Селезнева Т. Д., Мишин А. С., Барсуков В. Ю. Гистология. Полный курс за 3 дня
РАЗДЕЛ I. ОБЩАЯ ГИСТОЛОГИЯ
Тема 1. ИСТОРИЯ РАЗВИТИЯ ГИСТОЛОГИИ. РАЗВИТИЕ ГИСТОЛОГИИ В РОССИИ
В истории развития гистологии можно выделить три основных периода: домикроскопический, микроскопический и современный.
Домикроскопический период (с начала V в. до н. э. и по 1665 г.) связан с именами Аристотеля, Галена, Везалия и других великих ученых того времени. Данный период развития гистологии характеризуется попытками выделения в организмах животных и человека неоднородных тканей с использованием методов анатомического препарирования.
Микроскопический период – 1665 – 1950 гг. Начало этого периода связано с именем английского физика Р. Гука, который изобрел микроскоп и использовал его для систематического исследования различных, в том числе и биологических, объектов. Результаты своих исследований он опубликовал в книге «Монография». Р. Гук впервые ввел термин «клетка». В дальнейшем происходило непрерывное усовершенствование микроскопов и все более широкое их использование для изучения биологических тканей и органов. Особенное внимание при этом уделялось строению клетки. Среди выдающихся ученых того времени можно выделить М. Мальпиги, А. Левенгука, Н. Грю.
Я. Пуркинье описал наличие в животных клетках цитоплазмы и ядра, а несколько позже Р. Браун обнаружил ядро в растительных клетках. Ботаник М. Шлейден занимался исследованием происхождения клеток – цитокинезисом. В результате своих исследований Т. Шванн сформулировал клеточную теорию:
1) все растительные и животные организмы состоят из клеток;
2) все клетки развиваются по общему принципу – из цитобластомы;
3) каждая клетка обладает самостоятельной жизнедеятельностью, а жизнедеятельность организма является суммой деятельности клеток.
Р. Вирхов в 1858 г. уточнил, что развитие клеток осуществляется путем деления исходной клетки. Разработанная Т. Шванном теория актуальна до настоящего времени.
Современные положения клеточной теории:
1) клетка является наименьшей единицей живого;
2) клетки животных организмов сходны по своему строению;
3) размножение клеток происходит путем деления исходной клетки;
4) многоклеточные организмы представляют собой сложные ассоциации клеток и их производных, объединенные в системы тканей и органов и связанные между собой клеточными, гуморальными и нервными механизмами регуляции.
Дальнейшее совершенствование микроскопов позволило выявить в клетках более мелкие структуры:
1) пластинчатый комплекс (К. Гольджи – 1897 г.);
2) митохондрии (Э ван Бенда – 1897 г.);
3) центриоли ( Т. Бовери – 1895 г.);
4) эндоплазматическую сеть (К. Портер – 1945 г.);
5) лизосомы (К. Дюв – 1949 г.).
Были описаны механизмы деления растительных (И. Д. Чистяков, 1874 г.) и животных клеток (П. И. Перемежко, 1978 г.).
Современный этап развития гистологии начался с 1950 г., когда впервые электронный микроскоп был применен для изучения биологических объектов. Однако для современного этапа развития гистологии характерно внедрение не только электронной микроскопии, но и других методов: цито– и гистохимии, гисторадиографии и т. д. При этом обычно используется комплекс различных методов, позволяющих составить не только качественное представление об изучаемых структурах, но и получить тонкие количественные характеристики. Особенно широко в настоящее время применяются различные морфометрические методы, в том числе и автоматизированная обработка полученной информации с использованием персонального компьютера.
Гистологию в России развивали ученые медицинских факультетов российских вузов, где сформировались сильные гистологические школы:
1) Московская школа (А. И. Бабухин, И. Ф. Огнев). Основное направление деятельности – гистогенез мышечной и нервной ткани, гистофизиологические подходы к изучению органов чувств, особенно органа зрения;
2) Петербургская гистологическая школа при Медико-хирургической академии (К. Э. Бэр – эмбриолог, Н. М. Якубович, М. Д. Лавдовский – нейрогистолог и А. А. Максимов – автор унитарной теории кроветворения);
3) Петербургская гистологическая школа при университете (Ф. В. Овсянников – исследования органов чувств, А. С. Догель – нейрогистолог и др.);
4) Киевская гистологическая школа (П. И. Перемежко изучал деление клеток, развитие органов);
5) Казанская гистологическая школа – К. А. Арнштейн, А. С. Догель, А. Е. Смирнов, Т. А. Тимофеев, Б. И. Лаврентьев. Данная школа развивала нейрогистологическое направление.
Наиболее крупными учеными в области гистологии в России были А. А. Заварзин и Н. Г. Хлопин, занимавшиеся исследованием закономерностей развития тканей в филогенезе.
Тема 2. МЕТОДЫ ИССЛЕДОВАНИЯ В ГИСТОЛОГИИ. ПРИГОТОВЛЕНИЕ ГИСТОЛОГИЧЕСКОГО ПРЕПАРАТА
Основным методом исследования в гистологии является микроскопирование – изучение гистологических препаратов под микроскопом. В последнее время микроскопия сочетается с другими методами – гистохимией и гисторадиографией. Для микроскопии используют различные конструкции микроскопов, позволяющие изучать различные параметры гистологических препаратов.
Выделяются следующие виды микроскопии:
1) световая микроскопия (наиболее распространенный вид микроскопии, при этом разрешающая способность микроскопа составляет 0,2 мкм);
2) ультрафиолетовая микроскопия (разрешающая способность микроскопа составляет 0,1 мкм);
3) люминисцентная микроскопия (применяется для определения в исследуемом гистологическом препарате определенных химических структур);
4) фазово-контрастная микроскопия (применяется для обнаружения и изучения определенных структур в неокрашенных гистологических препаратах);
5) поляризационная микроскопия (используется в основном для изучения волокнистых структур);
6) микроскопия в темном поле применяется для изучения живых объектов;
7) микроскопия в падающем свете (предназначена для изучения толстых объектов);
8) электронная микроскопия (наиболее современный вид микроскопии, имеющий разрешающую способность 0,1 – 0,7 нм). Имеются две разновидности электронной микроскопии – просвечивающая (трансмиссионная) и сканирующая (или растворная) микроскопия, дающая отображение поверхностных ультраструктур.
Гистологические и цитохимические методы применяются для определения состава химических веществ и их количества в определенных структурах. Принцип метода заключается в химической реакции между реактивом и субстратом, содержащимся в исследуемом веществе. При этом образующиеся побочные продукты реакции можно обнаружить с помощью световой или люминисцентной микроскопии.
Метод гистоавторадиографии позволяет выявить состав химических веществ в исследуемых структурах и интенсивность обмена по включению радиоактивных изотопов. Данный метод чаще всего используется при экспериментах на животных.
Метод интерферонометрии позволяет определять сухую массу вещества в живых или фиксированных объектах.
Метод культуры клеток – это выращивание клеток в пробирках или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.
Метод витального окрашивания – введение животным в кровь или в брюшную полость красителя (трепанового синего), который при жизни животного захватывается определенными клетками – макрофагами, а после забоя животного и приготовления препарата определяются и подсчитываются клетки, содержащие краситель.
Иммуноморфологические методы позволяют с помощью предварительно проведенных иммунных реакций (на основе взаимодействия антиген – антитело) определять субпопуляцию лимфоцитов, степень чужеродности клеток, проводить гистологическое типирование тканей и органов, т. е. определять их гистосовместимость для дальнейшей трасплантации.
Метод дифференциального центрифугирования – изучение отдельных органелл или даже их фрагментов, выделенных из клетки. Для этого кусочек исследуемого органа растирают, заливают физиологическим раствором, а затем разгоняют в центрифуге при различных оборотах (от 2 до 150 тыс. в 1 мин). В результате центрифугирования получают интересующие фракции, которые затем изучают различными методами.
Методы морфометрии – количественные методы. Они позволяют определять размеры и объемы ядра – кариометрия, клеток – цитометрия, органелл – электронная морфометрия, а также определять число клеток различных популяций и субпопуляций. Данные методы широко используются в научных исследованиях.
Различные экспериментальные методы – пищевая и водная нагрузка, физические методы (УВЧ, СВЧ, лазеры, магниты). Они применяются для изучения реакции интересующих структур на то или иное воздействие и сочетаются с методами морфометрии, цито– и гистохимии. Данные методы также применяются в научных исследованиях.
Таким образом, основным и наиболее распространенным методом изучения в гистологии является микроскопия. Приготовление гистологического препарата включает в себя следующие этапы.
1. Взятие материала – кусочка ткани или органа. При заборе материала необходимо выполнять следующие правила:
1) забор материала должен проводиться как можно раньше после смерти или забоя животного, при возможности от живого объекта, чтобы как можно лучше сохранить структуру исследуемых клеток;
2) забор материала должен проводиться острым инструментом, чтобы не травмировать ткани;
3) толщина кусочка не должна превышать 5 мм, чтобы фиксирующий раствор смог проникнуть на всю глубину ткани;
4) обязательно необходимо произвести маркировку кусочка, при этом указываются наименование органа, номер животного или фамилия человека, дата забора.
2. Фиксация материала. Данный этап проводится для того, чтобы остановить обменные процессы в клетке и сохранить ее от распада. Для этого взятый на исследование кусочек ткани погружают в фиксирующий раствор. Раствор может быть простым (спирт или формалин) и сложным (раствор Карнуа, фиксатор Цинкера). Фиксатор вызывает денатурацию белков и сохраняет структуру клеток в состоянии, близком к прижизненному. Фиксацию можно проводить также путем замораживания – охлаждением жидким азотом или струей углекислого газа.
3. Заливка кусочков ткани в уплотняющие среды (парафин, смолы) – или замораживание. Данный этап необходим для того, чтобы в последующем из исследуемой ткани можно было изготовить тонкий срез.
4. Приготовление срезов на микротоме или ультрамикротоме с помощью специальных ножей. После этого срезы для световой микроскопии приклеиваются на предметные стекла, а для электронной – монтируются на специальные сеточки.
5. Окраска срезов или их контрастирование (для электронной микроскопии). Перед окраской срезов необходимо удалить уплотняющую среду – выполнить депарафирование. С помощью окраски достигается контрастность изучаемых структур. Красители можно подразделить на основные, кислые и нейтральные. Наиболее широко применяются основные красители (гематоксилин) и кислые (эозин). Часто используются и сложные красители.
6. Просветление срезов в ксилоле и толуоле. Их заключают в смолы (бальзам и полистирол) и закрывают покровным стеклом.
После данных процедур препарат можно исследовать под световым микроскопом. Помещенные под стекло срезы для светового микроскопа могут долго храниться и многократно использоваться. Для электронной микроскопии каждый срез используется только 1 раз, при этом он фотографируется, и изучение структур ткани производится по электронограмме.
Если ткань имеет жидкую консистенцию (например, кровь, костный мозг), то препарат изготавливают в виде мазка на предметном стекле, который затем также фиксируется, окрашивается и изучается.
Из ломких паренхиматозных органов изготавливают препараты в виде отпечатка органа, проводят разлом данного органа, затем к месту разлома прикладывают предметное стекло, на которое приклеиваются свободные клетки. После этого препарат фиксируется и изучается.
Из некоторых органов (например, брыжейки, мягкой мозговой оболочки) или из рыхлой волокнистой соединительной ткани изготавливают пленочные препараты путем растягивания или раздавления между двумя стеклами с последующей фиксацией и заливкой в смолы.
Тема 3. ВВЕДЕНИЕ В КУРС ГИСТОЛОГИИ
Гистология – наука о строении, развитии и жизнедеятельности тканей живых организмов. Следовательно, гистология изучает один из уровней организации живой материи – тканевый.
Различают следующие уровни организации живой материи:
1) клеточный;
2) тканевый;
3) структурно-функциональные единицы органа;
4) органный;
5) системный;
6) организменный;
7) популяционный и другие уровни.
Гистология рассматривается как дисциплина, включающая в себя четыре основных раздела:
1) цитологию, она изучающую строение клетки;
2) эмбриологию, изучающую формирование клеток и тканей во время внутриутробного развития;
3) общую гистологию – изучает структуру, функциональные, клеточные элементы различных тканей;
4) частную (или макроскопическую) гистологию, изучающую структуры определенных органов и их систем.
Таким образом, в гистологии имеется несколько разделов, изучающих определенные уровни организации живой материи, начиная с клеточного и заканчивая органным и системным, составляющим организм.
Гистология относится к морфологическим наукам. В отличие от анатомии, изучающей строение органов на макроскопическом уровне, гистология изучает строение органов и тканей на микроскопическом и электронно-микроскопическом уровне. При этом подход к изучению различных элементов производится с учетом выполняемой ими функции. Такой метод изучения структур живой материи называется гистофизиологическим, и гистология нередко именуется гистофизиологией. При изучении живой материи на клеточном, тканевом и органном уровнях рассматриваются не только форма, размеры и расположение интересующих структур, но методами цито– и гистохимии определяется химический состав веществ, образующих данные структуры. Изучаемые структуры также рассматриваются с учетом их развития как во внутриутробном периоде, так и на протяжении начального онтогенеза. Именно с этим связана необходимость включения в гистологию эмбриологии.
Основным объектом гистологии в системе медицинского образования является организм здорового человека, и потому данная учебная дисциплина именуется как гистология человека.
Главной задачей гистологии как учебного предмета является изложение знаний о микроскопическом и ультрамикроскопическом (электронно-микроскопическом) строении клеток, тканей органов и систем здорового человека в неразрывной связи с их развитием и выполняемыми функциями. Это необходимо для дальнейшего изучения физиологии человека, патологической анатомии, патологической физиологии и фармакологии. Знание этих дисциплин формирует клиническое мышление.
Задачей гистологии как науки является выяснение закономерностей строения различных тканей и органов для понимания протекающих в них физиологических процессов и возможности управления этими процессами.
Тема 4. МОРФОЛОГИЯ И ФУНКЦИИ ЦИТОПЛАЗМЫ И ОРГАНЕЛЛ КЛЕТКИ
Цитология – наука о строении, развитии и жизнедеятельности клеток. Следовательно, цитология изучает закономерности структурно-функциональной организации первого (клеточного) уровня организации живой материи. Клетка является наименьшей единицей живой материи, обладающей самостоятельной жизнедеятельностью и способностью к самовоспроизведению. Субклеточные образования (ядро, митохондрии и другие органеллы) хотя и являются живыми структурами, но не обладают самостоятельной жизнедеятельностью.
Клетка – это ограниченная активной мембраной, упорядоченная, структурированная система биополимеров, образующих ядро и цитоплазму, участвующих в единой совокупности метаболических и энергетических процессов, осуществляющих поддержание и воспроизведение всей системы в целом.
Клетка – это живая система, состоящая из цитоплазмы и ядра и являющаяся основой строения, развития и жизнедеятельности всех животных организмов.
Основные компоненты клетки:
1) ядро;
2) цитоплазма.
По соотношению ядра и цитоплазмы (ядерно-цитоплазматическому отношению) клетки подразделяются на:
1) клетки ядерного типа (объем ядра преобладает над объемом цитоплазмы);
2) клетки цитоплазматического типа (цитоплазма преобладает над ядром).
По форме клетки бывают круглыми (клетки крови), плоскими, кубическими или призматическими (клетки разного эпителия), веретенообразными (гладкомышечные клетки), отростчатыми (нервные клетки) и др. Большинство клеток содержат одно ядро, однако в одной клетке может быть 2, 3 и более ядер (многоядерные клетки). В организме имеются структуры (симпласты, синцитий), содержащие несколько десятков или даже сотен ядер. Однако эти структуры образуются или в результате слияния отдельных клеток (симпласты), или в результате неполного деления клеток (синцитий). Морфология этих структур будет рассмотрена при изучении тканей.
Структурные компоненты цитоплазмы животной клетки:
1) плазмолемма (цитолемма);
2) гиалоплазма;
3) органеллы;
4) включения.
Плазмолемму, окружающую цитоплазму, нередко рассматривают как одну из органелл цитоплазмы.
Плазмолемма (цитолемма)
Плазмолемма – оболочка животной клетки, отграничивающая ее внутреннюю среду и обеспечивающая взаимодействие клетки с внеклеточной средой.
Функции плазмолеммы:
1) разграничительная (барьерная);
2) рецепторная;
3) антигенная;
4) транспортная;
5) образование межклеточных контактов.
Химический состав веществ плазмолеммы: белки, липиды, углеводы.
Строение плазмолеммы:
1) двойной слой липидных молекул, составляющий основу плазмолеммы, в которую местами включены молекулы белков;
2) надмембранный слой;
3) подмембранный слой, имеющийся в некоторых клетках.
В каждой липидной молекуле различают две части:
1) гидрофильную головку;
2) гидрофобные хвосты.
Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки соприкасаются с внешней и внутренней средой.
Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя. По выполняемой функции белки плазмолеммы подразделяются на:
1) структурные;
2) транспортные;
3) белки-рецепторы;
4) белки-ферменты;
5) антигенные детерминанты.
Находящиеся на внешней поверхности плазмолеммы белки и гидрофильные головки липидов обычно связаны с цепочками углеводов и образуют сложные полимерные молекулы. Именно эти макромолекулы и составляют надмембранный слой – гликокаликс. Значительная часть поверхностных гликопротеидов и гликолипидов выполняет в норме рецепторные функции: воспринимает гормоны и другие биологически активные вещества. Такие клеточные рецепторы передают воспринимаемые сигналы на внутриклеточные ферментные системы, усиливая или угнетая обмен веществ, и тем самым оказывают влияние на функции клеток.
Различают следующие способы транспорта веществ:
1) способ диффузии веществ (ионов, некоторых низкомолекулярных веществ) через плазмолемму без затраты энергии;
2) активный транспорт веществ (аминокислот, нуклеотидов и др.) с помощью белков-переносчиков с затратой энергии;
3) везикулярный транспорт (производится посредством везикул (пузырьков)). Подразделяется на эндоцитоз – транспорт веществ в клетку, экзоцитоз – транспорт веществ из клетки.
В свою очередь, эндоцитоз подразделяется на:
1) фагоцитоз – захват и перемещение в клетку;
2) пиноцитоз – перенос воды и небольших молекул.
Процесс фагоцитоза подразделяется на несколько фаз:
1) адгезию (прилипание) объекта к цитолемме фагоцитирующей клетки;
2) поглощение объекта путем образования вначале углубления инвагинации, а затем передвижения ее в гиалоплазму.
В тех тканях, в которых клетки или их отростки плотно прилежат друг к другу (эпителиальная, гладкомышечная и др.), между плазмолеммами контактирующих клеток формируются связи – межклеточные контакты.
Типы межклеточных контактов:
1) простой контакт – 15 – 20 нм (связь осуществляется за счет соприкосновения макромолекул гликокаликсов). Простые контакты занимают наиболее обширные участки соприкасающихся клеток. При помощи простых контактов осуществляется слабая связь – адгезия, не препятствующая транспортированию веществ в межклеточные пространства. Разновидностью простого контакта является контакт типа замка, когда плазмолеммы соседних клеток вместе с участками цитоплазмы как бы впячиваются друг в друга, чем достигается увеличение площади соприкасающихся поверхностей и более прочная механическая связь;
2) десмосомный контакт – 0,5 мкм. Десмосомные контакты (или пятна сцепления) представляют собой небольшие участки взаимодействия между клетками. Каждый такой участок имеет трехслойное строение и состоит из двух полудесмосом – электронноплотных участков, расположенных в цитоплазме в местах контакта клеток, и скопления электронноплотного материала в межмембранном пространстве – 15 – 20 нм. Количество десмосомных контактов у одной клетки может достигать 2000. Функциональная роль десмосом – обеспечение механического контакта между клетками;
3) плотный контакт. Данный контакт называют также замыкательными пластинками. Они локализуются в органах (желудке, кишечнике), в которых эпителий отграничивает агрессивное содержимое данных органов, например желудочный сок, содержащий соляную кислоту. Плотные контакты находятся только между апикальными частями клеток, охватывая по всему периметру каждую клетку. В этих участках межмембранные пространства отсутствуют, а билипидные мембраны соседних клеток сливаются в единую билипидную мембрану. В прилежащих участках цитоплазмы соприкасающихся клеток отмечают скопление электронноплотного материала. Функциональная роль плотных контактов – прочная механическая связь клеток, препятствие транспорту веществ по межклеточным пространствам;
4) щелевидный контакт (или нексусы) – 0,5 – 3 мкм (обе мембраны пронизаны в поперечном направлении белковыми молекулами (или коннексонами), содержащими гидрофильные каналы, через которые осуществляется обмен ионами и микромолекулами соседних клеток, чем и обеспечивается их функциональная связь). Данные контакты представляют собой ограниченные участки контактов соседних клеток. Примером щелевидных контактов (нексусов) служат контакты кардиомиоцитов, при этом через них происходит распространение биопотенциалов и содружественное сокращение сердечной мускулатуры;
5) синаптический контакт (или синапс) – специфические контакты между нервными клетками (межнейронные синапсы) или между нервными и мышечными клетками (мионевральные синапсы). Функциональная роль синапсов – передача нервного импульса или волны возбуждения (торможения) с одной клетки на другую или с нервной клетки на мышечную.
Гиалоплазма
Гиалоплазма (или матрикс цитоплазмы) составляет внутреннюю среду клетки. Состоит из воды и различных биополимеро в (белков, нуклеиновых кислот, полисахаридов, липидов), из которых основную часть составляют белки различной химической и функциональной специфичности. В гиалоплазме содержатся также аминокислоты, моносахара, нуклеотиды и другие низкомолекулярные вещества.
Биополимеры образуют с водой коллоидную среду, которая в зависимости от условий может быть плотной (в форме геля) или более жидкой (в форме золя), как во всей цитоплазме, так и в отдельных ее участках. В гиалоплазме локализуются и взаимодействуют между собой и средой гиалоплазмы различные органеллы и включения. При этом расположение их чаще всего специфично для определенных типов клеток. Через билипидную мембрану гиалоплазма взаимодействует с внеклеточной средой. Следовательно, гиалоплазма является динамической средой и играет важную роль в функционировании отдельных органелл и жизнедеятельности клеток в целом.
Органеллы
Органеллы – постоянные структурные элементы цитоплазмы клетки, имеющие специфическое строение и выполняющие определенные функции.
Классификация органелл:
1) общие органеллы, присущие всем клеткам и обеспечивающие различные стороны жизнедеятельности клетки;
2) специальные органеллы, имеющиеся в цитоплазме только определенных клеток и выполняющие специфические функции этих клеток.
В свою очередь, общие органеллы подразделяются на мембранные и немембранные.
Специальные органеллы подразделяются на:
1) цитоплазматические (миофибриллы, нейрофибриллы, тонофибриллы);
2) органеллы клеточной поверхности (реснички, жгутики).
К мембранным органеллам относятся:
1) митохондрии;
2) эндоплазматическая сеть;
3) пластинчатый комплекс;
4) лизосомы;
5) пероксисомы.
К немембранным органеллам относятся:
1) рибосомы;
2) клеточный центр;
3) микротрубочки;
4) микрофибриллы;
5) микрофиламенты.
Принцип строения мембранных органелл
Мембранные органеллы представляют собой замкнутые и изолированные участки (компартменты) в гиалоплазме, имеющие свою внутреннюю структуру. Стенка их состоит из билипидной мембраны и белков подобно плазмолемме. Однако билипидные мембраны органелл имеют особенности: толщина билипидных мембран органелл меньше, чем плазмолеммы (7 нм против 10 нм), мембранные отличаются по количеству и по содержанию белков, встроенных в них.
Однако, несмотря на различия, мембраны органелл имеют одинаковый принцип строения, поэтому они обладают способностью взаимодействовать друг с другом, встраиваться, сливаться, разъединяться, отшнуровываться.
Общий принцип строения мембран органелл можно объяснить тем, что все они образуются в эндоплазматической сети, а затем происходит их функциональная перестройка в комплексе Гольджи.
Митохондрии
Митохондрии – наиболее обособленные структурные элементы цитоплазмы клетки, обладающие в значительной степени самостоятельной жизнедеятельностью.
Существует мнение, что в прошлом митохондрии были самостоятельными живыми организмами, после чего внедрились в цитоплазму клеток, где ведут сапрофитное существование. Доказательством этого может являться наличие у митохондрий генетического аппарата (митохондриальной ДНК) и синтетического аппарата (митохондриальных рибосом).
Форма митохондрий может быть овальной, округлой, вытянутой и даже разветвленной, но преобладает овально-вытянутая. Стенка митохондрий образована двумя билипидными мембранами, разделенными пространством в 10 – 20 нм. При этом внешняя мембрана охватывает по периферии всю митохондрию в виде мешка и отграничивает ее от гиалоплазмы. Внутренняя мембрана отграничивает внутреннюю среду митохондрии, при этом она образует внутри митохондрии складки – кристы. Внутренняя среда митохондрии (митохондриальный матрикс) имеет тонкозернистое строение и содержит гранулы (митохондриальные ДНК и рибосомы).
Функция митохондрий – образование энергии в виде АТФ.
Источником образования энергии в митохондриях является пировиноградная кислота (пируват), которая образуется из белков, жиров и углеводов в гиалоплазме. Окисление пирувата происходит в митохондриальном матриксе, а на кристах митохондрий осуществляется перенос электронов, фосфорилирование АДФ и образование АТФ. Образующаяся в митохондриях АТФ является единственной формой энергии, которая используется клеткой для выполнения различных процессов.
Эндоплазматическая сеть
Эндоплазматическая сеть (ЭПС) в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка состоит из билипидной мембраны.
Различают две разновидности ЭПС:
1) зернистую (гранулярную, или шероховатую);
2) незернистую (или гладкую). На наружной поверхности мембран зернистой ЭПС содержатся прикрепленные рибосомы.
В цитоплазме при электронно-микроскопическом исследовании можно обнаружить два вида ЭПС, однако один из них преобладает, что и определяет функциональную специфичность клетки. Эти две разновидности ЭПС не являются самостоятельными и обособленными формами, так как при более детальном исследовании можно обнаружить переход одной разновидности в другую.
Функции зернистой ЭПС:
1) синтез белков, предназначенных для выведения из клетки (на экспорт);
2) отделение (сегрегация) синтезированного продукта от гиалоплазмы;
3) конденсация и модификация синтезированного белка;
4) транспорт синтезированных продуктов в цистерны пластинчатого комплекса;
5) синтез компонентов билипидных мембран.
Функции гладкой ЭПС:
1) участие в синтезе гликогена;
2) синтез липидов;
3) дезинтоксикационная функция (нейтрализация токсических веществ посредством соединения их с другими веществами).
Пластинчатый комплекс Гольджи
Пластинчатый комплекс называют транспортным аппаратом клетки.
Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы – диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена. В диктиосоме различают два полюса: цисполюс (направленный основанием к ядру) и трансполюс (направленный в сторону цитолеммы). Установлено, что к цисполюсу подходят транспортные вакуоли, несущие в комплекс Гольджи продукты, синтезированные в ЭПС. От трансполюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его высвобождения из клетки. Часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом.
Функция пластинчатого комплекса:
1) транспортная (выводит из клетки синтезированные в ней продукты);
2) конденсация и модификация веществ, синтезированных в зернистой ЭПС;
3) образование лизосом (совместно с зернистой ЭПС);
4) участие в обмене углеводов;
5) синтез молекул, образующих гликокаликс цитолеммы;
6) синтез, накопление, выведение муцинов (слизи);
7) модификация мембран, синтезированных в ЭПС и превращение их в мембраны плазмолеммы.
Лизосомы
Лизосомы – наиболее мелкие органеллы цитоплазмы, представляют собой тельца, ограниченные билипидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (более тридцати видов гидролаз), способных расщеплять любые полимерные соединения (белки, жиры, углеводы), их комплексы на мономерные фрагменты.
Функция лизосом – обеспечение внутриклеточного пищеварения, т. е. расщепление как экзогенных, так и эндогенных биополимерных веществ.
Классификация лизосом:
1) первичные лизосомы – электронно-плотные тельца;
2) вторичные лизосомы – фаголизосомы, в том числе аутофаголизосомы;
3) третичные лизосомы или остаточные тельца.
Истинными лизосомами называют мелкие электронноплотные тельца, образующиеся в пластинчатом комплексе. Пищеварительная функция лизосом начинается только после слияния с фагосомой (фагоцитируемое вещество, окруженное билипидной мембраной) и образования фаголизосомы, в которой смешиваются фагоцитируемый материал и лизосомальные ферменты. После этого начинается расщепление биополимерных соединений фагоцитированного материала на мономеры – аминокислоты, сахара. Эти молекулы свободно проникают через мембрану фаголизосомы в гиалоплазму и затем утилизируются клеткой – идут на образование энергии или построение новых внутриклеточных макромолекулярных соединений.
Некоторые соединения не могут быть расщеплены ферментами лизосомы и поэтому выводятся из клетки в неизмененном виде при помощи экзоцитоза (процесс обратный фагоцитозу). Вещества липидной природы практически не расщепляются ферментами, а накапливаются и уплотняются в фаголизосоме. Данные образования были названы третичными лизосомами (или остаточными тельцами).
