие в то время телескопы уже давали возможность регистрировать такие почти незаметные отклонения. Эксперимент следовало проводить во время полного солнечного затмения, чтобы слишком яркий солнечный свет не помешал зафиксировать положение звезд.

Эйнштейн нашел способ проверить обоснованность своих новых идей, но до завершения теории было еще далеко. Он все еще занимался импровизациями на тему посетившего его в патентном бюро озарения — человека в свободном полете. На преподавательскую деятельность тратить время уже не приходилось, и можно было предаться мысленным экспериментам и тщательному обдумыванию теории, но счастливым Эйнштейн себя не ощущал. Непосредственно перед прибытием в Прагу родился его второй сын Эдуард, и жена чувствовала себя несчастной и одинокой, лишившись окружения, к которому она привыкла в Цюрихе. Поэтому в 1912 году Эйнштейн ухватился за возможность вернуться в этот город, став профессором своей родной Швейцарской технической школы.

За время пребывания в Праге Эйнштейн понял, что для проверки приходящих ему в голову идей требуется язык другого типа. С одной стороны, он не хотел прибегать к заумной математике, способной затруднить понимание прекрасных физических концепций, которые он пытался собрать воедино, а с другой — через несколько недель после прибытия в Цюрих он умолял одного из своих старых друзей, математика Марселя Гроссмана: «Ты должен мне помочь, или я сойду с ума». На манеру физиков решать проблемы на скорую руку Гроссман смотрел скептически, но приложил все усилия, чтобы помочь другу.

Эйнштейн наблюдал, как движутся объекты в случае ускорения и под действием силы тяжести. Маршрут их перемещений в пространстве отличался от простых прямых линий, описывавших движение в инерциальных системах. Усложненные форма и характер этого движения требовали от Эйнштейна выхода за пределы обычной геометрии. Гроссман дал ему учебник по неевклидовой, или римановой, геометрии.

Почти за сто лет до того как Эйнштейн начал разрабатывать свой принцип относительности, в 20-х годах XIX века немецкий математик Карл Фридрих Гаусс предпринял дерзкую попытку вырваться за пределы геометрии Евклида. Евклид сформулировал правила для линий и форм на плоскости. Именно эту геометрию преподают в современных школах, и именно она утверждает, что параллельные линии никогда не пересекаются, а две прямые могут пересечься всего один раз. Мы усваиваем, что сумма углов треугольника составляет 180 градусов, а у прямоугольника четыре прямых угла. Мы изучаем и применяем целый свод правил. Мы чертим фигуры на плоских листах бумаги и досках, и эти правила служат нам верой и правдой.

А как быть, если нас попросят взять искривленный лист бумаги? К примеру, если нужно нарисовать геометрические фигуры на поверхности гладкого баскетбольного мяча? Наши простые правила сразу перестают работать. Так, две линии, под прямым углом пересекающие экватор, должны быть параллельными. Они и в самом деле параллельны, но если двигаться вдоль этих линий, выясняется, что на одном из полюсов они пересекаются. То есть пересечение параллельных линий на сфере возможно. Можно пойти еще дальше и расположить эти линии таким образом, чтобы они пересекались друг с другом под прямым углом. В результате мы получим треугольник, сумма углов которого будет равна не 180, а 270 градусов. Правило, к которому мы привыкли, снова будет нарушено.

Более того, любая поверхность сложной формы — сфера, тор, смятый лист бумаги — будет обладать собственной геометрией с собственными правилами. Гаусс выработал геометрию для поверхностей произвольного вида. Он придерживался демократических взглядов: все поверхности следовало считать тождественными и выработать для работы с ними общий набор правил. Геометрия Гаусса является крайне мощным и сложным инструментом. Дальнейшей ее разработкой в 1850 годах занялся другой немецкий математик, Бернхард Риман. Он создал столь изощренную и сложную область математики, что даже порекомендовавший Эйнштейну обратить внимание в эту сторону Гроссман счел, что Риман зашел слишком далеко, чтобы плодами его труда мог воспользоваться физик. Геометрия Римана представляла собой хаос с множеством функций, обернутых в ужасные нелинейные конструкции, но это была крайне мощная штука. Освоив ее, Эйнштейн смог бы одолеть собственную теорию.

Новая геометрия была дьявольски трудной, но зайдя в тупик при попытке обобщить свою теорию относительности, Эйнштейн был вынужден приступить к ее освоению. Это была крайне сложная задача — все равно что выучить с нуля санскрит и написать на нем роман.

К началу 1913-го, освоив новую геометрию, Эйнштейн вместе с Гроссманом работал над двумя статьями, кратко описывающими его теорию. Одному из коллег он сказал: «К своему полному удовольствию, я уяснил, что такое гравитация». Теория, сформулированная языком новой математики, с написанным Гроссманом разделом, в котором особенности римановой геометрии объяснялись потенциально неосведомленному сообществу физиков, включала в себя прогнозы, предлагавшиеся Эйнштейном ранее. Эйнштейну удалось добиться одинакового вида всех законов физики в любой системе отсчета, а не только в инерциальной. Он смог описать электромагнитные явления и законы движения Ньютона так же, как это было сделано в первой, более ограниченной версии теории относительности. Более того, у него получилось адаптировать практически все законы физики, кроме закона всемирного тяготения. Новая версия этого закона, предложенная Эйнштейном и Гроссманом, не укладывалась в последовательность, подчиняющуюся общему принципу относительности. Не помогло даже призванное подкрепить физические догадки введение новой математики. Эйнштейн все равно был убежден, что движется в правильном направлении и для завершения теории достаточно устранить мелкие шероховатости. Но он ошибался. Новый подход к теории пространства-времени знаменовался все меньшим количеством прорывов и все более частыми пробуксовками.

В 1914 году жизнь Эйнштейна наконец вошла в колею. Из Берлина ему пришло приглашение возглавить только что созданный институт физики имени кайзера Вильгельма. Это дало достойный заработок и членство в Прусской академии наук. Эйнштейн попал на вершину европейского научного сообщества и получил возможность работать в окружении таких коллег, как Макс Планк и Вальтер Нернст. При этом ему не приходилось заниматься преподавательской деятельностью. Словом, он получил идеальную работу, в тот же самый период потерпев крах в личной жизни. Семье Эйнштейна надоели его скитания по Европе, и к месту нового назначения они не поехали. Жена Милева с сыновьями осталась в Цюрихе. После пяти лет жизни врозь в 1919 году они разведутся, и Эйнштейн начнет новую жизнь и новые отношения со своей кузиной Эльзой Левенталь. Они поженятся в 1919 году и проживут вместе до смерти Эльзы в 1936-м.

Эйнштейн прибыл в Берлин в начале Первой мировой войны и сразу попал, по его выражению, в «сумасшедший дом» немецкого национализма. Безумие охватило практически всех. Его коллеги собирались на фронт или занимались разработками нового оружия, такого как ужасающий иприт. В сентябре 1914-го был опубликован поддерживающий германское правительство манифест «К культурному миру». Подписанный девяносто тремя немецкими учеными, писателями, артистами и деятелями культуры, он был направлен против дезинформации, распространяемой о Германии. По крайней мере, так думали подписанты. Манифест утверждал, что немцы не несут ответственности за разразившуюся войну. Замалчивался факт, что Германия только что вторглась в Бельгию и разрушила город Левен. Вместо этого было написано: «Неправда, что наши солдаты посягнули на жизнь хотя бы одного бельгийского гражданина и его имущество». Манифест был вызывающим и скандальным, большая его часть была неправдой.

Эйнштейна происходящее шокировало. Будучи пацифистом и интернационалистом, он вступил в борьбу, подписав контрманифест «К европейцам». В нем Эйнштейн с горсткой коллег отмежевывались от «Манифеста девяносто трех», осуждая тех, кто его подписал, и умоляя «образованных людей из всех стран» бороться с разрушительной войной. Но обращение «К европейцам» было, по большому счету, проигнорировано. Остальной мир воспринимал Эйнштейна как еще одного немецкого ученого, поддержавшего документ девяносто трех, а значит, как врага. По крайней мере, так считалось в Англии.

Англичанин Артур Эддингтон был знаменит своими долгими велосипедными прогулками. В качестве меры своей выносливости он использовал число Е. Оно обозначало максимальное число дней, в которые он проезжал больше, чем Е миль. Сомневаюсь, что мое Е превосходит 5 или 6. Я проезжал шесть миль в день не более шести раз в жизни — я знаю, что это мизерная цифра. Когда Эддингтон умер, его число Е было равно 87, то есть он предпринял восемьдесят семь индивидуальных велосипедных выездов протяженностью более восьмидесяти семи миль. Уникальная выносливость и настойчивость позволили ему достичь выдающихся результатов во всех сферах жизни.

Эйнштейну пришлось бороться за право приступить к научной карьере, а Эддингтон легко проник в сердце английских академических кругов. Продвигая собственные идеи, Эддингтон бывал высокомерным, пренебрежительным, бескомпромиссно упрямым, но одновременно это был настойчивый ученый, практически никогда не отступавший ни перед чертовски сложными астрономическими наблюдениями, ни перед запутанной новой математикой. Он родился в набожной квакерской семье и с раннего возраста отлично успевал в школе. В шестнадцать лет он отправляется в Манчестер изучать математику и физику и в конце концов оказывается в Кембридже, где получает звание самого успевающего студента года, известное как «мистер Математик». Сразу после получения степени бакалавра он становится ассистентом в Королевской обсерватории и сотрудником Тринити-колледжа в Кембридже.

Кембридж относится к заведениям высшего эшелона, поэтому Эддингтон сразу оказался в компании гениальных ученых. Там был открывший электрон Джозеф Джон Томпсон, а также Альфред Норт Уайтхед и Бертран Рассел, соавторы «Принципов математики», ставших настоящей библией для специалистов в области логики. Со временем к ним присоединились Эрнест Резерфорд, Ральф Фаулер, Поль Дирак — все сливки физического общества XX века. Эддингтон хорошо вписался в коллектив. Проведя несколько лет в Гринвичской обсерватории в Лондоне, он вернулся в Кембридж. В тридцать один год он уже был назначен на престижную должность профессора астрономии и экспериментальной философии (Plumian Professor of Astronomy and Experimental Philosophy) в Кембридже. Также он получил должность директора расположенной на окраине Кембриджской обсерватории. Рядом с ней он и поселился вместе с матерью и сестрой, чтобы стать со временем ведущим специалистом по астрономии в Великобритании. Он проживет там до конца своих дней, принимая участие в жизни колледжа с ее официальными ужинами и степенными дискуссиями, регулярно посещая Королевское астрономическое общество для Демонстрации достигнутых результатов, а для проведения измерений и наблюдений за небом периодически путешествуя в отдаленные уголки мира.

Именно в одной из таких поездок Эддингтон узнал о новых взглядах Эйнштейна на природу силы тяжести. Предложенная концепция изгибающихся лучей уже привлекла внимание ряда астрономов, которые попытались провести измерения. Экспедиции отправились в разные страны — в Америку, Россию и Бразилию, — чтобы захватить нужный момент солнечного затмения и зафиксировать небольшое отклонение света далеких звезд. В Бразилии в процессе наблюдения за затмением Эддингтон встретил одного из таких астрономов, американца Чарльза Перрайна, и был крайне заинтригован его действиями. Поэтому после возвращения в Кембридж он решил познакомиться с идеями Эйнштейна.

После начала Первой мировой войны Эйнштейн был одним из немногих, кто выступал против волны фанатичного национализма, захватившей не только страну, но и его коллег. Ситуация приводила его в отчаяние. В издании The Observatory, которое было рупором британских астрономов, появился ряд недоброжелательных статей, призывающих к прекращению сотрудничества с немецкими учеными. Как кратко сформулировал профессор Оксфордского университета Герберт Тернер: «Можно снова принять Германию в международное сообщество, ослабив нормы международного права, или исключить ее, ужесточив эти нормы. Третьего варианта не существует». Ненависть ко всему немецкому была столь сильной, что предложение подать в отставку получил имеющий немецкие корни президент Королевского астрономического общества. На время войны были заморожены все контакты британских ученых с немецкими коллегами.

Эддингтон думал и вел себя по-другому. Будучи религиозным человеком, он горячо протестовал против войны. Вокруг активно насаждалось неприязненное отношение к немецкой интеллигенции, но он имел особое мнение. «Подумайте не о символической Германии, а о вашем бывшем друге, например профессоре X, — обращался он к коллегам, — назовите его дикарем, грабителем, убийцей детей и попробуйте ощутить ярость. У вас ничего не получится из этой нелепой затеи». Эддингтон не только высказывался в пользу немцев, он отказывался отправляться на фронт и вступать в бой. После того как некоторые его коллеги были отправлены на фронт и пали смертью храбрых, он стал агитировать против войны. Его «национальная важность» — для нации он был важнее в качестве астронома, чем в качестве пехотинца, — позволила ему прибрести нескольких друзей.

В Берлине, в окружении военной истерии, Эйнштейн в одиночку работал над окончательной версией своей теории. Все выглядело корректно, но для правильного оформления требовались дополнительные математические выкладки. И он отправляется в Геттингенский университет, впоследствии ставший «математической Меккой», для встречи с Давидом Гильбертом. Гильберт был колоссом, правившим миром математиков. Он преобразовал существующий подход, пытаясь сложить устойчивое формальное основание, на котором можно было бы строить все остальное. В математике не было места несогласованности. Все следовало выводить из базового набора принципов в соответствии с общепринятыми формальными правилами. Математически точные вещи считались истинными только при условии доказательства в соответствии с этими правилами. Позднее этот подход стали называть «программой Гильберта».

Гильберт собрал вокруг себя наиболее значимых математиков мира. Один из его коллег, Герман Минковский, показал Эйнштейну, как при помощи знаний, которые Эйнштейн еще несколько лет назад пренебрежительно называл «избыточным умственным багажом», записать специальную теорию относительности более элегантным математическим языком. Ученики и ассистенты Гильберта, такие как Герман Вейль, Джон фон Нейман и Эрнст Цермело, стали ведущими математиками XX века. У Гильберта и его группы в Геттингене были большие планы: они хотели провести аксиоматизацию физики, как это было сделано с математикой. Работу Эйнштейна Гильберт считал неотъемлемой частью своего проекта.

Во время короткого визита в Геттинген в июне 1915 года Эйнштейн читал лекции, а Гильберт делал заметки. Они бесконечно дискутировали по поводу отдельных деталей. Физика была сильной стороной Эйнштейна, математика — сильной стороной Гильберта. Но вперед они не продвинулись ни на йоту. По-прежнему с подозрением относящийся к математике и не очень разбирающийся в римановой геометрии Эйнштейн не смог до конца понять излагаемые Гильбертом технические детали.

После завершения этого казавшегося бесплодным визита Эйнштейн начал сомневаться в своей новой теории относительности. Он уже был осведомлен, что универсальной она не является: когда в 1913 году они с Гроссманом завершили работу над статьями, стало ясно, что закон всемирного тяготения в выдвинутую концепцию не вписывается. Ошибочными оказались и некоторые прогнозы. К примеру, теория предсказывала отклонение орбиты Меркурия в соответствии со сделанными почти пятьдесят лет назад наблюдениями Леверье, но практика показала, что Эйнштейн ошибся в два раза. Ему пришлось снова пересматривать свое уравнение.

Через три недели Эйнштейн решил отказаться от нового закона всемирного тяготения, который они разработали вместе с Гроссманом и который не подчинялся общему принципу относительности. Ему был нужен другой закон всемирного тяготения, который подобно остальным физическим законам был бы справедливым во всех системах отсчета. Кроме того, он хотел воспользоваться новой римановой геометрией, которой его научил Гроссман. Каждые несколько дней он вносил поправки в уже сделанную работу по формулировке закона, убирая часть допущений и одновременно вводя другие. Постепенно он избавлялся от некоторых мешавших ему продвигаться вперед физических предрассудков, все глубже и глубже погружаясь в новую для него математику. Он понял, что с верно служившей на протяжении его головокружительной карьеры физической интуицией следует быть осторожным, не давая ей заслонять более общую картину, вырисовывающуюся при помощи математики.

К концу ноября, наконец, стало ясно, что работа закончена. Эйнштейн сформулировал общий закон всемирного тяготения, согласующийся с общей теорией относительности. В пределах Солнечной системы этот закон хорошо описывался классической теорией тяготения Ньютона, как это, собственно, и должно было быть. Более того, он точно предсказывал установленную Леверье прецессию перигелия Меркурия. В соответствии с этой теорией искривление лучей света, проходящих рядом с тяжелым объектом, должно быть еще больше — в два раза больше величины, предсказанной при первом обдумывании теории в Праге.

Готовая общая теория относительности Эйнштейна предлагала совершенно новый подход к пониманию физики, заменивший господствовавший в течение веков подход Ньютона. Теория предлагала набор уравнений, которые впоследствии стали называть «уравнениями Эйнштейна». Хотя лежащая в их основе идея, связывающая уравнения Гаусса и Римана с силой тяжести, была красивой, или, как выразились бы физики, «элегантной», подробные уравнения производили впечатление полного хаоса. Фактически это был набор из десяти уравнений для десяти функций геометрии пространства и времени, нелинейных и переплетенных между собой таким образом, что решить отдельное уравнение было попросту невозможно — решались они только вместе. При лобовом подходе такая перспектива пугала. Тем не менее эта система уравнений обещала очень много, так как ее решение позволяло предсказывать протекание происходящих в окружающем мире процессов, от полета пули и падающего с дерева яблока до движения планет в Солнечной системе. Казалось, что решение уравнений Эйнштейна дало ключ к секретам Вселенной.

25 ноября 1915 года Эйнштейн представил свои уравнения Прусской академии наук в виде небольшой трехстраничной работы. Его версия закона всемирного тяготения радикально отличалась от всех предлагавшихся ранее. По сути, Эйнштейн утверждал, что явление, которое мы называем силой тяжести, — не что иное, как движение объектов в геометрии пространства-времени. Массивные объекты влияют на эту геометрию, искривляя пространство и время. Эйнштейн наконец получил действительно общую теорию относительности. Но по этой дороге он шел не в одиночку. Обдумывая геттингенские лекции Эйнштейна, Гильберт предпринял собственную попытку описания гравитационных взаимодействий. И независимо от Эйнштейна пришел к тем же самым гравитационным законам. 20 ноября, за пять дней до выступления Эйнштейна в Берлинской академии, он представил свои результаты в Королевском научном обществе в Геттингене. В итоге создалось впечатление, что Гильберт опередил Эйнштейна.

Несколько недель после доклада отношения Гильберта и Эйнштейна были крайне напряженными. В письмах к Эйнштейну Гильберт утверждал, что не помнит ничего из лекций, в которых Эйнштейн рассказывал про свои попытки построения уравнений гравитации, и к Рождеству Эйнштейн согласился с тем, что в данном случае речь о нечестной игре не шла. Письмо Гильберту Эйнштейн начал с фразы «у нас произошла размолвка», но он смирился с происшедшим настолько, что написал: «Я вновь думаю о вас с ничем не замутненным дружеским чувством…» Они и в самом деле остались друзьями и коллегами, так как Гильберт больше никогда не заявлял о правах на фундаментальный труд Эйнштейна. И до самой своей смерти называл полученные ими обоими уравнения «уравнениями Эйнштейна».

Работа Эйнштейна шла к завершению. Постепенно поддаваясь силе математики, он смог получить окончательные версии уравнений. С этого момента математика стала его проводником наряду с мысленными экспериментами. Эйнштейна потрясла математическая красота готовой теории. Про уравнения он говорил как про «наиболее ценное открытие в моей жизни».

От своего друга, голландского астронома Виллема де Ситтера, Эддингтон получал оттиски статей из Праги, затем из Цюриха и, наконец, из Берлина. Его крайне заинтриговал совершенно новый подход к рассмотрению гравитации в рамках сложного математического языка. Он был астрономом, и его обязанности сводились к измерениям и наблюдениям с последующими попытками интерпретации результатов, тем не менее он был готов приступить к изучению использовавшейся Эйнштейном для описания своей теории римановой геометрии. Игра явно стоила свеч, ведь Эйнштейн сделал ряд достаточно четких прогнозов, позволяющих проверить его теорию практикой. Идеальной возможностью подобной проверки явилось ожидаемое 29 мая 1919 года солнечное затмение, и было очевидно, что команду наблюдателей возглавит именно Эддингтон.

Существовала, однако, одна, но крайне серьезная проблема. Европу охватил пожар войны, Эддингтон был пацифистом, а Эйнштейн состоял в сговоре с врагом. По крайней мере, коллеги Эддингтона пытались склонить его к этому мнению. В 1918 году военный конфликт достиг своего апогея, возрос риск полного поглощения англичан и французов немецкой армией, что привело к новой волне мобилизации. Эддингтона призвали на фронт, но у него были совсем другие планы.

Став горячим сторонником новой теории гравитационных взаимодействий, Эддингтон столкнулся с неприязнью коллег. В попытке откреститься от немецкой науки как от не имеющей ценности один из них заявил: «Мы пытались думать, что чрезмерные и неправомерные притязания Германии обусловлены временным помутнением на почве недавнего экономического роста. Но подобные примеры заставляют задуматься, не может ли печальная истина иметь более глубокие причины». И несмотря на то что королевский астроном Фрэнк Дайсон поддерживал назначение Эддингтона главой экспедиции, за отказ отправляться на фронт его хотели отправить в тюрьму. Для рассмотрения взглядов Эддингтона в Кембридже был созван правительственный трибунал. В процессе слушания враждебность по отношению к Эддингтону нарастала. В освобождении было бы отказано, если бы не вмешательство Фрэнка Дайсона. Он объявил, что Эддингтон является ключевой для экспедиции фигурой, кроме того, «в сложившихся условиях наблюдать за затмением будет крайне немногочисленная группа. Профессор Эддингтон имеет исключительную квалификацию в подобных наблюдениях, и я надеюсь, что суд даст ему разрешение взяться за эту задачу». Затмение заинтересовало суд, и Эддингтона освободили в связи с «государственной необходимостью». Увлечение теорией Эйнштейна спасло его от отправки на фронт.

Эта теория предсказывала отклонение света далеких звезд при прохождении рядом с массивным телом, например с Солнцем. Эксперимент Эддингтона сводился к наблюдению за звездным скоплением Гиады два раза в год. Сначала предполагалось аккуратно измерить положение звезд в Гиадах ясной ночью, когда ничто не мешает наблюдениям и ничто не влияет на лучи света. Затем эксперимент требовалось повторить с Солнцем на переднем плане. Эту операцию следовало проделать во время полного солнечного затмения, когда практически весь яркий свет Солнца блокируется Луной. 29 мая 1919 года Гиады находились справа от Солнца, что создавало прекрасные условия для измерений. Сравнение результатов двух экспериментов — с Солнцем и без него — должно было показать, возникает ли отклонение. И если бы оно оказалось равным примерно одной четырехтысячной градуса, или 1,7 угловой секунды, правота теории Эйнштейна была бы доказана. Вот такая простая и понятная задача.

Но на самом деле все было далеко не так просто. Те немногочисленные места, откуда можно было наблюдать полное затмение, находились далеко друг от друга. Для установки оборудования астрономам приходилось отправляться в дальние путешествия. Эддингтон вместе с Эдвардом Коттингемом из Гринвичской обсерватории начали работу на острове Принсипи. Резервная команда из двух астрономов, Эндрю Кром-мелина и Чарльза Девидсона, отправилась в деревушку Собраль, расположенную в сердце северо-восточного региона Бразилии — бедной пыльной области недалеко от экватора.

Принсипи представляет собой маленький остров в Гвинейском заливе. Это португальская колония, известная своим какао. Покрытый пышной растительностью остров в жарком, влажном, сдобренном тропическими штормами климате разделен на несколько больших плантаций, или, как их называют, rogas, появившихся там, где португальские землевладельцы использовали труд местных жителей для обработки земли. В течение десятилетий британской корпорацией Cadbury отсюда поставлялись какао-бобы. В начале XX века обвиненные в использовании рабского труда плантации потеряли свои контракты, что разрушило экономику острова. На момент прибытия туда Эддингтона остров был практически предан забвению.

Эддингтон установил аппаратуру в удаленном уголке Roca Sundy, где она находилась под присмотром землевладельца. Коротая время за игрой в теннис на единственном корте острова, он ждал дня затмения, молясь, чтобы работе не помешали раз за разом повторяющиеся ливни и серое небо. Коттингем подготовил телескоп, надеясь, что тепло не приведет к искажению изображений.

В утро затмения шел сильный дождь, небо было совершенно серым, но менее чем за час до наступления завершающей фазы стало светлеть. Увидеть Солнце Эддингтону и Коттингему удалось, когда затмение уже шло полным ходом. К 14:15 небо полностью очистилось, что позволило провести измерения — было получено шестнадцать фотопластин со снимками Солнца, на заднем плане которого проглядывало скопление Гиады. К концу затмения на небе не было ни облачка. Эддингтон телеграфировал Фрэнку Дайсону: «Через облака. Надеюсь».

Возможно, именно сильная облачность в начале эксперимента помогла получить приемлемые результаты. В бразильской деревне Собраль был жаркий и ясный день, что позволило наблюдать затмение с самого начала. Окруженные ликующими местными жителями, жаждущими принять участие в историческом событии, Кроммелин и Девидсон смогли получить девятнадцать пластин в дополнение к шестнадцати пластинам Эллингтона и Коттингема. В восторге они послали телеграмму: «Затмение. Великолепно». В тот момент они не понимали, что прекрасные условия наблюдения и жаркая погода фактически сорвали эксперимент. Жара настолько деформировала аппаратуру, что измерять фотопластинки было уже бесполезно. И только резервные наблюдения с меньшего телескопа позволили экспедиции внести в эксперимент свою лепту.

Быстро вернуться домой астрономы не могли, поэтому к анализу пластинок приступили только в конце июля. Из шестнадцати предоставленных Эддингтоном снимков только на двух оказалось достаточное для корректного измерения отклонения количество звезд. В результате получили отклонение в 1,61 угловой секунды с погрешностью в 0,3 угловой секунды, что согласовывалось с предсказанной Эйнштейном цифрой 1,7 угловой секунды. Результаты анализа бразильских пластинок вызвали тревогу. Отклонение составило всего 0,93 угловой секунды, что совсем не совпадало с релятивистскими прогнозами, зато укладывалось в теорию Ньютона. Впрочем, это были пластинки, пострадавшие от тепла. Анализ резервных наблюдений из деревни Собраль, полученных при помощи меньшего телескопа, показал, что отклонение составляет 1,98 угловой секунды, что всего на 0,12 угловой секунды превысило предсказанное Эйнштейном число.

6 ноября 1919 года команда исследователей отчиталась о результатах на совместном заседании королевского и астрономического обществ. В серии выступлений под руководством Фрэнка Дайсона члены экспедиции представили аудитории, состоящей из их коллег, различные измерения. После того как были приняты во внимание проблемы, с которыми столкнулась экспедиция в деревне Собраль, докладчики продемонстрировали, что результаты измерений блестяще подтверждают предсказания Эйнштейна.

Президент Королевского общества Джозеф Джон Томсон отозвался об измерениях так: «Это самый важный результат, полученный в теории тяготения после Ньютона». Он добавил: «Если таким образом поддерживается справедливость рассуждений Эйнштейна — и были пройдены две серьезные проверки в рамках уточнения перигелия Меркурия и настоящего затмения, — то данный результат относится к одному из величайших достижений человеческой мысли».

На следующий день после собрания в Берлингтон-хаузе слова Томпсона появились в лондонской газете Times. Рядом с множеством заголовков, посвященных годовщине перемирия и провозглашавших «Славу погибшим», располагалась статья, озаглавленная «Революция в науке. Новая теория Вселенной. Идеи Ньютона опровергнуты». В ней описывались результаты экспедиций. Новости и мнения по поводу новой теории Эйнштейна и экспедиции Эддингтона распространялись по англоязычным странам со скоростью лесного пожара. К 10 ноября информация достигла Америки, и в газете New York Times появились статьи под броскими заголовками «Весь свет скривился в небесах», «Триумф теории Эйнштейна». Была даже статья с витиеватым названием «Звезды не там, где кажутся, и не там, где они должны быть по расчетам, но для волнений нет причин».

Рискованная игра Эддингтона принесла плоды. Изучив и проверив новую общую теорию относительности Эйнштейна, он превратился в пророка новой физики. С этого момента он стал одним из немногих ученых мужей, на взгляды которых полагались при обсуждении нового релятивизма. Его мнение о том, как следует интерпретировать или разрабатывать теорию Эйнштейна, спрашивали чаще, чем кого бы то ни было.

И разумеется, блестящая экспедиция Эддингтона превратила Эйнштейна в суперзвезду. Его выводы изменили жизнь Эйнштейна и обеспечили общей теории относительности на редкость высокий уровень популярности и славы, по крайней мере на некоторое время. Ньютон был сброшен с трона, который он занимал в течение сотен лет. Теория Эйнштейна была непонятной и формулировалась математическим языком, известным крайне небольшому кругу людей, но она с честью выдержала устроенные Эддингтоном испытания. Кроме всего прочего, Эйнштейн перестал быть врагом. Несмотря на окончание войны, неприязнь к немецким ученым все еще существовала, но Эйнштейна она не касалась. Стало широко известно, что он не подписывал манифест 93-х, более того, он был не немцем, а швейцарским евреем. Как Эйнштейн выразился в статье Times вскоре после исторического доклада Эддингтона в Королевском астрономическом обществе: «В Германии меня называют немецким ученым, а для Англии я являюсь швейцарским евреем. Если же потребуется вызвать ко мне неприязнь, характеристики поменяются местами, и для Германии я стану швейцарским евреем, а для Англии — немецким ученым».

Из имеющего склонность к высокомерию неизвестного служащего патентного бюро, которым восхищались несколько узких специалистов, Эйнштейн превратился в культурный символ и стал получать приглашения прочитать лекции в Америке, в Японии, в странах Европы. А его общая теория относительности, впервые увидевшая свет в процессе простого мысленного эксперимента в бернском офисе, сформировала совершенно новый подход в физике. В релятивистской физике математика нашла твердую поддержку, породив набор сложных и красивых уравнений, готовых разлететься по миру. Пришло время выяснить, что эти уравнения означают.

Глава 3. Корректная математика, отвратительная физика

Уравнения поля Эйнштейна представляют собой набор сложных связанных друг с другом функций, тем не менее их может решить любой человек, обладающий необходимыми навыками и настойчивостью. В следующие за открытием Эйнштейна десятилетия советский математик и метеоролог Александр Фридман и бельгийский католический священник Жорж Леметр сформировали на основе уравнений общей теории относительности радикально новый взгляд на Вселенную. Сам Эйнштейн долгое время его не разделял. Но именно благодаря их трудам теория получила новую жизнь, неподконтрольную Эйнштейну.

В 1915 году, сформулировав уравнения поля, Эйнштейн хотел решить их самостоятельно. Такое решение, позволяющее точно смоделировать всю Вселенную, казалось хорошей отправной точкой. В 1917 году, сделав несколько допущений, он предпринял первые шаги в этом направлении. В его теории поведение пространства определялось распределением материи и энергии. Для моделирования целой Вселенной требовалось учесть всю входящую во Вселенную материю и энергию. Простейшим и наиболее логичным было сделанное при первой попытке решения предположение о равномерном распределении материи и энергии в пространстве. Этим Эйнштейн просто продолжал рассуждения, в XVI веке преобразовавшие астрономию. Тогда Николай Коперник сделал смелое предположение, что Земля не является центром Вселенной, а на самом деле вращается вокруг Солнца. Эта «революция Коперника» с течением времени делала наше место в космосе все более незначительным. К середине XIX века стало ясно, что даже Солнце не имеет особой важности и располагается в каком-то непонятном месте на одном из спиральных рукавов Млечного пути нашей галактики. Взявшись за решение своих уравнений, Эйнштейн расширил допущение о том, что любое место во Вселенной должно выглядеть более или менее одинаково, доведя его до логического следствия: предпочтительного места или выделенного центра существовать не должно.

Предположение о наличии во Вселенной равномерно распределенной в пространстве материи упростило уравнения, но привело к странным последствиям. Из уравнений вытекало, что такая Вселенная должна расширяться. В какой-то момент все равномерно распределенные фрагменты энергии и материи начнут двигаться друг относительно друга упорядоченным образом. В крупном масштабе ничто не остается статичным. В конечном счете все может упасть на себя же, утянув за собой пространство-время и приведя к коллапсу Вселенной в целом.

В 1916 году общие представления астрономов о космосе находились в лучшем случае на уровне церковно-приходской школы. Имелась достаточно подробная карта Млечного пути, но о том, что находится за его пределами, не было ни малейшего представления. Ни у кого не было данных о том, как ведет себя Вселенная в целом. Все наблюдения показывали небольшое движение звезд, но эти перемещения не были резкими и, разумеется, не производили впечатление организованного и систематического явления. Эйнштейну, как и для большинству людей, небо казалось статичным. Никаких доказательств сжатия или расширения Вселенной не было. Подчинившись своей физической интуиции и предвзятому мнению, Эйнштейн нашел способ убрать из теории расширяющуюся Вселенную. Он ввел в уравнения новый постоянный член. Космологическая постоянная была призвана стабилизировать Вселенную, в точности компенсируя все ее содержимое. Вся энергия и материя, которую Эйнштейн равномерно распределил по Вселенной, пыталась затянуть в себя пространство-время, а космологическая постоянная выталкивала пространство-время назад, препятствуя коллапсу. Работа на сжатие и расширение сохраняла хрупкое сбалансированное состояние Вселенной, фиксированное и статичное, как хотелось видеть Эйнштейну.

Отступление от идеи расширения Вселенной сильно усложнило теорию Эйнштейна. Как он впоследствии признавал: «Введение этой постоянной в изрядной степени лишило теорию ее логической простоты». Одному другу он сказал, что эта постоянная «сделала с теорией гравитации нечто, угрожавшее привести его в сумасшедший дом». Но свою роль она исполняла.

В период, предшествующий открытию теории относительности, Эйнштейн активно переписывался с голландским астрономом из Лейденского университета Виллемом де Ситтером. Живший в период Первой мировой войны в нейтральной стране, де Ситтер сыграл важную роль в передаче в Англию информации о теории Эйнштейна, где Эддингтон смог подробно ее изучить; именно благодаря де Ситтеру в 1919 году началась подготовка к экспедиции для наблюдения за солнечным затмением.

Будучи математиком по образованию, де Ситтер имел необходимые для решения уравнений Эйнштейна навыки. Сразу после получения от Эйнштейна проекта с описанием статической Вселенной, появившейся из изуродованных космологической постоянной уравнений, он понял, что решение Эйнштейна не было единственно возможным. И показал, что можно сконструировать Вселенную, не содержащую ничего, кроме космологической постоянной. Он предложил реалистичную модель Вселенной, включающую в себя звезды, галактики и другую материю, но в настолько малом количестве, что никак не влияло на пространство-время и не могло скомпенсировать космологическую постоянную. В результате геометрия Вселенной де Ситтера полностью определялась этой постоянной.

Вселенные как Эйнштейна, так и де Ситтера были статичными и не расширялись, в точности соответствуя предвзятым представлениям Эйнштейна. Но модель де Ситтера обладала странным свойством, которое он отметил в своих работах. Свою Вселенную, как и ранее Эйнштейн, он построил таким образом, чтобы пространство-время оказалось статичным. Геометрия этой Вселенной, например кривизна пространства в каждой точке, со временем не менялась. Но стоило поместить туда несколько звезд и галактик — что в рамках мысленного эксперимента вполне разумно, ведь настоящая Вселенная ими наполнена, — как они начинали согласованно отодвигаться от центра. Несмотря на совершенно статичную, не меняющуюся со временем геометрию Вселенной де Ситтера, населяющие ее объекты статичными уже не являлись.

Итак, через несколько недель после получения от Эйнштейна работы с описанием статичной Вселенной де Ситтер написал собственное решение и отправил его Эйнштейну. Последний признал математическую корректность предложенной модели, но особого впечатления она на него не произвела. Еще Эйнштейну не понравилось полное отсутствие планет и звезд. Он считал всю эту материю крайне существенной, позволяющей нам понять, что мы движемся или разворачиваемся. Только рассматривая свое положение относительно небесных светил, можно определить собственное ускорение, замедление или вращение. Они дают опорную точку для применения всех законов физики. Без этой материи чутье Эйнштейна не работало. Своим раздражением по поводу лишенного материи мира он поделился с Паулем Эренфестом: «Допускать такую возможность не имеет смысла». Тем не менее, несмотря на ворчание Эйнштейна, через несколько лет с момента своего появления общая теория относительности породила две разные по своей сути статические модели Вселенной.

В то время как Эйнштейн работал над общей теорией относительности, Александр Фридман бомбил Австрию, будучи летчиком русской армии. В 1914 году он записался в добровольцы и сначала воевал в подразделении воздушной разведки на северном фронте, а потом перевелся во Львов. Некоторое время казалось, что русские почти одолели врага. Совершая регулярные ночные вылеты над Южной Австрией, он вместе со своими товарищами пытался подчинить окруженные русской армией города. Русские брали под свой контроль город за городом.

Фридман не походил на других летчиков. Его товарищи бросали бомбы на глаз, примерно прикидывая место их приземления, он же старался обеспечить точность попаданий. Фридман вывел формулу, предсказывающую, где в зависимости от скорости полета, а также скорости и веса бомбы нужно ее бросать. В результате его бомбы всегда попадали куда нужно. За храбрость на поле боя его наградили орденом Святого Георгия.

Фридман, до 1914 года специализировавшийся в чистой и прикладной математике, имел талант к вычислениям. Он часто принимался за задачи, точное решение которых до появления компьютеров было крайне сложным. Из уравнений он бесстрашно убирал все, кроме самого необходимого, везде, где можно, устраняя избыточную путаницу и избавляясь от любого дополнительного бремени. Если даже после этого уравнение не решалось, он рисовал графики, приближенно показывающие правильные результаты. С одинаковым энтузиазмом он брался за любые задачи, от предсказаний погоды до поведения циклонов, от течения жидкостей до траекторий падающих бомб. Трудности его не пугали.

В начале XX века Россия менялась. Монархия переживала кризис за кризисом, не в силах бороться с растущим недовольством среди сильно обедневшего населения на фоне увеличивающегося хаоса в еще более нестабильной Европе. Фридмана воодушевляла возможность стать частью происходящих вокруг социальных изменений. Еще гимназистом он вместе с сокурсниками принимал участие в потрясших страну во время первой русской революции 1905 года выступлениях учащихся. Он выделялся своими способностями среди студентов последних курсов Санкт-Петербургского университета, а во время войны был одним из лучших солдат, принимая участие в вылетах и бомбометании, изучая воздухоплавание и разрабатывая промышленные установки для производства навигационных инструментов.

После войны Александр Фридман обосновался в Петрограде (позднее переименованном в Ленинград), работая преподавателем. «Релятивистский цирк», как его называл Эйнштейн, докатился и до России. Заинтригованный странными и чарующими математическими выкладками, Фридман решил бросить все свои грандиозные способности на решение Уравнений Эйнштейна. Как и Эйнштейн, Фридман разрубил сложный узел уравнений предположением, что в большом Масштабе Вселенная проста, материя в ней распространена Равномерно, а геометрия пространства может быть описана всего одним числом — его кривизной. Эйнштейн утверждал, что это число раз и навсегда зафиксировано, обеспечивая тонкую грань между введенной им космологической постоянной и плотностью распределенной в пространстве материи в виде звезд и планет.

Полученные Эйнштейном результаты Фридман проигнорировал и начал все с нуля. Изучая влияние материи и космологической постоянной на геометрию Вселенной, он столкнулся с удивительным фактом: кривизна пространства меняется со временем. Разбросанная по Вселенной в виде звезд и галактик материя может привести к тому, что пространство свернется в ноль. Выраженная положительным числом космологическая постоянная призвана раздвигать пространство, заставляя его расширяться. Эйнштейн сбалансировал оба этих эффекта — сжатие и растяжение — таким образом, чтобы пространство стало статичным. Но с точки зрения Фридмана, подобное решение представляло собой частный случай. Общее же решение сводилось к тому, что Вселенной приходилось меняться, сжимаясь или расширяясь в зависимости от того, что именно — материя или космологическая постоянная — играло ведущую роль.

В 1922 году Фридман опубликовал статью «О кривизне пространства», в которой демонстрировалось, что Вселенные Эйнштейна и де Ситтера представляют собой частные случаи широкого диапазона доступных вариантов поведения. Собственно, наиболее общие решения были представлены для сжимающих или расширяющихся Вселенных. У моделей определенного класса расширение могло сменяться сжатием, приводя к бесконечной последовательности циклов. Результаты Фридмана освободили космологическую постоянную от обязанности сохранять статичность Вселенной. В отличие от исходной модели Эйнштейна теперь данную константу стало невозможно связать с каким-то определенным значением. 3 заключение Фридман снисходительно написал: «Космологическая постоянная не определена… так как это произвольная константа». Отказавшись от выдвинутого Эйнштейном требования статичности Вселенной, Фридман продемонстрировал, что космологическая постоянная не оказывает никакого влияния на различные явления. Если Вселенная меняется, нет нужды усложнять теорию вводом дополнительного случайного фактора.

Эта статья стала большой неожиданностью. Фридман ничего не обсуждал с Эйнштейном, не слушал его лекций в Прусской академии наук. Он был человеком со стороны, захваченным поднявшейся после экспедиции Эддингтона волной всеобщей эйфории. Как специалист в первую очередь в области математической физики, Фридман везде применял те же самые навыки, при помощи которых он изучал падение бомб и изменения погоды. И получил результат, вступивший в противоречие с интуитивными озарениями Эйнштейна.

Эйнштейну возможность меняющейся Вселенной представлялась абсурдной. При первом чтении работы Фридмана он отказывался признавать, что его теория может поддерживать подобные вещи. Эйнштейн загорелся идеей доказать неправоту Фридмана. Он тщательно изучил его работы и нашел, как ему показалось, фундаментальную ошибку. После ее исправления расчеты Фридмана стали показывать картину статической Вселенной, в точности в соответствии с предсказаниями Эйнштейна. И Эйнштейн поторопился опубликовать заметку, в которой утверждал, что работа Фридмана «значима» как подтверждение постоянства и неизменности Вселенной.

Заметка сильно обидела Фридмана. Он был уверен в правильности своих выкладок и в том, что Эйнштейн сам ошибся в расчетах. Он написал письмо, разъясняющее Эйнштейну его ошибку, которое заканчивалось так: «Если вы сочтете представленные здесь вычисления корректными, будьте так добры, сообщите это редакторам журнала Zeitschrift für Physik». Отправив свое послание в Берлин, Фридман надеялся на быструю реакцию Эйнштейна.

Эйнштейн мог вообще не получить это письмо. Его слава привела к бесконечной цепи семинаров и конференций, заставляя путешествовать по всему миру от Голландии и Швейцарии до Палестины и Японии и препятствуя возвращению в Берлин, где пылилось письмо Фридмана. И только случайная встреча в Лейденской обсерватории с коллегой Фридмана позволила Эйнштейну узнать о том, что в Берлине его ждет письмо. И только спустя шесть месяцев Эйнштейн опубликовал поправку к своим исправлениям статьи Фридмана, признав правомерность основных результатов и согласившись, что для Вселенной «возможны меняющиеся со временем решения». И в самом деле, в общей теории относительности развитие Вселенной вполне допустимо. Тем не менее, по мнению Эйнштейна, все сделанное Фридманом лишь показало наличие в теории Эйнштейна решений, приводящих к меняющейся Вселенной. Эйнштейн считал, что это были не более чем математически расчеты на базе его теории. И предвзято продолжал верить в статичность Вселенной.

Фридман получил известность как человек, внесший поправки в результаты великого ученого. Несмотря на наличие аспирантов, способных развить его идеи, и на то, что сам он продолжал предавать работы Эйнштейна гласности на территории Советского Союза, Фридман вернулся к метеорологии. В 1925 году в возрасте тридцати семи лет он умер от брюшного тифа, которым заразился в Крыму. На несколько лет его модель развивающейся Вселенной была позабыта.

С математикой и религией Жорж Леметр познакомился в юном возрасте. Он хорошо решал уравнения и изобретал новые красивые разгадки предлагаемых в школе математических головоломок. Поступив в иезуитский колледж в Брюсселе, он начал изучать горное дело и занимался этим до призыва на фронт в 1914 году. В момент вторжения немцев в Бельгию, когда Эйнштейн и Эддингтон вовсю агитировали за мир, Жорж Леметр воевал на передовой. Немцы разрушили город Лувен, возмутив своим поступком международное сообщество, что привело к печально известному «Манифесту девяносто трех», сильно навредившему научным связям между Англией и Германией. Леметр был образцовым солдатом, прошедшим по карьерной лестнице от простого артиллериста до офицера. Как и Александр Фридман, он применял свои способности для решения сложных задач в области баллистики. После окончания войны Леметр был награжден орденом за храбрость.

Бойня, свидетелем которой он стал на фронте, разрушительное действие газообразного хлора и окружающая жестокость оказали на него сильное влияние. После действительной военной службы Леметр не только возвращается к изучению физики и математики, но и поступает в 1920 году в семинарию Святого Румольда в Малине, а в 1923 году принимает сан священника. До конца своих дней Леметр будет очарован математикой и останется верным служителем католической Церкви, увенчав свою карьеру президентством в Папской академии наук. Священник-ученый, занявшийся решением Уравнений Вселенной.

Еще в университете Лувена Леметра привлекала общая теория относительности Эйнштейна, по которой он проводил семинары и писал небольшие обзоры. Часть 1923 года он провел в Англии, в Кембридже, в доме для католических духовных лиц, сотрудничая с Эддингтоном. Последний познакомил Леметра с основами теории относительности, предоставив место в первом ряду в разворачивающемся поиске истинной теории Вселенной. Эддингтон считал Леметра «крайне одаренным студентом, быстро схватывающим и проницательным, обладающим недюжинными математическими способностями». После переезда в 1924 году в Кембридж в штате Массачусетс Леметра в основном заботила нерешенная проблема точного моделирования Вселенной. Он углубился в нее с таким же рвением, как и в работу над своей докторской диссертацией в Массачусетском технологическом институте.

Когда в 1923 году Леметр обратился к космологии, в мире все еще рассматривались модели Эйнштейна и де Ситтера. Это были единственные математические модели, полученные из уравнений Эйнштейна, при этом они не были подтверждены никакими наблюдениями. Развивающаяся Вселенная Александра Фридмана ни на что не повлияла, так как предубеждение Эйнштейна против подобной модели имело такой вес, что никто не осмеливался ему противоречить. Поэтому в соответствии с преобладающими взглядами Вселенная оставалась статичной, хотя Эддингтона заинтересовала модель де Ситтера, в которой звезды и галактики удалялись от центра Вселенной. Де Ситтер утверждал, что одна из характеристик его Вселенной доступна для наблюдений. Удаленные объекты будут выделяться на общем фоне, так как свет от них окрасится в красный цвет.

Свет можно представить в виде набора волн с разной длиной, соответствующих различным состояниям энергии. Красному свету соответствует большая длина волны и более низкое энергетическое состояние, чем расположенному на другом конце спектра синему. Звезды, галактики и другие яркие объекты испускают набор таких волн, некоторые обладают большей энергией, чем другие. Де Ситтер обнаружил, что свет любого удаленного объекта смещается в красную сторону спектра, создавая впечатление большей длины волны й более низкой энергии, чем у аналогичных близкорасположенных объектов. Чем сильнее удален объект, тем более красным является его свечение. Поиск подобного явления в реальной Вселенной был гарантированным способом проверки жизнеспособности модели де Ситтера.

Эффект красного смещения показывал, что с моделью де Ситтера не все ясно. Вместе с Германом Вейлем, одним из геттингенских учеников Давида Гильберта, Эддингтон более подробно исследовал решение де Ситтера и обнаружил, что при распределении звезд или галактик по всему пространству-времени существует тесное линейное соотношение между красным смещением и расстоянием до звезды или галактики. Красное смещение объекта, расположенного от Земли в два раза дальше другого объекта, оказывается в два раза сильнее. Этот принцип стал известен как эффект де Ситтера.

Когда в 1924 году Леметр внимательно исследовал Вселенную де Ситтера и выводы Эддингтона и Вейля, он обнаружил в уравнениях необычную деталь. Свою теорию де Ситтер формулировал, взяв за основу статическую Вселенную со странным свойством: она обладала центром, причем для помещенного в этот центр наблюдателя существовал горизонт, за которым ничего нельзя было увидеть. Это шло вразрез с основным предположением Эйнштейна об эквивалентности всех мест во Вселенной. После того как Леметр убрал из модели горизонт и сделал все точки равноправными, оказалось, что Вселенная де Ситтера ведет себя совсем по-другому. При более простом взгляде на Вселенную, предложенном Леметром, кривизна пространства менялась со временем, а геометрия эволюционировала таким образом, что точки пространства разбегались друг от друга. Это объясняло эффект де Ситтера.

Леметр, как и Фридман за пару лет до него, столкнулся с расширяющейся Вселенной. Но в отличие от выкладок Фридмана, открытая им связь расширения Вселенной и красного смещения допускала проверку путем наблюдений.

Леметр пошел в своем анализе дальше и стал искать дополнительные решения. К его удивлению, оказалось, что статические модели, продвигаемые Эйнштейном и де Ситтером, представляли собой не просто частные случаи, а почти отклонения от теории пространства-времени Эйнштейна. Если модель де Ситтера можно было перестроить в развивающуюся Вселенную, то модель Эйнштейна страдала от нестабильности, способной быстро нарушить весь порядок. При минимальном дисбалансе между материей и космологической постоянной Вселенная Эйнштейна начинала быстро расширяться или сжиматься, уходя от так желаемого Эйнштейном равновесного состояния. Более того, оказалось, что модели Эйнштейна и де Ситтера входят в огромное семейство моделей, все из которых со временем расширяются.

Эффект де Ситтера не прошел среди астрономов незамеченным. На самом деле еще в 1915 году, то есть до того как де Ситтер предложил свою модель и ее отличительную особенность, американский астроном Весто Слайфер измерил красное смещение разбросанных по небу световых пятен, известных как туманности. Для этого он измерял спектры туманностей. Элементы, из которых состоит испускающий свет объект, будь это электрическая лампочка, раскаленный кусок угля, звезда или туманность, продуцируют уникальный набор волн разной длины. При измерении спектрометром эти волны дают набор линий, напоминающий штрихкод. Именно он и называется спектром объекта.

Воспользовавшись оборудованием Ловелловской обсерватории в городе Флагстафф, штат Аризона, Слайфер измерил спектры рассеянных по небу туманностей. Затем он сравнил ля со спектрами, которые получились бы при измерении свечения объектов, состоящих из аналогичных элементов, если бы эти объекты располагались непосредственно перед его носом. (Спектры элементов, составляющих туманность, уже были хорошо известны, так что повторять эксперимент ему не пришлось.) И оказалось, что результаты измерений были смещены относительно ожидаемого. Каждый штрих-код демонстрировал смещение влево или вправо.

Сдвиг спектра указывал на факт движения измеряемых объектов. При удалении источника света от наблюдателя кажется, что длины световых волн увеличиваются. В итоге свет выглядит более красным. И наоборот, если источник света движется на наблюдателя, его спектр сдвигается в сторону более коротких волн и он выглядит более синим. Это явление называется эффектом Доплера, и, скорее всего, вы слышали о нем в связи со звуковыми волнами. Представьте быстро едущую карету скорой помощи — звук ее сирены будет меняться по мере движения, становясь более низким по мере удаления от вас. Аналогичный эффект позволил Слайферу понять, как именно перемещаются объекты во Вселенной.

В целом полученные результаты Слайфера не удивили. Как он и ожидал, объекты перемещаются под действием гравитационного притяжения других объектов. После его первых измерений создалось ощущение, что одна из наиболее ярких туманностей, туманность Андромеды, движется по направлению к нам: ее свет демонстрировал фиолетовое смещение. Однако методичный Слайфер этим не ограничился и записал спектры еще ряда туманностей. Результат его озадачил — казалось, что почти все туманности от нас удаляются. Это была тенденция.

В 1924 году молодой шведский астроном Кнут Лундмарк взял данные Слайфера и сделал приблизительный подсчет расстояния до различных туманностей. Определить точные расстояния ему не удалось, но тенденция прослеживалась: чем дальше располагалась та или иная туманность, тем быстрее она двигалась.

И вот в 1927 году аббат Леметр заново вывел тенденцию, которая проявилась в модели де Ситтера и которую зафиксировал при своих наблюдениях Слайфер. Его расчеты показали, что измерения красных смещений и расстояний до далеких галактик должны выявить линейную зависимость между этими параметрами. Если откладывать расстояние по горизонтальной оси, а красное смещение — по вертикальной, то на графике все галактики выстроятся в почти прямую линию. Не зная о работах Фридмана, Леметр включил результаты в свою диссертацию и опубликовал их в безвестном бельгийском журнале. В свои расчеты он включил короткий раздел с обсуждением эмпирических данных и вычислением угла наклона обнаруженной им самим, Эддингтоном и Вейлем линейной зависимости. Указывающие на расширение эмпирические данные были предварительными и содержали серьезные ошибки, но прослеживающаяся тенденция казалась крайне перспективной.

К разочарованию Леметра, ведущие теоретики в области релятивизма, в том числе его бывший консультант Эддингтон, его статью полностью проигнорировали. Когда в том же году Леметр на одной из конференций встретил Эйнштейна, последний не высказал никакой заинтересованности и только любезно указал, что работа Леметра всего лишь воспроизводит открытие Александра Фридмана. Признавая корректность вычислений Фридмана, Эйнштейн считал странную расширяющуюся Вселенную математическим курьезом, не имеющим отношения к реальной Вселенной, которая, по его мнению, была статичной. Оценку работы Леметра он завершил уничижительным замечанием: «Ваши вычисления правильны, но ваше понимание физики отвратительно». После этого, по крайней мере на некоторое время, Вселенная Леметра была забыта.

Эдвина Хаббла куда больше уважали за его умение улаживать проблемы, чем за личное обаяние. Он учился в Чикагском университете, где, как он утверждал, стал чемпионом по боксу. Затем как стипендиат Родса он провел несколько лет в Оксфорде, подцепив там раздражающе искусственный британский акцент, с которым говорил до конца своих дней. Свои напыщенные манеры он довершал твидовым костюмом и трубкой — обязательными атрибутами английского эсквайра. После Оксфорда Хаббл, подобно Фридману с Леметром, участвовал в Первой мировой войне, но сразу после ее окончания добился успеха в профессиональной сфере.

В конце 1920-х годов люди обратили внимание на работы Хаббла, потому что несколькими годами ранее он натолкнулся на золотую жилу. В начале XX века было известно, что мы живем внутри огромного водоворота звезд, из которого состоит наша галактика. Это так называемый Млечный путь. Со временем у астрономов возник вопрос: а является ли Млечный путь единственной галактикой, одиноким островком в пустом пространстве или же в космосе существует множество галактик? При взгляде на небо легко заметить слабые таинственные световые пятна, те самые туманности, которые измерял Слайфер. Являются ли они развивающимися звездами Млечного пути или же это удаленные галактики в процессе становления? Второе означало, что Млечный путь — всего лишь одна из множества галактик.

Ответ на этот вопрос Хаббл нашел в процессе измерения расстояния до туманности Андромеды. Он понял, что в качестве опорных точек может воспользоваться очень яркими звездами, известными как цефеиды. Определив, насколько светимость цефеид в туманности Андромеды меньше светимости более близких звезд, он смог выяснить расстояние до этой туманности. Чем более тусклой выглядит звезда, тем дальше она должна находиться. Полученное Хабблом расстояние до Андромеды было громадным — почти миллион световых лет, что в пять или даже в десять раз превышало оценочное расстояние до Млечного пути. Значит, туманность Андромеды не могла быть частью Млечного пути, поскольку находилась слишком далеко. Напрашивалось естественное объяснение: это всего лишь еще одна галактика. И если оно было верным для Андромеды, оно могло оказаться верным и для множества остальных туманностей. Так в 1925 году единственный эксперимент Хаббла сильно увеличил размер Вселенной.

В 1927 году Хаббл принял участие во встрече Международного союза астрономов в Голландии. Он знал, какой шум поднял сделанный де Ситтером, Эддингтоном и Вейлем прогноз о наличии красного смещения в туманности и познакомился с измерениями Слайфера, которые можно было трактовать как первый намек на наличие данного эффекта. Опубликованная в 1924 году статья Лундмарка, в которой делалась попытка показать соотношение между скоростями и расстоянием, предшествовала проделанным Хабблом измерениям расстояния до Андромеды и была встречена скептически. Аббат Леметр использовал данные Хаббла в своей работе 1927 года, но она была опубликована в малоизвестном бельгийском журнале на французском языке, поэтому никто ее не читал. Хаббл увидел возможность включиться в процесс и самостоятельно открыть эффект де Ситтера, проигнорировав все предшествующие попытки и позиционировав себя как первооткрывателя.

Для этого он заручился поддержкой Милтона Хьюмасона, сотрудника обсерватории Маунт-Вилсон. Ночь за ночью Хьюмасон настраивал призмы телескопа, установленного в калифорнийских горах над Пасаденой, и снимал спектры. Это была неблагодарная работа. Под куполом было холодно и темно, а от железного пола у Хьюмасона немели и начинали ныть ноги. Болела спина, ведь смотреть в окуляр, пытаясь обнаружить спектральные линии выбранных туманностей, приходилось в неудобной позе. Он знал, что должен превзойти Слайфера, и поэтому рассматривал совсем тусклые туманности. Чем слабее было их свечение, тем дальше они могли находиться. Но инструмент, которым он пользовался, не был предназначен для подобной работы. Получение одного спектра занимало от двух до трех дней, в то время как другие телескопы позволяли делать то же самое за несколько часов.

