«Многомерные пространства»

382

Описание

Классическая монография по многомерной геометрии, широко используемой в математике и физике для наглядного представления уравнений с несколькими неизвестными, функций нескольких переменных и систем с несколькими степенями свободы. Геометрический язык позволяет применить к решению сложных задач геометрическую интуицию, сложившуюся в нашем обычном пространстве. В первых шести главах изложена аналитическая геометрия n-мерного евклидова пространства. В основе изложения — аксиоматическое определение линейного, аффинного и евклидова пространств. В первых двух главах, помимо векторной алгебры, изложена алгебра тензоров и линейных операторов. В третьей главе, кроме геометрии прямых линий и (n — 1)-мерных плоскостей, излагается геометрия плоскостей любой размерности. Глава седьмая посвящена общей теории и классификации многомерных поверхностей второго порядка. В главе восьмой изложено многомерное обобщение геометрических теорем статики. В последующих главах изложено много материала, являющегося многомерным обобщением содержания курса элементарной геометрии....



Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

Многомерные пространства (pdf) - Многомерные пространства 31096K (скачать pdf) - Борис Абрамович Розенфельд Fueled by Johannes Gensfleisch zur Laden zum Gutenberg

Комментарии к книге «Многомерные пространства», Борис Абрамович Розенфельд

Всего 0 комментариев

Комментариев к этой книге пока нет, будьте первым!

РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

Популярные и начинающие авторы, крупнейшие и нишевые издательства