В процессе фагоцитоза и экзоцитоза осуществляется рециркуляция мембран в клетке: при фагоцитозе часть плазмолеммы отшнуровывается и образует оболочку фагосомы, при экзоцитозе эта оболочка вновь встраивается в плазмолемму.
Поврежденные, измененные или устаревшие собственные органеллы клетки утилизируются ею по механизму внутриклеточного фагоцитоза с помощью лизосом. Вначале эти органеллы окружаются билипидной мембраной, и образуется вакуоль – аутофагосома. Затем с ней сливается одна или несколько лизосом, и образуется аутофаголизосома, в которой осуществляеся гидролитическое расщепление биополимерных веществ, как и в фаголизосоме.
Лизосомы содержатся во всех клетках, однако в неравном количестве. Специализированные клетки – макрофаги – содержат в цитоплазме большое количество первичных и вторичных лизосом. Они выполняют защитную функцию в тканях, поглощают значительное число экзогенных веществ – бактерий, вирусов, других чужеродных агентов и продуктов распада собственных тканей.
Пероксисомы
Пероксисомы – микротельца цитоплазмы (0,1 – 1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.
Рибосомы
Рибосомы – аппараты синтеза белка и полипептидных молекул.
По локализации подразделяются на:
1) свободные, (находятся в гиалоплазме);
2) несвободные (или прикрепленные), – которые связаны с мембранами ЭПС.
Каждая рибосома состоит из малой и большой субъединиц. Каждая субъединица рибосомы состоит из рибосомальной РНК и белка – рибонуклеопротеида. Образуются субъединицы в ядрышке, а сборка в единую рибосому осуществляется в цитоплазме. Для синтеза белка отдельные рибосомы с помощью матричной (информационной) РНК объединяются в цепочки рибосом – полисомы. Свободные и прикрепленные рибосомы, помимо отличия в их локализация, характеризуются определенной функциональной специфичностью: свободные рибосомы синтезируют белки.
Клеточный центр
Клеточный центр – цитоцентр, центросома. В неделящейся клетке клеточный центр состоит из двух основных структурных компонентов:
1) диплосомы;
2) центросферы.
Диплосома состоит из двух центриолей (материнской и дочерней), расположенных под прямым углом друг к другу. Каждая центриоль состоит из микротрубочек, образующих полый цилиндр, диаметром 0,2 мкм, длиной 0,3 – 0,5 мкм. Микротрубочки объединяются в триплеты (по три трубочки), образуя всего девять триплетов. Центросфера – бесструктурный участок гиалоплазмы вокруг диплосомы, от которого радиарно отходят микротрубочки (по типу лучистой сферы).
Функции цитоцентра:
1) образование веретена деления в профазе митоза;
2) участие в формировании микротрубочек клеточного каркаса;
3) выполнение роли базисных телец ресничек в реснитчатых эпителиальных клетках центриоли.
Положение центриолей в некоторых эпителиальных клетках определяет их полярную дифференцированность.
Микротрубочки
Микротрубочки – полые цилиндры (внешний диаметр – 24 мм, внутренний – 15 им), являются самостоятельными органеллами, образуя цитоскелет. Они также могут входить в состав других органелл – центриолей, ресничек, жгутиков. Стенка микротрубочек состоит из глобулярного белка тубулина, который образован отдельными округлыми образованиями глобулы диаметром 5 нм. Глобулы могут находиться в гиалоплазме в свободном состоянии или соединяться между собой, в результате чего формируются микротрубочки. Они могут затем вновь распадаться на глобулы. Таким образом формируются и затем распадаются микротрубочки веретена деления в разные фазы митоза. Однако в составе центриолей, ресничек и жгутиков микротрубочки являются устойчивыми образованиями. Большая часть микротрубочек участвует в формировании внутриклеточного каркаса, который поддерживает форму клетки, обусловливая определенное положение органелл в цитоплазме, а также предопределяет направление внутриклеточных перемещений. Белки-тубулины не обладают способностью к сокращению, следовательно, и микротрубочки не сокращаются. В составе ресничек и жгутиков происходит взаимодействие микротрубочек между собой, их скольжение друг относительно друга, что обеспечивает движение этих органелл.
Микрофибриллы
Микрофибриллы (промежуточные филаменты) представляют собой тонкие неветвящиеся нити.
В основном микрофибриллы локализуются в кортикальном, (подмембранном) слое цитоплазмы. Они состоят из белка, который в различных по классу клетках имеет определенную структуру (в эпителиальных клетках – это белок кератин, в мышечных клетках – десмин).
Функциональная роль микрофибрилл – участвовать наряду с микротрубочками в формировании клеточного каркаса, выполняя опорную функцию.
Микротрубочки могут объединяться в пучки и образовывать тонофибриллы, которые рассматриваются как самостоятельные органеллы и выполняют опорную функцию.
Микрофиламенты
Микрофиламенты – еще более тонкие нитчатые структуры (5 – 7 нм), состоящие из сократительных белков (актина, миозина, тропомиозина).
Микрофиламенты локализуются в основном в кортикальном слое цитоплазмы.
В совокупности микрофиламенты составляют сократительный аппарат клетки, обеспечивающий различные виды движений: перемещение органелл, ток гиалоплазмы, изменение клеточной поверхности, образование псевдоподии и перемещение клетки.
Скопление микрофиламентов в мышечных волокнах образует специальные органеллы мышечной ткани – миофибриллы.
Включения
Включения – непостоянные структурные компоненты цитоплазмы. Классификация включений:
1) трофические;
2) секреторные;
3) экскреторные;
4) пигментные.
В процессе жизнедеятельности клеток могут накапливаться случайные включения – медикаментозные, частички различных веществ.
Трофические включения – лецитин в яйцеклетках, гликоген или липиды в различных клетках.
Секреторные включения – это секреторные гранулы в секретирующих клетках (например, зимогенные гранулы в ацинозных клетках поджелудочной железы, секреторные гранулы в различных эндокринных клетках).
Экскреторные включения – это вещества, которые необходимо удалить из клетки (например, гранулы мочевой кислоты в эпителии почечных канальцев).
Пигментные включения – меланин, гемоглобин, липофусцин, билирубин. Эти включения придают клетке, которая их содержит, определенную окраску: меланин окрашивает клетку в черный или коричневый цвет, гемоглобин – в желто-красный, билирубин – в желтый. Пигментные клетки содержатся только в определенных типах клеток: меланин – в меланоцитах, гемоглобин – в эритроцитах. Липофусцин, в отличие от других указанных пигментов, может содержаться во многих типах клеток. Наличие липофусцина в клетках (особенно в значительном количестве) говорит о старении и функциональной неполноценности.
Тема 5. МОРФОЛОГИЯ И ФУНКЦИИ ЯДРА. РЕПРОДУКЦИЯ КЛЕТОК
В организме человека содержатся только эукариотические (ядерные) типы клеток. Безъядерные структуры (эритроциты, тромбоциты, роговые чешуйки) являются вторичными образованиями, так как они образуются из ядерных клеток в результате их специфической дифференцировки.
Большинство клеток содержит одно ядро, лишь редко встречаются двухядерные и многоядерные клетки. Форма ядра чаще всего округлая (сферическая) или овальная. В зернистых лейкоцитах ядро подразделяется на сегменты. Локализуется ядро обычно в центре клетки, но в клетках эпителиальной ткани может быть сдвинуто к базальному полюсу.
Структурные элементы ядра четко выражены только в определенный период клеточного цикла – в интерфазу. В период деления клетки (митоза или мейоза) происходят выраженные изменения структур клеток: одни исчезают, другие значительно преобразуются.
Структурные элементы ядра
Структурные элементы ядра, перечисленные ниже, бывают хорошо выражены только в интерфазе:
1) хроматин;
2) ядрышко;
3) кариоплазма;
4) кариолемма.
Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл толщиной 20 – 25 км, которые могут располагаться в ядре рыхло или компактно.
На этом основании можно выделить эухроматин – рыхлый (или деконденсированный) хроматин, слабо окрашиваемый основными красителями, и гетерохроматин – компактный (или конденсированный) хроматин, хорошо окрашиваемый основными красителями.
При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл, и хромосомы снова преобразуются в хроматин. Таким образом, хроматин и хромосомы являются различными состояниями одного и того же вещества.
По химическому строению хроматин состоит из:
1) дезоксирибонуклеиновой кислоты (ДНК) – 40%;
2) белков – около 60%;
3) рибонуклеиновой кислоты (РНК) – 1%.
Ядерные белки представлены двумя формами:
1) щелочными (гистоновыми) белками – 80 – 85%;
2) кислыми белками – 15 – 20%.
Гистоновые белки связаны с ДНК и образуют дезоксинуклеопротеид, представляющий собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК на различные РНК, с помощью чего в последующем происходит синтез белковых молекул. Процессы траскрипции в ядре осуществляются только на свободных хромосомных фибриллах, т. е. на эухроматине. В конденсированном хроматине эти процессы не осуществляются, поэтому гетерохроматин называют неактивным хроматином.
Соотношение эухроматина и гетерохроматина является показателем синтетической активности клетки. На хроматиновых фибриллах в S-периоде интерфазы осуществляется редупликация ДНК. Эти процессы могут протекать также и в гетерохроматине, но значительно дольше.
Ядрышко – сферическое образование (1 – 5 мкм в диаметре), хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4 и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе, в определенных участках некоторых хромосом – ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединицы рибосомы.
Микроскопически в ядрышке различают:
1) фибриллярный компонент (локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП));
2) гранулярный компонент (локализуется в периферической части ядрышка и представляет собой скопление субъединиц рибосом).
В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединицы рибосом прекращаются, ядрышко исчезает. По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом, появляется ядрышко.
Кариоплазма (нуклеоплазма или ядерный сок), состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, однако при электронной микроскопии в ней можно обнаружить мелкие гранулы (15 нм), состоящие из рибонуклеопротеидов. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющими расщепление углеводов с образованием АТФ.
Негистоновые белки (кислые) образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создании внутренней среды.
При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.
Кариолемма – ядерная оболочка, которая отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.
Кариолемма состоит из двух билипидных мембран, внешней и внутренней ядерных мембран, разделенных перинуклеарным пространством шириной 20 – 100 нм. В кариолемме имеются поры диаметром 80 – 90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым. Просвет поры закрывается специальным структурным образованием – комплексом поры, который состоит из фибриллярного и гранулярного компонентов. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в 3 ряда. От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры поры стабильные для данного типа клетки, но число пор может меняться при ее дифференцировке. В ядрах сперматозоидов поры отсутствуют. На наружной поверхности ядерной мембраны могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в каналы ЭПС.
Функции ядер соматических клеток:
1) хранение генетической информации, закодированной в молекулах ДНК;
2) репарация (восстановление) молекул ДНК после их повреждения с помощью специальных репаративных ферментов;
3) редупликация (удвоение) ДНК в синтетическом периоде интерфазы;
4) передача генетической информации дочерним клеткам во время митоза;
5) реализация генетической информации, закодированной в ДНК, для синтеза белка и небелковых молекул: образование аппарата белкового синтеза (информационной, рибосомальной и транспортных РНК).
Функции ядер половых клеток:
1) хранение генетической информации;
2) передача генетической информации при слиянии женских и мужских половых клеток.
Клеточный (жизненный) цикл
Клеточный (или жизненный) цикл клетки – время существования клетки от деления до следующего деления или от деления до смерти. Для разных типов клеток клеточный цикл различен.
В организме млекопитающих и человека различают следующие типы клеток, локализующиеся в разных тканях и органах:
1) часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки);
2) редко делящиеся клетки (клетки печени – гепатоциты);
3) неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и др.).
Жизненный цикл у этих клеточных типов различен.
Жизненный цикл у часто делящихся клеток – время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом.
Такой клеточный цикл подразделяется на два основных периода:
1) митоз (или период деления);
2) интерфазу (промежуток жизни клетки между двумя делениями).
Выделяют два основных способа размножения (репродукции) клеток.
1. Митоз (кариокенез) – непрямое деление клеток, присущее в основном соматическим клеткам.
2. Мейоз (редукционное деление) характерен только для половых клеток.
Имеются описания и третьего способа деления клеток – амитоза (или прямого деления), которое осуществляется путем перетяжки ядра и цитоплазмы с образованием двух дочерних клеток или одной двухядерной. Однако в настоящее время считают, что амитоз характерен для старых и дегенерирующих клеток и является отражением патологии клетки.
Указанные два способа деления клеток подразделяются на фазы или периоды.
Митоз подразделяется на четыре фазы:
1) профазу;
2) метафазу;
3) анафазу;
4) телофазу.
Профаза характеризуется морфологическими изменениями ядра и цитоплазмы.
В ядре происходят следующие преобразования:
1) конденсация хроматина и образование хромосом, состоящих из двух хроматид;
2) исчезновение ядрышка;
3) распад кариолеммы на отдельные пузырьки.
В цитоплазме происходят следующие изменения:
1) редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки;
2) формирование из микротрубочек веретена деления;
3) редукция зернистой ЭПС и также уменьшение числа свободных и прикрепленных рибосом.
В метафазе происходит следующее:
1) образование метафазной пластинки (или материнской звезды);
2) неполное обособление сестринских хроматид друг от друга.
Для анафазы характерно:
1) полное расхождение хроматид и образование двух равноценных дипольных наборов хромосом;
2) расхождение хромосомных наборов к полюсам митотического веретена и расхождение самих полюсов.
Для телофазы характерны:
1) деконденсация хромосом каждого хромосомного набора;
2) формирование из пузырьков ядерной оболочки;
3) цитотомия, (перетяжка двухядерной клетки на две дочерние самостоятельные клетки);
4) появление ядрышек в дочерних клетках.
Интерфазу подразделяют на три периода:
1) I – J1 (или пресинтетический период);
2) II – S (или синтетический);
3) III – J2 (или постсинтетический период).
В пресинтетическом периоде в клетке происходят следующие процессы:
1) усиленное формирование синтетического аппарата клетки – увеличение числа рибосом и различных видов РНК (транспортной, информационной, рибосомальной);
2) усиление синтеза белка, необходимого для роста клетки;
3) подготовка клетки к синтетическому периоду – синтез ферментов, необходимых для образования новых молекул ДНК.
Для синтетического периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки.
Постсинтетический период характеризуется усиленным синтезом информационной РНК и всех клеточных белков, особенно тубулинов, необходимых для формирования веретена деления.
Клетки некоторых тканей (например, гепатоциты) по выходе из митоза вступают в так называемый J0-период, во время которого они выполняют свои многочисленные функции в течение ряда лет, при этом не вступая в синтетический период. Только при определенных обстоятельствах (при повреждении или удалении части печени) они вступают в нормальный клеточный цикл (или в синтетический период), синтезируя ДНК, а затем митотически делятся. Жизненный цикл таких редко делящихся клеток можно представить следующим образом:
1) митоз;
2) J1-период;
3) J0-период;
4) S-период;
5) J2-период.
Большинство клеток нервной ткани, особенно нейроны центральной нервной системы, по выходе из митоза еще в эмбриональном периоде в дальнейшем не делятся.
Жизненный цикл таких клеток состоит из следующих периодов:
1) митоза – I период;
2) роста – II период;
3) длительного функционирования – III период;
4) старения – IV период;
5) смерти – V период.
На протяжении длительного жизненного цикла такие клетки постоянно регенерируют по внутриклеточному типу: белковые и липидные молекулы, входящие в состав разнообразных клеточных структур, постепенно заменяются новыми, т. е. клетки постепенно обновляются. На протяжении жизненного цикла в цитоплазме неделящихся клеток накапливаются различные, прежде всего липидные включения, в частности липофусцин, рассматриваемый в настоящее время как пигмент старения.
Мейоз – способ деления клеток, при котором происходит уменьшение числа хромосом в дочерних клетках в 2 раза, характерен для половых клеток. В данном способе деления отсутствует редупликация ДНК.
Кроме митоза и мейоза, выделяется также эндорепродукция, не приводящая к увеличению количества клеток, но способствующая увеличению количества работающих структур и усилению функциональной способности клетки.
Для данного способа характерно, что после митоза клетки сначала вступают в J1-, а затем в S-период. Однако такие клетки после удвоения ДНК не вступают в J2-период, а затем в митоз. В результате этого количество ДНК становится увеличенным вдвое – клетка превращается в полиплоидную. Полиплоидные клетки могут вновь вступать в S-период, в результате чего они увеличивают свою плоидность.
В полиплоидных клетках увеличивается размер ядра и цитоплазмы, клетки становятся гипетрофированными. Некоторые полиплоидные клетки после редупликации ДНК вступают в митоз, однако он не заканчивается цитотомией, так как такие клетки становятся двухъядерными.
Таким образом, при эндорепродукции не происходит увеличения числа клеток, но увеличивается количество ДНК и органелл, следовательно, и функциональная способность полиплоидной клетки.
Способностью к эндорепродукции обладают не все клетки. Наиболее характерна эндорепродукция для печеночных клеток, особенно с увеличением возраста (например, в старости 80% гепатоцитов человека являются полиплоидными), а также для ацинозных клеток поджелудочной железы и эпителия мочевого пузыря.
Реакция клеток на внешнее воздействие
Данная морфология клеток не является стабильной и постоянной. При воздействии на организм различных неблагоприятных факторов внешней среды в строении клетки происходят различные изменения. В зависимости от факторов воздействия изменение клеточных структур происходит неодинаково в клетках разных органов и тканей. При этом изменения клеточных структур могут быть приспособительными и обратимыми или дезадаптивными, необратимыми (патологическими). Определить границу между обратимыми и необратимыми изменениями не всегда возможно, так как адаптивные могут перейти в дезадаптивные при дальнейшем действии фактора внешней среды.
Изменения в ядре при действии факторов внешней среды:
1) набухание ядра и смещение его на периферию клетки;
2) расширение перинуклеарного пространства;
3) образование инвагинаций кариолеммы (впячивание внутрь ядра отдельных участков его оболочки);
4) конденсация хроматина;
5) пикноз (сморщивание ядра и уплотнение (коагуляция хроматина));
6) кариорексис (распад ядра на фрагменты);
7) кариолизис (растворение ядра).
Изменения в цитоплазме:
1) уплотнение, а затем набухание митохондрий;
2) дегрануляция зернистой ЭПС (слущивание рибосом и фрагментация канальцев на отдельные вакуоли);
3) расширение цистерн и распад на вакуоли пластинчатого комплекса Гольджи;
4) набухание лизосом и активация их гидролаз;
5) увеличение числа аутофагосом;
6) распад веретена деления и развитие патологического митоза в процессе митоза.
Изменения цитоплазмы могут быть обусловлены:
1) структурными изменениями плазмолеммы, что приводит к усилению ее проницаемости и гидратации гиалоплазмы;
2) нарушением обмена веществ, что приводит к снижению содержания АТФ;
3) снижением расщепления или увеличением синтеза включений (гликогена, липидов) и их избыточном накоплением.
После устранения неблагоприятных факторов внешней среды адаптивные изменения структур исчезают и морфология клетки полностью восстанавливается. При развитии неадаптивных изменений даже после устранения действия неблагоприятных факторов внешней среды изменения продолжают нарастать, и клетка погибает.
Тема 6. ОБЩАЯ ЭМБРИОЛОГИЯ
Определение и составные части эмбриологии
Эмбриология – наука о закономерностях развития животных организмов от момента оплодотворения до рождения (или вылупливания на яйца). Следовательно, эмбриология изучает внутриутробный период развития организма, т. е. часть онтогенеза.
Онтогенез – развитие организма от оплодотворения до смерти, подразделяется на два периода:
1) эмбриональный (эмбриогенез);
2) постэмбриональный (постнатальный).
Развитию любого организма предшествует прогенез.
Прогенез включает в себя:
1) гаметогенез – образование половых клеток (сперматогенез и овогенез);
2) оплодотворение.
Классификация яйцеклеток
В цитоплазме большинства яйцеклеток содержатся включения – лецитин и желток, содержание и распределение которых значительно отличаются у различных живых организмов.
По содержанию лецитина можно выделить:
1) алецитарные яйцеклетки (безжелтковые). К этой группе относятся яйцеклетки гельминтов;
2) олиголецитарные (маложелтковые). Характерно для яйцеклетки ланцетника;
3) полилецитарные (многожелтковые). Свойственно яйцеклеткам некоторых птиц и рыб.
По распределению лецитина в цитоплазме выделяют:
1) изолецитарные яйцеклетки. Лецитин распределяется в цитоплазме равномерно, что характерно для олиголецитарных яйцеклеток;
2) телолецитарные. Желток концентрируется на одном из полюсов яйцеклетки. Среди телолецитарных яйцеклеток выделяют умеренно телолецитарные (характерны для амфибий), резко телолецитарные (бывают у рыбы и птицы) и центролецитарные (у них желток локализуется в центре, что характерно для насекомых).
Предпосылкой онтогенеза является взаимодействие мужских и женских половых клеток, при этом происходит оплодотворение – процесс слияния женской и мужской половых клеток (сингамия), в результате которого образуется зигота.
Оплодотворение может быть внешним (у рыб и амфибий), при этом мужские и женские половые клетки выходят во внешнюю среду, где и происходит их слияние, и внутренним – (у птиц и млекопитающих), при этом сперматозоиды поступают в половые пути женского организма, в котором и происходит оплодотворение.
Внутреннее оплодотворение, в отличие от внешнего, представляет собой сложный многофазный процесс. После оплодотворения образуется зигота, развитие которой продолжается при внешнем оплодотворении в воде, у птиц – в яйце, а у млекопитающих и человека – в материнском организме (матке).
Периоды эмбриогенеза
Эмбриогенез по характеру процессов, происходящих в зародыше, подразделяется на три периода:
1) период дробления;
2) период гаструляции;
3) период гистогенеза (образования тканей), органогенеза (образования органов), системогенеза (образования функциональных систем организма).
Дробление. Продолжительность жизни нового организма в виде одной клетки (зиготы) продолжается у разных животных от нескольких минут до нескольких часов и даже дней, а затем начинается дробление. Дробление – процесс митотического деления зиготы на дочерние клетки (бластомеры). Дробление отличается от обычного митотического деления следующими особенностями:
1) бластомеры не достигают исходных размеров зиготы;
2) бластомеры не расходятся, хотя и представляют собой самостоятельные клетки.
Различают следующие типы дробления:
1) полное, неполное;
2) равномерное, неравномерное;
3) синхронное, асинхронное.
Яйцеклетки и образующиеся после их оплодотворения зиготы, содержащие небольшое количество лецитина (олиголецитальные), равномерно распространенного в цитоплазме (изолецитальные), делятся полностью на две дочерние клетки (бластомеры) равной величины, которые затем одновременно (синхронно) делятся снова на бластомеры. Такой тип дробления является полным, равномерным и синхронным.
Яйцеклетки и зиготы, содержащие умеренное количество желтка, также дробятся полностью, но образующиеся бластомеры имеют разную величину и дробятся неодновременно – дробление полное, неравномерное, асинхронное.
В результате дробления образуется вначале скопление бластомеров, и зародыш в таком виде носит название морулы. Затем между бластомерами накапливается жидкость, которая отодвигает бластомеры на периферию, а в центре образуется полость, заполненная жидкостью. В этой стадии развития зародыш носит название бластулы.
Бластула состоит из:
1) бластодермы – оболочки из бластомеров;
2) бластоцели – полости, заполненной жидкостью.
Бластула человека – бластоциста. После образования бластулы начинается второй этап эмбриогенеза – гаструляция.
Гаструляция – процесс образования зародышевых листков, образующихся посредством размножения и перемещения клеток. Процесс гаструляции у разных животных протекает неодинаково. Различают следующие способы гаструляции:
1) деламинацию (расщепление скопления бластомеров на пластинки);
2) иммиграцию (перемещение клеток внутрь развивающегося зародыша);
3) инвагинацию (впячивание пласта клеток внутрь зародыша);
4) эпиболию (обрастание медленно делящихся бластомеров быстро делящимися с образованием наружного пласта клеток).
В результате гаструляции в зародыше любого вида животного образуются три зародышевых листка:
1) эктодерма (наружный зародышевый листок);
2) энтодерма (внутренний зародышевый листок);
3) мезодерма (средний зародышевый листок).
Каждый зародышевый листок представляет собой обособленный пласт клеток. Между листками вначале имеются щелевидные пространства, в которые вскоре мигрируют отростчатые клетки, образующие в совокупности зародышевую мезенхиму (некоторые авторы рассматривают ее как четвертый зародышевый листок).
Зародышевая мезенхима образуется путем выселения клеток из всех трех зародышевых листков, главным образом из мезодермы. Зародыш, состоящий из трех зародышевых листков и мезенхимы, носит название гаструлы. Процесс гаструляции у зародышей разных животных существенно отличается как по способам, так и по времени. В образующихся после гаструляции зародышевых листках и мезенхиме содержатся презумптивные (предположительные) зачатки тканей. После этого начинается третий этап эмбриогенеза – гисто– и органогенез.
Гисто– и органогенез (или дифференцировка зародышевых листков) представляет собой процесс превращения зачатков тканей в ткани и органы, а затем и формирование функциональных систем организма.
В основе гисто– и органогенеза лежат следующие процессы: митотическое деление (пролиферация), индукция, детерминация, рост, миграция и дифференцировка клеток. В результате этих процессов вначале образуются осевые зачатки комплексов органов (хорда, нервная трубка, кишечная трубка, мезодермальные комплексы). Одновременно постепенно формируются различные ткани, а из сочетания тканей закладываются и развиваются анатомические органы, объединяющиеся в функциональные системы – пищеварительную, дыхательную, половую и др. На начальном этапе гисто– и органогенеза зародыш носит название эмбриона, который в дальнейшем превращается в плод.
В настоящее время окончательно не установлено, каким образом из одной клетки (зиготы), а в дальнейшем из одинаковых зародышевых листков образуются совершенно различные по морфологии и функции клетки, а из них – ткани (из эктодермы образуются эпителиальные ткани, роговые чешуйки, нервные клетки и клетки глии). Предположительно в данных превращениях играют ведущую роль генетические механизмы.
Понятие о генетических основах гисто– и органогенеза
После оплодотворения яйцеклетки сперматозоидом образуются зигота. Она содержит генетический материал, состоящий из материнских и отцовских генов, которые затем передаются при делении дочерним клеткам. Сумма всех генов зиготы и образующихся из нее клеток составляет геном, характерный только для данного вида организма, а особенности сочетания материнских и отцовских генов у данной особи составляют ее генотип. Следовательно, любая клетка, образующаяся из зиготы, содержит одинаковый по количеству и качеству генетический материал, т. е. одинаковые геном и генотип (исключением являются только половые клетки, они содержат половинный набор генома).
В процессе гаструляции и после образования зародышевых листков клетки, расположенные в разных листках или в различных участках одного зародышевого листка, оказывают влияние друг на друга. Такое влияние называют индукцией. Индукция осуществляется путем выделения химических веществ (белков), но существуют и физические методы индукции. Индукция оказывает влияние прежде всего на геном клетки. В результате индукции некоторые гены клеточного генома блокируются, т. е. становятся нерабочими, с них не производится транскрипция различных молекул РНК, следовательно, не осуществляется и синтез белка. В результате индукции одни гены оказываются блокированными, другие свободными – рабочими. Сумма свободных генов данной клетки называется ее эпигеном. Сам процесс формирования эпигенома, т. е. взаимодействия индукции и генома, носит название детерминации. После сформирования эпигенома клетка становится детерминированной, т. е. запрограммированной к развитию в определенном направлении.
Сумма клеток, расположенных в определенном участке зародышевого листка и имеющих одинаковый эпигеном, представляет собой презумптивные зачатки определенной ткани, так как все эти клетки будут дифференцироваться в одном направлении и войдут в состав этой ткани.
Процесс детерминации клеток в разных участках зародышевых листков осуществляется в разное время и может протекать в несколько стадий. Сформированный эпигеном является устойчивым и после митотического деления передается дочерним клеткам.
После детерминации клеток, т. е. после окончательного формирования эпигенома, начинается дифференцировка – процесс морфологической, биохимической и функциональной специализации клеток.
Этот процесс обеспечивается транскрипцией с активных генов, определенных РНК, а затем осуществляется синтез определенных белков и небелковых веществ, которые и определяют морфологическую, биохимическую и функциональную специализацию клеток. Некоторые клетки (например, фибробласты) формируют межклеточное вещество.
Таким образом, формирование из клеток, содержащих одинаковый геном и генотип, разнообразных по строению и функциям клеток можно объяснить процессом индукции и формированием клеток с различным эпигеномом, которые затем дифференцируются в клетки различных популяций.
Внезародышевые (провизорные) органы
Часть бластомеров и клеток после дробления зиготы идет на образование органов, способствующих развитию зародыша и плода. Такие органы и называются внезародышевыми.