Пока Хьюмасон искал красные смещения, Хаббл сосредоточился на определении расстояний. Он измерял испускаемое каждой туманностью количество света и сравнивал результаты с расстоянием до туманности Андромеды. Это позволило примерно представить, насколько далеко от Земли находятся рассматриваемые объекты. Полученные данные объединялись с измеренным Слайфером и Хьюмасоном красным смещением в поисках линейной зависимости между двумя параметрами, однозначно указывающей на эффект де Ситтера.

К январю 1929 года Хаббл и Хьюмасон собрали данные о красном смещении сорока шести туманностей. Хаббл определил расстояние до тех двадцати четырех из них, которые располагались ближе всего и красное смещение которых измерял Слайфер. Был построен график: по оси х откладывались расстояния, а по оси у — скорости перемещения, определенные путем измерения красного смещения. Разброс получился достаточно большим, но график выглядел лучше предыдущих, полученных Лундмарком и Леметром, и явно указывал на тенденцию: чем дальше находилась туманность, тем сильнее было красное смещение.

Свои данные Хаббл опубликовал сам без Хьюмасона в короткой работе «Связь между расстоянием и лучевой скоростью межгалактических туманностей». Статья Лундмарка на эту тему вышла куда раньше, но Хаббл, мимоходом о ней упомянув, предпочел заострить внимание на важности собственных результатов. В последнем абзаце он писал: «Впрочем, существует возможность того, что соотношение между скоростью и расстоянием указывает на эффект де Ситтера, а значит, численные данные можно ввести в обсуждение общей кривизны пространства». В тот же день была отправлена короткая скромная статья, в которой Хьюмасон представлял результаты своих измерений красного смещения и расстояния до туманности, которая располагалась в два раза дальше, чем все туманности, упомянутые в работе Хаббла. Полученные данные тоже укладывались в обнаруженное Хабблом соотношение. Это был эффект де Ситтера.

Хотя Лундмарк и Леметр уже публиковали аналогичные данные, именно открытие линейной зависимости красного смещения от расстояния послужило катализатором, объединившим космологию. После публикации в 1929 году основополагающей работы Хаббла муссировавшиеся до этого почти десятилетие идеи Эйнштейна, де Ситтера, Фридмана и Леметра наконец сложились в одну простую картину. И хотя данные Слайфера, а также анализ Лундмарка и Леметра однозначно указывали на то, что галактики разбегаются, именно работы Хаббла и Хьюмасона убедили астрономов в реальности эффекта де Ситтера.

Через год после выхода статьи Хаббла Эддингтон высказал свое мнение по поводу эффекта де Ситтера и наблюдений Хаббла в журнале The Observatory, в котором во время Первой мировой войны он публиковал свои пацифистские призывы. После чтения этой статьи плотно обосновавшийся в университете Лувена аббат Леметр пришел в замешательство. Ведь там не было ни малейшего упоминания о его работе. Его более простая модель расширяющейся Вселенной была забыта. Немедленно он отправил Эддингтону письмо с описанием своей работы 1927 года, в которой демонстрировалась возможность дополнительных решений уравнений Эйнштейна, указывающих на расширение Вселенной. В конце Леметр добавил: «Я отправляю вам несколько копий статьи. Возможно, вы сможете переслать ее де Ситтеру. В свое время я послал ему эту статью, но, похоже, он ее не прочитал». Эддингтон был раздавлен. Его «блестящий» и «проницательный» ученик сообщал о своих попытках заниматься теорией относительности, но Эддингтон просто списал его со счетов и забыл про его работу. Он быстро приступил к статье, продвигающей взгляд Леметра на Вселенную и убеждающей де Ситтера отбросить собственную модель и принять модель Леметра. Теперь настала очередь Эйнштейна признать существование расширяющейся Вселенной.

Годы известности отвлекли Эйнштейна и от его теории, бурно развиваемой Фридманом и Леметром, и от наблюдений за удаляющимися галактиками. Но к лету 1930 года ему пришлось признать, что кое-что изменилось. Во время визита в Кембридж он остановился у Эддингтона и его сестры и заразился энтузиазмом Эддингтона, связанным с результатами Хаббла и Вселенной Леметра. Во время одной из многочисленных поездок он посетил Калифорнию и Маунт-Вилсон, где в общих чертах обсудил с Хабблом новое видение Вселенной. Эйнштейн пока не очень хорошо говорил по-английски, а Хаббл Не понимал немецкого, но они оба видели, что концепция расширяющейся Вселенной прижилась как среди физиков, так и среди астрономов. Во время следующей поездки, на этот раз в Лейден, во время беседы с де Ситтером Эйнштейн увлекся идеей новой космологии, родившейся из его теории и породившей варианты расширяющейся Вселенной. Они согласились избавиться от параметра, который ввел Эйнштейн, чтобы обеспечить статичность теории Вселенной. Добавленной в теорию задним числом космологической константе пришел конец.

Обнаружив в уравнениях Эйнштейна расширяющуюся Вселенную, Леметр решил развить заодно и его общую теорию относительности. Он понял, что данная теория позволит получить картину того, с чего все началось. Ведь из постулата о расширении Вселенной вытекал вопрос, каким образом и почему она начала вести себя подобным образом. И отмотав время назад, можно прийти к моменту, когда пространство-время существовало в виде точки. Эта странная ситуация не похожа ни на одно из явлений, наблюдаемых в окружающем мире. Но модели Фридмана и Леметра, по-видимому, демонстрировали именно это: первый момент зарождения пространства-времени.

Леметр предложил радикальную идею возникновения Вселенной. Она включала начало всего. В этой концепции Вселенная появлялась из одной точки, первоначального атома, или, как его называл Леметр, «космического яйца». Этот атом породил весь заполняющий современную Вселенную материал. Он должен был распасться в соответствии с законами квантовой физики, разработка которых в то время только начиналась. По аналогичной схеме происходит наблюдаемый в лабораториях радиоактивный распад частиц. Потомки первичного атома в свою очередь распадались на дополнительные атомы и т. д.

Это была простая, умозрительная, почти библейская модель, но Леметр всеми силами старался в своих предположениях держаться подальше от религии. Будучи священником, он больше чем кто-либо другой рисковал быть обвиненным в привнесении элемента веры в чисто научную гипотезу. В журнале Nature он опубликовал заметку, озаглавленную «Начало мира с точки зрения квантовой теории». Этим заголовком было сказано все. Речь о божественном вмешательстве или теологических конструкциях не шла. Это был практический вывод из холодных беспристрастных законов физики. Так устроена природа. Свое видение Леметр изложил так: «Если мир начался с одного кванта, понятия пространства и времени вначале должны быть лишены какого-либо смысла; они должны начаться только в момент, когда первоначальный квант разделяется на достаточное количество квантов. Бели это предположение корректно, начало мира произошло немного раньше возникновения пространства и времени».

В январе 1931 года в своем обращении к Британской математической ассоциации Эддингтон рассказал, что он думает о новейшей идее Леметра, начав так: «Мне не нравится современное представление о начале окружающего мира». Эддингтон поддержал работу Леметра, посвященную расширяющейся Вселенной, и убедил Эйнштейна отказаться от концепции статической Вселенной. Своей международной известностью Леметр обязан Эддингтону. Но воспринять наиболее передовые идеи Леметра Эддингтон был не в состоянии. Они выводили теорию пространства-времени Эйнштейна за границы применимости. По крайней мере, такое мнение озвучивал Эддингтон.

Аналогично тому как Эйнштейн отвергал расширение пространства в работах Фридмана и Леметра, Эддингтон отказывался принять результаты, вытекающие из математических расчетов. Вместо этого он предложил другое решение. Благодаря полученным Хабблом и Хьюмасоном доказательствам того, что галактики разбегаются, была отброшена модель статической Вселенной Эйнштейна. В процессе поиска всех возможных решений Леметр показал, что эта статическая Вселенная обладает свойством, которое усиливает позицию Эддингтона, — она нестабильна. Достаточно добавить туда немного материи — дополнительную галактику, звезду или даже один-единственный атом, — и Вселенная начнет сворачиваться в одну точку. И наоборот, удаление материи приводит к ее расширению, в результате чего она начинает вести себя подобно Вселенным Фридмана и Леметра. Именно эту нестабильность модифицировал Эддингтон, чтобы объяснить процесс расширения.

Объяснение, предложенное Эддингтоном, при своей неоднородности и незавершенности было правдоподобным и простым. Начало Вселенной описывалось моделью Эйнштейна, то есть она была статичной и неподвижной. На самом деле было бы ошибкой утверждать, что Вселенная имела начало; она могла находиться в статичном состоянии бесконечно долгое время, пока в соответствии с предложением Эддингтона материя каким-то способом, который еще требовалось определить, не начала группироваться. Из возникающих конгломератов материи сформировались звезды и галактики, а находящееся между ними пустое пространство привело к дестабилизации модели Эйнштейна и положило начало расширению. Произошел изящный переход Вселенной, находящейся вне времени, в расширяющуюся Вселенную.

Эддингтона предложенная Леметром радикальная гипотеза начала Вселенной не убедила, а вот Эйнштейн придерживался иного мнения. Зимой 1933 года путешествующие по Соединенным Штатам Америки Эйнштейн и Леметр встретились в Пасадене, в Калифорнийском технологическом институте, куда аббата пригласили прочитать две лекции. Их предыдущая встреча в Сольвее в 1927 году, во время которой Эйнштейн отозвался о работе Леметра как о наборе правильных, но не имеющих отношения к делу выводов из его собственной теории, прошла не слишком удачно. Но теперь все изменилось. Леметр пользовался уважением как одно из ведущих светил новой науки — космологии. Во время этой встречи ученые, погруженные в беседу, бродили по саду Атенеума, центра социальной жизни Калтеха. Газета Los Angeles Times описывала эту встречу так: «Серьезные выражения их лиц свидетельствовали о том, что идет обсуждение современного состояния дел, связанных с космосом». Было логичным и присутствие Эйнштейна на лекциях Леметра. В конце одного из семинаров он встал и сказал: «Это наиболее красивое и исчерпывающее объяснение мироздания, которое я когда-либо слышал».

После более чем десяти лет заблуждений Эйнштейн, наконец, увидел свет. Это был интересный поворот событий. Создателю общей теории относительности не хватило храбрости принять вытекающие из этой теории предсказания по поводу Вселенной, и он попытался ввести дополнительный фактор, чтобы подогнать результат под свои представления. Только Фридман и Леметр, принявшие общую теорию относительности во всей ее математической красоте, смогли предложить концепцию развивающейся, расширяющейся Вселенной. И экспериментальные данные подтвердили их правоту. Похвала Эйнштейна подняла Леметра в глазах массовой прессы. И подобно Эйнштейну, находящемуся в зените славы, Леметр был признан «ведущим мировым космологом». Он смог стать одним из столпов современной космологии. Его Идеи наряду с идеями Александра Фридмана подготовили почву для происшедшей тридцатью годами позднее революции в этой науке.

Глава 4. КОЛЛАПСАРЫ

Роберта Оппенгеймера общая теория относительности не сильно интересовала. Он в нее верил, как любой здравомыслящий физик, но считал, что для современной науки она не имеет особого значения. По иронии судьбы именно Оппенгеймеру принадлежит открытие черных дыр — одного из самых странных и экзотических предсказаний этой теории.

Оппенгеймера интересовала другая продвигавшаяся в последние десять лет теория. Приобретя первый опыт и познакомившись в Европе с хорошо развитой современной физикой, он прославился как квантовый физик, в конечном счете создав на базе Калифорнийского университета в Беркли ведущую группу специалистов в этой области. До определенной степени причиной временной стагнации и блокады теории Эйнштейна стал именно подъем квантовой физики и таких ученых, как Оппенгеймер. Но в 1939 году пытаясь вместе со своим студентом Хартландом Снайдером понять, что происходит в конце жизненного цикла массивных звезд, Оппенгеймер обнаружил странное, находящееся за пределами его понимания решение общей теории относительности, на которое не обращали внимания почти двадцать лет. Он показал, что достаточно большая и плотная звезда будет исчезать из поля зрения. По его словам, через некоторое время «звезда стремится закрыться от любого взаимодействия с удаленным наблюдателем; сохраняется только ее гравитационное поле». Вокруг сжимающегося шара света и энергии как будто возникает таинственная пелена, скрывающая его от внешнего мира, а пространство-время завязывается в невозможно тугой узел. Из этой пелены не может вырваться ничто, даже свет. Вывод Оппенгеймера стал еще одним порожденным уравнениями Эйнштейна математическим курьезом, и многие сочли его слишком сложным для понимания.

Почти за четверть века до открытия Оппенгеймера и Снайдера немецкий астроном Шварцшильд послал Эйнштейну письмо с такой припиской: «Как видите, война отнеслась ко мне достаточно любезно, позволив, несмотря на близкий артиллерийский огонь, совершить прогулку в страну ваших идей». Это был декабрь 1915 года, и Шварцшильд писал с передовой Западного фронта. Сразу же после объявления Первой мировой войны в 1914 году он пошел в армию добровольцем, хотя как директор астрофизической обсерватории в Потсдаме был освобожден от призыва. Но как позднее сказал о нем Эддингтон, «Шварцшильд всегда больше тяготел к практике». Как и Фридман, Шварцшильд применял свои способности физика во время армейской службы и даже отправил в Берлинскую академию работу «Влияние ветра и плотности воздуха на траекторию полета тяжелых снарядов».

В России Шварцшильд получил последнюю копию журнала Proceedings Прусской академии наук. Там он обнаружил короткое, но захватывающее изложение новой общей теории относительности Эйнштейна. И приступил к распутыванию предложенных Эйнштейном уравнений на примере простейшей наиболее физически интересной ситуации, которую смог придумать. В отличие от Александра Фридмана и Жоржа Леметра, которые годы спустя будут рассматривать Вселенную в целом, Шварцшильд решил сосредоточиться на менее масштабном объекте: пространстве-времени вокруг сферической Массы, например планеты или звезды.

Решать запутанные системы уравнений, подобные предложенным Эйнштейном, помогают упрощения. Рассматривая пространство-время вокруг звезды, Шварцшильд сфокусировался на поиске статичного, то есть не меняющегося со временем, решения. Кроме того, он хотел получить результат, который на полюсе выглядел бы так же, как на экваторе, чтобы значение имело только расстояние любой точки пространства до центра звезды.

Решение Шварцшильда было отменно простым и выражалось быстро выводимой формулой. В некоторой степени оно было даже очевидным. На большом расстоянии от центра звезды ее гравитационное поле ведет себя в соответствии со сделанными несколько веков назад предсказаниями Ньютона: гравитационное притяжение звезды зависит от ее массы и уменьшается пропорционально квадрату расстояния. Правда, формула Шварцшильда оказалась немного другой. Отличие было минимальным, тем не менее его хватило для объяснения прецессии орбиты Меркурия, послужившей толчком к исследованиям Эйнштейна.

По мере приближения к звезде начинают происходить странные вещи. Небольшая, но достаточно тяжелая звезда как будто оказывается окруженной сферической поверхностью, скрывающей от взгляда всё, что за ней находится, — именно ее много лет спустя обнаружат Оппенгеймер и Снайдер. Эта поверхность пагубно влияет на все объекты, пытающиеся ее пересечь. Подлетевший слишком близко к звезде и попавший внутрь сферической границы предмет уже не в состоянии улететь прочь — это точка невозврата. Для выхода из магической сферы Шварцшильда требуется скорость, превышающая скорость света. А она, согласно теории Эйнштейна, недостижима. Шварцшильд открыл то, что более чем полвека спустя назовут черными дырами.

Он быстро записал полученные результаты и отправил их Эйнштейну с просьбой передать письмо в Прусскую академию наук. Эйнштейн в своем ответе высказал одобрение, написав: «Я не ожидал, что точное решение задачи может быть сформулировано так просто». В конце января 1916 года выкладки Шварцшильда были обнародованы.

Найденное Шварцшильдом решение так и не получило своего развития, более того, он даже не смог познакомиться с расчетами Оппенгеймера и Снайдера. Несколько месяцев спустя, находясь в России, он заболел опасным аутоиммунным заболеванием и в мае 1916 года умер.

Решение Шварцшильда быстро присвоили себе Эйнштейн и его последователи. Оно было простым, удобным в использовании и идеально подходящим для прогнозов. С его помощью можно, к примеру, смоделировать движение планет вокруг Солнца, точно предсказав прецессию орбиты Меркурия. Также точно оно предсказывало искривление световых лучей, за подтверждением которого Эддингтону потребовалось отправиться на остров Принсипи. Решение Шварцшильда хорошо служило новым релятивистам, если не обращать внимания на необъяснимое свойство странной поверхности, окружающей центр маленьких звезд определенной плотности и засасывающей всё извне.

Эта поверхность неустранимо присутствовала в уравнениях и их решении. Ее наличие следовало из общей теории относительности Эйнштейна. Но существовала ли она на самом деле?

В 1920 годах Артур Эддингтон заинтересовался вопросом формирования и развития звезд. Он хотел дать полную характеристику их структуры с помощью фундаментальных законов физики, выраженных математическими уравнениями. Он писал: «Умудряясь понять результат через математический анализ, мы получаем сведения об изменяющихся предпосылках реальных физических проблем». При подключении математики все сводится к решению уравнений, как это случилось с общей теорией относительности. В 1926 году выходит книга Эддингтона «Внутреннее строение звезд», которая для астрофизики быстро становится библией, связанной со звездами. Эддингтон был не только авторитетом в общей теории относительности, но и ведущим светилом в области изучения звезд.

Раньше звезды были загадкой. Никто не знал, каким образом они испускают такое количество энергии. Именно Эддингтон придумал правдоподобный механизм свечения звезд. Для понимания его идеи следует обратить пристальное внимание на атомы. Атом водорода состоит из двух частиц: протона (который заряжен положительно) и электрона (несущего отрицательный заряд). Протон и электрон удерживает рядом электромагнитная сила, заставляющая притягиваться друг к другу противоположные заряды. Протон примерно в две тысячи раз тяжелее электрона, поэтому именно он определяет вес атома водорода.

Атом гелия состоит из двух электронов и двух протонов. Но еще его ядро содержит две нейтральные частицы. Это нейтроны, вес которых практически совпадает с весом протонов. В простой модели атома гелия ядро состоит из двух протонов и двух нейтронов, вокруг которых вращаются два электрона. Практически весь вес этого атома обеспечивается четырьмя входящими в ядро частицами, поэтому, казалось бы, атом гелия должен быть в четыре раза тяжелее атома водорода. Но на самом деле он на 0,7% легче расчетного значения. Часть его массы куда-то исчезла. А в соответствии со специальной теорией относительности Эйнштейна уменьшение массы означает уменьшение энергии. Этим обстоятельством и воспользовался Эддингтон.

Эддингтон рассудил, что источником энергии для звезд, возможно, служит превращение водорода в гелий. В раскаленном аду в самой сердцевине звезды может происходить объединение ядер атомов водорода. В ходе радиоактивного распада часть протонов превращается в нейтроны, а из протонов и нейтронов формируются ядра гелия. При этом каждый атом высвобождает незначительное количество энергии. Однако общей энергии всех атомов хватает на то, чтобы питать звезду и излучать свет. Если большая часть Солнца состоит из водорода, до завершения его преобразования в гелий процесс горения должен продолжаться почти 9 миллиардов лет. Учитывая, что возраст Земли составляет 4,5 миллиарда лет, речь, по всей видимости, идет о сумме указанных чисел.

В своей книге для объяснения звездной астрофизики Эддингтон создал целую доктрину. Предложив источник звездной энергии, он пояснил, почему звезды не сжимаются: испуская наружу всю вырабатываемую энергию, они противостоят силе тяжести. Звезды представляют собой совершенные физические системы, которые могут быть описаны в терминах его уравнений. Однако книга «Внутреннее строение звезд» — далеко не исчерпывающий источник информации. С математическим красноречием Эддингтон смог описать жизнь звезд, но не стал касаться их смерти. Логика подсказывала ему, что в какой-то момент питающее звезду топливо заканчивается и исчезает излучение, которое не давало ей сжиматься под действием собственной гравитации. Как он пишет в своей книге: «Кажется, при истощении запаса субатомной энергии, которое в конце концов должно наступить, звезда сталкивается со значительными трудностями… Это любопытная проблема, и можно делать самые фантастические предположения о том, что происходит после этого». Разумеется, в число фантастических предположений входила и теория Эйнштейна с решением Шварцшильда, поэтому Эддингтон написал: «Сила тяжести будет столь большой, что преодолеть ее не сможет даже свет, его лучи начнут падать на поверхность звезды, как камень на землю». С точки зрения Эддингтона, это был слишком надуманный и исключительно математический результат. В книге он написал: «Когда мы доказываем результат, не понимая его — просто потому что он неожиданно появился из лабиринта математических формул, — нет оснований надеяться, что мы сможем его где-то применить».

Но если отбросить самые фантастические предположения, что могло бы происходить после выгорания топлива? Наблюдения 1914 года намекали на возможность существования кладбищ таких коллапсировавших звезд. При изучении Сириуса — самой яркой звезды нашего неба, почти в тридцать раз превосходящей яркостью Солнце, — астрономы обнаружили на ее орбите странный тусклый спутник. Названный Сириусом В, вопреки тусклому свечению, он был очень горячим и обладал примечательными свойствами: при массе, сравнимой с массой Солнца, его радиус был меньше радиуса Земли. Это означает очень большую плотность. В начале 1920-х годов этот объект получил название «белый карлик» и стал считаться одной из загадок звездного зоопарка, возможной конечной точкой жизненного цикла звезд. Ключом к пониманию природы белых карликов могла бы стать новомодная теория квантовой физики.

Квантовая физика делит природу на мельчайшие составляющие и странным образом объединяет их обратно. Причиной ее появления стало необычное явление, с которым ученые столкнулись в XIX веке. Оказалось, что соединения и химические вещества особым образом поглощают и испускают свет. Результатом этих процессов является отнюдь не непрерывный диапазон длин волн. Вещества отражают свет в виде дискретного набора волн с определенными длинами, формируя похожий на штрихкод спектр, который впоследствии Весто Слайфер и Милтон Хьюмасон использовали для открытия красного смещения. Господствовавшая в то время ньютоновская физика вкупе с теорией электричества Максвелла были не в состоянии объяснить это странное явление.

В удивительном 1905 году Эйнштейн принялся за объяснение другого странного экспериментального факта: фотоэлектрического эффекта. Атомы бомбардируемого светом металла поглощают этот свет, периодически выбрасывая электроны. Вот как описал это явление его первооткрыватель Филипп Ленард: «При простом воздействии ультрафиолетового света металлические пластины выделяют в воздух отрицательное статическое электричество». Может показаться, что достаточно облучить металл сильным потоком света, но на самом деле это не так. Для эмиссии электронов требуется определенная энергия и частота светового пучка. Наблюдая этот эффект, Эйнштейн предположил, что свет перемещается квантованными порциями, аналогично тому, как материя распадается на элементарные частицы. И только нужная частота такого квантования обеспечивает фотоэффект. Эйнштейн назвал их «квантами света», позднее они стали известны как фотоны.

По мере совершенствования экспериментальных методов на рубеже XX века природа стала представляться все более Дискретной. Другими словами, казалось, что природа тоже квантована. В начале XX века начали появляться импровизированные модели окружающего мира в мельчайшем масштабе, Целый набор новых правил поведения атомов и взаимодействия их со светом. И хотя Эйнштейн внес свой личный вклад в новую Науку, в основном он наблюдал за ее развитием с некоторым Недоверием. Предложенные для квантованного мира правила были достаточно корявыми и не вписывались в вытекавшую из принципов относительности элегантную математическую картину.

К 1927 году правила квантовой физики окончательно прояснились. Независимо друг от друга два физика, Вернер Гейзенберг и Эрвин Шрёдингер, предложили теории, непротиворечиво объясняющие квантовую природу атомов. И подобно тому, как Эйнштейн конструировал свою общую теорию относительности, эти ученые были вынуждены математически сформулировать свои версии квантовой теории. Гейзенберг использовал матрицы — таблицы чисел, работа с которыми требовала крайней аккуратности. В отличие от обычных чисел результат умножения матрицы А на матрицу В, как правило, отличается от результата умножения матрицы В на матрицу А. Это свойство имеет самые поразительные следствия. Шрёдингер предпочел описать реальность, то есть атомы, ядра и электроны, образующие материю, в терминах волн — экзотических объектов, которые, как и в теории Гейзенберга, приводили к ряду странных явлений.

Наиболее известным следствием новой физики стал принцип неопределенности. В классической физике Ньютона объекты двигаются, предсказуемым образом реагируя на внешние силы. Зная точное положение и скорости составных частей системы, а также действующие в этой системе силы, можно предсказать все ее будущие конфигурации. Прогнозы составляются очень легко; достаточно информации о положении каждой частицы в пространстве, а также о направлении и величине ее скорости. В новой квантовой теории одновременно узнать положение и скорость частицы с удовлетворительной точностью абсолютно невозможно. Самый настойчивый и упорный экспериментатор, попытавшись с идеальной точностью определить положение частицы, уже не сможет получить представления о ее скорости. Представьте, что вы работаете с сидящим в клетке злым зверем: чем сильнее вы пытаетесь его ограничить, тем яростнее он будет стучать по стенам клетки. Если поместить его в слишком маленький объем, его давление на стены станет огромным. Квантовая физика привнесла неопределенность и хаос в самое сердце физики. И именно этот хаос стал ключом к решению проблемы белых карликов.

Субраманьян Чандрасекар отчаянно стремился к великим делам. Рожденный в обеспеченной семье ученых в Пакистане, Чандра, как его стали называть позднее, был усердным и целеустремленным студентом. Он преуспел в математике, он скрупулезно и бесстрашно брался за любые расчеты. Во время учебы в Мадрасском университете Чандра попал под влияние новых идей, исходящих из Европы, и был впечатлен великим человеком, создающим физику двадцатого столетия. С юных лет охваченный энтузиазмом, он жаждал приобщиться к работе на ниве современной физики. Как он говорил позднее: «Разумеется, одним из моих самых ранних побуждений было желание показать, на что способны индусы».

Чандра был очарован только что возникшей квантовой физикой. Он прочитал все новые учебники, которые попадали к нему в руки, в том числе недавно изданную книгу Эддингтона «Внутреннее строение звезд». Но больше всего его привлекла книга немецкого физика Арнольда Зоммерфельда, посвященная квантовым свойствам материи. Вдохновленный работой Зоммерфельда, он занялся написанием статей о статистических свойствах квантовых систем и способах их взаимодействия. Один из его первых трудов был опубликован в журнале Proceedings Королевского общества, когда Чандре еще не исполнилось восемнадцати лет. Чувствуя в себе потенциал к совершению открытий в области новой квантовой Физики, Чандра выбрал для реализации своего призвания Англию и отправился в долгое путешествие за докторской степенью в Кембридж.

Во время длительного плавания на корабле компании Lloyd Triestino Чандра сделал потрясающее открытие, изменившее его жизнь. Одержимый работой, он решил в дороге сосредоточиться на статье, написанной одним из кембриджских коллег Эддингтона Ральфом Фаулером, который, казалось, решил проблему белых карликов. Фаулер применил к астрофизике две квантовые концепции. Первой был принцип неопределенности Гейзенберга, гласивший, что невозможно зафиксировать в пространстве частицу, одновременно определив ее состояние движения, то есть скорость. Второй концепцией был принцип запрета, согласно которому два электрона (или протона) — необычная волновая материя, предложенная Шрёдингером в качестве фундаментального квантового описания частиц, — в одном атоме не могут одновременно находиться в одном и том же физическом состоянии. По сути, между ними существует неумолимое отторжение, мешающее иметь одно и то же состояние.

Взяв принципы неопределенности и запрета, Фаулер применил их к Сириусу В. Он рассудил, что вещество, из которого состоит этот белый карлик, является настолько плотным, что его можно представить как сжатый газ из электронов и протонов. Электроны, как более легкие, могли свободнее перемещаться и совершать более энергичные колебания. Принцип запрета означает, что им приходится быть крайне осмотрительными, чтобы не вторгаться в пространство друг друга, но по мере роста плотности у каждого из электронов остается все меньше пространства для движения. При фиксации электронов в пространстве в соответствии с принципом неопределенности растет скорость электронов, заставляя их быстрее перемещаться друг относительно друга. Эти быстро колеблющиеся электроны стимулируют направленное наружу квантовое давление, которое может противодействовать силе тяжести. В определенном состоянии это давление уравновешивает гравитационное притяжение, и белый карлик получает возможность спокойно существовать, практически не светясь, но сопротивляясь своей гибели. Объяснение Фаулера прояснило проблему Эддингтона. Возникло впечатление, что звезды, умирая, могут превращаться в белых карликов. Это обстоятельство завершало историю звездной эволюции и решало проблему, поднятую в книге «Внутреннее строение звезд». По крайней мере, так тогда казалось.

Внимательно изучив результаты Фаулера, Чандра сделал крайне простую вещь. Он выразил в цифрах ожидаемую плотность электронного газа в белых карликах. Полученная цифра была огромной, но не удивительной, собственно, как и предсказывал в своей статье Фаулер. Однако Фаулеру не удалось показать, какими должны быть скорости электронов. Произведя несложные вычисления, Чандра испытал шок: электронам пришлось бы колебаться со скоростью, близкой к скорости света. В этом месте аргументация Фаулера начинала давать сбой, так как он совершенно проигнорировал правила специальной теории относительности, которые начинают сказываться при перемещении объектов со скоростью света. Фаулер сделал ошибку, предположив, что электроны внутри белого карлика могут двигаться так быстро, как им заблагорассудится, даже если это означало бы скорость большую, чем скорость света.

Чандра задался целью исправить эту ошибку. Он проследил за рассуждениями Фаулера до момента, когда скорость электронов приблизилась к скорости света. Для слишком плотного белого карлика, в котором частицы перемещаются практически со скоростью света, он воспользовался постулатом специальной теории относительности, гласящим, что эту скорость превзойти невозможно. Результат получился интересным. Оказалось, что как только белый карлик становится слишком тяжелым, его плотность также чрезмерно возрастает, в результате электроны больше не могут сопротивляться гравитационному притяжению. Другими словами, у белых карликов существует предел массы. Чандра рассчитал, что этот предел не превосходит 90% от массы Солнца. (Годы спустя было показано, что корректное значение — это более чем 140% от массы Солнца.) Завершившая свое существование звезда с массой выше указанного предела не в состоянии себя поддерживать. Побеждает гравитация, и неизбежно наступает коллапс.

Прибыв в Кембридж, Чандра показал Эддингтону и Фаулеру проект своих расчетов, но они оставили его без внимания. В нестабильности, которая могла разрушить столь многообещающую доктрину, выдвинутую Эддингтоном и поддерживаемую Фаулером, было нечто пугающее, поэтому ученые мужи из Кембриджа предпочли держаться на расстоянии. За следующие четыре года Чандра усовершенствовал свою доказательную базу, и его уверенность в собственных выкладках возросла. В 1933 году он завершил работу над диссертацией и в возрасте двадцати двух лет был зачислен в штат колледжа Тринити. К 1935 году Чандра доработал свои расчеты и был готов представить полученный результат на ежемесячном заседании Королевского астрономического общества.

11 января 1935 года он предстал перед группой выдающихся астрономов Королевского астрономического общества в Берлингтонхаузе в Лондоне. Тщательно и скрупулезно Чандра оглашал детали своей девятнадцатистраничной статьи, которая была практически готова к публикации в журнале общества Monthly Notices. Свою речь он завершил фразой: «Звезда большой массы не может пройти через стадию белого карлика, поэтому остается строить предположения о других возможностях». Этот парадоксальный результат был представлен вызывающим всеобщее доверие языком математики и физики, поэтому его приняли всерьез. Завершение речи было встречено вежливыми аплодисментами и небольшим количеством вопросов. Дело было сделано.

Затем президент общества повернулся к Эддингтону и пригласил его на трибуну для представления работы «Релятивистское вырождение». Эддингтон вышел и произнес короткую пятнадцатиминутную речь. Он строго разобрал расчеты Чандры, дискредитирующие решение проблемы белых карликов, предложенное Фаулером. А затем бесцеремонно отбросил безупречный результат. С точки зрения Эддингтона, этот результат является «доведенной до абсурда формулой релятивистского вырождения». На самом деле он был твердо уверен, что «в дело могут вмешаться различные случайности, которые спасут звезду», и поэтому заявил: «Я думаю, что должен существовать закон природы, мешающий звезде вести себя подобным абсурдным образом!» Авторитет Эддингтона был столь высок, что большая часть аудитории немедленно отвергла аргументы Чандры. Уж если Эддингтон счел новую идею ложной, значит, она должна быть таковой.

Чандра выступил против могущественного Эддингтона и проиграл. Он подрывал разработанную Эддингтоном красивую теорию жизни и смерти звезд, и разумеется, последнему это не понравилось. Если гравитационный коллапс перекрывает все прочие воздействия, на сцену выходит странное решение Шварцшильда с множеством нетривиальных выводов. Как много лет спустя говорил сам Чандра: «Теперь ясно видно… Эддингтон понял, как из существования предельной массы вытекает наличие в природе черных дыр. Но этот вывод он не принял. Если бы он смог это сделать, то лет на сорок опередил бы всех остальных. В известном смысле это плохо».

В подавленном состоянии Чандра вернулся в Кембридж. Стычка с Эддингтоном повлияла на всю его дальнейшую жизнь. Через несколько лет его пригласили занять пост в Йеркской обсерватории в Чикаго. Он перестал работать над проблемой белых карликов и старался не думать о том, что на самом деле случается при слишком большой их массе. Происходит ли неумолимый переход к решению Шварцшильда? Или что-то мешает событиям развиваться данным способом? Ответ на эти вопросы найдет Роберт Оппенгеймер.

Дж. Роберт Оппенгеймер был порождением своего времени. Воспитанный в богатой нью-йоркской семье, в доме, по стенам которого были развешаны картины Ван Гога, он получил образование сначала в Гарварде, а затем в 1925 году перешел в Кембридж. Его гарвардский наставник писал в рекомендательном письме в Кембридж, что Оппенгеймеру «очевидно, мешает недостаток знакомства с обычным физическим экспериментом», добавив при этом: «Редко можно встретить более интересные и уверенные суждения». Пребывание Оппенгеймера в Кембридже было стихийным бедствием и долго не продлилось. После нервного срыва, во время которого он напал на одного из коллег и пытался отравить другого, Оппенгеймер решил уехать и попытать счастья в Геттингене.

Геттинген — владение Давида Гильберта — увлекался квантовой физикой, и Оппенгеймер не мог найти лучшего места для участия в новой революции. За следующие два года со своим руководителем Максом Борном он напишет ряд работ, оставивших неизгладимый след в истории квантовой физики. Приближение Борна-Оппенгеймера до сих пор изучают в университетах как часть инструментария, используемого для вычисления квантового поведения молекул. В 1927 году Оппенгеймер защитит докторскую диссертацию и через несколько лет вернется в Соединенные Щтаты, где получит должность в Калифорнийском университете в Беркли.

В Беркли Оппенгеймер основал один из маяков теоретической физики Америки 1930-х годов. Казалось, что Оппи, как его позднее стали называть, в состоянии рассуждать на любую тему, от искусства и поэзии до физики и парусного спорта. Проницательный, способный с невероятной скоростью постигать сложные концепции, он переходил от одного проекта к другому, совершая интеллектуальные набеги в новые области и быстро внося туда свой вклад, необязательно глубокий, но, без сомнения, своевременный и продуманный. Он бывал нетерпеливым, иногда жестоким, если не соглашался с оппонентом или не принимал его аргументы, но личное обаяние и энергия сделали Оппенгеймера прирожденным лидером, и он превосходно поддерживал и вдохновлял свою группу. Медленно, но верно он собрал вокруг себя кружок гениальных и полных энтузиазма студентов и исследователей, с которыми можно было заниматься решением множества обсуждаемых в Европе проблем. Заметив, что Оппенгеймер имеет привычку бормотать во время работы, Вольфганг Паули назвал его группу «nim nim boys». Беркли стал для Оппенгеймера Геттингеном, его Копенгагеном.

А затем после почти десяти лет концентрации исключительно на квантовой физике, в 1938 году Оппенгеймера заинтересовала общая теория относительности Эйнштейна. Как и Чандра, он подошел к теории с точки зрения квантов, пытаясь понять, как квантовые эффекты материи могут противостоять гравитационному сжатию пространства и времени.

Каждое лето Оппенгеймер с группой студентов и исследователей отправлялся в Южную Калифорнию и селился в Калифорнийском технологическом институте, в солнечной Пасадене. Там он мог беседовать не только с другими физиками, но и со старыми астрономами, следившими за успехами Хаббла и лично слушавшими лекции Леметра о первичном атоме. Здесь все еще верили в общую теорию относительности. Именно в Пасадене Оппенгеймер познакомился со статьей русского физика Льва Давыдовича Ландау, в которой рассматривалась гипотетическая ситуация звездных ядер, полностью состоящих из компактной массы нейтронов.

Ландау был одним из ведущих светил советской физики, гениальным ученым, выросшим во время русской революции, который воспользовался преимуществами прокатившейся по новой России волны модернизации. Как и Оппенгеймер, он некоторое время жил за границей, обучаясь в лучших лабораториях Европы, где и стал свидетелем рождения квантовой физики. В девятнадцать он уже написал статью, в которой новая физика применялась к поведению атомов и молекул. В возрасте двадцати трех лет вернувшись в Ленинград, он вызвал восхищение старших коллег и быстро вписался в советскую систему.

Обладающий талантом решать сложные и запутанные задачи при помощи квантовой физики, Ландау решил обратить внимание на новый источник энергии звезд: обнаруженные в ядре атома нейтрально заряженные частицы — нейтроны. За предыдущее десятилетие стало ясно, что добавление к ядру нейтронов или протонов, как и удаление их оттуда, приводит к выбросу изрядного количества ядерной энергии. Поэтому Ландау предположил, что если бы ядро звезд состояло из нейтронов, появилась бы возможность высвобождать достаточно энергии для свечения. Обеспечив такую же плотность нейтронов, как в ядре атома, можно было бы получить нужное топливо. Такой ядерный материал получился бы невероятно тяжелым — созданная из него чайная ложка весила бы тонны. Если атом в толще звезды упадет на ядро, он разобьется вдребезги, частично поглощенный, частично преобразованный в излучение. Согласно Ландау, за яркость звезды отвечает нейтронное ядро — именно оно заставляет Солнце светиться. Затем Ландау рассчитал размер этого ядра и определил, что для стабильности ядра его вес должен в тысячи раз превышать вес Солнца. Такие ядра могут быть спрятаны в центре звезд, выгорая и производя звездный свет.

Однако в процессе написания этой работы Ландау попал под прокатившуюся по стране волну политических репрессий. Через два месяца после публикации в журнале Nature короткой статьи «Об источниках звездной энергии», посвященной нейтронным ядрам, он был арестован НКВД. Ландау был пойман за редактированием антисталинской листовки, которую должны были распространить в Москве во время майского парада 1938 года. В листовке Сталин обвинялся в том, что «в своей бешеной ненависти к настоящему социализму он сравнился с Гитлером и Муссолини». Ландау на год был заключен в тюрьму на Лубянке, причем произошло это сразу после того, как газета «Известия» отметила его статью в Nature как гордость советской физики.

Заинтригованный лаконичностью статьи Ландау и простотой предложенной идеи, Оппенгеймер решил самостоятельно повторить все вычисления. Потребовалось сотрудничество с тремя одаренными студентами, но в конце концов он получил нужный результат. Его первым соавтором был Роберт Сервер. Совместно они тщательно проанализировали идею Ландау, согласно которой нейтронное ядро, окруженное горячими газами, можно было легко спрятать внутри Солнца, и пришли к выводу, что на самом деле всё обстоит по-другому. Свое письмо, почти такое же короткое, как и материал Ландау, Оппенгеймер и Сервер опубликовали в журнале Physical Review в октябре 1938 года, когда Ландау уже томился на Лубянке. Затем Оппенгеймер сделал следующий шаг уже с другим своим студентом, Джорджем Волковым. Они исследовали стабильность нейтронных ядер. Их статья, опубликованная в январе 1939 года, представляла собой смесь математики, использующей искусные упрощения теории Эйнштейна, проницательной физической интуиции и сложных расчетов. Они показали крайнюю нестабильность конфигурации нейтронных ядер, а значит, невозможность их использования в качестве топлива для больших звезд, что в очередной раз доказывало несостоятельность идеи Ландау.

В конце своей статьи Оппенгеймер и Волков отметили, что для понимания судьбы нейтронных ядер в долгосрочной перспективе «важное значение имело рассмотрение нестатических решений». Затем Оппенгеймер приступил к заключительной части работы с очередным студентом, Хартландом Снайдером, на этот раз зайдя в дебри общей теории относительности глубже, чем кто-либо ранее. Оппенгеймер и Снайдер рассчитали, что произойдет с пространством и временем (и нейтронным ядром) после того, как нейтронная звезда станет нестабильной. Для лучшего понимания получаемых результатов они использовали удачный прием: одного воображаемого наблюдателя поместили далеко от места коллапса, второй же расположился непосредственно на поверхности нейтронного ядра. Затем они сравнили результаты обоих наблюдений. Оказалось, что они значительно разнятся.

Удаленный наблюдатель увидит коллапс нейтронного ядра. Но по мере приближения этого ядра к странной поверхности, обнаруженной Шварцшильдом, коллапс будет происходить все медленней и медленней. В какой-то момент схлопывание станет настолько медленным, что будет казаться, будто оно остановилось. Длина волны любого светового луча, который допытается уйти от нейтронного ядра, начнет увеличиваться, все больше сдвигаясь в сторону красного спектра по мере приближения ядра к критической поверхности. Как будто время и пространство перестают меняться и звезда прекращает общение с внешним миром. Все крайне напоминало предсказание, сделанное Эддингтоном в изданной десять лет назад книге «Внутреннее строение звезд»: «Масса создаст такое искривление, что все пространство замкнется вокруг звезды, оставив нас снаружи (то есть неизвестно где)».

Находящемуся на поверхности звезды наблюдателю представится совсем другая картина. Он станет свидетелем неумолимого коллапса нейтронного ядра, увидит, как поверхность нейтронного ядра преодолевает дистанцию критического радиуса и проваливается во внутреннюю область магической сферы Шварцшильда. Больше того, этот бедный обреченный наблюдатель увидит процесс формирования этой ужасной поверхности, открытой Шварцшильдом, места, откуда ничто не может вырваться наружу. Другими словами, оказавшись в нужном месте, можно увидеть, как реально формируется предложенное Шварцшильдом решение.

Оппенгеймер и Снайдер завершили начатую Эддингтоном историю жизни звезд, показав, что при наличии достаточной массы звезды будут сжиматься в соответствии со странным предсказанием Шварцшильда. Это означало, что предложенное Шварцшильдом решение не было всего лишь интересным экзотическим вариантом выводов из общей теории относительности. Подобные странные объекты могли существовать в природе, их следовало включить в астрофизику и изучать наряду со звездами, планетами и кометами. Вот так в очередной Раз общая теория относительности позволила открыть во Вселенной нечто неожиданное и чудесное.

Статья Оппенгеймера и Снайдера появилась в журнале Physical Review 1 сентября 1939 года, в день, когда войска фашистской Германии пересекли польскую границу. В этом же выпуске находилась статья датского физика Нильса Бора и его молодого американского соавтора Джона Арчибальда Уиллера. Предметом интереса также являлись нейтроны и их взаимодействие в экстремальных ситуациях, но тема была совершенно другой. Статья называлась «Механизм деления ядер». Бора и Уиллера интересовало моделирование структуры очень тяжелого ядра, например урана и его изотопов. Корректная модель могла бы дать представление о том, как извлечь скрывающуюся внутри огромную энергию.

В 1930-е годы ученые лучше начали понимать природу атомных ядер. Эддингтон предположил, что ядра водорода могут сливаться друг с другом, формируя гелий в ядрах светящихся звезд. Это явление называется ядерным синтезом. В то же время считалось, что очень тяжелые ядра можно поделить на более мелкие, также высвобождая энергию, — в этом случае процесс называется ядерным делением. Всех занимал вопрос, как добиться эффективности этой процедуры. Можно ли небольшим количеством энергии вызвать деление в скоплении тяжелых ядер таким образом, чтобы каждый отдельный атом, распадаясь, вызывал следующий распад? Другими словами, была ли возможность спровоцировать цепную реакцию?

Работа Бора и Уиллера указывала способ деления ядер и помогала другим физикам понять, почему следовало выбирать уран-235 и плутоний-239 — элементы из перспективного места периодической таблицы, где вызвать нужный процесс было не так сложно. Проблема деления ядер будет доминировать в физике в последующие годы, затмевая практически все остальные области. Целая армия блестящих ученых, в которую вошел и Роберт Оппенгеймер, направит свой интеллект на попытки научиться управлять этим процессом.

Во время своего пребывания в Беркли Оппенгеймер создал потрясающую группу молодых исследователей и студентов, готовых к решению любых задач. Как организатор и руководитель, он имел грозную репутацию и был готов применять свои лидерские качества, нацеливая группу на интересующие его проблемы. Его коллеги по Беркли начали синтезировать на циклотроне в лаборатории имени Лоуренса более тяжелые нестабильные ядра. В 1941 году Гленн Сиборг открыл плутоний, показав один из путей к делению ядер. Оппенгеймера захватил вихрь событий и открытий, сопровождавших разработки в области ядерной физики во время Второй мировой войны.

При этом Оппенгеймер был вне себя. Его шокировали сообщения об отношении к евреям в Германии и огромное количество великолепных ученых, бежавших в Америку от нацистского гнета. Создав в Беркли свою группу, он начал оглядываться вокруг, пытаясь найти общий язык с поразительно интеллектуальным потоком европейских беженцев. Воздерживаясь от излишней политической активности, он стал обращать внимание на происходящее. А с наступлением войны проблема деления ядер стала одной из его главных забот.

В 1942 году Оппенгеймеру было предложено возглавить рабочую группу физиков, базирующихся в городе Лос-Аламос, штат Нью-Мексико. Ее единственной целью был запуск цепной Реакции деления ядер и управление этой реакцией. В эту группу вошли многие молодые и не очень молодые блестящие умы: от Джона фон Неймана, Ханса Бете и Эдварда Теллера до Молодого Ричарда Фейнмана. Все ресурсы Манхэттенского проекта были сосредоточены на создании первой атомной бомбы, и менее чем через три года цель была достигнута. Когда в августе 1945 года на Хиросиму и Нагасаки сбросили атомные бомбы «Малыш» и «Толстяк», погибло почти двести тысяч человек. Эти разрушительные последствия стали ужасным доказательством того, что Оппенгеймер за короткий срок научился использовать ядерные силы. После успеха атомной бомбы кванты прочно заняли центральное место в мире физики.

Так как все внимание было приковано к войне и ядерному проекту, посвященную черным дырам оригинальную статью Оппенгеймера и Снайдера положили под сукно и забыли на долгие годы. Работа, которая могла породить одну из величайших концепций общей теории относительности, была отложена на неопределенный срок. Два великих столпа этой теории, Альберт Эйнштейн и Артур Эддингтон, не пошевелили пальцем, чтобы спасти от безвестности открытие Оппенгеймера и Снайдера.

Эддингтон продолжал утверждать, что вычисления Чандры неверны и ничем не обоснованы, а конечной точкой эволюции звезд произвольной массы являются неяркие белые карлики. Непрерывный беспрепятственный коллапс звезды, пока «гравитация не станет столь сильной, чтобы удерживать излучение», был, с его точки зрения, абсурдом. Почти полвека спустя Чандра вспоминал: «Со своей стороны могу сказать, что мне сложно понять, почему для Эддингтона, который был самым первым и стойким сторонником общей теории относительности, оказалось столь неприемлемым заключение о возможности формирования черных дыр в процессе обычной звездной эволюции».

Сам Эйнштейн тоже продолжал сопротивляться мысли о том, что крайняя форма решения Шварцшильда — черные дыры — может оказаться реальностью. Он реагировал так же, как на гипотезу Фридмана и Леметра о расширяющейся Вселенной, — это красивая математика, но отвратительная физика. Через более чем двадцать лет отрицания наиболее странных положений решения Шварцшильда он, наконец, сел и попытался аргументированно обосновать, почему они не имеют физического значения. В 1939 году, когда Оппенгеймер и Снайдер начали работу над определением последствий гравитационного коллапса, Эйнштейн опубликовал статью, в которой излагал, каким образом поведет себя скопление частиц при гравитационном коллапсе. Он утверждал, что частицы никогда не подойдут слишком близко к критическому радиусу. Упрямо он ставил задачу таким образом, чтобы получить нужный ему ответ: никаких черных дыр. И снова он был не прав, как и Эддингтон, упустив возможность испытать полный триумф своей общей теории относительности.

Практически всеобщее внимание теперь было привлечено к другой области. Все восхищались триумфом квантовой физики. Большинство талантливых молодых физиков сконцентрировали свои усилия на квантовой теории, пытаясь сделать еще более впечатляющие открытия и найти новые области ее применения. Общая теория относительности Эйнштейна со всеми ее странными предсказаниями и экзотическими результатами была сброшена со счетов и обречена на забвение.

Глава 5. Всеобщее помешательство

В последние годы Альберт Эйнштейн вел простую жизнь. Он спал допоздна в своем обшитом белой вагонкой доме на Мерсер-стрит почти в центре города Принстона, штат Нью-Джерси, где он жил со своей сестрой Майей. (Его жена Эльза умерла в 1936 году вскоре после переезда.) Каждую неделю Эйнштейн ходил в Fuld Hall — главное здание института перспективных исследований, где работал с 1933 года. С годами он стал привычной фигурой в принстонском кампусе, но даже будучи более известным, чем когда бы то ни было раньше, оставался одиноким.

Эйнштейн стал одним из первых постоянных членов нового института, учреждения для гениальных умов, основанного семьей Бамбергер и финансируемого из частных фондов. Его окружали прославленные коллеги. Например, Джон фон Нейман, математик, работавший над атомной бомбой и один из первых изобретателей современных компьютеров. Некоторое время там трудился математик Герман Вейль, протеже Давида Гильберта, одним из первых поднявший знамя теории пространства-времени Эйнштейна. Присутствовал в этом кругу и Курт Гёдель, философ и логик, своей теоремой о неполноте посеявший хаос в философии XX века. И разумеется, не обошлось без Роберта Оппенгеймера, который в 1947 году стал директором института. В коридорах Эйнштейн мог встретить почетных посетителей, создателей квантовой физики или современной математики. Но всему он предпочитал уединение собственного кабинета.

Через несколько часов Эйнштейн отправлялся домой для обеда и сна. Затем можно было пойти в кабинет, сесть в любимое кресло, обернув ноги пледом, и заняться вычислениями, написанием работ и разбором множества писем, которые прорывались в его жизнь из внешнего мира. Письма от глав государств и высокопоставленных лиц перемежались просьбами молодых ученых и восторгами поклонников. В конце дня следовал ранний ужин, затем он слушал радио и немного читал перед тем, как отправиться спать.

Для человека, достигшего такой колоссальной известности, это была необычайно спокойная жизнь. Его не забыли. Его имя было таким же известным, как имена Чарли Чаплина и Мэрилин Монро. Он состоял членом многочисленных ученых обществ, его приглашали во многие города. Его лицо красовалось на обложке журнала Time, став одним из знаковых образов новой технологической эры. Время от времени знаменитости пускались в путь, чтобы провести несколько часов в обществе этого великого человека. Ему наносили визиты Джавахарлал Неру с дочерью Индирой Ганди и премьер-министр Израиля Давид Бен-Гурион. Джульярский струнный квартет однажды прибыл, чтобы сыграть импровизированный концерт в его гостиной.

Однако несмотря на мировую известность, Эйнштейн по большей части держался замкнуто. Хотя у него было несколько молодых ассистентов, он предпочитал работать в одиночку. Его гордостью и радостью по-прежнему оставалась общая теория относительности, и время от времени он углублялся в нее, выходя за рамки решений Фридмана, Леметра и Шварц-Юильда и пытаясь найти новые, более сложные, но вместе с тем более реалистичные варианты. Общая теория относительности могла еще многое дать, но мало кто хотел тратить на нее время, предпочитая направлять усилия на развитие квантовой теории. Даже самого Эйнштейна почти на три десятилетия захватила эта более масштабная концепция. А от собственного детища он держался в стороне.

К 1950-м годам Эйнштейн сильно изменился по сравнению с тем, каким он был в 1920-е. Ранний успех в науке позволил ему путешествовать по миру, принимая королевские почести, читать публичные лекции, дискутировать с другими физиками, сначала отвергнув, а затем приняв идею расширяющейся Вселенной. Недалеко от Берлина, в Потсдаме, в его честь возвели башню Эйнштейна, в которой выводы из его теории можно было проверять наблюдениями. Его превозносили на международных встречах, на которых он высказывал свое мнение о новейших открытиях в области физики.

Он стал свидетелем нарастающих антисемитских настроений на родине и с наступлением 1930-х ощутил тяжелые последствия растущего влияния нацисткой партии и ее приверженцев. Регион его путешествий стал сужаться, угроза смерти возросла, и, несмотря на славу, Эйнштейн с опаской перемещался по Европе, выполняя свои многочисленные обязательства.

Как национальное достояние, Эйнштейн был в какой-то мере защищен от царящих вокруг безобразий, но тем не менее ему довольно рано довелось ощутить темную сторону антисемитизма. Группа ученых, известная как «Сообщество немецких естествоиспытателей за сохранение чистой науки», начала кампанию против общей теорией относительности, только недавно увидевшей свет. Сообщество разгромило принцип относительности как пример «массового заблуждения» и попыталось подготовить иск против Эйнштейна, обвинив его в плагиате. К движению был привлечен ярый противник теории относительности всемирно известный ученый Филипп Ленард.

Ленард родился в Венгрии. В 1905 году он получил Нобелевскую премию за работу, посвященную катодным лучам. Именно его эксперименты легли в основу ранней теории Эйнштейна о квантах света. До формулирования общей теории относительности отношения Ленарда с Эйнштейном были вполне учтивыми. Но против этой теории Ленард яростно возражал — она была слишком запутанной и входила в противоречие с тем, что он считал «здравым смыслом» для любого физика. Он писал опровергающие теорию относительности статьи в Jahrbuch der Radioaktivitat — том самом журнале, в котором в 1907 году Эйнштейн впервые представил идеи, послужившие основой его теории. Завязалась словесная перепалка, в которой Эйнштейн пренебрежительно назвал Ленарда дилетантом в теоретической физике и неспособным понять его идеи. Ленард обиделся и потребовал публичных извинений. Этот скандал бросил тень как на Эйнштейна, так и на Ленарда и «антирелятивистов».

К 1933 году Эйнштейну надоела Германия. После прихода нацистов к власти он решил разорвать свои связи с Берлином. Эйнштейн покинул вступающую в мрачные времена Германию, а его теорию избрало своей мишенью движение «Арийская физика». По мере возвышения нацистской партии стало проще двигать вперед дело Филиппа Ленарда, горячо поддерживаемое другим нобелевским лауреатом, физиком Йоханнесом Штарком. По мнению Ленарда и Штарка, теория Эйнштейна была частью еврейской физики, отравляющей немецкую культуру. В соответствии с грандиозными планами нацистов эту физику следовало ликвидировать.

После отъезда Эйнштейна в научных кругах Германии несколько лет велось планомерное уничтожение той физики, которая подарила миру большую часть величайших открытий начала XX века. К началу Второй мировой войны со своих университетских должностей были сняты все еврейские профессора. Покинули Германию наиболее дальновидные ученые Эрвин Шрёдингер и Макс Борн, сыгравшие важную роль в создании новой квантовой физики. Некоторые из них в конечном итоге внесли свой вклад в проекты по созданию атомной бомбы, реализуемые союзниками во время Второй мировой войны.

Йоханнес Штарк предпринял шаги, чтобы стать лидером «новой арийской физики» в понесшем значительные потери научном сообществе. Но на его пути стоял один из отцов современной квантовой теории Вернер Гейзенберг. Он не был евреем, но Штарка это не остановило. Он написал для официальной газеты СС статью, в которой клеймил Гейзенберга «белым евреем», называя его причиной упадка немецкой науки наравне с теми, кто уже был выдворен из страны. Но как ни странно, этот демарш потерпел неудачу. Гейзенберг был одноклассником рейхсфюрера СС Генриха Гиммлера, который и защитил его от дальнейшего поношения. В конечном счете Гейзенберг, к ужасу своих бежавших из гитлеровской Германии коллег, начнет работать над проектом немецкой атомной бомбы.

После отъезда Эйнштейна работа над его теорией в Германии прекратилась. Во время Веймарской республики его превозносили как национального героя, но в годы правления нацистов его имя быстро исчезло из немецкой культуры. Некоторые его идеи, приведшие к разработке теории относительности, оставались в учебниках, но в основном учебнике по физике, Lehrbuch der Physik Гримзеля, его имя даже не упоминалось. Только после войны общая теория относительности Эйнштейна снова привлекла внимание.

Идеи Эйнштейна подвергались гонениям не только в Германии. В стране, находящейся на другом конце политического спектра, в Советском Союзе, теория относительности и квантовая механика внезапно вошли в противоречие с официально принятой философией, диалектическим материализмом, интегральной частью марксизма. Эту философию, взяв за основу идеи немецких философов Фридриха Гегеля и Людвига Фейербаха, разработал в конце XIX века Карл Маркс, а затем развил Фридрих Энгельс с многочисленными последователями, в частности Владимиром Лениным. В статье от 1938 года «Диалектический и исторический материализм» Иосиф Сталин определил, объяснил и эффективно канонизировал ее как часть официальной советской идеологии. Основой всего в этой философии являлась материя, и уже из нее вытекало все остальное. Реальность определялась поведением мира материи и предшествовала любой форме мыслей и идеализации, находясь с ней в тесной связи. Как писал Карл Маркс в своем фундаментальном труде «Капитал»: «Идеальное есть не что иное, как материальное, пересаженное в человеческую голову и преобразованное в ней».

Приверженцы философии Маркса стремились все объяснить с точки зрения различных составляющих материального мира и их взаимодействия. Все в мире природы вносило свой вклад во Вселенную, находящуюся в постоянном состоянии эволюции и периодически подвергающуюся колоссальным трансформациям, возникающим в результате постепенного накопления мелких изменений. Важно то, что существование и эволюция материи рассматривались как объективная реальность, законы которой не зависят от наблюдателей и интерпретаций. Человеческие знания могли точно и подробно аппроксимировать эту объективную реальность серией сходящихся итераций, но этот процесс никогда не считался исчерпывающим и никогда не завершался.

У большинства, если не у всех, физиков в мире нет никаких проблем с материалистическим видением как таковым. Более того, они являются практикующими материалистами, хотя и не называют себя таковыми. Но те же физики посмотрели бы на философов с пренебрежением и яростно выступили бы против любых их попыток учить себя способам ведения исследований на основе «корректной методологии», выдвинутой какой-то философской школой. Однако марксизм-ленинизм являлся не просто отдельной философской концепцией, это была мощная, проникающая во все области жизни идеология, поддерживаемая советским государством. В напряженной политической атмосфере 1930-х, 1940-х и 1950-х философские дебаты об интерпретации квантовой механики или теории относительности могли привести к обвинениям в нелояльности, порой с опасными последствиями.

Следует признать, что как релятивистская физика Эйнштейна, так и распространяющиеся новые представления о квантах, с их сложностью и бесконечными, часто неясными философскими размышлениями были легкой добычей советских научных философов. В теории пространства-времени Эйнштейна также многое допускало критику. В первую очередь, это был яркий пример допущений. Ее основой послужили известные ныне мысленные эксперименты Эйнштейна, сделанные практически без участия данных из материального мира. Кроме того, теория формулировалась крайне непонятным математическим языком, набором правил и принципов, затруднявших интерпретацию, особенно людьми, которые, как многие из философов, не были профессионалами в математике. Наконец, в довершение ко всему теория Эйнштейна породила абсурдную Вселенную, имеющую начало, что слишком напоминало религиозные воззрения, с которыми в Советском Союзе велась нещадная борьба. Более того, большой вклад в данную теорию внес священник, аббат Леметр, еще один продажный иностранец из декадентского буржуазного общества. За яростным неприятие несоветского мышления был совершенно забыт тот факт, что первым концепцию расширяющейся Вселенной предложил гениальный русский и советский физик Александр Фридман. Костер дебатов годами тлел, периодически ярко вспыхивая, но было бы неоправданным упрощением представлять ситуацию как идеологическую борьбу между блестящими учеными и невежественными ортодоксальными философами. К философам присоединился ряд физиков и математиков, в том числе довольно известных, и спор усугубили групповые предпочтения и прочие не связанные с предметом обсуждения факторы.

В 1952 году влиятельный советский философ и историк науки Александр Максимов опубликовал статью «Против реакционного эйнштейнианства в физике». Хотя публикация появилась в малоизвестной советской газете «Красный флот», физики отреагировали на нее весьма активно. Ученик Фридмана и ведущий советский релятивист Владимир Фок парировал ее собственной статьей «Против невежественной критики современных физических теорий». Перед ее публикацией Фок, Лев Давыдович Ландау и другие физики обратились за поддержкой к советскому правительству. В секретном письме к близкому соратнику Сталина и куратору ядерного и термоядерного проектов Лаврентию Берии они жаловались на «неформальное положение, сложившееся в советской физике», приводя статью Максимова как пример агрессивного невежества, тормозящего прогресс советской науки. Статья была опубликована, и Фок заявил, что обладает поддержкой правительства в этом вопросе. Возмущенный Максимов пожаловался Берии, настаивая на своих взглядах, но к 1954 году преобладающим было влияние группы Фока и Ландау. Разумеется, у высшего советского руководства были более срочные дела, чем анализ тонкостей теорий Эйнштейна. Кроме того, Ландау и прочие имели на своей стороне крайне весомый аргумент: они успешно работали над проектом советской атомной бомбы, поэтому теории, на которых была основана их работа, считались корректными, невзирая на философскую интерпретацию. К середине 1950-х идеологические войны между советскими философами и физиками подошли к концу, и релятивистов оставили в покое. Одним из последних отголосков этой битвы стала записка в Центральный комитет Коммунистической партии от Евгения Лившица, который был соавтором Ландау во всемирно известном «Курсе теоретической физики», с жалобой на «идеологически некорректный» пленарный доклад, посвященный теории расширяющейся Вселенной. Записка была должным образом рассмотрена комитетом и… оставлена без последствий.

Войны марксистских философов не имели никакого отношения к политическим репрессиям 1937-1938-го и других лет, во время которых погиб ряд талантливых советских физиков, например Матвей Бронштейн, Лев Шубников, Семен Шубин и Александр Витт, в то время как остальные были арестованы, заключены в тюрьму или сосланы. И хотя казалось, что идеологические войны не влияют на развитие теории относительности в СССР, прогресс был крайне медленным из-за возросшего, как и на Западе, интереса к квантовой теории, борьбы за выживание в процессе быстрой индустриализации, героической и победоносной войны с европейским фашизмом и последующей гонки вооружений во время холодной войны.

Так как советские философы не одобряли математическую идеализацию, послужившую основой общей теории относительности, отвергли они и более позднюю работу Эйнштейна, когда после прибытия в Принстон его захватила идея создания большой объединяющей теории. Он все еще ценил свою предшествующую работу, но хотел сделать нечто более масштабное и улучшенное. Он надеялся свести общую теорию относительности к теории, объединяющей всю фундаментальную физику. Эйнштейн стремился показать, что не только гравитационные взаимодействия, но также электричество и магнетизм и даже некоторые странные эффекты, присущие квантам, могут быть представлены как геометрия пространства-времени. Но если в ситуации с общей теорией относительности физические озарения элегантно согласовывались римановой геометрией, к новой проблеме Эйнштейн решил подойти совсем другим путем. Он отказался от своей потрясающей физической интуиции в пользу математики.

Поле деятельности Эйнштейна не ограничивалась общей теорией относительности. Тридцать лет он цеплялся то за одну, то за другую гипотезу, иногда отказываясь от той или иной возможности, чтобы вернуться к ней годы спустя. Например, он пытался расширить пространство-время с четырех до пяти измерений. Это дополнительное пространственное измерение было свернутым и практически ненаблюдаемым. Его геометрия, или кривизна, играла роль электромагнитного поля, отвечая на заряд и токи в точности так, как в середине XIX века было предсказано Джеймсом Клерком Максвеллом.

Авторство идеи о пятимерной Вселенной принадлежало не Эйнштейну. Ее выдвинули двое молодых ученых: младший приват-доцент из Кенигсбергского университета Теодор Калуца и работавший под руководством Нильса Бора молодой и шедский ученый Оскар Клейн. Вместе они предложили способ практически идеально имитировать электромагнетизм при помощи пятимерного пространства-времени. Вселенные Калуцы и Клейна, на которые Эйнштейн потратил почти двадцать лет своей жизни, наполнены странной формой материи, бесконечным количеством частиц различной массы, распределенных в пространстве и искажающих остальную геометрию пространства-времени. Эйнштейн надеялся, хотя так и не смог этого доказать, что эти дополнительные поля могут быть неразрывно связаны с волновыми функциями, введенными Шрёдингером в его квантовую физику. От этих гипотез он отказался в конце 1930-х, но, что интересно, построения Калуцы-Клейна снова выйдут на сцену в 1970-х, когда в теоретической физике начнется поиск универсальной теории.

Намного больше времени Эйнштейн посвящал попыткам объединения гравитационных взаимодействий и электромагнетизма. Он ввел в геометрическую основу общей теории относительности язык, предложенный Риманом за много десятилетий до ее появления. Исходная теория при описании геометрии и динамики пространства-времени использовала десять неизвестных функций, определяемых из предложенных Эйнштейном уравнений поля. Именно такое количество связанных друг с другом неизвестных было одной из основных причин сложности работы с теорией. Но новую версию, по замыслу Эйнштейна, нужно было расширить, добавив еще шесть функций, три из которых относились к электрической части, а три к магнитной. Сложность состояла в том, чтобы объединить эти шестнадцать функций, сохранив однозначность и предсказуемость теории. В случае успеха результат привел бы к грандиозным выводам одновременно и из общей теории относительности, и из теории электромагнитных взаимодействий. Эйнштейн хотел сделать это красиво с математической точки зрения, но за десятки лет так и не смог найти нужный путь.

Эйнштейн знал, что поиск большой универсальной теории должен был стать доминирующим в физике конца XX века, но пока ему предстояло заниматься этим нереально сложным делом в одиночку. В то время как он без посторонней помощи сражался со своей новой и дьявольски сложной теорией, остальной мир с интересом следил за ним. Время от времени Эйнштейн попадал на первые страницы центральных газет. В ноябре 1928 года заголовок New York Times объявил: «Эйнштейн на пороге большого открытия», а спустя несколько месяцев появилось короткое интервью Эйнштейна с такой припиской: «Эйнштейн поражен суматохой вокруг новой теории. Держит сто журналистов в напряжении целую неделю». Этот уровень внимания и напряженного ожидания сопровождал его и следующие двадцать пять лет. В 1949 году в New York Times снова объявили: «Новая теория Эйнштейна дает ключ к тайнам Вселенной», а несколько лет спустя, в 1953-м, провозгласили: «Эйнштейн предлагает новую теорию для объединения космических законов». Несмотря на внимание популярных газет, среди коллег Эйнштейн начинал чувствовать себя в некотором роде чужаком, а его попытки унификации не находили широкого отклика.

Сбежав из Германии из-за негативного отношения к своей деятельности, Эйнштейн обнаружил, что его новая родина, Соединенные Штаты, также не проявляет к общей теории относительности особого интереса. Молодые ученые с хорошим потенциалом, способные продвинуть ее вперед, были поглощены квантовой физикой, пытаясь применять ее к фундаментальным частицам и взаимодействиям.

В некотором смысле их можно было понять. Ранее общая теория относительности уже принесла ряд успешных открытий, например она обосновала прецессию перигелия Меркурия и гравитационное отклонение света. Она привела к открытию расширяющейся Вселенной, сильно повлияв на наше мировоззрение. Но это было в прошлом. Кроме того, создалось впечатление, что теория относительности может давать только фантастические математические предсказания, такие как решения Шварцшильда или Оппенгеймера и Снайдера для коллапсирующих или сколлапсировавпшх звезд. Доказательством подобных странных решений, существовавших где-то там, в пространстве, была только сама теория. Но в реальности их никто не видел, поэтому имело смысл считать их математическим казусом. А квантовая физика поддавалась экспериментальным измерениям в лабораториях и могла служить для создания каких-то вещей. Однако было ясно, что общая теория относительности может давать и еще более странные результаты, что смог показать логик Курт Гёдель.

Путь из дома в институт Эйнштейн не всегда совершал в одиночку. Часто этого эксцентричного и неаккуратно выглядящего профессора с всклокоченными волосами и добрым взглядом сопровождала маленькая фигурка, всегда укутанная в тяжелое пальто, с глазами, скрытыми за толстыми линзами очков. Пока Эйнштейн рассеянно двигался к главному зданию института, этот человек плелся следом, спокойно выслушивая монологи Эйнштейна и отвечая ему высоким голосом. Эйнштейн наслаждался прогулками с этим странным маленьким человеком и доверял ему. Его другом стал Курт Гёдель, ученый, ответственный за пересмотр современной математики. К изумлению Эйнштейна, Гёдель смог значительно расширить общую теорию относительности.

Гёдель приехал из Вены, которая в начале столетия представляла собой интеллектуальный центр. В ее кофейнях, которые стали домом для Эрнста Маха, Людвига Больцмана, Рудольфа Карнапа, Густава Климта и целого ряда гениальных мыслителей, процветал свободный дух дискуссий. Наиболее престижным из неформальных сообществ был получивший Мировую известность «Венский кружок». Туда попадали только по приглашениям, и Гёдель оказался в числе немногих избранных.

В отличие от Эйнштейна Гёдель получал в школе отличные отметки по всем предметам, а в университете считался выдающимся студентом. Он заигрывал с физикой, но представлял, как соединить ее с математикой в одну логичную конструкцию. Он оперативно изучал разработки, которые с удивительной скоростью штамповали философы и математики в попытках создать нерушимую теорию математики, в которой не будет места нерациональности, допущениям и обходным маневрам. Именно такой план продвигал правивший в Геттингене Давид Гильберт.

Гильберт был убежден, что всю математику можно построить из набора постулатов, или аксиом. С его точки зрения, тщательно и систематически применяя правила логики, любой математический факт во Вселенной можно вывести из не более чем полудюжины аксиом. Исключений быть не должно. Проверка любого математического факта от 2 + 2 = 4 до последней теоремы Ферма должна была иметь логическое доказательство. Именно программа Гильберта являлась движущей силой математики, когда на нее обратил внимание Гёдель.

Погруженный в жизнь Вены, спокойно посещающий собрания «Венского кружка» и наблюдающий за бесконечными обсуждениями способов распространить программу Гильберта на всю природу, которые вели логики и математики, Гёдель медленно и неуклонно подбирался к собственной фундаментальной гипотезе. И в какой-то момент одним махом полностью разрушил планы Гильберта, сформулировав теорему о неполноте.

Эта теорема утверждала крайне простые вещи. Любое Математическое описание системы начинается с набора аксиом и правил. Гёдель показал, что при любом наборе первоначальных постулатов всегда останутся аспекты, которые невозможно вывести: недоказуемые неопровержимые формулы. Обнаруженную формулу можно добавить в существующий набор аксиом. Но теорема Гёделя показала наличие бесконечного количества таких недоказуемых неопровержимых формул. По мере того как вы находите все новые истины, которые невозможно доказать, и добавляете их к своим аксиомам, ваша простая и элегантная дедуктивная система раздувается до гигантских размеров, оставаясь тем не менее неполной.

Теорема Гёделя парализовала программу Гильберта и выбила из седла многих его коллег. Сам Гильберт сначала с раздражением отказался признавать результат Гёделя, но в конечном итоге он его принял и безуспешно попытался встроить в свою программу. Другие философы опубликовали ничем не обоснованную критику, от которой Гёдель дистанцировался. Английский философ Бертран Рассел так никогда и не смог нормально воспринять результаты Гёделя. Доминировавший в философских течениях первой половины XX века Людвиг Витгенштейн просто отверг теорему о неполноте как неуместную. Но Гёдель верил, что она таковой не была.

Хотя Гёдель любил Вену, в конечном счете его начало привлекать место, которое Эйнштейн называл «замечательным местечком и… церемонным поселком маленьких полубогов на ходулях». После ряда визитов в 1930-х он стал комфортно чувствовать себя в Институте перспективных исследований, водя дружбу с Эйнштейном, вступая в дискуссии с фон Нейманом и постепенно осознавая, насколько высок интеллектуальный уровень эмигрантов, нашедших приют в Принстоне. Неприятный инцидент в Вене, когда Гёделя избили, приняв за еврея, вынудил его к переезду.

Эйнштейн и Гёдель сразу поладили. Эйнштейн говорил, что он ходит на службу «только ради возможности возвращаться домой с Гёделем». Эйнштейн заботился о нем, когда Гёдель болел. Когда подавший документы на получение американского гражданства Гёдель уже готовился принять присягу, он обнаружил в американской конституции логическое несоответствие, допускавшее установление в стране диктатуры. Именно Эйнштейн помешал тогда Гёделю сорвать церемонию получения гражданства.

Одержимый математикой Гёдель любил физику и часами обсуждал с Эйнштейном теорию относительности и квантовую механику. Они оба с трудом принимали случайности в квантовой физике, но Гёдель пошел еще дальше: он предположил, что в общей теории относительности Эйнштейна имеется критический недостаток.

Гёдель набросился на уравнения Эйнштейна и подобно Фридману, Леметру и многим другим, кто брался за эту теорию ранее, попытался упростить их в поисках контролируемого решения, которое представляло бы реальную Вселенную. Наверное, вы помните, что Эйнштейн считал Вселенную наполненной различной материей — атомами, звездами, галактиками, всем чем угодно, — равномерно распределенной в пространстве. Повернувшись на произвольный угол в любой момент времени, вы увидели бы ровно ту же самую картину, лишенную характерных черт и не имеющую центра или другой приоритетной точки. Фридман и Леметр каждый по-своему последовали примеру Эйнштейна и нашли простые решения, согласно которым геометрия пространства менялась со временем. Гёдель решил слегка усложнить картину. Совсем чуть-чуть, чтобы уравнения все еще поддавались решению. Но при этом дополнение было достаточно значительным, чтобы обеспечить интересный результат. Он предположил, что вся Вселенная вращается вокруг центральной оси, как карусель, снова и снова поворачиваясь относительно времени. Пространство-время в построенной Гёделем Вселенной, как и в моделях, предложенных Фридманом и Леметром, можно было описать в терминах времени, трех пространственных координат и геометрической характеристики каждой точки пространства-времени. Но были и отличия. Например, в моделях Фридмана и Леметра присутствовал эффект красного смещения, обнаруженный Хабблом и Слайфером в реальной Вселенной. Вселенная же Гёделя была этого лишена. Очевидно, что эта модель не могла объяснить измеренное Слайфером, Хабблом и Хыомасоном расширение. Но суть дела состояла не в этом. Решение все равно было верным и моделировало одну из возможных Вселенных в общей теории относительности Эйнштейна.

Тем не менее решение Гёделя одной деталью радикально отличалось от всех ранее представлявшихся моделей. Во Вселенных Фридмана и Леметра наблюдатель мог перемещаться в пространстве, исследуя различные части пространства-времени. При этом с течением времени он старел, оставляя за плечами прошедшие годы. Там присутствовало четкое понятие о прошлом, настоящем и будущем. Во Вселенной Гёделя ничего подобного не было. В ней при достаточно быстром перемещении наблюдатель мог проскользнуть вдоль вращающегося пространства-времени и вернуться к началу собственного жизненного цикла. С достаточной точностью он мог попасть в момент, когда он был намного моложе. Другими словами, во Вселенной Гёделя разрешались путешествия во времени.

В фантастической Вселенной Гёделя можно было двигаться во времени взад и вперед, возвращаться в прошлое, исправлять ошибки юности, просить прощения у давно умерших родственников, предостерегать себя от принятия в будущем неверных решений. Но одновременно становились возможными вещи, не имеющие смысла и приводящие к некоторым парадоксам, нарушающим ход вещей. Представьте, что вы разогнались, попали в прошлое и встретили свою бабушку, когда она была еще юной девушкой, и по ужасной случайности убили ее. Будучи стертой с лица земли, она уже не сможет дать жизнь вашей матери или вашему отцу. Соответственно этим вы запрещаете и свое собственное существование, а значит, некому уже будет вернуться в прошлое, чтобы совершить там свой ужасный поступок. Тем не менее если бы вы жили во Вселенной Гёделя, ничто, кроме технологических и моральных ограничений, не препятствовало бы подобному сценарию. Результат Гёделя показал, что общая теория относительности Эйнштейна имеет решения, допускающие путешествия в прошлое и парадоксы, подобные описанному, что совсем не согласуется с нашим реальным опытом. Однако если предположить, что теория Эйнштейна правдиво отражает окружающий мир, то абсурдная Вселенная Гёделя становится физически возможной.

Свои результаты Гёдель представил в 1949 году на собрании в честь семидесятилетия Эйнштейна. Они были красиво оформлены в виде набора простых постулатов и окончательного решения. Однако все это выглядело столь фантастичным, что никто не знал, что с этим делать. Чандра, в течение двадцати лет подвергавшийся нападкам и критике Эйнштейна, написал короткую записку, в которой указал на, как ему казалось, ошибку в выводах Гёделя. Но на этот раз дотошный и аккуратный Чандра сам допустил математическую ошибку. Астроном X. П. Робертсон, стоявший вместе с Фридманом и Леметром у истоков идеи расширяющейся Вселенной, годом Позже рассмотрел все выкладки и пренебрежительно отверг Вселенную Гёделя.

А что Эйнштейн? Он воспользовался своей легендарной интуицией, сыгравшей столь большую роль во всех его великих открытиях от специальной до общей теории относительности. Разумеется, та же самая интуиция заставила его отвергать решения Фридмана и Леметра и игнорировать решение Шварцшильда. Он отреагировал на работу Гёделя, признав его модель Вселенной «важным вкладом в общую теорию относительности», но ничего не сказав о том, стоит ли «исключить ее из физического рассмотрения».

Предложенное Гёделем решение уравнений Эйнштейна кажется слишком странным для воплощения в реальном мире. До своей смерти в 1978 году Гёдель продолжал искать в астрономических данных свидетельства, которые могли бы доказать реальную физическую значимость его решения. Но в некотором смысле работа Гёделя явилась примером, продемонстрировавшим основную проблему общей теории относительности — это чисто математическая теория, приводящая к странным выводам, которые не имеют отношения к реальной Вселенной.

Когда в 1935 году Институт перспективных исследований впервые попытался пригласить на работу Оппенгеймера, в то время как его группа в Беркли только начала делать себе имя, он ответил отказом. После короткого визита он писал своему брату: «Принстон — это дом умалишенных: эгоцентричные светила, сияющие в уединенном и тщетном одиночестве. Эйнштейн совершенно сумасшедший». Он так и не смог побороть свое недоверие к поздним работам Эйнштейна.

В 1947 году Оппенгеймер, наконец, согласился возглавить институт. Это назначение не обошлось без протестов. Эйнштейн и Герман Вейль агитировали за австрийского физика Вольфганга Паули, сформулировавшего принцип запрета, краеугольный камень квантовой физики. Они давили на преподавательский состав, категорически заявляя, что «Оппенгеймер не сделал столь же фундаментального вклада в физику, как Паули с его принципом запрета». Однако организаторские способности Оппенгеймера произвели впечатление, и работа была предложена именно ему, после чего он начал менять атмосферу института. Он принес с собой энтузиазм. Статья на обложке журнала Time 1948 года сообщала: «В списке приглашенных Оппи в этом году историк Арнольд Тойнби, поэт Т. С. Элиот, философ права Макс Радин, а также литературный критик, бюрократ и руководитель авиакомпании. Ничего не известно о том, кто будет следующим: возможно, психолог, премьер-министр, композитор или художник». С уединением было покончено.

Слегка покопавшись в общей теории относительности еще во время работы в Беркли, Оппенгеймер потерял к ней интерес. Вместе со своим учеником Хартландом Снайдером он написал одну из самых важных работ в этой области, открыв сжатие пространства-времени. Со временем он все больше разочаровывался в устаревшей, как он считал, и заумной теории, отговаривая молодых ученых от работы над ней. Молодой сотрудник института Фримен Дайсон в годы руководства Оппенгеймера писал домой, что «общая теория относительности в настоящее время является наименее перспективной областью исследований». До новых экспериментов, демонстрирующих странную природу пространства и времени или возможность включить общую теорию относительности в квантовую физику, говорить о ее применении не приходилось.

Оппенгеймер был не единственным ведущим физиком, отвергающим общую теорию относительности. Набирающая Все большую популярность квантовая физика настолько затмила плод усилий Эйнштейна, что стало даже сложно публиковать статьи, посвященные данной теме. Редактором журнала Physical Review был проживающий в Америке голландский ученый Сэмюэл Гаудсмит, игравший важную роль в первые годы появления квантовой теории. Став после эмиграции в Америку редактором журнала, он решил превратить его в основной печатный орган физиков, вступив в прямую конкуренцию с европейскими изданиями. К общей теории относительности Гаудсмит относился с недоверием. Как и Оппенгеймер, он считал, что столь заумная теория с ограниченной применимостью и возможностями проверки имеет не очень большой потенциал. Он пригрозил статьей, фактически запрещающей публикацию работ по «гравитации и фундаментальной теории». И только призыв принстонского профессора Джона Арчибальда Уиллера, который начал очаровываться теорией Эйнштейна, удержал Гаудсмита от этого шага.

Между Оппенгеймером и Эйнштейном в итоге установилась хрупкая дружба, сердечная, но не задушевная, с демонстрацией благосклонности и расположения. Однажды Оппенгеймер преподнес старику сюрприз, в качестве подарка на день рождения установив на доме на Мерсер-стрит радиомачту и обеспечив Эйнштейну возможность по вечерам слушать любимую музыку. В Эйнштейне Оппенгеймер обнаружил союзника, поддержавшего его в самые черные дни. Во время работы в Беркли Оппенгеймер пережил стремительный взлет и показал чудеса стратегического управления в рамках Манхэттенского проекта. Он прочно вошел в правящую верхушку как член семерки из комиссии по атомной энергии США, наблюдающей за послевоенными атомными проектами и применением атомной энергии. Он вызывал немалое раздражение, не желая подписываться под наиболее необычными ядерными проектами, такими как ядерный самолет, способный находиться в воздухе сутками, или водородная бомба, затмевающая своей мощью бомбы, сброшенные на Хиросиму и Нагасаки. Подобными действиями Оппенгеймер нажил себе немало врагов. И во время антикоммунистической истерии, начавшейся в 1950-х в эпоху Маккарти, эти враги нанесли удар.

В 1953 году в журнале Fortune Оппенгеймер подвергся резкой критике за «настойчивые попытки поменять направление военной политики США» и был обвинен в заговоре с целью помешать разработкам водородной бомбы. В результате он лишился допуска к секретной работе и был признан угрозой национальной безопасности Соединенных Штатов. В 1954 году Оппенгеймер настоял на проведении слушаний и был частично оправдан, но вернуть допуск не удалось. Отчет по результатам слушаний исчерпывающе сообщал: «Продолжающееся поведение и связи доктора Оппенгеймера указывают на серьезное пренебрежение требованиями безопасности». Оппенгеймер утратил свое положение в кругах вашингтонской элиты.

Эйнштейн никогда не понимал, чем Оппенгеймера так привлекала власть, почему для него настолько важным было положение ведущего правительственного чиновника? Как знаменосец мирового пацифизма, Эйнштейн не мог взять в толк, почему симпатизирующий его взглядам Оппенгеймер не может громче высказывать свое неодобрение гонке вооружений. Сам Эйнштейн не удержался от телевыступления с воззванием против зла «супербомбы», что стало причиной заголовков «Эйнштейн предупреждает мир: запретить бомбу или погибнуть».

В последние, самые одинокие дни Эйнштейн снова обрел известность. Издали ситуация выглядела иронично. На одном этаже института Эйнштейн помогал рисовать пацифистские Плакаты против распространения ядерного оружия, а на другом Оппенгеймер обдумывал планы создания водородной бомбы. Однако Эйнштейн мог позволить себе подобную активность. Он был слишком известен, чтобы его затронула антикоммунистическая истерия. Поэтому если Оппенгеймеру, ключевой фигуре американского ядерного господства, после того как он был сброшен с трона и унижен слушаниями по допуску, приходилось соблюдать осторожность, чтобы его не связали с коммунистической угрозой, Эйнштейн забыл всякую осторожность. Он публично поносил слушания и писал в New York Times: «Как интеллектуальное меньшинство может бороться с этим злом? Честно говоря, я вижу только революционный путь отказа от сотрудничества в стиле Ганди». Он публично советовал всем, кого вызывали на слушания, отказаться от участия, ссылаясь на пятую поправку к конституции, дающую право не отвечать на вопросы.

Последние годы Эйнштейна были омрачены болезнью. В 1948 году ему был поставлен потенциально смертельный диагноз: аневризма брюшной аорты. С годами заболевание медленно прогрессировало, и Эйнштейн готовил себя к неизбежному. В 1955 году, достигнув возраста семидесяти шести лет, Эйнштейн понял, что слишком болен и не сможет поехать в Берн на конференцию по поводу пятидесятилетней годовщины его специальной теории относительности. В середине апреля аорта лопнула, и через несколько дней Эйнштейн скончался в больнице.

Похороны были быстрыми и неторжественными. На кремации присутствовали несколько близких друзей, прах был развеян по ветру. Сохранилось несколько фотографий с похорон, показывающих, что это было спокойное, прозаическое мероприятие. Мозг Эйнштейна сохранили для потомков в надежде, что именно там содержится ключ к его гениальности. Конференция в Берне прошла своим чередом, совместив празднование юбилея его работы с надгробными речами.

Как главу института Оппенгеймера то и дело просили высказаться по поводу жизни и работы Эйнштейна. И он это делал, превознося достижения своего коллеги. Под давлением он признавался, что не совсем одобрял поведение Эйнштейна в последние годы. Он мог без проблем сказать, что «Эйнштейн был величайшим физиком и естествоиспытателем нашего времени», но в 1948 году в статье об институте для журнала Time он дал журналисту куда менее лестный отзыв: «Сплоченным братством физиков с сожалением признается, что Эйнштейн был не маяком, но вехой; в быстро развивающейся физике он слегка отставал». В интервью журналу L'Express, спустя почти десять лет после смерти Эйнштейна, Оппенгеймер пошел еще дальше: «В конце жизни Эйнштейн был уже бесполезен».

С уходом Эйнштейна общая теория относительности пришла в упадок. Ее затмила квантовая теория, к ней пренебрежительно относились некоторые ведущие физики того времени. Для возрождения интереса требовалась свежая кровь и новые открытия.

Глава 6. Дни радио

Слушателей ВВС в 1949 году весьма впечатлила серия лекций Фреда Хойла «Природа Вселенной». Молодой преподаватель из Кембриджа обращался к широкой аудитории с рассказами об истории и эволюции Вселенной. Подобно Эйнштейну, Леметру и прочим, занимавшимся данной темой раньше, он нес широким массам теорию относительности, и массам это нравилось. Еще не достигший сорока лет Хойл стал новым глашатаем этой теории, сменив на посту Эйнштейна, Эддингтона и Леметра.

Хотя, с точки зрения Хойла, Леметр ошибался. Хойл считал абсурдом возможность существования расширяющейся из ничего Вселенной и полагал, что отцам-основателям следовало скорректировать теорию таким образом, чтобы получить более рациональный результат. Вот его слова: «Эти теории основывались на предположении, что вся материя появилась во время одного большого взрыва в далеком прошлом». Выражение «большой взрыв» в данном случае использовалось в пренебрежительном смысле. Хойл считал, что существует более осмысленное решение: бесконечная Вселенная, в которой постоянно создается новая материя.

Хойл собирался бороться с релятивистами, а огромное количество слушателей давало ему выигрышные позиции. Для широкой аудитории ВВС его теория стационарной Вселенной звучала как стандартные сведения по космологии, в то время как порожденная успехами 1920-х годов концепция расширяющейся Вселенной казалась чересчур нетрадиционной. Она попросту не могла быть правдой. Хойл и два его компаньона, Герман Бонди и Томас Голд, являли собой группу, искажающую представления публики о происходящих в теоретической физике процессах, что сильно возмущало их коллег. Вот как один из астрономов отреагировал на лекции Хойла: «…были ощущение, что он зашел далеко за рамки благопристойного представления астрономии, и страх, что его нескромность и однобокость наносят урон профессии».

Несмотря на воззвания Хойла через средства массовой информации, теория стационарной Вселенной так и осталась его личным коньком, культом, отправляемым в Кембридже. Однако вопросы, возникшие благодаря этой теории, молодые ученые, которых она вдохновила, предложенный ею новый взгляд на Вселенную послужили толчком к возобновлению в последующие десятилетия интереса к общей теории относительности.

Неудивительно, что такой индивидуалист, как Фред Хойл, появился именно в Кембридже, вотчине Артура Эддингтона. До некоторой степени уподобившись Эйнштейну, Эддингтон также в какой-то момент сбился с пути и оказался одержим своей крайне сложной теорией Вселенной. В предшествовавшее его смерти десятилетие он пытался придумать фундаментальную концепцию, которая совмещала бы гравитационные взаимодействия, теорию относительности, электричество, магнетизм и кванты. Посторонним его мир чисел, символов и магических связей больше напоминал нумерологию и случайные совпадения, чем элегантную математику, ставшую основой общей теории относительности. Эддингтон избегал окружающих даже больше Эйнштейна и последние несколько Ает перед своей смертью в 1944 году провел в относительной изоляции. Он оставил незаконченную рукопись, которая была опубликована в 1947 году под громким заголовком «Фундаментальная теория». Это крайне непонятная, нечитабельная и совершенно забытая книга стала печальным наследием человека, выдвинувшего теорию относительности на первый план. Как сказал о ней один из астрономов: «Вне зависимости от того, сохранится ли эта книга как научный труд, она является примечательным произведением искусства». Вольфганг Паули — автор столь важного для понимания природы белых карликов принципа запрета — отнесся к труду Эддингтона пренебрежительно. По его словам, фундаментальная теория Эддингтона была «полной чепухой, точнее, напоминала не физику, а романтическую поэзию».

Фред Хойл прибыл в Кембридж в 1933 году, когда Эддингтон разрабатывал свою теорию звезд и воевал с молодым Чандрой за окончательное определение судьбы тяжелых белых карликов. Круглолицый очкастый англичанин уже в двенадцать лет прочитал научно-популярную книгу Эддингтона «Звезды и атомы». Это был резкий контраст с получаемым им образованием, которое он считал совершенно недостаточным и о котором писал: «Мне до известной степени разрешили плыть по течению». В Кембридже он преуспел, выиграв еще студентом ряд премий и получив докторскую степень по квантовой физике. К 1939 году Хойл становится сотрудником колледжа Святого Иоанна и как исследователь получает престижный грант. Кроме того, он решает сменить поле деятельности и пробует себя в астрофизике. Вдохновленный книгой Эддингтона «Внутреннее строение звезд», Хойл начинает размышлять, каким образом горят звезды и откуда они берут топливо. Его последующие работы стали ключом к пониманию того, каким образом ядерные процессы в звездах ведут к формированию более тяжелых элементов.

Смена Хойлом рода деятельности в 1939 году совпала с началом Второй мировой войны. Следующие шесть лет он посвятил радиолокационным исследованиям для армии. Аналогично тому, как проект создания атомной бомбы привлек самые яркие умы США, разработка технологий применения радиоволн в радарах собрала наиболее талантливых ученых со всей Британии. Множество ошеломляюще великолепных идей нашло практическое применение при радиолокации самолетов, кораблей и подводных лодок. Наследие этих работ военного времени применяется и в наши дни — современное общество просто купается в радиоволнах. Они используются в радио и на телевидении, в беспроводных сетях и мобильных телефонах, для управления самолетами и ракетами.

Благодаря своей работе над радарами Хойл встретил двух молодых физиков, Германа Бонди и Томаса Голда. Еврейский эмигрант Бонди в возрасте шестнадцати лет посетил одну из публичных лекций, которые Эддингтон проводил в Вене. Для изучения математики он был вынужден переехать в Кембридж, о котором позднее, влюбившись в интеллектуальное окружение, писал: «Я хотел бы прожить здесь всю жизнь». Из-за своего происхождения Бонди еще в начале Второй мировой войны был интернирован в Канаду, где он встретил Томаса Голда, еще одного еврейского эмигранта из Вены, которого тоже в свое время захватили популярные книги Эддингтона и который изучал в Кембридже инженерное дело. После освобождения из лагеря для интернированных Бонди и Голд начали вместе с Хойлом работать на нужды фронта. В свободное время они каждый со своей точки зрения обсуждали новые открытия в космологии и астрофизике: Хойл был оптимистом, Бонди — математиком, Голд — прагматиком.

После войны троица вернулась в Кембридж, чтобы влиться в сообщества разных колледжей. Послевоенный Кембридж опустел и стал более суровым. Ушли многие сотрудники, которым полученный в военное время опыт позволил начать карьеру вне научных кругов. Однако из-за наплыва рабочих во время мобилизации спрос на жилье был высоким, как и арендная плата. В результате Бонди и Голд арендовали на двоих дом недалеко от города. Хойл часто всю неделю проводил у них, занимая свободную комнату, и только на выходные возвращался в собственный дом в сельской местности.

Вечера Хойл проводил с Бонди и Голдом, вовлекая их в обсуждение занимавших всех вопросов. Как описывал это Голд, Хойл «продолжал беседу… иногда довольно однообразную, даже надоевшую, с непонятной целью акцентируя внимание на определенных моментах». Одной из навязчивых идей Хойла были проводимые Хабблом наблюдения скорости расширения Вселенной.

За годы, прошедшие с момента измерения Хабблом и Хьюмасоном эффекта де Ситтера, расширяющаяся Вселенная Фридмана и Леметра прочно прописалась в астрофизике. Выдвинутая Леметром идея первичного атома была слишком сложной и, кроме того, недоступной для наблюдений, что исключило возможность ее принятия, а вот его модель Вселенной, по общему мнению, считалась корректной. Вселенная с момента своего появления расширялась, а детали этого процесса можно было установить позднее. Без сомнения, это был крупный успех астрофизики и общей теории относительности.

Тем не менее по поводу Вселенной Фридмана и Леметра возникал обескураживающий вопрос, на который никак не могли найти ответа. Он возник после революционных измерений Хаббла. Было вычислено, что скорость расширения составляет приблизительно 500 километров в секунду на мегапарсек. Это означало, что галактика, отстоящая от нашей Вселенной на один мегапарсек (примерно 3 миллиона световых лет), будет удаляться от нас со скоростью 500 километров в секунду. А для галактики, находящейся на расстоянии двух мегапарсеков, эта скорость составит уже 1000 километров в секунду» И далее в том же духе. Последующие измерения Хаббла подтвердили эти расчеты. Это число, теперь известное как постоянная Хаббла, позволяло отмотать назад часы в предложенных Фридманом и Леметром моделях эволюции Вселенной и определить точный момент ее возникновения. В соответствии с этими расчетами возраст нашей Вселенной составляет около миллиарда лет.

Цифра в миллиард лет кажется очень большой, но в данном случае она недостаточно велика. В 1920-х методом радиологического датирования возраст Земли был оценен примерно в два миллиарда лет. Да и работы астронома Джеймса Джинса показали, что возраст звездных скоплений колеблется от сотен до тысяч миллиардов лет. Хотя эти цифры позднее были пересмотрены в сторону понижения, сомневаться не приходилось: получалось, что Вселенная моложе входящей в нее материи. Такого просто не могло быть, и никто не видел возможности обойти данный парадокс. В 1932 году Биллем де Ситтер охарактеризовал сложившуюся ситуацию так: «Боюсь, нам остается только принять данный парадокс и попытаться к нему привыкнуть». К моменту, когда расширяющейся Вселенной заинтересовались Хойл, Бонди и Голд, никаких новых данных в этой области не появилось.

Задумавшись о космологии, кембриджское трио сочло парадокс возраста самым очевидным недостатком моделей Фридмана и Леметра. Но в первую очередь их беспокоили куда более глубокие и более концептуальные вещи. Ведь согласно указанным моделям, начало Вселенной соответствует момент концентрации всего пространства в одной точке. Другими словами, получается, что время, пространство и материя возникли в один и тот же начальный момент. Хойл и его друзья ненавидели подобные гипотезы. Как сказал бы Хойл: «Это иррациональный процесс, который невозможно описать в научных терминах». Какие законы физики позволяют описать создание чего-то из ничего? Это казалось немыслимым, а для Хойла это была «совершенно неудовлетворительная идея, ведь исходная посылка находится в области, в которой ее невозможно оспорить, обратившись к данным наблюдений». Подобное пренебрежение напоминало уничижительную оценку, которую Эддингтон дал высказанной Леметром идее первоначального атома.

К новому взгляду на Вселенную Хойла и его коллег подвигнул фильм «Глубокой ночью». Снятый в 1945-м, этот фильм ужасов имеет закольцованную структуру, так как заканчивается тем же моментом, в котором начался. Отсутствие начала и конца дает замкнутую картинку бесконечной Вселенной. Концепция заинтересовала Хойла, Бонди и Голда. Ведь, может быть, Вселенная выглядит именно так? В этом случае нет ни начального момента, ни первоначального атома.

Бонди и Голд рассматривали проблему начального момента — или, как ее позднее назвал Хойл, проблему «большого взрыва» — с почти абстрактной, эстетической точки зрения. За века в описании Вселенной произошли изменения в сторону утраты особого положения в пространстве. Фридман и Леметр, как и Эйнштейн до них, считали, что Вселенная совершенно лишена характерных черт, а также центра или предположительного места, в котором началось ее формирование. Все точки пространства совершенно равноправны. Почему бы не применить этот космологический принцип к чему-то более полному и всеобъемлющему? Почему не предположить, что равноправными являются не только все точки пространства, но и все моменты времени? Начало попросту отсутствует, есть только вечная Вселенная, все время пребывающая в стабильном состоянии.

Хойл начал рассматривать следствия подобного допущения. Во Вселенных Фридмана и Леметра по мере расширения энергия расходится в пространстве и со временем несколько ослабевает. Для действительно стабильного состояния Вселенной энергия должна каким-то образом пополняться. Поэтому Хойл решил исправить уравнения Эйнштейна во многом таким же образом, как это сделал сам Эйнштейн, пытаясь построить канувшую в Лету модель статической Вселенной. Хойл постулировал существование так называемого си-поля (creation field), отвечающего за генерацию энергии. Именно этот мистический, никем ранее не виданный источник энергии и должен поддерживать стационарную Вселенную Хойла. В этой Вселенной не работает один из незыблемых законов физики — закон сохранения энергии. По словам Хойла, ничего страшного в этом нет, потому что нужен «примерно один атом в век на объем, сравнимый с Эмпайр-стейт-билдинг». Практически ничто.

В 1948 году в журнале Monthly Notices Королевского астрономического общества появились две статьи, одна авторства Хойла, а вторая Бонди и Голда. Приняты они были по-разному. Один из отцов квантовой физики Вернер Гейзенберг, останавливавшийся в Кембридже как раз, когда Хойл представлял свою статью о си-поле, считал, что это наиболее интересная из идей, поданных ему во время визита. Оксфордский профессор математики Э. А. Милн недвусмысленно отклонил эту идею, заявив: «Я не верю в необходимость гипотезы о непрерывном создании материи и не считаю, что она обоснована, впрочем, как и предположение о создании целой Вселенной в определенный период». Макс Борн, который в Геттингене был руководителем Оппенгеймера, вообще не воспринял предложенные Койлом изменения, «потому что если в физике и есть закон, Устойчивый ко всем изменениям и революциям, то это закон сохранения энергии». Да и сам великий Альберт Эйнштейн не обратил особого внимания на модель Хойла, назвав ее фрагментом «фантастической гипотезы». Таким образом, простое и очевидное с точки зрения тройки астрономов решение фундаментальной проблемы космологии было отвергнуто как абсурдное и ненужное. Хойла расстроило, как он считал, неблагоразумие коллег. По его словам, он совершенно «вымотался, объясняя неповоротливым умам узловые моменты физики, математики, фактов и логики».

А затем у Хойла внезапно появилась возможность продвижения придуманной им модели, и эта возможность превосходила по влиянию любую статью или серию семинаров. Радио ВВС запланировало цикл лекций кембриджского историка Герберта Баттерфилда. В последнюю минуту Баттерфилд отказался, поэтому был приглашен имеющий некоторый опыт выступлений по радио молодой Фред Хойл, который должен был записать пять программ, посвященных Вселенной и космологии. Хойл получил возможность изложить проблемы космологии, рассказав о молодой Вселенной со старыми галактиками и о том, что модели Фридмана и Леметра породили больше вопросов, чем дали ответов. Также можно было описать достоинства своей стационарной Вселенной. Так Хойл смог в обход обычных процедур представить стране свои идеи как свершившийся факт. О его теории узнали все.

Лекции Хойла на ВВС имели большой успех, он стал известной фигурой, одной из первых важных медиаперсон. Описанная им Вселённая захватила воображение народных масс. Путем публичных выступлений поставив свою модель над куда более устоявшимися и принятыми моделями расширяющейся Вселенной Фридмана и Леметра, Хойл настроил против себя коллег, в результате его концепция стационарной Вселенной столкнулась с мощным отторжением. Добившись успеха у широкой публики, Хойл ощутил усиление противодействия в научных кругах. Как он вспоминал позднее: «В первые несколько лет 1950-х мне было крайне сложно опубликовать свою работу».

Тем не менее концепция стационарной Вселенной прижилась в качестве жизнеспособной альтернативы расширяющейся Вселенной Фридмана и Леметра, которая в свое время вытеснила модель Эйнштейна. Под критику попали великие открытия, сделанные в 1920-е в области космологии и общей теории относительности. Впрочем, через несколько лет откроется совершенное новое окно во Вселенную, которое представит все эти модели в ином свете.

«Не ошибусь, сказав, что мотивом [Мартина] Райла при разработке программы подсчета радиоисточников была чистая месть», — вспоминал о своем бывшем коллеге Хойл. Сказано зло, но доля правды в этом была. Ведь Мартин Райл обладал неуравновешенным, несдержанным характером, агрессивным и подозрительным. Даже в Кембридже Райл избегал остальных преподавателей, уходя работать к своим радиотелескопам, установленным на месте бывшей станции метро Lord's Bridge, как вспоминал один из его коллег, «в сарае, в полях». Он сделает блестящую карьеру: в 1972 году станет Королевским астрономом, а в 1974-м уже получит Нобелевскую премию, — но до этого времени будет вести себя так, как будто ему постоянно что-то угрожает, и поддерживать в группе атмосферу секретности.

Мартин Райл также принадлежал к «поколению радиоволн». Сын кембриджского профессора, в 1939 году он получил степень в Оксфорде. Подобно Бонди, Голду и Хойлу, Райл во время войны работал над радарами, предложив приемы создания помех для немецких радиолокационных систем и срыва работы систем ракетного наведения. После войны он поехал в Кембридж, где применил свои способности в новой области радиоастрономии и в какой-то степени возглавил эту область. Райл был не одинок. Когда Бернард Лавелл, в годы войны также занимавшийся радарами, переехал в Манчестер, он начал создавать в обсерватории Джодрелл Бэнк один из крупнейших управляемых радиотелескопов. В Австралии Джозеф Пози в военное время занимался разработкой радиолокационной техники для королевского австралийского военно-морского флота, а затем основал в Сиднее собственную группу радиоастрономов.

Однако первый шаг в радиоастрономии был предпринят еще раньше, когда Карл Янский, работающий инженером в лабораториях телефонной компании Белл, в начале 1930-х обнаружил, что Вселенная издает радиошум. Его попросили найти источник раздражающих атмосферных помех, порой сильно затрудняющих переговоры по радио и даже трансляцию радиопрограмм. Янский хотел всего лишь устранить помехи — тайны космоса его практически не интересовали.

Радиоволны отличаются от световых волн только в миллиарды раз большей длиной. У видимого нами света, который составляет большую часть солнечного спектра, длина волны не превышает одну миллионную метра. Радиоволны имеют гигантскую длину от миллиметра до сотен метров. Янский обнаружил, что Млечный Путь день за днем испускает огромное количество радиоволн. И несмотря на то что яркость Солнца превосходит совокупную яркость Млечного Пути, такого количества радиоволн оно не порождает. В опубликованной в 1933 году статье «Электрические помехи, вероятно, внеземного происхождения» Янский систематически проанализировал все возможные источники атмосферных помех и показал на карте, откуда приходили радиоволны. Его методы открыли новый способ наблюдения космоса. Вместо гигантских телескопов, расположенных на вершинах гор, теперь можно было обойтись проволочной сеткой и антенной. А наблюдения слабого света далеких объектов сменились приемом приходящих из космоса радиоволн.

Открытие Янского было большей частью проигнорировано. Он предложил лабораториям Белла построить новую улучшенную антенну, но получил отказ. Они не занимались астрономией. И сам Янский переключился на другие сферы деятельности. Тем не менее его работа не прошла бесследно. Уникальный радиоинженер и астроном-любитель из города Уитон, штат Иллинойс, Гроут Ребер прочитал об открытии Янского в журнале «Популярная астрономия» и принялся за строительство большой антенны на заднем дворе своего дома. Эта антенна представляла собой девятиметровую тарелку с вытягивавшейся вперед металлической конструкцией для захвата отраженных волн. Это был первый настоящий радиотелескоп, напоминающий те, которые используются в наши дни. С его помощью Ребер построил более точную карту радиоизлучения Млечного Пути и составил первую карту неба в радиодиапазоне. Свою работу он отправил в «Астрофизический журнал», редакцию которого в то время возглавлял Чандра. Чандра был весьма заинтересован результатами Ребера и поражен его упорством. Статья, снабженная составленными Ребером картами, была принята к публикации и в 1940 году появилась под названием «Космические атмосферные помехи».

Эти крайне интересные карты помогли точно установить Источники странных волн. Однако измерения Ребера показали кое-что еще: несколько изолированных точек испускали большое количество радиоволн. Ребер смог ассоциировать каждую из таких точек с созвездием — Лебедя, Кассиопеи и Тельца, — но они не соответствовали объектам, испускающим видимый свет. Ребер обнаружил новый тип астрономических объектов, которые стали называть радиоисточниками, или радиозвездами.

Статья «Космические атмосферные помехи» открыла новое окно во Вселенную. Перед молодым поколением предстала совершенно неизведанная территория, и Мартин Райл был готов приступить к ее освоению. Вместе с группами Ловелла и Пози с конца 1940-х его кембриджская группа занялась составлением космических карт. Используя методы, изученные им во время работы с радиолокационными установками, Райл разработал радиотелескопы нового поколения, превратив Кембридж в один из основных центров радиоастрономии. Однако эта деятельность привела к столкновению с Хойлом и его коллегами.

Мартин Райл был больше радиолюбителем-дилетантом и инженером-электриком, чем космологом, поэтому его вступление в борьбу с «теоретиками», как он пренебрежительно называл Хойла и его коллег, стало неожиданностью. Первым делом была предпринята попытка найти более яркие источники, например такие, как наблюдал Ребер, и зафиксировать их местоположение. Но, к сожалению, Райл принял неверное решение. Ему казалось очевидным, что все эти объекты являются частью Млечного Пути. В четко аргументированной статье 1950 года он обосновал присутствие большой части радиоисточников в пределах нашей галактики. Наблюдались некоторые странные отклонения, но в целом тенденция сохранялась. Утверждения Райла имели смысл и были вполне разумными.

Свои результаты Райл представил на собрании Королевского астрономического общества в 1951 году. В аудиторий присутствовали и его кембриджские коллеги Голд и Хойл, которые в своем выступлении небрежно предположили, что радиоисточники могут на самом деле оказаться межгалактическими. Тщательно продумавший свою аргументацию Райл в раздражении ответил Голду и Хойлу фразой: «Я думаю, что теоретики неверно поняли экспериментальные данные».

Это было столкновение высоколобых астрономов-теоретиков, разбирающихся в математике и физике, с элегантными, ко странными теориями, объясняющими Вселенную в целом, с умельцами-радиооператорами, создающими оборудование и играющими с электроникой. Райл не выдержал явной снисходительности коллег. С его точки зрения, эти люди, работающие исключительно с карандашом и бумагой, были не в состоянии понять его данные так, как понял он. Но, к несчастью для Райла, в конечном итоге правда оказалась на стороне Голда и Хойла, так как все больше и больше источников связывали с объектами, не входящими в Млечный Путь. Они действительно оказались внегалактическими, и Райлу пришлось признать, что теоретики верно интерпретировали его данные.

Но спокойно признать свое поражение Райл не смог. Раз эти источники радиоизлучения находились за пределами нашей галактики, они могли дать информацию о Вселенной. Поэтому он принялся копить результаты наблюдений и применять полученные данные для опровержения детища Хойла и Голда, теории стационарной Вселенной. Для этого он посчитал количество радиоисточников как функцию от их яркости и попытался связать полученное число с базовыми свойствами Вселенной. Более удаленные источники должны выглядеть более тусклыми, поэтому яркость источника можно рассматривать как показатель расстояния до него. Вселенная имеет большой размер, а значит, места там много, и тусклых далеких источников должно быть больше ярких, Которые расположены близко к нам. Получается, что соотношение тусклых и ярких источников позволяет определить тип Вселенной, в которой мы живем. Свету удаленных источников требуется время, чтобы добраться до нас, поэтому мы видим Вселенную такой, какой она была некоторое время назад. В стационарной Вселенной Хойла, Голда и Бонди плотность источников со временем не меняется и их общее количество в некотором объеме должно быть прямо пропорционально этому объему. Плотность расширяющейся Вселенной, подобной предложенной Фридманом и Леметром, в прошлом была выше, поэтому в настоящее время число удаленных тусклых источников должно превосходить число ярких. Подсчитав их соотношение, мы сможем определить, какая же модель корректно описывает Вселенную: модель Большого взрыва или стационарная модель.

Райл составил список из почти двух тысяч источников, так называемый каталог 2С (второй Кембриджский каталог радиоисточников). Его основой послужил список из всего пятидесяти источников (известный как каталог 1С) и, к удовлетворению Райла, казалось, что соотношение количества тусклых и ярких источников не согласуется с теорией стационарной Вселенной. Райл воспринял это как убийственный удар по теории Хойла и немедленно принялся продвигать свои результаты. В мае 1955 года во время лекции в Оксфорде он смело выступил против своих соперников: «Если принять вывод о нахождении большинства радиоисточников вне нашей галактики — а избежать этого вывода сложно, — мы не сможем объяснить результаты наблюдений в рамках теории стационарного состояния». Казалось, что Райл не оставил камня на камне от модели Хойла и Голда.

После лекции Райла в Оксфорде Хойл с коллегами заняли оборонительную позицию. Хойл воспринял полученные данные всерьез, в то время как Голд с подозрением отнесся к результатам и советовал «не верить им, так как они могут содержать множество ошибок». Голд оказался прав. На этот раз усилия Райла были сведены на нет его же соратниками, умельцами, превращающими радиоастрономию в настоящую науку. Два молодых австралийских радиоастронома из Сиднея Бернард Миллс и Брюс Сли заново рассмотрели данные каталога 2С и получили совершенно другие результаты. Они не пытались составить каталог из тысяч источников, конкурирующий с каталогом Райла. Вместо этого были выбраны и детально измерены примерно три сотни источников. Новый небольшой каталог до определенной степени пересекался с каталогом Райла и позволял проверить результаты его измерений.

После публикации Миллса и Сли доверие к каталогу Райла было подорвано. В статье они написали, что их «каталог был тщательно сопоставлен с последним Кембриджским каталогом … оказалось, что они практически полностью противоречат друг другу». Миллс и Сли пошли еще дальше, предположив, что «на Кембриджский каталог повлияло низкое разрешение использовавшегося при его составлении радиоинтерферометра». Результаты Райла были попросту недостаточно хорошими — Миллс и Сли работали с более точным телескопом, и их результаты уже не исключали стационарную Вселенную из числа возможных моделей. К дискуссии присоединился Джодрелл Бэнк — радиоастроном из конкурирующей группы, работающей в английской обсерватории. Он заявил: «Радиоастрономам нужно долго развиваться, прежде чем они смогут предложить космологии нечто ценное». Казалось, что радиоастрономы не в состоянии достичь согласия по поводу получаемых данных, не говоря уж о том, чтобы использовать их для проверки космологических моделей, поэтому за лучшее было признано пока просто игнорировать результаты наблюдений. Хойл с коллегами мог свободно работать дальше.

В Кембридже Райл замкнулся в работе над очередным вариантом каталога радиоисточников. Следующие три года после случая со спорными результатами он и его группа провели за составлением нового каталога, который получил незамысловатое название 3С. Новые данные были призваны поставить крест на чепухе, которую распространяла группа Хойла. По крайней мере, так считал Райл. В 1958 году, когда каталог ЗС был, наконец, явлен миру, Мартин Райл почувствовал, что у него появился козырь: набор радиоисточников, с которым все были согласны. Хотя набор до сих пор был недостаточно хорошим. Бонди был настроен скептически и утверждал, что у Райла есть склонность представлять полученные результаты в лучшем свете, чем есть на самом деле. Райл часто заявлял, что добился исключения модели стационарного состояния, в то время как на самом деле им всего лишь достигался предел информации, которую можно было извлечь из полученных эмпирических данных. Как только кто-то брал на себя труд повторно провести измерения и обнаруживал, что ошибки больше, чем изначально утверждалось, модель стационарного состояния возвращалась в игру. И в самом деле, как публично заявил Бонди: «За последние десять лет это случалось не единожды».

В феврале 1961 года на собрании Королевского астрономического общества Райл представил анализ данных, вошедших в каталог 4С. Он утверждал, что результаты несовместимы со стационарной моделью — количество ярких источников сильно проигрывало количеству тусклых. Он сказал, что наблюдения «убедительно свидетельствуют против теории стационарного состояния». На доклад Райла обратили внимание газеты, и там появились заголовки, утверждающие, что «Библия права» насчет момента творения. Когда группы в Австралии и Соединенных Штатах воспроизвели результаты Райла, показалось, что он, наконец, разобрался с соперниками.