После рождения некоторые внезародышевые органы отторгаются, другие на последних этапах эмбриогенеза подвергаются обратному развитию или перестраиваются. У разных животных развивается неодинаковое количество провизорных органов, отличающихся по строению и по выполняемым функциям.
У млекопитающих, в том числе и у человека, развиваются четыре внезародышевых органа:
1) хорион;
2) амнион;
3) желточный мешок;
4) аллантоис.
Хорион (или ворсинчатая оболочка) выполняет защитную и трофическую функции. Часть хориона (ворсинчатый хорион) внедряется в слизистую оболочку матки и входит в состав плаценты, которую иногда рассматривают как самостоятельный орган.
Амнион (или водная оболочка) образуется только у наземных животных. Клетки амниона продуцируют амниотическую жидкость (околоплодные воды), в которой и развивается эмбрион, а затем – плод.
После рождения ребенка хориальная и амниотическая оболочки отторгаются.
Желточный мешок развивается в наибольшей степени у зародышей, образующихся из полилецитальных клеток, и потому содержит много желтка, откуда и происходит его название. Желточный меток выполняет следующие функции:
1) трофическую (за счет трофического включения (желтка) обеспечивается питание зародыша, особенно развивающегося в яйце, на более поздних стадиях развития для доставки трофического материала к зародышу формируется желточный круг кровообращения);
2) кроветворную (в стенке желточного мешка (в мезенхиме) образуются первые клетки крови, которые затем мигрируют в кроветворные органы зародыша);
3) гонобластическую (в стенке желточного мешка (в энтодерме) образуются первичные половые клетки (гонобласты), которые затем мигрируют в закладки половых желез зародыша).
Аллантоис – слепое выпячивание каудального конца кишечной трубки, окруженное внезародышевой мезенхимой. У животных, развивающихся в яйце, аллантоис достигает большого развития и выполняет функцию резервуара для продуктов обмена зародыша (главным образом мочевины). Именно поэтому аллантоис нередко называю мочевым мешком.
У млекопитающих необходимость в накоплении продуктов обмена отсутствует, так как они поступают через маточно-плацентарный кровоток в организм матери и выводятся ее экскреторными органами. Поэтому у таких животных и человека аллантоис развит слабо и выполняет другие функции: в его стенке развиваются пупочные сосуды, которые разветвляются в плаценте и благодаря которым формируется плацентарный круг кровообращения.
Тема 7. ЭМБРИОЛОГИЯ ЧЕЛОВЕКА
Прогенез
Рассмотрение закономерностей эмбриогенеза начинается с прогенеза. Прогенез – гаметогенез (спермато– и овогенез) и оплодотворение.
Сперматогенез осуществляется в извитых канальцах семенников и подразделяется на четыре периода:
1) период размножения – I;
2) период роста – II;
3) период созревания – III;
4) период формирования – IV.
Процесс сперматогенеза будет обстоятельно рассмотрен при изучении мужской половой системы. Сперматозоид человека состоит из двух основных частей: головки и хвоста.
Головка содержит:
1) ядро (с гаплоидным набором хромосом);
2) чехлик;
3) акросому;
4) тонкий слой цитоплазмы, окруженный цитолеммой.
Хвост сперматозоида подразделяется на:
1) связующий отдел;
2) промежуточный отдел;
3) главный отдел;
4) терминальный отдел.
Главные функции сперматозоида – хранение и передача яйцеклеткам генетической информации при их оплодотворении. Оплодотворяющая способность сперматозоидов в половых путях женщины сохраняется до 2 суток.
Овогенез осуществляется в яичниках и подразделяется на три периода:
1) период размножения (в эмбриогенезе и в течение 1-го года постэмбрионального развития);
2) период роста (малого и большого);
3) период созревания.
Яйцеклетка состоит из ядра с гаплоидным набором хромосом и выраженной цитоплазмы, в которой содержатся все органеллы, за исключением цитоцентра.
Оболочки яйцеклетки:
1) первичная (плазмолемма);
2) вторичная – блестящая оболочка;
3) третичная – лучистый венец (слой фолликулярных клеток).
Оплодотворение у человека внутреннее – в дистальной части маточной трубы.
Подразделяется на три фазы:
1) дистантное взаимодействие;
2) контактное взаимодействие;
3) проникновение и слияние пронуклеусов (фаза синкариона).
В основе дистантного взаимодействия лежат три механизма:
1) реотаксис – движение сперматозоидов против тока жидкости в матке и маточной трубе;
2) хемотаксис – направленное движение сперматозоидов к яйцеклетке, которая выделяет специфические вещества – гиногамоны;
3) канацитация – активация сперматозоидов гиногамонами и гормоном прогестероном.
Через 1,5 – 2 ч сперматозоиды достигают дистальной части маточной трубы и вступают в контактное взаимодействие с яйцеклеткой.
Основным моментом контактного взаимодействия является акросомальная реакция – выделение ферментов (трипсина и гиалуроновой кислоты) из акросом сперматозоидов. Эти ферменты обеспечивают:
1) отделение фолликулярных клеток лучистого венца от яйцеклетки;
2) постепенное, но неполное разрушение блестящей оболочки яйцеклетки.
При достижении одним из сперматозоидов плазмолеммы яйцеклетки в этом месте образуется небольшое выпячивание – бугорок оплодотворения. После этого начинается фаза проникновения. В области бугорка плазмолеммы яйцеклетки и сперматозоида сливаются, и часть сперматозоида (головка, связующий и промежуточные отделы) оказывается в цитоплазме яйцеклетки. Плазмолемма сперматозоида встраивается в плазмолемму яйцеклетки. После этого начинается кортикальная реакция – выход кортикальных гранул из яйцеклетки по типу экзоцитоза, которые между плазмолеммой яйцеклетки и остатками блестящей оболочки сливаются, затвердевают и образуют оболочку оплодотворения, препятствующую проникновению в яйцеклетку других сперматозоидов. Таким образом у млекопитающих и человека обеспечивается моноспермия.
Главным событием фазы проникновения является внедрение в цитоплазму яйцеклетки генетического материала сперматозоидов, а также цитоцентра. После этого происходит набухание мужского и женского пронуклеусов, их сближение, а затем и слияние – синакрион. Одновременно в цитоплазме начинаются перемещения содержимого цитоплазмы и обособление (сегрегация) отдельных ее участков. Так формируются предположительные (презумптивные) зачатки будущих тканей – проходит этап дифференцировки тканей.
Условия, необходимые для оплодотворения яйцеклетки:
1) содержание в эякуляте не менее 150 млн сперматозоидов, при концентрации в 1 мл не менее 60 млн;
2) проходимость женских половых путей;
3) нормальное анатомическое положение матки;
4) нормальная температура тела;
5) щелочная среда в половых путях женщины.
С момента слияния пронуклеусов образуется зигота – новый одноклеточный организм. Время существования организма зиготы – 24 – 30 ч. С этого периода начинается онтогенез и его первый этап – эмбриогенез.
Эмбриогенез
Эмбриогенез человека подразделяется (в соответствии с происходящими в нем процессами) на:
1) период дробления;
2) период гаструляции;
3) период гисто– и органогенеза.
В акушерстве эмбриогенез подразделяется на другие периоды:
1) начальный период – 1-я неделя;
2) зародышевый период (или период эмбриона) – 2 – 8-я недели;
3) плодный период – с 9-й недели и до конца эмбриогенеза.
I. Период дробления. Дробление у человека полное, неравномерное, асинхронное. Бластомеры неравной величины и подразделяются на два типа: темные крупные и светлые мелкие. Крупные бластомеры дробятся реже, располагаются о центре и составляют эмбриобласт. Мелкие бластомеры чаще дробятся, располагаются по периферии от эмбриобласта и в дальнейшем формируют трофобласт.
Первое дробление начинается примерно через 30 ч после оплодотворения. Плоскость первого деления проходит через область направительных телец. Поскольку желток в зиготе распределен равномерно, выделение анимального и вегетативных полюсов крайне затруднено. Область отделения направительных телец обычно называют анимальным полюсом. После первого дробления образуются два бластомера, несколько различных по величине.
Второе дробление. Образование второго митотического веретена в каждом из образовавшихся бластомеров происходит вскоре после окончания первого деления, плоскость второго деления проходит перпендикулярно плоскости первого дробления. При этом концептус переходит в стадию 4 бластомеров. Однако дробление у человека асинхронное, поэтому в течение некоторого времени можно наблюдать 3-х клеточный концептус. На стадии 4 бластомеров синтезируются все основные виды РНК.
Третье дробление. На этой стадии асинхронность дробления проявляется в большей мере, в итоге образуется концептус с различным количеством бластомеров, при этом условно его можно разделить на 8 бластомеров. До этого бластомеры расположены рыхло, но вскоре концептус уплотняется, поверхность соприкосновения бластомеров увеличивается, объем межклеточного пространства уменьшается. В результате этого наблюдаются сближение и компактизация – крайне важное условие для образования между бластомерами плотных и щелевидных контактов. Перед формированием в плазматическую мембрану бластомеров начинает встраиваться увоморулин – белок адгезии клеток. В бластомерах ранних концептусов увоморулин равномерно распределен в клеточной мембране. Позднее в области межклеточных контактов образуются скопления (кластеры) молекул увоморулина.
На 3 – 4-е сутки образуется морула, состоящая из темных и светлых бластомеров, а с 4-х суток начинается накопление жидкости между бластомерами и формирование бластулы, которая называется бластоцистой.
Развитая бластоциста состоит из следующих структурных образований:
1) эмбриобласты;
2) трофобласты;
3) бластоцели, заполненной жидкостью.
Дробление зиготы (формирование морулы и бластоцисты) осуществляется в процессе медленного перемещения зародыша по маточной трубе к телу матки.
На 5-е сутки бластоциста попадает в полость матки и находится в ней в свободном состоянии, а с 7-х суток происходит имплантация бластоцисты в слизистую оболочку матки (эндометрий). Процесс этот подразделяется на две фазы:
1) фазу адгезии – прилипания к эпителию;
2) фазу инвазии – внедрения в эндометрий.
Весь процесс имплантации происходит на 7 – 8-е сутки и продолжается в течение 40 ч.
Внедрение зародыша осуществляется при помощи разрушения эпителия слизистой оболочки матки, а затем соединительной ткани и стенок сосудов эндометрия протеолитическими ферментами, которые выделяются трофобластом бластоцисты. В процессе имплантации происходит смена гистиотрофного типа питания зародыша на гемотрофный.
На 8-е сутки зародыш оказывается полностью погруженным в собственную пластинку слизистой оболочки матки. Дефект эпителия области внедрения зародыша при этом зарастает, а зародыш оказывается окруженным со всех сторон лакунами (или полостями), заполненными материнской кровью, изливающейся из разрушенных сосудов эндометрия. В процессе имплантации зародыша происходят изменения как в трофобласте, так и в эмбриобласте, где происходит гаструляция.
II. Гаструляция у человека подразделяется на две фазы. Первая фара гаструляции протекает на 7 – 8-е сутки (в процессе имплантации) и осуществляется способом деламинации (формируется эпибласт, гипобласт).
Вторая фаза гаструляции происходит с 14-х на 17-е сутки. Ее механизм будет рассмотрен несколько позже.
В период между I и II фазами гаструляции, т. е. с 9-х по 14-е сутки формируются внезародышевая мезенхима и три внезародышевых органа – хорион, амнион, желточный мешок.
Развитие, строение и функции хориона. В процессе имплантации бластоцисты ее трофобласт по мере внедрения из однослойного становится двухслойным и состоит из цитотрофобласта и симпатотрофобласта. Симпатотрофобласт представляет собой структуру, в которой в единой цитоплазме содержится большое число ядер и клеточных органелл. Образуется он посредствам слияния клеток, выталкиваемых из цитотрофобласта. Таким образом, эмбриобласт, в котором происходит I фаза гаструляции, окружен внезародышевой оболочкой, состоящей из цито– и симпластотрофобласта.
В процессе имплантации из эмбриобласта выселяются в полость бластоцисты клетки, образующие внезародышевую мезенхиму, которая подрастает изнутри к цитотрофобласту.
После этого трофобласт становится трехслойным – состоит из симпластотрофобласта, цитотрофобласта и париентального листка внезародышевой мезенхимы и носит название хориона (или ворсинчатой оболочки). По всей поверхности хориона располагаются ворсины, которые вначале состоят из цито– и симпластотрофобласта и называются первичными. Затем в них врастает изнутри внезародышевая мезенхима, и они становятся вторичными. Однако постепенно на большей части хориона ворсинки редуцируются и сохраняются только в той части хориона, которая направлена к базальному слою эндометрия. При этом ворсинки разрастаются, в них врастают сосуды, и они становятся третич-ными.
При развитии хориона выделяют два периода:
1) формирование гладкого хориона;
2) формирование ворсинчатого хориона.
Из ворсинчатого хориона в последующем формируется плацента.
Функции хориона:
1) защитная;
2) трофическая, газообменная, экскреторная и другие, в которых хорин принимает участие, будучи составной частью плаценты и которые выполняет плацента.
Развитие, строение и функции амниона. Внезародышевая мезенхима, заполняя полость бластоцисты, оставляет свободными небольшие участки бластоцели, прилежащие к эпибласту и гипобласту. Эти участки составляют мезенхимальные закладки амниотического пузырька и желточного мешка.
Стенка амниона состоит из:
1) внезародышевой эктодермы;
2) внезародышевой мезенхимы (висцерального листка).
Функции амниона – образование околоплодных вод и защитная функция.
Развитие, строение и функции желточного мешка. Из гипобласта выселяются клетки, составляющие внезародышевую (или желточную) энтодерму, и, обрастая изнутри мезенхимальную закладку желточного мешка, образуют вместе с ней стенку желточного мешка. Стенка желточного мешка состоит из:
1) внезародышевой (желточной) энтодермы;
2) внезародышевой мезенхимы.
Функции желточного мешка:
1) кроветворение (образование стволовых клеток крови);
2) образование половых стволовых клеток (гонобластов);
3) трофическая (у птиц и рыб).
Развитие, строение и функции аллантоиса. Часть зародышевой энтодермы гипобласта в виде пальцевидного выпячивания врастает в мезенхиму амниотической ножки и формирует аллантоис. Стенка аллантоиса состоит из:
1) зародышевой энтодермы;
2) внезародышевой мезенхимы.
Функциональная роль аллантоиса:
1) у птиц полость аллантоиса достигает значительного развития и в ней накапливается мочевина, поэтому его называют мочевым мешком;
2) у человека нет необходимости накопления мочевины, поэтому полость аллантоиса очень незначительная и к концу 2-го месяца полностью зарастает.
Однако в мезенхиме аллантоиса развиваются кровеносные сосуды, которые проксимальными концами соединяются с сосудами тела зародыша (эти сосуды возникают в мезенхиме тела зародыша позже, чем в аллантоисе). Дистальными концами сосуды аллантоиса врастают во вторичные ворсинки ворсинчатой части хориона и превращают их в третичные. С 3-й по 8-ю недели внутриутробного развития за счет этих процессов формируется плацентарный круг кровообращения. Амниотическая ножка вместе с сосудами вытягивается и превращается в пупочный канатик, а сосуды (две артерии и вена) называются пупочными сосудами.
Мезенхима пупочного канатика преобразуется в слизистую соединительную ткань. В составе пупочного канатика содержатся также остатки аллантоиса и желточного стебелька. Функция аллантоиса – способствование выполнению функций плаценты.
По окончании второй стадии гаструляции зародыш носит название гаструлы и состоит из трех зародышевых листков – эктодермы, мезодермы и энтодермы и четырех внезародышевых органов – хориона, амниона, желточного мешка и аллантоиса.
Одновременно с развитием второй фазы гаструляции формируется зародышевая мезенхима посредством миграции клеток из все трех зародышевых листков.
На 2 – 3-й неделе, т. е. в процессе второй фазы гаструляции и сразу же после нее, происходит закладка зачатков осевых органов:
1) хорды;
2) нервной трубки;
3) кишечной трубки.
Строение и функции плаценты
Плацента – это образование, которое осуществляет связь между плодом и организмом матери.
Плацента состоит из материнской части (базальная часть децидуальной оболочки) и плодной части (ворсинчатый хорион – производное трофобласта и внезародышевой мезодермы).
Функции плаценты:
1) обмен между организмами матери и плода газами-метаболитами, электролитами. Обмен осуществляется при помощи пассивного транспорта, облегченной диффузии и активного транспорта. Достаточно свободно в организм плода из материнского могут проходить стероидные гормоны;
2) транспорт материнских антител, осуществляющийся при помощи опосредованного рецепторами эндоцитоза и обеспечивающийся пассивный иммунитет плода. Данная функция очень важна, так как после рождения плод имеет пассивный иммунитет ко многим инфекциям (кори, краснухе, дифтерии, столбняку и др.), которыми либо болела мать, либо против которых была вакцинирована. Продолжительность пассивного иммунитета после рождения составляет 6 – 8 месяцев;
3) эндокринная функция. Плацента – это эндокринный орган. Она синтезирует гормоны и биологически активные вещества, которые играют очень большую роль в нормальном физиологическом протекания беременности и развития плода. К этим веществам относятся прогестерон, хорионический соматомаммотропин, фактор роста фибробластов, трансферрин, пролактин и релаксин. Кортиколиберины определяют срок родов;
4) детоксикация. Плацента способствует детоксикации некоторых лекарственных препаратов;
5) плацентарный барьер. В состав плацентарного барьера входят синцитиотрофобласт, цитотрофобласт, базальная мембрана трофобласта, соединительная ткань ворсины, базальная мембрана в стенке капилляра плода, эндотелий капилляра плода. Гематоплацентарный барьер препятствует контакту крови матери и плода, что очень важно для защиты плода от влияния иммунной системы матери.
Структурно-функциональной единицей сформировавшейся плаценты является котиледон. Он образован стволовой ворсиной и ее разветвлениями, содержащими сосуды плода. К 140-му дню беременности в плаценте сформировано около 10 – 12 больших, 40 – 50 мелких и до 150 рудиментарных котиледонов. К 4-му месяцу беременности формирование основных структур плаценты заканчивается. Лакуны полностью сформированной плаценты содержат около 150 мл материнской крови, полностью обменивающейся в течение 3 – 4 мин. Общая поверхность ворсин составляет около 15 м2, что обеспечивает нормальный уровень обмена веществ между организмами матери и плода.
Строение и функции децидуальной оболочки
Децидуальная оболочка образуется на всем протяжении эндометрия, но раньше всего она образуется в области имплантации. К конце 2-й недели внутриутробного развития эндометрий полностью замещается децидуальной оболочкой, в которой можно выделить базальную, капсулярную и пристеночные части.
Децидуальная оболочка, окружающая хорион, содержит базальную и капсулярную части.
Другие отделы децидуальной оболочки выстланы пристеночной частью. В децидуальной оболочке выделяют губчатую и компактные зоны.
Базальная часть децидуальной оболочки входит в состав плаценты. Она отделяет плодное яйцо от миометрия. В губчатом слое много желез, сохраняющихся до 6-го месяца беременности.
Капсулярная часть к 18-му дню беременности полностью смыкается над имплантированным плодным яйцом и отделяет его от полости матки. По мере роста плода капсулярная часть выпячивается в полость матки и к 16-й неделе внутриутробного развития срастается с пристеночной частью. При доношенной беременности капсулярная часть хорошо сохраняется и различима только в нижнем полюсе плодного яйца – над внутренним маточным зевом. Капсулярная часть не содержит поверхностного эпителия.
Пристеночная часть до 15-й недели беременности утолщается за счет компактной и губчатой зон. В губчатой зоне пристеночной части децидуальной оболочки железы развиваются до 8-й недели беременности. К моменту слияния пристеночной и капсулярной частей количество желез постепенно уменьшается, они становятся неразличимыми.
В конце доношенной беременности пристеночная часть децидуальной оболочки представлена несколькими слоями децидуальных клеток. С 12-й недели беременности поверхностный эпителий пристеночной части исчезает.
Клетки рыхлой соединительной ткани вокруг сосудов компактной зоны резко увеличены. Это молодые децидуальные клетки, которые по своему строению сходны с фибробластами. По мере дифференцировки размеры децидуальных клеток увеличиваются, они приобретают округлую форму, их ядра становятся светлыми, клетки более тесно прилегают друг к другу. К 4 – 6-й неделе беременности преобладают крупные светлые децидуальные клетки. Часть децидуальных клеток имеет костномозговое происхождение: по-видимому, они участвуют в иммунном ответе.
Функцией децидуальных клеток является продукция пролактина и простагландинов.
III. Дифференцировка мезодермы. В каждой мезодермальной пластинке, происходит дифференцировка ее на три части:
1) дорзсальную часть (сомиты);
2) промежуточную часть (сегментные ножки, или нефротомы);
3) вентральную часть (спланхиотому).
Дорзсальная часть утолщается и подразделяется на отдельные участки (сегменты) – сомиты. В свою очередь, в каждом сомите выделяют три зоны:
1) периферическую зону (дерматому);
2) центральную зону (миотому);
3) медиальную часть (склеротому).
По сторонам зародыша образуются туловищные складки, которые отделяют зародыш от внезародышевых органов.
Благодаря туловищным складкам кишечная энтодерма сворачивается в первичную кишку.
Промежуточная часть каждого мезодермального крыла также сегментируется (за исключением каудального отдела – нефрогенной ткани) на сегментные ножки (или нефротомы, нефрогонотомы).
Вентральная часть каждого мезодермального крыла не сегментируется. Она расщепляется на два листка, между которыми располагается полость – целом, и носит название «спланхиотома». Следовательно, спланхиотома состоит из:
1) висцерального листка;
2) париентального листка;
3) полости – целома.
IV. Дифференцировка эктодермы. Наружный зародышевый листок дифференцируется на четыре части:
1) нейроэктодерму (из нее разминается нервная трубка и ганглиозная пластинка);
2) кожная эктодерма (развивается эпидермис кожи);
3) переходная пластика (развивается эпителий пищевода, трахеи, бронхов);
4) плакоды (слуховая, хрусталиковая и др.).
V. Дифференцировка энтодермы. Внутренний зародышевый листок подразделяется на:
1) кишечную (или зародышевую), энтодерму;
2) внезародышевую (или желточную), энтодерму.
Из кишечной энтодермы развиваются:
1) эпителий и железы желудка и кишечника;
2) печень;
3) поджелудочная железа.
Органогенез
Развитие подавляющего большинства органов начинается с 3 – 4-й недели, т. е. с конца 1-го месяца существования зародыша. Органы образуются в результате перемещения и сочетания клеток и их производных, нескольких тканей (например, печень состоит из эпителиальной и соединительной тканей). При этом клетки разных тканей оказывают индуктивное влияние друг на друга и тем самым обеспечивают направленный морфогенез.
Критические периоды в развитии человека
В процессе развития нового организма существуют такие периоды, когда весь организм или его отдельные клетки, органы и их системы являются наиболее чувствительными к экзогенным и эндогенным факторам среды. Такие периоды принято называть критическими, так как именно в это время в них могут произойти изменения, которые в дальнейшем приведут к нарушению нормального развития и к формированию аномалий – нарушений нормального анатомического строения органов без нарушения их функций, пороков – нарушений анатомического строения органов с нарушением их функций, уродств – выраженных анатомических нарушений структуры органов, с нарушением их функций, часто несовместимым с жизнью.
Критическими периодами в развитии человека являются следующие:
1) гаметогенез (спермато– и овогенез);
2) оплодотворение;
3) имплантация (7 – 8-е сутки);
4) плацентация и закладка осевых комплексов (3 – 8-я неделя);
5) стадия усиленного роста головного мозга (15 – 20-я неделя);
6) формирование полового аппарата и других функциональных систем (20 – 24-я неделя);
7) рождение ребенка;
8) период новорожденности (до 1 года);
9) период полового созревания (11 – 16 лет).
В эмбриогенезе критические периоды для определенных групп клеток возникают тогда, когда происходит формирование эпигенома и осуществляется детерминация, предопределяющая дальнейшую дифференцировку клеток в определенном направлении и формирование органов и тканей. Именно в этот период различные химические и физические воздействия могут привести к нарушению формирования естественного эпигенома, т. е. к образованию нового, что детерминирует клетки к развитию в новом, необычном направлении, приводящем к развитию аномалий, пороков и уродств.
К неблагоприятным факторам относятся курение, прием алкоголя, наркомания, вредные вещества, содержащиеся в воздухе, питьевой воде, продуктах питания, некоторые лекарственные препараты. В настоящее время в связи с экологической обстановкой нарастает число новорожденных с различными указанными выше отклонениями.
Тема 8. ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ ТКАНЕЙ
Ткань – исторически (филогенетически) сложившаяся система клеток и неклеточных структур, обладающая общностью строения, а иногда и происхождения и специализированная на выполнении определенных функций. Ткань – это новый (после клеток) уровень организации живой материи.
Структурные компоненты ткани: клетки, производные клеток, межклеточное вещество.
Характеристика структурных компонентов ткани
Клетки – основные, функционально ведущие компоненты тканей. Практически все ткани состоят из нескольких типов клеток. Кроме того, клетки каждого типа в тканях могут находиться на разных этапах зрелости (дифференцировки). Поэтому в ткани различают такие понятия, как клеточная популяция и клеточный дифферон.
Клеточная популяция – это совокупность клеток данного типа. Например, в рыхлой соединительной ткани (самой распространенной в организме) содержится:
1) популяция фибробластов;
2) популяция макрофагов;
3) популяция тканевых базофилов и др.
Клеточный дифферон (или гистогенетический ряд) – это совокупность клеток данного типа (данной популяция), находящихся на различных этапах дифференцировки. Исходными клетками дифферона являются стволовые клетки, далее идут молодые (бластные) клетки, созревающие клетки и зрелые клетки. Различают полный дифферон или неполный в зависимости от того, находятся ли в тканях клетки всех типов развития.
Однако ткани – это не просто скопление различных клеток. Клетки в тканях находятся в определенной взаимосвязи, и функция каждой из них направлена на выполнение функции ткани.
Клетки в тканях оказывают влияние друг на друга или непосредственно через щелевидные контакты (нексусы) и синапсы, или на расстоянии (дистантно) посредством выделения различных биологически активных веществ.
Производные клеток:
1) симпласты (слияние отдельных клеток, например мышечное волокно);
2) синцитий (несколько клеток, соединенных между собой отростками, например сперматогенный эпителий извитых канальцев семенника);
3) постклеточные образования (эритроциты, тромбоциты).
Межклеточное вещество – также продукт деятельности определенных клеток. Межклеточное вещество состоит из:
1) аморфного вещества;
2) волокон (коллагеновых, ретикулярных, эластических).
Межклеточное вещество неодинаково выражено в разных тканях.
Развитие тканей в онтогенезе (эмбриогенезе) и филогенезе
В онтогенезе различают следующие этапы развития тканей:
1) этап ортотопической дифференцировки. На этом этапе зачатки будущих определенных тканей локализуются сначала в определенных участках яйцеклетки и затем – зиготы;
2) этап бластомерной дифференцировки. В результате дробления зиготы презумптивные (предположительные) зачатки тканей оказываются локализованными в разных бластомерах зародыша;
3) этап зачатковой дифференцировки. В результате гаструляции предположительные зачатки тканей локализуются в определенных участках зародышевых листков;
4) гистогенез. Это процесс преобразования зачатков тканей и ткани в результате пролиферации, роста, индукции, детерминации, миграции и дифференцировки клеток.
Имеется несколько теорий развития тканей в филогенезе:
1) закон параллельных рядов (А. А. Заварзин). Ткани животных и растений разных видов и классов, выполняющие одинаковые функции, имеют сходное строение, т. е. развиваются они параллельно у животных различных филогенетических классов;
2) закон дивергентной эволюции (Н. Г. Хлопин). В филогенезе происходит расхождение признаков тканей и появление новых разновидностей ткани в пределе тканевой группы, что приводит к усложнению животных организмов и появлению разнообразия тканей.
Классификации тканей
Имеется несколько подходов к классификации тканей. Общепринятой является морфофункциональная классификация, в соответствии с которой выделяют четыре тканевые группы:
1) эпителиальные ткани;
2) соединительные ткани (ткани внутренней среды, опорнотрофические ткани);
3) мышечные ткани;
4) нервную ткань.
Тканевой гомеостаз (или поддержание структурного постоянства тканей)
Состояние структурных компонентов тканей и их функциональная активность постоянно изменяются под воздействием внешних факторов. Прежде всего отмечаются ритмические колебания структурно-функционального состояния тканей: биологические ритмы (суточные, недельные, сезонные, годичные). Внешние факторы могут вызывать адаптивные (приспособительные) и дезадаптивные изменения, приводящие к распаду тканевых компонентов. Имеются регуляторные механизмы (внутритканевые, межтканевые, организменные), обеспечивающие поддержание структурного гомеостаза.
Внутритканевые регуляторные механизмы обеспечиваются, в частности, способностью зрелых клеток выделять биологически активные вещества (кейлоны), угнетающие размножение молодых (стволовых и бластных) клеток этой же популяции. При гибели значительной части зрелых клеток выделение кейлонов уменьшается, что стимулирует пролиферативные процессы и приводит к восстановлению численности клеток данной популяции.
Межтканевые регуляторные механизмы обеспечиваются индуктивным взаимодействием, прежде всего с участием лимфоидной ткани (иммунной системы) в поддержании структурного гомеостаза.
Организменные регуляторные факторы обеспечиваются влиянием эндокринной и нервной систем.
При некоторых внешних воздействиях может нарушиться естественная детерминация молодых клеток, что может привести к превращению одного тканевого типа в другой. Такое явление носит название «метаплазия» и осуществляется только в пределах данной тканевой группы. Например, замена однослойного призматического эпителия желудка однослойным плоским.
Регенерация тканей
Регенерация – восстановление клеток, тканей и органов, направленное на поддержание функциональной активности данной системы. В регенерации различают такие понятия, как форма регенерации, уровень регенерации, способ регенерации.
Формы регенерации:
1) физиологическая регенерация – восстановление клеток ткани после их естественной гибели (например, кроветворение);
2) репаративная регенерация – восстановление тканей и органов после их повреждения (травм, воспалений, хирургических воздействий и т. д.).
Уровни регенерации:
1) клеточный (внутриклеточный);
2) тканевой;
3) органный.
Способы регенерации:
1) клеточный;
2) внутриклеточный;
3) заместительный.
Факторы, регулирующие регенерацию:
1) гормоны;
2) медиаторы;
3) кейлоны;
4) факторы роста и др.
Интеграция тканей
Ткани, являясь одним из уровней организации живой материи, входят в состав структур более высокого уровня организации живой материи – структурно-функциональных единиц органов и в состав органов, в которых происходит интеграция (объединение) нескольких тканей.
Механизмы интеграции:
1) межтканевые (обычно индуктивные) взаимодействия;
2) эндокринные влияния;
3) нервные влияния.
Например, в состав сердца входят сердечная мышечная ткань, соединительная ткань, эпителиальная ткань.
Тема 9. ЭПИТЕЛИАЛЬНЫЕ ТКАНИ
Характеристика эпителиальных тканей
Они образуют внешние и внутренние покровы организма.
Функции эпителиев:
1) защитная (барьерная);
2) секреторная;
3) экскреторная;
4) всасывательная.
Структурно-функциональные особенности эпителиальных тканей:
1) расположение клеток пластами;
2) расположение клеток на базальной мембране;
3) преобладание клеток над межклеточным веществом;
4) полярная дифференцированность клеток (на базальный и апикальный полюсы);
5) отсутствие кровеносных и лимфатических сосудов;
6) высокая способность клеток к регенерации.
Структурные компоненты эпителиальной ткани:
1) эпителиальные клетки (эпителиоциты);
2) базальная мембрана.
Эпителиоциты являются основными структурными элементами эпителиальных тканей.
Базальная мембрана (толщина около 1 мкм) состоит из:
1) тонких коллагеновых фибрилл (из белка коллагена четвертого типа);
2) аморфного вещества (матрикса), состоящего из углеводно-белково-липидного комплекса.
Функции базальной мембраны:
1) барьерная (отделение эпителия от соединительной ткани);
2) трофическая (диффузия питательных веществ и продуктов метаболизма из подлежащей соединительной ткани и обратно);
3) организующая (прикрепление эпителиоцитов с помощью полудесмосом).
Классификация эпителиальных тканей
Существуют следующие виды эпителия:
1) покровный эпителий;
2) железистый эпителий.
Генетическая классификация эпителиев (по Н. Г. Хлопину):
1) эпидермальный тип (развивается из эктодермы);
2) энтородермальный тип (развивается из энтодермы);
3) целонефродермальный тип (развивается из мезодермы);
4) эпендимоглиальный тип (развивается из нейроэктодермы);
5) ангиодермальный тип (или эндотелий сосудов, развивающийся из мезенхимы).
Топографическая классификация эпителия:
1) кожный тип (эпидермис кожи);
2) желудочно-кишечный;
3) почечный;
4) печеночный;
5) дыхательный;
6) сосудистый (эндотелий сосудов);
7) эпителий серозных полостей (брюшины, плевры, перикарда).
Железистый эпителий образует большинство желез организма. Состоит из железистых клеток (гландулоцитов) и базальной мембраны.
Классификация желез
По количеству клеток:
1) одноклеточные (бокаловидная железа);
2) многоклеточные (подавляющее большинство желез).
По расположению клеток в эпителиальном пласте:
1) эндоэпителиальные (бокаловидная железа);
2) экзоэпителиальные.
По способу выведения секрета из железы и по строению:
1) экзокринные железы (имеют выводной проток);
2) эндокринные железы (не имеют выводных протоков и выделяют секреты (гормоны) в кровь или лимфу).
По способу выделения секрета из железистой клетки:
1) мерокриновые;
2) апокриновые;
3) голокриновые.
По составу выделяемого секрета:
1) белковые (серозные);
2) слизистые;
3) смешанные (белково-слизистые);
4) сальные.
По строению:
1) простые;
2) сложные;
3) разветвленные;
4) неразветвленные.
Фазы секреторного цикла железистых клеток
Существуют следующие фазы секреторного цикла железистых клеток:
1) поглощение исходных продуктов секретообразования;
2) синтез и накопление секрета;
3) выделение секрета (по мерокриновому или апокриновому типу);
4) восстановление железистой клетки.
Тема 10. КРОВЬ И ЛИМФА
Характеристика и состав крови
Кровь – это ткань или одна из разновидностей соединительных тканей.
Система крови включает в себя следующие компоненты:
1) кровь и лимфу;
2) органы кроветворения и иммунопоэза;
3) клетки крови, выселившиеся из крови в соединительную и эпителиальную ткани и способные вернуться (рециркулировать) снова в кровеносное русло (лимфоциты).
Кровь, лимфа и рыхлая неоформленная соединительная ткань составляют внутреннюю среду организма.
Функции крови:
1) транспортная. Данная функция крови крайне разнообразна. Кровь осуществляет перенос газов (за счет способности гемоглобина связывать кислород и углекислый газ), различных питательных и биологически активных веществ;
2) трофическая. Питательные вещества поступают в организм с пищей, затем расщепляются в желудочно-кишечном тракте до белков, жиров и углеводов, всасываются и переносятся кровью к различным органам и тканям;
3) дыхательная. Осуществляется в виде транспорта кислорода и углекислого газа. Оксигенированный в легких гемоглобин (оксигемоглобин) доставляется кровью по артериям ко всем органам и тканям, где происходит газообмен (тканевое дыхание), кислород расходуется на аэробные процессы, а углекислота связывается гемоглобином крови (карбоксигемоглобинам) и по венозному кровотоку доставляется в легкие, где вновь происходит оксигенация;
4) защитная. В крови имеются клетки и системы, обеспечивающие неспецифическую (система комплемента, фагоциты, NK-клетки) и специфическую (Т– и В-системы иммунитета) защиту;
5) экскреторная. Кровь выводит продукты распада макромолекул (мочевина и креатинин выводятся почками с мочой).
В совокупности эти функции обеспечивают гомеостаз (постоянство внутренней среды организма).
Составные компоненты крови:
1) клетки (форменные элементы);
2) жидкое межклеточное вещество (плазма крови).
Соотношение частей крови: плазма – 55 – 60%, форменные элементы – 40 – 45%.
Плазма крови состоит из:
1) воды (90 – 93%);
2) содержащихся в ней веществ (7 – 10%).
В плазме содержатся белки, аминокислоты, нуклеотиды, глюкоза, минеральные вещества, продукты обмена.
Белки плазмы крови:
1) альбумины;
2) глобулины (в том числе иммуноглобулины);
3) фибриноген;
4) белки-ферменты и др.
Функция плазмы – транспорт растворимых веществ.
В связи с тем что в крови содержатся как истинные клетки (лейкоциты), так и постклеточные образования (эритроциты и тромбоциты), в совокупности их принято именовать их в совокупности форменными элементами.
Качественный и количественный состав крови (анализ крови) – гемограмма и лейкоцитарная формула.
Гемограмма взрослого человека:
1) эритроцитов содержится:
а) у мужчин – 3,9 – 5,5 x 1012 в 1 л, или 3,9 – 5,5 млн в 1 мкл, концентрация гемоглобина 130 – 160 г/л;
б) у женщин – 3,7 – 4,9 x 1012, гемоглобин – 120 – 150 г/л;
2) тромбоцитов – 200 – 300 x 109 в 1 л;
3) лейкоцитов – 3,8 – 9 x 109 в 1 л.
Структурная и функциональная характеристика форменных элементов крови
Эритроциты – преобладающая популяция форменных элементов крови. Морфологические особенности:
1) не содержат ядра;
2) не содержат большинства органелл;
3) цитоплазма заполнена пигментным включением (гемоглобином).
Форма эритроцитов:
1) двояковогнутые диски – дискоциты (80%);
2) остальные 20% – сфероциты, планоциты, эхиноциты, седловидные, двуямочные.
По размеру можно выделить следующие виды эритроцитов:
1) нормоциты (7,1 – 7,9 мкм, концентрация нормоцитов в периферической крови – 75%);
2) макроциты (размером более 8 мкм, количество – 12,5%);
3) микроциты (размером менее 6 мкм – 12,5%).
Различаются две формы гемоглобина эритроцитов:
1) НbА;
2) HbF.
У взрослого человека НbА – 98%, HbF – 2%. У новорожденных НbА – 20%, HbF – 80%. Продолжительность жизни эритроцитов – 120 дней. Старые эритроциты разрушаются макрофагами, в основном в селезенке, а освобождающееся из них железо используется созревающими эритроцитами.
В периферической крови имеются незрелые формы эритроциты, называемые ретикулоцитами (1 – 5% от общего числа эритроцитов).
Функции эритроцитов:
1) дыхательная (транспорт газов: O2 и СО2);
2) транспорт других веществ, адсорбированных на поверхности цитолеммы (гормонов, иммуноглобулинов, лекарственных препаратов, токсинов и др.).
Тромбоциты (или кровяные пластинки) – фрагменты цитоплазмы особых клеток красного костного мозга (мегакариоцитов).
Составные части тромбоцита:
1) гиаломер (основа пластинки, окруженная плазмолеммой);
2) грануломер (зернистость, представленная специфическими гранулами, а также фрагментами зернистой ЭПС, рибосомами, митохондриями и др.).
Форма – округлая, овальная, отростчатая.
По степени зрелости тромбоциты подразделяются на:
1) юные;
2) зрелые;
3) старые;
4) дегенеративные;
5) гигантские.
Продолжительность жизни – 5 – 8 дней.
Функция тромбоцитов – участие в механизмах свертывания крови посредством:
1) склеивания пластинок и образования тромба;
2) разрушения пластинок и выделения одного из многочисленных факторов, способствующих превращению глобулярного фибриногена в нитчатый фибрин.
Лейкоциты (или белые кровяные тельца) – ядерные клетки крови, выполняющие защитную функцию. Содержатся в крови от нескольких часов до нескольких суток, а затем покидают кровеносное русло и проявляют свои функции в основном в тканях.
Лейкоциты представляют неоднородную группу и подразделяются на несколько популяций.
Лейкоцитарная формула
Лейкоцитарная формула – процентное содержание различных форм лейкоцитов (к общему числу лейкоцитов, равному 100%).
Морфологическая и функциональная характеристика зернистых лейкоцитов
Нейтрофильные лейкоциты (или нейтрофилы) – самая большая популяция лейкоцитов (65 – 75%.). Морфологические особенности нейтрофилов:
1) сегментированное ядро;
2) в цитоплазме мелкие гранулы, окрашивающиеся в слабооксифильный (розовый) цвет, среди которых можно выделить неспецифические гранулы – разновидности лизосом, специфические гранулы. Органеллы у лейкоцитов не развиты. Размер в мазке составляет 10 – 12 мкм.
По степени зрелости нейтрофилы подразделяются на:
1) юные (метамиелоциты) – 0 – 0,5%;
2) палочкоядерные – 3 – 5%;
3) сегментоядерные (зрелые) – 60 – 65%.
Увеличение процентного содержания юных и палочкоядерных форм нейтрофилов носит название сдвига лейкоцитарной формулы влево и является важным диагностическим показателем. Общее увеличение количества нейтрофилов в крови и появление юных форм наблюдается при различных воспалительных процессах в организме. В настоящее время по нейтрофильным лейкоцитам возможно определение половой принадлежности крови – у женщин один из сегментов имеет околоядерный сателлит (или придаток) в виде барабанной палочки.
Продолжительность жизни нейтрофилов – 8 дней, из них 8 – 12 ч они находятся в крови, а затем выходят в соединительную и эпителиальную ткани, где и выполняют основные функции.
Функции нейтрофилов:
1) фагоцитоз бактерий;
2) фагоцитоз иммунных комплексов («антиген – антитело»);
3) бактериостатическая и бактериолитическая;
4) выделение кейлонов и регуляция размножения лейкоцитов.
Эозинофильные лейкоциты (или эозинофилы). Содержание в норме – 1 – 5%. Размеры в мазках – 12 – 14 мкм.
Морфологические особенности эозинофилов:
1) имеется двухсегментное ядро;
2) в цитоплазме отмечается крупная оксифильная (красная) зернистость;
3) другие органеллы развиты слабо.
Среди гранул эозинофилов выделяют неспецифические азурофильные гранулы – разновидность лизосом, содержащую фермент пероксидазу и специфические гранулы, содержащие кислую фосфатазу. Органеллы у эозинофилов развиты слабо.
По степени зрелости эозинофилы также подразделяются на юные, палочкоядерные и сегментоядерные, однако определение этих субпопуляций в клинических лабораториях производится редко.
К способам нейтрализации гистамина и серотонина относятся фагоцитоз и адсорбция этих биологически активных веществ на цитолемме, выделение ферментов, расщепляющих их внеклеточно, выделение факторов, препятствующих выбросу гистамина и серотонина.
Функции эозинофилов – участия в иммунологических (аллергических и анафилактических) реакциях: угнетают (ингибируют) аллергические реакции посредством нейтрализации гистамина и серотонина.
Участием эозинофилов в аллергических реакциях объясняется их повышенное содержание (до 20 – 40% и более) в крови при различных аллергических заболеваниях (глистных инвазиях, бронхиальной астме, при раке и др.).
Продолжительность жизни эозинофилов – 6 – 8 дней, из них нахождение в кровеносном русле составляет 3 – 8 ч.
Базофильные лейкоциты (или базофилы). Это наименьшая популяция зернистых лейкоцитов (0,5 – 1%), однако в общей массе в организме их имеется огромное количество.
Размеры в мазке – 11 – 12 мкм.
Морфология:
1) крупное слабо сегментированное ядро;
2) в цитоплазме содержатся крупные гранулы;
3) другие органеллы развиты слабо.
Функции базофилов – участия в иммунных (аллергических) реакциях посредством выделения гранул (дегрануляции) и содержащихся в них вышеперечисленных биологически активных веществ, которые и вызывают аллергические проявления (отек ткани, кровенаполнение, зуд, спазм гладкой мышечной ткани и др.).
Базофилы также обладают способностью к фагоцитозу.
Морфологическая и функциональная характеристика незернистых лейкоцитов
Агранулоциты не содержат гранул в цитоплазме и подразделяются на две совершенно различные клеточные популяции – лимфоциты и моноциты.
Лимфоциты являются клетками иммунной системы.
Лимфоциты при участии вспомогательных клеток (макрофагов) обеспечивают иммунитет, т. е. защиту организма от генетически чужеродных веществ. Лимфоциты являются единственными клетками крови, способными при определенных условиях митотически делиться. Все остальные лейкоциты являются конечными дифференцированными клетками. Лимфоциты – гетерогенная (неоднородная) популяция клеток.
По размерам лимфоциты подразделяются на:
1) малые (4,5 – 6 мкм);
2) средние (7 – 10 мкм);
3) большие (больше 10 мкм).
В периферической крови до 90% составляют малые лимфоциты и 10 – 12% – средние. Большие лимфоциты в периферической крови в норме не встречаются. При электронно-микроскопическом исследовании малые лимфоциты можно подразделить на светлые и темные.
Малые лимфоциты характеризуются:
1) наличием крупного круглого ядра, состоящего в основном из гетерохроматина, особенно в мелких темных лимфоцитах;
2) узким ободком базофильной цитоплазмы, в которой содержатся свободные рибосомы и слабо выраженные органеллы – эндоплазматическая сеть, единичные митохондрии и лизосомы.
Для средних лимфоцитов характерно:
1) более крупное и рыхлое ядро, состоящее из эухроматина в центре и гетерохроматина по периферии;
2) в цитоплазме по сравнению с малыми лимфоцитами более развиты эндоплазматическая сеть и комплекс Гольджи, больше митохондрий и лизосом.
По источникам развития лимфоциты подразделяются на:
1) Т-лимфоциты. Их образование и дальнейшее развитие связано с тимусом (вилочковой железой);
2) В-лимфоциты. Их развитие у птиц связано с особым органом (фабрициевой сумкой), а у млекопитающих и человека – с пока точно не установленным ее аналогом.
Кроме источников развития, Т– и В-лимфоциты различаются между собой и по выполняемым функции.
По функции:
1) В-лимфоциты и образующиеся из них плазмоциты обеспечивают гуморальный иммунитет, т. е. защиту организма от чужеродных корпускулярных антигенов (бактерий, вирусов, токсинов, белков и др.), содержащихся в крови, лимфотканевой жидкости;
2) Т-лимфоциты, которые по выполняемым функциям подразделяются на следующие субпопуляции: киллеры, хелперы, супрессоры.
Однако эта простая классификация устарела, и сейчас принято все лимфоциты классифицировать по наличию на их мембране рецепторов (CD). В соответствии с этим выделяют лимфоциты CD3, CD4, CD8 и т. д.
По продолжительности жизни лимфоциты подразделяются на:
1) короткоживущие (недели, месяцы) – преимущественно В-лимфоциты;
2) долгоживущие (месяцы, годы) – преимущественно Т-лимфоциты.
Моноциты – наиболее крупные клетки крови (18 – 20 мкм), имеющие крупное бобовидное или подковообразное ядро и хорошо выраженную базофильную цитоплазму, в которой содержатся множественные пиноцитозные пузырьки, лизосомы и другие общие органеллы.
По своей функции – фагоциты. Моноциты являются не вполне зрелыми клетками. Циркулируют в крови 2 – 3 суток, после чего покидают кровеносное русло, мигрируют в разные ткани и органы и превращаются в различные формы макрофагов, фагоцитарная активность которых значительно выше моноцитов. Моноциты и образующиеся из них макрофаги объединяются в единую макрофагическую систему (или мононуклеарную фагоцитарную систему (МФС)).
Особенности лейкоцитарной формулы у детей
У новорожденных в общем анализе крови эритроцитов 6 – 7 x 1012 в литре – физиологический эритроцитоз, количество гемоглобина достигает 200 г в 1 л, лейкоцитов 10 – 30 x 109 в 1 л – физиологический возрастной лейкоцитоз, количество тромбоцитов такое же, как и у взрослых – 200 – 300 x 109 в л.
После рождения количество эритроцитов и гемоглобина постепенно снижается, достигая сначала показателей взрослых (5 млн в 1 мкл), а затем развивается физиологическая анемия. Уровень эритроцитов и гемоглобина достигает показателей взрослых только к периоду полового созревания. Количество лейкоцитов через 2 недели после рождения снижается до 10 – 15 x 109 в 1 л, а к периоду полового созревания достигает значений взрослого человека.
Наибольшие изменения в лейкоцитарной формуле у детей отмечаются в содержании лимфоцитов и нейтрофилов. Остальные показатели не отличаются от значений взрослых.
При рождении соотношение нейтрофилов и лимфоцитов аналогично показателям взрослых – 65 – 75% к 20 – 35%. В первые дни жизни ребенка наблюдается снижение концентрации нейтрофилов и повышение содержания лимфоцитов, на 4 – 5-е сутки их количество сравнивается – по 45% (первый физиологический перекрест). Далее у детей наблюдаются физиологический лимфоцитоз – до 65% и физиологическая нейтропения – 25%, наиболее низкие показатели нейтрофилов наблюдаются к концу второго года жизни. После этого начинается постепенное повышение содержания нейтрофилов и снижение концентрации лимфоцитов, в возрасте 4 – 5 лет наблюдается второй физиологический перекрест. К периоду полового созревания соотношение нейтрофилов и лимфоцитов приходит к уровню взрослого человека.
Составные компоненты и функции лимфы
Лимфа состоит из лимфоплазмы и форменных элементов, в основном лимфоцитов (98%), а также моноцитов, нейтрофилов, иногда эритроцитов. Лимфоплазма образуется посредством проникновения тканевой жидкости в лимфатические капилляры, а затем отводится по лимфатическим сосудам различного калибра и вливается в венозную систему. По пути движения лимфа проходит через лимфатические узлы, в которых она очищается от экзогенных и эндогенных частиц, а также обогащается лимфоцитами.
Функции лимфатической системы:
1) дренирование тканей;
2) обогащение лимфоцитами;
3) очищение лимфы от экзогенных и эндогенных веществ.
Тема 11. КРОВЕТВОРЕНИЕ
Кроветворение (гемоцитопоэз) – процесс образования форменных элементов крови.
Различают два вида кроветворения:
1) миелоидное;
2) лимфоидное.
В свою очередь миелоидное кроветворение подразделяется на:
1) эритроцитопоэз;
2) гранулоцитопоэз;
3) тромбоцитопоэз;
4) моноцитопоэз.
Лимфоидное кроветворение подразделяется на:
1) Т-лимфоцитопоэз;
2) В-лимфоцитопоэз.
Кроме того, гемопоэз подразделяется на два периода:
1) эмбриональный;
2) постэмбриональный.
Эмбриональный период приводит к образованию крови как ткани и потому представляет собой гистогенез крови. Постэмбриональный гемопоэз представляет процесс физиологической регенерации крови как ткани.
Эмбриональный период гемопоэза
Он осуществляется в эмбриогенезе поэтапно, сменяя разные органы кроветворения. В соответствии с этим выделяют три этапа:
1) желточный;
2) гепатотимусолиенальный;
3) медуллотимусолимфоидный.
1. Желточный этап осуществляется в мезенхиме желточного мешка начиная со 2 – 3-й недели эмбриогенеза, с 4-й – снижается и к концу 3-го месяца полностью прекращается.
Вначале в желточном мешке в результате пролиферации мезенхимальных клеток образуются так называемые кровяные островки, представляющие собой очаговые скопления отростчатых клеток.
Наиболее важными моментами желточного этапа являются:
1) образование стволовых клеток крови;
2) образование первичных кровеносных сосудов.
Несколько позже (на 3-й неделе) начинают формироваться сосуды в мезенхиме тела зародыша, однако они являются пустыми щелевидными образованиями. Довольно скоро сосуды желточного мешка соединяются с сосудами тела зародыша, и устанавливается желточный круг кровообращения. Из желточного мешка по этим сосудам стволовые клетки мигрируют в тело зародыша и заселяют закладки будущих кроветворных органов (в первую очередь печень), в которых затем и осуществляется кроветворение.
2. Гепатотимусолиенальный этап) гемопоэза осуществляется вначале в печени, несколько позже в тимусе (вилочковой железе), а затем и в селезенке. В печени происходит (только экстраваскулярно) в основном миелоидное кроветворение начиная с 5-й недели и до конца 5-го месяца, а затем постепенно снижается и к концу эмбриогенеза полностью прекращается. Тимус закладывается на 7 – 8-й неделе, а несколько позже в нем начинается Т-лимфоцитопоэз, который продолжается до конца эмбриогенеза, а затем и в постнатальном периоде до его инволюции (в 25 – 30 лет). Селезенка закладывается на 4-й неделе, с 7 – 8-й недели она заселяется стволовыми клетками, и в ней начинается универсальное кроветворение, т. е. и миело– и лимфопоэз. Особенно активно кроветворение протекает в селезенке с 5-го по 7-й месяцы, а затем миелоидное кроветворение постепенно угнетается, и к концу эмбриогенеза (у человека) оно полностью прекращается.
3. Медуллотимусолимфоидный этап кроветворения. Закладка красного костного мозга начинается со 2-го месяца, кроветворение в нем начинается с 4-го месяца, а с 6-го месяца он является основным органом миелоидного и частично лимфоидного кроветворения, т. е. является универсальным кроветворным органом. В это же время в тимусе, селезенке и в лимфатических узлах осуществляется лимфоидное кроветворение.
В результате последовательной смены органов кроветворения и совершенствования процесса кроветворения формируется кровь как ткань, которая у новорожденных имеет существенные отличия от крови взрослых людей.
Постэмбриональный период кроветворения
Осуществляется в красном костном мозге и лимфоидных органах (тимусе, селезенке, лимфоузлах, миндалинах, лимфоидных фолликулах).
Сущность процесса кроветворения заключается в пролиферации и поэтапной дифференцировке стволовых клеток в зрелые форменные элементы крови.
В схеме кроветворения представлены два ряда кроветворения:
1) миелоидное;
2) лимфоидное.
Каждый вид кроветворения подразделяется на разновидности (или ряды) кроветворения.
Миелопоэз:
1) эритроцитопоэз (или эритроцитарный ряд);
2) гранулоцитопоэз (или грануляцитарный ряд);
3) моноцитопоэз (или моноцитарный ряд);
4) тромбоцитопоэз (или тромбоцитарный ряд).
Лимфопоэз:
1) Т-лимфоцитопоэз (или Т-лимфоцитарный ряд;
2) В-лимфоцитопоэз;
3) плазмоцитопоэз.
В процессе поэтапной дифференцировки стволовых клеток в зрелые форменные элементы крови в каждом ряду кроветворения образуются промежуточные типы клеток, которые в схеме кроветворения составляют классы клеток.
Всего в схеме кроветворения различают шесть классов клеток.
I класс – стволовые клетки. По морфологии клетки этого класса соответствуют малому лимфоциту. Эти клетки являются полипотентными, т. е. способны дифференцироваться в любой форменный элемент крови. Направление дифференцировки зависит от содержания форменных элементов в крови, а также от влияния микроокружения стволовых клеток – индуктивных влияний стромальных клеток костного мозга или другого кроветворного органа. Поддержание популяции стволовых клеток осуществляется следующим образом. После митоза стволовой клетки образуются две: одна вступает на путь дифференцировки до форменного элемента крови, а другая принимает морфологию лимфоцита малого размера, остается в костном мозге, является стволовой. Деление стволовых клеток происходит очень редко, их интерфаза составляет 1 – 2 года, при этом 80% стволовых клеток находятся в состоянии покоя и только 20% – в митозе и последующей дифференцировке. Стволовые клетки также получили название колинеобразующие единицы, так как каждая стволовая клетка дает группу (или клон) клеток.
II класс – полустволовые клетки. Эти клетки являются ограниченно полипотентными. Выделяют две группы клеток – предшественницы миелопоэза и лимфопоэза. По морфологии похожи на малый лимфоцит. Каждая из этих клеток дает клон миелоидного или лимфоидного ряда. Деление происходит раз в 3 – 4 недели. Поддержание популяции осуществляется аналогично полипотентным клеткам: одна клетка после митоза вступает в дальнейшую дифференцировку, а вторая остается полустволовой.
III класс – унипотентные клетки. Данный класс клеток является поэтинчувствительными – предшественниками своего ряда кроветворения. По морфологии они также соответствуют малому лимфоциту и способны к дифференцировке только в один форменный элемент крови. Частота деления данных клеток зависит от содержания в крови поэтина – биологически активного вещества, специфического для каждого ряда кроветворения, – эритропоэтина, тромбоцитопоэтина. После митоза клеток данного класса одна клетка вступает в дальнейшую дифференцировку до форменного элемента, а вторая поддерживает популяцию клеток.
Клетки первых трех классов объединяются в класс морфологически не идентифицируемых клеток, так как все они по морфологии напоминают малый лимфоцит, однако способности их к развитию различны.
IV класс – бластные клетки. Клетки этого класса отличаются по морфологии от всех остальных. Они крупные, имеют крупное рыхлое ядро (эухроматин) с 2 – 4 ядрышками, цитоплазма базофильна за счет большого количества свободных рибосом. Эти клетки часто делятся, и все дочерние вступают в дальнейшую дифференцировку. Бласты различных рядов кроветворения можно идентифицировать по цитохимическим свойствам.
V класс – созревающие клетки. Этот класс характерен для своего ряда кроветворения. В этом классе может быть несколько разновидностей переходных клеток от одной (пролимфоцит, промоноцит) до пяти в эритроцитарном ряду. Некоторые созревающие клетки в небольшом количестве могут попадать в периферический кровоток, например ретикулоциты или палочкоядерные лейкоциты.
VI класс – зрелые форменные элементы. К этому классы относятся эритроциты, тромбоциты и сегментоядерные гранулоциты. Моноциты не являются окончательно дифференцированными клетками. Они затем покидают кровеносное русло и дифференцируются в конечный класс – макрофаги. Лимфоциты дифференцируются в конечный класс при встрече с антигенами, при этом они превращаются в бласты и снова делятся.