Хойл и его коллеги были обеспокоены, но не убеждены. Вскоре после представления анализа Райла Бонди рассказывал газете New York Times: «Я, разумеется, не считаю это смертью теории непрерывного творения», — добавляя: «Профессор Райлуже делал подобные заявления в 1955 году, но наблюдения, послужившие основой для его выводов, впоследствии оказались некорректными». Несмотря на уточняемые год от года данные, упорное стремление Райла разгромить теорию стационарного состояния было несколько иррациональным. И с точки зрения Хойла, Бонди и Голдд, радио не поставило крест на их детище. По крайней мере, пока не поставило.

Происходившая в Кембридже битва Хойла и Райла может показаться ненужным отклонением от неумолимого прогресса общей теории относительности и космологии. За пределами Великобритании модель Хойла практически никого не интересовала. Для многих эти дебаты, движимые личными интересами и местью, выглядели странно, практически ненаучно. Посетители Кембриджа замечали ядовитые отношения между группами Райла и Хойла.

Однако их соперничество привело к значительному научному прогрессу. Фреда Хойла продолжат превозносить как одного из величайших астрофизиков второй половины XX века. С американцами Вильямом Фаулером, а также с Джеффри и Маргарет Бербидж он разработал блестящую теорию образования элементов в центрах звезд. Вероятно, его дух бунтаря и настойчивая поддержка модели стационарной Вселенной стали причинами, по которым он не попал в списки нобелевских лауреатов по физике 1983 года. В 1973-м он уехал из Кембриджа, поселился в Лейк-Дистрикт и начал писать научно-фантастические романы.

Герман Бонди в итоге основал в лондонском Королевском Колледже потрясающую группу, занимающуюся общей теорией относительности, а Томас Голд построил самый большой радиотелескоп в мире в обсерватории Аресибо в Пуэрто-Рико. Группа Мартина Райла заслужила репутацию одержимых секретностью параноиков, но именно они стоят за некоторыми великими открытиями в области радиоастрономии, сделанными в последующие два десятилетия. В 1974 году Райл получил Нобелевскую премию. Подъем радиоастрономии и непонятная природа радиоисточников сыграли важную роль в развитии общей теории относительности, которое готово было войти в новую фазу.

Глава 7. Афоризмы Уиллера

Джон Арчибальд Уиллер пришел к концепции относительности через ядерную физику и квантовую теорию. Весной 1952 года он задал себе вопрос, что же происходит со звездами, состоящими из нейтронов — строительных кирпичиков ядерной физики, которой Уиллер занимался всю свою жизнь, — в конце их жизненного цикла. Его ставила в тупик гипотеза Роберта Оппенгеймера, гласившая, что конечным этапом гравитационного сжатия такой звезды могла бы быть сингулярность — некая точка бесконечной плотности и кривизны, расположенная в центре звезды. Однако Уиллеру такие сингулярности казались неубедительными. С точки зрения истинной физики их не должно было быть, и требовалось как-то обойтись без них. Чтобы лучше разобраться в этой сомнительной гипотезе, Уиллер начал изучать общую теорию относительности. Он решил, что лучше всего это делать, читая студентам в Принстоне лекции как раз по теории относительности. И вот в 1952 году в вотчине Эйнштейна, Гёделя и Оппенгеймера, на физическом факультете Принстонского университета Джон Арчибальд Уиллер прочел первый курс общей теории относительности. Раньше данная дисциплина считалась абстрактной, больше подходящей для математического факультета. Это был судьбоносный момент, о котором годы спустя Уиллер вспоминал как о «первом шаге на территорию, захватившую мое воображение и на всю жизнь задавшую направление моих Дальнейших исследований».

Уиллер, по меткому выражению одного из его студентов, был «радикальным консерватором». Он действительно имел крайне консервативный вид: всегда безупречно одетый, в темном костюме с галстуком, с идеально ухоженными волосами, в сияющих ботинках — совершенный образ традиционного и даже в какой-то мере светского джентльмена. Преданный студентам и коллегам, он был учтивым и вежливым и имел старомодные представления о приличиях. Тем не менее он мог изрекать самые диковинные вещи, часто бросая непонятные фразы о загадках космоса, больше напоминая религиозного пророка «нового века» или просвещенного хиппи.

Как ученый Уиллер представлял собой одновременно мечтателя и человека дела. В диапазон его интересов попадали самые разные вещи, от эзотерических до вполне практических. Взрывчатые вещества и механические устройства очаровывали его в той же степени, как и магические новые правила атомно-молекулярного учения. В университете в процессе изучения инженерного дела ему открылось великолепие математики. Один из преподавателей математики научил его решать задачи; как вспоминал Уиллер, «показывая нам новые математические трюки, он любил говорить, что ирландец устраняет преграды, обходя их». Этот совет повлиял на подход Уиллера к проблемам. Он бесстрашно брался за любые задачи, изучая все, что ему было нужно, когда в этом возникала необходимость. В 1932 году в возрасте всего двадцати одного года он получил докторскую степень по квантовой физике.

Джон Уиллер достиг зрелости в квантовой физике в момент, когда свои плоды стали приносить великие открытия Шрёдингера и Гейзенберга. Будучи молодым преподавателем из Принстона, он с датским физиком Нильсом Бором работал над квантовыми свойствами ядра и взаимодействием ядер. Статья Уиллера и Бора, посвященная делению ядер, была опубликована в один день со статьей Оппенгеймера и Снайдера, рассказывающей про гравитационное сжатие, и сыграла важную роль в подготовке к Манхэттенскому проекту.

Консерватизм Уиллера выражался в его страстной вере в американский образ жизни, американское общество и его защиту. Сразу после Перл-Харбора он присоединился к проекту атомной бомбы, работая над необходимыми для создания плутония гигантскими реакторами. На войне в 1944 году погиб его брат, и всю свою жизнь Уиллер считал, что сделал недостаточно, чтобы ускорить создание атомной бомбы. Как позднее он говорил коллегам, если бы бомба была разработана раньше, ее можно было бы применить в Германии. Человеческие потери были бы колоссальными, но, с точки зрения Уиллера, несравнимыми с ужасами последнего года войны. Его патриотизм порой становился причиной конфликтов с коллегами. В начале 1950-х его пригласили поработать с Эдвардом Теллером в рамках проекта Маттерхорн, который был попыткой Соединенных Штатов разработать водородную бомбу, термоядерное оружие, функционирующее на основе ядерного синтеза. Уиллер согласился, хотя многие его коллеги, в том числе Роберт Оппенгеймер, выступали против этого проекта. Уиллер был одним из немногих физиков, не поддержавших Оппенгеймера в период, когда тому были предъявлены обвинения в подрыве национальной безопасности.

Несмотря на консервативные взгляды в области политики, в науке он оставался индивидуалистом и даже радикалом, придерживаясь странных идей, идущих вразрез с общепринятыми в то время взглядами на физические законы. Среди принстонских учеников Уиллера был Ричард Фейнман, одаренный юноша из Нью-Йорка, ставший олицетворением послевоенной квантовой физики. Под руководством Уиллера Фейнман совершенно революционно объяснит и вычислит взаимодействие частиц и сил в пространстве-времени. Именно Уиллер научит Фейнмана думать по-другому, быть смелым.

Уиллер прекрасно подходил для продолжения работы над общей теорией относительности. Он был одновременно практиком и мечтателем. Как консерватор, он уважал физику и астрофизику, которые были основой теории, но стремился попробовать новые, пока неизведанные подходы. И прежде всего он был вдохновляющим наставником, воспитывающим и поддерживающим новое поколение физиков, способных вдохнуть жизнь в общую теорию относительности.

Изучив общую теорию относительности, Уиллер принял ее. Она была слишком элегантна, а немногочисленные экспериментальные факты — слишком убедительны, чтобы теория казалась некорректной. Но это вовсе не означает, что Уиллер был против испытания теории на прочность. Он верил, что «доводя теорию до границ применимости, мы получаем возможность увидеть недостатки, скрытые в ее структуре». Поэтому он решил проверить, насколько непонятной может быть общая теория относительности. В процессе работы он часто присваивал своим выдающимся идеям содержательные и остроумные названия, ставшие известными как афоризмы Уиллера.

Одной из идей, разработанной вместе с его талантливым учеником Чарльзом Мизнером, было включение в общую теорию относительности электрических зарядов фактически без таковых. Эту концепцию он описал афоризмом «заряд без заряда». В мысленном эксперименте использовался целый набор математических приемов для создания в двух местах пространства-времени отверстий, соединявшихся так называемой кротовой норой. Через такие норы можно было пустить линии электрического поля. Линии, выходящие из одного конца норы, заставляли ее вести себя как положительно заряженный объект, привлекающий к себе отрицательные заряды. Линии поля, входящие в другой конец, создавали там эффект отрицательного заряда. В итоге кротовая нора имитировала расположенные далеко друг от друга положительный и отрицательный заряды, при этом в реальности заряженные частицы отсутствовали. Это была гениальная легко визуализируемая идея, хотя ее практическое применение было бы крайне сложным.

Другим афоризмом Уиллера стала «масса без массы». Теория Эйнштейна объясняет взаимодействие массивных объектов, но Уиллер хотел получить аналогичные результаты, не вводя туда понятие массы. В теории Эйнштейна под действием массы свет меняет свою траекторию, поэтому Уиллер предположил, что сжатие пучка лучей, вызывающее достаточную деформацию пространства и времени, могло бы послужить аналогом массы. Этот пучок световых лучей, или геон, как назвал его Уиллер, мог бы обладать весом и притягивать другие геоны. Световые лучи сворачивались в кольцо в форме пончика и могли бы легко рассыпаться, но обладали эффектом массы без реальной массы. С еще одним своим студентом, Кипом Торном, Уиллер попытался определить, могут ли подобные объекты существовать в природе в стабильном состоянии.

Затем, разумеется, присутствовала проблема объединения общей теории относительности с квантовой теорией. Задача была достаточно радикальной, чтобы у Уиллера не возникло соблазна ею заняться. И снова он проявил фантазию. Он предположил, что при наблюдении за пространством-временем в малом масштабе будут возникать необычные эффекты. В то время как в крупном масштабе пространство-время выглядит гладким, слегка искривляясь при наличии массивных объектов (к ним в числе прочих относятся геоны Уиллера и кротовые норы), в деталях проявляются шероховатости, о которых мы и не подозревали. Мощный микроскоп обнаружит, что пространство-время представляет собой турбулентный хаос, в котором все свалено в кучу. Собственно, квантовый принцип неопределенности приведет к тому, что вблизи пространство-время должно напоминать бурлящую пену. Только слабость нашего зрения не дает нам увидеть шероховатости, заложенные в природу окружающего мира.

Однако несмотря на способность Уиллера к восприятию неизведанного и предлагаемые им смелые сценарии, ему не давали покоя скрывавшиеся в работах Шварцшильда, Оппенгеймера и Снайдера сингулярности, которые зажгли в нем интерес к общей теории относительности. Согласно Уиллеру, сингулярности должны быть не чем иным, как странным математическим артефактом, которому нет места в реальности. Как он позже вспоминал: «Многие годы концепция коллапса, который мы сейчас называем черной дырой, вызывала у меня неприятие. Она мне просто не нравилась».

Чтобы решить проблему, он загорелся идеей изобрести новые физические процессы, которые вступали бы в игру при огромном увеличении плотности материи в ядре звезды во время коллапса. Это была совершенно новая для него область, хотя Уиллер и являлся одним из мировых экспертов в ядерной физике. Поведение нейтронов в центре гравитационного коллапса описывала совсем другая физика. Нужно было понять, что произойдет, если упаковка нейтронов будет более плотной, чем в нейтронных звездах Ландау или Оппенгеймера или в любой из бомб, с которыми ему пришлось иметь дело во время работы для американской армии. Открывалось целое поле для догадок и применения воображения, в чем Уиллер весьма преуспел. Однако несмотря на весь его творческий потенциал, так же как и Ландау с Оппенгеймером, Уиллер со своей группой натолкнулся на факт существования некой максимальной массы, из-за чего даже их подробные гипотетические предположения о конечном состоянии материи оказались не силах конкурировать с гравитацией. Что бы они ни делали, избежать формирования сингулярности в конце гравитационного сжатия не удавалось. Но Уиллер не был бы Уиллером, если бы просто переварил эту неудачу и сдался.

Все больше и больше увлекаясь общей теорией относительности и пытаясь найти пути избавления от сингулярностей, он агитировал студентов и научных сотрудников присоединиться к его исследованиям. Многих соблазняла мощь этой теории и возможности ее применения. Год за годом группа Уиллера предлагала новые идеи, порой совершенно диковинные, порой вполне разумные, но все, без сомнения, увлекательные. Влияние Уиллера на общую теорию относительности распространилось за пределы Принстона. Одним из самых больших его вкладов стала поддержка Брайса Девитта из университета Северной Каролины в Чапел-Хилл.

Брайс Девитт производил внушительное впечатление. У него была строгая наружность ветхозаветного пророка, и когда он входил в аудиторию, выпрямлялись все спины. Он не допускал небрежности — все следовало делать корректно, поэтому идеи, дошедшие до публикации, были, что называется, вытесаны в камне.

Еще Девитт был путешественником, «путешественником в пространстве», как он себя называл. Во время Второй мировой войны, еще юношей, он служил летчиком, а после завершения образования в Гарварде перемещался по планете, работая в Принстоне и Цюрихе, а также в институте Тата в Бомбее. Последний один из его коллег позднее описывал как «временное место пребывания, не имеющее смысла с профессиональной точки зрения, но… подходящее его душе бродяги».

Вместе со своей женой Сесиль Девитт-Моретт, французским математиком, с которой он познакомиться в Принстоне, Девитт обосновался в Калифорнии и приступил к работе в Ливерморской национальной лаборатории; эта работа заключалась в компьютерном моделировании ядерных артиллерийских снарядов. Когда семье потребовались деньги на покупку дома, Девитт решил принять участие в конкурсе эссе с призом в $ 1000. Это эссе изменило всё, причем не только для Девитта, но и для общей теории относительности.

Конкурс, проводимый фондом гравитационных исследований, был детищем Роджера Бэбсона, бизнесмена, страстно увлекавшегося гравитацией. Он сделал состояние игрой на бирже, применяя к этому процессу собственные версии законов Ньютона: «То, что идет вверх, упадет вниз… Фондовый рынок падает под действием собственного веса». Не было тайной, что Бэбсоном владела навязчивая идея. Его старшая сестра утонула, когда он был еще ребенком, и он обвинил в этом силу тяжести. В его версии событий «она не смогла бороться против силы тяжести, которая пришла и схватила ее подобно дракону». Всю свою жизнь Бэбсон так или иначе вкладывал деньги в вещи, относящиеся к гравитации: например, коллекционируя предметы, связанные с Ньютоном, продвигая странные идеи и, что самое важное, учредив Фонд гравитационных исследований.

Изначально Бэбсон создавал фонд для спонсирования ежегодного конкурса эссе. Претендентам предлагалось присылать материал объемом не более двух тысяч слов на тему обуздания гравитации и достижения конечной цели Бэбсона: победы над ней. Фонд должен был привести к разработке антигравитационных устройств: хитроумных приспособлений, которые могли бы изолировать, поглощать и даже отражать гравитацию. Атом уже начал служить человеку, и Бэбсон думал, что пришло время взять под контроль и силу тяжести. Учрежденный им конкурс был призван выявить лучших в послевоенной физике.

Первый отклик на призыв Бэбсона получился более чем скромным. С 1949 по 1953 год на конкурс присылались немногочисленные посредственные предложения. Темы эссе были удивительно разнообразны, среди конкурсантов попадались как научные работники, так и выпускники вузов и обычные любители поломать голову в попытке найти нечто, подходящее под требования Бэбсона. Вместо того чтобы вдохновлять ученых, тема своей необычностью привлекала со всех сторон массу чудаков.

Конечно, поставленная Бэбсоном задача была несолидной — никто из физиков в здравом уме не верил в возможность создания антигравитационной машины, — но она перекликалась с растущим интересом к потенциалу силы тяжести. Экономика США после Второй мировой войны испытывала подъем, и оптимизм проник и в повседневную жизнь. Наступало начало новой эры, рождение нового технологичного века. Инвестирующие в науку организации и бизнесмены после открытия атомной энергии делали значительные ставки на гравитацию. В цели, которая, по сути, пришла прямо из научно-фантастических романов, было нечто воистину привлекательное и революционное. По крайней мере, это напоминало попытку открыть описанный Гербертом Уэллсом в 1901 году в романе «Первые люди на Луне» магический материал «кейворит», который мог экранировать гравитацию и дал возможность полететь на Луну.

В середине 1950-х в крупных газетах то и дело попадались ссылки на новый вид космических путешествий но кораблях, Победивших гравитацию. Статьи с заголовками «Перехитрив гравитацию, мы увидим чудесный космический корабль», «Новые самолеты, победившие гравитацию», «Самолеты будущего победят гравитацию и обеспечат транспортные перевозки в космосе» радостно встречали будущее с «гравитационными двигательными системами». Популярная пресса рассказывала о самолетах и космических кораблях, движущей силой которых вместо реактивных двигателей станет гравитация. Статья в нью-йоркской газете с заголовком «Покорение гравитации — цель ведущих американских ученых» описала взгляд на силу тяжести ведущих авиастроительных компаний Convair, Bell Aircraft и Lear; в статье утверждалось, что силу тяжести «в конце концов можно взять под контроль, как световые волны и радиоволны».

Фирма Glenn L. Martin (позднее известная как Lockheed Martin) основала Институт перспективных исследований. Он был предназначен для разработки новых идей в теоретической физике с особым акцентом на преодоление гравитации и создание гравитационных двигателей. Туда принимались физики и релятивисты, которым всячески содействовали в достижении их футуристических целей. Военно-воздушные силы США сделали более трезвую и менее сомнительную инвестицию в лабораторию исследования аэронавигационных средств, находящуюся на военно-воздушной базе Райт-Петтерсон в город Дэйтон, штат Огайо. В этой лаборатории также работала группа добросовестных релятивистов, но они занимались фундаментальными исследованиями в области гравитации и единой теории. В сферу их компетенции антигравитация не входила, и на некоторое время эта лаборатория превратилась в обычный центр исследований теории относительности, конкурирующий с другими группами, рассеянными по всему миру. Военно-воздушные силы снабжали деньгами и другие группы, занимающиеся общей теорией относительности. Идеи антигравитации мало кто из ученых воспринимал всерьез.

Исследователи избегали делать какие-либо прогнозы, но с удовольствием принимали деньги, выделяемые на необычные идеи об основах нашей реальности.

В разгар этой эйфории Брайс Девитт выбрал странный способ борьбы за призовое место в учрежденном Бэбсоном конкурсе — он напал на спонсоров. В эссе, которое он отправил в Фонд гравитационных исследований в 1953 году, Девитт беспардонно развенчивал амбициозную цель Бэбсона изобрести «чрезвычайно практичные вещи, такие как отражатели или изоляторы гравитации либо магические сплавы, превращающие гравитацию в тепло». Он сослался на теорию пространства-времени Эйнштейна, объясняя, почему «любая лобовая атака на проблему использования силы тяжести указанными способами является пустой тратой времени… Все предлагаемые схемы применения силы тяжести можно смело признать нереализуемыми». Девитт обрушился на чудаков с резкой критикой и победил.

Без сомнения, его эссе радикально отличалось от работ других конкурсантов. Это была настоящая наука, стоящая в стороне от спекуляций и перечисляющая реальные проблемы, с которыми предстояло столкнуться при исследованиях гравитации. Задача было сложной, к тому же, по словам Девитта, «в последние три десятилетия гравитации уделялось относительно мало внимания». Это было «особенно сложно», требовало «трудной для понимания математики» и «фундаментальных уравнений, решить которые практически невозможно». Более того, «даже лучшие умы плохо понимают явление гравитации».

Совершенно не оскорбленный Роджер Бэбсон заинтересовался первым реальным претендентом на победу. Перед ним был настоящий серьезный ученый, который мог бы поднять авторитет конкурса. И действительно, эссе Девитта благотворно повлияло на легитимность мероприятия, и в последующие годы уровень претендентов резко возрос. В следующие десятилетия призерами Фонда гравитационных исследований становились физики, играющие важную роль в возрождении общей теории относительности. Больше того, эссе начали писать практически только о гравитации, а тема антигравитации была забыта. Позднее Девитт скажет, что победа его эссе оказалась «самой быстрой тысячей, которую я когда-либо зарабатывал». Однако участие в конкурсе принесло ему куда большую выгоду, чем он мог себе представить.

У Роджера Бэбсона был друг, Эгнью Бансон, также неравнодушный к проблемам гравитации. Свое состояние он сделал на продаже промышленных кондиционеров. Как и Бэбсон, он хотел финансировать исследования гравитации, но не знал, как это осуществить. Бэбсон показал ему эссе Девитта. Вот человек, который поможет основать серьезный, настоящий, респектабельный институт, в его стенах мыслители смогут заниматься интересными им вещами. Как коротко писал Бансон в одной из вступительных брошюр для только что созданного Института физики поля (Institute of Field Physics, IOFP): «В сознании общественности тема гравитации часто связывается с фантастическими возможностями. Однако с точки зрения института никаких конкретных, практических результатов исследований в настоящее время не предвидится». Никто не собирался работать ни над антигравитационными устройствами, ни над гравитационными двигателями. Свои фантазии на тему гравитации Бансон мог удовлетворять написанием научно-фантастических романов, оставив реальные исследования силы тяжести ученым.

За советом, что делать с институтом, Бансон обратился к Джону Уиллеру. Уиллер заработал потрясающую репутацию в Вашингтоне благодаря своим работам над ядерным оружием, а также как ведущий физик, готовый поддержать правительство по всем связанным с обороной вопросам. Он издалека следил за карьерой Девитта и без лишнего шума поддержал идею пригласить Брайса и Сесиль на работу в новый институт, расположенный в городе Чапел-Хилл, штат Северная Каролина.

Хотя институт возник как инструмент удовлетворения тщеславия, поддержка Уиллера и чета Девиттов в качестве первых сотрудников заставили ученых всей страны воспринять его всерьез. Многие влиятельные лица прислали письма поддержки, приветствуя появление места, где можно было бы заниматься чистыми исследованиями, не завися от индустрии, армии и нового атомного века. Основным предметом исследований нового института должна была стать гравитация.

Открыть новый институт должна была конференция Девиттов в январе 1957-го под названием «Роль гравитации в физике». Одновременно это мероприятие открывало новую эпоху. В нем принимала участие группа более молодых и менее известных ученых, также приехал ряд новых лидеров, работающих над общей теорией относительности. Все они на несколько дней собрались в Чапел-Хилл, чтобы детально разобраться в теории Эйнштейна. Финансировали мероприятие Эгнью Бансон и военно-воздушные силы. Последние даже помогли доставить некоторых участников в только что основанный Институт физики поля.

В Чапел-Хилл съехались не только релятивисты. Принять участие решил и бывший студент Джона Уиллера Ричард Фейн-ман, который полностью перекроил квантовую физику и предложил новую теорию квантовых превращений. Как человека из квантового мира, его интересовало происходящее в области общей теории относительности. Позднее Фейнман вспоминал, как он прибыл в аэропорт Чапел-Хилл, не представляя, куда ему ехать дальше. В такси он понял, что водитель ничего не знает о встрече, — да и откуда ему было знать? Фейнман повернулся к водителю и сказал: «Конференция начала работать вчера, значит, позавчера на нее отсюда уезжало немало людей. Сейчас я тебе их опишу: вид у них был довольно важный, а по дороге они разговаривали друг с другом, не обращая внимания на то, куда их везут, и произнося что-то вроде «джи-мю-ню, джи-мю-ню». Джи-мю-ню (пишется gμν) — это математический символ для метрики, в которой закодирована геометрия пространства-времени. Водитель сразу понял, куда нужно ехать.

Всем собравшимся было ясно, что следует предпринять какие-то действия для извлечения общей теории относительности из болота, в котором она находилась последние три десятилетия. Ричард Фейнман сразу понял, почему этой теории не уделялось должного внимания: «Существует… один серьезный недостаток. И это недостаток экспериментальных данных. Более того, мы не собираемся ставить эксперименты, поэтому нужно понять, что делать в ситуации, когда экспериментальные данные недоступны». Без экспериментов прогресс невозможен, но Фейнман настоял на необходимости продолжения исследований. Общая теория относительности сложна, но не настолько сложна, и, как он выразился: «Лучше всего представить, что эксперименты проводятся, и заняться вычислениями. В этой области нас двигают вперед не эксперименты, а наше воображение».

Поскольку в Чапел-Хилл собралось новое поколение релятивистов, почти выпускников или недавних выпускников, с новыми идеями и готовых к бою, Фейнман выразил общие чувства. Диковинные идеи конкурировали с трезвыми высказываниями старых ученых мужей. Ежедневные заседания были насыщены дискуссиями и аргументами. Когда Томас Голд представил обновленную теорию стационарной Вселенной, девитт сразу же свел все к обсуждению ключевого допущения — введенного Хойлом си-поля. Этот сомнительный механизм нарушал закон сохранения энергии. Когда кто-то заговорил о необходимости теории, объединяющей гравитацию и электромагнетизм в соответствии с десятилетиями разрабатываемым Эйнштейном планом, Фейнман был неумолим. Почему с гравитацией нужно объединить именно электромагнетизм? Как быть с остальными силами? Наиболее животрепещущей и обсуждаемой стала одержимость Девитта и Уиллера идеей объединения общей теории относительности с квантовой механикой. Может ли на пространстве-времени появиться рябь от гравитационных волн, как на поверхности озера, совсем как у электромагнитных волн в теории Максвелла? Участники живейшим образом обсуждали все эти вопросы во время семинаров.

Джон Уиллер появился с грандиозным планом коренным образом изменить физику через теорию относительности и с выводком фонтанирующих новыми идеями студентов и докторантов. Они продвинули теорию относительности еще дальше, до точки, в которой она стала походить на клоунаду. В программе появились «электромагнетизм без электромагнетизма» и «заряд без заряда», а также «спин без спина» и «элементарные частицы без элементарных частиц». На протяжении всей конференции в центре внимания оказался клан Уиллера, бросающий в толпу идеи, которые следовало тщательно рассмотреть или отбросить прочь. Джон Уиллер был в своей стихии.

В основном релятивисты в Чапел-Хилл задавали себе вопрос, дает ли теория Эйнштейна возможность делать реалистичные прогнозы. Без этого она не сможет достичь высокого статуса. Так, например, теория электромагнитных взаимодействий успешно предсказывает практически любые явления, связанные со светом, электричеством и магнетизмом. При этом Шварцшильд, Фридман и Леметр давали прогнозы только в рамках сильно упрощенных идеализированных систем. Как выйти за пределы таких упрощений, было неясно. Поэтому участники конференций в Чапел-Хилл спрашивали себя, можно ли решить уравнения Эйнштейна в общем виде и достоверно узнать, как именно развивается пространство-время? Казалось, что до ужаса запутанный характер общей теории относительности делает невозможным даже выбор начальных условий, не говоря уже о расчете путей эволюции. Попытка решить уравнения на компьютере оказалась еще более сложной.

Эта встреча, поражающая творческим потенциалом и вдохновляемая изобретательностью Уиллера и воображением Фейнмана, стала увлекательным событием для новых приверженцев теории относительности. Но теория пространства-времени вперед не продвинулась. В отрыве от реального мира были бесполезными вся математическая гениальность, предложения унификации, дискуссии о гравитационных волнах, кротовые норы, геоны и пена пространства-времени Уиллера.

С момента первой проверки теории Эйнштейна — измерений, проведенных Эддингтоном во время затмения, — прошло почти сорок лет. Почти тридцать лет отделяли присутствующих от подтвердивших расширение Вселенной измерений Хаббла. К моменту собрания в Чапел-Хилл новых экспериментальных данных давно не появлялось. Не было ничего, что могло бы в дальнейшем подтвердить или, наоборот, низвергнуть теорию Эйнштейна. Коллега Уиллера по Принстону Роберт Дикке в своем выступлении «Экспериментальные основы теории Эйнштейна» описал ситуацию так: «Теория относительности выглядит чисто математическим формализмом, практически не имеющим отношения к наблюдаемым в лабораториях явлениям». Однако оказалось, что искать ответы нужно было не в лабораториях, а среди звезд.

В 1963 году голландский астроном Мартин Шмидт работал с телескопом, названным в честь Джорджа Эллери Хейла, патрона Паломарской обсерватории. Он думал об одном из источников, указанных в составленном радиоастрономами Мартином Райлом и Бернардом Лавеллом каталоге 3С. Пока Уиллер со своей командой пытался вдохнуть новую жизнь в общую теорию относительности, радиоастрономы решили внимательнее осмотреть находящиеся в их распоряжении радиоисточники. Как у любых звездочетов, у них была цель выяснить, что эти объекты представляют собой на самом деле. А для этого требовалось найти как можно больше таких объектов и более тщательно их исследовать, чтобы понять, что именно является источником радиоволн.

За более чем десять лет, призвав на помощь ту самую изобретательность, которая помогала им при разработке радаров, Райл и Лавелл на несколько порядков повысили точность своих измерений, указав положение радиоисточников на небе настолько корректно, что астрономы получили возможность нацелить туда свои телескопы и заняться исследованием их природы. Каталог радиоисточников Райла, или каталог 3С, включал в себя данные о точном положении сотен источников.

Группа Лавелла обратила внимание на альфу Лебедя, один из радиоисточников, который Гроут Ребер идентифицировал как испускающий галактический радиошум. В каталоге Райла 3С он значился под номером 405. Оказалось, что каждый из двух конгломератов радиоволн, из которых состоит этот странный объект, имеет практически прямоугольную форму. Гигантские структуры, размер которых в поперечнике составлял сотни световых лет, казалось, управлялись чем-то расположенным между ними. А когда астрономы направили телескопы на другой источник, числящийся в каталоге под номером 48, то вместо замысловатой структуры, обнаруженной у альфы Лебедя, перед ними появилось простое яркое пятно, в котором доминировал цвет синей части спектра. Объект своей простотой и невыразительностью напоминал звезду. Но при попытке измерить его спектр и определить, из чего же ЗС48 состоит, считанный лес спектральных линий не совпал ни с одной из известных звезд. Более того, оказалось невозможным даже просто идентифицировать элементы, входящие в его состав. Причем объектов, не поддающихся идентификации, было много. Космические радиоисточники оказались многочисленными и разнообразными, и никто не знал, как далеко от нас они находятся.

Мартин Шмидт сфокусировался на источнике с ничем не примечательным именем 3С273. Он напоминал звезду, но спектральные линии снова не совпадали ни с одним уже известным спектром. Внимательно изучив результаты измерений, Мартин обнаружил примечательную вещь: по сути, это были спектральные линии водорода, но смещенные почти на 16% в красную часть спектра. Однако для подобного смещения объект 3C273 должен был либо удаляться от нас со скоростью, близкой к скорости света, либо располагаться так далеко, что на его спектр влияло расширение Вселенной. Шмидт был ошеломлен. Вечером он сказал жене: «На работе сегодня произошло кое-что ужасное».

Это было знаменательное открытие. Шмидт обнаружил, что подобные объекты рассеяны по всему космосу на расстоянии миллиардов световых лет от нас. Однако столь удаленные объекты могут быть доступны для наблюдений в радиодиапазоне или через большие телескопы, только если они выделяют огромное количество энергии. Фактически от источников 3C273 и 3C48 шло столько же света, сколько от сотни галактик. Они представляли собой как бы супергалактики, более мощные, чем всё с чем астрономы сталкивались ранее.

Еще эти источники должны были быть очень маленькими, меньше любой галактики. Это утверждение касалось всех объектов из каталога 3C — некоторые из них были в десятки и даже сотни раз меньше обычных галактик. При более тщательном исследовании их размер в поперечнике оказался меньше, чем несколько триллионов километров. Как в то время писал журнал Time: «по стандартам космологии это настоящие малыши». Небольшая область пространства, удаленная от нас на колоссальное расстояние, вырабатывала огромные количества энергии.

Фред Хойл не мог устоять перед столь необъяснимыми и странными объектами. Несмотря на продолжающиеся войны в защиту модели стационарной Вселенной, у Хойла появилась солидная репутация эксперта по структуре звезд. Вместе с Уильямом («Вилли») Фаулером и супругами Джефри и Маргарет Бирбидж он детально объяснил процесс формирования химических элементов в ядерных реакциях, протекающих внутри звезд.

Фаулер и Хойл предположили, что новые объекты тоже являются звездами, просто несколько отличающимися от обычных. Это суперзвезды с массой в миллион или даже сто миллионов раз больше массы нашего Солнца, настолько огромные, что за время своей жизни могут произвести колоссальное количество энергии. А время их жизни оказывается коротким, так как выгорание энергии происходит очень быстро, потом наступают коллапс и смерть. Эти суперзвезды позволили Хойлу и Фаулеру включить в общую теорию относительности правила поведения звезд, разработанные Эддингтоном. Теория Эйнштейна манила к себе.

Томительно жарким летом 1963-го в городе Даллас, штат Техас, собралась небольшая группа релятивистов. Они сидели вокруг бассейна, попивая мартини и обсуждая странные тяжелые объекты, обнаруженные Мартином Шмидтом. Компания была интернациональной. Как сказал один из них: «Американские ученые, интересы которых лежат вне геофизики и геологии, вряд ли снизошли бы до того, чтобы здесь поселиться. Для большинства этот регион столь же привлекателен, как какой-нибудь Парагвай». Тем не менее неожиданно Техас стал центром изучения теории относительности, в основном усилиями общительного венского еврея Альфреда Шильда.

Детство и юность Шильда прошли в странствиях вследствие потрясений 1930-х и 1940-х. Он родился в Турции, ребенком жил в Англии. Его, как Бонди и Голда, тоже интернировали в Канаду, где он изучал физику под руководством одного из учеников Эйнштейна Леопольда Инфельда и написал диссертацию по космологии. Он присутствовал на встрече в Чапел-Хилл 1957 года, поучаствовав в общем ликовании по поводу нового этапа развития общей теории относительности, а в следующем году его пригласили работать в Техасский университет в Остине.

На момент его прибытия в Остин Техас был тихой, но феноменально богатой заводью благодаря текущим через местную экономику доходам от продажи нефти. Шильд смог уговорить университет употребить нефтяные деньги с пользой и позволить ему открыть собственный центр изучения теории относительности. Благодаря тому, что военно-воздушные силы жаждали получить доступ к потенциально магической силе гравитации, проблем с финансированием не было. И если математики свысока смотрели на работу Шильда, то физики проявили к ней интерес.

Шильд занялся поисками талантов, а в этом деле он определенно знал толк. Собранная им группа молодых релятивистов из Германии, Англии и Новой Зеландии превратила Остин в место, которое считал своим долгом посетить каждый уважающий себя релятивист. Но на этом Шильд не остановился. Б Далласе искали молодых ученых для только что созданного Юго-Западного центра перспективных исследований, чтобы насытить «голодающий без науки Юг», и Шильд не остался в стороне. Он подсказал сделать ставку на теорию относительности, и руководство центра последовало его совету, собрав собственную международную группу.

Этим июльским полднем техасские релятивисты, развалившись у бассейна, придумывали схему, которая позволила бы собрать всех в Техасе для обсуждения теории относительности. Речь уже не шла о кулуарном мероприятии, не скованном никакими правилами, как в Чапел-Хилл. На этот раз требовалось собрать совершенно новых людей, астрономов, и заставить их подумать над теорией Эйнштейна, организовав встречу с акцентом на радиозвездах — «напоминающих звезды радиоисточниках». Измерения, которые Шмидт сделал в марте, четко показывали, что эти странные объекты были слишком массивными и находились от нас слишком далеко, чтобы их можно было рассматривать, применяя старые законы тяготения Ньютона. Это были огромные объекты — звезды, размер которых не позволял противостоять силе тяжести, — о таких объектах предупреждали Чандра и Оппенгеймер. Именно здесь решающую роль могла сыграть общая теория относительности. В пригласительных письмах организаторы написали, что «энергия, которая ведет к формированию радиоисточников, может возникать как следствие гравитационного сжатия суперзвезды». Релятивисты назвали мероприятие Техасским симпозиумом по релятивистской астрофизике. Оно состоялось в Далласе в декабре 1963 года.

Первый Техасский симпозиум по релятивистской астрофизике чуть не сорвался. В Далласе был убит президент Джон Ф. Кеннеди, и приглашенные просто побоялись ехать на конференцию в место, где есть риск получить пулю. Местные релятивисты попросили мэра лично обратиться к потенциальным участникам и заверить их в безопасности. Это сработало. Послушать последние новости о радиозвездах и их потенциале в Даллас съехалось свыше трех сотен человек. Среди них был и Роберт Оппенгеймер, препятствовавший работе над общей теорией относительности в институте в Принстоне. Новые радиозвезды его заинтересовали, потому что они были по его словам «невероятно красивыми… захватывающими явлениями беспрецедентного великолепия». Он обратил внимание, насколько встреча напоминала мероприятия, проводившиеся в области квантовой физики за два десятилетия до этого, «когда у нас ничего не было, кроме путаницы головах и большого количества данных». С его точки зрения, это было захватывающее время.

В течение трех дней астрономы и релятивисты обсуждали смысл странных «напоминающих звезды радиоисточников» из составленного Райлом каталога 3C. Один из присутствующих для простоты и скорости произношения назвал их «квазарами». Релятивистам эти объекты казались столь массивными и локальными, что для придания данным хоть какого-то смысла нужно было учесть при рассмотрении странное решение Шварцшильда, а также вычисления Оппенгеймера и Снайдера. Астрономы и астрофизики сочли квазары столь необычными и таинственными, что даже начали прислушиваться к разговорам релятивистов. Возможно, в картину следовало ввести общую теорию относительности, чтобы придать новому открытию смысл.

В Далласе присутствовал и жаждал высказаться Джон Уиллер, уже более десяти лет работающий над общей теорией относительности. Его мучил остававшийся без ответа вопрос, который он называл «вопросом конечного состояния». Он хотел понять, что происходит в конечной точке гравитационного сжатия. Он до сих пор отказывался принять на веру предсказанное Оппенгеймером и Снайдером формирование сингулярности и считал, что именно общая теория относительности сможет объяснить, почему это невозможно. Несмотря на свои предубеждения, он считал своим долгом обсудить все варианты и вызвать у собравшихся интерес к вопросу конечного состояния. Перед началом выступления Уиллер взял мел и тщательно заполнил доску рисунками и формулами, иллюстрирующими его почти десятилетние раздумья. Графики на доске показывали, как, с его точки зрения, звезда должна сжиматься под действием собственного веса и как общая теория относительности предсказывает неумолимое движение этой звезды навстречу своей окончательной судьбе. Вокруг графиков роились уравнения, фрагменты уравнений Эйнштейна, выжимки из квантовой физики — сборная солянка из гениальных мыслей, которые помогли ему представить результаты собственной многолетней работы. Больше всего речь Уиллера напоминала апологию общей теории относительности, где утверждалось, что эту теорию должен всерьез воспринимать любой здравомыслящий астрофизик.

С точки зрения многих астрономов, результаты выглядели слишком фантастично, один из присутствующих вспоминал о полном недоверии на лице «некоего авторитетного участника». Остальные удивлялись тому, что Уиллер наконец начал гофрить о Вселенной. Казалось, что общая теория относительности, о которой он столько времени думал, действительно уместна и может дать ключ к пониманию новых радионаблюдений.

Вот как это собрание описывал журнал Life: «Ученые, полет воображения которых поразил бы даже писателей-фантастов, в конце обсуждения были озадачены не меньше, чем перед его началом… природа радиоисточников столь необычна, что нельзя исключать никакие возможности». В своей послеобеденной речи Томас Голд дал характеристику неожиданному повороту событий на симпозиуме: «Этот случай позволяет предположить, что релятивисты со своей изощренностью являются не только великолепным культурным украшением, но и могут принести реальную пользу науке! Довольны все: релятивисты, почувствовавшие себя экспертами в области, о существовании которой они раньше не подозревали, и астрофизики, империя которых расширилась за счет присоединения к ней еще одной области — общей теории относительности». Закончил он осторожным высказыванием: «Давайте надеяться, что это правильно. Будет жаль, если нам снова придется списать релятивистов со счетов».

Воскрешение умиравшей теории Эйнштейна курировал обладающий невероятной проницательностью и настойчивостью Джон Уиллер. Посвятив свой устрашающий интеллект и творческий потенциал подготовке нового поколения блестящих молодых релятивистов и поддержке рассеянных по всей стране новых центров, он выпестовал новое живое сообщество, которое могло серьезно задуматься о гравитации. В конце концов, данные наблюдений требовали действий, и вместе с готовыми к решению больших задач астрономами, физиками и математиками Техасский симпозиум провозгласил начало новой эры. Общая теория относительности вернулась!

Глава 8. Сингулярности

В то время как большая часть аудитории на Техасском симпозиуме 1963 года слушала выступление Джона Уиллера с непониманием, один молодой математик восторженно следил за речью, произносимой на фоне тщательно выписанных на доске уравнений и графиков. «Речь Уиллера произвела на меня громадное впечатление», — вспоминал Роджер Пенроуз. И хотя Уиллер упрямо отказывался принять концепцию существования сингулярностей, он задал правильный с точки зрения Пенроуза вопрос: «Можно ли признать эти сингулярности существенной частью общей теории относительности?». Речь Уиллера на симпозиуме в Техасе возвестила начало нового десятилетия, которое (по выражению одного из учеников Уиллера, Кипа Торна) назовут «золотым веком общей теории относительности», а Роджер Пенроуз станет одним из одаренных мыслителей, посвятивших свою жизнь работе в данной области.

Всю свою жизнь Пенроуз «играл» с пространством-временем: разрезая его, склеивая вместе отдельные фрагменты и доводя модели до предельных значений. Обладая математическим складом ума и интуитивным пониманием пространства и времени, он иначе, чем все остальные, смотрел на вещи. Рисунки, известные как диаграммы Пенроуза, разворачивают пространство-время, открывая его самые странные свойства. Они наглядно показывают, что происходит со светом при приближении к поверхности Шварцшильда, как свет ведет себя, если развернуть отсчет времени в сторону Большого взрыва, и даже как растянуть пространство и время, придав им вид пены на поверхности океана.

Впервые тягу к общей теории относительности Пенроуз ощутил еще студентом, изучая математику в Лондоне. По книге Эрвина Шрёдингера «Структура пространства-времени» он самостоятельно изучил основы. Но по-настоящему задуматься о деталях его заставили пропагандирующие теорию стационарного состояния лекции Фреда Хойла. Было нечто притягательное и вместе с тем странное в описываемой Хойлом Вселенной — она не вписывалась в представления Пенроуза об относительности. Он решил посетить своего брата Оливера, который также был математиком и готовился к получению докторской степени в Кембридже. Роджер надеялся, что Оливер поможет ему разобраться в так привлекающей его странной теории.

Кембридж 1950-х, несмотря на степенную атмосферу вековых монастырей и удушающую ритуальность колледжей и университета, постепенно превращался в весьма привлекательное место. Блестящие изысканные лекции по квантовой механике читал Поль Дирак — английский физик, сыгравший важную роль в доказательстве идентичности квантовых теорий Гейзенберга и Шрёдингера. Герман Бонди отвечал за лекции по общей теории относительности и космологии вместе с Фредом Хойлом, активно продвигающим их совместную концепцию стационарной Вселенной. Кроме того, там работал Деннис Сиама.

Братья Пенроуз встретились в ресторане Кингсвуд в Кембридже, чтобы обсудить радиолекции Фреда Хойла. Роджер не понимал, каким образом в модели стационарной Вселенной галактики могут ускоряться и разбегаться в стороны с таксой скоростью, что в какой-то момент скрываются за космическим горизонтом. С его точки зрения, должно было происходить кое-что другое, что можно было показать при помощи его диаграмм. Оливер указал на соседний столик и сказал: «Можешь спросить Денниса. Он знает об этом все». Он подвел Роджера к Деннису Сиама и познакомил их друг с другом. Они немедленно нашли общий язык.

Сиама был всего на четыре года старше Пенроуза, но уже втянулся в теорию Эйнштейна со страстью, которой он в течение почти пятидесяти лет будет увлекать учеников и коллег. В Институт перспективных исследований он прибыл за год до смерти Эйнштейна. В одной из своих бесед с Эйнштейном Сиама смело и несколько опрометчиво заявил, что он здесь, чтобы поддержать «старика Эйнштейна против всего нового». Эйнштейн посмеялся над его дерзостью. Сиама, пока это было возможно, учился у Поля Дирака, кроме того, его привлекла работа Хойла, Бонди и Голда. Но будучи убежденным сторонником стационарной Вселенной, он не оставлял без внимания открытия радиоастрономов. В дальнейшем его заинтриговали результаты группы Райла. Он видел, каким образом они могут разрушить модель Хойла.

В тот вечер в Кингсвуде Пенроуз объяснил Сиаме, почему галактики не могут исчезать из вида. Они будут тускнеть и издалека казаться замершими во времени аналогично тому, как, согласно выкладкам Оппенгеймера и Снайдера, поведет себя взорвавшаяся звезда при прохождении ее поверхности через радиус Шварцшильда. Сиама увидел, как блестят глаза Пенроуза, и оценил его свежий подход к пространству-времени. Их дружба будет продолжаться пятьдесят лет.

В конце концов Пенроуз переедет в Кембридж, чтобы получить степень доктора математики, но его внимание будет занято математическими странностями, обнаруженными в геометрии пространства-времени. Он отчаянно хотел понять их. Завершив работу над степенью, он решительно погрузился в общую теорию относительности. Следующие несколько лет он путешествовал, работая с Уиллером в Принстоне, с Германом Бонди в Лондоне, с Питером Бергманом в Сиракузах. Наконец, осенью 1963 года он присоединился к группе Шильда в Остине, штат Техас.

Техас был прекрасным местом для занятий общей теорией относительности, ведь все исследования прекрасно финансировались. «Мы не спрашивали, откуда приходят деньги или почему считается, что их имеет смысл тратить на теорию относительности, — говорил Пенроуз. — Но мне всегда казалось, что это просто какая-то ошибка». Одним из его коллег был молодой новозеландский математик Рой Керр. В жарком и влажном климате Техаса Керр боролся с уравнениями Эйнштейна, пытаясь найти для них более сложные и реалистичные решения. Он придумал элегантный набор уравнений, соответствующих простой геометрии пространства-времени. Решение Керра можно рассматривать как обобщенную форму геометрии Шварцшильда. Шварцшильд описывал симметричное относительно точки пространство-время, и именно в этой точке находилась печально известная сингулярность, в то время как решение Керра было симметрично относительно линии, насквозь пронзавшей пространство-время. Он как бы закрутил решение Шварцшильда вокруг оси, вращая пространство-время. Для возвращения к оригинальному решению достаточно было прекратить вращение.

Пенроуз немедленно взялся за результат Керра. Они часами обсуждали открытие с коллегами в Остине, меняя формулировки нового пространства-времени на свой лад. Как и Сиаму, Шильда ошеломил взгляд Пенроуза на вещи. Его математическая интуиция и диаграммы представили решение Керра в совершенно ином свете. Свои удивительно простые и мощные выкладки Керр отправил в журнал Physical Review Letters, который всего несколько лет назад запретил публикации на любые темы, связанные с теорией относительности. Но статья внезапно была принята и за несколько месяцев до Техасского симпозиума в Далласе, в сентябре 1963 года, опубликована. Таким образом, результаты Керра дошли до астрофизиков.

Опасаясь, что презентация Керра окажется слишком сухой и математической, Шильд попытался уговорить Пенроуза выступить вместо Керра. Но Пенроуз не мог пойти на подобный шаг, ведь эта теория была чужим детищем. Беспокойство Шильда имело под собой основания. Когда Керр вышел на сцену, половина участников покинула зал. Керр был молодым и мало кому известным релятивистом, а у многих астрофизиков на тот момент были дела поинтересней. Он выступил перед оставшейся пестрой толпой, но, как вспоминал Пенроуз: «На него не обращали особого внимания». Суть представленных им результатов поняли не многие, а ведь это был первый шаг к обобщению решения Шварцшильда, попытка сделать это решение более реальным и более полезным для астрофизиков. Керр написал для материалов конференции небольшое примечание, но человек, отвечавший за обзор основных результатов симпозиума, его просто проигнорировал. Представленная информация была слишком связана с общей теорией относительности, чтобы астрофизики смогли ее воспринять.

На первом Техасском симпозиуме не было ни одного советского физика. Большая часть интеллектуальных ресурсов Советского Союза была занята ядерным проектом, и времени на общую теорию относительности у них просто не было. Однако многие советские ядерные физики, как и новое поколение релятивистов, появившееся из Манхэттенского проекта в США и работы над радарами в Великобритании, послужили делу возрождения общей теории относительности в Советском Союзе 1960-х.

Советский ядерный проект стартовал поздно. Во время Второй мировой войны все ресурсы шли на фронт, что помешало Сталину привлечь людей к работе над бомбой. Начиная с 1939 года, после статьи Джона Уиллера и Нильса Бора, в которой обсуждалось количество энергии, высвобождаемой при делении ядер тяжелых элементов, казалось, что поток работ по этой теме на Западе иссяк. Для Советского Союза это выглядело как прекращение исследований в области ядерного деления. Сталин начал что-то подозревать в 1942 году, когда советский физик Георгий Флеров в письме к нему обратил внимание на этот странный факт. Он догадался, что американцы ведут работу над бомбой, а значит, пора было тоже включаться в игру. Сразу после окончания войны Сталин привлек советскую научную элиту к работе над проектом бомбы. В команду входили Лев Ландау и Яков Зельдович.

Во время большого террора в конце 1930-х Лев Ландау попал в волну репрессий. Пребывание в тюрьме ожесточило его и заставило потерять в веру в режим, хотя он и продолжал пользоваться его благами. Ландау успел стать легендой, с его именем связывали множество открытий в самых разных областях, от квантовой механики до астрофизики. Он создал собственную физическую школу и обзавелся талантливыми приверженцами, которые были готовы работать на пределе интеллектуальных способностей ради возможности попасть в его окружение. Чтобы стать одним из протеже Ландау, аспиранту нужно было сдать одиннадцать строгих экзаменов, известных как «теоретический минимум Ландау». Экзамены разработал и принимал сам Ландау, и этот процесс иногда занимал до двух лет. Не многие могли преодолеть этот барьер и доказать свою способность работать с таким выдающимся человеком.

Белорусский еврей Яков Зельдович был одаренным студентом, всего на несколько лет младше Ландау. В семнадцать он работал лаборантом, в двадцать четыре получил докторскую степень и быстро стал одним из крупных советских специалистов по физике горения. Его неизбежно должны были привлечь к разработке бомбы, и он блестяще справился с поставленной задачей. С 1945 по 1963 год Зельдович принимал участие в создании сначала первой советской атомной бомбы, которую американцы стали называть «Joe-1», после того как появилась информация о взрыве в августе 1949-го, а потом и ее следующего варианта, «супербомбы». Советский Союз догнал американцев и стал ядерной державой.

Если Зельдович был искренне увлечен атомным проектом, то прошедшего через испытание Лубянкой и испытывающего глубокую ненависть к Сталину Ландау привлекли туда против его воли. И если Зельдович искренне восхищался Ландау, последний испытывал по отношению к своему коллеге и к атомному проекту в целом куда менее позитивные эмоции. Когда Зельдович попытался договориться с руководством о расширении участия Ландау в проекте, Ландау сказал о нем: «Эта сука». После смерти Сталина он заявил: «Все. Его больше нет. Я его больше не боюсь и больше не буду работать [над ядерным оружием]». Тем не менее за вклад в создание советской атомной бомбы оба ученых несколько раз получали Сталинскую премию и были награждены медалью «Герой Социалистического Труда». А в 1962 году Ландау был удостоен Нобелевской премии.

В середине 1960-х Зельдович по-прежнему был на гребне успеха, в то время как Ландау после автомобильной катастрофы потерял способность заниматься физикой. Работу Ландау продолжили его ученики; они первыми в Советском Союзе занялись проблемой сингулярности в пространстве-времени.

Двое молодых людей, прошедших суровую школу учебы у Ландау, Исаак Халатников и Евгений Лившиц, имели достаточную подготовку, чтобы броситься в бездну хитросплетений теории Эйнштейна и попробовать разобраться, что же происходит при сжатии материи под действием ее собственного притяжения.

Оппенгеймер и Снайдер построили решение для крайне простой ситуации — совершенно симметричной сжимающейся сферы. Изначально эта симметрия беспокоила таких ученых, как Уиллер, считавших подобную идеализацию чрезмерной. Поверхность Земли далека от идеала: она покрыта высокими горами, глубокими океанскими впадинами и долинами. А что, если сжимающаяся звезда имеет столь же неправильную форму? Не могут ли эти неровности и нарушения структуры настолько исказить процесс коллапса, что какие-то части начнут разрушаться быстрее остальных, отскакивать и снова подниматься вверх? Ведь в этом случае сингулярность может вообще не сформироваться.

Русские занялись этим вопросом, ослабив насильственно введенную Оппенгеймером и Снайдером симметрию. В расчетах Халатникова и Лившица пространство-время способно различными способами вращаться в произвольных направлениях. Представьте, что вы смотрите прямо на клокочущую массу материи, например на тяжелую звезду, в момент, когда она взрывается и начинает сжиматься. В общем случае этот процесс пойдет неравномерно. Верхний и нижний фрагменты сгустка могут сжиматься быстрее, чем его бока, настолько быстро, что прежде, чем боковые стороны успеют коллапсировать, для верха и низа начнется обратный процесс. И уже не вся материя упадет в центр, неотвратимо сформировав сингулярность, а какие-то части будут двигаться наружу, удерживая пространство-время от коллапса. И только абсолютная симметрия позволит всей материи сжаться одновременно, сформировав в итоге сингулярность. В своей работе, опубликованной в журнале «Советская физика», Халатников и Лившиц пришли к поразительному выводу, что в реальных условиях сингулярности никогда не смогут сформироваться. Решения Шварцшильда и Керра представляют собой абстракции, не имеющие реального воплощения. Выходило, что Эйнштейн и Эддингтон с самого начала были правы.

Временами советские ученые получали разрешение на участие в западных конференциях. На третьей международной конференции по общей теории относительности и космологии, которая прошла в Лондоне в 1965 году, присутствовало более двухсот релятивистов. Результаты Халатникова удостоились пристального внимания. Было очевидно, что в Советском Союзе начали заниматься теорией Эйнштейна, но западным ученым оказалось непросто понять, о чем именно шла речь. Основной советский журнал, «Советская физика», всегда переводился на другие языки с запозданием.

Пенроуз тихо слушал выступление Халатникова. Он полагал, что Халатников не прав, но считал «недипломатичным» высказываться на эту тему. «Практически таким методом ничего нельзя доказать, — произнес он, — в данном случае сделано слишком много допущений. Они не позволяют исключить возникновение сингулярности». На самом деле, в противовес утверждению Халатникова, Пенроуз мог бы доказать, что сингулярности формируются всегда. Причем его результаты были представлены в общем виде, так как он использовал собственное новое представление пространства-времени.

За прошедшие с момента встречи с Сиамой в ресторане Кингсвуд в Кембридже десять лет Пенроуз превратил свои диаграммы в набор правил, определяющих распространение в пространстве-времени света и любой другой материи. Он мог взять произвольное пространство-время и по ряду его основных свойств и виду содержащейся в нем материи узнать, что именно там будет происходить — коллапс и превращение в точку или взрыв и расширение до бесконечности. Применив свои правила к вопросу гравитационного коллапса, который Уиллер называл «проблемой конечного состояния», он получил неоспоримый результат — сингулярность. В итоге появилась статья «Гравитационный коллапс и пространственно-временные сингулярности», отправленная в журнал Physical Review Letters. Как он писал в этой статье: «Отклонения от сферической симметрии не могут препятствовать формированию пространственно-временных сингулярностей». Даже почти полвека спустя эта работа считается шедевром краткости, ясности и строгости: идеальная статья объемом чуть менее трех страниц с краткой постановкой задачи, математическим инструментарием и небольшим абзацем с доказательством. Все проиллюстрировано фирменными диаграммами Пенроуза.

На момент доклада Халатникова Пенроуз уже отправил статью в журнал. Ее вот-вот должны были принять и опубликовать в декабре текущего года, но представленные там приемы были незнакомы большинству собравшихся релятивистов, особенно русским. Когда один из учеников Джона Уиллера, Чарльз Мизнер, взялся оспорить Халатникова, оперируя данными Пенроуза, у него ничего не получилось. Русские с недоверием отнеслись к результатам Пенроуза и отказались признать свой подход ошибочным. «Я спрятался в углу, — вспоминал Пенроуз, — так как чувствовал крайнее смущение».

Однако Пенроуз был прав. И вывод, который теперь называют теоремой Пенроуза, имел далеко идущие последствия. Он гласил, что если общая теория относительности верна, то во Вселенной должны существовать решения Шварцшильда и Керра, эти странные варианты пространства-времени с сингулярностью в центре. Они не были чисто математическими конструкциями. Эйнштейн и Эддингтон ошибались. Четырьмя годами позже свое поражение признали и Халатников с Лившицом. В 1969 году они повторили свои вычисления, на этот раз с одним из своих студентов, Владимиром Белинским. К их ужасу, там обнаружилась ошибка. И если в 1961 году они считали коллапс, приводящий к формированию сингулярности, специфическим и неестественным явлением, которого не могло существовать в нашем мире, с Белинским были получены противоположные результаты. Они по-своему подтвердили теорему Пенроуза: сингулярности формируются всегда. Советские ученые опубликовали полученные результаты на западе, публично признав свою ошибку.