Совокупность клеток, составляющих линию дифференцировки стволовой клетки в определенный форменный элемент, образует дифферон (или гистогенетический ряд). Например, эритроцитарный дифферон составляют:
1) стволовая клетка (I класс);
2) полустволовая клетка – предшественница миелопоэза (II класс);
3) унипотентная эритропоэтинчувствительная клетка (III класс);
4) эритробласт (IV класс);
5) созревающая клетка – пронормоцит, базофильный нормоцит, полихроматофильный нормоцит, оксифильный нормоцит, ретикулоцит (V класс);
6) эритроцит (VI класс).
В процессе созревания эритроцитов в V классе происходят синтез и накопление гемоглобина, редукция органелл и клеточного ядра. В норме пополнение эритроцитов осуществляется за счет деления и дифференцировки созревающих клеток – пронормоцитов, базофильных и полихроматофильных нормоцитов. Такой тип кроветворения получил название гомопластического. При выраженной кровопотере пополнение эритроцитов осуществляется не только усилением созревающих клеток, но и клеток IV, III, II и даже I класса – происходит гетеропластический тип кроветворения.
Тема 12. ИММУНОЦИТОПОЭЗ И УЧАСТИЕ ИММУННЫХ КЛЕТОК РЕАКЦИЯХ ИММУНИТЕТА
В отличие от миелопоэза лимфоцитопоэз в эмбриональном и постэмбриональном периодах осуществляется поэтапно, сменяя разные лимфоидные органы. Как отмечалось ранее, лимфоцитопоэз подразделяется на:
1) Т-лимфоцитопоэз;
2) В-лимфоцитопоэз.
В свою очередь, они делятся на три этапа:
1) костномозговой этап;
2) этап антигеннезависимой дифференцировки, осуществляемый в центральных иммунных органах;
3) этап антигензависимой дифференцировки, осуществляемый в периферических лимфоидных органах.
Т-лимфоцитопоэз
Первый этап осуществляется в лимфоидной ткани красного костного мозга, где образуются следующие классы клеток:
1) стволовые клетки – I класс;
2) полустволовые клетки предшественники Т-лимфоцитопоэза – II класс;
3) унипотентные Т-поэтинчувствительные клетки, предшественницы Т-лимфоцитопоэза. Эти клетки мигрируют в кровяное русло и достигают вилочковой железы (тимуса) – III класс.
Второй этап – антигеннезависимая дифференцировка, которая осуществляется в корковом веществе тимуса. При этом происходит дальнейшее образование Т-лимфоцитов. Стромальными клетками выделяется тимозин, под влиянием которого происходит превращение унипотентных клеток в Т-лимфобласты. Они являются клетками IV класса в Т-лимфоцитопоэзе. Т-лимфобласты превращаются в Т-пролимфоциты (клетки V класса), а они в Т-лимфоциты – VI класс.
В тимусе из унипотентных клеток развиваются самостоятельно три субпопуляции Т-лимфоцитов – Т-киллеры, Т-хелперы, Т-супрессоры.
Образовавшиеся Т-лимфоциты приобретают в корковом веществе тимуса разные рецепторы к разнообразным антигенам, при этом сами антигены в тимус не поступают. Защита вилочковой железы от попадания чужеродных антигенов осуществляется за счет наличия гематотимусного барьера и отсутствия приносящих сосудов в тимусе.
В результате второго этапа образуются субпопуляции Т-лимфоцитов, которые обладают различными рецепторами к определенным антигенам. В тимусе также происходит образование Т-лимфоцитов, обладающих рецепторами к антигенам собственных тканей, однако такие клетки сразу же разрушаются макрофагами.
После образования Т-лимфоциты, не проникая в мозговое вещество тимуса, поступают в кровоток и заносятся в периферические лимфоидные органы.
Третий этап (антигеннезависимая дифференцировка) осуществляется в Т-зависимых зонах периферических лимфоидных органов – лимфатических узлах и селезенке. Здесь создаются условия для встречи антигена с Т-лимфоцитом (киллером, хелпером или супрессором), имеющим рецептор к данному антигену.
Чаще всего происходит не непосредственное взаимодействие Т-лимфоцита с антигеном, а опосредованное – через макрофаг. При поступлении в организм чужеродного антигена он вначале фагоцитируется макрофагом (завершенный фагоцитоз), частично расщепляется, а антигенная детерминанта выносится на поверхность макрофага, где концентрируется. Затем эти детерминанты передаются макрофагами на соответствующие рецепторы различных субпопуляций Т-лимфоцитов. Под влиянием специфического антигена происходит реакция бластотрансформации – превращение Т-лимфоцита в Т-лимфобласт. Дальнейшая дифференцировка клеток зависит от того, какая субпопуляция Т-лимфоцитов провзаимодействовала с антигеном.
Т-киллерный лимфобласт дает следующие клоны клеток.
1. Т-киллеры (или цитотоксические лимфоциты), являющиеся эффекторными клетками, обеспечивающими клеточный иммунитет. Т-киллеры обеспечивают первичный иммунный ответ – реакцию организма на первое взаимодействие с антигеном.
В процессе уничтожения киллерами чужеродного антигена можно выделить два основных механизма: контактное взаимодействие – разрушение участка цитолеммы клетки-мишени и дистантное взаимодействие – выделение цитотоксических факторов, действующих на клетку-мишень постепенно и длительно.
2. Клетки Т-памяти. Эти клетки при повторной встрече организма с тем же антигеном обеспечивают вторичный иммунный ответ, который сильнее и быстрее первичного.
Т-хелперный лимфобласт дает следующие клоны клеток:
1) Т-хелперы, секретирующие медиатор лимфокин, стимулирующий гуморальный иммунитет. Это индуктор иммунопоэза;
2) клетки Т-памяти.
Т-супрессорный лимфобласт дает следующие клоны клеток:
1) Т-супрессоры;
2) клетки Т-памяти.
Таким образом, в ходе третьего этапа Т-лимфоцитопоэза происходит образование эффекторных клеток каждой субпопуляции Т-лимфоцитов (Т-киллеров, Т-хелперов и Т-супрессоров), обладающих определенной функцией, и клеток Т-памяти, обеспечивающих вторичный иммунный ответ.
В клеточном иммунитете можно выделить два механизма уничтожение киллерами клеток-мишеней – контактное взаимодействие, при котором происходит разрушение участка цитолеммы клетки-мишени и ее гибель, и дистантное взаимодействие – выделение цитотоксических факторов, действующих на клетку-мишень постепенно и вызывающих ее гибель через определенное время.
В-лимфоцитопоэз
В процессе В-лимфоцитопоэза можно выделить следующие этапы.
Первый этап – осуществляется в красном костном мозге, где образуются следующие классы клеток:
1) стволовые клетки – I класс;
2) полустволовые клетки, предшественницы лимфопоэза – II класс;
3) унипотентные В-лимфопоэтинчувствительные клетки – предшественницы В-лимфоцитопоэза – III класс.
Второй этап – антигеннезависимая дифференцировка – у птиц осуществляется в специальном органе – фабрициевой сумке, у млекопитающих в том числе и у человек такой орган не найден. Большинство исследователей считает, что второй этап (так же как и первый) осуществляется в красном костном мозге, где образуются В-лимфобласты – клетки IV класса. Затем происходит их пролиферация в В-пролимфоциты – клетки V класса и в В-лимфоциты – клетки VI класса. В процессе второго этапа В-лимфоциты приобретает разнообразные рецепторы к антигенам. При этом установлено, что рецепторы представлены белками – иммуноглобулинами, которые синтезируются в самих же созревающих В-лимфоцитах, затем выносятся на поверхность и встраиваются в плазмолемму. Концевые химические группировки у этих рецепторов различны, и именно этим объясняется специфичность восприятия ими определенных антигенных детерминант разных антигенов.
Третий этап – антигензависимая дифференцировка осуществляется в В-зависимых зонах периферических лимфоидных органов – в селезенке и лимфатических узлах. Тут происходит встреча В-лимфоцитов с антигенами, их последующая активация и трансформация в иммунобласт. Это происходит только при участии дополнительных клеток – макрофагов, Т-хелперов и Т-супрессоров. Следовательно, для активации В-лимфоцитов необходима кооперация следующих клеток – В-лимфоцита, Т-хелпера или Т-супрессора, а также гуморального антигена – бактерии, вируса или белка полисахарида. Процесс взаимодействия протекает следующим образом: антигенпредставляющий макрофаг фагоцитирует антиген и выносит на поверхность клеточной мембраны антигенную детерминанту, после этого детерминанта воздействует на В-лимфоциты, Т-хелперы и Т-супрессоры. Таким образом, влияния антигенной детерминанты на В-лимфоцит недостаточно для реакции бластотрансформации, она протекает после активации Т-хелпера и выделения им активирующего лимфокина. После этого В-лимфоцит превращается в иммунобласт. После пролиферации иммунобласта образуются клоны клеток – плазмоциты – эффекторные клетки гуморального иммунитета, они синтезируют и выделяют в кровь иммуноглобулины – антитела различных классов и клетки В-памяти.
Иммуноглобулины (антитела) взаимодействуют со специфическими антигенами, образуется комплекс «антиген – антитело», таким образом происходит нейтрализация чужеродных антигенов.
Т-хелперы играют следующую функцию в осуществлении гуморального иммунитета – способствуют реакции бластотрансформации, заменяют синтез неспецифических иммуноглобулинов на специфические, стимулируют синтез и выделение иммуноглобулинов плазмоцитами.
Т-супрессоры активируются этими же антигенами и выделяют лимфокины, угнетающие образование плазмоцитов и синтез ими иммуноглобулинов вплоть до полного прекращения. Таким образом, воздействие на В-лимфоцит Т-киллеров и Т-хелперов регулирует реакции гуморального иммунитета.
Тема 13. СОЕДИНИТЕЛЬНЫЕ ТКАНИ. СОБСТВЕННО СОЕДИНИТЕЛЬНЫЕ ТКАНИ
В понятие «соединительные ткани» (ткани внутренней среды, опорно-трофические ткани) объединяются неодинаковые по морфологии и выполняемым функциям ткани, но обладающие некоторыми общими свойствами и развивающиеся из единого источника – мезенхимы.
Структурно-функциональные особенности соединительных тканей:
1) внутреннее расположение в организме;
2) преобладание межклеточного вещества над клетками;
3) многообразие клеточных форм;
4) общий источник происхождения – мезенхима.
Функции соединительных тканей:
1) трофическая (метаболическая);
2) опорная;
3) защитная (механическая, неспецифическая и специфическая);
4) репаративная (пластическая) и др.
Наиболее распространенными в организме являются волокнистые соединительные ткани и особенно рыхлая волокнистая неоформленная ткань, которая входит в состав практически всех органов, образуя строму, слои и прослойки, сопровождая кровеносные сосуды.
Морфологическая и функциональная характеристика рыхлой волокнистой неоформленной соединительной ткани
Состоит из клеток и межклеточного вещества, которое, в свою очередь, состоит из волокон (коллагеновых, эластических, ретикулярных) и аморфного вещества.
Морфологические особенности, отличающие рыхлую волокнистую соединительную ткань от других разновидностей соединительных тканей:
1) многообразие клеточных форм (девять клеточных типов);
2) преобладание в межклеточном веществе аморфного вещества над волокнами.
Функции рыхлой волокнистой соединительной ткани:
1) трофическая;
2) опорная (образует строму паренхиматозных органов);
3) защитная (неспецифическая и специфическая (участие в иммунных реакциях) защита);
4) депо воды, липидов, витаминов, гормонов;
5) репаративная (пластическая).
Клеточные типы (клеточные популяции) рыхлой волокнистой соединительной ткани:
1) фибробласты;
2) макрофаги (гистиоциты);
3) тканевые базофилы (тучные клетки);
4) плазмоциты;
5) жировые клетки (липоциты);
6) пигментные клетки;
7) адвентициальные плетки;
8) перициты;
9) клетки крови – лейкоциты (лимфоциты, нейтрофилы).
Структурная и функциональная характеристика клеточных типов
Фибробласты – преобладающая популяция клеток рыхлой волокнистой соединительной ткани. Они неоднородны по степени зрелости и функциональной специфичности и потому подразделяются на следующие субпопуляции:
1) малодифференцированные клетки;
2) дифференцированные (или зрелые клетки, или собственно фибробласты);
3) старые фибробласты (дефинитивные) – фиброциты, а также специализированные формы фибробластов;
4) миофибробласты;
5) фиброкласты.
Преобладающей формой являются зрелые фибробласты, функция которых заключается в синтезе и выделении в межклеточную среду белков коллагена и эластина, а также гликозамино-гликанов.
Для структурной организации фибробластов характерно выраженное развитие синтетического аппарата – зернистой эндоплазматической сети и транспортного аппарата – пластинчатого комплекса Гольджи. Остальные органеллы развиты слабо. В фиброцитах зернистая ЭПС и пластинчатый комплекс редуцированы. В цитоплазме фибробластов содержатся микрофиламенты, содержащие сократительные белки актин и миозин, но особенно развиты эти органеллы в миофибробластах, благодаря которым они осуществляют стягивание молодой соединительной ткани при образовании рубца. Для фиброкластов характерно содержание в цитоплазме большого количества лизосом. Эти клетки способны выделять лизосомальные ферменты в межклеточную среду и с их помощью расщеплять коллагеновые или эластические волокна на фрагменты, а затем фагоцитировать расщепленные фрагменты внутриклеточно. Следовательно, для фиброкластов характерно осуществление лизиса межклеточного вещества, в том числе волокон (например, при инволюции матки после родов).
Таким образом, различные формы фиброкластов образуют межклеточное вещество соединительной ткани (фибробласты), поддерживают его в определенном структурном и функциональном состоянии (фиброциты), разрушают его при определенных условиях (фиброкласты). Благодаря этим свойствам фибробластов осуществляется репаративная функция соединительной ткани.
Макрофаги – клетки, осуществляющие защитную функцию, прежде всего посредством фагоцитоза крупных частиц.
По современным данным макрофаги являются полифункциональными клетками. Образуются макрофаги из моноцитов после их выхода из кровеносного русла. Макрофаги характеризуются структурной и функциональной гетерогенностью в зависимости от степени зрелости, области локализации, а также от их активации антигенами или лимфоцитами.
Защитная функция макрофагов проявляется в разных формах:
1) неспецифическая защита (посредством фагоцитоза экзогенных и эндогенных частиц и их внутриклеточного переваривания);
2) выделение во внеклеточную среду лизосомальных ферментов и других веществ;
3) специфическая (или иммунологическая защита – участие в разнообразных иммунных реакциях).
Макрофаги подразделяются на фиксированные и свободные. Макрофаги соединительной ткани являются подвижными или блуждающими и называются гистиоцитами.
Различают макрофаги серозных полостей (перитонеальные и плевральные), альвеолярные, макрофаги печени (купферовские клетки), макрофаги центральной нервной системы – глиальные макрофаги, остеокласты.
Все виды макрофагов объединяются в мононуклеарную фагоцитарную систему (или макрофагическую систему) организма.
По функциональному состоянию макрофаги подразделяются на резидуальные (неактивные) и активированные. В зависимости от этого отличается и их внутриклеточное строение.
Наиболее характерной структурной особенностью макрофагов является наличие выраженного лизосомального аппарата, т. е. в цитоплазме содержится много лизосом и фагосом.
Особенностью гистоцитов является наличие на их поверхности многочисленных складок, инвагинаций и псевдоподий, отражающих передвижение клеток или захват ими разнообразных частиц. В плазмолемме макрофагов содержатся разнообразные рецепторы, с помощью которых они распознают различные, в том числе и антигенные частицы, а также разнообразные биологически активные вещества.
Фагоцитируя антигенные вещества, макрофаги выделяют, концентрируют, а затем выносят на плазмолемму их активные химические группировки – антигенные детерминанты, а затем передают их на лимфоциты. Данная функция называется антигенпредставляющей. С помощью данной функции макрофаги запускают антигенные реакции, так как установлено, что большинство антигенных веществ не способно запускать иммунные реакции самостоятельно, т. е. действовать непосредственно на рецепторы лимфоцитов. Кроме того, активированные макрофаги выделяют некоторые биологически активные вещества – монокины, которые регулирующее влияние на различные стороны иммунных реакций.
Макрофаги принимают участие в заключительных стадиях иммунных реакций как гуморального, так и клеточного иммунитета. В гуморальном иммунитете они фагоцитируют иммунные комплексы «антиген – антитело», а в клеточном иммунитете под влиянием лимфокинов макрофаги приобретают киллерные свойства и могут разрушать чужеродные, в том числе и опухолевые, клетки.
Таким образом, макрофаги не являются иммунными клетками, но принимают участие в иммунных реакциях.
Макрофаги также синтезируют и выделяют в межклеточную среду около сто различных биологически активных веществ. Поэтому макрофаги можно отнести к секреторным клеткам.
Тканевые базофилы (тучные клетки) являются истинными клетками рыхлой волокнистой соединительной ткани.
Функция этих клеток заключается в регуляции местного тканевого гомеостаза.
Это достигается посредством синтеза тканевыми базофилами и последующим выделением в межклеточную среду гликозамино-гликанов (гепарина и хондроитинсерных кислот), гистамина, серотонина и других биологически активных веществ, которые оказывают влияние на клетки и межклеточное вещество соединительной ткани.
Наибольшее влияние эти биологически активные вещества оказывают на микроциркуляторное русло, где вызывают повышение проницаемости гемокапилляров, усиливают гидратацию межклеточного вещества. Продукты тучных клеток оказывают влияние на иммунные реакции и на процессы воспаления и аллергии.
Источники образования тучных клеток в настоящее время окончательно не установлены.
Для ультраструктурной организации тканевых базофилов характерно наличие в цитоплазме двух типов гранул:
1) метахроматических гранул, окрашивающихся основными красителями с изменением цвета окраски;
2) ортохроматических гранул, окрашивающихся основными красителями без изменения цвета и представляющих собой лизосомы.
При возбуждении тканевых базофилов из них выделяются биологически активные вещества следующими способами:
1) с помощью выделения гранул – дегрануляцией;
2) с помощью диффузного выделение через мембрану гистамина, который повышает сосудистую проницаемость и вызывает гидратацию основного вещества, усиливая тем самым воспалительную реакцию.
Тучные клетки принимают участие в иммунных реакциях. При попадании в организм некоторых чужеродных веществ плазмоциты синтезируют иммуноглобулины класса Е, которые затем адсорбируются на цитолемме тучных клеток. При повторном попадании в организм этих же антигенов на поверхности тучных клеток образуются иммунные комплексы «антиген – антитело», которые вызывают резкую дегрануляцию тканевых базофилов, а выделяющиеся в большом количестве биологически активные вещества обусловливают быстрое наступление аллергических и анафилактических реакций.
Плазматические клетки (плазмоциты) являются клетками иммунной системы (эффекторными клетками гуморального иммунитета).
Образуются плазмоциты из В-лимфоцитов при воздействии на них антигенных веществ.
Большинство их локализуется в органах иммунной системы (лимфоузлах, селезенке, миндалинах, фолликулах), но значительная часть плазмоцитов распределяется в соединительной ткани.
Функции плазмоцитов – синтез и выделение в межклеточную среду антител – иммуноглобулинов, которые подразделяются на пять классов.
В плазмоцитах хорошо развит синтетический и выделительный аппарат. На электроннограммах плазмоцитов видно, что почти вся цитоплазма заполнена зернистой эндоплазматической сетью, кроме небольшого участка, который примыкает к ядру и в котором расположен пластинчатый комплекс Гольджи и клеточный центр. При изучении плазмоцитов под световым микроскопом при обычной гистологической окраске – гематоксилин-эозин, они имеют округлую или овальную форму, базофильную цитоплазму, эксцентрично расположенное ядро, содержащее глыбки гетерохроматина в виде треугольников (колесообразное ядро). К ядру прилежит бледно окрашенный участок цитоплазмы – «светлый дворик», в котором локализуется комплекс Гольджи. Число плазмоцитов отражает интенсивность иммунных реакций.
Жировые клетки (адипоциты) содержатся в рыхлой соединительной ткани в неодинаковых количествах в разных участках тела и в разных органах.
Функции жировых клеток:
1) депо энергетических ресурсов;
2) депо воды;
3) депо жирорастворимых витаминов и др.
Жировые клетки располагаются группами вблизи сосудов микроциркуляторного русла. При значительном скоплении они образуют белую жировую ткань. Адипоциты имеют характерную морфологию: почти вся цитоплазма заполнена одной жировой каплей, а органеллы и ядро отодвинуты на периферию. При спиртовой фиксации и проведением по батарее спиртов жир растворяется, и клетка приобретает форму перстня с печаткой, а скопление жировых клеток в гистологическом препарате имеет ячеистый, сотообразный вид. Выявляются липиды только после формалиновой фиксации гистохимическими методами – судан и осмий.
Пигментные клетки (пигментоциты, меланоциты) – клетки отростчатой формы, содержащие в цитоплазме пигментные включения (меланин). Пигментные клетки не являются истинными клетками соединительной ткани, так как, во-первых, они локализуются не только в соединительной, но и в эпителиальной ткани, а во-вторых, они образуются не из мезенхимальных клеток, а из нейробластов нервных гребешков.
Адвентициальные клетки локализуются в адвентиции сосудов. Они имеют вытянутую и уплощенную форму. Цитоплазма данных клеток слабо базофильна и содержит незначительное количество органелл. Одни авторы рассматривают адвентициальные клетки как самостоятельные клеточные элементы соединительной ткани, другие считают, что они являются источником для развития фибробластов, жировых и гладкомышечных клеток.
Перициты – клетки, локализующиеся в стенках капилляров – в расщеплении базальной мембраны.
Лейкоциты – лимфоциты и нейтрофилы. В норме в соединительной ткани обязательно содержатся в различных количествах клетки крови – лимфоциты и нейтрофилы. При воспалительных состояниях количество их резко увеличивается (лимфоцитарная и лейкоцитарная инфильтрация).
Межклеточное вещество соединительной ткани
Оно состоит из двух структурных компонентов:
1) из основного (или аморфного) вещества;
2) из волокон.
Основное (или аморфное) вещество состоит из белков и углеводов. Белки представлены в основном коллагеном, а также альбуминами и глобулинами.
Углеводы представлены полимерными формами, в основном гликозаминогликанами (сульфатированными – хондроитинсерными кислотами, дерматансульфатом и др.)
Углеводные компоненты удерживают воду, в зависимости от содержания воды ткань может быть более или менее плотной.
Аморфное вещество обеспечивает транспорт веществ из крови клеткам и обратно, в том числе транспорт из соединительной ткани в эпителиальную.
Аморфное вещество образуется за счет деятельности прежде всего фибробластов – коллагенов и гликозаминогликанов, а также за счет веществ плазмы крови – альбуминов и глобулинов.
В зависимости от концентрации воды основное аморфное вещество может быть более или менее плотным, что и определяет функциональную роль данной разновидности ткани.
Волокнистый компонент представлен коллагеновыми, эластическими и ретикулярными волокнами. В различных органах соотношение названных волокон неодинаково: в рыхлой волокнистой соединительной ткани преобладают коллагеновые волокна.
Коллагеновые волокна имеют различную толщину (от 1 – 3 до 10 и более мкм). Они обладают высокой прочностью и малой растяжимостью. Каждое коллагеновое волокно состоит из двух химических компонентов:
1) фибриллярного белка коллагена;
2) углеводного компонента – гликозаминогликанов и протеогликанов.
Оба данных компонента синтезируются фибробластами и выделяются во внеклеточную среду, где и осуществляется их сборка и построение волокна.
В структурной организации коллагенового волокна выделяют пять уровней.
I уровень – полипептидный. Коллаген представлен полипептидными цепочками, состоящие из трех аминокислот – пролина, глицина, лизина.
II уровень – молекулярный, представлен молекулой белка коллагена длиной 280 нм, шириной 1,4 нм, состоящей из трех полипептидных цепочек, закрученных в спираль.
III уровень – протофибриллярный (толщина 10 нм, состоит из нескольких продольно расположенных молекул коллагена, соединенных между собой водородными связями).
IV уровень – микрофибриллы (толщиной от 11 – 12 нм, и более). Они состоят из 5 – 6 протофибрилл, связанных боковыми связями.
V уровень – фибрилла (или коллагеновое волокно) толщина 1 – 10 мкм, состоящее из нескольких микрофибрилл – в зависимости от толщины, связанных гликозаминогликанами и протеогликанами. Коллагеновые волокна имеют поперечную исчерченность, обусловленную как расположением аминокислот в полипептидной цепи, так и расположением цепей в молекуле коллагена. Коллагеновые волокна с помощью углеводных компонентов соединяются в пучки толщиной до 150 мкм.
В зависимости от порядка расположения аминокислот в полипептидных цепочках, от степени их гидроксилирования и от качества углеводного компонента различают двенадцать типов белка коллагена, из которых хорошо изучены только пять типов.
Эти разновидности белка коллагена входят в состав не только коллагеновых волокон, но и в состав базальных мембран эпителиальной ткани и сосудов, хрящевых тканей, стекловидного тела и других образований. При развитии некоторых патологических процессов происходит распад коллагена и поступление его в кровь. В плазме крови биохимически определяется тип коллагена, а следовательно, определяется и предположительная область его распада и его интенсивность.
Эластические волокна характеризуются высокой эластичностью, способностью растягиваться и сокращаться, но незначительной прочностью.
Они тоньше коллагеновых, не имеют поперечной исчерченности, по ходу разветвляются и анастомозируют друг с другом, образуя эластическую сеть. Химический состав эластических волокон – белок эластин и гликопротеины. Оба компонента синтезируются и выделяются фибробластами, а в стенке сосудов – гладкомышечными клетками. Белок эластин отличается от белка коллагена как составом аминокислот, так и их гидроксилированностью. Структурно эластическое волокно организовано следующим образом: центральная часть волокна представлена аморфным компонентом из молекул эластина, а периферическая часть – мелкофибриллярной сетью. Соотношение аморфного и фибриллярного компонента в эластических волокнах может быть различным. В большинстве волокон преобладает аморфный компонент. При равенстве аморфного и фибриллярного компонентов волокна называют элауниновыми. Встречаются также окситалоновые эластические волокна, состоящие только из фибриллярного компонента. Локализуются эластические волокна прежде всего в тех органах, которые постоянно изменяют свой объем – в легких, сосудах.
Ретикулярные волокна по своему составу близки к коллагеновым волокнам.
Ретикулярные волокна состоят из коллагена третьего типа и углеводного компонента. Они тоньше коллагеновых, имеют слабо выраженную поперечную исчерченность. Разветвляясь и анастомозируя, они образуют мелкопетлистые сети, откуда и происходит их название. В ретикулярных волокнах в отличие от коллагеновых более выражен углеводный компонент, который хорошо выявляется солями азотнокислого серебра, поэтому эти волокна называют еще аргирофильными. Следует помнить, что аргирофильными свойствами обладают и незрелые коллагеновые волокна, состоящие из белка преколлагена. По своим физическим свойствам ретикулярные волокна занимают промежуточное положение между коллагеновыми и эластическими. Они образуются за счет деятельности ретикулярных клеток. Локализуются в основном в кроветворных органах, составляя их строму.
Плотная волокнистая соединительная ткань
Отличается от рыхлой преобладанием в межклеточном веществе волокнистого компонента над аморфным.
В зависимости от характера расположения волокон плотная волокнистая соединительная ткань подразделяется на оформленную (волокна данного вида ткани располагаются упорядоченно, чаще всего параллельно друг другу) и неоформленную (волокна располагаются беспорядочно).
Плотная оформленная соединительная ткань представлена в организме в виде сухожилий, связок, фиброзных мембран.
Плотная волокнистая неоформленная соединительная ткань образует сетчатый слой дермы кожи.
Помимо содержания большого числа волокон, плотная волокнистая соединительная ткань характеризуется бедностью клеточных элементов, которые представлены в основном фиброцитами.
Строение сухожилия
Сухожилие состоит в основном из плотной оформленной соединительной ткани, но содержит также и рыхлую волокнистую соединительную ткань, образующую прослойки.
На поперечном и продольном разрезе сухожилия видно, что оно состоит из параллельно расположенных коллагеновых волокон, образующих пучки I, II и III порядков.
Пучки I порядка – наиболее тонкие, отделены друг от друга фиброцитами. Пучки II порядка состоят из нескольких пучков I порядка, окруженных по периферии прослойкой рыхлой волокнистой соединительной ткани, составляющей эндотеноний. Пучки III порядка состоят из пучков II порядка и окружены более выраженными прослойками рыхлой волокнистой соединительной ткани – перитенонием.
Все сухожилие по периферии окружено эпитенонием.
В прослойках рыхлой волокнистой соединительной ткани проходят сосуды и нервы, обеспечивающие трофику и иннервацию сухожилия.