Так Пенроуз доказал неизбежность сингулярностей при гравитационном коллапсе и ответил на вопрос Уиллера о конечном состоянии. Вскоре появилось и более глубокое подтверждение.

Когда сорвалась первая попытка Мартина Райла путем измерения радиоисточников опровергнуть господствующую в Кембридже теорию стационарного состояния, он улучшил результаты измерений. В 1961 году вышел каталог 4С, и большинство радиоастрономов согласилось с тем, что многие из ранее имевшихся неточностей в данных теперь исправлены. Однако конец концепции стационарной Вселенной инициировали ее же сторонники.

Деннис Сиама был активным поборником теории Хойла. Будучи в восторге от квазаров, он дал своему ученику, Мартину Рису, задачу с разных сторон изучить новые измерения Райла. Рис использовал более простой и наглядный подход, чем предпринятое Райлом рассмотрение числа квазаров как функции от потока. Вместо этого он взял подмножество из тридцати пяти квазаров с измеренным красным смещением и поделил его на три группы. В первую группу попали близкие к Земле во временном и пространственном смысле квазары с маленьким смещением. Вторую группу составили квазары со средним смещением, третья же была составлена из объектов с большим смещением, зафиксированных в отдаленном прошлом.

Идея Риса была простой, но удивительно рациональной. В модели стационарной Вселенной, в которой Вселенная со временем не меняется, в каждую из групп должно было попасть примерно одинаковое количество квазаров. Но в действительности в ближайшем к нам временном промежутке квазаров почти не оказалось. Почти все они попали в последнюю группу. Другими словами, судя по всему, количество квазаров со временем менялось — больше всего их оказалось в прошлом, — а значит, Вселенная не могла находиться в стационарном состоянии. График однозначно показал, что эта концепция не работала. «Это был график, изменивший точку зрения Денниса», — вспоминал Рис. С этого момента Сиама уверовал в теорию Леметра, или, как выражался на своих лекциях Хойл, в Большой взрыв и во всё, что из этого следовало.

Последний гвоздь в крышку гроба стационарной теории забили в Нью-Джерси. Арно Пензиас и Роберт Вильсон в одной из лабораторий Белла в Холмделе работали над новым типом антенн. Они хотели модернизировать антенну, этот огромный приемник радиоволн, и использовать ее для галактических измерений. Для составления точной карты Млечного Пути первым делом требовалось определить точность инструментов. Поэтому они направили антенну в пустоту и начали смотреть, насколько хорошую видимость она обеспечивает.

Но пустоты они не обнаружили. Пензиас и Вильсон кое-что увидели, точнее услышали: низкий, мягкий свист, исходящий из пустого пространства. И как они ни регулировали свои инструменты, избавиться от свиста не удавалось. Случайно эти двое наткнулись на след ранней Вселенной, отголоски Большого взрыва.

В конце 1940-х работающий в США русский физик Георгий Гамов предсказал существование пронизывающего всю Вселенную очень холодного света. Он начал с идеи аббата Леметра, утверждавшего, что Вселенная изначально представляла собой горячий, плотный суп, из которого в конце концов появились все прочие элементы. Аргументация была следующей. Представьте Вселенную в ее простейшем состоянии, полную исключительно атомами водорода. Каждый такой атом представляет собой элементарный строительный кирпичик для остальных элементов — удерживаемые электромагнитной силой протон и электрон. Если облучить такой атом достаточным количеством энергии, из ядра можно выбить электрон, оставив одинокий протон плавать в пространстве.

Теперь представим сконденсированный в горячей ванне газ из атомов водорода. Эти атомы будут сталкиваться, перемещаться с места на место и подвергаться бомбардировке энергичными фотонами из носящихся вокруг лучей света. И чем выше температура этой ванны, тем с большей вероятностью электроны будут отрываться от протонов. В очень горячей среде целых атомов водорода практически не останется. Вместо водородного газа Вселенная заполнится свободными протонами и электронами. На ранних стадиях существования Вселенной, когда ее температура превышала несколько тысяч градусов, ее наполняли в основном свободные протоны и электроны. Со временем Вселенная остывала, и электроны связывались ядрами, формируя в основном атомы водорода и гелия, а также крайне небольшое количество более тяжелых элементов и слабый, практически невидимый фоновый свет. Именно его увидели Арно Пензиас и Роберт Вильсон — четкое свидетельство горячего, сконденсированного состояния ранних времен. Это достаточно наглядно доказывало существование Большого взрыва, как пренебрежительно выражался Хойл, а решающий шаг в этом направлении сделал еще один ученик Денниса Сиамы — Стивен Хокинг.

Молодой Хокинг чем-то напоминал Эйнштейна, и именно так его часто называли друзья детства. Он не блистал в школе, был расслабленным, игривым и озорным худеньким мальчиком, который часто нарушал общий порядок и получал удовольствие, развлекая своих товарищей. Но постепенно его все больше начала привлекать наука, и подав документы в Оксфорд, он блестяще прошел вступительные экзамены и собеседование. Учебу он находил до смешного легкой, успевая достаточно хорошо, чтобы произвести впечатление на преподавателей и лекторов. Уже в Кембридже, работая под руководством Сиамы над своей докторской диссертацией, Хокинг обратится к космосу и обнаружил вытекающее из открытия Пензиаса и Вильсона важное следствие.

Стивен Хокинг был на год старше Мартина Риса, и математика общей теории относительности просто очаровала его. Еще в начале работы над докторской диссертацией у него диагностировали болезнь Лу Герига, боковой амиотрофический склероз, и сообщили, что жить ему осталось всего около двух лет. Сначала эта новость совершенно деморализовала его, но потом он решил, что по крайней мере еще два года для работы над диссертацией у него есть. Проблемы со здоровьем заставили его сосредоточиться на работе и попытаться понять, что же на самом деле происходило в начале расширения Вселенной — в сам момент Большого взрыва. Не являются ли сингулярности неизбежным условием не только конечного состояния Уиллера, но и начала времен?

Мчась наперегонки с болезнью, Хокинг смог показать, что расширяющаяся Вселенная в нормальных условиях и в самом деле неизбежно должна была начаться с сингулярности. Последовательно он вместе с южноафриканским физиком и талантливым учеником Сиамы Джорджем Эллисом доказал, что Вселенная с обнаруженным Пензиасом и Вильсоном реликтовым излучением должна была начаться с сингулярного состояния. Вместе с Роджером Пенроузом он создал набор теорем, описывающих практически любую модель расширяющейся Вселенной, которую в то время могли придумать. Как в прошлом, так и в будущем сингулярности были неизбежны — по крайней мере, так показывали расчеты Пенроуза и Хокинга.

На первом Техасском симпозиуме высказывалась гипотеза, что многочисленные удаленные источники радиоволн из каталога Райла могут как-то быть связаны с предсказываемым общей теорией относительности коллапсом сверхтяжелых звезд. Чандра уже отмечал нестабильность и возможность коллапса сверхтяжелых белых карликов, а Оппенгеймер и Снайдер показали, что для еще более тяжелых звезд следующая стадия неотвратимого коллапса проходит через фазу нейтронной звезды. Однако доказательства существования в космосе белых карликов имелись, чего нельзя было сказать о нейтронных звездах. Ситуация изменилась в 1965 году, когда в Кембридж прибыла Джоселин Белл, чтобы приступить к работе над докторской диссертацией в группе Мартина Райла.

Научным руководителем Белл был не сам Райл, а один из его более молодых коллег, Энтони Хьюиш. Хьюиш заставил ее построить из деревянных столбиков и проволочной сетки радиотелескоп, пригодный для определения положения квазаров на длине волны 81,5 МГц. Как вспоминала сама Джоселин: «Первые два года приходилось много и тяжело работать в поле или в очень холодном сарае». Но в подобной ситуации имелись и свои плюсы: «К моменту завершения я была уже настолько сильной, что могла легко работать кувалдой». К 1967 году Белл начала принимать данные на самописец, анализируя в поисках отчетливых сигналов квазаров по 30 метров бумажной ленты в день. Чтобы покрыть все небо, требовалось примерно 120 метров бумаги.

В записях присутствовала одна странная особенность. Через каждые 120 метров возникал пик высотой в четверть дюйма, который Белл затруднялась идентифицировать. Было непонятно, что это за сигнал и откуда он взялся. Без сомнения, с определенного направления приходили периодические импульсы. «Мы назвали их “маленькими зелеными человечками”, — вспоминала Белл. — Я уходила домой с ощущением, что все это мне ужасно надоело». Группа решила пойти напролом и опубликовать информацию о таинственной находке.

В феврале 1968-го в журнале Nature появилась статья под заголовком «Наблюдение быстро пульсирующего радиоисточника». В ней Белл, Хьюиш и их соавторы анонсировали свое открытие: «Маллардской радиоастрономической обсерваторией были зарегистрированы необычные сигналы пульсирующих радиоисточников», после чего следовало смелое заявление: «Это излучение, по всей вероятности, приходит от локальных объектов, расположенных в пределах нашей Галактики. Оно может быть вызвано колебаниями белых карликов или нейтронных звезд». Авторы статьи высказали предположение, что пики на графике соответствовали колебаниям, или пульсациям, в этих плотных компактных радиоисточниках.

Пресса уцепилась за новое открытие, взяв у Хьюиша интервью по поводу его значимости. При этом Белл вспоминала: «Мне журналисты задавали не относящиеся к делу вопросы, например выше ли я, чем принцесса Маргарет». По ее словам, «они повернулись ко мне и спросили мои антропометрические данные, а также сколько у меня было парней… с их точки зрения, именно это было предназначением женщины». Газета Sun поместила новость под заголовком «Девушка, которая обнаружила маленьких зеленых человечков». Название новым невиданным объектам дала газета Daily Telegraph; журналист предложил кратко назвать пульсирующие радиозвезды «пульсарами».

Радиоастрономия снова с избытком предоставила результаты, причем они и в этот раз были получены случайно. Открытие стало знаковым, и в 1974 году руководители Белл Тони Хьюиш и Мартин Райл получили Нобелевскую премию. Сама Белл в список не попала, и многие считают это величайшей несправедливостью в истории премии. Почти через двадцать лет она окажется на этой церемонии в качестве гостя, когда в 1993 году Нобелевскую премию будут вручать астроному Джозефу Тейлору-младшему «Все-таки я там оказалась», — без горечи вспоминает Белл.

Пульсары стали первым осязаемым доказательством существования нейтронных звезд. На самом деле они не пульсируют, а вращаются, что и обусловливает периодичность испускаемого ими сигнала. Именно они были пресловутым недостающим звеном в явлении гравитационного сжатия, постулированном Ландау, изученном Оппенгеймером и дотошно исследованном Уиллером и его учениками. И именно они были последним шагом перед неизбежным формированием сингулярностей Пенроуза.

Яков Зельдович бесстрашно менял области исследований. Один из его студентов вспоминал такой совет: «Трудно, но интересно освоить десять процентов в любой области. Путь от десяти до девяноста процентов понимания — это одно удовольствие и истинное творчество. А вот пройти следующие девять процентов бесконечно тяжело и далеко не каждому под силу. Последний процент безнадежен». Из этого Зельдович делал вывод: «Разумнее вовремя взяться за новое дело и радоваться непрерывному созиданию».

Как и Уиллер, Зельдович перешел от ядерных исследований к теории относительности, когда ему было за сорок, и создал одну из самых целеустремленных групп в мире. Статьи, которые Зельдович писал в соавторстве со своими учениками, были практически импрессионистскими и часто содержали странное вступление, например: «Крестный отец психоанализа профессор Зигмунд Фрейд учит нас, что поведение взрослых зависит от опыта, приобретенного в раннем детстве. Перед нами стоит сходная проблема — понять настоящую структуру Вселенной исходя из ее предшествующего поведения». Эти статьи напоминали лаконичные эссе с небольшим количеством уравнений, минимально необходимым для иллюстрации точки зрения автора. При переводе на английский они с трудом поддавались расшифровке. Однако со временем их по праву стали считать настоящими жемчужинами релятивистской астрофизики.

После смены сферы интересов Зельдович занялся поисками застывших звезд — именно так в то время называли в СССР сколлапсировавшие звезды Шварцшильда и Керра. Эти звезды были невидимы, не испускали света и не имели отражающей или блестящей поверхности. Зельдович не мог примириться с мыслью, что эти странные объекты скрыты от наблюдений, ведь они сильно искажали окружающие пространство и время. Но как он рассказывал своим ученикам, они должны неумолимо притягивать все, что оказывается рядом. Этот эффект заставлял предположить, что наблюдать застывшие звезды можно, хотя и не непосредственно, а опосредованно. Например, если Солнце подойдет слишком близко к такой звезде, оно начнет вращаться вокруг нее подобно тому, как Луна вращается вокруг Земли. Так как увидеть застывшую звезду невозможно, создастся впечатление, что Солнце перемещается само по себе, совершая прецессионные колебания относительно странной орбиты, не имеющей центра. Глядя на колебания звезд, Зельдович и его группа предположили, что иногда звезда, выглядящая как отдельный объект, может оказаться частью такой бинарной системы.

При этом Зельдович высказал гипотезу, что застывшие звезды не только заставляют своих партнеров двигаться по кругу, они должны их полностью разрушать. Он сделал очень простое допущение: материя, попавшая в гравитационное поле застывшей звезды, должна приобрести скорость, близкую к скорости света, при этом конденсируясь и увеличивая свою температуру. А по мере того как материя смешивается и соударяется, нагреваясь, и падает на застывшую звезду (этот процесс стали называть аккрецией), она испускает энергию. Аккреция вблизи горизонта Шварцшильда столь сильна, что может высвобождать до 10% энергии массы покоя. Это настолько потрясающее количество, что данный процесс генерации энергии можно считать самым производительным во Вселенной. Поэтому в короткой статье, в 1964 году опубликованной в журнале Доклады академии наук, Зельдович продолжил развивать гипотезу о том, что вокруг застывших звезд вырабатывается ошеломляющее количество энергии, вполне достаточное для объяснения слишком ярких квазаров, обнаруженных радиоастрономами. Одновременно к этому же выводу пришел американский астроном из Корнельского университета Эдвин Солпитер: избыточное радиоизлучение может исходить от массивных объектов, вес которых составляет больше миллиона масс Солнца, или, как он выразился, «объектов чрезмерной массы и относительно маленького размера».

На этом Зельдович не остановился. Вместе со своим молодым коллегой Игорем Новиковым он применил данные рассуждения к двойным системам. Примером такой системы могла бы послужить, скажем, нормальная звезда, вращающаяся вокруг застывшей. С их точки зрения, огромное гравитационное притяжение должно «срывать» с верхних слоев обычной звезды весь газ. При этом, как однажды выразился Роджер Пенроуз, вы будете «опустошать ванну размером с Лох-Ломонд через слив обычных размеров». На газ начнет влиять такая сила, что выделится фантастическое количество электромагнитного излучения с очень высокой энергией, известного как рентгеновское. Значит, по мнению Зельдовича и его ученика, нужно было искать рентгеновское излучение.

Так как связь между сколлапсировавшими, или застывшими, звездами и квазарами становилась все более очевидной, в статьях астрономов и астрофизиков все чаще стало фигурировать имя Шварцшильда. Однако как годы спустя вспоминал Уиллер, название, которым пользовался он и его американские коллеги, — «полностью сколлапсировавший гравитационный объект» — было чрезмерно громоздким, и «когда эту конструкцию приходится произносить десятки раз, поневоле начинаешь искать что-нибудь получше». В 1967 году на конференции в Балтиморе один из присутствовавших предложил термин черная дыра. Уиллер принял предложение, и термин закрепился.

В 1969 году кембриджский коллега Денниса Сиамы Дональд Линден-Белл написал в одной из своих статей: «Вывод, что столь массивные объекты в пространстве-времени являются ненаблюдаемыми, в корне неверен. Я считаю, что мы в течение долгих лет наблюдаем их косвенным образом». Он утверждал, что массивные черные дыры в центре галактики засасывают окружающую материю. И этот процесс, как писал Пенроуз, напоминает с журчанием уходящую через слив воду в ванне. Вращающийся вокруг дыры газ принимает форму плоского диска, напоминающего кольца Сатурна, а вся система начинает вращаться по спирали вокруг этой оси. Ядра галактик, разогреваемые этими аккреционными дисками, превращаются в настоящие маяки, и Линден-Белл брался показать, каким образом возникает и испускается энергия. Кроме того, Мартин Рис вместе с Деннисом Сиамой решили построить детальную модель квазара, объясняющую все его странные свойства, включая размер, расстояние до него, скорость мерцания и пульсации, диапазон испускаемой энергии. За следующие несколько лет Рис и Линден-Белл со своими студентами и аспирантами в Кембридже смогли разработать красивую и подробную модель фейерверков, окружающих квазары и радиоисточники. Мозаика сложилась.

В конце концов обнаружили и рентгеновское излучение, о котором говорили Зельдович и Новиков. Начиная с 1960-х группа под руководством итальянского физика Риккардо Джаккони запускала за пределы земной атмосферы ракеты, которые в течение нескольких минут должны были регистрировать рентгеновское излучение. Оказалось, что разбросанные по небу яркие пятна этого излучения затмевают планеты Солнечной системы. В начале 1970-х с платформы, расположенной рядом с кенийским городом Момбаса, был запущен спутник Uhuru, единственной целью которого была регистрация небесного рентгеновского излучения. Это мероприятие имело грандиозный успех, так как его результатом стало превосходное измерение более трехсот рентгеновских объектов.

В число измеренных спутником Uhuru объектов попал Лебедь Х-1, исключительно яркий источник из созвездия Лебедя. Он был открыт в 1964 году во время суборбитального полета, но Uhuru обнаружил чрезвычайно быстрое мерцание его рентгеновского излучения, ясно указывающее на невероятную компактность этого объекта. За данными Uhuru быстро последовали наблюдения в радио- и оптическом диапазонах, подтвердившие правильность предсказаний Зельдовича и Новикова. Была обнаружена звезда, медленно утрачивающая свою оболочку и слегка колеблющаяся, как будто притягиваемая невидимым плотным объектом с массой, более чем в восемь раз превышающей массу Солнца. Это было первое доказательство существования черной дыры, пока не бесспорное, но весьма вероятное. Источником рентгеновского излучения был маленький, мощный, невидимый объект.

Летом 1972 года Брайс и Сесиль Девитт организовали летнюю школу в коммуне Лез-Уш, расположенной во Французских Альпах. Среди приглашенных были молодые релятивисты, воспитанники Сиамы, Уиллера и Зельдовича, уже успевшие получить мировое признание: Брэндон Картер и Стивен Хокинг из Кембриджа, Кип Торн, его студент Джеймс Бардин, а также Ремо Руффини из Калтеха и Принстона, Игорь Новиков из Москвы. Все они были предсказателями черных дыр.

«История необыкновенного превращения за менее чем десятилетие общей теории относительности из тихой исследовательской гавани, служившей приютом горстке теоретиков, в передовой рубеж, привлекающий все больше чрезвычайно талантливых молодых людей, теперь известна всем, — писал Девитт в предисловии к протоколу встречи в Лез-Уше. — Ни один объект или концепция не олицетворяют нынешнюю стадию эволюции более полно, чем черные дыры». Встреча стала кульминацией десятилетия с момента феноменального открытия.

Эйнштейн и Эддингтон глубоко ошибались. К 1967 году признал свою ошибку даже Уиллер, согласившись с возможностью существования в природе сингулярностей, предсказанных общей теорией относительности. Решение, найденное Шварцшильдом на полях сражений Восточного фронта, и открытие, сделанное Керром жарким техасским летом, соответствовали реальным объектам. Это были настоящие конечные пункты гравитационного коллапса. Предсказанные общей теорией относительности, неотвратимые и простые, они могли творить настоящие чудеса: формировать мощные квазары и срывать со звезд газовую оболочку. Радионебо снова и снова демонстрировало дразнящее мерцание, а обнаруженный хаос рентгеновского излучения, казалось, указывал на маленькие плотные объекты. Окончательные измерения еще не были произведены, но существование черных дыр становилось неизбежностью. Делались ставки, какие из странных наблюдаемых объектов могли бы быть черными дырами. Они практически стали реальностью.

За предыдущие годы собравшиеся в Лез-Уше сформировали мнение, что обнаруженные в природе черные дыры должны быть столь же математически простыми, как решения Шварцшильда и Керра. Кроме того, Эзра («Тэд») Ньюман из Сиракьюсского университета слегка расширил решение Керра, добавив в него электрически заряженные черные дыры, поэтому в полном решении в рамках общей теории относительности черные дыры характеризуются тремя параметрами: массой, моментом импульса и электрическим зарядом. Это потрясающий результат. Почему черная дыра не может с одной стороны иметь немного большую массу, подобную горе на поверхности Земли, скомпенсированную меньшей массой с другой стороны, например впадиной? Почему невозможен отступ в одну из сторон с сохранением массы? На самом деле можно себе представить черные дыры разного вида с одинаковыми массой, моментом импульса и зарядом, но каждая с собственными характеристиками. Однако математика доказала обратное, однозначно показав, что общая теория относительности не допускает подобных усложнений. Холмы выравниваются, впадины заполняются, складки разглаживаются. Черные дыры с одинаковыми массой, моментом импульса и зарядом быстро становятся совершенно одинаковыми, неотличимыми друг от друга. Уиллер описал подобное единообразие фразой «Черные дыры не имеют волос», а доказательство этого факта получило название теоремы «об отсутствии волос».

Встреча в Лез-Уше показала, что происходит, когда за решение больших проблем принимаются великие умы. Вот как вспоминает этот период Мартин Рис: «Понять сущность черных дыр пытались три большие группы: в Москве, Кембридже и Принстоне. И я всегда чувствовал среди них единомыслие». И действительно, во времена изоляции Востока и Запада их совместные встречи двигали науку вперед. Кип Торн и Стивен Хокинг посещали в Москве Зельдовича, сравнивая данные по аккреционным дискам, гравитационному коллапсу и сингулярностям. Такую же важность имели короткие и сложные поездки советских физиков на запад. Вот как вспоминал о Техасском симпозиуме 1967 года, на этот раз проводившемся в Нью-Йорке, Игорь Новиков: «Несмотря на наши отчаянные усилия собрать как можно больше информации и поговорить с как можно большим числом коллег, мы физически не могли обсудить все интересующие нас темы». Годы спустя, на встрече в Лез-Уше в 1972 году Новиков и Торн станут соавторами статьи, посвященной аккреционным дискам.

За десять лет отношение к общей теории относительности Эйнштейна изменилось. Техасский симпозиум стал регулярным мероприятием, собирая сотни астрофизиков, многие из которых считали себя релятивистами. Как сказал Роджер Пенроуз: «Я видел, как черные дыры превращаются из математической абстракции в объект, в существование которого люди действительно верят». Поколение, родившееся в золотой век общей теории относительности, занимало ведущие позиции в лучших университетах. В Великобритании Мартин Рис и Стивен Хокинг возглавили кафедры в Кембридже, Роджер Пенроуз — в Оксфорде. В Соединенных Штатах студенты Уиллера стали сотрудниками Калтеха, Мэриленда и других престижных университетов, как и ученики Зельдовича в Советском Союзе. И все это благодаря работе над общей теорией относительности. Судя по всему, теория Эйнштейна впечатляющим образом стала частью большой физики.

Глава 9. Проблемы унификации

В 1947 году только что окончивший аспирантуру Брайс Девитт встретился с Вольфгангом Паули и рассказал, что работает над квантованием гравитационного поля. Девитт не понимал, почему две великие концепции XX века — квантовая физика и общая теория относительности — существуют отдельно друг от друга. «Почему гравитационное поле пребывает в гордом одиночестве? — недоумевал он. — Почему бы не заставить его погрузиться в поток теоретической физики и подвергнуться квантованию?» Паули энтузиазма Девитта не разделял. «Это очень важная задача, — сказал он, — ею должен заняться кто-то действительно умный». Уровень интеллекта Девитта вряд ли можно подвергнуть сомнению, но более чем полвека общая теория относительности с удивительным упорством сопротивлялась его усилиям.

Общая теория относительности оставалась изолированной, демонстрируя беспрецедентную несовместимость с квантовой физикой. После Второй мировой войны интерес к квантам привел к появлению совершенно новой и мощной теории, которая свела все взаимодействия и все фундаментальные составляющие материи в простое единое целое. Все взаимодействия, исключая гравитационное. Альберт Эйнштейн и Артур Эддингтон десятилетиями пытались разработать единую теорию, но потерпели неудачу. С квантовой теорией дела обстояли по-другому. Она с ошеломляющей точностью как в Европе, так и в США была проверена экспериментами на гигантских ускорителях, став наглядным примером успешной стыковки красивых математических расчетов, талантливых умозрительных заключений и прозаических измерений.

Несмотря на эти успехи, существовал человек, отказавшийся поддерживать новую послевоенную квантовую физику. Поль Дирак считал квантовую теорию частиц и взаимодействий фикцией и образцом некорректного мышления. Это была уловка, обход фундаментальных проблем путем магического удаления нескольких бесконечных чисел. Дирак был убежден, что именно эта уловка мешает общей теории относительности во всем ее великолепии присоединиться ко всем остальным взаимодействиям.

Поль Дирак был личностью замкнутой. Высокий худой человек, практически ничего не говорящий на людях. А когда он все-таки брал на себя труд высказаться, то выражался слишком точно и предметно. Зачастую он производил впечатление болезненно застенчивого человека и предпочитал работать самостоятельно, одержимый красотой математики, которая, с его точки зрения, имела под собой реальную основу. Его работы были математической драгоценностью, а выводы из них оказывали сильное влияние на физику. Изначально он учился на инженера в Бристоле, но в начале 1920-х годов, перейдя в Кембридж, быстро зарекомендовал себя как активный сторонник недавно обнаруженных квантов. Его карьера была стремительной, он стал сотрудником колледжа Святого Джона в Кембридже, а вскоре после этого получил должность Лукасовского профессора математики, которую в XVII веке занимал Ньютон. Кембридж стал ему приютом, скрывшись в стенах которого он тем не менее имел возможность влиять на поколения физиков, а также на ряд астрофизиков и релятивистов, в 1960-х занявшихся реанимацией общей теории относительности. Под его руководством получили докторские степени Фред Хойл и Деннис Сиама, а Роджер Пенроуз присутствовал на его лекциях, восхищаясь их ясностью и точностью.

По иронии судьбы, именно его собственное фундаментальное уравнение для электрона — теперь известное как уравнение Дирака — стало первым шагом к объединению специальной теории относительности Эйнштейна и основ квантовой физики. Уравнения квантовой физики показывают, как состояние квантовой системы — например, связанных в атоме водорода электрона и протона — меняется со временем. При этом четко видна разница между пространством и временем, в то время как специальная теория относительности Эйнштейна оперирует только понятием пространства-времени. Кроме того, она объединяет общими рамками законы механики с законами, которым подчиняется свет. Поль Дирак смог поместить в эти рамки еще и законы квантовой физики. Благодаря уравнению Дирака вся физика, в том числе квантовая, стала подчиняться специальной теории относительности.

Частицы во Вселенной делятся на два типа: фермионы и бозоны. Опыт показывает, что частицы, из которых состоит материя, являются преимущественно фермионами, а вот за взаимодействия в природе отвечают в основном бозоны. К фермионам относятся строительные блоки атомов, например электроны, протоны и нейтроны. Как мы убедились при рассмотрении белых карликов и нейтронных звезд, эти частицы обладают странным свойством, вытекающим из принципа запрета Паули: в одном квантовом состоянии может находиться не более одной частицы. При попытке поместить их в одинаковое состояние они расталкиваются квантовым давлением. Фаулер, Чандра и Ландау использовали это давление, чтобы объяснить, каким образом белые карлики и нейтронные звезды поддерживают свое состояние при массах ниже критической. В отличие от фермионов, бозоны не подчиняются принципу запрета Паули и при желании могут объединяться друг с другом. Примером бозона является носитель электромагнитной силы фотон.

Выведенное Дираком уравнение описывает квантовое физическое поведение электрона, одновременно удовлетворяя специальной теории относительности Эйнштейна. Это уравнение определяет вероятность обнаружения электрона, находящего в определенной точке пространства или перемещающегося с определенной скоростью. Уравнение Дирака определяется не в отдельном пространстве, а в соответствии с требованиями специальной теории относительности, оно единообразно определено во всем пространстве-времени. Оно содержит большое количество уникальной информации об окружающем мире и фундаментальных частицах. К удивлению автора, уравнение предсказало существование античастиц. Античастица — это двойник элементарной частицы, обладающий такой же массой, но противоположным зарядом. Античастицей электрона является позитрон. От электрона он отличается только положительным зарядом. Согласно уравнению Дирака, обе эти частицы должны существовать в природе. Также уравнение предсказывает, что в вакууме могут возникать пары электрон-позитрон, появляясь, по сути, из ниоткуда. Понять это странное явление крайне сложно, особенно с учетом того, что на момент формулирования Дираком уравнения позитронов еще никто не видел. Сведения об этих частицах Дирак скрывал до 1932 года, то есть до момента их обнаружения в процессе исследования космических лучей. На следующий год Дирак получил Нобелевскую премию.

Предложив свое уравнение, Дирак начал революционное переосмысление существующих в окружающем мире частиц и взаимодействий. Если квантовую физику электрона можно описать в том же контексте, что и электромагнитное поле, — то есть в рамках специальной теории относительности Эйнштейна, — почему нельзя квантовать электромагнитное поле как электрон? Вместо простого описания световых волн естественным образом должны были описываться фотоны, то есть кванты света, существование которых Эйнштейн постулировал еще в 1905 году. Квантовая теория электронов и света, известная как квантовая электродинамика, стала следующим шагом на пути объединения частиц и сил. Разрабатываемая после Второй мировой войны Ричардом Фейнманом, Джулианом Швингером и Синъитиро Томонагой, она указала новый способ изучения квантовой физики: квантованные частицы (электроны) и силы (электромагнитное поле) как одно целое. Квантовая электродинамика имела феноменальный успех, позволив своим создателям с удивительной точностью предсказать свойства электронов и электромагнитных полей и сделав их лауреатами Нобелевской премии.

Несмотря на то что она замечательно работала, квантовая электродинамика раздражала Поля Дирака. Ведь основой ее успеха стал метод вычислений, бросивший вызов внутренней вере Дирака в простоту и элегантность математики. Он назывался перенормировкой. Чтобы понять его суть, рассмотрим процедуру, которая в квантовой электродинамике используется для вычисления массы электрона. Масса электрона была точно измерена в лабораториях и составляет 9,1∙10-28 граммов — это очень маленькое число. Но уравнения квантовой электродинамики дают для этого параметра бесконечно большое число. Это связано с тем, что квантовая электродинамика допускает создание из ничего и последующую аннигиляцию протонов и короткоживущих пар электрон-позитрон — частиц и античастиц из уравнения Дирака. Появляясь из вакуума, все эти виртуальные частицы увеличивают внутреннюю энергию и массу электрона, в конечно счете делая ее бесконечной. Таким образом, квантовая электродинамика при некорректном применении сплошь и рядом приводит к бесконечности, давая неверный ответ. Однако Фейнман, Швингер и Томонага утверждали, что так как наблюдения показывают конечную массу электрона, можно взять бесконечный результат вычислений и «перенормировать» его, заменив известным измеренным значением.

Для недоброжелательно настроенного наблюдателя процедура перенормирования выглядит как отбрасывание бесконечностей и произвольная подстановка вместо них конечных значений. Поль Дирак открыто заявил, что его «крайне не устраивает такая ситуация». Он утверждал: «Подобная математика не имеет смысла. В математике допустимо пренебречь параметром, если он мал, но нельзя отбрасывать его потому, что он бесконечно велик, а вам он в таком виде не подходит!» Все это выглядело частью какого-то почти магического ритуала, хотя и давало, без сомнения, отличные результаты.

Квантовая электродинамика стала первым шагом на долгом пути к объединению, но в промежуток с 1930-х по 1960-е годы внезапно выяснилось, что кроме электромагнитной и гравитационной существуют еще две силы, которые нужно включить в общую картину. Во-первых, это слабое взаимодействие, предложенное в 1930-х годах итальянским физиком Энрико Ферми для объяснения особого типа радиоактивности, известного как бета-распад. При бета-распаде нейтрон преобразуется в протон, освобождая при этом один электрон. Такой процесс невозможно понять в рамках теории электромагнитных взаимодействий, поэтому Ферми предложил новую силу, допускающую такие преобразования. Она действует только на очень коротких межъядерных дистанциях, уступая по интенсивности электромагнитным взаимодействиям, откуда, собственно, и появилось ее название. Другая сила — сильное взаимодействие — объединяет протоны и нейтроны при формировании ядра. Также она отвечает за объединение более фундаментальных частиц, называемых кварками, из которых состоят протоны, нейтроны и масса других частиц. Также действуя на крайне короткой дистанции, она намного превосходит по интенсивности слабое взаимодействие (отсюда и говорящее имя). Аналогично тому как в XIX веке Джеймс Клерк Максвелл объединил электричество и магнетизм в электромагнитное взаимодействие, теперь требовалось изобрести общий подход к работе со всеми четырьмя фундаментальными взаимодействиями: гравитационным, электромагнитным, а также сильным и слабым межъядерными.

В течение 1950-х и 1960-х как сильное, так и слабое межъядерные взаимодействия систематически анализировались и подробно изучались. По мере того как улучшалось их понимание, между ними и электромагнитным взаимодействием начало проявляться математическое сходство, заставляя предположить, что, возможно, речь идет об одной и той же силе, которая в зависимости от ситуации проявляется себя по-разному. К концу 1960-х Стивен Вайнберг из Массачусетского технологического института, Шелдон Глэшоу из Гарварда и Абдус Салам из Имперского колледжа в Лондоне предложили новый способ объединения по меньшей мере двух из этих взаимодействий — электромагнитного и слабого межъядерного — в электрослабое взаимодействие. Сильное межъядерное взаимодействие пока не получилось включить в эту концепцию, но оно было так похоже на остальные силы, что существовало твердое убеждение в возможности «большой, единой теории» электромагнитного, слабого и сильного взаимодействий. В 1970-е выяснилось, что теории электрослабого и сильного взаимодействий, как и квантовая электродинамика, допускают перенормирование. То есть все раздражающие бесконечности, появляющиеся при расчетах, можно заменить известными значениями, сделав теории в высшей степени предсказуемыми. Полученная комбинация теорий электрослабого и сильного взаимодействий стала известна как стандартная модель и дала точные предсказания, проверенные, например, на гигантском ускорителе частиц в лаборатории ЦЕРН в Женеве. Эта почти полностью унифицированная и функциональная квантовая теория трех взаимодействий — электромагнитного, слабого и сильного — стала общепринятой.

Ее приняли все, кроме Поля Дирака. Ему импонировало молодое поколение, создавшее стандартную модель, его восхищала часть выполненных математических расчетов, но одновременно он не раз выступал против бесконечностей и против, как он выражался, гнусных уловок с перенормированием. В нескольких публичных лекциях, в которых он упоминал стандартную модель, Дирак упрекал своих коллег за то, что они не попытались разработать более приемлемую теорию, не содержащую бесконечностей.

К концу своей кембриджской карьеры Дирак все больше замыкался в себе. Он упрямо отвергал нововведения в квантовой физике. Несмотря на тягу к уединению, он считал, что его игнорирует остальной физический мир, принявший квантовую электродинамику и причисляющий его к фигурам из прошлого. Поэтому он отошел от дел, предпочитая работать в своем кабинете в колледже Святого Джона, избегая кафедры, профессором которой он являлся, и не обращая внимания на крупные открытия в области общей теории относительности, сделанные Деннисом Сиамой, Стивеном Хокингом, Мартином Рисом и их соавторами. Как вспоминал один из сотрудников Кембриджа: «Дирак был призраком, который редко появлялся и никогда не вступал в разговоры». В 1969 году он ушел в отставку с поста Лукасовского профессора математики и перебрался во Флориду, получив пост профессора в местном университете. В последние годы он без удивления узнал, что общая теория относительности не допускает перенормирования.

Брайс Девитт не подозревал, к какой борьбе приведет его увлечение квантовой теорией. Работая в Гарварде с Джулианом Швингером, он лично стал свидетелем рождения квантовой электродинамики. Решив заняться проблемой гравитации, Девитт предпочел рассматривать ее в одном ключе с электромагнетизмом, пытаясь воспроизвести успех квантовой электродинамики. Между электромагнитным и гравитационным взаимодействиями существовало определенное сходство: это были силы большого радиуса действия. В квантовой электродинамике передача электромагнитного взаимодействия осуществляется частицами без массы — фотонами. Это взаимодействие можно описать так: множество фотонов снуют между заряженными частицами, например электронами и протонами, и в зависимости от их относительных зарядов расталкивают их в стороны или толкают друг к другу. Аналогичным способом Девитт подошел к квантовой теории гравитационных взаимодействий, заменив фотоны другой частицей без массы — гравитоном. Гравитоны должны были сновать между массивными частицами, толкая их друг к другу и создавая то, что мы привыкли считать гравитационным притяжением. Подобный подход оставлял за бортом все красивые геометрические построения. Хотя гравитация до сих пор описывалась в терминах уравнений Эйнштейна, Девитт предпочел считать ее очередным взаимодействием, к которому применимы методы квантовой электродинамики.

В течение следующих двадцати пяти лет Девитт искал способ квантования гравитона, но столкнулся с колоссальными трудностями. В очередной раз уравнения Эйнштейна оказались слишком запутанными и громоздкими для работы. Он наблюдал за развитием других теорий и подмечал там аналогичные сложности. Но если проблемы с объединением сильного, слабого и электромагнитного взаимодействий, судя по всему, постепенно решались, общая теория относительности упрямо не желала втискиваться в рамки применяемых к этим взаимодействиям правил квантования. В своей борьбе Девитт был не одинок: до него попытки квантования гравитона предпринимали Матвей Бронштейн, Поль Дирак, Ричард Фейнман, Вольфганг Паули и Вернер Гейзенберг. Создатели успешной модели электрослабого взаимодействия Стивен Вайнберг и Абдус Салам пытались применять приемы, разработанные ими для стандартной модели, но оказалось, что в случае с гравитацией возникают большие сложности.

Работа Девитта по квантованию гравитона привлекла внимание ряда ученых. Его подбадривал Джон Уиллер, студенты которого тоже корпели над данной проблемой, а также пакистанский физик Абдус Салам, Деннис Сиама из Оксфорда и Стэнли Дезер из Бостона. Тем не менее общая реакция на работу в области квантования гравитационного взаимодействия была смешанной, часто прохладной. Бывший студент Саламы Майкл Дафф вспоминал, что попытка представить результаты этой работы на конференции в Коржезе на острове Корсика была «встречена насмешками». Студент Денниса Сиамы Филипп Канделас работавший над квантовыми свойствами полей в пространстве-времени различной геометрии, слышал, как сотрудники физического факультета в Оксфорде бормотали, что «физикой он не занимается». Квантовая гравитация в сравнении с квантованием других взаимодействий была совершенно неразвитой. И многие считали работу в этой области потерей времени.

В феврале 1974 года Великобритания находилась в состоянии застоя. Подскочила цена на нефть, череда слабых правителей пыталась сдержать рост инфляции, страну затопили производственные конфликты. Время от времени рабочая неделя сокращалась до трех дней для экономии энергии, а веерное отключение электричества означало, что ужинать то и дело приходилось при свечах. Именно в эти мрачные дни было созвано заседание, посвященное подведению итогов процесса квантования гравитации, которым Девитт занялся почти двадцать пять лет назад. Несмотря на мрачный экономический климат, в начале Оксфордского симпозиума, посвященного квантовой гравитации, царила эйфория. Предсказания разработанной Глэшоу, Вайнбергом и Саламом стандартной модели физических частиц нашли блестящее подтверждение благодаря гигантскому ускорителю частиц в ЦЕРН. Несомненно, подобное должно было случиться и в области квантовой гравитации.

Но по мере того как докладчики представляли варианты решений и идей, снова и снова возникала одна и та же проблема, мешающая провести квантование гравитационных взаимодействий наиболее перспективным и популярным способом. Подход Девитта, требующий забыть о геометрии и представить гравитацию обычной силой, не сработал. Организаторы, перефразируя Вольфганга Паули, беспокоились, что «человеку не дано соединить то, что разорвал Бог». Проблема состояла в том, что общая теория относительности сильно отличалась от квантовой электродинамики и стандартной модели. Последние всегда позволяли перенормировать все массы и заряды фундаментальных частиц, избавившись от бесконечностей, мешающих получить осмысленный результат. Однако при применении этого приема к общей теории относительности все летело в тартарары. Бесконечности, не поддающиеся перенормированию, упорно продолжали появляться. Стоило уничтожить их в одной части теории, как они возникали в другой. Перенормировать всю теорию одним махом оказалось невозможно. А описываемые ею гравитационные взаимодействия были слишком запутанными и разнообразными, чтобы перенормировать их, как другие силы. Завершая свое выступление на симпозиуме, Майк Дафф сказал: «Кажется, обстоятельства складываются против нас, и от невозможности перенормирования нас может спасти только чудо».

Квантовая гравитация зашла в тупик. Общая теория относительности отказалась присоединиться к остальным взаимодействиям в рамках одной картины. Как хмуро отметил в посвященной симпозиуму статье журнал Nature: «Презентация М. Даффом технических результатов послужила лишь подтверждением тому, какие огромные усилия нужно приложить даже для небольшого продвижения вперед». Эта неудача была еще более обидной на фоне огромного прогресса в релятивистской астрофизике, черных дырах и космологии предшествовавших лет, не говоря уж про впечатляющие успехи стандартной модели в физике частиц.

Оксфордский симпозиум больше походил на признание поражения, исключая удивительное выступление кембриджского физика Стивена Хокинга. Тема выступления касалась черных дыр и квантовой физики. В своем докладе Хокинг показал, что существует некая активная зона, в которой возможно объединение квантовой физики и общей теории относительности. Более того, он брался доказать, что на самом деле черные дыры не были черными, а испускали чрезвычайно тусклый свет. Это диковинное заявление за следующие четыре десятилетия позволило преобразовать квантовую гравитацию.

К началу 1970-х Стивен Хокинг стал неотъемлемой частью Кембриджа. Он работал на кафедре прикладной математики и теоретической физики. В возрасте всего тридцати лет он уже был авторитетом по общей теории относительности. Вышедший из группы учеников Денниса Сиамы, Хокинг работал с Роджером Пенроузом над доказательством существования в начале времен сингулярностей. В первой половине 1970-х он заинтересовался космологией и черными дырами, после чего совместно с Брэндоном Картером и Вернером Израэлем однозначно доказал отсутствие у черных дыр волос: черные дыры не сохраняют информацию о процессе своего формирования, а все дыры с одинаковыми массой, моментом импульса и зарядом неотличимы друг от друга. Кроме того, Хокинг получил интересные данные о размерах черных дыр. Он обнаружил, что поверхность Шварцшильда, или горизонт событий объекта, полученного слиянием двух черных дыр, должна быть больше или равна сумме их поверхностей Шварцшильда. На практике это означает, что если просуммировать область, занятую черными дырами до и после любого физического события, она всегда будет больше.

Всю эту работу Хокинг выполнял, уже будучи больным боковым амиотрофическим склерозом. В конце 1960-х он ходил по коридорам факультета с палочкой, опираясь на стены, и медленно, но неуклонно терял возможность перемещаться без посторонней помощи. Постепенно утрачивая возможность писать и чертить — существенный инструмент в арсенале физика-теоретика, — он развил умение анализировать все детали в уме, что позволило ему и дальше заниматься важными проблемами общей теории относительности и квантовой физики.

Можно сказать, что движущей силой крупного открытия Хокинга стало его недовольство идеей, которую продвигал Яаков Бекенштейн, молодой израильский аспирант Джона Уиллера. Бекенштейн хотел увязать черные дыры со вторым законом термодинамики. Воспользовавшись одним из результатов Хокинга, он выдвинул совершенно абсурдное утверждение, касающееся черных дыр. Хокинг счел это утверждение чрезмерно спорным и откровенно некорректным.

Для понимания сути вопроса нам потребуется совершить краткий экскурс в термодинамику — раздел физики, изучающий тепло, работу и энергию. Второе начало термодинамики (всего их четыре) гласит, что энтропия, или мера беспорядка системы, всегда увеличивается. Рассмотрим классический пример простой термодинамической системы: контейнер с молекулами газа. Если молекулы находятся в состоянии покоя и аккуратно сконденсированы в одном из углов, энтропия системы низка — беспорядок практически отсутствует. Кроме того, стационарные частицы не могут ударяться о стенки контейнера и нагревать его, поэтому температура системы низка. А теперь представьте, что молекулы пришли в движение. Они свободно перемещаются по контейнеру, случайным образом заполняя пространство и сдвигая систему в состояние с высокой энтропией. То есть распределение молекул внутри контейнера становится менее упорядоченным. Во время перемещений они сталкиваются со стенками контейнера, передавая им некую энергию, что приводит к росту его температуры. Чем быстрее двигаются молекулы, тем быстрее они перемешиваются и тем быстрее увеличивается энтропия, пока не достигнет максимума. Ведь чем выше скорость молекул, тем меньше вероятность собрать их в спокойное упорядоченное состояние с низкой энтропией. Кроме того, более быстрые молекулы передают стенкам контейнера больше тепла, еще сильнее нагревая систему. Фактически мы видим две вещи: контейнер стремится перейти в состояние с более высокой энтропией, а энтропия непосредственно связана с температурой.

Бекенштейн решил рассмотреть парадоксальное явление: что произойдет, если бросить в черную дыру контейнер с неким содержимым. В качестве содержимого могло выступать что угодно: энциклопедии, газообразный водород, кусок железа. Для простоты рассмотрим все тот же контейнер с газом. Контейнер исчезнет в черной дыре и очень быстро в действие вступит теорема «об отсутствии волос». Способа узнать, чем был наполнен контейнер, не существует. Вся информация о нем теряется. Но одновременно весь беспорядок, созданный газом в контейнере, — вся энтропия — тоже исчезает, а значит, общая энтропия Вселенной уменьшается. Получается, что черные дыры нарушают второе начало термодинамики.

Способ спасения второго начала термодинамики Бекенштейн увидел в результатах Хокинга. Когда мы бросаем нечто в черную дыру, ее горизонт событий никогда не уменьшается — он остается тем же самым или растет. Из этого Бекенштейн заключил, что для соблюдения во Вселенной второго начала термодинамики черные дыры должны обладать энтропией, пропорциональной площади их поверхности. Этого увеличения площади хватит для компенсации уменьшения беспорядка, вызванного исчезновением за горизонтом событий, поэтому энтропия Вселенной никогда не уменьшается. Однако доведя этот парадокс до логического конца, Бекенштейн пришел к странному выводу. Если черная дыра обладает энтропией, то, как и у контейнера с молекулярным газом, у нее должна быть температура. На этом этапе он ощутил, что заходит слишком далеко, поэтому в статье написал: «Подчеркиваю, что параметр Т не следует считать температурой черной дыры, так как подобное отождествление легко приводит к парадоксам разного рода и, соответственно, не имеет смысла».

Несмотря на оговорки Бекенштейна, Хокинг воспринял его утверждение с раздражением. В соответствии с законами термодинамики не существует способа увеличить энтропию черной дыры, не заставив ее каким-то образом излучать тепло.

Для Хокинга это было чересчур. Он считал черные дыры поглощающими: объект мог провалиться в черную дыру, но совершенно точно не мог выйти наружу. Факт невозможности уменьшения поверхности черной дыры, доказанный им самим, мог выглядеть как энтропия, но на самом деле не имел к ней отношения — энтропия в данном случае была всего лишь приемлемой аналогией для объяснения поведения.

Тем не менее существовали зацепки, указывающие на возможную правоту Бекенштейна. Во-первых, в 1969 году Роджер Пенроуз обнаружил, что вращающаяся черная дыра, описанная в решении Керра, может излучать энергию. Представим частицу, перемещающуюся со скоростью, близкой к скорости света, в момент попадания в зону притяжения черной дыры Керра. Бели она распадется на две частицы, одна из них может втянуться в горизонт событий, а вторая ускориться и удалиться прочь с увеличившейся энергией, сохранив общую энергию системы и Вселенной. Во время этого странного процесса, известного как сверхизлучение Пенроуза, черные дыры по сути дела испускают энергию, как будто светясь каким-то странным образом. Имелись и другие факты. В 1973 году Стивен Хокинг, посетив Якова Зельдовича и его более молодого коллегу Алексея Старобинского, узнал, что они тоже рассматривают процессы, происходящие с черной дырой Керра. С их точки зрения, она должна избавляться от окружающего ее квантового вакуума и использовать его энергию для излучения своей, а значит, на самом деле испускать свечение.

Хокинг решил использовать квантовую физику для рассмотрения частиц рядом с горизонтом событий черной дыры, то есть в месте, где могут происходить странные вещи. Он обнаружил действительно необычную вещь. Квантовая физика допускает создание из вакуума пар частица-античастица. В обычных обстоятельствах эти частицы возникают, затем очень быстро сталкиваются друг с другом и аннигилируют, полностью исчезая. Но рядом с горизонтом событий, по расчетам Хокинга, должна была возникать другая ситуация: некоторые античастицы могли бы всасываться черной дырой, в то время как частицы этот процесс не затрагивал. Это происходило бы снова и снова, и по мере всасывания античастиц черная дыра начала бы медленно, но верно испускать поток энергетических частиц. Хокинг детально рассчитал, что произойдет в случае частиц без массы, например фотонов. Оказалось, что для удаленного наблюдателя черная дыра будет светиться с крайне низкой яркостью, как очень тусклая звезда. И, как звезде, ей можно сопоставить температуру. К примеру, глядя на испускаемый нашим Солнцем свет, можно измерить температуру его поверхности, которая составляет примерно 6000 градусов кельвина. Другими словами, благодаря квантовой физике Хокинг обнаружил, что предсказанные общей теорией относительности черные дыры испускают свет и имеют температуру.

Это был удивительно четкий и однозначный математический результат с далеко идущими последствиями. Расчеты Хокинга показали, что температура свечения черной дыры обратно пропорциональна ее массе. Например, черная дыра с массой Солнца будет иметь температуру в одну миллиардную градуса кельвина, а черная дыра с массой Луны — 6 градусов кельвина. Причем в процессе свечения часть массы утрачивается. Этот процесс протекает чудовищно медленно. Излучение, или «испарение», как называл его Хокинг, всей массы звезды, весящей как наше Солнце, займет очень много времени. Но чем меньше масса, тем быстрее происходит этот процесс. К примеру, черная дыра с массой около триллиона килограммов (совсем малютка с астрофизической точки зрения) полностью испарится за время жизни Вселенной, высвободив в последнюю долю секунды изрядное количество энергии. Как описывал Хокинг, это будет «по астрономическим стандартам довольно слабый взрыв, эквивалентный взрыву примерно миллиона водородных бомб мощностью в одну мегатонну». Свою статью, которая в конце концов появилась в журнале Nature, Хокинг осторожно озаглавил «Взрывы черных дыр?».

Выступая на Оксфордском симпозиуме, Стивен Хокинг несколько неуклюже сидел в инвалидной коляске в передней части зрительного зала. Он собирался сообщить вещи, открывающие новые горизонты, поэтому говорил четко и целеустремленно, объясняя собравшимся свои расчеты. Когда он закончил, наступила тишина. Как вспоминал Филипп Канделас, в то время ученик Денниса Сиамы: «Люди относились к Хокингу с большим уважением, но никто толком не понял, о чем он говорил». Позднее сам Хокинг вспоминал: «Я столкнулся с общим недоверием. Председатель симпозиума утверждал, что все это ерунда». В обзоре результатов Оксфордского симпозиума было признано, что «главной достопримечательностью конференции стал неутомимый С. Хокинг», но автор обзора скептически отнесся к предсказанию взрывов черных дыр, написав: «При всей заманчивости такой перспективы не существует физически приемлемого механизма, который мог бы привести к подобным эффектам».

Для осознания значимости открытия Хокинга требовалось время, хотя некоторые поняли важность этой теории сразу. Деннис Сиама отозвался о статье Хокинга как об «одной из самых красивых в истории физики» и сразу же заставил часть своих студентов разрабатывать это направление. Джон Уиллер описал результат Хокинга как «конфету на кончике языка». Брайс Девитт решил сам воспроизвести этот результат и написал посвященный излучению черных дыр обзор, который убедил новые группы ученых.

Сделанные Хокингом расчеты излучения черных дыр не имели отношения к квантовой гравитации. Расчет не был связан с квантованием гравитационного поля, требующим выработки правил и процессов, которым подчинялись бы гравитоны, — в этой области пробовали свои силы и потерпели неудачу Девитт и многие другие. Но он успешно объединил кванты и общую теорию относительности, получив интересный устойчивый результат, на который при разработке квантовой гравитации, если бы дело когда-либо до этого дошло, можно было бы сослаться и подробно объяснить. В результате на следующие несколько лет излучение черных дыр вселило надежду на решение невозможно сложной задачи квантования гравитации. Хокинг твердо задумал квантовать не только объекты в пространстве-времени, но и само пространство-время. Готовя новых студентов для работы над своей программой, Хокинг в течение следующих сорока лет концентрировался на квантовой гравитации. И так совпало, что через десять лет после того, как Поль Дирак оставил должность Лукасовского профессора в Кембриджском университете, на нее был назначен Стивен Хокинг и занимал ее в течение двадцати пяти лет.

Когда молодой студент спросил Джона Уиллера, каким образом лучше готовиться к работе над квантовой гравитацией: сделать упор на общую теорию относительности или на квантовую физику? — Уиллер ответил, что, вероятно, лучше всего будет, если студент выберет для себя какую-нибудь другую область. Это был мудрый совет. Неуступчивые бесконечности продолжали срывать все попытки квантования общей теории относительности, и казалось, что любые поползновения в области квантовой гравитации обречены на провал.

Но было верно и другое. Как показали выдающиеся результаты Хокинга, объединение общей теории относительности с квантовой физикой ведет к неожиданным вещам. У черных дыр обнаруживается энтропия и способность испускать тепло, что идет вразрез с идеей релятивистов об их поглощающей природе. Одновременно расчеты Бекенштейна и Хокинга проливают странный свет на кванты, с которыми общая теория относительности творит невероятные вещи. В обычной заурядной физической системе, например в контейнере с газом, энтропия связана с объемом. Чем больше объем, тем больше способов перемешать молекулы в случайном порядке и создать беспорядок — отличительную черту энтропии. И вся эта неупорядоченность, этот беспорядок заключен внутри контейнера. Прямая связь между энтропией и объемом является неотъемлемой частью базового курса термодинамики. Но как мы помним, Бекенштейн и Хокинг показали, что энтропия черной дыры связана не с занимаемым ею в пространстве объемом, а с площадью ее поверхности. Как если бы энтропия заключенного в контейнер газа каким-то образом заключалась в стенках контейнера, а не в хаотичных движениях частиц. Каким же образом мы сохраняем энтропию на поверхности черной дыры, которая должна быть простой, «лишенной волос» и лишь равномерно светящейся из-за излучения Хокинга?

Трудноразрешимая и непостижимая, с новыми потрясающими данными о черных дырах, квантовая гравитация стала величайшим вызовом умным молодым физикам. Однако в то время как она превратилась в поле битвы идей, которым суждено было изжить себя за следующие десятилетия, вокруг общей теории относительности разгоралась другая битва. Вместо мысленных экспериментов и искусных математических вычислений в ход пошли инструменты и детекторы, призванные измерить в ткани пространства-времени слабые волны, возникающие при столкновении черных дыр.

Глава 10. Увидеть гравитацию

Как было однажды объявлено, первым человеком, наблюдавшим гравитационные волны, является Джозеф Вебер. Он экспериментировал в этой области практически в одиночку. В конце 1960-х и начале 1970-х полученные им результаты прославлялись в качестве основных достижений теории относительности. Однако к 1991 году все закончилось. Как он сказал в интервью для местной газеты: «Хотя в этой области мы самые главные, с 1987 года меня никто не финансирует».

На первый взгляд ситуация казалась до странности несправедливой. На пике карьеры Вебера результаты его работы обсуждались на всех основных конференциях по общей теории относительности наряду с нейтронными звездами, квазарами, горячим Большим взрывом и излучающими черными дырами. Бесчисленные статьи пытались дать им объяснение. Вебер был бесспорным кандидатом на Нобелевскую премию. А затем с той же стремительностью, с которой он поднялся к вершинам известности, Вебер был низвергнут на задворки науки. Избегаемый коллегами, игнорируемый спонсорами, не имеющий возможности публиковаться в основных журналах, Вебер был приговорен к долгой и одинокой научной смерти, превратившись в избыточное и неудобное примечание к истории общей теории относительности. Некоторые даже утверждали, что только после падения Вебера начался реальный поиск гравитационных волн.

Гравитационные волны для гравитации — все равно что электромагнитные волны для электричества и магнетизма.

Показав, что электричество и магнетизм можно описать в рамках одной всеобъемлющей теории — электромагнетизма, Джеймс Клерк Максвелл заложил фундамент для открытия Генрихом Герцем колеблющихся с разными частотами электромагнитных волн. В видимом диапазоне эти волны воспринимаются нашими глазами как обычный свет. На меньших частотах речь идет уже о радиоволнах, атакующих наши радиоприемники, передающих данные между ноутбуками по беспроводному соединению и позволяющих наблюдать чрезвычайно активные квазары в далеких закоулках Вселенной.

Через несколько месяцев после разработки общей теории относительности Альберт Эйнштейн показал, что пространство-время может содержать волны. Эти волны вызывают рябь как в пространстве, так и во времени. В этом смысле пространство-время напоминает пруд: стоит бросить в него камень, как по поверхности из одного конца в другой начинают разбегаться волны. И аналогично электромагнитным волнам и волнам на водной глади, гравитационные волны могут переносить энергию из одного места в другое.

Однако в отличие от электромагнитных волн обнаружить гравитационные волны оказалось крайне сложно. Они малопроизводительны в плане переноса энергии гравитационных систем. Вращаясь вокруг Солнца на расстоянии 150 миллионов километров от него, Земля медленно теряет энергию через гравитационные волны и сдвигается в сторону Солнца, сокращая расстояние на мизерную величину — примерно на ширину протона в день. Это означает, что за все время своего существования Земля приблизится к Солнцу примерно на миллиметр. Даже влияние достаточно массивного объекта, способного генерировать огромное количество гравитационных волн, в процессе путешествия через пространство-время превращается в слабый шепот. На самом деле пространство-время больше напоминает не пруд, а невероятно твердый лист стали, лишь слегка вздрагивающий даже от очень сильных ударов.

Остальные физики концепцию гравитационных волн не воспринимали. В течение почти полувека после того, как Эйнштейн обосновал их существование, многие отказывались верить в их реальность. Их считали еще одной математической странностью, которую можно было объяснить при глубоком понимании общей теории относительности. К примеру, Артур Эддингтон безапелляционно отвергал существование гравитационных волн. Повторив вычисления Эйнштейна и проследив, каким образом в теории появляются гравитационные волны, он продолжал утверждать, что это не более чем артефакт, зависящий от способа описания пространства и времени. Они явились следствием ошибки, неоднозначности в маркировке положений пространства и времени и от них можно избавиться. Это не настоящие волны, и в отличие от электромагнитных волн, распространяющихся со скоростью света, Эддингтон отказывался признавать волны, распространяющиеся со «скоростью мысли». По удивительному стечению обстоятельств сам Эйнштейн решил, что в исходные вычисления вкралась ошибка, и в 1936 году вместе со своим молодым ассистентом Натаном Розеном опубликовал в журнале Physical Review статью, в которой доказывал невозможность существования гравитационных волн.

Самые убедительные аргументы в пользу гравитационных волн привел Герман Бонди на встрече в Чапел-Хил в 1957 году. Бонди, возглавлявший в Королевском колледже в Лондоне группу, занимающуюся теорией относительности, предложил простой мысленный эксперимент. Нужно пропустить стержень через два расположенных на небольшом расстоянии друг от друга кольца. Кольца должны быть плотно «надеты» на стержень, но при этом сохранять способность перемещаться вдоль него. Проходящая гравитационная волна на стержень влиять практически не будет, так как он слишком жесткий, чтобы ее ощутить. А вот кольца начнут смещаться вверх и вниз, как прыгающие на поверхности моря буйки. При прохождении волны они станут двигаться вдоль стержня взад-вперед, то сдвигаясь, то расходясь. Из-за трения о стержень в этом процессе будет выделяться энергия. А поскольку этой энергии неоткуда взяться, кроме как от гравитационной волны, следует вывод: гравитационные волны способны переносить энергию. Аргумент Бонди был простым и действенным. Аналогичные рассуждения представил присутствовавший на встрече Ричард Фейнман, что позволило убедить большинство собравшихся. Оставалось только на самом деле обнаружить гравитационные волны. Джо Вебера, который тоже был на конференции в Чапел-Хил, обсуждение просто заворожило. Бонди, Фейнман и остальные могли сколько угодно сидеть на месте, обсуждая реальность гравитационных волн, а он займется практической стороной вопроса и начнет их поиск.

Вебер был из того сорта людей, для которых не существует слова «невозможно». Одержимый стремлением делать все своими руками, он еще подростком научился чинить радиоприемники и зарабатывал этим на жизнь. Талантливый мечтатель, постоянно расширяющий границы известных технологий, он конструировал экспериментальные установки из минимального набора ресурсов и использовал их для исследования границ физического мира. Энергия пронизывала все сферы его жизни; каждое утро он пробегал три мили и почти до восьмидесяти лет целыми днями работал.

Вебер учился в Военно-морской академии США на инженера-электрика, а во время Второй мировой войны командовал кораблем. Благодаря опыту в области электроники и радио его сделали главой отдела разработки средств радиоэлектронного подавления. После войны он стал профессором электротехники в Мэрилендском университете, но решил сменить сферу деятельности, получив докторскую степень по физике.

В середине 1950-х Вебера заинтересовала гравитация. На решительный шаг его вдохновил Джон Уиллер, в результате Вебер на год приехал в Европу для знакомства с новыми разработками в области общей теории относительности. Вернувшись, он был готов к проектированию и созданию инструментов. Постепенно погружаясь в задачу записи гравитационных волн, он в общих чертах рассматривал различные возможности, заполняя блокноты чертежами хитроумных устройств. Один из методов просто завладел его воображением. Идея была простой. Следовало подвесить к потолку большие тяжелые цилиндры из алюминия, обвязав вокруг них набор невероятно чувствительных детекторов, которые при вибрации начнут посылать электрические импульсы на записывающее устройство. Помешать эксперименту могло что угодно — телефонный звонок, проезжающий автомобиль, хлопнувшая дверь. Поэтому цилиндры следовало как можно сильнее изолировать, чтобы отсечь все возможные источники вибраций и толчков.

Когда, наконец, Вебер создал свои цилиндры, или, как их потом стали называть, детекторы Вебера, они немедленно начали регистрировать вибрации. Цилиндры вибрировали, а после того как все известные возмущения были устранены, остались только те сигналы, которые могли бы быть именно гравитационным излучением. Хотя присутствовала одна странность. Если бы это действительно было гравитационное излучение, его источником мог быть только очень сильный взрыв, доступный для наблюдения в телескопы. Сигнал был слишком интенсивным, чтобы быть гравитационным излучением. А это означало, что Веберу нужно было совершенствовать инструментарий.

Чтобы быть абсолютно уверенным, что любое движение цилиндров возникает из-за проходящей через них гравитационной волны, Вебер поместил один из четырех детекторов в Аргоннской национальной лаборатории (АНЛ), отстоящей от его лаборатории в Мэрилендском университете почти на тысячу километров. Одновременное дрожание цилиндров в обоих местах стало бы убедительным признаком проходящих через них гравитационных волн, идущих из космоса. Веберу оставалось сравнить записи детекторов на всех цилиндрах. Наличие нескольких одновременных совпадений, скорее всего, указывало бы на внешний источник возмущения — гравитационную волну, — а не на согласованное покачивание самих цилиндров. Оставалось обнаружить такие «совпадения», как он их называл. Вебер снова включил свою машину и принялся ждать.

К 1969 году, после более чем десяти лет работы, Вебер мог показать миру кое-какие результаты: набор совпадающих вибраций не только у цилиндров, подвешенных в АНЛ и в университете, но и у всех четырех цилиндров. Для случайного совпадения это было слишком много. Все цилиндры в унисон что-то ощущали. В это время не было ни землетрясений, ни электромагнитных бурь, которым можно было бы приписать данное явление. Вебер решил, что обнаружил гравитационные волны.

Следующие несколько лет Джозеф Вебер совершенствовал свой эксперимент, чтобы убедиться, что не принимает желаемое за действительное. Вибрации в цилиндрах были немногочисленными, отстояли друг от друга на значительное расстояние и маскировались шумами. Потряхивание могло возникнуть из-за температурных эффектов, из-за внутренних колебаний атомов и молекул. В подобных случаях при недостатке внимательности глаз может обнаружить систему там, где на самом деле она отсутствует. Чтобы избежать подобной ловушки, Вебер разработал компьютерную программу для фиксации вибраций и автоматической идентификации совпадений. Еще он решил записывать показания одного из детекторов с небольшой задержкой, а потом сравнивать эту запись с остальными. Если совпадение и в самом деле имело бы место, сигнал, зарегистрированный на одном цилиндре, чуть позже должен регистрироваться на другом. При сравнении таких записей количество совпадений должно уменьшиться, что и произошло на самом деле.

К 1970 году эксперимент Вебера длился уже столько времени, что появилась возможность определить направление регистрируемого установкой гравитационного излучения. Казалось, что оно исходит из центра галактики, и Вебер воспринял это как добрый знак. Как он писал в своей работе: «Благоприятным признаком является наличие [10 миллиардов] солнечных масс, и имеет смысл искать источники в той области, где сосредоточена большая часть галактической массы».

Вебер все больше верил в то, что и в самом деле смог во время своих экспериментов зарегистрировать гравитационные волны, и это привлекло всеобщее внимание. Его открытие застало всех врасплох. Столь простой способ обнаружения стал неожиданностью, но поводов заранее сомневаться в полученных данных пока не было. Результаты Вебера то и дело принимались рассматривать релятивисты, пытающиеся понять, что они означают. Роджер Пенроуз высчитывал, что произойдет при столкновении двух гравитационных волн: возникнет ли достаточно взрывоопасная ситуация, чтобы привести в действие устройство Вебера? Стивен Хокинг проводил мысленные эксперименты по столкновению двух черных дыр, надеясь, что результатом такого процесса станет достаточно мощная для объяснения открытия Вебера вспышка гравитационного излучения. Сначала слава Вебера только возрастала. У него брали интервью для журнала Time, его работе отводилось важное место в New York Times и множестве других газет в Соединенных Штатах и Европе. И шумиха продолжала расти.

Результаты Вебера были поразительными и слишком хорошими, чтобы быть настоящими. Казалось, что Вебер обнаружил невероятный источник гравитационного излучения, намного больший, чем когда-либо считалось возможным. Однако сколь бы совершенными ни были детекторы Вебера и сколько бы чувствительные датчики к ним ни прикрепляли, они не могли быть настолько чувствительными. Для реального распознаваний вибраций детекторы Вебера должны были бы подвергнуться действию невероятно мощных гравитационных волн, настоящих мастодонтов, летящих в сторону Земли.

Это была проблема, потому что даже если считать, что предполагаемые гравитационные волны пришли из центра галактики, где много материи, готовой взорваться, столкнуться и как следует встряхнуть пространство-время, вся эта материя находится на расстоянии двадцати тысяч световых лет от Земли. Если предположить, что и в самом деле где-то в центре Млечного Пути находился источник гравитационных волн, то испускаемые им волны, дойдя до Земли, должны были практически потерять свою интенсивность. Собственно, как указал сам Вебер, энергия зарегистрированных им гравитационных волн была эквивалентна энергии, которая могла бы выделяться при ежегодном разрушении в центре галактики тысячи звезд размером с наше Солнце.

Мартин Рис из Кембриджа с самого начала был настроен скептически по отношению к результатам Вебера. Вместе со своим бывшим научным руководителем Деннисом Сиамой и Джорджем Филдом из Гарвардского университета он занялся вычислением количества энергии, которое может выходить из центра галактики в виде гравитационных волн. Расчеты показали, что для возникновения гравитационной волны ежегодно должны разрушаться не более двух сотен звезд размером с наше Солнце. При этом галактика, очевидно, должна увеличиваться в объеме, что опровергалось наблюдением за движением близкорасположенных звезд. Расчет был приблизительным, поэтому ученые постарались быть крайне аккуратными в своих выводах. В статье утверждалось: «Так как обсуждаемые здесь прямые астрономические расчеты не исключают обнаруженной в экспериментах Вебера большой потери массы, крайне желательно, чтобы эти эксперименты повторили другие ученые». Вебер не утратил присутствия духа, ведь Рис, Филд и Сиама выдвинули против него теоретический аргумент. Возможно, теория давала ошибочные прогнозы, но его эксперименты обманывать не могли.

По примеру Вебера в Москве, Глазго, Мюнхене, лабораториях Белла, Стэнфорде и Токио начали новую серию экспериментов. Некоторые установки были точной копией детекторов Вебера, остальные тоже в той или иной степени конструировались на основе его исходного проекта. По мере их постепенного подключения начали накапливаться результаты и вырисовываться общая картина; и если исключить несколько событий, зарегистрированных в Мюнхене, такого же большого, как у Вебера с его детекторами, количества совпадений выявлено не было. Совпадения попросту отсутствовали. Вебер был невозмутим. Он занимался этой задачей уже десять лет и ясно видел, что все остальные эксперименты проводились на менее чувствительном оборудовании, а значит, удивляться отсутствию сигнала не приходилось. Если кто-то хочет покритиковать его результаты, пусть сначала построит точную копию его детектора. После этого можно будет разговаривать.

Некоторые экспериментаторы, в том числе из Глазго и лабораторий Белла в Холмделе, парировали, что они пользовались именно точной копией, но тем не менее не смогли получить такие же результаты, как Вебер. Но он опять нашел объяснение: копии были недостаточно точными.

Впрочем, с собственными экспериментами Вебера тоже было связано несколько настораживающих моментов. Начать с того, что вряд ли чувствительность используемых им детекторов сильно превосходила все остальные. Данная область физики только начинала развиваться, и пока было непонятно, как определять чувствительность экспериментальной установки. Еще больше тревожил тот факт, что, несмотря на тенденцию к ошибкам, Вебер продолжал обнаруживать совпадения. К примеру, он утверждал, что зарегистрированные им гравитационные волны приходят из центра галактики. К такому заключению он пришел, обнаружив, что вибрации в кластерах событий чаще всего возникают раз в сутки, когда детекторы направлены на центр галактики. При этом Вебер упустил из виду одно важное обстоятельство: Земля не является препятствием для гравитационных волн. Поэтому когда цилиндры снова ориентировались в сторону центра галактики, но уже с другой стороны планеты, должно было возникать аналогичное количество совпадений. То есть кластеры обязаны были появляться каждые двенадцать часов, а вовсе не раз в сутки, как получалось у Вебера. Осознав свою ошибку, он произвел повторный анализ собранной информации, и на этот раз оказалось, что имеется двенадцатичасовой цикл, который остался незамеченным во время первой обработки данных. Фактически он обнаруживал то, что искал, потому что знал, что именно нужно найти. Бернард Шутц, который в то время был начинающим релятивистом, вспоминал, что «люди восприняли это крайне недоверчиво. Вебер не давал всем желающим доступа к своим данным, но всем казалось, что он с подозрительной точностью находит именно то, что хочет найти».

Еще более вопиющий случай имел место, когда Вебер объединил свои усилия с группой экспериментаторов из Рочестерского университета. Сравнив данные из Мэриленда и Рочестера, он обнаружил множество совпадений, признаков вибраций, возникавших в двух местах одновременно, что однозначно указывало на гравитационные волны. Однако оказалось, что Вебер неверно понял способ регистрации времени, которым пользовалась рочестерская группа, и поэтому выявленные им совпадения на самом деле возникали на четыре часа позже. После того как временная задержка была скорректирована, Вебер снова проанализировал данные и опять обнаружил совпадения.

Открытие Вебера выглядело неуязвимым в смысле ошибок в измерениях и расчетах. Он мог обнаруживать совпадения везде. А совпадения означали гравитационные волны. Непоколебимая способность Вебера обходить ошибки оказала разрушительное влияние на его репутацию. Его не смущал тот факт, что больше никто не мог воспроизвести полученные им результаты. Уважаемый экспериментатор Ричард Гарвин написал в журнал Physics Today статью под заголовком «Сомнения в обнаружении гравитационных волн», в которой систематически разбирался выполняемый Вебером анализ данных и его эксперименты и делалось заключение, что обнаруженные совпадения «возникали не из-за гравитационных волн, более того, они не могли возникать по этой причине». Сообщество релятивистов отвернулось от Вебера. Несмотря на поток публиковавшихся в свое время резонансных статей, рейтинг его публикаций упал. Иссякло финансирование, так как все большее число коллег отказывалось поддерживать его бесплодные эксперименты. К концу 1970-х Вебер был изгнан из мирового научного сообщества.

Хотя эксперименты Вебера были скомпрометированы, они дали хорошие плоды. Из всей этой путаницы родилась новая область исследований. Астрономы поняли, что кроме фиксации электромагнитных волн, в частности световых волн, радиоволн и рентгеновского излучения, существует новый объект для исследования Вселенной — гравитационные волны. Более того, с помощью гравитационных волн можно было заглянуть в самые дальние закоулки пространства-времени, куда не проникают обычные телескопы. К оптической, радио- и рентгеновской астрономии присоединилась гравитационно-волновая астрономия.

В 1974 году два американских астрофизика, Джо Тейлор и Рассел Хале, обнаружили не одну, а две нейтронных звезды, вращающиеся относительно общего центра масс по очень компактной орбите. Одна из этих звезд представляла собой пульсар, испускающий световые вспышки каждые несколько тысячных секунды и легко отслеживаемый в процессе перемещений вокруг своего притихшего компаньона. Так как эти нейтронные звезды двигались вокруг общего центра, Тейлор и Хале смогли с удивительной точностью измерить их позиции. Так они обнаружили новую идеальную лабораторию для проверки общей теории относительности. Эйнштейн утверждал, что подобные объекты испускают энергию в окружающее пространство-время, поэтому их орбиты будут постепенно сокращаться, пока, в конце концов, они не упадут друг на друга. Позднее он отказался от данного утверждения, но все расчеты сохранились и были доступны для проверки. Именно такую проверку и позволял сделать миллисекундный пульсар Халса и Тейлора.

В 1978 году на девятом Техасском симпозиуме в Мюнхене Джо Тейлор объявил о полученных результатах. После четырех лет наблюдений он мог уверенно утверждать, что орбита действительно сокращается, причем в полном соответствии с предсказаниями Эйнштейна. Две нейтронные звезды, вращающиеся относительно общего центра масс, теряют энергию посредством гравитационного излучения. Доказательство гравитационного излучения было косвенным, тем не менее оно определенно присутствовало. Все красиво согласовывалось с теорией, а результаты измерений были четкими и однозначными. Гравитационные волны действительно существовали.

На руинах опытов Вебера родилась новая область экспериментальной науки. Различные группы по всему миру создавали собственные детекторы. Некоторые дорабатывали исходную конструкцию Вебера, сильно охлаждая цилиндры, чтобы избежать вибраций при комнатной температуре. Другие меняли форму приемников, создавая сферы, чтобы обеспечить чувствительность к волнам, приходящим с любой стороны. Однако сигналы, за которыми они охотились, были столь краткими и иллюзорными, что требовались детекторы большего размера и лучшего качества с огромной чувствительностью, способные зафиксировать рябь в пространстве-времени. Однако существовал подход, выделявшийся на общем фоне благодаря своей большей действенности и вместе с тем намного большей стоимости: лазерная интерферометрия.

Лазерный интерферометр объединил в себе лучшие инструменты современной физики. В нем используется лазерный луч — невероятно сфокусированный свет. Правильно настроенный лазер может осветить расположенный за много миль от него кончик карандаша. Фактически Джо Вебер стал одним из первых ученых, предложивших концепцию лазера. Это произошло еще до его увлечения гравитационными волнами. Он сделал это одновременно с Чарльзом Таунсом из Колумбийского университета, но его вклад так никогда в полной мере и не был оценен. Не попал он и в число награжденных в 1964 году Нобелевской премией за это открытие.

Лазерная интерферометрия использует также способность света проявлять волновые свойства. Представьте волны в океане. При столкновении двух волн с одной длиной возникает интерференция. Это означает, что при столкновении двух волн в момент, когда обе волны на гребне, они арифметически складываются, и результирующая волна получает более высокий гребень (и более глубокую впадину). Но если волна на гребне сталкивается с волной, находящейся в нижней точке, они компенсируют друг друга и взаимно уничтожатся. Разумеется, между этими двумя крайними случаями существует целый спектр вариантов поведения.

Эти два свойства лазерного луча можно использовать для распознавания минимальных перемещений объектов под действием гравитационных волн. Порядок действий является следующим. Нужно подвесить два массивных объекта на некотором расстоянии друг от друга и каждый из них осветить лазером. Отражаемые объектами лучи начнут интерферировать друг с другом, образуя узоры в зависимости от длины волны и пройденного расстояния. Интерференционная картинка изменится даже при минимальном смещении одного из объектов. Следя за этой картинкой, можно обнаружить микроскопические перемещения, вызванные гравитационными волнами. Точность и достоверность такого эксперимента будут намного выше, чем при работе с детекторами Вебера.

Лазерная интерферометрия подразумевает совершенно новый, по крайней мере для релятивистов, способ заниматься наукой. Обычно работа над теорией относительности велась с карандашом и бумагой, а эксперименты ставились очень редко. Существовало несколько лабораторных установок, но сотрудничество между университетами и институтами было весьма скромным. Ничего общего с физикой элементарных частиц и ядерной физикой с их гигантскими ускорителями и реакторами. Но теперь требовалась новая культура, подразумевающая трату десятков и даже сотен миллионов долларов на экспериментальные установки. На смену группам из нескольких человек шли организации с сотней ученых и технических специалистов.

На этот раз все следовало сделать правильно. Исследователи уже знали, что они хотят найти. Было понятно, что гравитационные волны должны исходить от объекта, раздвигающего границы теории. Пульсары Халса и Тейлора выглядели вполне безобидно — просто две компактные звезды, вращающиеся вокруг общего центра. Однако создавалось впечатление, что они вполне в состоянии испускать волны в таком количестве, которого достаточно для уменьшения энергии, поддерживающей их орбиты. Нейтронные звезды находятся практически на грани взрыва и в достаточной мере искажают пространство и время, чтобы высветить теорию Эйнштейна во всем ее блеске.

Одним из возможных источников множества гравитационных волн является сверхновая. Сверхновыми называют взрывающиеся звезды, которые на несколько секунд начинают светиться ярче, чем миллиарды звезд в галактике вместе взятые, а потом превращаются в нейтронные звезды или черные дыры. Сверхновая в любой момент своего существования является самым ярким объектом на небе. Так как она является сильным источником электромагнитных волн, астрофизики предположили, что ее энергии может хватить на то, чтобы завязать в узел и встряхнуть пространство-время, породив множество гравитационных волн. В 1987 году сверхновая вспыхнула в Большом Магеллановом облаке, находящемся на расстоянии примерно 160 000 световых лет от Земли. Ее можно было наблюдать через обычные телескопы. Ко всеобщему стыду, ни один из детекторов, пытающихся зафиксировать гравитационные волны, в тот момент запущен не был. Исключая детекторы Джо Вебера. Он заявил, что кое-что обнаружил, но, как обычно, был проигнорирован.

К сожалению, сверхновые слишком непредсказуемы, и хотя при гигантском взрыве может действительно выделяться огромное количество энергии, к моменту, когда гравитационные волны достигают установленных на Земле детекторов, они превращаются в слабый всплеск. Их легко спутать со случайной шумовой помехой, повлиявшей на показания инструмента. Нет, тут требовался чистый сигнал, пусть даже слабый, но с определенными, хорошо известными очертаниями и формой, бросающийся в глаза, как знакомое лицо в толпе.

Предпосылки к успеху были. Сигнал от гравитационной волны обнаруженных Халсом и Тейлором нейтронных звезд в принципе можно было рассчитать с точностью, достаточной для последующего исследования. В отличие от беспорядочного набора волн, возникающих в момент взрыва, сигнал от гравитационной волны должен быть регулярным и периодическим, как сирена, и меняться во времени по мере того, как нейтронные звезды расходуют энергию и приближаются друг к другу. Это должен быть простой сигнал, легко описываемый и, возможно, даже легко регистрируемый.

Но зачем этим ограничиваться? Почему не добиться максимального эффекта? Более сильный сигнал можно получить от нейтронной звезды, которая вращается вокруг черной дыры, постепенно погружаясь в нее, а уж система из двух черных дыр, как ничто другое в теории Эйнштейна, способна деформировать пространство и время. Две черные дыры, вращающиеся по орбитам с общим центром, являются постоянными источниками гравитационных волн. По мере их приближения друг к другу интенсивность этих волн должна повышаться, пока, практически в момент слияния, они не отправят в пространство импульс, а затем пучок гравитационных волн, которые исчезнут после объединения дыр друг с другом. Именно такую форму волны должны отслеживать инструменты: движение по спирали, импульс и ослабление сигнала во времени. Эти так нужные релятивистам двойные системы, как драгоценные камни, скрываются где-то в глубинах космоса. Их-то и должен был обнаружить детектор гравитационных волн.

Задача казалась простой — следить за приближающимися друг к другу по спирали нейтронными звездами и черными дырами. Однако какого-то важного информационного фрагмента здесь не хватало. Что должен был увидеть детектор гравитационных волн? Как, достигнув аппаратуры, будут выглядеть движение по спирали, импульс и ослабление? Наблюдателям — новому поколению гравитационно-волновых астрономов — нужно было точно знать, какого сигнала они ожидают. Именно это точное знание позволило бы выделить сигнал из шума, неизменно загрязняющего данные. Для ответа на этот вопрос следовало вернуться к старинной проблеме — к решению уравнений Эйнштейна. На этот раз требовалось точное математическое решение, описывающее вид гравитационных волн. Многолетние попытки борьбы с этими уравнениями окончились ничем. Осталось применить для этого мощный компьютер и посмотреть, что произойдет при коллапсе двух черных дыр, вращающихся по орбитам с общим центром.

Чарльз Мизнер, один из учеников Джона Уиллера, еще в 1957 году на конференции в Чапел-Хилл предупреждал о коварстве этих уравнений. В попытках распутать этот жуткий нелинейный клубок, оставленный в наследство Эйнштейном, нужно было проявлять большую осторожность, потому что, по словам Мизнера, было всего два возможных исхода: «либо программист застрелится, либо компьютер взорвется». В итоге случилось второе. В 1964 году, когда один из бывших учеников Уиллера Роберт Линдквист попытался провести компьютерное моделирование, в программе возникла критическая ошибка. По мере приближения черных дыр друг к другу ошибки в решении нарастали, и очень быстро компьютер начал выдавать мусорные данные — с ним случилось числовое недержание. Ошибки были столь труднопреодолимыми, что Линдквист предпочел отступить.

В 1970-х попытку с помощью компьютера понять, что происходит при столкновении двух черных дыр, предпринял Брайс Девитт. Квантовая гравитация всегда была его страстью, а во время работы с Эдвардом Теллером в рамках проекта по созданию бомбы в Ливерморской национальной лаборатории имени Лоуренса в Калифорнии он научился моделировать на компьютере сложные уравнения. В Техасе он поставил перед своим учеником Ларри Смарром задачу рассчитать, какова величина гравитационного излучения, возникающего после столкновения двух черных дыр. Написанную программу запустили на большом компьютере Техасского университета и смогли приблизительно представить себе, на что может быть похожа гравитационная волна. Затем снова возникла критическая ошибка, и пошел поток бессмысленной информации. Это был проблеск волны, но слишком слабый, чтобы им можно было воспользоваться. Сингулярности пространства-времени подняли свои уродливые головы и уничтожили результат.

Следующие три десятилетия команды программистов продолжали безуспешно работать над моделированием двойных систем. Дело двигалось, но, как вспоминал Франс Преториус, релятивист из Принстонского университета, «простые подходы не срабатывали, никто точно не знал почему, люди пытались что-то нащупать в темноте. Дело осложнялось недостатком вычислительных ресурсов, которые требовались для решения задачи в полной форме». В 1990-х проблема столкновения черных дыр считалась в США одной из фундаментальных задач вычислительной физики, и различным группам выделялись миллионы долларов на покупку суперкомпьютеров и запуск их программ. Время от времени там наблюдались улучшения, и результаты немного двигались вперед, пока снова не возникала ошибка. В итоге родилась отдельная область знаний — численные методы в общей теории относительности.

Моделирование столкновения черных дыр является знаковой для уравнений Эйнштейна работой, такой же сложной, неблагодарной и тяжелой, как регистрация гравитационных волн. Молодые релятивисты втягиваются в поиск компьютерного решения и тратят свою — часто недолгую — карьеру на небольшое улучшение уже имеющихся результатов. Все напоминает невероятно сложную компьютерную игру, часто ведущуюся на свой страх и риск, без промежуточных наград, пройденных уровней и триумфальных побед.

Для некоторых общая теория относительности стала равнозначна численным методам. Группа, занимающаяся общей теорией относительности, считалась неполной без одного или нескольких релятивистов, занятых решением проблемы столкновения черных дыр с прицелом на поиск гравитационных волн. Проводились конференции и встречи, на которых каждый желающий мог продемонстрировать новые приемы, схемы и графики. Но уравнения не поддавались. А без формы сигнала, найденной при моделировании двойных систем, не было надежды на их обнаружение с помощью детекторов.

Вспоминая эти мрачные времена, Преториус сказал: «Была большая вероятность, что задача окажется достаточно сложной и к моменту ввода в эксплуатацию [детектора гравитационных волн] она решена не будет». Экспериментальные данные могли начать накапливаться до того, как компьютерная модель даст приемлемый прогноз.

Но у битвы за численное решение уравнений Эйнштейна была и вторая сторона, оказавшая неожиданное влияние на весь мир. В конце 1970-х и начале 1980-х Ларри Смарр разработал еще более сложные программы и пытался их запускать на самых мощных компьютерах, к которым удавалось получить доступ. Работающий в США Смарр обнаружил, что многие из его программ работают в Германии, и был крайне разочарован отсутствием возможности запускать их в Штатах. К середине 1980-х Смарр успешно убедил правительство США в необходимости финансировать сеть суперкомпьютерных центров для обслуживания всех отраслей науки, нуждающихся в «обработке данных». В конечном итоге он возглавил один из этих новых центров, Национальный центр суперкомпьютерных приложений в штате Иллинойс. Именно его исследовательская группа в 1990-х годах выпустила первый веб-браузер с графическим интерфейсом, который назывался Mosaic и позволял визуализировать данные на удаленных узлах Интернета. Вот так, в самый разгар битвы с черными дырами численные методы общей теории относительности внесли свой вклад в интернет-культуру, ставшую неотъемлемой частью нашей жизни.

Пока осваивающие численные методы релятивисты топтались на месте, полным ходом велась работа над эффективным инструментарием для фиксации гравитационных волн. На этот раз здесь не было места фальшивым открытиям, превосходящим возможности аппаратуры, — эпоха Вебера ушла в прошлое. Предпочтительным устройством стал интерферометр, но к нему предъявлялись чрезмерные требования. Лазерные лучи должны были проходить достаточно большую дистанцию, чтобы интерференционный узор позволял распознать даже мельчайшие отклонения, обусловленные гравитационными волнами. Однако в интерферометре длиной в километр лазерный луч скакал в разные стороны, более сотни раз отражаясь от прикрепленных к грузам зеркал. Зеркала требовались идеально гладкие и идеально ровные. При этом ожидавшееся отклонение было крошечным. Вспышка гравитационных волн, рождающаяся при слиянии двойной системы, привела бы к отклонению в долю ширины протона.

Построить полнофункциональные интерферометры, которые могли бы достоверно регистрировать приходящие из космоса гравитационные волны, было практически невозможно. Лазерный луч должен был проходить километры, не отклоняясь даже на ширину атома. Оборудование следовало как бы подвесить в воздухе, защитив от всех повседневных шумов, снабдив совершенными зеркалами и ультрасовременными средствами обработки сигналов, способными выделять даже неуловимые отклонения. При этом нужно было экранировать всю систему от приливов, способных сместить грузы на долю миллиметра, грохота грузовиков на дорогах и вибраций электросети.

Требовалась идеальная во всех отношениях и очень большая система. Размер и стоимость интерферометров, пригодных для исследований гравитационных волн, ограничивали возможность их создания. В Европе объединенными силами Великобритании и Германии был построен гравитационный телескоп с длиной канала 600 метров. Расположенный в немецком городе Зарштедте, он получил имя GEO600. Намного больший аппарат, названный Virgo в честь включающего в себя тысячи галактик скопления Девы, с плечами длиной 3 километра был задуман французами и итальянцами и построен в итальянском городе Кашина. В Японии создали небольшой гравитационный детектор ТАМА с плечами длиной 300 метров.

Образцовым представителем инструментария для интерферометрии гравитационных волн должна была стать лазерно-интерферометрическая гравитационно-волновая обсерватория (Laser Interferometer Gravitational Wave Observatory, LIGO). Изначально проект был предложен двумя экспериментаторами — Райнером Вайсом из Массачусетского технологического института и Рональдом Дривером из Калтеха — и теоретиком Кипом Торном. Задуманная в начале 1970-х, обсерватория LIGO имеет сложную историю.

Здесь должен был находиться, без сомнения, самый большой из интерферометров. На самом деле это было даже два интерферометра, один из которых должен был находиться в Хэнфорде, штат Вашингтон, а второй в Ливингстоне, штат Луизиана. Такое расстояние между аппаратурой позволяло исключить результаты, обусловленные локальными шумами, землетрясениями и дорожным движением. Объединив усилия с еще одним детектором, например GEO600, можно было определить направление источника гравитационных волн, и это была бы настоящая обсерватория, надежный телескоп. Но пока никто точно не знал, что нужно измерять и достаточно ли имеющейся чувствительности инструментов. LIGO предполагалось строить в два этапа. Во-первых, требовалось создать «опытно-экспериментальную установку», гигантский прототип, работающий так, как хотели релятивисты и экспериментаторы. На это строительство отводилось более десяти лет. Только потом можно было усовершенствовать LIGO и приступить к поиску интересных данных. Это были долгосрочные проекты, но последствия в случае, если бы LIGO действительно зарегистрировала гравитационные волны, были бы грандиозными. Мы бы совершенно по-новому взглянули на Вселенную, не используя световые волны, радиоволны или любой другой традиционный подход. Кроме того, возник бы новый взгляд на общую теорию относительности Эйнштейна, потому что хотя большинство верило в существование гравитационных волн, непосредственно их пока не наблюдали. Обнаружение гравитационных волн в обсерватории LIGO встало бы в один ряд с открытием электрона, протона и нейтрона в начале XX века. Эксперимент гарантированно получил бы Нобелевскую премию.

Однако обсерватория LIGO вызывала восторг далеко не у всех. Строительство и запуск этого проекта требовали сотен миллионов долларов, что привело бы к уменьшению финансирования остальных исследовательских проектов. Отток средств ощутили бы не только остальные экспериментаторы, занимающиеся гравитационными волнами, но и представители других областей. А назвав себя обсерваторией, проект LIGO потеснил бы астрономов. Они бы ощутили, как уменьшается финансирование их собственных исследований. В 1991 году в статье для New York Times Тони Тайсон из лаборатории Белла, занимавшийся гравитационными волнами еще в те дни, когда к ним только начал зарождаться интерес, писал: «Большая часть астрофизического сообщества полагает, что получить важную информацию из гравитационно-волнового сигнала будет крайне сложно, даже если его удастся зарегистрировать». Как сказал в интервью New York Times ведущий астрофизик Принстонского университета Иеремия Острайкер, мир «должен подождать, пока кто-нибудь не найдет более дешевого и надежного подхода к проблеме гравитационных волн». Астрофизики активно и почти неистово протестовали против LIGO. Когда в начале 1990-х астрономов попросили оценить, какие астрономические проекты должны получить приоритет у американских финансовых организаций, группа под руководством Джона Бакалла из Института перспективных исследований в Принстоне даже не включила LIGO в предоставленный список.

Американский национальный научный фонд отклонил первые два проекта LIGO и только через пять лет после подачи первого проекта одобрил, наконец, третий, с бюджетом 250 миллионов долларов — откровенно непомерной суммой для инструмента, который, скорее всего, не даст никаких осмысленных результатов и на первый взгляд технологически нереализуем. Наконец, в 1992 году после почти двадцати лет планов, проектов и мечтаний безупречный эксперимент смог начаться.

Кип Торн с коллегами уже вовсю обсуждали планы создания LIGO, когда в Южной Африке родился Франс Преториус. Он вырос в Соединенных Штатах и Канаде, а докторскую степень получил в Ванкувере в университете Британской Колумбии, постигая основы своей специальности в мозговом центре компьютерного моделирования общей теории относительности. Он получил аспирантскую стипендию в Калифорнийском технологическом институте, вотчине Кипа Торна, где ему позволяли заниматься, чем он хочет. Преториус решил по-своему взяться за проблему слияния черных дыр. В отличие от больших групп программистов, корпящих над неразрешимой проблемой моделирования сближения по спирали, вспышки и распада, Преториус работал в одиночку, «вне поля видимости», по его собственному выражению, не участвуя ни в одном крупном совместном проекте. Он тщательно проанализировал все неудачные попытки, предпринимавшиеся в предыдущие годы, и вынес из них несколько перспективных идей. На их основе он решил написать с нуля собственную программу. Преториус инстинктивно чувствовал, что будет, а что не будет работать. В его программе уравнения Эйнштейна приобрели более простой вид, практически напоминая эти уравнения для электромагнетизма. А электромагнитные волны легко обсчитывались и распознавались.

Затем программа была запущена. Процесс растянулся на семь месяцев, и этот период Преториус называет «настоящим мучением». Но, к своему удивлению и восторгу, он смог запустить программу, и с этого момента черные дыры начали движение по своим орбитам, пока не столкнулись, испустив вспышку волн и превратившись в одну быстро вращающуюся черную дыру. В результате было получено точное и четкое описание гравитационных волн, которого все так долго ждали. Преториус смог решить уравнения Эйнштейна при помощи компьютера. Он воспользовался множеством идей, выдвигавшихся в предшествующие годы, но именно его свежий взгляд на проблему смог нужным образом совместить их друг с другом.

Свои результаты Преториус анонсировал на конференции 2005 года в городе Банф, провинция Альберта. Орех уравнений Эйнштейна удалось, наконец, разгрызть и смоделировать поведение двух черных дыр, вращающихся вокруг общего центра и вытягивающих друг из друга энергию в неумолимой тяге к объединению, чтобы породить в итоге шквал гравитационных волн, постепенно исчезающий со временем. «Возник немалый ажиотаж, — вспоминает Преториус, — людям настолько интересно было узнать подробности, что после доклада был организован отдельный семинар для ответов на вопросы». Через полгода еще две группы объявили, что смогли решить задачу, рассмотрев эволюцию двойных черных дыр с другой стороны. Как и Преториус, они проследили весь жизненный цикл этих объектов. Казалось, что открытие Преториуса сняло психологический блок с других рабочих групп, и возник поток результатов, подтверждающих его вычисления.

Возникло ощутимое чувство эйфории и облегчения. Наконец-то появилась возможность описать форму неуловимых сигналов. Наблюдатели поняли, как извлекать призрачные сигналы из многочисленных помех, регистрируемых интерферометрами.

К концу своей жизни Джозеф Вебер озлобился. Его раздражали любые разговоры о гравитационных волнах. На немногочисленных конференциях и семинарах, в которых он участвовал, на публику выливался десятилетиями сдерживаемый им гнев. Он приходил в ярость от любых вопросов. Он увидел гравитационное излучение раньше кого бы то ни было, и этого у него никто не мог отнять. Один из его первых сторонников, Фримен Дайсон, написал стареющему Веберу письмо, оставшееся без ответа. Вот что он писал: «Великий человек не боится признать, что он ошибался и осознал свою ошибку. Я знаю, что вы — цельная натура. И у вас достаточно сил, чтобы признать свою неправоту. Если вы сделаете это, ваши враги обрадуются, но еще больше обрадуются ваши друзья. Вы восстановите свою репутацию ученого».

Ничего подобного Вебер не сделал. Наоборот, он стал противодействовать исследованиям гравитационных волн, активно выступая против проекта LIGO. Его ранние многочисленные появления на страницах печатных изданий создали вокруг него ореол эксперта по гравитационным волнам. И власти порой к нему прислушивались. В начале 1990-х, когда была предпринята третья отчаянная попытка поиска средств для проекта LIGO, Вебер отправил в Конгресс письмо, в котором утверждалось, что финансирование настолько дорогостоящего эксперимента будет напрасной тратой денег. Его детекторы прекрасно регистрировали гравитационные волны и обошлись в менее чем миллион долларов. Поэтому не было нужды тратить сотни миллионов. Однако его гневные речи ни на что не повлияли; на протяжении своей карьеры Вебер сделал столько абсурдных заявлений, что, как вспоминает Бернард Шутц, «к моменту, когда он начал выступать против LIGO, никто не хотел иметь его в числе своих сторонников». Почувствовав, что его игнорируют, Вебер пошел еще дальше. Он стал врагом области знаний, которую сам создал.

Вебер умер в 2000 году, еще до того, как проект LIGO начал свою деятельность. Для запуска идеально отлаженного инструмента потребовались десятилетия самоотверженной работы. За эти годы одна задержка сменяла другую. В 1980-х и в 1990-х Кип Торн заключил ряд пари с коллегами, утверждая, что гравитационные волны будут обнаружены еще до начала нового тысячелетия, и все их проиграл. Даже в начале XXI века проект LIGO сталкивался с непредвиденными проблемами, влияющими на работу детекторов, начиная от лесорубов с их циркулярными пилами в лесу Луизианы и заканчивая мистическими шумами в ядерных реакторах в Хэнфорде. Однако когда в 2002 году аппаратуру, наконец, включили, была достигнута та чувствительность, за которую все боролись. Это была первая часть эксперимента, изложенная в плане начала 1990-х. Детекторы могли улавливать перемещения менее чем на ширину протона, как и предусматривалось десятью годами ранее. Более того, команда LIGO объявила, что чувствительность инструмента даже выше, чем было предсказано. Это был оглушительный успех даже несмотря на то, что приборы пока ничего не зафиксировали. Как и предполагалось, в первом воплощении аппаратура не обладала чувствительностью, необходимой для регистрации гравитационных волн, но показывала, в какую сторону нужно двигаться. Теперь рабочая группа может работать над совершенствованием инструментария, пока он не увидит предсказанную Эйнштейном рябь пространства-времени.

Но это долгая история. В отличие от результатов Вебера, появившихся сразу после включения его детекторов, проекту LIGO потребуется работа тысяч технических специалистов в течение многих десятилетий, прежде чем распознавание гравитационных волн станет реальностью. Основателям проекта — Рону Древеру, Кипу Торну и Райнеру Вайсу — уже много лет, и возможно, в этот момент их уже не будет с нами. Может оказаться, что они посвятили жизнь делу, результатов которого так и не увидят. Тем не менее существует непоколебимая уверенность в реальности гравитационных волн; их предсказала теория Эйнштейна, о них свидетельствует, пусть косвенно, медленное, но неуклонное уменьшение орбиты пульсаров. Наблюдение гравитационных волн — не более чем вопрос времени. После этого исследования в области знаний, начало которой положил шумный успех Вебера, закончатся тихим шелестом пространства-времени, проходящего сквозь нашу планету.

Глава 11. Темная Вселенная

В 1996 году в Принстоне на конференции «Critical Dialogues in Cosmology» звезды космологии попарно дискутировали о состоянии Вселенной. Организаторы выбрали для обсуждения ряд спорных открытых вопросов и пригласили собравшихся вступить в полемику. Пары докладчиков — ведущих астрономов, физиков и математиков, — выходя на сцену, отказывались от принятого на конференциях протокола. Они бросались в бой, пытаясь в пух и прах разбить аргументы оппонента. Это был странный, но увлекательный способ обсуждения научных вопросов.

Военные действия открыл Мартин Рис, человек, ставший одним из мастодонтов релятивистской астрофизики благодаря огромному вкладу в теорию черных дыр и Большого взрыва. Он утверждал, что космология является «фундаментальной наукой» и «одной из величайших наук об окружающей среде». Она обеспечивает максимальную применимость красивых математических и физических теорий, разработанных в XX веке Эйнштейном, Дираком и другими учеными. Более того, ей приходится иметь дело с множеством эмпирических данных о галактиках, квазарах и звездах, в попытках объяснить, каким образом эти на первый взгляд крайне запутанные механизмы складываются в одну большую картину Вселенной. Рис доказывал, что при всей своей сложности, противоречивости и незавершенности задачи космологии имеют первостепенное значение.

Картина Вселенной, которую рисовала космология на момент Принстонской конференции, была очень странной. Казалось, что мы понимаем намного меньше, чем мы думали. Большая часть Вселенной состояла, по-видимому, из экзотической материи, которую никто и никогда не видел в лабораториях. Непонятные «темная материя» и «темная энергия» влияли на пространство-время, почему-то оставаясь неуловимыми и нераспознаваемыми. Аргументы в пользу темной Вселенной появились в один прекрасный полдень при обсуждении крупномасштабной структуры. В космологии именно эта тема привлекла меня в первую очередь.

Глядя на Вселенную, мы видим замысловатую световую мозаику из галактик, собирающихся в скопления, нити и стены, оставляя в промежутках большие пустые области. Богатый, полный информации и крайне сложный объект. Откуда берется крупномасштабная структура Вселенной? Для участников конференции это был самый актуальный вопрос, так как ответ на него пока еще никто не искал. Поэтому организаторы посвятили данной теме все утро. Долговязый астроном из Принстона Дж. Ричард Готт, растягивая слова, как это было принято у южан, защищал здравый смысл. На первый взгляд Вселенная выглядит очень пустой, поэтому Готт предположил, что она практически лишена материи, которая медленно эволюционирует в галактические нити и скопления, заполняющие наше небо. Другой молодой и энергичный астроном из Принстона, Дэвид Спергел, предположил, что Вселенная не пуста, а заполнена невидимой темной формой материи. Такая материя должна состоять из фундаментальных частиц, не учтенных в стандартной модели и пока не наблюдавшихся ни в одном эксперименте. Но самое необычное предположение выдвинул последний докладчик, остроумный космолог-теоретик из Чикаго Майкл Тернер. Почему не предположить, что Вселенная пронизана энергией с ненулевой космологической постоянной? Во Вселенной Тернера около двух третей материи должно учитываться при помощи космологической постоянной, которую так решительно отвергли семьдесят лет назад. Собравшихся это предложение не впечатлило. Космологическая константа считалась самым большим промахом Эйнштейна.

В гладиаторских боях между моделями Вселенных председательствовал Филипп Джеймс (Джим) Пиблс, научный профессор из Принстонского университета имени Альберта Эйнштейна. Высокий, стройный мужчина с лицом, как будто списанным с портретов Модильяни, Пиблс был джентльменом до мозга костей и вежливо выступал в роли арбитра. Тщательно следя за тем, чтобы дискуссия оставалась в рамках заданной тематики, он иногда с почти детской радостью хихикал над летящими с обеих сторон насмешками и комментариями. Конференция «Critical Dialogues» отчасти была организована как празднование его шестидесятилетнего юбилея. Вполне уместный подарок. Ведь три предыдущих десятилетия Пиблс был основным творцом теории крупномасштабной Вселенной, которая легла в основу современной космологии.

В начале 1970-х Джим Пиблс опубликовал небольшую книгу под названием «Физическая космология» — краткое изложение лекций, которые он читал аспирантам в Принстоне в 1969 году. На них присутствовал Джон Уиллер, писал конспекты и, если верить Пиблсу, практически вынудил его опубликовать лекции. Во введении Пиблс кратко упоминает космологическую константу, говоря, что «постоянная Л [греческая заглавная буква «лямбда», которая является математическим обозначением космологической константы] в конспектах встречается редко». С точки зрения Пиблса, она представляла собой ненужное усложнение, «маленький некрасивый секрет» космологии. Все знали, что математически эта константа допустима, но так как она делала физику слишком странной и трудной, ее предпочитали не замечать. И вот теперь, четверть века спустя, вопреки неодобрению большинства коллег Пиблса, космологическую константу пытались вернуть назад. И делали это чрезвычайно настойчиво.

Когда в 1958 году только что получивший диплом инженера в университете Манитобы Джим Пиблс прибыл в Принстон, он обнаружил, что Джон Уиллер со своей группой работает над проблемой черных дыр и конечного состояния. В Принстоне Уиллер был не единственным приверженцем общей теории относительности; там же работал Роберт Дикке. Дикке, как и Уиллер, в середине 1950-х понял, в каком отчаянном положении находилась теория Эйнштейна. Практически никто не ставил экспериментов для ее проверки. Он создал в Принстоне собственную группу, в которой общая теория относительности обсуждалась и, что куда важнее, измерялась и тестировалась. «Довольно быстро моя профессиональная жизнь стала вращаться вокруг Боба, и я начал заниматься восхитительными вещами», — говорит Пиблс. Он присоединился к группе Дикке еще в аспирантуре и после ее завершения сконцентрировался на экспериментах в области гравитационной физики. В Принстоне он провел следующие пятьдесят лет своей жизни.

В 1960-е, по воспоминаниям Пиблса, космология все еще была «скромной дисциплиной, — дисциплиной, продвижением которой занимались два или три человека». Он считал, что «дисциплина, продвигаемая двумя-тремя учеными, находится в бедственном положении». Мало кто активно работал в этой области, исследований практически не проводилось. Пиблса такая ситуация более чем устраивала. Она давала возможность не спеша заняться решением захвативших его воображение проблем, двигаясь в собственном темпе. После получения докторской степени по квантовой физике Пиблс посвятил себя развитию космологии. Начал он с объекта, который коллеги по Принстону называли «первичным огненным шаром», пытаясь понять, что происходило с атомами и ядрами на ранней стадии развития Вселенной, когда она была горячей и плотной. Он работал как настоящий мастер: закрылся в кабинете и покрывал страницу за страницей уравнениями, медленно продвигаясь в вычислениях вперед и совершенствуя свой подход.

Руководитель Пиблса имел другой взгляд на вещи. Как вспоминает Пиблс: «Для него физика, без всякого сомнения, была теорией, но теорией, которая в ближайшем будущем должна быть проверена экспериментально», поэтому Дикке заставил свою группу искать оставшееся от первичного огненного шара реликтовое излучение. Они разработали новый вид детектора, при помощи которого можно было сканировать небо с крыш зданий, но излучения не обнаружили. В один из вторников в конце 1964 года Дикке сидел со своей группой в офисе, проводя еженедельное собрание, и вдруг зазвонил телефон. После короткого разговора, положив трубку, Дикке сказал: «Нас обскакали». Ему звонил Арно Пензиас, чтобы сообщить, что вместе с Робертом Вильсоном из лабораторий Белла они, похоже, обнаружили признак реликтового излучения. За месяцы работы группа Дикке подтвердила результат, полученный в лабораториях Белла, но было слишком поздно: Нобелевская премия досталась Пензиасу и Вильсону.

С точки зрения Пиблса, с рисуемой учебниками физики в 1960-х годах картиной космоса было что-то не так. В то время обсуждались две совершенно разные темы. С одной стороны, история и эволюция Вселенной, рассказанная Фридманом и Леметром. Они объясняли, как менялись пространство, время и материя в самом крупном из возможных масштабов. На другой чаше весов находились объекты интереса астрономов — галактики и галактические скопления. Эти галактики были частью Вселенной, но их наличие казалось почти несущественным и не связанным с фундаментальным расширением и структурой Вселенной. Они напоминали яркие цветные световые завитушки, нарисованные на пространстве-времени. Разумеется, галактики давали много информации о Вселенной, например о скорости ее расширения или о количестве содержащейся в ней материи. Но глядя на небо, Пиблс ощущал, что галактикам следует отвести больше места, — он был убежден, что они должны играть ключевую роль в эволюции и крупномасштабной структуре Вселенной, с этим же должно быть связно и их происхождение. Галактики, все эти великолепные пятна света, газ и звезды, задним числом брошенные в пространство-время, не могли появиться из ничего. Значит, галактики должны были играть некую роль в общей теории относительности Эйнштейна. Вопрос был в том, какую. Для Пиблса это была идеальная задача: сложная открытая проблема, которой практически никто не хотел заниматься.

Роль гравитации в формировании отдельных галактик очевидна. Совокупность материи сжимается под действием собственной силы тяжести. Если материи достаточно много, ее кинетической энергии хватает на то, чтобы остановить сжатие в определенной точке, в которой итоговый конгломерат превращается в управляемую собственной силой тяжести галактику. Намного менее понятной для Пиблса была связь гравитационных эффектов при формировании отдельной галактики с ролью гравитации при расширении Вселенной. На эту связь указывал аббат Леметр. Задумывался о механизме формирования галактик в расширяющейся Вселенной и русский теоретик Георгий Гамов. Но ни один из них не смог подтвердить свои гипотезы соответствующими вычислениями. В 1946 году один из учеников Ландау, Евгений Лившиц, взял уравнения Эйнштейна и попытался связать происходящее в масштабе Вселенной с происходящим в намного меньшем масштабе отдельных галактик. Его результат дал представление о том, каким образом могла бы возникать крупномасштабная структура Вселенной: небольшая рябь в пространстве-времени начинает развиваться и расти в соответствии с его уравнениями, и в областях высокой кривизны формируются и группируются галактики, образуя крупные структуры, которые мы можем наблюдать в наши дни.

Работая над поведением атомов и света в изначальной Вселенной, Пиблс понял, что новые данные способны объяснить механизм формирования галактик после Большого взрыва. Приблизительно оценив возраст Вселенной, плотность атомов и температуру реликтового излучения, Пиблс обнаружил, что масса сколлапсировавших структур, таких как Млечный Путь, могла бы составлять от миллиарда до сотен тысяч миллиардов масс Солнца. Как ранее предположил Гамов, Вселенная на ранних стадиях развития казалась идеальным для возникновения галактик местом.

В своих попытках детально понять процесс формирования галактик Пиблс был не одинок. Аспирант из Гарварда Джозеф Силк утверждал, что коллапсирующие сгустки, в конечном счете сформировавшие галактики, должны были оставить свой след в первичном огненном шаре — слабую мешанину горячих и холодных областей в недавно открытом Пензиасом и Вильсоном реликтовом излучении. Результатам Силка вторили Райнер Сакс и его студент Артур Вольфе в Остине, обнаружившие, что даже в самом большом масштабе на реликтовое излучение будет влиять гравитационное сжатие всей материи во Вселенной. К аналогичному заключению пришла и группа Якова Зельдовича в Советском Союзе. Они показали, что по пульсациям реликтового излучения, сохранившегося с момента, когда возраст Вселенной насчитывал всего несколько сотен тысяч лет, можно смоделировать первые мгновения, приведшие к формированию галактик. Такими вот разными и несогласованными путями физическая космология Гамова и Пиблса начала приносить свои первые плоды.

Пиблс хотел объяснить расширение Вселенной — горячее начало, первичный огненный шар, атомы, гравитационный коллапс — в терминах базового учебника физики, скомбинировав общую теорию относительности с термодинамикой и законами распространения света. Вместе с Джер Ю, своим аспирантом из Гонконга, он написал полный набор уравнений, позволяющих проследить за эволюцией Вселенной от первых моментов после Большого взрыва до наших дней. Вселенная Пиблса начиналась с однородного горячего состояния, в котором практически отсутствовали импульсы, возмущающие изначальную смесь газа и света. Но по мере своего развития эти возмущения наталкивались на давление со стороны беспорядочной липкой плазмы, состоящей из свободных электронов и протонов. Вселенная шла волнами, как поверхность пруда, пока электроны и протоны не объединились друг с другом, сформировав водород и гелий. После этого наступила следующая стадия: атомы и молекулы стали собираться в группы, сжимаясь под действием силы тяжести, образуя рассеянные по пространству-времени крупицы массы и света. Это были возникшие после Большого взрыва галактики и галактические скопления.

В модели Пиблса и Ю способ распределения галактик по пространству-времени, определяющий крупномасштабную структуру Вселенной, несет на себе отпечаток горячего начала Вселенной. Оставшееся от Большого взрыва реликтовое излучение, температура которого, согласно измерениям Пензиаса и Вильсона, равна всего 3° кельвина, должно нести отголосок небольших импульсов, ставших причиной формирования галактик. Решая уравнения Вселенной как согласованное единое целое, Пиблс и Ю нашли новый мощный способ изучения общей теории относительности Эйнштейна: наблюдать, как галактики распределяются в пространстве, образуя крупномасштабную структуру Вселенной, и использовать эту информацию для построения модели начала и развития пространства-времени.

Это была яркая, захватывающая интерпретация, но результаты Пиблса и Ю встретили молчанием. «На нашу статью никто не обратил внимания», — вспоминает Пиблс. Объединив различные области физики, Пиблс и Ю забрели туда, где еще никто не был. Их работу нельзя было однозначно отнести к астрономии, общей теории относительности или фундаментальной физике. С точки зрения Пиблса, отсутствие реакции было в порядке вещей. Он продолжал работать над теорией Вселенной, периодически привлекая к своим странным изысканиям какого-нибудь студента или молодого коллегу, но по большей части проводя свои вычисления самостоятельно.

Когда Пиблс занялся моделью Вселенной, ему потребовались экспериментальные данные, чтобы понять, в верном ли направлении он двигается. В начале 1950-х работающий в Техасе французский астроном Жерар де Вокулер, просматривая заслуживающий внимания каталог Шепли-Эймса, включающий в себя свыше тысячи галактик, обнаружил растянутый по небу «поток галактик», превышающий любое скопление и больше напоминающий «сверхскопление», или «сверхгалактику». Эту работу принимали не очень хорошо. Астроном из Калтеха Вальтер Бааде пренебрежительно отзывался о результатах Вокулера, сказав: «Доказательств существования сверхгалактик нет», так же как и Фриц Цвики, который попросту заявил: «Сверхгалактик не бывает». Скептически отнесся к данным Вокулера и Пиблс, но как вспоминает один из его студентов, он придерживался взглядов своего учителя Боба Дикке, гласивших, что «хорошее наблюдение стоит больше еще одной посредственной теории». Поэтому вместе со своими протеже он решил самостоятельно нанести на карту крупномасштабные структуры. А когда молодые исследователи из Гарварда Марк Дэвис и Джон Хукра и в самом деле обнаружили в создаваемых ими более четких обзорах галактик плотные вкрапления, Пиблс был «ошарашен». Как он признавался: «Я написал ряд ядовитых статей с примерами из прошлого, демонстрирующими, как астрономов вводила в заблуждение тенденция… находить в шумах регулярные структуры. Было ясно, что требовалось понять механизм формирования структур». Со временем он обнаружил, что галактики и в самом деле упорядочены в огромную мозаику из стен, нитей и скоплений. Впоследствии это явление назвали ячеистой структурой. Предсказанная в компьютерной модели Пиблса крупномасштабная структура стала проявляться в реальном мире.