Возрастные особенности волокнистых соединительных тканей
У новорожденных и детей в волокнистой соединительной ткани, в аморфном веществе содержится много воды, связанной гликозоаминогликанами. Коллагеновые волокна тонкие и состоят не только из белка, но и из преколлагена. Эластические волокна хорошо развиты. Аморфный и волокнистые компоненты соединительной ткани в совокупности обусловливают эластичность и упругость кожи у детей. С увеличением возраста в постнатальном онтогенезе содержание гликозаминогликанов в аморфном веществе ткани уменьшается, а соответственно снижается и содержание воды. Коллагеновые волокна разрастаются и образуют толстые и грубые пучки. Эластические волокна в значительной степени разрушаются. Вследствие этого кожа у пожилых и старых людей становится неэластичной и дряблой.
Соединительные ткани со специальными свойствами
Ретикулярная ткань состоит из ретикулярных клеток и ретикулярных волокон. Эта ткань образует строму всех кроветворных органов (за исключением тимуса) и, помимо опорной функции, выполняет и другие функции: обеспечивает трофику гемопоэтических клеток, влияет на направление их дифференцировки.
Жировая ткань состоит из скопления жировых клеток и подразделяется на две разновидности: белую и бурую жировую ткань.
Белая жировая ткань широко распространена в различных частях тела и во внутренних органах, неодинаково выражена у разных субъектов и на протяжении онтогенеза. Она представляет собой скопление типичных жировых клеток (адипоцитов).
В жировых клетках активно протекают обменные процессы.
Функции белой жировой ткани:
1) депо энергии (макроэргов);
2) депо воды;
3) депо жирорастворимых витаминов;
4) механическая защита некоторых органов (глазного яблока и др.).
Бурая жировая ткань встречается только у новорожденных детей.
Локализуется она только в определенных местах: за грудиной, около лопаток, на шее, вдоль позвоночника. Бурая жировая ткань состоит из скопления бурых жировых клеток, которые существенно отличаются от типичных адипоцитов и по морфологии, и по характеру обмена веществ в них. В цитоплазме бурых жировых клеток содержится большое число распределенных по всей цитоплазме липосом.
Окислительные процессы в бурых жировых клетках протекают в 20 раз интенсивнее, чем в белых. Основная функция бурой жировой ткани заключается в теплообразовании.
Слизистая соединительная ткань встречается только в эмбриональном периоде в провизорных органах и прежде всего в составе пупочного канатика. Она состоит в основном из межклеточного вещества, в котором локализуются фибробластоподобные клетки, синтезирующие муцин (слизь).
Пигментная соединительная ткань представляет собой участки ткани, в которых содержится скопление меланоцитов в (область сосков, мошонки, анального отверстия, сосудистая оболочка глазного яблока).
Тема 14. СОЕДИНИТЕЛЬНЫЕ ТКАНИ. СКЕЛЕТНЫЕ СОЕДИНИТЕЛЬНЫЕ ТКАНИ
К скелетным соединительным тканям относятся хрящевые и костные ткани, выполняющие опорную, защитную и механическую функции, а также принимающие участие в обмене минеральных веществ в организме. Каждая из указанных разновидностей соединительной ткани имеет существенные морфологические и функциональные отличия, и потому они рассматриваются отдельно.
Хрящевые ткани
Хрящевая ткань состоит из клеток – хондроцитов и хондробластов, а также из плотного межклеточного вещества.
Хондробласты располагаются одиночно по периферии хрящевой ткани. Представляют собой вытянутые уплощенные клетки с базофильной цитоплазмой, содержащей хорошо развитую зернистую ЭПС и пластинчатый комплекс. Эти клетки синтезируют компоненты межклеточного вещества, выделяют их в межклеточную среду, постепенно дифференцируются в дефинитивные клетки хрящевой ткани – хондроциты. Хондробласты обладают способностью митотического деления. В надхрящнице, окружающей хрящевую ткань, содержатся неактивные, малодифференцированные формы хондробластов, которые при определенных условиях дифференцируются в хондробласты, синтезирующие межклеточное вещество, а затем и в хондроциты.
Аморфное вещество содержит значительное количество минеральных веществ, не образующих кристаллы, воду, плотную волокнистую ткань. Сосуды в хрящевой ткани в норме отсутствуют. В зависимости от строения межклеточного вещества хрящевые ткани подразделяются на гиалиновую, эластическую и волокнистую хрящевую ткань.
В организме человека гиалиновая хрящевая ткань широко распространена и входит в состав крупных хрящей гортани (щитовидного и перстневидного), трахеи, хрящевой части ребер.
Эластическая хрящевая ткань характеризуется нахождением в клеточном веществе как коллагеновых, так и эластических волокон (хрящевая ткань ушной раковины и хрящевой части наружного слухового прохода, хрящей наружного носа, мелких хрящей гортани и средних бронхов).
Волокнистая хрящевая ткань характеризуется содержанием в межклеточном веществе мощных пучков из параллельно расположенных коллагеновых волокон. При этом хондроциты располагаются между пучками волокон в виде цепочек. По физическим свойствам характеризуется высокой прочностью. В организме встречается лишь в ограниченных местах: составляет часть межпозвоночных дисков (фиброзное кольцо), а также локализуется в местах прикрепления связок и сухожилий к гиалиновым хрящам. В этих случаях четко прослеживается постепенный переход фиброцитов соединительной ткани в хондроциты хрящевой ткани.
При изучении хрящевых тканей следует четко уяснить понятия «хрящевая ткань» и «хрящ».
Хрящевая ткань – разновидность соединительной ткани, строение которой наложено выше. Хрящ – анатомический орган, который состоит из хрящевой ткани и надхрящницы. Надхрящница покрывает хрящевую ткань снаружи (за исключением хрящевой ткани суставных поверхностей) и состоит из волокнистой соединительной ткани.
В надхрящнице выделяют два слоя:
1) наружный – фиброзный;
2) внутренний – клеточный (или камбиальный, ростковый).
Во внутреннем слое локализуются малодифференцированные клетки – прехондробласты и неактивные хондробласты, которые в процессе эмбрионального и регенерационного гистогенеза превращаются вначале в хондробласты, а затем в хондроциты.
В фиброзном слое располагается сеть кровеносных сосудов. Следовательно, надхрящница как составная часть хряща выполняет следующие функции:
1) обеспечивает трофикой бессосудистую хрящевую ткань;
2) защищает хрящевую ткань;
3) обеспечивает регенерацию хрящевой ткани при ее повреждении.
Трофика гиалиновой хрящевой ткани суставных поверхностей обеспечивается синовиальной жидкостью суставов, а также жидкостью из сосудов костной ткани.
Развитие хрящевой ткани и хрящей (хондрогистогенез) осуществляется из мезенхимы.
Костные ткани
Костная ткань является разновидностью соединительной ткани и состоит из клеток и межклеточного вещества, в котором содержится большое количество минеральных солей, главным образом фосфат кальция. Минеральные вещества составляют 70% костной ткани, органические – 30%.
Функции костных тканей:
1) опорная;
2) механическая;
3) защитная (механическая защита);
4) участие в минеральном обмене организма (депо кальция и фосфора).
Клетки костной ткани – остеобласты, остеоциты, остеокласты. Основными клетками в сформированной костной ткани являются остеоциты. Это клетки отростчатой формы с крупным ядром и слабо выраженной цитоплазмой (клетки ядерного типа). Тела клеток локализуются в костных полостях (лакунах), а отростки – в костных канальцах. Многочисленные костные канальцы, анастомозируя между собой, пронизывают костную ткань, сообщаясь периваскулярным пространством, образуют дренажную систему костной ткани. В этой дренажной системе содержится тканевая жидкость, посредством которой обеспечивается обмен веществ не только между клетками и тканевой жидкостью, но и в межклеточном веществе.
Остеоциты являются дефинитивными формами клеток и не делятся. Образуются они из остеобластов.
Остеобласты содержатся только в развивающейся костной ткани. В сформированной костной ткани они содержатся обычно в неактивной форме в надкостнице. В развивающейся костной ткани остеобласты охватывают по периферии каждую костную пластинку, плотно прилегая друг к другу.
Форма этих клеток может быть кубической, призматической и угловатой. В цитоплазме остеобластов содержатся хорошо развитая эндоплазматическая сеть, пластинчатый комплекс Гольджи, много митохондрий, что свидетельствует о высокой синтетической активности этих клеток. Остеобласты синтезируют коллаген и гликозаминогликаны, которые затем выделяют в межклеточное пространство. За счет этих компонентов формируется органический матрикс костной ткани.
Эти клетки обеспечивают минерализацию межклеточного вещества посредством выделения солей кальция. Постепенно выделяя межклеточное вещество, они как бы замуровываются и превращаются в остеоциты. При этом внутриклеточные органеллы в значительной степени редуцируются, синтетическая и секреторная активность снижается, и сохраняется функциональная активность, свойственная остеоцитам. Остеобласты, локализующиеся в камбиальном слое надкостницы, находятся в неактивном состоянии, синтетические и транспортные органеллы в них развиты слабо. При раздражении этих клеток (в случае травм, переломов костей и т. д.) в цитоплазме быстро развиваются зернистая ЭПС и пластинчатый комплекс, происходит активный синтез и выделение коллагена и гликозаминогликанов, формирование органического матрикса (костной мозоли), а затем и формирование дефинитивной костной ткани. Таким способом за счет деятельности остеобластов надкостницы происходит регенерация костей при их повреждении.
Остеокласты – костеразрушающие клетки, в сформированной костной ткани отсутствуют, но содержатся в надкостнице и в местах разрушения и перестройки костной ткани. Поскольку в онтогенезе непрерывно осуществляются локальные процессы перестройки костной ткани, то и в этих местах обязательно присутствуют и остеокласты. В процессе эмбрионального остеогистогенеза эти клетки играют очень важную роль и присутствуют в большом количестве. Остеокласты имеют характерную морфологию: эти клетки являются многоядерными (3 – 5 и более ядер), имеют довольно крупный размер (около 90 мкм) и характерную форму – овальную, но часть клетки, прилежащая к костной ткани, имеет плоскую форму. В плоской части можно выделить две зоны: центральную (гофрированную часть, содержащую многочисленные складки и отростки, и периферическая часть (прозрачную) тесно соприкасающуюся с костной тканью. В цитоплазме клетки, под ядрами, располагаются многочисленные лизосомы и вакуоли различной величины.
Функциональная активность остеокласта проявляется следующим образом: в центральной (гофрированной) зоне основания клетки из цитоплазмы выделяются угольная кислота и протеолитические ферменты. Выделяющаяся угольная кислота вызывает деминерализацию костной ткани, а протеолитические ферменты разрушают органический матрикс межклеточного вещества. Фрагменты коллагеновых волокон фагоцитируются остеокластами и разрушаются внутриклеточно. Посредством этих механизмов происходит резорбция (разрушение) костной ткани, и потому остеокласты обычно локализуются в углублениях костной ткани. После разрушения костной ткани за счет деятельности остеобластов, выселяющихся из соединительной ткани сосудов, происходит построение новой костной ткани.
Межклеточное вещество костной ткани состоит из основного (аморфного) вещества и волокон, в которых содержатся соли кальция. Волокна состоят из коллагена и складываются в пучки, которые могут располагаться параллельно (упорядоченно) или неупорядоченно, на основании чего и строится гистологическая классификация костных тканей. Основное вещество костной ткани, как и других разновидностей соединительных тканей, состоит из гликозамино– и протеогликанов.
В костной ткани содержится меньше хондроитинсерных кислот, но больше лимонной и других, которые образуют комплексы с солями кальция. В процессе развития костной ткани вначале образуется органический матрикс – основное вещество и коллагеновые волокна, а затем уже в них откладываются соли кальция. Они образуют кристаллы – гидрооксиапатиты, которые откладываются как в аморфном веществе, так и в волокнах. Обеспечивая прочность костей, фосфорнокислые соли кальция являются также одновременно и депо кальция и фосфора в организме. Таким образом, костная ткань принимает участие в минеральном обмене организма.
При изучении костной ткани следует также четко разделять понятия «костная ткань» и «кость».
Кость – это орган, основным структурным компонентом которого являются костная ткань.
Кость как орган состоит из таких элементов, как:
1) костная ткань;
2) надкостница;
3) костный мозг (красный, желтый);
4) сосуды и нервы.
Надкостница (периост) окружает по периферии костную ткань (за исключением суставных поверхностей) и имеет строение, сходное с надхрящницей.
В надкостнице выделяют наружный фиброзный и внутренний клеточный (или камбиальный) слой. Во внутреннем слое содержатся остеобласты и остеокласты. В надкостнице локализуется сосудистая сеть, из которой мелкие сосуды через прободающие каналы проникают в костную ткань.
Красный костный мозг рассматривается как самостоятельный орган и относится к органам кроветворения и иммуногенеза.
Костная ткань в сформированных костях представлена в основном пластинчатой формой, однако в разных костях, в разных участках одной кости она имеет разное строение. В плоских костях и эпифизах трубчатых костей костные пластинки образуют перекладины (трабекулы), составляющие губчатое вещество кости. В диафизах трубчатых костей пластинки плотно прилежат друг к другу и образуют компактное вещество.
Все разновидности костной ткани развиваются в основном из мезенхимы.
Различают два способа остеогистогенеза:
1) развитие непосредственно из мезенхимы (прямой остеогистогенез);
2) развитие из мезенхимы через стадию хряща (непрямой остеогистогенез).
Строение диафиза трубчатой кости. На поперечном срезе диафиза трубчатой кости различают следующие слои:
1) надкостницу (периост);
2) наружный слой общих (или генеральных) пластин;
3) слой остеонов;
4) внутренний слой общих (или генеральных) пластин;
5) внутреннюю фиброзную пластинку (эндост).
Наружные общие пластинки располагаются под надкостницей в несколько слоев, не образуя единого кольца. Между пластинками располагаются в лакунах остеоциты. Через наружные пластинки проходят прободающие каналы, через которые из надкостницы в костную ткань проникают прободающие волокна и сосуды. Прободающие сосуды обеспечивают трофику костной ткани, а прободающие волокна прочно связывают надкостницу с костной тканью.
Слой остеонов состоит из двух компонентов: остеонов и вставочных пластин между ними. Остеон является структурной единицей компактного вещества трубчатой кости. Каждый остеон состоит из 5 – 20 концентрически наслоенных пластин и канала остеона, в котором проходят сосуды (артериолы, капилляры, венулы). Между каналами соседних остеонов имеются анастомозы. Остеоны составляют основную массу костной ткани диафиза трубчатой кости. Они располагаются продольно по трубчатой кости соответственно силовым (или гравитационным) линиям и обеспечивают выполнение опорной функции. При изменении направления силовых линий, в результате перелома или искривления костей остеоны, не несущие нагрузку, разрушаются остеокластами. Однако остеоны разрушаются не полностью, а часть костных пластин остеона по его длине сохраняется, и такие оставшиеся части остеона называются вставочными пластинами.
На протяжении постнатального остеогенеза постоянно происходит перестройка костной ткани, одни остеоны резорбцируются, другие образуются, поэтому между остеонами находятся вставочные пластинки или остатки предыдущих остеонов.
Внутренний слой общих пластинок имеет строение, аналогичное наружному, но он менее выражен, а в области перехода диафиза в эпифизы общие пластинки продолжаются в трабекулы.
Эндоост – тонкая соединительно-тканная пластинка, выстилающая полость канала диафиза. Слои в эндоосте четко не выражены, но среди клеточных элементов содержатся остеобласты и остеокласты.
Классификация костных тканей
Различают две разновидности костных тканей:
1) ретикулофиброзную (грубоволокнистую);
2) пластинчатую (параллельно волокнистую).
В основе классификации лежит характер расположения коллагеновых волокон. В ретикулофиброзной костной ткани пучки коллагеновых волокон толстые, извилистые и располагаются неупорядоченно. В минерализованном межклеточном веществе в лакунах беспорядочно располагаются остеоциты. Пластинчатая костная ткань состоит из костных пластинок, в которых коллагеновые волокна или их пучки располагаются параллельно в каждой пластинке, но под прямым углом к ходу волокон соседних пластинках. Между пластинками в лакунах располагаются остеоциты, тогда как их отростки проходят в канальцах через пластинки.
В организме человека костная ткань представлена почти исключительно пластинчатой формой. Ретикулофиброзная костная ткань встречается только как этап развития некоторых костей (теменных, лобных). У взрослых людей она находится в области прикрепления сухожилий к костям, а также на месте окостеневших швов черепа (стреловидного шва, чешуи лобной кости).
Развитие костной ткани и костей (остеогистогенез)
Все разновидности костной ткани развиваются из одного источника – из мезенхимы, но развитие разных костей осуществляется неодинаково. Различают два способа остеогистогенеза:
1) развитие непосредственно из мезенхимы – прямой остеогистогенез;
2) развитие из мезенхимы через стадию хряща – непрямой остеогистогенез.
При помощи прямого остеогистогенеза развивается небольшое количество костей – покровные кости черепа. При этом вначале образуется ретикулофиброзная костная ткань, которая вскоре разрушается и замещается пластинчатой.
Прямой остеогистогенез протекает в четыре стадии:
1) стадия образования скелетогенных островков в мезенхиме;
2) стадия образования оссеоидной ткани – органического матрикса;
3) стадия минерализации (кальцинификации) остеоидной ткани и образование ретикулофиброзной костной ткани;
4) стадия преобразования ретикулофиброзной костной ткани в пластинчатую костную ткань.
Непрямой остеогенез начинается со 2-го месяца внутриутробного развития. Вначале в мезенхиме за счет деятельности хондробластов закладывается хрящевая модель будущей кости из гиалиновой хрящевой ткани, покрытая надхрящницей. Затем происходит замена вначале в диафизах, а затем и в эпифизах хрящевой ткани костной. Окостенение в диафизе осуществляется двумя способами:
1) перихондрально;
2) эндохондрально.
Вначале в области диафиза хрящевой закладки кости из надхрящницы выселяются остеобласты и образуют ретикулофиброзную костную ткань, которая в виде манжеты охватывает по периферии хрящевую ткань. В результате этого надхрящница превращается в надкостницу. Такой способ образования костной ткани называют перихондральным. После образования костной манжеты нарушается трофика глубоких отделов гиалинового хряща в области диафиза, в результате чего здесь происходит отложение солей кальция – омеление хряща. Затем под индуктивным влиянием обызвествленного хряща в эту зону из надкостницы через отверстия в костной манжете прорастают кровеносные сосуды, в адвентиции которых содержатся остеокласты и остеобласты. Остеокласты разрушают омелевший хрящ, а вокруг сосудов, за счет деятельности остеобластов формируется пластинчатая костная ткань в виде первичных остеонов, которые характеризуются широким просветом (каналом) в центре и нечеткими границами между пластинами. Такой способ образования костной ткани в глубине хрящевой ткани носит название эндохондрального. Одновременно с эндохондральным окостенением происходит перестройка грубоволокнистой костной манжеты в пластинчатую костную ткань, составляющую наружный слой генеральных пластин. В результате перихондрального и эндохондрального окостенения хрящевая ткань в области диафиза замещается костной. При этом формируется полость диафиза, заполняющаяся вначале красным костным мозгом, сменяющимся затем белым костным мозгом.
Эпифизы трубчатых костей и губчатые кости развиваются только эндохондрально. Вначале в глубоких частях хрящевой ткани эпифиза отмечается омеление. Затем туда проникают сосуды с остеокластами и остеобластами, и за счет их деятельности происходит замена хрящевой ткани пластинчатой в виде трабекул. Периферическая часть хрящевой ткани сохраняется в виде суставного хряща. Между диафизом и эпифизом длительное время сохраняется хрящевая ткань – метаэпифизарная пластинка, за счет постоянного размножения клеток которой происходит рост кости в длину.
В метаэпифизарной пластинке выделяются следующие зоны клеток:
1) пограничная зона;
2) зона столбчатых клеток;
3) зона пузырчатых клеток.
Примерно к 20 годам метаэпифизарная пластинка редуцируется, происходит синостозирование эпифизов и диафиза, после чего рост кости в длину прекращается. В процессе развития костей за счет деятельности остеобластов надкостницы происходит рост костей в толщину. Регенерация костей после их повреждения и переломов осуществляется за счет деятельности остеобластов надкостницы. Перестройка костной ткани осуществляется постоянно на протяжении всего остеогенеза: одни остеоны или их части разрушаются, другие – образуются.
Факторы, влияющие на процесс остеогистогенеза и состояние костной ткани
На процесс остеогистогенеза на состояние костной ткани влияют следующие факторы.
1. Содержание витаминов А, С, Д. Недостаток в пище этих витаминов приводит к нарушению синтеза коллагеновых волокон и к распаду уже существующих, что проявляется хрупкостью и усиленной ломкостью костей. Недостаточное образование витамина D в коже приводит к нарушению кальцинификации костной ткани и сопровождается недостаточной прочностью костей, их гибкостью (например, при рахите). Избыточное содержание витамина А активирует деятельность остеокластов, что сопровождается резорбцией костной ткани.
2. Оптимальное содержание гормонов щитовидной и паращитовидной железы – кальцитонина и паратгормона, которые регулируют содержание кальция в сыворотке крови. На состояние костной ткани оказывает также влияние уровень половых гормонов.
3. Искривление костей приводит к развитию пьезоэлектрического эффекта – стимуляции остеокластов и резорбции костной ткани.
4. Социальные факторы – питание и др.
5. Факторы окружающей среды.
Возрастные изменения костной ткани
С увеличением возраста изменяется соотношение органических и неорганических веществ в костной ткани в сторону увеличение неорганических и снижения органических, что сопровождается повышением ломкости костей. Именно этим можно объяснить значительное возрастание частоты переломов у пожилых людей.
Тема 15. МЫШЕЧНЫЕ ТКАНИ. СКЕЛЕТНАЯ МЫШЕЧНАЯ ТКАНЬ
Свойством сократимости обладают практически все виды клеток благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5 – 7 нм), состоящих из сократительных белков актина, миозина, тропомиозина. За счет взаимодействия названных белков-микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго– и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов (а следовательно, и сократительные процессы) неодинаково выражены в различных типах клеток. Наиболее выражены сократительные структуры в клетках, основной функцией которых является сокращение. Такие клетки или их производные образуют мышечные ткани, которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения, при сокращении выделяется большое количество тепла, а следовательно, мышечные ткани участвуют в терморегуляции организма.
Мышечные ткани неодинаковы по строению, источникам происхождения и иннервации, функциональным особенностям.
Любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон), включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику и осуществляют передачу усилий сокращения мышечных элементов.
Мышечная ткань подразделяется по строению на гладкую (неисчерченную) и поперечно-полосатую (исчерченную). Каждая из двух групп, в свою очередь, подразделяется на виды по источникам происхождения, строению и функциональным особенностям.
Гладкая мышечная ткань, входящая в состав внутренних органов и сосудов, развивается из мезенхимы. К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения – миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.
Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей: скелетная – из миотомов сомитов, сердечная – из висцеральных листков спланхиотом.
Поперечно-полосатая скелетная мышечная ткань
Как уже отмечалось, структурно-функциональной единицей этой ткани является мышечное волокно. Оно представляет собой вытянутое цилиндрическое образование с заостренными концами длиной от 1 до 40 мм (а по некоторым данным – до 120 мм), диаметром 0,1 мм. Мышечное волокно окружено оболочкой сарколеммой, в которой под электронным микроскопом отчетливо выделяются два листка: внутренний листок является типичной плазмолеммой, а наружный представляет собой тонкую соединительно-тканную пластинку (базальную пластинку).
Основным структурным компонентом мышечного волокна является миосимпласт. Таким образом, мышечное волокно является комплексным образованием и состоит из следующих основных структурных компонентов:
1) миосимпласта;
2) клеток-миосателлитов;
3) базальной пластинки.
Базальная пластинка образована тонкими коллагеновыми и ретикулярными волокнами, относится к опорному аппарату и выполняет вспомогательную функцию передачи сил сокращения на соединительно-тканные элементы мышцы.
Клетки-миосателлиты являются ростковыми элементами мышечных волокон, играющими важную роль в процессах физиологической и репаративной регенерации.
Миосимпласт является основным структурным компонентом мышечного волокна как по объему, так и по выполняемым функциям. Он образуется посредством слияния самостоятельных недифференцированных мышечных клеток – миобластов.
Миосимпласт можно рассматривать как вытянутую гигантскую многоядерную клетку, состоящую из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специализированных органелл.
В миосимпласте до 10 тыс. продольно вытянутых светлых ядер, располагающихся на периферии под плазмолеммой. Вблизи ядер локализуются фрагменты слабо выраженной зернистой эндоплазматической сети, пластинчатого комплекса Гольджи и небольшое количество митохондрий. Центриоли в симпласте отсутствуют. В саркоплазме имеются включения гликогена и миоглобина.
Отличительной особенностью миосимпласта является также наличие в нем:
1) миофибрилл;
2) саркоплазматической сети;
3) канальцев Т-системы.
Миофибриллы – сократительные элементы миосимпласта локализуются в центральной части саркоплазмы миосимпласта.
Они объединяются в пучки, между которыми располагаются прослойки саркоплазмы. Между миофибриллами локализуется большое количество митохондрий (сакросом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибриллы составляет 0,2 – 0,5 мкм.
По своему строению миофибриллы неоднородны по протяжению, подразделяются на темные (анизотропные), или А-диски, и светлые (изотропные), или I-диски. Темные и светлые диски всех миофибрилл располагаются на одном уровне и обусловливают поперечную исчерченность всего мышечного волокна. Диски в свою очередь, состоят из более тонких волоконцев – протофибрилл, или миофиламентов. Темные диски состоят из миозина, светлые – из актина.
Посередине I-диска поперечно актиновым микрофиламентам, проходит темная полоска – телофрагма (или Z-линия), посередине А-диска проходит менее выраженная мезофрагма, (или М-линия).
Актиновые миофиламенты посредине I-диска скрепляются белками, составляющими Z-линию, а свободными концами частично входят в А-диск между толстыми миофиламентами.
При этом вокруг одного миозинового филамента располагаются шесть актиновых. При частичном сокращении миофибриллы актиновые филаменты как бы втягиваются в А-диск, и в нем образуется светлая зона (или Н-полоска), ограниченная свободными концами микрофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.
Участок миофибриллы, расположенный между двумя Z-полосками, носит название саркомера и является структурно-функциональной единицей миофибриллы. Саркомер включает в себя А-диск и расположенные по сторонам от него две половины I-диска. Следовательно, каждая миофибрилла представляет собой совокупность саркомеров. Именно в саркомере осуществляются процессы сокращения. Следует отметить, что конечные саркомеры каждой миофибриллы прикрепляются к плазмолемме миосимпласта при помощи актиновых миофиламентов.
Структурные элементы саркомера в расслабленном состоянии можно выразить формулой:
Z + 1/2I = 1/2А + Ь + 1/2А + 1/2I + Z.
Процесс сокращения осуществляется при взаимодействии актиновых и миозиновых филаментов с образованием между ними актомиозиновых «мостиков», посредством которых происходит втягивание актиновых филаментов в А-диск и укорочение саркомера.
Для развития этого процесса необходимы три условия:
1) наличие энергии в форме АТФ;
2) наличие ионов кальция;
3) наличие биопотенциала.
АТФ образуется в саркосомах (митохондриях), в большом количестве локализованных между миофибриллами. Выполнение второго и третьего условия осуществляется при помощи специальных органелл мышечной ткани – саркоплазматической сети (аналога эндоплазматической сети обычных клеток) и системы Т-канальцев.
Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы.
При этом саркоплазматическая сеть подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из двух терминальных цистерн, соединенных полыми анастомозирующими канальцами – L-канальцами. При этом терминальные цистерны охватывают саркомер в области I-диска, а канальцы – в области А-диска. В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети выходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми микрофиламентами, инициируя их взаимодействие.
После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальца.
Таким образом, саркоплазматическая сеть является не только резервуаром для ионов кальция, но и играет роль кальциевого насоса.
Волна деполяризации передается на саркоплазматическую сеть от нервного окончания вначале по плазмолемме, а затем по Т-канальцам, которые не являются самостоятельными структурными элементами. Они представляют собой трубчатые впячивания плазмолеммы в саркоплазму. Проникая вглубь, Т-канальцы разветвляются и охватывают каждую миофибриллу в пределах одного пучка строго на определенном уровне, обычно на уровне Z-полоски или несколько медиальнее – в области соединения актиновых и миозиновых филаментов. Следовательно, к каждому саркомеру подходят и окружают его два Т-канальца. По сторонам от каждого Т-канальца располагаются две терминальные цистерны саркоплазматической сети соседних саркомеров, которые вместе с Т-канальцами составляют триаду. Между стенкой Т-канальца и стенками терминальных цистерн имеются контакты, через которые волна деполяризации передается на мембраны цистерн и обусловливает выход из них ионов кальция и начало сокращения.
Таким образом, функциональная роль Т-канальцев заключается в передаче возбуждения с плазмолеммы на саркоплазматическую сеть.
Для взаимодействия актиновых и миозиновых филаментов и последующего сокращения, кроме ионов кальция, необходима также энергия в виде АТФ, которая вырабатывается в саркосомах, в большом количестве располагающихся между миофибриллами.