В 1979 году Стивен Хокинг в соавторстве с южноафриканским релятивистом Вернером Израэлем пишет работу «Общая теория относительности: обзор к столетию Эйнштейна». В ней они объединили главные космологические исследования, черные дыры и квантовую гравитацию. Свой вклад в виде эссе «Космология большого взрыва — загадки и панацея» внесли Боб Дикке и Джим Пиблс. Эссе было коротким. На нескольких страницах Дикке и Пиблс рассказали, какие фундаментальные проблемы, на их взгляд, присутствуют в удивительно успешной теории.

Что же было не так? Для начала Вселенная казалась слишком однородной. В прошлом предпринимались попытки объяснить этот факт, но Дикке и Пиблс не нашли ни одного объяснения, которое бы их удовлетворило. Более того. Почему геометрия пространства в отличие от геометрии пространства-времени выглядит так просто? Казалось, что пространство не искривляется и к нему применимы правила изучаемой в школах геометрии Евклида. Все выглядело так, как будто во всех случаях соблюдались правила о параллельных прямых, которые никогда не пересекаются, и сумме углов треугольника, составляющих 180 градусов. Общая теория относительности допускает Вселенную без пространственной кривизны, но это частный случай. Уравнения Эйнштейна предсказывают, что в процессе эволюции кривизна Вселенной должна быстро увеличиваться. Поэтому если современная Вселенная почти лишена кривизны, значит, в прошлом кривизна была еще меньше. Вселенная, в которой мы живем, выглядит совершенно неправдоподобно. В конце концов, откуда-то должны были появиться заполнившие небо галактики и сформированные из них структуры. В момент Большого взрыва тенденция Вселенной к расширению должна была оказаться достаточной для компенсации силы тяжести и предотвращения коллапса пространства-времени, но вряд ли этого хватило бы, чтобы пространство-время разлетелось в пустом вакууме. Смысл статьи сводился к простому вопросу: что произошло в самом начале?

За материалом Дикке и Пиблса следовала короткая статья Якова Зельдовича. В ней он размышлял о ранней Вселенной, повторяя рассуждения, впервые изложенные аббатом Леметром при рассмотрении первичного атома. Горячая стадия сопровождалась множеством интересных явлений, которые могли оказать влияние на эволюцию Вселенной и сказаться на ее современном состоянии. Прояснить эти явления Зельдович призывал сообщество ученых и релятивистов, занимающихся физикой элементарных частиц.

Статьи Дикке, Пиблса и Зельдовича оказались пророческими. Всего через год простое предположение об эволюции ранней Вселенной перевернет космологию с ног на голову.

В общем виде идея носилась в воздухе, но именно Алан Гут, научный сотрудник Стэнфордского центра линейного ускорителя, выдвинул идею космической инфляции. Гут понял, что в соответствии с некоторыми крупными обобщенными теориями — теориями, пытающимися объединить электромагнитное, слабое и сильное взаимодействия в одну всеобъемлющую силу, — Вселенная могла застрять в состоянии, когда одно из полей становится необычайно сильным и начинает доминировать над всем остальным. В этом состоянии Вселенная будет вынуждена быстро расшириться. Несмотря на ошибочность исходной идеи Гута — у Вселенной, застрявшей в подобном состоянии, нет способов из него выйти, — ученые быстро начали предлагать другие гипотезы инфляционного расширения. Идея инфляции Вселенной открыла перед космологами новую дорогу, показав в прошлом Вселенной период, который следовало изучить. Появилась теория, точно предсказавшая, какой должна была быть Вселенная в начале формирования ее структур. И казалось, она решила вопрос, поднятый Дикке и Пиблсом. В первую очередь теория инфляции дает толчок к пониманию механизма мгновенной потери кривизны. Представьте, что у вас в руках воздушный шар, который вы при помощи помпы можете быстро и практически мгновенно надуть до размеров Земли. После этого расположенный перед вашим носом фрагмент шара с вашей точки зрения будет казаться совершенно плоским. Аналогичным образом Вселенную к крайне однородному и примитивному состоянию ведет инфляция. Любые крупные фрагменты массы и естественным образом разнообразящие ландшафт пространства-времени пустоты будут разбросаны на расстояния, недоступные нашему наблюдению. А еще инфляция показывает, каким способом мог быть дан толчок росту структуры в ранней Вселенной. В период интенсивной инфляции микроскопические квантовые флуктуации в ткани пространства-времени могли растянуться и оставить свой отпечаток в большем масштабе.

Теория инфляции, как лаконично выразились астрофизики в Чикаго, установила связь между «внутренним и внешним космосом». Внутреннее пространство представляет собой мир квантов и фундаментальных взаимодействий, в то время как внешнее пространство охватывает космос, в котором вступает в свои права общая теория относительности. В результате у программы исследований, которую в предыдущие десятилетия разрабатывал Пиблс вместе с Зельдовичем, Силком и остальными, появилась новая цель: крупномасштабная структура Вселенной; распределение галактик и реликтовое излучение должны были дать ключ к разгадке связи внешнего и внутреннего космоса. Люди начали обращать внимание на внешний мир.

В 1982 году Пиблс попытался построить новую Вселенную. Старая модель, разработанная с Джер Ю и состоявшая из атомов и излучения, перестала его устраивать. Он сравнил предсказания этой модели с нанесенными на карту неба галактиками и обнаружил расхождения. Реальность не укладывалась в рамки его элегантных вычислений. Более того, за предыдущее десятилетие сами галактики приобрели более сложный вид. Происходящие внутри них процессы давали странную картину.

Американский астроном Вера Рубин обнаружила, что галактики вращаются слишком быстро, напоминая удерживаемый какой-то мистической силой фейерверк «огненное колесо». Рубин направила свой телескоп на галактику Андромеда — водоворот звезд и газа, вращающийся со скоростью сотни километров в секунду. По крайней мере, такое ощущение возникало при наблюдении через телескоп. Больше всего света оказалось в центре, где сконцентрированы все звезды, поэтому Рубин ожидала, что источником гравитационного притяжения, благодаря которому галактика сохраняет свою форму, является ее сердцевина. Однако наблюдение за удаленными от центра звездами показало, что они движутся чрезмерно быстро. Более того, звезды перемещались так стремительно, что Рубин не могла понять, каким образом гравитационному притяжению центра галактики удается их обуздать. Это все равно как если бы Земля внезапно удвоила или утроила скорость своего вращения вокруг Солнца. Солнце должно было каким-то образом увеличить свое гравитационное притяжение, в противном случае Земля сорвалась бы с орбиты и улетела в пространство. Внешние звезды на своих орбитах удерживала какая-то другая сила, большая и невидимая.

Аналогичное явление в 30-х годах наблюдал Фриц Цвикки, но на его наблюдения почти сорок лет никто не обращал внимания. Цвикки подсчитал галактики в скоплении Волосы Вероники и оценил общую массу наблюдаемых объектов. Измеренная скорость движения галактик внутри скопления оказалась слишком большой. Как он писал в статье, опубликованной в Швейцарии в 1937 году: «Плотность светящейся материи в скоплении Волосы Вероники должна быть мизерной по сравнению с плотностью какого-то вида темной материи».

У Джима Пиблса с галактиками возникли собственные проблемы. Со своим молодым коллегой из Принстона Джерри Острайкером он решил построить для сформировавшихся галактик простые компьютерные модели, представив их в виде набора частиц, притягивающихся друг к другу через гравитационное взаимодействие и вращающихся по спирали. Как только к модели добавлялось вращение, галактики распадались. В центре формировалась капля, которая растягивалась и разрывала галактику на части. Острайкер и Пиблс пытались стабилизировать модель, погрузив вращающиеся частицы в шар скрытой массы. Этот шар — они называли его гало — помогал силе тяжести удерживать галактику от разбегания. Гало должно было быть темным (то есть невидимым), а значит, недоступным для обнаружения при помощи телескопов. Как ни парадоксально, но модель показала, что темной материи должно быть намного больше, чем видимых нами в звездах атомов. В конце 1970-х Сандра Фабер, работающая в Санта-Крузе, штат Калифорния, вместе с Джеем Галлахером из Иллинойса написали обзор странных открытий, которые астрономы сделали путем наблюдений, а Пиблс и его коллеги — путем компьютерного моделирования. Они заключили, что «открытие темной материи выдержит испытание временем как один из основных итогов современной астрономии».

В 1982 году Пиблс начал строить новую модель Вселенной, решив включить в нее атомы и темную материю. Собственно, он предположил, что почти вся Вселенная была получена из этой таинственной формы материи, состоящей из тяжелых частиц, которые мы не в состоянии увидеть, так как они не взаимодействуют со светом. Простая модель холодной темной материи, предложенная Пиблсом, позволила ему предсказать, как будет выглядеть распределение галактик и насколько большими должны быть возмущения реликтового излучения. Данный подход мог оказаться знаковым для развития космологии, но как вспоминает Пиблс: «Я не воспринимал его всерьез. Я записал решение просто потому, что оно оказалось простым и совпадало с данными наблюдений».

Хотя Пиблс не касался недавно предложенной концепции инфляции, его новая модель была полностью в духе времени. В ней нашли свое воплощение массивные частицы, появившиеся в результате попыток фундаментальной физики соединить внутренний и внешний космос. Модель холодной темной материи (Cold Dark Matter, CDM) приняло множество астрономов и физиков, занимавшихся выяснением подробностей формирования галактик. Марк Дэвис из Беркли объединился с двумя британскими астрономами, Джорджем Эфстатиу и Симоном Уайтом, а также с мексиканским астрономом, Карлосом Фрэнком, для создания компьютерной модели формирования отдельных галактик и галактических скоплений в виртуальных вселенных. В своих построениях «банда четырех», как их позднее прозвали, отслеживала взаимодействие сотен тысяч частиц, соединяющихся друг с другом и формирующих крупномасштабную структуру Вселенной.

Несмотря на популярность и общепризнанность модели CDM, слишком многое в ней выглядело некорректно. В модели Пиблса возраст Вселенной составлял всего 7 миллиардов лет. Астрономы обнаружили в галактиках плотные участки звезд, известные как шаровые скопления. Эти яркие конгломераты света были наполнены старыми звездами, сформировавшимися на ранних этапах развития Вселенной, когда она была наполнена преимущественно водородом и гелием. Возраст шаровых скоплений насчитывал по меньшей мере 10 миллиардов лет. И это еще не все. Если постулировать, что Вселенная в основном состоит из темной материи, ее пропорция по отношению к атомам составит примерно 25:1. При этом, несмотря на все свои старания, астрономы не смогли обнаружить следы этой темной материи. По скорости вращения галактик или по температуре наблюдаемых скоплений можно оценить силу гравитации (чем горячее галактика, тем выше должно быть гравитационное притяжение) и количество темной материи, необходимой для создания притяжения такой силы. И по расчетам, соотношение темной материи к атомам выходило равным примерно 6:1. Конечно, методы оценки веса темной материи были примитивными и ненадежными, но разница оказалась слишком большой, чтобы ее можно было объяснить погрешностью вычислений. Практически сразу после создания модели CDM Пиблз от нее отказался и принялся за поиск альтернатив. «В восьмидесятые и в начале девяностых было много разных идей», — вспоминает он.

Не лучше шли дела и у «банды четырех». Они создавали компьютерные модели виртуальных вселенных и сравнивали их с реальной Вселенной, ища сходство. Но сходства не было. Прежде всего, в большом масштабе реальная Вселенная имела более структурированный и сложный вид. В модели CDM галактики на малых масштабах сгруппированы плотнее, а при попытке отодвинуться и увидеть большой фрагмент общей картины сглаживание происходило намного быстрее, чем в реальности. Некоторая подгонка результатов позволяла решить часть проблем виртуальной Вселенной, но правда состояла в том, что простая модель Пиблса оказалась не совсем рабочей.

Впрочем, большинство астрономов и физиков приняло модель CDM, невзирая на несовпадения с результатами наблюдений. Концептуально она была простой и хорошо вписывалась в идею инфляции и свидетельства присутствия в галактиках темной материи. Сторонники модели искали способы ее доработки и устранения недостатков. Один из способов требовал восстановления космологической константы Эйнштейна. Многим это казалось немыслимым.

С 1917 года, когда Эйнштейн впервые ввел космологическую константу, доводы против нее усилились. После открытия расширяющейся Вселенной Эйнштейн быстро отказался от этого дополнительного параметра, но некоторые его коллеги продолжали за него цепляться. В свои модели Вселенной эту константу включили и Эддингтон, и аббат Леметр. Леметр даже предположил, что это не что иное, как плотность энергии вакуума. В 1967 году Зельдович показал, какой серьезной проблемой может стать космологическая константа. Он сложил энергию всех виртуальных частиц, которые могли существовать во Вселенной, и обнаружил, что итоговая плотность энергии выглядит как космологическая константа, но имеет гигантскую величину. Строго говоря, она стремится к бесконечности по тем же самым причинам, по которым бесконечным является все, что имеет отношение к квантовой гравитации, хотя путем небольших манипуляций значения можно сделать конечными. Но даже в этом случае получается огромное число, на порядки превосходящее любую энергию, когда-либо измерявшуюся в космосе.

Расчеты Зельдовича показали, что если бы существовала энергия вакуума — а значит, и космологическая константа, — она была бы слишком большой, чтобы совпасть с результатами наблюдений. Единственным вариантом сохранения этой константы оставалось предположение о существовании некоего еще не открытого физического механизма, обеспечивающего ее равенство нулю. Практикующие космологи предпочитали игнорировать космологическую константу, делая вид, что ее никогда не существовало.

Тем не менее при любой попытке разобраться с проблемами, присущими модели CDM, в качестве одного из возможных решений появлялась эта постоянная, иногда называемая лямбда-членом. В 1984 году Пиблс сам обнаружил, что для жизнеспособности модели с холодной темной материей лямбда-член должен составить около 80% от общей энергии Вселенной. Когда «банда четырех» — Дэвис, Эфстатиу, Фрэнк и Уайт — ввела в одну из своих моделей лямбда-член, разрешились многие проблемы, сопровождавшие простой сценарий холодной темной материи.

В 1990 году Джордж Эфстатиу, уже работающий в Оксфорде, опубликовал в журнале Nature статью «Космологическая константа и холодная темная материя». В ней крупномасштабная структура содержащей константу компьютерной модели сравнивалась с реальной Вселенной. На этот раз Эф-статиу использовал каталог с миллионом галактик, который они с коллегами составляли несколько лет. В начале статьи была оговорка: «Мы предполагаем, что в пространственно плоской космологии, в которой 80% критической плотности обеспечивается положительной космологической константой, можно сохранить плюсы теории CDM и ее согласованность с результатами наблюдений». Далее было показано, что такая Вселенная совпадает со всеми имеющимися эмпирическими данными. Одни из отцов-основателей инфляционной модели, Джерри Острайкер и Пол Стейнхардт, в 1995 году опубликовали в журнале Nature статью, в которой утверждали, что «существуют свидетельства в пользу Вселенной с критической плотностью энергии и большой космологической постоянной». Казалось, все указывало на лямбда-член.

Впрочем, все намеки на лямбда-член в крупномасштабной структуре Вселенной предпочитали не замечать. В 1984 году Джим Пиблс писал: «Проблема была в том, что эта версия не выглядела правдоподобной». Как отметил в заключении своей статьи Эфстатиу: «Отличная от нуля космологическая константа оказывала бы глубокое влияние на фундаментальную физику». В другой статье Джордж Блюменталь, Авишай Декель и Джоэль Примак из Калифорнийского университета утверждали, что наличие космологической константы «требует невероятной корректировки параметров теории». И в самом деле, как писали Джерри Острайкер и Пол Стейнхардт, данные наблюдений поставили перед учеными нереально сложную задачу: «Как с теоретической точки зрения объяснить отличие космологической постоянной от нуля?». Дальше замалчивать этот некрасивый маленький секрет было невозможно.

В 1996 году на конференции в Принстоне Майкл Тернер из Чикагского университета, дискутируя с Ричардом Готтом и Дэвидом Шпергелем в защиту космологической константы, столкнулся со шквалом критики. Наблюдения говорили в его пользу, но коллеги-космологи все еще воспринимали эту постоянную с неприязнью. Она считалась концептуально невозможной и эстетически непривлекательной. Наверное, даже если бы вместо введения константы он указал на божественное вмешательство, противодействие было бы не столь интенсивным. В конце дискуссии победителем была признана стандартная модель CDM, не содержащая космологической константы. Джим Пиблс зачарованно наблюдал за этим спектаклем.

К 1996 году космология претерпела преобразования, превзошедшие самые смелые ожидания Пиблса. Вместе с Яковом Зельдовичем, Джо Силком и несколькими другими учеными он был одиноким пионером, работавшим над теорией крупномасштабной структуры. Он, по сути, разработал приемы, использовавшиеся не только для теоретизирования, но и для анализа наблюдений. Теперь новое поколение теоретиков с пугающим неистовством продвигало вперед его идеи, пока астрономы занимались составлением все более точных карт Вселенной.

В новых реалиях Пиблс обнаружил, что оказался в странном положении еретика в области, к созданию которой он приложил руку. Он не одобрял горячность, с которой его коллеги признавали модель CDM, и постоянно выдвигал конкурирующие концепции. Но как говорил его учитель Боб Дикке, главным козырем являются хорошие данные. Однако как сторонников модели CDM, так и Пиблса ждала неожиданность.

В 1992 году Джордж Смут, один из руководителей программы Cosmic Background Explorer (СОВЕ) заявил: «Быть религиозным все равно что смотреть на Бога». Проект СОВЕ представлял собой спутник, предназначенный для регистрации с невиданной доселе точностью реликтового излучения, оставшегося от Большого взрыва, и фиксации изменений его яркости при наблюдении с различных точек. В своем высказывании Смут имел в виду неуловимую рябь в реликтовом излучении, небольшие нарушения структуры, о которых в течение двадцати пяти лет говорили Пиблс, Силк, Новиков и Сюняев. Ее поиск был долгим и почти бестолковым. Неоднородности долгое время оставались невидимыми, заставляя теоретиков перерабатывать прогнозы, корректируя ожидания. Но в 1992 году спутник СОВЕ при помощи набора детекторов, в основу которых легли идеи Боба Дикке, создал карту реликтового излучения, вызвав всеобщий вздох облегчения. За свою работу над проектом СОВЕ Смут получил Нобелевскую премию.

Открытие СОВЕ было только началом. Снятая им картина неоднородностей реликтового излучения оказалась размытой. Следовало получить резкое изображение ряби, потому что, как показали Пиблс, Новиков и Зельдович, излучение должно было представлять собой богатую палитру горячих и холодных областей, позволяющих понять геометрию пространства. В случае геометрии Евклида размеры областей должны были образовывать на небе угол примерно в 1 градус. А согласно общей теории относительности, измерение геометрии пространства равносильно измерению энергии во всей Вселенной. Требовались более точные эксперименты. Десятки групп по всему миру занялись разработкой инструментов, способных с большей точностью и фокусировкой измерить реликтовое излучение. Это напоминало толпу неустрашимых исследователей, рвущихся составить карты только что открытого континента. Когда, наконец, на рубеже нового тысячелетия удалось сложить полную картину, группа экспериментаторов объявила, что угловой размер горячих и холодных областей действительно составляет примерно 1 градус, а значит, геометрия пространства является плоской. Именно этот результат предсказывался инфляционной моделью и свидетельствовал в пользу крупномасштабной структуры Вселенной из модели CDM, а также в пользу космологической константы.

Последний фрагмент данных, окончательно нарушивших баланс в пользу космологической константы, был получен не благодаря любовно выстраиваемой Пиблсом теории крупномасштабной структуры, а в результате взрыва сверхновой в далекой Вселенной. Первый намек был брошен в январе 1998 года на ежегодной встрече Американского астрономического общества, когда группа астрономов и физиков с Западного побережья, известная как проект SCP (Supernova Cosmology Project), заявила, что гравитационного притяжения темной материи и атомов недостаточно, чтобы сдержать и замедлить расширение Вселенной. Фактически в рамках проекта SCP было обнаружено, что расширение Вселенной, возможно, ускоряется. Это означало одно из двух. Либо Вселенная была более пустой, чем казалось раньше, либо раздвигающая пространство космологическая константа все же существует.

Проект SCP в некоторой степени повторял действия Хаббла и Хьюмасона в 1920-х: в его рамках измерялось расстояние до удаленных объектов и их красное смещение. Но теперь наблюдатели искали не галактики, а отдельные сверхновые — звезды, взрыв которых сопровождался вспышкой света, яркостью сравнимой с целой галактикой, сжатой в точку. Это позволяло заглянуть на расстояния, которые и не снились Хабблу и Хьюмасону. Хотя по форме работа в рамках проекта SCP повторяла действия Хаббла и Хьюмасона, она больше не была уделом двух одиночек. Все операции выполнялись большими группами, находящимися на трех континентах и использующими как обычные телескопы, так и космический телескоп «Хаббл». Методы измерений усложнялись и совершенствовались в течение более чем десяти лет.

Проект High-Z Supernova Search был копией проекта SCP и дал аналогичные результаты: экспериментальное доказательство ускоряющегося расширения Вселенной, а следовательно, существования космологической константы.

Ни одна из команд не могла заставить себя объявить о своих достижениях. В январе 2008 года на собрании Американского астрономического общества в Вашингтоне презентации были крайне осторожными, практически вымученными. Истинный смысл результатов закулисно обсуждался в коридорах, но все-таки попал в газеты. На следующий день после докладов занимающихся сверхновыми групп рецензия в Washington Post гласила: «Кажется, эти открытия вдохнут новую жизнь в теорию, в которой присутствует так называемая космологическая константа». Несколько недель спустя журнал Science пошел еще дальше, опубликовав статью с заголовком «Взрывающиеся звезды указывают на вселенскую отталкивающую силу». В самой статье лидер проекта SCP Сол Перлмуттер отказался делать столь глобальные выводы, прокомментировав ситуацию просто: «Требуются дополнительные исследования».

Всего месяц спустя группа High-Z открыла карты, и тайное наконец стало явным: в полученных данных присутствует лямбда-член. Во Вселенной имеет место недостаток атомов и темной материи, Вселенная заполнена чем-то другим, заставляющим ее ускоряться. Членов группы High-Z по всему миру приглашали на телевидение, чтобы они объяснили широкой публике свои странные непостижимые результаты. Телеканал CNN анонсировал, что ученые «ошеломлены возможным ускорением Вселенной», руководитель группы High-Z Брайан Шмидт, согласно New York Times, сказал следующие слова: «Я испытал нечто среднее между изумлением и ужасом. Изумление, потому что я не ожидал подобных результатов, и ужас оттого, что большинство астрономов, скорее всего, в них не поверит. Они, как и я сам, крайне скептически настроены по отношению к неожиданностям». Группа SCP быстро поступила аналогичным образом со своими результатами, официально признав наличие лямбда-члена. За свое открытие руководители обеих групп Сол Перлмуттер, Брайан Шмидт и Адам Рисе в 2011 году получили Нобелевскую премию.

Неопределенность по поводу компонентного состава Вселенной, ее возраста, геометрии и основных составляющих существовала годы и даже десятилетия. Выдвигались различные предположения, каждое со своими плюсами и минусами, и космология как наука превратилась в вопрос эстетических предпочтений с приверженцами, выбирающими теории по личному вкусу. А в результате победила самая неприятная из всех теорий. За несколько месяцев новая модель, известная как согласованная модель, или модель «Лямбда-CDM», укрепила свои позиции. Это был коктейль из атомов, холодной темной материи и космологической константы. Это была Вселенная, на которую в течение десяти лет указывала крупномасштабная структура, но которую практически никто не был готов принять. Даже Пиблс с его нежеланием следовать за толпой был поражен тем, как сложились кусочки мозаики. И все это случилось благодаря результатам наблюдений, в точности согласно словам его учителя. Пиблсу пришлось признать: «Лучшим объяснением того, что показывают нам экспериментальные данные, является космологическая константа или что-то на нее очень похожее».

В 2000 году, прекратив преподавать в Принстоне, Джим Пиблс начал много ходить пешком и фотографировать природу. Он получал удовольствие от красоты, а порой и необычности попадавшихся ему птиц, ведь теперь у него было на это время. Отвлекшись от узоров, вычерчиваемых на небе галактиками, и способов их вращения, он пропадал в окружающей красоте рощ и лесов. Именно наблюдательность и внимание к деталям позволили ему поучаствовать в превращении космологии в точную науку. Еще один аспект общей теории относительности был доработан и получил собственную жизнь. Тихие и настойчивые попытки Пиблса, его «писанина», как он любил выражаться, перенесли проблему изучения крупномасштабной структуры Вселенной в центр физики и астрофизики. Индивидуалист по своей природе, он инициировал движение к странной модели Вселенной, которая стала общепринятой: Вселенной, в которой 96% энергии находится в некоем темном состоянии, эдакой комбинации темной материи и космологической константы. Если вспомнить, с чего он начинал почти пятьдесят лет назад, это был сюрреалистический поворот событий.

Сейчас космологическая константа общепринята. Фундаментальная проблема никуда не делась: гигантское несоответствие предсказания, сделанного Зельдовичем путем сложения энергии всех виртуальных частиц во Вселенной, и реально наблюдаемого значения. Несоответствие составляет более ста порядков. Однако если в прошлом оно мешало космологам даже думать о возможности введения космологической константы, то теперь они ее признали. Она неизбежно присутствовала в данных. В своем учебнике релятивистской астрофизики, написанном в 1967 году, Яков Зельдович и Игорь Новиков писали: «Согласно легенде, после того как джинна выпустили из бутылки, загнать его обратно можно только с большим трудом». В этой аналогии есть истина. Теперь, после общего сдвига в сторону согласованной модели, настала пора всерьез взяться за космологическую константу.

А может быть, и нет. Следующее усилие в попытке снова избавиться от космологической константы породило новый тип сущности, раздвигающей пространство. Это экзотическое новое поле, частица или вещество вело себя очень похоже на космологическую константу, но скоро все начали называть его «темной энергией». Были и до сих пор есть большие надежды на темную энергию и ее возможное применение для связывания успехов наблюдательной космологии с творческим подходом физики частиц и квантовой теории. Молодые и старые космологи в массовом порядке занялись этой темой; на одной конференции докладчик продемонстрировал слайды с более чем ста различными моделями темной энергии — свидетельство творческих способностей нового поколения космологов. Тем не менее даже введение темной энергии не решает поднятую Зельдовичем проблему — слишком большую, чтобы быть приемлемой, энергию вакуума. Здесь снова возобладало стремление сделать вид, что никакого расхождения не существует. Решение этой проблемы могло бы стать причиной революции в квантовой теории гравитации.

Подъем физической космологии в последние сорок лет изменил наш взгляд на пространство-время и Вселенную. Анализируя общую теорию относительности в самом большом масштабе и тщательно изучая крупномасштабные свойства Вселенной, Джим Пиблс и его современники открыли совершенно новое окно в реальность. Наряду с колоссальными успехами в создании карт галактик и реликтового излучения их работы подарили нам странную Вселенную, полную экзотических объектов, природа которых до сих пор практически не изучена. Это совсем не похоже на космологию 1960-х, «крайне скромную» науку, как называл ее Пиблс, всего с тремя учеными. Современная космология явила собой один из самых больших успехов общей теории относительности Эйнштейна и всей современной науки, поднимая по поводу Вселенной множество вопросов и давая на них ответы.

Глава 12. Конец пространства-времени

Должность Лукасовского профессора математической физики в Кембридже Стивену Хокингу предложили в 1979 году. Одна из самых престижных академических должностей в мире, которую занимали Исаак Ньютон и Пол Дирак, теперь была предложена молодому (не достигшему сорока) релятивисту. Но Хокинг ее заслужил. За почти два десятилетия исследований он внес изрядный вклад в теории, касающиеся рождения Вселенной и физики черных дыр. Его главным достижением, без сомнения, стало доказательство того, что черные дыры излучают энергию, обладают энтропией и температурой и в конечном счете испаряются. Излучение Хокинга застигло мир физики врасплох. Предполагалось, что черные дыры являются исключительно поглощающими объектами с крайне простой структурой. Взяв за основу гипотезу Яакова Бекенштейна, Хокинг показал, что черные дыры должны обладать изрядной энтропией, которая пропорциональна не объему, как в остальных известных нам физических системах, а площади их горизонта событий. При этом всех занимал вопрос о механизме реализации энтропии в черной дыре. По большому счету, все надеялись, что ответ сможет дать теория квантовой гравитации.

Но создавалось впечатление, что поиски квантовой гравитации зашли в тупик. К моменту Оксфордского симпозиума 1975 года, на котором Хокинг объявил об открытии излучения черных дыр, стало очевидно, что общая теория относительности не допускает перенормирования и переполнена бесконечностями, от которых никак не избавиться. Этим общая теория относительности принципиальным образом отличалась от остальных теорий фундаментальных взаимодействий, не позволяя применять общепринятые методы, использовавшиеся при построении стандартной модели частиц и взаимодействий. Следовало предпринять что-то нетривиальное, и у Хокинга с коллегами возникло множество разных идей. К концу 1970-х область квантовой гравитации захлестнул вал новых представлений и методов, в следующие десятилетия ставших причиной глубокого разлада. Противоборствующие лагеря увлеченно цеплялись за собственные правила квантования общей теории относительности, безапелляционно отвергая все прочие варианты. Сообщество работающих в области квантовой гравитации физиков разделилось на враждующие племена, вовлеченные в самую настоящую войну. Тем не менее в этой бурной и беспокойной обстановке родилась общая точка зрения, означающая, что от старого представления пространства-времени в виде сплошной среды следует отказаться, приняв принципиально новый взгляд на реальность.

Стивен Хокинг принадлежал к людям, не боящимся делать смелые и противоречивые заявления, зачастую пророческие, а порой и шутливые. Приняв должность Лукасовского профессора, Хокинг в своей вступительной лекции «Близок ли конец теоретической физики?» высказал мнение о будущем физики. Он провозгласил, что «цель теоретической физики может быть достигнута в не самом отдаленном будущем, например к концу века». С точки зрения Хокинга, объединение законов физики с квантовой теорией гравитации было не за горами.

Для столь смелого утверждения были веские причины, и основывались они на перспективной разработке новой концепции — суперсимметрии. Концепция подразумевала наличие в природе глубокой симметрии, неразрывно связывающей все частицы и взаимодействия во Вселенной. Предполагалось, что для каждой частицы существует ее обратный близнец: каждому фермиону соответствует бозон, и наоборот. Теория, впервые предложенная в 1976 году, продвинула суперсимметрию на шаг вперед, породив супергравитацию. Когда Хокинг читал свою лекцию, супергравитация казалась решением, которого все ждали: перспективным кандидатом на квантовую теорию гравитации. Но концепция оказалась неудобной. Она увеличивала количество измерений пространства-времени, требуя серьезного усложнения предложенных Эйнштейном уравнений. Любые вычисления занимали месяцы, а результаты были переполнены бесконечностями и частицами, не вписывающимися в общую картину. Хотя небольшая группа энтузиастов продолжала разрабатывать эту концепцию, ее все же перестали считать теорией квантовой гравитации. До предсказанного Хокингом конца теоретической физики было еще далеко.

При всем оптимизме вводной лекции в Кембридже в 1979 году перед Хокингом встала странная проблема, с которой он столкнулся, разрабатывая идею излучения черных дыр. Эта проблема сопровождала все попытки квантования гравитации и в пух и прах разбила один из базовых догматов физики. Хокинг воспользовался встречей в особняке богатого промышленника Вернера Эрхарда, чтобы познакомить с ней группу избранных коллег.

Деньги и славу Эрхард получил, проводя в разных городах Соединенных Штатов курсы самосовершенствования. Он попадал под влияние как ученых мужей, так и религий — от дзен-буддизма до саентологии, имея при этом склонность к физике.

Каждый год он организовывал серию лекций, приглашая к себе знаменитых физиков, например Хокинга и Ричарда Фейнмана. В 1981 году, получив приглашение, Хокинг решил рассказать о странном явлении, которое в 1976-м он описал в статье и которое с того времени не давало ему покоя. На самом деле доклад делал один из молодых аспирантов Хокинга, так как сам он к этому времени уже был лишен способности говорить. Доклад назывался «Исчезновение информации в черной дыре».

Предметом обсуждения стала священная вера физиков в возможность при наличии полной информации о физической системе восстановить ее прошлое. Представьте пролетающий у вас над головой мяч. Зная, как быстро и в каком направлении он перемещается, можно точно определить, откуда он прилетел и мимо каких объектов пролетал в процессе своего движения. Или возьмем контейнер, заполненный молекулами газа. Если удастся измерить положение и скорость каждой молекулы, можно определить местоположение всех частиц в произвольный момент времени в прошлом. Чем ситуации более реалистичны, тем они обычно более сложны. Рассмотрим, к примеру, ноутбук, при помощи которого я писал эту главу. Для точной реконструкции этапов его изготовления мне потребуется много информации об окружающем мире, но в принципе законам физики такая возможность не противоречит. На еще более высоком уровне сложности обладание всей информацией о квантовом состоянии позволяет установить прошлое этого состояния. Фактически это жестко прописано в законах квантовой физики: информация сохраняется всегда. Именно она является основой прогнозирования, поэтому физики крепко держатся за фундаментальное правило, гласящее, что информация никогда не уничтожается.

Это правило соблюдается, но только не для черных дыр. Если вы бросите в черную дыру копию этой книги, книга исчезнет. Масса и площадь поверхности черной дыры слегка увеличатся, а сама дыра будет испускать излучение. В конечном счете она полностью испарится и исчезнет, оставив после себя только лишенное характерных черт излучение. Если бросить в дыру сумку с воздухом, масса которой совпадает с массой книги, произойдет то же самое: площадь поверхности черной дыры увеличится, дыра испустит излучение и в конце концов исчезнет, оставив вам то же самое количество излучения. Результат в обеих ситуациях будет совершенно аналогичным, хотя начинались они по-разному. Более того, нам даже не нужно ждать исчезновения черной дыры. Испуская излучение, дыры будут выглядеть одинаково, не давая возможности определить, что именно послужило начальной точкой — книга или сумка с воздухом. Информация просто исчезнет.

Хокинг констатировал следующий парадокс: если черные дыры существуют, они должны излучать энергию и испаряться, но это означает, что поведение Вселенной не поддается прогнозированию. Поэтому следует отбросить концепцию прямой связи между причиной и следствием, на которой строятся ньютоновская механика, теория относительности Эйнштейна и квантовая физика. Заявление Хокинга возмутило его коллег. Многие попросту отказались признавать существование подобных вещей. Исчезновение информации означает, что как у прогностической науки у физики нет будущего. Спасение виделось в гипотезе о более сложной, чем это изначально казалось, структуре черной дыры, с действующими законами физики микромира, позволяющими как сохранять информацию, так и гарантировать ее высвобождение после исчезновения черной дыры. Точный ответ могла дать только квантовая гравитация.

В 1967 Брайс Девитт разработал два противоположных друг другу манифеста квантования общей теории относительности. Уже достигший сорокалетнего возраста и потративший почти двадцать лет на решение нереально сложной задачи, он выразил суть своей работы в трех рукописях. Они стали известными как «Трилогия» и превратились для многих в сборник догматов квантовой гравитации. Девитт тщательно перечислил все, что было сделано в этой области до него, но его труды заложили основу объединения квантовой физики и общей теории относительности настолько непохожим на других способом, что, по сути, он добавил свою работу к уже существующим достижениям.

Первая из трех работ описывала так называемый канонический подход. Именно его ранее предлагали другие физики, в том числе Питер Бергман, Поль Дирак, Чарльз Мизнер и Джон Уиллер. Как и в общей теории относительности, центральную роль играла геометрия. Пространство-время делилось на две отдельные части: пространство и время. Общая теория относительности из теории пространства-времени как целого превращалась теорию развития пространства во времени. Затем Девитт вывел уравнение, позволяющее вычислять вероятности данной геометрии пространства в определенный момент времени, показав таким образом, что в картину можно добавить квантовую физику. Подобно Шрёдингеру, который ввел квантовую физику для обычных систем, Девитт нашел волновую функцию для геометрии пространства.

От канонического подхода Девитт вскоре отказался, но его быстро принял Джон Уиллер. Девитт показал ему свое уравнение, когда они встретились в аэропорту Роли-Дерхем. Как вспоминает Девитт: «Уиллер пришел от него в чрезвычайный восторг и принялся при каждом удобном случае вставлять его в свои лекции». В течение многих лет Девитт будет называть эту формулу уравнением Уиллера, а Уиллер — уравнением Девитта. Все остальные называли ее уравнением Уиллера-Девитта.

Основные же идеи содержались во второй и третьей работах трилогии Девитта. В них намечался альтернативный путь, ковариантный подход. Геометрия при этом полностью исключалась из рассмотрения, а гравитация превращалась в еще одно взаимодействие, передаваемое через частицу-переносчик — гравитон. Именно этот подход, пытающийся повторить успех квантовой электродинамики и стандартной модели, привел к появлению неприятных бесконечностей, после Оксфордского симпозиума по квантовой гравитации в 1974 году резко затормозивших прогресс в данной области.

Канонический и ковариантный подходы воплотили две разные философии и с разных сторон подошли к задаче квантования гравитации. Канонический подход в первую очередь рассматривал геометрию, в то время как в ковариантном подходе во главу угла ставились частицы, поля и унификация. Разница подходов стала причиной серьезных разногласий в физическом сообществе.

Знамя ковариантного подхода в конечном счете было подхвачено радикально новым направлением, получившим название теории струн. Изначально теория струн появилась в конце 1960-х как попытка энтузиастов объяснить поведение целого зоопарка экзотических частиц, обнаруженного во время экспериментов с ускорителем. Основная идея состояла в том, что эти частицы — крошечные точечные объекты — лучше всего описываются в терминах микроскопических вибрирующих фрагментов струн. Частицы разной массы представляют собой не что иное, как вибрации плавающих в пространстве маленьких струн. Хитрость состояла в том, что одна такая струна была в состоянии описать все частицы. Чем больше колебания струны, тем выше ее энергия и тем более тяжелую частицу она описывает. Это тоже было объединение, просто его способ кардинально отличался от всего, что предлагалось раньше.

Идея фундаментальных струн была захватывающей, но несовершенной. Попытки получить с ее помощью любые предсказания приводили к появлению бесконечных значений, которые не допускали перенормирования, выполняемого как в квантовой электродинамике, так и в стандартной модели. Кроме того, новая теория предсказывала существование частицы, которая вела себя в точности как гравитон — его считали ответственным за гравитационные взаимодействия. Гравитон требовался в квантовой теории гравитации, но был совершенно не нужен в задаче, решить которую была призвана теория струн: найти объяснение экзотическим новым частицам, обнаруженным в ускорителях.

Пережив первоначальный всплеск интереса, к середине 1970-х теория струн была предана забвению, будучи отвергнутой большинством ведущих физиков. Один из ее немногочисленных сторонников, лауреат Нобелевской премии Мари Гелл-Ман называл себя «своего рода покровителем теории струн» и «борцом за ее сохранение». Он вспоминает: «В Калехе я создал заповедник для находящихся под угрозой исчезновения теоретиков суперструн, и с 1972-го по 1984 год большая часть работ по теории струн выполнялась именно здесь».

В 1984 году теоретик из заповедника Мари Гелл-Мана Джон Шварц объединился с молодым физиком из Лондона Майклом Грином. Совместно они предположили, что теория струн может оказаться полезной при построении теории квантовой гравитации. Они показали, как в десятимерной вселенной теория струн, удовлетворяющая определенным ограничениям и подчиняющаяся определенной симметрии, может быть связана с квантовой гравитацией. На следующий год группа специалистов по физике частиц и релятивистов, в которую вошли Эдвард Виттен из Принстона, Филипп Канделас из Остина, штат Техас, а также Эндрю Строминжер и Гари Горовиц из Санта-Барбары, пошла еще дальше. Они показали, что если эти шесть дополнительных измерений являются пространством Калаби-Яу, решение уравнений теории струн будет выглядеть в точности как суперсимметричная версия стандартной модели. Отсюда до стандартной модели оставался всего один небольшой шаг.

К концу 1980-х теория струн набрала огромную силу. Казалось, она может принести пользу всем. Математика выглядела новой и увлекательной, почти как неевклидова геометрия для Эйнштейна, когда он с ее помощью пытался понять общую теорию относительности. Математики применяли новейшие инструменты — не только геометрию, но также теорию чисел и топологию, — пытаясь понять, что может дать теория струн.

К концу XX века теория струн набрала обороты, став более увлекательной и последовательной и вместе с тем более сложной и непонятной. В 1995 году на ежегодной конференции по теории струн в Калифорнии Эдвард Виттен объявил, что все возникшие за предыдущее десятилетие модели теории струн на самом деле связаны друг с другом и, по сути, являются различными аспектами единой, более богатой М-теории. Как он выразился: «Буква М может означать Магическая, Мистическая или Мембранная — в зависимости от ваших предпочтений». Эта теория охватывала собой не только струны, но и населяющие многомерную Вселенную многомерные объекты, называемые мембранами, или, коротко, бранами.

Несмотря на эйфорию и гордость, которую теория струн вызывала у своих создателей, она не смогла обойти почти экзистенциальную проблему. Версии теории струн были слишком многочисленными. И даже выбор какой-то одной версии не избавлял от набора вероятных решений, имеющих соответствие в реальном мире. По грубым прикидкам, для каждой версии теории струн может существовать 10 500 решений — не слишком красивая панорама вероятных вселенных, которую стали называть ландшафтом. Однозначные предсказания теория струн делать не умела.

По словам некоторых известных скептиков, теория струн обещала слишком много, а дала слишком мало. «Я считаю всю эту тему с суперструнами полным сумасшествием и движением в неверном направлении, — сказал в интервью незадолго до своей смерти в 1987 году Ричард Фейнман. — Мне не нравится отсутствие каких бы то ни было расчетов. Мне не нравится, что идеи не проверяются. Мне не нравится, что для любых расхождений с экспериментальными данными придумывается какое-то объяснение. Все это выглядит неправильно».

Взглядам Фейнмана вторил Шелдон Глэшоу, вместе со Стивеном Вайнбергом и Абдусом Саламом создавший в высшей мере успешную стандартную модель. Он писал, что «физика суперструн пока еще не доказала работоспособности своих теорий. Занимающиеся ею ученые не могут показать, что стандартная теория логически вытекает из теории струн. Они даже не могут быть уверены в том, что в их формализм входит описание таких вещей, как протоны и электроны».

Дэниел Фридан, видный участник первой революции в области теории струн, происходившей в 1980-е, недостатки теории признает. По его словам: «Многолетний кризис теории струн состоит в ее полной неспособности объяснить или предсказать физику любого удаленного процесса. Теория струн не дает конкретных объяснений существующим сведениям о реальном мире и не делает никаких определенных прогнозов. Невозможно оценить, а тем более установить ее надежность. В качестве претендента на физическую теорию теория струн не заслуживает доверия». Однако подобные скептики были в меньшинстве, их голос легко заглушался. Впрочем, физиков 1980-х и 1990-х, стоящих перед необходимостью овладеть квантовой гравитацией, можно простить за мысли о приоритете ковариантного подхода и преимуществах теории струн.

В теории струн была одна вещь, раздражавшая многих релятивистов: в ней, как в любом ковариантном подходе к квантовой гравитации, казалось, исчезала главная и основополагающая вещь — геометрия пространства-времени. Все сводилось к описанию взаимодействия, примерно как в объединившей в себе три вида взаимодействий стандартной модели, а также к способу его квантования. Небольшая группа релятивистов предпочитала двигаться вперед другой дорогой — через принятый Уиллером и отвергнутый Девиттом канонический подход. Он допускал разработку квантовой теории самой геометрии. В середине 1980-х перспективное решение было найдено индийским релятивистом Абэем Аштекаром. Это был преданный своему делу ученый из Сиракьюзского университета. Он нашел гениальный способ переписать уравнения Эйнштейна таким образом, чтобы оттуда исчезла ужасная нелинейность, в результате общая теория относительности приобрела намного более простой вид. Хитрость Аштекара неожиданным образом разблокировала уравнения Эйнштейна и позволила трем молодым релятивистам «поиграть» с их квантовой природой.

Как и Брайс Девитт, Ли Смолин увлекся квантовой гравитацией сразу же после поступления в аспирантуру в Гарварде в 1970-х. Его научный руководитель Сидни Коулмен дал ему возможность с головой погрузиться в эту тему, работая в Брандейском университете со Стенли Дезером. Школярские попытки квантования гравитации с треском провалились, но Смолин сохранил страстное желание решить эту задачу. И только в Йельском университете, будучи уже доцентом кафедры, он обнаружил, насколько хитрость Аштекара облегчила его работу. В Йеле Смолин начал сотрудничать с Теодором Якобсоном, бывшим студентом Сесиль Девитт-Моретт из Техасской релятивистской группы. Смолин и Якобсон обнаружили, что намного проще рассматривать не квантовые свойства геометрии в изолированных точках пространства в зависимости от времени, а набор точек, по сути, исследуя фрагменты пространства в определенные моменты времени. В их случае естественными строительными кирпичиками для квантовой теории стали петли в пространстве, позволяющие находить решения уравнения Уиллера-Девитта. Казалось, все встало на свои места и появился новый способ представления квантовой геометрии. Петли могли связываться друг с другом и переплетаться, образуя подобие кольчуги или другой замысловатой ткани. При этом, как и в случае с тканью, при наблюдении с большого расстояния переплетения нитей исчезают и появляется гладкое искривленное пространство-время из теории Эйнштейна. Подход Смолина и Якобсона был назван петлевой квантовой гравитацией.

К исследованиям Смолина присоединился молодой критически настроенный физик из Италии Карло Ровелли, также делавший первые шаги в нереально сложной алгебре квантовой гравитации. Ровелли нравилось быть бунтарем. В студенческие годы в Риме он создал альтернативную радиостанцию, преследовался властями за свои политические взгляды и чуть не попал в тюрьму за отказ от воинской службы. Ему подходили альтернативные воззрения. Смолин и Ровелли развили петлевой подход, исследовав, каким образом петли могут соединяться друг с другом, переплетаться и завязываться в узел. При этом они двигались от общей геометрии пространства ко все более детальным и фрагментарным представлениям. В середине 1990-х они натолкнулись на старую идею, которую Роджер Пенроуз использовал для описания квантовых систем в терминах простого математического наполнения. Пенроуз называл это спиновой сетью. Напоминающая детский гимнастический снаряд «паутинка», структура представляет собой сеть из связанных друг с другом вершин, каждая из которых обладает определенными квантовыми свойствами. Ровелли и Смолин показали, что такие сети будут наилучшими решениями уравнения Уиллера-Девитта. Но они сильно отличаются от интуитивного представления пространства и времени, с которыми привыкли работать все релятивисты.

Спиновые сети Ровелли и Смолина стали совершенно новым взглядом на квантовую гравитацию. В предложенной ими модели пространства на квантовом уровне не существует — оно, как вода, разбито на атомы или молекулы. На макроскопическом уровне вода выглядит гладкой и однородной, в то время как на самом деле она состоит из молекул, то есть небольших групп протонов, электронов и нейтронов, плавающих в пустом пространстве и слабо связанных друг с другом силой электрического взаимодействия. Совершенно аналогично, согласно воззрениям Ровелли и Смолина, пространство может казаться однородным, но перестает существовать при взгляде на него через мощный микроскоп. В их теории, если взглянуть с расстояния, не превышающего триллионной от триллионной сантиметра, вместо пространства появляется решетка, или сеть.

Теория петлевой квантовой гравитации стала реальным конкурентом теории струн в попытках квантования гравитации. Она и ее производные явились канонической альтернативой ковариантному подходу, выражавшемуся теорией струн. Ее поборники не пытались объединять все взаимодействия, но, взяв в качестве отправной точки геометрию, попытались сохранить красоту изначальной идеи Эйнштейна, выраженную в общей теории относительности. Как ни парадоксально, при этом они отказались рассматривать представления о пространстве-времени как нечто фундаментальное.

На лекции, которую Брайс Девитт читал в 2004 году незадолго до своей смерти, он поражался тому, как сильно изменились представления о квантовой гравитации: «При взгляде на теорию струн поражаешься, насколько сильно за пятьдесят лет поменялись роли. Раньше гравитация считалась безобидным фоном, не имеющим отношения к квантовой теории поля. Сейчас же она играет центральную роль. Ее наличие оправдывает теорию струн! В английском языке есть поговорка: “Нельзя сделать шелковый кошель из свиного уха”. В начале семидесятых теория струн была свиным ухом. Никто не воспринимал ее как фундаментальную теорию… В начале восьмидесятых картина перевернулась с ног на голову. Теория струн внезапно потребовалась для объяснения гравитации и прочих связанных и не связанных с ней вещей. С этой точки зрения она превратилась в шелковый кошель».

Над теорией струн Девитт никогда не работал, но вектор его пристрастий был вполне четким. Канонический подход вызывал у него намного меньший энтузиазм. Он ненавидел уравнение Уиллера-Девитта, к появлению которого в свое время приложил руку. Он считал, что «место этого уравнения на свалке истории», потому что, кроме всего прочего, «оно нарушает сам дух относительности». Фактически, с точки зрения Девитта, «уравнение Уиллера-Девитта было некорректным… Им нельзя пользоваться ни как определением квантовой гравитации, ни как основой для подробного и углубленного анализа». Работу Абэя Аштекара над своим уравнением он назвал «элегантной», но добавил, что «в отрыве от такого без сомнения важного результата, как модель “спиновой пены”, я считаю эту работу неуместной». Неприязнь Девитта была отражением популярного в теоретической физике взгляда: теория струн становилась приоритетной.

Приверженцы теории струн наслаждались, как им казалось, своим успехом. Вернувшийся в Лондон Майкл Дафф объявил: «Мы достигли огромного прогресса как в теории струн, так и в М-теории. И это касается лишь попыток унификации». Многие теоретики были убеждены в скором открытии суперсимметрии и дополнительных измерений, в результате чего теория струн останется единственным возможным подходом. Сам Стивен Хокинг говорил, что «М-теория является единственным кандидатом на роль полной теории Вселенной». На вопрос о конкурирующем каноническом подходе, рассматриваемом многими в качестве законного преемника разработанной Уиллером философии квантования гравитации, Дафф ответил упреком в смешении понятий «квантовой гравитации» и «петлевой квантовой гравитации». И в этом он был не одинок. «Они даже не могут рассчитать поведение гравитона. Как они собираются убедиться в собственной правоте?» — спрашивает убежденный сторонник теории струн Филипп Канделас.

В середине 2000-х глубоко укоренившийся антагонизм между приверженцами различных подходов к проблеме квантовой гравитации вышел наружу. В течение многих лет в блогах и популярных физических журналах появлялись комментарии к статьям известных ученых мужей, ставящие под сомнение господство теории струн в теоретической физике. В 2006 году вышли две книги, утверждающие, что на самом деле теория струн разрушает будущее физики. Их авторы — один из апологетов петлевой квантовой гравитации Ли Смолин и физик Питер Войт из Колумбийского университета — утверждали, что впечатлительных молодых физиков привлекают к работе в области, которая почти за тридцать лет еще не представила осязаемых результатов объединения взаимодействий и объяснения квантовой гравитации. По их мнению, в научных кругах доминировали сторонники теории струн, принимавшие на работу тех, кто разделял их взгляды, и мешавшие продвижению молодежи, не придерживающейся «линии партии». Как в 2005 году писал Смолин: «Многих раздражает то, что данное сообщество, позиционирующее себя как доминирующее — и действительно доминирующее во многих местах Соединенных Штатов, — не заинтересовано в плодотворной работе в других областях. Скажем, на устраиваемые нами конференции по квантовой гравитации мы пытаемся приглашать приверженцев всех основных теорий, в том числе теории струн. И дело не в наших высоких моральных качествах; просто так принято. Но на ежегодной международной конференции по теории струн ничего подобного не происходит». Блогосферу заполнили дебаты, так как взволнованный атаками лагерь сторонников теории струн решил расставить все по своим местам. Заявления, публикуемые на «физических» сайтах, собирали сотни комментариев, представлявших собой смесь технических деталей, умствований и откровенного невежества. Все рвались высказать свое мнение.

Враждебность по отношению к теории струн проявилась в 2011 году, когда Майкл Грин, сменивший Хокинга на должности Лукасовского профессора, решил прочитать в Оксфорде лекцию по этой теме. В 1984-м году именно Грин вместе с Джоном Шварцем дал толчок к развитию теории струн, а в начале 1990-х я присутствовал на его коллоквиуме в Лондоне, прошедшем с огромным успехом. Занимающиеся этой темой теоретики тогда были на коне. На этот раз в Оксфорде царила куда более холодная атмосфера. Большинство вопросов касалось деталей выступления, но проскакивали и откровенно колкие насмешки. Сейчас ни одна публичная лекция по теории струн не обходится без неизбежного вопроса: «Допускает ли эта теория проверку?». И задается он всегда лицами, принадлежащими к лагерю противников теории струн.

Пока еще нельзя сказать, когда же антагонизм между различными группами, работающими над квантовой гравитацией, изживет себя. Некоторое время противники теории струн со своими версиями квантовой гравитации были далеки от процветания, но сейчас, по всей видимости, гонения начались уже и на сторонников этой теории.

Примечательным результатом борьбы стала популяризация квантовой гравитации среди широкой публики. Война между каноническим и ковариантным подходами попала даже в телесериал «Теория большого взрыва». Персонажи разрывают свои отношения, потому что не могут договориться, какому подходу следует учить их детей. Как говорит Лесли Уинкл Леонарду Хофстедеру, выбегая из комнаты: «Это камень преткновения».

Через тридцать лет после того как Стивен Хокинг предсказал конец физики, а затем обрушил на ничего не подозревающий мир парадокс, связанный с исчезновением информации в черных дырах, квантовая теория гравитации так и не появилась, не говоря уже о единой теории фундаментальных взаимодействий. Но несмотря на раздоры при поиске квантовой гравитации, общность взглядов тоже присутствует. Возник новый и практически общепринятый взгляд на природу пространства-времени. Сторонники всех подходов, от теории струн и петлевой квантовой гравитации до более узконаправленных идей квантования общей теории относительности, отказываются от пространства-времени как от фундаментальной сущности. Возможно, это понимание можно напрямую связать с открытым Хокингом излучением черных дыр и оно поможет решить проблему исчезновения информации в черных дырах заодно с проблемой утраченной физикой возможности прогнозирования. Для устранения парадокса Хокинга нужно первым делом понять, каким образом черные дыры хранят поглощенную ими информацию и в каком виде они могут отдавать ее в окружающий мир. Но для этого уже недостаточно построенной на общей теории относительности наивной модели, ограничивающейся только горизонтом событий. Как ни странно, пролить свет на этот вопрос в какой-то степени могут петлевая квантовая гравитация и теория струн совместно с менее распространенными и менее известными подходами к квантовой гравитации.

В петлевой квантовой гравитации пространство-время дробится на мелкие части, причем существует некий минимальный размер, после которого уже не имеет смысла говорить о таких понятиях, как площадь и объем. Ли Смолин, Карло Ровелли и Кирилл Краснов из Ноттингемского университета показали, что эта теория позволяет разделить площадь черной дыры на микроскопические фрагменты, каждый из которых хранит бит информации как экран с цифровыми данными. Энтузиасты петлевой квантовой гравитации утверждают, что сложение этих фрагментов дает корректное значение энтропии черной дыры.

Приверженцы теории струн смотрят на вещи немного под другим углом. Эндрю Строминджер и Камра Вафа из Гарварда показали, что текущее воплощение теории струн — М-теория — также позволяет вывести точное соотношение между энтропией, информацией и площадью черной дыры. Для конкретного типа черной дыры они смогли показать, как объединение определенных типов бран дает возможность сохранить нужное количество информации. Враны предоставляют черной дыре микроструктуру, точно подходящую для разрешения парадокса Хокинга. В более общем виде они считают, что черная дыра представляет собой бурлящую смесь струн и бран, напоминающую запутанный клубок, концы и края которого бьются о горизонт. И эти биты бран и струн, отскакивающие от горизонта событий, могут использоваться для восстановления всей хранящейся в черной дыре информации. И снова сложением цифр получается корректное значение энтропии.

Создается впечатление, что при всем своем отличии и петлевая квантовая гравитация, и теория струн находятся на верном пути к разрешению информационного парадокса. Потому что если горизонт событий и в самом деле хранит информацию, именно она может являться топливом для испускаемого черной дырой излучения Хокинга, которое выводит информацию в окружающий мир по мере того, как сама дыра медленно испаряется. Тогда к завершению этого процесса вся изначально поглощенная информация возвращается и речи о ее потере больше нет.