Под влиянием ионов кальция стимулируется АТФ-азная активность миозина, что приводит к расщеплению АТФ с образованием АДФ и выделением энергии. Благодаря выделившейся энергии устанавливаются «мостики» между головками белка миозина и определенными точками на белке актине, и за счет укорочения этих «мостиков» происходит подтягивание актиновых филаментов между миозиновыми.
Затем эти связи распадаются, с использованием энергии АТФ и головки миозина образуются новые контакты с другими точками на актиновом филаменте, но расположенными дистальнее предыдущих. Так происходит постепенное втягивание актиновых филаментов между миозиновыми и укорочение саркомера. Степень этого сокращения зависит от концентрации свободных ионов кальция вблизи миофиламентов и от содержания АТФ.
При полном сокращении саркомера актиновые филаменты достигают М-полоски саркомера. При этом исчезают Н-полоска и I-диски, а формула саркомера может быть выражена следующим образом:
Z + 1/2IA + M + 1/2AI + Z.
При частичном сокращении формула саркомера будет выглядеть так:
Z + 1/nI + 1/nIA + 1/2H + M + 1/2H + 1/nAI + 1/nI + Z.
Одновременное и содружественное сокращение всех саркомеров каждой миофибриллы приводит к сокращению всего мышечного волокна. Крайние саркомеры каждой миофибриллы прикрепляются актиновыми миофиламентами к плазмолемме миосимпласта, которая на концах мышечного волокна имеет складчатый характер. При этом на концах мышечного волокна базальная пластинка не заходит в складки плазмолеммы. Ее прободают тонкие коллагеновые и ретикулярные волокна, проникают в глубь складок плазмолеммы и прикрепляются в тех ее местах, к которым с внутренней стороны прикрепляются актиновые филаменты дистальных саркомеров.
Благодаря этому создается прочная связь миосимпласта с волокнистыми структурами эндомизия. Коллагеновые и ретикулярные волокна концевых отделов мышечных волокон вместе с волокнистыми структурами эндомизия и перимизия в совокупности образуют сухожилия мышц, которые прикрепляются к определенным точкам скелета или вплетаются в сетчатый слой дермы кожи в области лица. Благодаря сокращению мышц происходит перемещение частей или всего организма, а также изменение рельефа лица.
Не все мышечные волокна одинаковы по своему строению. Различают два основных типа мышечных волокон, между которыми имеется промежуточные, отличающиеся между собой прежде всего особенностями обменных процессов и функциональными свойствами и в меньшей степени – структурными особенностями.
Волокна I типа – красные мышечные волокна, характеризуются прежде всего высоким содержанием в саркоплазме миоглобина (что придает им красный цвет), большим количеством саркосом, высокой активностью в них фермента сукцинатдегидрогеназы, высокой активностью АТФ-азы медленного действия. Эти волокна обладают способностью медленного, но длительного тонического сокращения и малой утомляемостью.
Волокна II типа – белые мышечные волокна, характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-азы быстрого типа. Функционально волокна данного типа характеризуются способностью более быстрого, сильного, но менее продолжительного сокращения.
Между двумя крайними типами мышечных волокон находятся промежуточные, характеризующиеся различным сочетанием названных включений и разной активностью перечисленных ферментов.
Любая мышца содержит все типы мышечных волокон в различном их количественном соотношении. В мышцах, обеспечивающих поддержание позы, преобладают красные мышечные волокна, в мышцах, обеспечивающих движение пальцев и кистей, преобладают красные и переходные волокна. Характер мышечного волокна может меняться в зависимости от функциональной нагрузки и тренировки. Установлено, что биохимические, структурные и функциональные особенности мышечного волокна зависят от иннервации.
Перекрестная пересадка эфферентных нервных волокон и их окончаний с красного волокна на белое (и наоборот) приводит к изменению обмена, а также структурных и функциональных особенностей в этих волокнах на противоположный тип.
Строение и физиология мышцы
Мышца как орган состоит из мышечных волокон, волокнистой соединительной ткани, сосудов, нервов. Мышца – это анатомическое образование, основным и функционально ведущим структурным компонентом которого является мышечная ткань.
Волокнистая соединительная ткань образует прослойки в мышце: эндомизий, перимизий, эпимизий, а также сухожилия.
Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды, в основном капилляры, посредством которых обеспечивается трофика волокна.
Перимизий окружает несколько мышечных волокон, собранных в пучки.
Эпимизий (или фасция) окружает всю мышцу, способствует функционированию мышцы как органа.
Гистогенез скелетной поперечно-полосатой мышечной ткани
Из миотомов мезодермы в определенные участки мезенхимы выселяются малодифференцированные клетки – миобласты. В области контактов миобластов цитолемма исчезает, и образуется симпластическое образование – миотрубка, в которой ядра в виде цепочки располагаются в середине, а по периферии из миофиламентов начинают дифференцироваться миофибриллы.
К миотрубке подрастают нервные волокна, образуя двигательные нервные окончания. Под влиянием эфферентной нервной иннервации начинается перестройка мышечной трубки в мышечное волокно: ядра перемещаются на периферию симпласта к плазмолемме, а миофибриллы занимают центральную часть. Из складок эндоплазматической сети развивается саркоплазматическая сеть, окружающая каждую миофибриллу на всем ее протяжении. Плазмолемма миосимпласта образует глубокие трубчатые выпячивания – Т-канальца. За счет деятельности зернистой эндоплазматической сети вначале миобластов, а затем и мышечных труб синтезируются и выделяются с помощью пластинчатого комплекса белки и полисахариды, из которых формируется базальная пластинка мышечного волокна.
При формировании миотрубки, а затем и дифференцировки мышечного волокна часть миобластов не входит в состав симпласта, а прилежит к нему, располагаясь под базальной пластинкой. Эти клетки носят название миосателлитов и играют важную роль в процессе физиологической и репаративной регенерации. Установлено, что закладка поперечно-полосатой скелетной мускулатуры происходит только в эмбриональном периоде. В постнатальном периоде осуществляется их дальнейшая дифференцировка и гипертрофия, но количество мышечных волокон даже в условиях интенсивных тренировок не увеличивается.
Регенерация скелетной мышечной ткани
В мышечной, как и в других тканях, различают два вида регенерации физиологическую и репаративную. Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон.
Это выражается в увеличении их толщины и длины, нарастании числа органелл, главным образом миофибрилл, числа ядер, что проявляется усилением функциональной способности мышечного волокна. Радиоизотопными методами установлено, что увеличение содержания ядер в мышечных волокон достигается путем деления клеток миосателлитов и последующего вхождения в миосимпласт дочерних клеток.
Увеличение числа миофибрилл осуществляется с помощью синтеза актиновых и миозиновых белков свободными рибосомами и последующей сборки этих белков в актиновые и миозиновые миофиламенты параллельно с соответствующими филаментами саркомеров. В результате этого вначале происходит утолщение миофибрилл, а затем их расщепление и образование дочерних. Возможно образование новых актиновых и миозиновых миофиламентов не параллельно, а встык уже существующим, чем достигается их удлинение.
Саркоплазматическая сеть и Т-канальца в гипертрофирующемся мышечном волокне образуются за счет разрастания предыдущих элементов. При определенных видах мышечной тренировки может формироваться преимущественно красный тип мышечных волокон (у стайеров в легкой атлетике) или белый тип.
Возрастная гипертрофия мышечных волокон интенсивно проявляется с началом двигательной активности организма (1 – 2 года), что обусловлено прежде всего усилением нервной стимуляции. В старческом возраст, а также в условиях незначительной мышечной нагрузки, наступает атрофия специальных и общих органелл, истончение мышечных волокон и снижение их работоспособности.
Репаративная регенерация развивается после повреждения мышечных волокон.
При этом способе регенерация зависит от величины дефекта. При значительном повреждении на протяжении мышечного волокна миосателлиты в области повреждения и в прилегающих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где встраиваются в цепочки, формируя микротрубочку.
Последующая дифференцировка микротрубочки приводит к восполнению дефекта и восстановлению целостности мышечного волокна. В условиях небольшого дефекта мышечного волокна на его концах за счет регенерации внутриклеточных органелл, образуются мышечные почки, которые растут друг навстречу другу, а затем сливаются, приводя к закрытию дефекта.
Репаративная регенерация и восстановление целостности мышечных волокон могут осуществляться только при определенных условиях: если сохранилась двигательная иннервация мышечных волокон и если в область повреждения не попали элементы соединительной ткани (фибробласты). В противном случае на месте дефекта образуется соединительно-тканный рубец.
В настоящее время доказана возможность аутотрансплантации мышечной ткани, в том числе и целых мышц при соблюдении следующих условий:
1) механического измельчения мышечной ткани трансплантанта с целью растормаживания клеток-сателлитов для последующей их пролиферации;
2) помещения измельченной ткани в фасциальное ложе;
3) подшивания двигательного нервного волокна к измельченному трансплантанту;
4) наличия сократительных движений мышц-антагонистов и синергистов.
Иннервация скелетных мышц
Скелетные мышцы получают двигательную, чувствительную и трофическую (вегетативную) иннервацию. Двигательную (эфферентную) иннервацию скелетные мышцы туловища и конечностей получают от мотонейронов передних рогов спинного мозга, а мышцы лица и головы – от двигательных нейронов определенных черепных нервов.
При этом к каждому мышечному волокну подходит либо сам аксон мотонейрона, либо его ответвление. В мышцах, обеспечивающих координированные движения (мышцы кистей, предплечья, шеи) каждое мышечное волокно иннервируется одним мотонейроном, чем достигается большая точность движений. В мышцах, которые преимущественно обеспечивают поддержание позы, десятки и даже сотни мышечных волокон получают двигательную иннервацию от одного мотонейрона посредством разветвления его аксона.
Двигательное нервное волокно, подойдя к мышечному волокну, проникает под эндомизий и базальную пластинку и распадается на терминали, которые вместе с прилежащим специфическим участком миосимпласта образуют аксономышечный синапс (или моторную бляшку).
Под влиянием нервного импульса волна деполяризации распространяется далее по Т-канальцам и в области триад передается на терминальные цистерны саркоплазматической сети, обуславливая выход ионов кальция и начало процесса сокращения мышечного волокна.
Чувствительная иннервация скелетных мышц осуществляется псевдоуниполярными нейронами спинальных ганглиев посредством разнообразных рецепторных окончаний дендритов этих клеток. Рецепторные окончания скелетных мышц можно разделить на две группы:
1) специфические рецепторные приборы, характерные только для скелетной мускулатуры – мышечные веретена и сухожильный комплекс Гольджи;
2) неспецифические рецепторные окончания кустиковидной или древовидной формы, распределяющиеся в рыхлой соединительной ткани эндо-, пери– и эпиневрия.
Мышечные веретена – это сложно устроенные инкапсулированные образования. В каждой мышце содержится от нескольких до сотен мышечных веретен. Каждое мышечное веретено содержит не только нервные элементы, но также 10 – 12 специфических мышечных волокон – интрафузальных, окруженных капсулой. Эти волокна располагаются параллельно сократительным мышечным волокнам (экстрафузально) и получают не только чувствительную, но и специальную двигательную иннервацию. Мышечные веретена воспринимают раздражения как при растяжении данной мышцы, вызванном сокращением мышц-антагонистов, так и при ее сокращении и тем самым регулируют степень сокращения и расслабления.
Сухожильные органы представляют собой специализированные инкапсулированные рецепторы, включающие в свою структуру несколько сухожильных волокон, окруженных капсулой, среди которых распределяются терминальные ветвления дендрита псевдоуниполярного нейрона. При сокращении мышцы сухожильные волокна сближаются и сдавливают нервные окончания. Сухожильные органы воспринимают только степень сокращения данной мышцы. Посредством мышечных веретен и сухожильных органов при участии спинальных центров обеспечивается автоматизм движения, например, при ходьбе.
Трофическая иннервация скелетных мышц осуществляется вегетативной нервной системой – ее вегетативной частью и в основном осуществляется опосредованно через иннервацию сосудов.
Кровоснабжение
Скелетные мышцы богато кровоснабжаются. В рыхлой соединительной ткани (перимизии) в большом количестве содержатся артерии и вены, артериолы, венулы и артериоловенулярные анастомозы.
В эндомизии располагаются капилляры, преимущественно узкие (4,5 – 7 мкм), которые и обеспечивают трофику нервного волокна. Мышечное волокно вместе с окружающими его капиллярами и двигательными окончаниями составляют мион. В мышцах содержится большое количество артериовенулярных анастомозов, обеспечивающих адекватное кровоснабжение при различной мышечной активности.
Тема 16. МЫШЕЧНЫЕ ТКАНИ. СЕРДЕЧНАЯ И ГЛАДКАЯ МЫШЕЧНЫЕ ТКАНИ
Сердечная мышечная ткань
Структурно-функциональной единицей сердечной поперечно-полосатой мышечной ткани является кардиомиоцит. По строению и функциям кардиомиоциты подразделяются на две основные группы:
1) типичные (или сократительные) кардиомиоциты, образующие своей совокупностью миокард;
2) атипичные кардиомиоциты, составляющие проводящую систему сердца.
Сократительный кардиомиоцит представляет собой почти прямоугольную клетку длиной 50 – 120 мкм, шириной 15 – 20 мкм, в центре которой локализуется обычно одно ядро.
Покрыт снаружи базальной пластинкой. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии – саркосомы. В отличие от скелетной мускулатуры миофибриллы кардиомиоцитов представляют собой не отдельные цилиндрические образования, а, по существу, сеть, состоящую из анастомозирующих миофибрилл, так как некоторые миофиламенты как бы отщепляются от одной миофибриллы и наискось продолжаются в другую. Кроме того, темные и светлые диски соседних миофибрилл не всегда располагаются на одном уровне, и потому поперечная исчерченность в кардиомиоцитах практически не выражена по сравнению с поперечно-полосатой мышечной тканью. Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующим канальцами. Терминальные цистерны и триады отсутствуют. Т-канальцы имеются, но они короткие, широкие и образованы не только углублениями плазмолеммы, но и базальной пластинки. Механизм сокращения в кардиомиоцитах практически не отличается от поперечно-полосатой скелетной мускулатуры.
Сократительные кардиомиоциты, соединяясь встык друг с другом, образуют функциональные мышечные волокна, между которыми имеются многочисленные анастомозы. Благодаря этому из отдельных кардиомиоцитов формируется сеть (функциональный синцитий).
Наличие таких щелевидных контактов между кардиомиоцитами обеспечивает одновременное и содружественное их сокращение вначале в предсердиях, а затем и в желудочках. Области контактов соседних кардиомиоцитов носят название вставочных дисков. Фактически никаких дополнительных структур между кардиомиоцитами нет. Вставочные диски – это места контактов цитолемм соседних кардиомиоцитов, включающих в себя простые, десмосомные и щелевидные контакты. Во вставочных дисках различают поперечные и продольные фрагменты. В области поперечных фрагментов имеются расширенные десмосомные соединения, к этому же месту с внутренней стороны плазмолеммы прикрепляются актиновые филаменты саркомеров. В области продольных фрагментов локализуются щелевидные контакты. Посредством вставочных дисков обеспечиваются как механическая, метаболическая, так и функциональные связи кардиомиоцитов.
Сократительные кардиомиоциты предсердий и желудочко в несколько отличаются между собой по морфологии и функциям.
Кардиомиоциты предсердий в саркоплазме содержат меньше миофибрилл и митохондрий, в них почти не выражены Т-канальца, а вместо них под плазмолеммой выявляются в большом количестве везикулы и кавеолы – аналоги Т-канальцев. В саркоплазме предсердных кардиомиоцитов у полюсов ядер локализуются специфические предсердные гранулы, состоящие из гликопротеиновых комплексов. Выделяясь из кардиомиоцитов в кровь предсердий, эти биологически активные вещества влияют на уровень давления в сердце и сосудах, а также препятствуют образованию внутрипредсердных тромбов. Таким образом, предсердные кардиомиоциты обладают сократительной и секреторной функциями.
В желудочковых кардиомиоцитах более выражены сократительные элементы, а секреторные гранулы отсутствуют.
Атипичные кардиомиоциты образуют проводящую систему сердца, которая включает в себя следующие структурные компоненты:
1) синусопредсердный узел;
2) предсердно-желудочковый узел;
3) предсердно-желудочковый пучок (пучок Гиса) – ствол, правую и левую ножки;
4) концевые разветвления ножек (волокна Пуркинье).
Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их поведение и передачу на сократительные кардиомиоциты.
По морфологии атипичные кардиомиоциты отличаются от типичных:
1) они крупнее – 100 мкм, толщина – до 50 мкм;
2) в цитоплазме содержится мало миофибрилл, которые расположены неупорядоченно, почему атипичные кардиомиоциты не имеют поперечной исчерченности;
3) плазмолемма не образует Т-канальцев;
4) во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты.
Атипичные кардиомиоциты различных отделов проводящей системы отличаются друг от друга по структуре и функциям и подразделяются на три основные разновидности:
1) Р-клетки – пейсмейкеры – водители ритма I типа;
2) переходные – клетки II типа;
3) клетки пучка Гиса и волокон Пуркинье – клетки III типа.
Клетки I типа являются основой синусопредсердного узла, а также в небольшом количестве содержатся в атриовентрикулярном узле. Эти клетки способны самостоятельно генерировать с определенной частотой биоэлектрические потенциалы, а также передавать их на клетки II типа с последующей передачей на клетки III типа, от которых биопотенциалы распространяются на сократительные кардиомиоциты.
Источники развития кардиомиоцитов – миоэпикардиальные пластинки, представляющие собой определенные участки висцеральных спланхиотом.
Иннервация сердечной мышечной ткани. Сократительные кардиомиоциты получают биопотенциалы из двух источников:
1) из проводящей системы (прежде всего из синусопредсердного узла);
2) из вегетативной нервной системы (из ее симпатической и парасимпатической части).
Регенерация сердечной мышечной ткани. Кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (например, некроз значительных участков при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубца – пластическая регенерация. При этом сократительная функция у этого участка отсутствует. Поражение проводящей системы сопровождается появлением нарушений ритма и проводимости.
Гладкая мышечная ткань мезенхимального происхождения
Локализуется в стенках полых органов (желудка, кишечника, дыхательных путей, органов мочеполовой системы) и в стенке кровеносных и лимфатических сосудов. Структурно-функциональной единицей является миоцит – клетка веретенообразной формы, длиной 30 – 100 мкм (в беременной матке – до 500 мкм), диаметром 8 мкм, покрытая базальной пластинкой.
В центре миоцита локализуется вытянутое ядро палочковидной формы. По полюсам ядра располагаются общие органеллы: митохондрии (саркосомы), элементы зернистой эндоплазматической сети, пластинчатый комплекс, свободные рибосомы, центриоли. В цитоплазме содержатся тонкие (7 нм) и более толстые – (17 нм) филаменты. Тонкие филаменты состоят из белка актина, толстые – из миозина и располагаются в основном параллельно актиновым. Однако в совокупности актиновые и миозиновые филаменты не образуют типичных миофибрилл и саркомеров, поэтому поперечная исчерченность в миоцитах отсутствует. В саркоплазме и на внутренней поверхности сарколеммы электронно-микроскопически определяются плотные тельца, в которых заканчиваются актиновые филаменты и которые рассматриваются как аналоги Z-полосок в саркомерах миофибрилл скелетного мышечного волокна. Фиксация миозиновых компонентов к определенным структурам не установлена.
Миозиновые и актиновые филаменты составляют сократительный аппарат миоцита.
Благодаря взаимодействию актиновых и миозиновых филаментов актиновые нити скользят вдоль миозиновых, сближают точки их прикрепления на плотных тельцах цитолеммы и укорачивают длину миоцита. Установлено, что в миоцитах, помимо актиновых и миозиновых филаментов, содержатся также промежуточные (до 10 нм), которые прикрепляются к цитоплазматическим плотным тельцам, а другими концами – к цитолемме и передают усилия сокращения центрально расположенных сократительных филаментов на сарколемму. При сокращении миоцита контуры его становятся неровными, форма овальной, а ядро штопорообразно закручивается.
Для взаимодействия актиновых и миозиновых филаментов в миоците так же, как и в скелетном мышечном волокне, необходимы энергия в форме АТФ, ионы кальция и биопотенциалы. АТФ вырабатывается в митохондриях, ионы кальция содержатся в саркоплазматической сети, которая представлена в редуцированной форме в виде везикул и тонких канальцев. Под сарколеммой содержатся небольшие полости – кавеолы, которые рассматриваются как аналоги Т-канальцев. Все эти элементы обеспечивают передачу биопотенциалов на везикулы в трубочки, выход ионов кальция, активацию АТФ, а затем и взаимодействие актиновых и миозиновых филаментов.
Базальная пластинка миоцита состоит из тонких коллагеновых, ретикулиновых и эластических волокон, а также аморфного вещества, которые являются продуктом синтеза и секреции самих миоцитов. Следовательно, миоцит обладает не только сократительной, но синтетической и секреторной функцией, особенно на стадии дифференцировки. Фибриллярные компоненты базальных пластин соседних миоцитов соединяются друг с другом и тем самым объединяют отдельные миоциты в функциональные мышечные волокна и функциональные синцитии. Однако между миоцитами, помимо механической связи, имеется и функциональная связь. Она обеспечивается с помощью щелевидных контактов, которые располагаются в местах тесного соприкосновение миоцитов. В этих местах базальная пластинка отсутствует, цитолеммы соседних миоцитов сближаются и образуют щелевидные контакты, через которые осуществляется ионный обмен. Благодаря механическим и функциональным контактам обеспечивается содружественное сокращение большого числа миоцитов, входящих в состав функционального мышечного волокна, или синцития.
Эфферентная иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой. При этом терминальные веточки аксонов эфферентных вегетативных нейронов, проходя по поверхности нескольких миоцитов, образуют на них небольшие варикозные утолщения, которые несколько прогибают плазмолемму и образуют мионевральные синапсы. При поступлении нервных импульсов в синаптическую щель выделяются медиаторы – ацетилхолин и норадреналин. Они вызывают деполяризацию плазмолеммы миоцитов и их сокращение. Однако не на всех миоцитах имеются нервные окончания. Деполяризация миоцитов, не имеющих вегетативной иннервации, осуществляется через щелевидные контакты с соседних миоцитов, получающих эфферентную иннервацию. Кроме того, возбуждение и сокращение миоцитов может происходить под влиянием различных биологически активных веществ (гистамина, серотонина, окситоцина), а также при механическом раздражении органа, содержащего гладкомышечную ткань. Существует мнение, что, несмотря на наличие эфферентной иннервации, нервные импульсы не индуцируют сокращение, а лишь регулируют его продолжительность и силу.
Сокращение гладкомышечной ткани обычно бывает длительным, что обеспечивает поддержание тонуса полых внутренних органов и сосудов.
Гладкомышечная ткань не образует мышцы в анатомическом понимании этого слова. Однако в полых внутренних органах и в стенке сосудов между пучками миоцитов содержатся прослойки рыхлой волокнистой соединительной ткани, образующие своеобразный эндомизий, а между пластами гладкой мышечной ткани – перимизий.
Регенерация гладкомышечной ткани осуществляется несколькими способами:
1) посредством внутриклеточной регенерации (гипертрофии при усилении функциональной нагрузки);
2) посредством митотического деления миоцитов (пролиферации);
3) посредством дифференцировки из камбиальных элементов (из адвентициальных клеток и миофибробластов).
Специальные гладкомышечные ткани
Среди специальных гладкомышечных тканей можно выделить ткани нейрального и эпидермального происхождения.
Ткани нейрального происхождения развиваются из нейроэктодермы, из краев глазного бокала, являющегося выпячиванием промежуточного мозга. Из этого источника развиваются миоциты, образующие две мышцы радужной оболочки глаза – мышцу, суживающую зрачок, и мышцу, расширяющую зрачок. По своей морфологии эти миоциты не отличаются от мезенхимальных, однако отличаются по иннервации. Каждый миоцит имеет вегетативную иннервацию: мышца, расширяющая зрачок, симпатическую, а суживающая – парасимпатическую. Благодаря этому мышцы сокращаются быстро и координированно в зависимости от мощности светового пучка.
Ткани эпидермального происхождения развиваются из кожной эктодермы и представляют собой клетки звездчатой формы, располагающиеся в концевых отделах слюнных, молочных и потовых желез, снаружи от секреторных клеток. В своих отростках миоэпителиальная клетка содержит актиновые и миозиновые филаменты, благодаря воздействию которых отростки клеток сокращаются и способствуют выделению секрета из концевых отделов и мелких протоков в более крупные. Эфферентную иннервацию эти миоциты получают также из вегетативного отдела нервной системы.
Тема 17. НЕРВНАЯ ТКАНЬ
Структурно-функциональные особенности нервной ткани:
1) состоит из двух основных типов клеток – нейроцитов и нейроглии;
2) межклеточное вещество отсутствует;
3) нервная ткань не подразделяется на морфологические подгруппы;
4) основной источник происхождения – нейроэктодерма.
Структурные компоненты нервной ткани:
1) нервные клетки (нейроциты или нейроны);
2) глиальные клетки – глиоциты.
Функции нервной ткани:
1) восприятие различных раздражений и трансформация их в нервные импульсы;
2) проведение нервных импульсов, их обработка и передача на рабочие органы.
Названные функции выполняют нейроциты – функционально ведущие структурные компоненты нервной ткани. Клетки нейроглии способствуют выполнению перечисленных функций.
Источники и этапы развития нервной ткани
Основной источник – нейроэктодерма. Некоторые клетки глиальные клетки развиваются из микроглии и из мезенхимы (из моноцитов крови).
Этапы развития:
1) нервная пластинка;
2) нервный желобок;
3) нервная трубка, ганглиозная пластинка, нейральные плакоды.
Из нервной трубки развивается нервная ткань, в основном из органов центральной нервной системы (спинного и головного мозга). Из ганглиозной пластинки развивается нервная ткань некоторых органов периферической нервной системы (вегетативных и спинальных ганглиев). Из нейральных плакод развиваются ганглии черепных нервов. В процессе развития нервной ткани вначале образуются два типа клеток:
1) нейробласты;
2) глиобласты.
Затем из нейробластов дифференцируются различные типы нейроцитов, а из глиобластов – различные типы клеток макроглии (эпендимоциты, астроциты, олигодендроциты).
Характеристика нейроцитов
По морфологии все дифференцированные нейроциты являются отростчатыми клетками. Условно в каждой нервной клетке выделяют две части:
1) клеточное тело (перикарион);
2) отростки.
Отростки нейроцитов подразделяются на две разновидности:
1) аксон (нейрит), который проводит импульсы от клеточного тела на другие нервные клетки или рабочие органы;
2) дендрит, который проводит импульсы к клеточному телу.
В любой нервной клетке имеется только один аксон, дендритов может быть один и более. Отростки нервных клеток заканчиваются концевыми приборами различного типа (эффекторными, рецепторными, синаптическими).
Строение перикариона нервной клетки. В центре локализуется обычно одно ядро, содержащее в основном эухроматин, и 1 – 2 четких ядрышка, что свидетельствует о высоком функциональном напряжении клетки.
Наиболее развитыми органеллами цитоплазмы являются зернистая ЭПС и пластинчатый комплекс Гольджи.
При окраске нейроцитов основными красителями (по методу Ниссля) зернистая ЭПС выявляется в виде базофильных глыбок (глыбок Ниссля), а цитоплазма имеет пятнистый вид (так называемое тигроидное вещество).
Отростки нервных клеток представляют собой вытянутые участки нервных клеток. В них находятся нейроплазма, а также единичные митохондрии, нейрофиламенты и нейротубулы. В отростках отмечается движение нейроплазмы от перикариона к нервным окончаниям (прямой ток), а также от терминалей к перикаринону (ретроградный ток). При этом в аксонах различают прямой быстрый транспорт (5 – 10 мм/ч) и прямой медленный (1 – 3 мм/сут). Транспорт веществ в дендритах – 3 мм/ч.
Наиболее распространенным методом выявления и изучения нервных клеток является метод импрегнации азотнокислым серебром.
Классификация нейроцитов
Нервные клетки классифицируются:
1) по морфологии;
2) по функции.
По морфологии по количеству отростков подразделяются на:
1) униполярные (псевдоуниполярые) – с одним отростком;
2) биполярные – с двумя отростками;
3) мультиполярные – более двух отростков.
По функции подразделяются на:
1) афферентные (чувствительные);
2) эфферентные (двигательные, секреторные);
3) ассоциативные (вставочные);
4) секреторные (нейроэндокринные).
Структурная и функциональная характеристика глиальных клеток
Клетки нейроглии являются вспомогательными клетками нервной ткани и выполняют следующие функции:
1) опорную;
2) трофическую;
3) разграничительную;
4) секреторную;
5) защитную и др.
Глиальные клетки по своей морфологии также являются отростчатыми клетками, не одинаковыми по величине, форме и количеству отростков. На основании размеров они подразделяются прежде всего на макроглию и микроглию. Кроме того, клетки макроглии имеют эктодермальный источник происхождения (из нейроэктодермы), клетки микроглии развиваются из мезенхимы.