Приверженцы теории струн весьма смело и настойчиво утверждают, что обнаружили связанное с излучением Хокинга еще более глубокое свойство физических теорий. Черные дыры кажутся странными, так как количество сохраняемой ими информации, хотя и связано с энтропией, является функцией не объема, как наивно можно было бы ожидать, а площади поверхности — впрочем, это еще в середине 1970-х утверждали Бекенштейн и Хокинг. Но в более общем виде это означает, что максимальное количество информации, которое можно сохранить в произвольном объеме пространства, всегда ограниченно. Чтобы найти это максимальное количество, следует взять гипотетическую черную дыру, занимающую в пространстве определенный объем, и посчитать, сколько информации в состоянии сохранить ее поверхность. Таким образом, вместо описания физики фрагмента пространства достаточно определить, что происходит на окружающей это пространство поверхности, — примерно как двумерная голограмма может содержать все данные о трехмерной сцене. Но если подобное верно для фрагмента пространства, оно должно быть верным везде, в том числе для Вселенной как целого. В подобной голографической Вселенной поведение пространства-времени в отдельных точках становится уже неважным.

Это свойство является настолько поразительным, что Эдвард Виттен и ряд его коллег, занимающихся теорией струн, объявили пространство-время «приблизительной, производной классической концепцией», не имеющей смысла на квантовом уровне. Создается впечатление, что при любом подходе к квантовой гравитации на наиболее фундаментальном уровне пространства-времени не существует.

Когда в 1950-х Джон Уиллер со своими студентами начал задумываться о пространстве-времени и квантах, он предположил, что если бы пространство можно было рассмотреть через невероятный сверхмощный микроскоп, оказалось бы, что «локально пространство напоминает пену». Его прозорливости можно только удивляться, но в свете вещей, которые мы только начинаем понимать, даже Уиллер выглядит консерватором. Однако даже пена дает только начальное представление о сложности явления, порождающего пространство-время.

Кажется, пора пересмотреть одну из основных идей, лежащих в основе великой теории Эйнштейна, — само пространство-время. По-видимому, кванты раздвинули общую теорию относительности до границ ее применимости, и следует выработать совершенно новый стиль мышления. Есть и другие намеки на то, что теория Эйнштейна больше не сможет ничего рассказать нам ни о пространстве, ни о времени, ни о Вселенной в целом. Как в свое время отметил Уиллер, именно доведя теорию до границ применимости, мы получаем новые и удивительные результаты. Только при таких условиях рано или поздно проявится нечто большее и лучшее, способное в итоге занять место великого открытия Эйнштейна.

Глава 13. Показная экстраполяция

Я только что закончил читать лекцию и стоял вместе со слушателями в главном зале Института астрономии Кембриджского университета, попивая дешевое вино из пластикового стаканчика. Мы собирались группами, перемещаясь по залу и пытаясь завязать оживленный разговор. Лекция, которую меня пригласили прочитать, рассказывала об измененной гравитации и описывала класс теорий, предложенных, чтобы избавиться от общей теории относительности при объяснении ряда космологических загадок. Во время лекции никаких сюрпризов не было. В начале лекции я запнулся, опровергая комментарий о темной материи, но благополучно вышел из положения. Никто не говорил, что я не прав, никто не надоедал вопросами, и я собрался отправиться домой в Оксфорд.

Однако ко мне, сверкая глазами и размахивая белым пластиковым стаканчиком как оружием, приблизился директор института Джордж Эфстатиу. «Спасибо, что приехал, — сказал он, — выступление было интересным. Должен сказать, что это была хорошая лекция на реально глупую тему». Я вежливо улыбнулся в ответ на его хлопок по моей спине. С подобной реакцией я сталкивался не в первый раз, так что удивляться не приходилось. Эфстатиу играл важную роль в проработке деталей развития темной материи при формировании крупномасштабной структуры. Кроме того, он одним из первых начал утверждать, что распределение галактик свидетельствует о космологической константе. Быстро поднимающийся по карьерной лестнице Эфстатиу был преуспевающим и уверенным в себе человеком. «Приступив к руководству институтом, я попытался объявить его зоной, свободной от модифицированной гравитации. И в целом, я думаю, у меня это получилось». Он лучезарно улыбался, в то время как люди вокруг нас смотрели в пол. «Какого черта вы над этим работаете?» — спросил он, не ожидая ответа.

За несколько месяцев до этого я принял участие в небольшом семинаре в Королевской обсерватории в Эдинбурге, целиком посвященном альтернативным теориям гравитации. Участники этого мероприятия представляли собой странную смесь астрономов, математиков и физиков. Атмосфера была особой. Каждое выступление завершалось дружными аплодисментами, как в какой-нибудь группе взаимопомощи. В воздухе стоял гул, как будто все доклады являлись откровениями некоего пророческого закона физики, открывающими новые горизонты. Пророками чувствовали себя все. Каждый ощущал себя Эйнштейном. Это чувство локтя напомнило мне мое краткое юношеское увлечение троцкизмом, в период которого я испытал пьянящее чувство товарищества, ведь мы с моими товарищами-агитаторами совершенно одинаково считали окружающий мир продажным в своей основе.

Фанатичный энтузиазм семинара заставил меня ощутить дискомфорт, как от причастности к лжеучению. Аплодисменты после моего собственного доклада вызвали у меня почти физическое ощущение тошноты, и мне пришлось покинуть аудиторию. Я был несправедлив; в аудитории сидели люди, годами работавшие над альтернативными теориями гравитации и боровшиеся против господствующих тенденций, к которым относилась и святая вера в Эйнштейна. Статьи этих ученых регулярно отвергались просто потому, что тема была совершенно не модной. Они привыкли сталкиваться с враждебно настроенной публикой. А на этом семинаре их рвение отыскало, наконец, благодарных слушателей, и они смогли спокойно обсудить интересующую их тему: опровержение общей теории относительности Эйнштейна.

Большинство моих коллег не горят желанием вносить изменения в грандиозные труды Эйнштейна — как говорится, если что-то работает, лучше это не трогать. Особенно это касается тех, кто принимал участие в славном возрождении 1960-х, когда общая теория относительности вышла из темного застойного прошлого, чтобы снова оказаться в центре внимания и превратиться в прекрасное средство для объяснения всего, от смерти звезд до судьбы Вселенной. Это поколение астрофизиков до сих пор ощущает магическую мощь теории Эйнштейна. Уровень лояльности я смог оценить на другой конференции, проводившейся в Королевском астрономическом обществе в 2010 году. В тех же залах, где Эддингтон представлял результаты экспедиции для наблюдения за затмением и клеймил Чандрасекара за предположение о возможности гравитационного коллапса, собранию астрофизиков и астрономов был задан вопрос: кто из них верит в корректность теории Эйнштейна? Поднялось несколько рук. При ближайшем рассмотрении выяснилось, что они принадлежали представителям той группы, которая в 1960-е занималась широким внедрением общей теории относительности. По их мнению, теория была слишком странной и слишком красивой, чтобы вносить в нее какие бы то ни было изменения.

Невозможно отрицать колоссальные успехи общей теории относительности на протяжении XX века, но настало время взглянуть на вещи по-новому. Наука может только выиграть, если признает, что повторяется история с ньютоновской теорией гравитации. Она до сих пор применима и прекрасно работает; она позволяет объяснить движение объектов на нашей планете, движение планет и даже эволюцию галактик. Но в более экстремальных ситуациях она неприменима. При увеличении силы тяжести более полезные и точные прогнозы дает уже общая теория относительности Эйнштейна. И возможно, пришло время сделать следующий шаг и заняться поисками теории, превосходящей общую теорию относительности уже в ее граничных точках.

Проблемы с общей теорией относительности при очень больших или очень малых масштабах, а также для очень сильной или очень слабой силы тяжести могут быть индикаторами ее ограниченной применимости. Невозможность объединения общей теории относительности с квантовой физикой также может указывать на разность в поведении этих теорий в очень маленьком масштабе, в котором мы ищем между ними совпадения. Предсказание общей теории относительности, гласящее, что 96% нашей Вселенной заполнено темной и непонятной материей, может означать только неприменимость нашей теории гравитации. И сейчас, почти через сто лет после оглашения Эйнштейном своего открытия, возможно, имеет смысл пересмотреть границы его применимости.

История полна попыток модифицировать общую теорию относительности. С момента ее первой публикации Эйнштейн ощущал, что работа еще не окончена и теория является частью чего-то большего. Снова и снова он безуспешно пытался вставить общую относительность в свои великие теории объединения. Артур Эддингтон также провел последнее десятилетие своей жизни, пытаясь разработать собственную фундаментальную теорию, магический сплав расчетов, цифр и совпадений, позволяющий объяснить все, от электромагнетизма до пространства-времени. Поиск фундаментальной теории стал для Эддингтона амбициозным начинанием, которое медленно, но верно подрывало его престиж.

Физик из Кембриджа Поль Дирак считал общую теорию относительности Эйнштейна идеальным примером того, какой должна быть теория. В конце жизни он говорил: «Предусмотренная природой красота уравнений вызывает сильную эмоциональную реакцию», а в уравнениях Эйнштейна эта красота была. Еще Дираку не давали покоя наблюдаемые в окружающем мире совпадения численных значений, которые в случае действительно красивых фундаментальных уравнений просто не могли быть реальными совпадениями. В наблюдениях фигурировали кое-какие очень-очень большие числа, которые не могли оказаться случайными. Сравним электрическое взаимодействие между электроном и протоном с гравитационным взаимодействием между ними. Первое во много раз превосходит второе, и множитель в этом выражении содержит тридцать один ноль. Это чрезвычайно большое число, подходящее в качестве характеристики более серьезного параметра, например возраста Вселенной. Герман Вейль и Артур Эддингтон тоже считали, что для совпадения таких огромных чисел должна быть какая-то причина. Поль Дирак сделал шаг вперед, предположив, что сила тяжести, определяемая постоянной Ньютона, должна меняться во времени, что противоречит общей теории относительности.

Свою идею Дирак предложил в конце 1930-х, но никогда ее не развивал. В 1950-е и 1960-е годы Роберт Дикке и один из его принстонских студентов, Карл Вране, совместно с Паскуалем Йорданом из Гамбурга вдохнули в идею Дирака новую жизнь и создали альтернативу теории Эйнштейна. В определенной степени это было идеальное дополнение к общей теории относительности. Как выразился Карл Бранс: «Экспериментаторы, особенно из NASA, радостно восприняли возможность оспорить теорию, которая долгое время не подтверждалась экспериментально». Подобным образом думали далеко не все, и как вспоминает Бранс: «Казалось, с течением времени многие теоретики испытали раздражение от того, что в теорию Эйнштейна вторгается другая область знаний».

После ухода в отставку Поль Дирак перебрался в университет штата Флорида и занялся обдумыванием некоторых своих странных идей. Иногда он признавался своим коллегам, что убежден в наличии лучшего, более естественного способа объяснения гравитации. Но особо о своих экспериментах в этой области он предпочитал не распространяться, боясь, что их могут счесть непредсказуемыми и умозрительными. К этому времени было сделано уже много попыток модифицировать общую теорию относительности, в основном обусловленных проблемами с поиском не содержащей бесконечностей теории квантовой гравитации. Когда дело доходит до квантовой физики, с гравитацией начинают происходить странные вещи, как указал в конце 1960-х советский физик Андрей Сахаров.

Сахаров наряду с Яковом Зельдовичем, Львом Ландау и многими другими входил в группу, собранную Игорем Курчатовым и Лаврентием Берией для работы над советским ядерным проектом. Сын учителя физики, в 1938 году в возрасте семнадцати лет Сахаров поступил в Московский государственный университет, во время войны работал инженером-изобретателем и в 1947 году получил степень кандидата физических наук в области теоретической физики. Как и Зельдович, Сахаров был успешным советским ученым. Бели Ландау спасла смерть Сталина, то Сахаров проработал над ядерным и термоядерным оружием даже дольше Зельдовича, почти двадцать лет.

В отличие от творческого, открытого и полагающегося на интуицию Зельдовича, Сахаров был больше подкован технически и сильнее интересовался абстрактными задачами. Друг о друге эти ученые отзывались с восхищением. Сахаров считал Зельдовича «человеком всесторонних интересов», в то время как Зельдович сделал комплимент уникальному и своеобразному способу решения задач своим коллегой, сказав: «Я не понимаю, как думает Сахаров».

С 1965 года Андрей Сахаров сосредоточился на космологии и гравитации, правда, работая в собственном темпе. Зельдович опубликовал множество работ, нагруженных новыми идеями, количество же публикаций Сахарова было далеко не таким внушительным. Его статей хватило бы разве что на тонкую книжку. Но среди них встречаются настоящие жемчужины, посвященные формированию структуры, происхождению материи и природе пространства-времени. В одной короткой блестящей работе утверждается, что законы, управляющие пространством-временем, — не более чем иллюзия, причиной которой является сложная квантовая природа реальности. С точки зрения Сахарова, вид и поведение пространства-времени во многом напоминают воду, кристаллы и другие сложные системы. И то, что, как нам кажется, мы видим, является не более чем картиной более фундаментальной реальности, нарисованной широкими мазками. Именно квантовые свойства молекул и слабая связь между ними однозначно придают воде вид жидкости, плещущейся вокруг нас и ведущей себя определенным образом. Несмотря на отличие в деталях, широкий взгляд Сахарова достаточно точно предсказал, как в результате прогресса в квантовой гравитации пространство-время будет восприниматься сейчас, почти сорок лет спустя.

Рассматривая теорию Эйнштейна, Сахаров предположил, что геометрия пространства-времени не является фундаментальным свойством, как не являются таковыми вязкость воды или упругость кристаллов. Эти свойства возникают из более базового описания реальности. Аналогичным образом из квантовой природы материи возникает гравитация. Простая трехстраничная работа Сахарова дала удивительный результат. Сделанное им предположение привело к естественному выводу уравнений Эйнштейна. Иными словами, квантовый мир естественным образом вызывал появление геометрии пространства-времени. Смоделированная Сахаровым теория гравитации в чем-то напоминала общую теорию относительности, но приводила к более сложному набору уравнений. Уравнения Эйнштейна сами по себе были настоящей пыткой; смоделированная же Сахаровым гравитация пошла еще дальше. Ее отличия от теории Эйнштейна проявлялись только при сильном искривлении пространства-времени вблизи черных дыр, в очень ранней Вселенной, когда все вокруг было горячим и плотным, или в микроскопическом масштабе, когда на сцену выходила квантовая пена Уиллера. Когда физические законы раздвигаются до границ своей применимости, они перестают работать и становятся частью нового, более обширного набора законов.

Эту работу Андрей Сахаров опубликовал в 1967 году, когда его голова была занята другими вещами. За долгие годы работы над проектом бомбы он получал награды от советского режима. Играя ключевую роль он, как и Зельдович, три раза награждался медалью Героя Социалистического Труда. Но близость к ядерному оружию заставила его остро осознать катастрофические последствия гонки вооружений, в которую были вовлечены Советский Союз и Соединенные Штаты Америки. Все усиливающиеся протесты Сахарова против ядерного оружия привели к тому, что он утратил свой статус. В 1968 году он пошел против режима, опубликовав статью «Размышления о прогрессе, мирном сосуществовании и интеллектуальной свободе», в которой недвусмысленно изложил свои возражения против одной из основных оборонных программ Советского Союза — развития противоракетной обороны. Это был конец пребывания Андрея Сахарова в роли идеального советского гражданина. Как ярко выраженный диссидент, он был лишен привилегий и наград, возможности работать над секретными проектами и сослан в Горький. Зельдович неодобрительно относился к так называемой социальной работе Сахарова, говоря своим коллегам, что «такие люди, как Хокинг, посвящают себя науке. Ничто не в силах их отвлечь». Но как писал в своих мемуарах Сахаров, сила его переживаний из-за ситуации в Советском Союзе была столь велика, что «я был просто вынужден говорить, действовать, отложив в сторону все, до определенных пределов даже науку».

Неудачи в научной карьере Сахарова не помешали его гипотезе о том, как кванты могут изменить общую теорию относительности, снова и снова всплывать на поверхность в следующие десятилетия. Его статья предвосхитила шквал квантовых идей, обрушившихся на общую теорию относительности в 1970-е. Некоторые релятивисты считали, что корректировка теории предложенным Сахаровым способом приведет ее в соответствие с квантовыми представлениями и решит проблему с заполняющими ее бесконечностями. Но к концу десятилетия Стивен Вайнберг и Эдвард Виттен доказали, что бесконечности в данном случае являются неустранимыми. Корректировкой теории убрать их было невозможно, требовалось нечто более существенное.

«Супертеории» — теории супергравитации и суперструн — были определенно более основательными и на первый взгляд обещали довольно много в плане преобразования теории Эйнштейна. Фундаментальная идея, лежащая в основе общей теории относительности, не изменилась — центральная роль при понимании гравитации по-прежнему отводилась пространству-времени. Просто это уже не было четырехмерное пространство-время, изначально предполагавшееся Эйнштейном. В девяти- и одиннадцатимерном пространстве-времени супертеорий уравнения выглядели похожим образом, но на практике дополнительные измерения породили область новых фундаментальных частиц и силовых полей, влияющих на наблюдаемый нами четырехмерный мир.

Отдельные одинокие голоса сопротивлялись подобному насилию над общей теорией относительности, но подавляющее большинство считало, что она нуждается в исправлении при попытках ее квантования, в областях высокой плотности или кривизны рядом с сингулярностями, а также при рассмотрении Большого взрыва.

Теория Эйнштейна прекрасно работает, если избегать минного поля квантовой гравитации и не рассматривать Вселенную в начале ее существования, когда она была горячей, плотной и хаотичной. В больших масштабах в астрофизике и космологии общая теория относительности продолжает давать прекрасные результаты.

Если бы астрономия была индустрией, генеральные ассамблеи Международного астрономического союза можно было бы сравнить с мероприятиями, на которых практически каждый пытается что-то продать. На ассамблее 2000 года в Манчестере, в Великобритании тысячи людей собрались порадоваться последним открытиям и рассказать о новых проектах, которыми они собираются заниматься. На заседаниях того года присутствовала великолепная группа космологов, включая меня. Несколько лет назад были оглашены данные о сверхновой, указывающей на ускоряющееся расширение Вселенной. В этом году анонсировались измерения геометрии Вселенной. Наблюдения указывали на простую, но очень странную модель с темной материей и космологической константой. Причин для разногласий и дебатов больше не было — личные предпочтения перестали иметь значение. Это была качественная, убедительная наука, данные радовали ясностью и согласованностью, и казалось, что других вариантов просто не существует.

Один из пленарных докладов прочитал Джим Пиблс. Это мероприятие стало своего рода прославлением идей Пиблса и последствий, к которым они нас привели. Все открытия предыдущих лет тем или иным образом были обусловлены областью, которую основал Пиблс вместе с другими учеными. Но он был убежденным противником массовых течений, даже основанных им самим. В своем докладе он попытался обуздать истерию, спросив, зачем нам требуются точные измерения Вселенной. И сам ответил: для проверки наших предположений. Он рассмотрел все аспекты модели Большого взрыва. Почему сначала температура была высокой? Откуда взялась крупномасштабная структура? Как сформировались галактики? В середине доклада он указал на некий очевидный факт. Как было позднее написано в материалах ассамблеи: «Элегантная логика общей теории относительности и проверка ее точности позволяют рекомендовать ее как предпочтительную рабочую модель для космологии». Однако Пиблс предупредил, что, возможно, космологам не нужно спешить с выводами. В масштабе Солнечной системы общая теория относительности работала с максимальной точностью — прекрасным примером была прецессия Меркурия, — но мы не имеем представления, можно ли обеспечить тот же самый уровень точности в масштабе Вселенной. По его словам, в данном случае имела место «показная экстраполяция». Пиблс был прав, хотя по большому счету, участники ассамблеи не смогли воспринять значение его утверждения.

Французский астроном Леверье увлеченно доказывал, что для корректного объяснения прецессии орбиты Меркурия должна существовать новая, еще не открытая планета Вулкан, находящаяся в центре Солнечной системы. Вера в ньютоновскую гравитацию заставила его предсказать существование нового, странного и невидимого объекта. Без Вулкана ньютоновская модель не работала. Разумеется, выяснилось, что Леверье был не прав. Однако для корректировки модели потребовалась не новая планета, а новая теория гравитации.

Сейчас, в начале XXI века, мы оказались в похожей ситуации. У нас есть прекрасная теория гравитации, которая для объяснения космологических данных требует, чтобы более 96% Вселенной состояло из невидимой и нераспознаваемой нами субстанции. Может быть, это еще одна трещина в здании, возведенном Эйнштейном почти сто лет назад? Возможно, его теорию следует скорректировать с учетом принятой без лишней суеты квантовой физики. Но проверка общей теории относительности в крупном масштабе имеет свои особенности. Если убрать из картины темную материю и темную энергию, красивую теорию Эйнштейна придется пересматривать. Эту перспективу многие астрофизики воспринимают как применение кувалды, чтобы загнать машину в гараж.

Израильский релятивист Яаков Бекенштейн начал задумываться о модификации теории Эйнштейна еще в начале 1970-х, будучи аспирантом Джона Уиллера в Принстоне. В процессе размышлений об энтропии и черных дырах его крайне заинтересовали общая теория относительности и альтернативная теория, предложенная Дираком. «В какой-то момент, — сказал он, — я почувствовал, что не понимаю, почему некоторые вещи в общей теории относительности делаются определенным образом, почему важны некоторые аспекты, почему нужно следовать линии, задаваемой этой теорией. Мне показалось, что следует сопоставить ее с другими направлениями».

Из «других направлений» Бекенштейн выбрал предложенное в 1980-х годах его соотечественником, израильским астрофизиком Мордехаем Милгромом. Идея Милгрома состояла в совершенно новом взгляде на поведение гравитации в галактиках. Он указал, что свидетельства наличия темной материи при вращении галактик проявлялись только в случае очень слабой гравитационной силы. И действительно, если ньютоновская гравитация применяется в режиме экстремально слабых взаимодействий, имеет смысл ввести в рассмотрение невидимую материю, усиливающую гравитационное притяжение. Но стоит ли в такой ситуации вообще применять законы Ньютона? Милгром сделал смелое предположение, что звезды на внешнем крае галактики должны быть более тяжелыми, а значит, из центра галактики на них действует намного более сильное притяжение, чем думали изначально. И благодаря этому более сильному притяжению звезды могут двигаться с большей скоростью. Это объясняет наблюдения Веры Рубин и других астрономов, обнаруживших, что внешние части галактик движутся вокруг своих центров со скоростями, превосходящими ожидаемые. Новую теорию Милгром назвал модифицированной ньютоновской динамикой (Modifi ed Newtonian Dynamics, MOND).

Многие астрофизики сочли, что Милгром в своей модификации гравитации зашел слишком далеко. У теории не было основополагающего принципа, она относилась не к обоснованным гипотезам, а скорее к фантазиям. Бекенштейн говорил, что во время описания этой идеи в 1982 году на конференции Международного астрономического союза «некоторые смотрели на меня так, как будто я признался, что видел НЛО… Практически все считали ввод в рассмотрение темной материи важным и выступали за него». В течение следующих двух десятилетий подавляющее большинство астрофизиков и релятивистов игнорировало идею Милгрома или пыталось ее опровергнуть. Время от времени появлялись статьи, в которых закон Милгрома применялся к разным астрофизическим ситуациям и демонстрировалось, что он не работает. Зачастую эти работы были написаны на скорую руку и являлись неполными, но поскольку они опровергали MOND, то считались вполне научными и без проблем публиковались. Статьи же в защиту MOND воспринимались как ненаучные и появлялись на страницах журналов только после тяжелой борьбы. Как сказал один из астрономов, аббревиатура MOND считалась ругательством.

Пиблс взирал на эту битву сверху, но в 2002 году выступил от лица Милгрома и его коллег с упреком: «Теория MOND пока никак не опровергнута, и людей, которые ею занимаются, следует больше поощрять». Яаков Бекенштейн высказался по поводу отношения к работающим над этой теорией куда более резко: «Следует принять во внимание, что противостояние между теорией MOND и теорией темной материи не является чисто научным. В поиски темной материи инвестировались большие деньги… Теперь без нее нельзя обойтись, поскольку она стала основой многих карьер. Очевидно, что если на сцену выйдет теория, подобная MOND, это приведет к сокращению бюджета, выделяемого на исследования темной материи, и работы в этой сфере станет меньше».

С момента появления MOND Бекенштейн искал пути улучшения этой теории. Он имел склонность доискиваться до самых корней физических теорий и просто не мог оставить MOND в том состоянии, в котором она была. Он хотел получить нечто, сравнимое с общей теорией относительности и применимое во всех масштабах, от происходящего на Земле до процессов во Вселенной в целом. «Я решил, — говорил Бекенштейн, — что пришло время в качестве аргумента создать пример релятивистской теории». В 2004 году он опубликовал статью с описанием новой теории, конкурирующей с построениями Эйнштейна. Он назвал ее TeVeS, что расшифровывалось как тензон-вектор-скалярная теория гравитации. Красивой эта теория не была. Название намекало на мешанину полей, которые в совокупности приводили к совершенно новому набору уравнений, намного более сложному и запутанному, чем уравнения общей теории относительности Эйнштейна. Но при всей своей хаотичности теория Бекенштейна работала. В приложении к галактикам она вела себя как MOND, одновременно позволяя рассматривать эволюцию Вселенной и формирование крупномасштабных структур.

Большинство космологов и релятивистов относились к TeVeS с пренебрежением. Они отвергали ее как кустарный, громоздкий способ обхода проблемы, не дающий представления о ее сути. Но этот способ был предложен релятивистом с безупречной репутацией. Сформулированный Бекенштейном обобщенный второй закон термодинамики для черных дыр стал одним из наиболее глубоких откровений современной общей теории относительности и квантовой физики. Разумеется, существовала тенденция, когда старые, известные физики начинали разрабатывать странные идеи и проталкивали их силой своего авторитета. Но Бекенштейн к их числу не относился.

Бекенштейн был не одинок. Его предложение решало проблему темной материи, в то время как его коллеги пытались избавиться от космологической постоянной и темной энергии. Возросло количество гипотез, конкурирующих с общей теорией относительности, усилилась борьба вокруг корректной теории гравитации. Дополнительную аргументацию предоставляли потрясающие наблюдения, произведенные при помощи новых телескопов и инструментов, разработанных благодаря стремительному росту физической космологии. Любой анализ нового фрагмента космологических данных, подтверждающих общую теорию относительности, проходил по одной и той же схеме. Результаты неизбежно публиковались в виде пресс-релиза, а потом широко освещались в журналах, после чего с такой же неизбежностью следовал шквал статей, указывающих, что аргументы, воспринимаемые как неопровержимые доказательства общей теории относительности, на самом деле таковыми не являются.

Статья, появившаяся в январе 2008 года в журнале Nature, стала сигналом еще одного тихого сдвига. В ней группа итальянских наблюдателей анализировала данные исследования галактик. Аналогичными исследованиями Джим Пиблс и его последователи занимались почти сорок лет. Изучая способ группировки галактик, итальянская группа смогла измерить скорость, с которой они падали друг на друга, притягиваемые общим гравитационным полем. В этом не было ничего нового. Подобные вещи многократно делались и ранее для различных групп галактик. Интерес вызвал способ представления данных: на график с результатами наблюдений итальянцы заодно наложили прогнозы, полученные согласно как общей теорией относительности, так и других, альтернативных моделей гравитации. Часть предсказаний полностью совпала с экспериментальными данными, часть не имела с ними ничего общего. Но это был совершенно очевидный ход: сравнение теории с результатами наблюдений.

Статья в Nature ознаменовала изменение духа и акцентов среди практикующих космологов. С конца 1990-х годов приоритетной была задача измерения, характеристики и доказательства существования темной энергии, а в этой статье экспериментальными данными воспользовались для проверки общей теории относительности. Это было возвращение к проверке фундаментальных предположений физической космологии.

В последующие годы приоритетной задачей космологических экспериментов стала проверка общей теории относительности. Ученые все еще хотели знать, существует ли темная материя, из чего она состоит, каким образом формируются галактики, превращаясь в строительные кирпичики Вселенной. Но снова и снова на семинарах и пленарных лекциях, в заявках ученых на финансирование центральное место занимала проверка общей теории относительности.

Модификации теории гравитации до сих пор не одобряются многими, если не всеми, релятивистами. Корректировка общей теории относительности в случаях, когда она входит в противоречие с квантовой физикой, принимается спокойно, но попытки приведения пространства-времени в соответствие с результатами наблюдений — дело совсем другое. Теория Эйнштейна содержит еще много непонятного и неоткрытого, а ее исправление релятивисты считают ненужным и неэлегантным усложнением. Однако окружающий мир может не соглашаться с этим, и благодаря астрономам, снова начавшим интересоваться работами Эйнштейна, у нас есть возможность исследовать фундаментальные законы пространства-времени, дальше и глубже заглядывая в космос.

Идеи Дирака, Сахарова и Бекенштейна, подкрепленные свежими работами в наблюдательной космологии, открывают перед нами новый, слишком захватывающий, чтобы от него отмахнуться, способ мышления и ставят перед этой мощной наукой новую цель. Вместе с коллегами из Оксфорда и Ноттингема я решил принять участие в написании обзора методов модификации гравитации. Мы почувствовали себя исследователями джунглей, открывающими новые, экзотические объекты. Дюжины теорий, одна страннее другой, предлагали причудливые исправления общей теории относительности, часто с удивительными, реалистичными результатами. В нашем обзоре был представлен богатый выбор гравитационных теорий, многие из которых могли бы составить жесткую конкуренцию общей теории относительности. Над альтернативами теории Эйнштейна задумывается такое количество ученых, что на современных крупных мероприятиях — последователях устраиваемых Девиттом в Чапел-Хилл конференций и Техасских симпозиумов Альфреда Шильда — проводятся параллельные семинары с докладчиками всех возрастов и со всех континентов, пытающимися детально анализировать общую теорию относительности. Эта область науки до сих пор остается побочной, но работают над ней достаточно много ученых. Во время моего утреннего доклада в Кембридже Эфстатиу выразил свое пренебрежение. Но даже этот блестящий ум, ставший одним из пионеров современной стандартной космологической модели, в которой все играет свою роль, в том числе общая теория относительности, темная материя и темная энергия, ощутил бы энтузиазм, если бы новые астрономические данные показали нам дорогу к новой физике. А новая теория гравитации, возможно надуманная, определенно может считаться новой физикой. Осталось дождаться свежих астрономических данных, которые покажут, есть ли в ней что-то действительно революционное.

Глава 14. ЧТО-ТО ДОЛЖНО СЛУЧИТЬСЯ

Недавно я консультировал Европейское космическое агентство. Оно отвечает за отправку в космос научно-исследовательских спутников, часто совместно с NASA. Одним из их наиболее известных экспериментов является космический телескоп Хаббл, позволивший получить ряд удивительно четких и чистых снимков глубокого космоса.

Спутники — это новые форпосты науки, неописуемо сложные лаборатории для самых удивительных экспериментов, плавающие в пространстве на границе нашей досягаемости. Стоят они дорого, от полумиллиарда до нескольких миллиардов долларов каждый. Их нельзя просто так взять и запустить в небо. Годы, а порой даже десятилетия занимает планирование и принятие решения об оправданности запуска.

В Европейском космическом агентстве мы говорили о том, что будущие космические полеты должны проходить в соответствии с предложениями крупных международных групп ученых. В процессе длительных собраний, переполненных презентациями в Power Point, диаграммами Ганга и сметами возможных расходов, от которых у меня на глазах появлялись слезы, я часто терялся. Все это сильно отличалось от свободных исследований, необузданного творчества и красивой математики, так привлекавших меня в аспирантуре. Шокировало и то, что далеко идущие захватывающие проекты обсуждались как акционерные предприятия. Как будто мы открывали новые фабрики в какой-то далекой стране.

Однако в разгар нудных технических речей меня сильно поразил тот факт, что во многих предложениях по запуску спутников центральным объектом интереса указывалась общая теория относительности. Она в явном виде упоминалась во многих предложениях, чудесным образом сопровождая обсуждаемые нами детали и технические характеристики. Нас просили финансировать полеты стоимостью миллиарды долларов, в которых теория Эйнштейна должна была проверяться или применяться для исследования глубин космоса и внутренних механизмов плотных массивных объектов. Это было будущее космической науки в XXI веке. Не все предложения можно было финансировать, запускались далеко не все спутники, но выбирать было из чего.

В одном из полетов предлагалось регистрировать рябь пространства и времени, гравитационные волны, расходящиеся от закончившегося взрывом столкновения двух черных дыр. Это было порождение проектов LIGO и GEO600, монструозный интерферометр, состоящий не из одного, а из трех спутников, вращающихся вокруг Солнца и оснащенных сверхточными лазерами, лучи которых отскакивали от зеркал, разнесенных на миллионы километров. Подобная космическая антенна, использующая принцип лазерного интерферометра (Laser Interferometer Space Antenna, LISA), уточняет результаты вновь начавшихся наземных экспериментов, фиксируя слабые сигналы, которых не замечают обсерватории LIGO и GEO.

Это еще не все. Другой полет предлагается посвятить измерению истории расширения Вселенной вплоть до момента, когда ее возраст составлял одну сотую от текущего. Для этого потребуются методы физической космологии, исследующие разбитое на полосы небо для создания каталогов с сотнями миллионов галактик. Затем, глядя на то, как галактики собираются в огромную космическую сеть, тщательно изучая, как в процессе гравитационного коллапса скопления и нити света объединяются вокруг пустот, можно оценить влияние темной материи и темной энергии или узнать, справедливо ли мнение, что теория Эйнштейна перестает работать в крупном масштабе.

Был также предложен спутник, предназначенный для изучения внутреннего строения черных дыр и поиска мощных всплесков рентгеновского излучения, в конце 1960-х и 1970-х открывшего столь удивительное окно во Вселенную. На этот раз можно пойти дальше и посмотреть, как чрезмерно закрученное пространство-время в центре этих объектов будет рвать в клочья материю и свет в соответствии с предсказаниями Зельдовича, Новикова, Риса и Линден-Белла. На первый раз достаточно измерить физические процессы, происходящие рядом с печально известным горизонтом событий, сферой Шварцшильда, которая так долго была для нас загадкой.

Во время этих собраний мне стало ясно, что общая теория относительности в XXI веке останется в центре внимания физики и астрономии. А это непросто. В мире ужатых бюджетов, бедности и экономического кризиса многие дважды подумают, прежде чем тратить миллиарды евро или долларов на спутниковые полеты. Не приходится удивляться тому, что правительство США прекратило финансирование проекта LISA, хотя думать об этом крайне грустно.

Проект LISA должен был стать последним шагом, необходимым для открытия гравитационных волн. Эта антенна могла бы не только обнаружить неуловимую рябь, но и стать огромной, совершенной обсерваторией, которая использовала бы гравитационные волны для наблюдения за столкновениями черных дыр и за нейтронными звездами, вращающимися вокруг общего центра. Мы получили бы возможность многое узнать о фантастических объектах, предсказанных общей теорией относительности. Первый этап проекта LIGO имел огромный успех, хотя и не позволил сделать никаких наблюдений. Он доказал, что используемая технология, безумная мешанина лазеров, квантов и точной инженерии, действительно работает и ее можно настроить, добившись еще более продуктивной работы. Следующая стадия этого проекта, известная как Advanced LI GO, уже могла получать результаты и готовила почву для проекта LISA. Однако сейчас, после отказа в финансировании, проект LISA близок к краху. Кто захочет в период, когда существует множество более насущных нужд, вкладывать деньги в огромную махину, цель работы которой понятна лишь нескольким посвященным?

Однако поиск гравитационных волн слишком важен, чтобы просто взять и отказаться от него. Поэтому европейцы силами Европейского космического агентства решили двигаться вперед. Предлагаемый интерферометр при меньших размерах все равно довольно впечатляющий. Он по-прежнему стоит миллиарды, хотя и дешевле своего предшественника. Чрезвычайно огорченные американские релятивисты также не собираются сдаваться. Без лишнего шума разбросанные по всей стране группы пытаются разработать собственный проект, более дешевый и компактный и менее амбициозный, но тем не менее позволяющий заглянуть в глубины пространства-времени, чтобы иметь резервный план на случай, если европейцы изменят вектор своих интересов или тоже станут жертвами финансового кризиса.

Но не нужно ждать запуска спутников. Вокруг нас уже происходят фантастические вещи. Мы помним, как менялось отношение к сингулярностям, какими противоестественными их считали многие великие умы, от Альберта Эйнштейна и Артура Эддингтона до Джона Уиллера (пока он не понял, как обстоят дела). Открытие квазаров, нейтронных звезд и рентгеновского излучения, а также потрясающий творческий потенциал таких ученых, как Уиллер, Кип Торн, Яков Зельдович, Игорь Новиков, Мартин Рис, Дональд Линден-Белл и Роджер Пенроуз, привели к тому, что черные дыры стали для нас обыденной вещью. К концу периода 1960-хи 1970-х, который Кип Торн называл золотым веком общей теории относительности, черные дыры стали такой же реальной частью астрофизики и физики, как звезды и планеты.

На моей полке стоят два учебника по общей теории относительности, выпущенные в конце золотого века. Они сильно отличаются друг от друга. Один из них называется «Гравитация» и написан Джоном Уиллером и парой его способных студентов — Чарльзом Мизнером и Кипом Торном. Его объем превышает тысячу страниц, большая черная обложка напоминает готическую телефонную книгу, он тщательно иллюстрирован и содержит все сведения о пространстве-времени, которые вам могут потребоваться. Там вы найдете весь странный материал, включая все афоризмы Уиллера, которые он изрекал во время докладов и конференций. Второй учебник написан одним из отцов стандартной модели физики частиц Стивеном Вайнбергом. Получив репутацию одного из ведущих умов в квантовой физике, он также решил заняться общей теорией относительности. Его книга «Гравитация и космология» является тщательным и продуманным введением в теорию Эйнштейна. Ее содержание в какой-то степени пересекается с содержанием первого учебника, но никакого сумасбродства в ней нет. Учитывая захватывающие открытия десятилетия, предшествующего ее выходу, книга Вайнберга содержит не очень много сведений о черных дырах. Это явление аккуратно упомянуто в конце одной из центральных глав как нечто, на что следует обратить внимание в качестве результата радикального расширения границ общей теории относительности.

Можно понять, почему некоторые продолжали относится к ситуации настороженно. Да, казалось, что все доказательства указывают на наличие повсюду плотных тяжелых объектов. И объяснить их без привлечения концепции черных дыр было непросто. Однако самих черных дыр при этом пока никто не видел. Впрочем, посмотреть непосредственно на черную дыру невозможно. Вы просто ничего не увидите — черные дыры, скрываются за сферой Шварцшильда и невидимы. Но тот факт, что мы не можем их увидеть, не означает, что их не нужно искать. Более того, большая черная дыра находится в центре нашей галактики Млечный Путь. Ее вес более чем в 100 миллионов раз превышает вес Солнца, а радиус составляет примерно 10 миллионов километров. Это много. Но так как она находится в десятках тысяч световых лет от нас, ее угловой размер на небе равен примерно стомиллионной градуса, то есть, с нашей точки зрения, меньше булавочной головки и намного меньше, чем можно рассмотреть в современный телескоп. И только благодаря уму и настойчивости астрономов мы уверены в том, что черная дыра там действительно есть.

Две группы исследователей — одна из Мюнхена, вторая из Калифорнии — настойчиво следили за движением нескольких звезд, расположенных вблизи центра Млечного Пути. За более чем десять лет они определили траектории этой группы звезд и обнаружили, что они перемещаются по сильно искривленным орбитам, явно притягиваемые большой гравитационной силой. Тщательно просчитав орбиты, астрономы смогли рассчитать не только силу гравитационного притяжения, но и местоположение гравитационного центра. Объединив результаты своих наблюдений, две группы исследователей с удивительной точностью узнали массу черной дыры и указали, в каком месте пространства-времени должна находиться сингулярность.

И это еще не все. Астрономы и релятивисты направили свои усилия на создание телескопа, позволяющего увидеть черную дыру. Так называемый телескоп горизонта событий имеет разрешение в миллиардную углового градуса, то есть долю размера черной дыры на небе, а значит, даст возможность увидеть сферу Шварцшильда — поверхность черной дыры, которая, как показали Оппенгеймер и Снайдер, является застывшим во времени мгновенным состоянием. Это будет темная тень, окруженная хаотичным водоворотом, который, по прогнозам Зельдовича и Новикова, должен окружать черную дыру, — аккреционные диски звезд, газ и пыль, увлекаемые гравитационным притяжением сингулярности.

Накапливающиеся данные крайне убедительны. Сдержанность Вайнберга понять легко, но в наше время сложно найти человека, который стал бы утверждать, что в центре Млечного Пути отсутствует черная дыра. Аналогичным образом остальные галактики должны иметь в центрах черные дыры, напоминающие массивные двигатели, окруженные гигантскими спиралями звезд.

Средства массовой информации считают все связанное с общей теорией относительности и великими идеями Эйнштейна увлекательным и заслуживающим упоминания в печати. Фотографии центра нашей галактики вызвали появление заголовков «Существование черной дыры в Млечном пути доказано» на ВВС и «Доказательства показывают на черную дыру в центре Млечного Пути» в New York Times. На момент написания этой книги новостной сайт ВВС опубликовал интервью моего оксфордского коллеги, рассказывающее о том, что ранее наблюдаемый квазар оказался сверхмассивной черной дырой с массой в миллиард Солнц. Меня изумляет, что почти через пятьдесят лет после измерений Мартина Шмидта и Техасского симпозиума черные дыры по-прежнему вызывают ажиотаж.

Месяца не проходит без новостей, рассказывающих о космологии или о черных дырах, о начале Вселенной или об отголосках других вселенных, признаках таинственной мультивселенной. Такие слова, как черная дыра, Большой взрыв, темная энергия, темная материя, мультивселенная, сингулярность, кротовые норы, глубоко проникли в массовую культуру от бродвейских постановок и песен до комедийных шоу и голливудских фильмов. Общая теория относительности бесчисленными путями просачивается в научно-фантастические романы и на телевидение. С точки зрения фантазии и творчества все это превосходит самые смелые мечты Уиллера. Буквально каждый считает себя специалистом по общей теории относительности.

Эта увлеченность радует, хотя порой случаются и курьезы. Мой сын назвал меня безответственным за желание приблизить запуск Большого адронного коллайдера, и в этом мнении он был не одинок. В средствах массовой информации неоднократно повторялось, что теория струн, которая является одним из претендентов на теорию квантовой гравитации, предсказала формирование черной дыры после запуска коллайдера. При столкновении лучей протонов среди множества попадающих на детекторы объектов должны быть микроскопические черные дыры — мини-порталы в другие измерения. Мой сын знал, что черные дыры засасывают всё вокруг себя. Это же известно всем. Так зачем же мне и остальным людям в здравом уме потребовалось создавать такие безумно опасные вещи? Это же глупо.

Один из физиков пытался остановить включение Большого адронного коллайдера через суд. Во время интервью на шоу Джона Стюарта у него спросили про вероятность катастрофы, и он нарочито демонстративно ответил: «Пятьдесят процентов». Суд он проиграл, коллайдер запустили, а мы все еще живы. К сожалению, обнаружить миниатюрные черные дыры не удалось.

На каждой публичной лекции о моей работе мне задают один и тот же вопрос: «Что было до Большого взрыва?». Я прибегаю к различным объяснениям. Один из вариантов ответа: «До Большого взрыва времени не существовало». Моя коллега, Джоселлин Белл Бёрнелл, отвечает в стиле дзен-буддизма: «Это все равно что на Северном полюсе спрашивать, что такое север». Все было бы намного проще, если бы я мог прибегнуть к математике, но в этом случае большая часть аудитории не поймет, о чем речь. Целые десятилетия благодаря теориям сингулярности Стивена Хокинга и Роджера Пенроуза мы верили, что до Большого взрыва ничего не было. Это одна из тех математических истин, появившихся в золотой век общей теории относительности, которые невозможно обойти.

Недавно я обнаружил, что мои ответы на такие вопросы стали более разнообразными, но менее точными. В последние годы благодаря открытиям в области квантовой гравитации и космологии вопрос начального времени стал широко обсуждаться. Когда вы поворачиваете время вспять и делаете Вселенную более плотной, более горячей и более хаотичной, начинают действовать квантовая пена, струны, браны и даже петли. Некоторые считают, что в этот момент пространство-время прекращает свое существование, и разговор о начальной сингулярности перестает иметь смысл.

Так что же происходило до Большого взрыва? Есть версия, что наша Вселенная появилась из пустоты. Пузырь пространства-времени рос и рос, пока не приобрел нынешний вид. Существует много других вселенных, подобных нашей, также появившихся из пустоты. Другая версия родилась из идей теории струн и М-теории, утверждающих, что у Вселенной существует намного больше четырех измерений, а мы живем на трехмерной «бране» в данном пространстве-времени и поворачиваемся вместе с ним. Наше место жительства, то есть наша брана, ощущается как трехмерная вселенная, которая то и дело сталкивается с другой аналогичной браной. В момент столкновения происходит выделение тепла, и наша Вселенная начинает ощущаться, как пережившая горячий Большой взрыв. Вместо сингулярности существует только бесконечная последовательность горячих «больших взрывов», — циклическая Вселенная, которой могли бы гордиться советские ортодоксальные философы, а возможно, и сам Фред Хойл. Создатели этой модели назвали каждый из таких больших взрывов Экпиросисом. Это греческий термин, обозначающий периодическое разрушение Вселенной, за которым обязательно следует возрождение.

Скорее всего, такое количество квантовой гравитации указывает на то, что при взгляде на пространство-время через всевидящий микроскоп оно окажется фрагментированным. Отматывая время к моменту, когда пространство-время еще было сконцентрировано в точке, мы обязательно увидим кусочки, из которых состоит ткань пространства. Известные нам законы физики перестанут работать еще до достижения сингулярности. Адепты теории петлевой квантовой гравитации считают, что существовал момент, когда Вселенная коллапсировала до квантового барьера и магическим образом снова начала расширяться. Она прошла через стадию, которая стала известна как «отскок».

Возможно, не стоило рассматривать эту странную темную эпоху, когда заметную роль начала играть квантовая гравитация, а многочисленные мнения о происходящем привели к не менее многочисленным гипотезам. Возможно, пространство-время является намного более пустым, чем нам казалось до этого, и наша Вселенная — всего лишь одна из множества частей, составляющих мультивселенную. А в этой мультивселенной появляются отдельные вселенные и увеличиваются до космических масштабов, каждая со своей скоростью и своим способом. И проследив за историей нашей Вселенной, мы обнаружим, что она, как прыщик, встроена в намного более протяженное пространство-время, которое существовало вечно. Мультивселенная — это дикий огромный мир в состоянии статического равновесия: в устойчивом состоянии создания и разрушения.

Мультивселенная наряду с так называемым антропным принципом стала одним из любимых решений проблемы, связанной с космологической константой. На волне огромных успехов наблюдательной космологии многие стали считать эту константу существующей в реальной Вселенной, несмотря на то что предсказания квантовой теории дают для нее неприлично большие значения, сильно превосходящие рассчитанные по результатам наблюдений. Физики, занимающиеся теорией струн, утверждают, что невозможность получения в этой теории прогнозов обусловлена ландшафтом вероятных вселенных, каждая из которых обладает собственной симметрией, энергетической шкалой, типами частиц и полей и, что самое важное, собственной космологической постоянной. Реализуемыми являются все вселенные, даже с крайне малым значением этой константы. Антропный принцип, предложенный Робертом Дикке, а затем разработанный Брэндоном Картером, утверждает, что мы видим Вселенную такой, потому что только в такой Вселенной мог возникнуть наблюдатель. Мы существуем и разумны, потому что Вселенная обладает корректным набором констант, частиц и шкал энергии (включая и космологическую постоянную), разрешающим наше существование. Есть бесконечное множество возможных вселенных, но существовать мы можем только во вселенных с нужными значениями физических констант. И именно она оказывается единственной Вселенной в мульти-вселенной, доступной для нашего наблюдения.

Некоторые считают, что космология стала настолько насыщенной и сложной, что, возможно, мы достигли границ науки. Одним из скептиков, считающих, что данный подход зашел слишком далеко, является Джордж Эллис. Релятивист, вместе с Хокингом и Пенроузом в конце 1960-х закрепивший существование в космосе сингулярностей, Эллис одним из первых воспользовался Вселенной как огромной лабораторией и полигоном для проверки теории Эйнштейна. «Я не считаю существование этих других вселенных доказанным и не думаю, что его когда-либо удастся доказать, — говорит он. — Довод в пользу мультивселенной является хорошо обоснованным философским предположением, но пока его нельзя проверить, а значит, и нельзя считать полностью научным». Широкий спектр возможностей дает поле для любых предсказаний. Но даже в среде физиков, занимающихся теорией струн, проскальзывают мнения, что дело зашло слишком далеко. Новый подход отказывается от конечной цели современной физики — поиска уникального и простого объяснения всех фундаментальных взаимодействий, включая гравитационное. Принятие мультивселенной равносильно признанию поражения. Подобным развитием событий недоволен даже отец современной теории струн Эдвард Виттен, который говорит: «Надеюсь, что современные дискуссии в теории струн являются просто отклонениями от правильного направления».

Однако количество сторонников мультивселенной растет. Эта гипотеза решает ряд крупных проблем, например проблемы существования космологической константы и объяснения значений мировых констант. В СМИ на регулярной основе появляются заявления и отчеты о параллельных вселенных и доказательства безграничности и многовариантности пространства-времени. Все это является благодатной почвой для спекуляций и высказывания самых разных версий. Но как считает Эллис, к науке это не имеет отношения.

В 2009 году я посетил Принсипи — заросший пышной зеленью уголок в африканской глуши. Именно отсюда девяносто лет назад Артур Эддингтон писал Фрэнку Дайсону, будущему президенту Королевского астрономического сообщества: «Через облака. Надеюсь». Проведенные Эддингтоном измерения звездного света во время солнечного затмения упрочили положение общей теории относительности Эйнштейна на арене современных теорий. Эта экспедиция превратила Эддингтона и Эйнштейна в суперзвезд международного уровня.

Я приехал в маленькое островное государство Сан-Томе и Принсипи с пестрой группой англичан, португальцев, бразильцев и немцев, чтобы установить на участке, где проводили измерения Эддингтон и Коттингем, мемориальную доску — подарок Королевского астрономического общества и Международного астрономического союза.

После столетий колониального правления Сан-Томе и Принсипи на время превратилось в еще одно социалистическое африканское государство. В стране появился свободный рынок, а блестящие новые дома для состоятельных отдыхающих из Анголы составили резкий контраст большим, ветхим колониальным фермам.

Главный дом в Roça Sundy, где Эддингтон занимался измерениями, был в лучшей форме, чем многочисленные заброшенные колониальные дома в заросшей зеленью сельской местности. Региональный президент Принсипи — маленького острова с населением не более пяти тысяч человек — утверждал, что это его загородный дом. Оказалось, что он выдавал желаемое за действительное. Дом был запущенным, проржавевшим и необитаемым.

Меня до глубины души растрогал этот идеальный маленький уголок. В начале XX века в Сан-Томе и Принсипи родилась моя бабушка, и я много слышал от нее об этом месте. Кроме того, я ощутил причастность к поворотному пункту истории.

Именно здесь была доказана корректность теории Эйнштейна настолько, насколько вообще возможно доказать корректность научной теории. Именно здесь общая теория относительности стала реальным фактом.

Вокруг присутствовали остатки ушедшей эпохи — эпохи Эддингтона. Теннисный корт, бетонные трещины которого проигрывали борьбу неумолимо просачивающейся наверх растительности. Вокруг была пышная, всепобеждающая зелень. Все так сильно отличалось от сурового, ухоженного пейзажа среди болот, окружавшего Эддингтона почти всю его жизнь. После нашего посещения там осталась блестящая мемориальная доска, рассказывающая о достижении Эддингтона и, как мы надеемся, объясняющая всем, кто забредет в этот заброшенный уголок, какое знаменательное событие здесь произошло.

Оглядываясь на 1919 год, остается изумляться глубине развития идей Эйнштейна и Эддингтона. Простая гипотеза об отклонении света искривленным пространством-временем, ставшая ключом к проверке теории Эйнштейна, теперь, девяносто лет спустя, превратилась в один из самых мощных астрономических инструментов. Последние двадцать лет мы изучаем нашу Вселенную, наблюдая за тем, как пространство-время искажает свет. Наблюдение за звездами соседних галактик и ожидание момента, когда их свет внезапно сфокусируется, проходя мимо темного тяжелого объекта, позволяет искать темную материю. Крупицы темной материи, если они существуют, сыграют ту же самую роль, которую Солнце играло в эксперименте Эддингтона, искривив путь звездного света и сфокусировав его как линза. В большем масштабе мы пользуемся этим эффектом для наблюдения за скоплениями — группами от десятков до сотен галактик. Погруженные в пространство-время, эти тяжеловесы создают гигантские искажения, рассеивающие и выравнивающие свет удаленных галактик. Искривления и сдвиг их света дают современным астрономам возможность оценивать вес скоплений.

Зачем же на этом останавливаться? С типичной гордыней астрономы, космологи и релятивисты сосредоточились на составлении карт искажений пространства-времени до границ области наблюдений. Изучая эти срезы Вселенной и влияние пространства-времени на свет таких галактик, можно детально описать вид пространства-времени вокруг нас. Подняв на новый уровень идеи Эйнштейна и Эддингтона, мы изучим Вселенную, поняв, из чего она состоит и действуют ли в ней разработанные к настоящему моменту законы поведения пространства-времени.

В дни торжеств на острове Принсипи у всех на устах были имена Эйнштейна и Эддингтона. На этом затерянном в океане крошечном острове вряд ли стоило спрашивать окружающих, понимают ли они, о чем идет речь. Местные и приезжие высокопоставленные гости торжественно кивали, но это ничего не значит. Во время церемонии вокруг бегали дети и подростки. Они не очень понимали, что здесь происходило, но, разумеется, слышали про Эйнштейна. Некоторые даже знали про известного англичанина Эддингтона, который приезжал сюда много лет назад. Но все уверены, что их маленький остров заслуживает известности.

Толпа, присоединившаяся к этому странному экзотическому празднику, стала для меня еще одним причудливым признаком универсальности и демократичности теории Эйнштейна. Заумная, а порой и неразрешимая теория в то же самое время вполне доступна и легко выразима сжатым набором уравнений. История общей относительности охватывает многие континенты, а состав действующих лиц является действительно международным. Британский астроном, русский метеоролог, бельгийский священник, новозеландский математик, немецкий солдат, индийский вундеркинд, американский эксперт по атомным бомбам, южноафриканский квакер и многие другие оказались сведенными вместе элегантностью и мощью теории Эйнштейна.

Той ночью мы раздали телескопы и все вместе смотрели на звезды. Небо захватывало, предлагая глубже вникнуть в теорию Эйнштейна. Я думал о том, как эта теория двигает нас ко все более масштабным космическим исследованиям. Новое открытие может произойти на юге Африки или в австралийской пустыне, где в современных телескопах используются последние, наиболее мощные технологии XXI века.

Эддингтон пользовался оптическим телескопом, инструментом с линзами, окуляром и фотопластинкой, сейчас же для наблюдений применяются радиоантенны и тарелки. Радио уже много сделало для общей теории относительности, но сейчас мы готовы шагнуть дальше, чем когда-либо мечталось. Возникла идея построить десятки тысяч антенн, рассеянных на расстоянии сотен и тысяч километров. Такой интерферометр, известный как Квадратная километровая решетка, так как общая приемная зона всех антенн должна составить квадратный километр, будет поддерживаться одним, а возможно, двумя континентами. Часть телескопов расположится на просторах Западной Австралии, другая часть усеет юг Африки. Ядро этого монстра должно находиться в регионе Карру, но часть тарелок распределят по таким странам, как Намибия, Мозамбик, Гана, Кения и Мадагаскар. Это будет настоящий континентальный африканский проект. И как Эддингтон на Принсипи установил корректность общей теории относительности. Квадратная километровая решетка позволит с беспрецедентной точностью проверить эту теорию в космологических масштабах. Она покажет, существуют ли места, в которых теория перестает работать. Она сможет зарегистрировать неуловимые гравитационные волны, которые все еще ждут своего открытия. Возможно, она даже прояснит природу печально известной темной энергии, которая, кажется, укрепилась в текущей модели Вселенной.

В ночь чествования колоссальных достижений Эйнштейна и Эддингтона я думал о том, что, возможно, пока мы узнали лишь начальные фрагменты того, что теория пространства-времени может рассказать о Вселенной. Двадцать первый век несомненно станет веком общей теории относительности, и я счастлив, что живу во время, когда нас ожидает такое количество новых открытий. Почти через сто лет с момента окончательной формулировки Эйнштейном его теории обязательно должно произойти что-нибудь фантастическое.

Оглавление

  • Пролог
  • Глава 1. Человек в свободном падении
  • Глава 2. Самое ценное открытие
  • Глава 3. Корректная математика, отвратительная физика
  • Глава 4. КОЛЛАПСАРЫ
  • Глава 5. Всеобщее помешательство
  • Глава 6. Дни радио
  • Глава 7. Афоризмы Уиллера
  • Глава 8. Сингулярности
  • Глава 9. Проблемы унификации
  • Глава 10. Увидеть гравитацию
  • Глава 11. Темная Вселенная
  • Глава 12. Конец пространства-времени
  • Глава 13. Показная экстраполяция
  • Глава 14. ЧТО-ТО ДОЛЖНО СЛУЧИТЬСЯ Fueled by Johannes Gensfleisch zur Laden zum Gutenberg

    Комментарии к книге «Идеальная теория. Битва за общую теорию относительности», Педро Феррейра

    Всего 0 комментариев

    Комментариев к этой книге пока нет, будьте первым!

    РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

    Популярные и начинающие авторы, крупнейшие и нишевые издательства