Эпендимоциты имеют строго ограниченную локализацию: выстилают полости центральной нервной системы (центральный канал спинного мозга, желудочки и водопровод головного мозга). По своей морфологии они несколько напоминают эпителиальную ткань, так как образуют выстилку полостей мозга. Эпендимоциты имеют почти призматическую форму, и в них различают апикальный и базальный полюса. Своими боковыми поверхностями они связаны между собой посредствам десмосомных соединений. На апикальной поверхности каждого эпиндимоцита расположены реснички, за счет колебаний которых обеспечивается движение цереброспинальной жидкости в полостях мозга.
Таким образом, эпендимоциты выполняют следующие функции нервной системе:
1) разграничительную (образуя выстилку полостей мозга);
2) секреторную;
3) механическую (обеспечивают движение церебральной жидкости);
4) опорную (для нейроцитов);
5) барьерную (участвуют в образовании поверхностной глиальной пограничной мембраны).
Астроциты – клетки с многочисленными отростками, напоминающими в совокупности форму звезды, откуда и происходит их название. По особенностям строения их отростков астроциты подразделяются на:
1) протоплазматические (короткие, но широкие и сильно ветвящиеся отростки);
2) волокнистые (тонкие, длинные, слабо ветвящиеся отростки).
Протоплазматические астроциты выполняют опорную и трофическую функции для нейроцитов серого вещества.
Волокнистые астроциты осуществляют опорную функцию для нейроцитов и их отростков, так как их длинные, тонкие отростки образуют глиальные волокна. Кроме того, терминальные расширения отростков волокнистых астроцитов образуют периваскулярные (вокругсосудистые) глиальные пограничные мембраны, являющиеся одним из структурных компонентов гематоэнцефалического барьера.
Олигодендроциты – малоотростчатые клетки, самая распространенная популяция глиоцитов. Локализуются они преимущественно в периферической нервной системы и в зависимости от области локализации подразделяются на:
1) мантийные глиоциты (окружают тела нервных клеток в нервных и вегетативных ганглиях;
2) леммоциты, или шванновские клетки (окружают отростки нервных клеток, вместе с которыми образуют нервные волокна);
3) концевые глиоциты (сопровождают концевые ветвления дендритов чувствительных нервных клеток).
Все разновидности олигодендроцитов, окружая тела, отростки и окончания нервных клеток, выполняют для них опорную, трофическую, а также барьерную функции, изолируя нервные клетки от лимфоцитов.
Дело в том, что антигены нервных клеток являются чужеродными для собственных лимфоцитов. Поэтому нервные клетки и различные их части отграничиваются от лимфоцитов крови и соединительной ткани:
1) вокругсосудистыми пограничными глиальными мембранами;
2) поверхностной глиальной пограничной мембраной;
3) леммоцитами и концевыми глиоцитами (на периферии).
При нарушении этих барьеров возникают аутоиммунные реакции.
Микроглия представлена мелкими отростчатыми клетками, выполняющими защитную функцию – фагоцитоз. На основании этого их называют глиальными макрофагами. Большинство исследователей считают, что глиальные макрофаги (как и любые другие макрофаги) являются клетками мезенхимального происхождения.
Нервные волокна
Нервные волокна являются не самостоятельными структурными элементами нервной ткани, а представляют собой комплексные образования, включающие следующие элементы:
1) отростки нервных клеток (осевые цилиндры);
2) глиальные клетки (леммоциты, или шванновские клетки);
3) соединительно-тканную пластинку (вязальную пластинку).
Главной функцией нервных волокон является проведение нервных импульсов. При этом отростки нервных клеток (осевые цилиндры) проводят нервные импульсы, а глиальные клетки (леммоциты) способствуют этому проведению.
По особенностям строения и функции нервные волокна подразделяются на две разновидности:
1) безмиелиновые;
2) миелиновые.
Строение и функциональные особенности безмиелинового нервного волокна. Безмиелиновое нервное волокно представляет собой цепь леммоцитов, в которую вдавлено несколько (5 – 20) осевых цилиндров. Каждый осевой цилиндр прогибает цитолемму леммоцита и как бы погружается в его цитоплазму. При этом осевой цилиндр окружен цитолеммой леммоцита, а ее сближенные участки составляют мезаксон.
Мезаксон в безмиелиновых нервных волокнах не играет существенной функциональной роли, но является важным структурным и функциональным образованием в миелиновом нервном волокне.
По своему строению безмиелиновые нервные волокна относятся к волокнам кабельного типа. Несмотря на это, они тонкие (5 – 7 мкм) и проводят нервные импульсы очень медленно (1 – 2 м/с).
Строение миелинового нервного волокна. Миелиновое нервное волокно имеет те же структурные компоненты, что и безмиелиновое, но отличается рядом особенностей:
1) осевой цилиндр один и погружается в центральную часть цепи леммоцита;
2) мезаксон длинный и закручен вокруг осевого цилиндра, образуя миелиновый слой;
3) цитоплазма и ядро леммоцитов сдвигаются на периферию и составляют нейролемму миелинового нервного волокна;
4) на периферии расположена базальная пластинка.
На поперечном сечении миелинового нервного волокна видны следующие структурные элементы:
1) осевой цилиндр;
2) миелиновый слой;
3) неврилемма;
4) базальная пластинка.
Поскольку основу любой цитолеммы составляет билипидный слой, то миелиновую оболочку миелинового нервного волокна (закрученный мезаксон) образуют наслоения липидных слоев, интенсивно окрашивающихся в черный цвет осмиевой кислотой.
По ходу миелинового нервного волокна видны границы соседних леммоцитов – узловые перехваты (перехваты Ранвье), а также участки между двумя перехватами (межузловые сегменты), каждый из которых соответствует протяженности одного леммоцита. В каждом межузловом сегменте отчетливо прослеживаются насечки миелина – прозрачные участки, в которых содержится цитоплазма леммоцита между витками мезаксона.
Высокая скорость проведения нервных импульсов по миелиновым нервным волокнам объясняется сальтаторным способом проведения нервных импульсов: скачками от одного перехвата к другому.
Реакция нервных волокон на разрыв или пересечение. После разрыва или пересечения нервного волокна в нем осуществляются процессы дегенерации и регенерации.
Поскольку нервное волокно представляет собой совокупность нервных и глиальных клеток, то после его повреждения отмечается реакция (как в нервных, так и в глиальных клетках). После пересечения наиболее заметные изменения проявляются в дистальном отделе нервного волокна, где отмечается распад осевого цилиндра, т. е. дегенерация отсеченного от тела участка нервной клетки. Леммоциты, окружающие этот участок осевого цилиндра, не погибают, а округляются, пролиферируют и образуют тяж глиальных клеток по ходу распавшегося нервного волокна. При этом эти глиальные клетки фагоцитируют фрагменты распавшегося осевого цилиндра и его миелиновую оболочку.
В перикарионе нервной клетки с отсеченным отростком проявляются признаки раздражения: набухание ядра и сдвиг его на периферию клетки, расширение перинуклеарного пространства, дегрануляцию мембран зернистой ЭПС, вакуолизацию цитоплазмы и др.
В проксимальном отделе нервного волокна на конце осевого цилиндра образуется расширение – колба роста, которая постепенно врастает в тяж глиальных клеток на месте погибшего дистального участка этого же волокна. Глиальные клетки окружают отрастающий осевой цилиндр и постепенно трансформируются в леммоциты. В результате этих процессов происходит регенерация нервного волокна со скоростью 1 – 4 мм в сутки. Осевой цилиндр, подрастая к концевым глиоцитам распавшегося нервного окончания, разветвляется и формирует с помощью глиальных клеток концевой аппарат (двигательное или чувствительное окончание). В результате регенерации нервного волокна и нервного окончания восстанавливается иннервация нарушенного участка (реиннервация), что приводит к восстановлению его функций. Следует подчеркнуть, что необходимым условием регенерации нервного волокна является четкое сопоставление проксимального и дистального участков поврежденного нервного волокна. Это достигается сшиванием концом перерезанного нерва.
Не следует смешивать понятия «нервное волокно» и «нерв».
Нерв – комплексное образование, состоящее из:
1) нервных волокон;
2) рыхлой волокнистой соединительной ткани, образующей оболочки нерва.
Среди оболочек нерва различают:
1) эндоневрий (соединительную ткань, окружающую отдельные нервные волокна);
2) периневрий (соединительную ткань, окружающую пучки нервных волокон);
3) эпиневрий (соединительную ткань, окружающую нервный ствол).
В названных оболочках проходят кровеносные сосуды, обеспечивающие трофику нервных волокон.
Нервные окончания (или концевые нервные аппараты). Представляют собой окончания нервных волокон. Если осевой цилиндр нервного волокна является дендритом чувствительной нервной клетки, то его концевой аппарат образует рецептор. Если осевой цилиндр является аксоном нервной клетки, то его концевой аппарат образует эффекторное или синаптическое окончание. Следовательно, нервные окончания подразделяются на три основные группы:
1) эффекторные (двигательные или секреторные);
2) рецептурные (чувствительные);
3) синаптические.
Двигательное нервное окончание – концевой аппарат аксона на поперечно-полосатом мышечном волокне или на миоците. Двигательное нервное окончание на поперечно-полосатом мышечном волокне носит также название моторной бляшки. В нем различают три части:
1) нервный полюс;
2) синаптическую щель;
3) мышечный полюс.
В каждом терминальном ветвлении аксона содержатся следующие структурные элементы:
1) пресинаптическая мембрана;
2) синаптические пузырьки с медиатором (ацетилхолином);
3) скопление митохондрий с продольными кристами.
Мышечный полюс (или полотна моторной бляшки) включает:
1) постсинаптическую мембрану – специализированный участок плазмолеммы миосимпласта, содержащий белки-рецепторы к ацетилхолину;
2) участок саркоплазмы миосимпласта, в котором отсутствуют миофибриллы и содержится скопление ядер и саркосом.
Синаптическая щель – пространство в 50 нм между преи постсинаптическими мембранами, в котором содержится фермент ацетилхолинэстераза.
Рецепторные окончания (или рецепторы). Представляют собой специализированные концевые аппараты дендритов чувствительных нейронов, главным образом псевдоуниполярных нервных клеток спинальных ганглиев и черепных нервов, а также некоторых вегетативных нейринов (клеток II типа Догеля).
Рецепторные нервные окончания классифицируются по нескольким признакам:
1) по локализации:
а) интеророцепторы (рецепторы внутренних органов);
б) экстрорецепторы (воспринимают внешние раздражители: репетиры кожи, органов чувств);
в) проприорецепторы (локализуются в аппарате движения);
2) по специфичности восприятия (по модальности):
а) хеморецепторы;
б) механорецепторы;
в) барорецепторы;
г) терморецепторы (тепловые, холодовые);
3) по строению:
а) свободные;
б) несвободные (инкапсулированные, неинкапсулированные).
РАЗДЕЛ II. ЧАСТНАЯ ГИСТОЛОГИЯ
Тема 18. НЕРВНАЯ СИСТЕМА
С анатомической точки зрения нервную систему делят на центральную (головной и спинной мозг) и периферическую (периферические нервные узлы, стволы и окончания).
Морфологическим субстратом рефлекторной деятельности нервной системы являются рефлекторные дуги, представляющие собой цепь нейронов различного функционального значения, тела которых расположены в разных отделах нервной системы – как в периферических узлах, так и в сером веществе центральной нервной системы.
С физиологической точки зрения нервная система делится на соматическую (или цереброспинальную), иннервирующую все тело человека, кроме внутренних органов, сосудов и желез, и автономную (или вегетативную), регулирующую деятельность перечисленных органов.
Спинномозговые узлы
Первым нейроном каждой рефлекторной дуги является рецепторная нервная клетка. Большая часть этих клеток сконцентрирована в спинномозговых узлах, расположенных по ходу задних корешков спинного мозга. Спинномозговой узел, окружен соединительно-тканной капсулой. От капсулы в паренхиму узла проникают тонкие прослойки соединительной ткани, которая образует его остов, по нему проходят в узле кровеносные сосуды.
Дендриты нервной клетки спинномозгового узла идут в составе чувствительной части смешанных спинномозговых нервов на периферию и заканчиваются там рецепторами. Нейриты в совокупности образуют задние корешки спинного мозга, несущие нервные импульсы или в серое вещество спинного мозга, или по заднему его канатику в продолговатый мозг.
Дендриты и нейриты клеток в узле и за его пределами покрыты оболочками из леммоцитов. Нервные клетки спинномозговых узлов окружены слоем клеток глии, которые получили здесь название мантийных глиоцитов. Их можно узнать по круглым ядрам, окружающим тело нейрона. Снаружи глиальная оболочка тела нейрона покрыта нежной тонковолокнистой соединительнотканной оболочкой. Клетки этой оболочки характеризуются овальной формой ядер.
Структура периферических нервов описана в разделе общей гистологии.
Спинной мозг
Представляет собой две симметричные половины, отграниченных друг от друга спереди глубокой серединной щелью, а сзади – соединительно-тканной перегородкой.
Внутренняя часть спинного мозга темнее – это его серое вещество. По периферии его располагается более светлое белое вещество. Серое вещество на поперечном сечении мозга видно в виде бабочки. Выступы серого вещества принято называть рогами. Различают передние, или вентральные, задние, или дорсальные, и боковые, или латеральные, рога.
Серое вещество спинного мозга состоит из мультиполярных нейронов, безмиелиновых и тонких миелиновых волокон и нейроглии.
Белое вещество спинного мозга образуется совокупностью продольно ориентированных преимущественно миелиновых волокон нервных клеток.
Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются проводящими путями спинного мозга.
В средней части заднего рога спинного мозга располагается собственное ядро заднего рога. Оно состоит из пучковых клеток, аксоны которых, переходя через переднюю белую спайку на противоположную сторону спинного мозга в боковой канатик белого вещества, образуют вентральный спиномозжечковый и спиноталамический пути и направляются в мозжечок и зрительный бугор.
В задних рогах диффузно расположены вставочные нейроны. Это мелкие клетки, аксоны которых заканчиваются в пределах серого вещества спинного мозга той же (ассоциативные клетки) или противоположной (комиссуральные клетки) стороны.
Дорсальное ядро, или ядро Кларка, состоит из крупных клеток с разветвленными дендритами. Их аксоны пересекают серое вещество, входят в боковой канатик белого вещества той же стороны и в составе дорсального спиномозжечкового пути поднимаются к мозжечку.
Медиальное промежуточное ядро находится в промежуточной зоне, нейриты клеток его присоединяются к вентральному спиномозжечковому пути той же стороны, латеральное промежуточное ядро расположено в боковых рогах и представляет собой группу ассоциативных клеток симпатической рефлекторной дуги. Аксоны этих клеток выходят из спинного мозга вместе с соматическими двигательными волокнами в составе передних корешков и обособляются от них в виде белых соединительных ветвей симпатического ствола.
Самые крупные нейроны спинного мозга находятся в передних рогах, они также образуют ядра из тел нервных клеток, корешки которых, образуют основную массу волокон передних корешков.
В составе смешанных спинномозговых нервов они поступают на периферию и завершаются моторными окончаниями в скелетной мускулатуре.
Белое вещество спинного мозга состоит из миелиновых волокон, идущих продольно. Пучки нервных волокон, осуществляющие связь между различными отделами нервной системы, называются проводящими путями спинного мозга.
Головной мозг
В головном мозге также выделяют серое и белое вещество, но распределение этих двух составных частей здесь сложнее, чем в спинном мозге. Основная часть серого вещества головного мозга располагается на поверхности большого мозга и мозжечка, образуя их кору. Другая (меньшая по объему) часть образует многочисленные ядра ствола мозга.
Ствол мозга. Все ядра серого вещества ствола мозга состоят из мультиполярных нервных клеток. На них имеются окончания нейритов клеток спинальных ганглиев. Также в стволе головного мозга имеется большое количество ядер, предназначенных для переключения нервных импульсов из спинного мозга и ствола на кору и от коры – на собственный аппарат спинного мозга.
В продолговатом мозге имеется большое количество ядер собственного аппарата черепных нервов, которые в основном находятся в дне IV желудочка. Кроме этих ядер, в продолговатом мозге имеются ядра, которые переключают поступающие в него импульсы на другие отделы головного мозга. К таким ядрам относятся нижние оливы.
В центральной области продолговатого мозга располагается ретикулярная субстанция, в которой имеются многочисленные нервные волокна, идущие в разных направлениях и в совокупности образующие сеть. В этой сети располагаются мелкие группы мультиполярных нейронов с длинными немногочисленными дендритами. Их аксоны распространяются в восходящем (к коре большого мозга и мозжечку) и нисходящем направлениях.
Ретикулярная субстанция представляет собой сложный рефлекторный центр, связанный со спинным мозгом, мозжечком, корой большого мозга и гипоталамической областью.
Основные пучки миелиновых нервных волокон белого вещества продолговатого мозга представлены кортико-спинальными пучками – пирамидами продолговатого мозга, лежащими в его вентральной части.
Мост головного мозга состоит из большого количества поперечно идущих нервных волокон и лежащих между ними ядер. В базальной части моста поперечные волокна пирамидными путями раздвигаются на две группы – заднюю и переднюю.
Средний мозг состоит из серого вещества четверохолмия и ножек мозга, которые образованы массой миелиновых нервных волокон, идущих от коры большого мозга. Покрышка содержит центральное серое вещество, состоящее из крупных мультиполярных и более мелких веретенообразных клеток и волокон.
Промежуточный мозг в основном представляет собой зрительный бугор. Вентрально от него располагается богатая мелкими ядрами гипоталамическая (подбугорная) область. Зрительный бугор содержит много ядер, отграниченных друг от друга прослойками белого вещества, между собой они связаны ассоциативными волокнами. В вентральных ядрах таламической области заканчиваются восходящие чувствительные пути, от них нервные импульсы передаются коре. Нервные импульсы к зрительному бугру из головного мозга идут по экстрапирамидному двигательному пути.
В каудальной группе ядер (в подушке зрительного бугра) заканчиваются волокна зрительного пути.
Гипоталамическая область представляет собой вегетативный центр головного мозга, регулирующий основные обменные процессы: температуру тела, кровяное давление, водный, жировой обмен и др.
Мозжечок
Главной функцией мозжечка является обеспечение равновесия и координации движений. Он имеет связь со стволом мозга с помощью афферентных и эфферентных проводящих путей, образующих в совокупности три пары ножек мозжечка. На поверхности мозжечка множество извилин и бороздок.
Серое вещество образует кору мозжечка, меньшая его часть лежит глубоко в белом веществе в виде центральных ядер. В центре каждой извилины имеется тонкая прослойка белого вещества, покрытая слоем серого вещества – корой.
В коре мозжечка имеются три слоя: наружный (молекулярный), средний (ганглионарный) и внутренний (зернистый).
Эфферентные нейроны коры мозжечка – грушевидные клетки (или клетки Пуркинье) составляют ганглионарный слой. Только их нейриты, покидая кору мозжечка, образуют начальное звено его эфферентных тормозных путей.
Все остальные нервные клетки коры мозжечка относятся к вставочным ассоциативным нейронам, передающим нервные импульсы грушевидным клеткам. В ганглионарном слое клетки располагаются строго в 1 ряд, верви их, обильно ветвясь, пронизывают всю толщу молекулярного слоя. Все ветви дендритов располагаются только в одной плоскости, перпендикулярной к направлению извилин, поэтому при поперечном и продольном сечении извилин дендриты грушевидных клеток выглядят различно.
Молекулярный слой состоит из двух основных видов нервных клеток: корзинчатых и звездчатых.
Корзинчатые клетки располагаются в нижней трети молекулярного слоя. Они имеют тонкие длинные дендриты, которые ветвятся преимущественно в плоскости, расположенной поперечно к извилине. Длинные нейриты клеток всегда идут поперек извилины и параллельно поверхности над грушевидными клетками.
Звездчатые клетки находятся выше корзинчатых. Выделяют две формы звездчатых клеток: мелкие звездчатые клетки, которые снабжены тонкими короткими дендритами и слабо разветвленными нейритами (они образуют синапсы на дендритах грушевидных клеток), и крупные звездчатые клетки, которые имеют длинные и сильно разветвленные дендриты и нейриты (их ветви соединяются с дендритами грушевидных клеток, но некоторые из них достигают тел грушевидных клеток и входят в состав так называемых корзинок). Вместе описанные клетки молекулярного слоя представляют собой единую систему.
Зернистый слой представлен особыми клеточными формами в виде зерен. Эти клетки малы по величине, имеют 3 – 4 коротких дендрита, заканчивающихся в этом же слое концевыми ветвлениями в виде лапки птицы. Вступая в синаптическую связь с окончаниями приходящих в мозжечок возбуждающих афферентных (моховидных) волокон, дендриты клеток-зерен образуют характерные структуры, именуемые клубочками мозжечка.
Отростки клеток-зерен, доходя до молекулярного слоя, образуют в нем т-образные деления на две ветви, ориентированные параллельно поверхности коры вдоль извилин мозжечка. Эти волокна, идущие параллельно, пересекают ветвления дендритов многих грушевидных клеток и образуют с ними и дендритами корзинчатых клеток и звездчатых клеток синапсы. Таким образом, нейриты клеток-зерен передают возбуждение, полученное ими от моховидных волокон, на значительное расстояние многим грушевидным клеткам.
Следующий вид клеток составляют веретенообразные горизонтальные клетки. Они находятся в основном между зернистым и ганглионарным слоями, от их вытянутых тел отходят в обе стороны длинные, горизонтально идущие дендриты, заканчивающиеся в ганглионарном и зернистом слоях. Афферентные волокна, поступающие в кору мозжечка, представлены двумя видами: моховидными и так называемыми лазящими волокнами. Моховидные волокна идут в составе оливомозжечкового и мостомозжечкового путей и оказывают на грушевидные клетки возбуждающее действие. Они заканчиваются в клубочках зернистого слоя мозжечка, где вступают в контакт с дендритами клеток-зерен.
Лазящие волокна поступают в кору мозжечка по спиномозжечковому и вестибуломозжечковому путям. Они пересекают зернистый слой, прилегают к грушевидным клеткам и стелются по их дендритам, заканчиваясь на их поверхности синапсами. Эти волокна передают возбуждение грушевидным клеткам. При возникновении различных патологических процессов в грушевидных клетках ведет к расстройству координации движения.
Кора большого мозга
Представлена слоем серого вещества толщиной около 3 мм. Очень хорошо она представлена (развита) в передней центральной извилине, где толщина коры достигает 5 мм. Большое количество борозд и извилин увеличивает площадь серого вещества головного мозга.
В коре находится около 10 – 14 млрд нервных клеток.
Различные участки коры отличаются друг от друга по расположению и строению клеток.
Цитоархитектоника коры большого мозга. Нейроны коры весьма разнообразны по форме, они являются мультиполярными клетками. Они делятся на пирамидные, звездчатые, веретенообразные, паукообразные и горизонтальные нейроны.
Пирамидные нейроны составляют основную часть коры большого мозга. Их тела имеют форму треугольника, вершина которого обращена к поверхности коры. От вершины и боковых поверхностей тела отходят дендриты, заканчивающиеся в различных слоях серого вещества. От основания пирамидных клеток берут начало нейриты, в одних клетках короткие, образующие ветвления в пределах данного участка коры, в других – длинные, поступающие в белое вещество.
Пирамидные клетки различных слоев коры различны. Мелкие клетки представляют собой вставочные нейроны, нейриты которых связывают отдельные участки коры одного полушария (ассоциативные нейроны) или двух полушарий (комиссуральные нейроны).
Крупные пирамиды и их отростки образуют пирамидные пути, проецирующие импульсы в соответствующие центры ствола и спинного мозга.
В каждом слое клеток коры головного мозга имеется преобладание каких-либо видов клеток. Выделяется несколько слоев:
1) молекулярный;
2) наружный зернистый;
3) пирамидный;
4) внутренний зернистый;
5) ганглионарный;
6) слой полиморфных клеток.
В молекулярном слое коры содержится небольшое количество мелких клеток веретенообразной формы. Отростки их идут параллельно поверхности мозга в составе тангенциального сплетения нервных волокон молекулярного слоя. При этом основная масса волокон этого сплетения представлена ветвлениями дендритов нижележащих слоев.
Наружный зернистый слой представляет собой скопление мелких нейронов, имеющих различную форму (преимущественно округлую) и звездчатые клетки. Дендриты этих клеток поднимаются в молекулярный слой, а аксоны уходят в белое вещество или, образуя дуги, идут в тангенциальное сплетение волокон молекулярного слоя.
Пирамидный слой – самый большой по толщине, очень хорошо развитый в прецентральной извилине. Размеры пирамидных клеток различны (в пределах 10 – 40 мкм). От верхушки пирамидной клетки отходит главный дендрит, который располагается в молекулярном слое. Дендриты, идущие от боковых поверхностей пирамиды и ее основания, имеют незначительную длину и образуют синапсы со смежными клетками этого слоя. При этом надо знать, что аксон пирамидной клетки всегда отходит от ее основания. Внутренний зернистый слой в некоторых полях коры развит очень сильно (например, в зрительной зоне коры), но в некоторых участках коры он может отсутствовать (в прецентральной извилине). Этот слой образован мелкими клетками звездчатой формы, в его состав также входит большое количество горизонтальных волокон.
Ганглионарный слой коры состоит из крупных пирамидных клеток, причем область прецентральной извилины содержит гигантские пирамиды, описанные впервые киевским анатомом В. Я. Бецем в 1874 г. (клетки Беца). Для гигантских пирамид характерно наличие крупных глыбок базофильного вещества. Нейриты клеток этого слоя образуют главную часть кортико-спинальных путей спинного мозга и оканчиваются синапсами на клетках его моторных ядер.
Слой полиморфных клеток образован нейронами веретенообразной формы. Нейроны внутренней зоны более мелкие и лежат на большом расстоянии друг от друга, а нейроны внешней зоны более крупные. Нейриты клеток полиморфного слоя уходят в белое вещество в составе эфферентных путей головного мозга. Дендриты достигают молекулярного слоя коры.
Надо иметь в виду, что в разных участках коры головного мозга разные ее слои представлены по-разному. Так, в моторных центрах коры, например, в передней центральной извилине, сильно развиты 3, 5 и 6 слои и недоразвиты 2 и 4. Это так называемый агранулярный тип коры. Из этих областей берут начало нисходящие проводящие пути центральной нервной системы. В чувствительных корковых центрах, где заканчиваются афферентные проводники, идущие от органов обоняния, слуха и зрения, слабо развиты слои, содержащие крупные и средние пирамиды, тогда как зернистые слои (2 и 4-й) достигают своего максимального развития. Такой тип называется гранулярным типом коры.
Миелоархитектоника коры. В больших полушарий можно выделить следующие типы волокон: ассоциативные волокна (связывают отдельные участки коры одного полушария), комиссуральные (соединяют кору различных полушарий) и проекционные волокна, как афферентные, так и эфферентные (связывают кору с ядрами низших отделов центральной нервной системы).
Вегетативная (или автономная) нервная система по различным свойствам делится на симпатическую и парасимпатическую. В большинстве случаев оба этих вида одновременно принимают участие в иннервации органов и оказывают на них противоположное влияние. Так, например, если раздражение симпатических нервов задерживает перистальтику кишечника, то раздражение парасимпатических нервов ее возбуждает. Вегетативная нервная система также состоит из центральных отделов, представленных ядрами серого вещества головного и спинного мозга, и периферических отделов – нервных узлов и сплетений. Ядра центрального отдела вегетативной нервной системы находятся в среднем и продолговатом мозге, а также в боковых рогах грудных, поясничных и сакральных сегментов спинного мозга. Ядра краниобульбарного и сакрального отделов относятся к парасимпатической, а ядра тораколюмбального отдела – к симпатической нервной системе. Мультиполярные нервные клетки этих ядер представляют собой ассоциативные нейроны рефлекторных дуг вегетативной нервной системы. Их отростки выходят из центральной нервной системы через передние корешки или черепные нервы и оканчиваются синапсами на нейронах одного из периферических ганглиев. Это преганглионарные волокна вегетативной нервной системы. Преганглионарные волокна симпатической и парасимпатической вегетативной нервной системы – холинергические. Аксоны нервных клеток периферических нервных узлов выходят из ганглиев в виде постганглионарных волокон и образуют концевые аппараты в тканях рабочих органов. Таким образом, морфологически вегетативная нервная система отличается от соматической тем, что эфферентное звено ее рефлекторных дуг всегда двучленно. В его состав входят центральные нейроны с их аксонами в виде преганглионарных волокон и периферические нейроны, расположенные в периферических узлах. Только аксоны последних – постганглионарные волокна – достигают тканей органов и вступают с ними в синаптическую связь. Преганглионарные волокна в большинстве случаев покрыты миелиновой оболочкой, чем и объясняется белый цвет связующих ветвей, несущих симпатические преганглионарные волокна от передних корешков к ганглиям симпатического пограничного столба. Постганглионарные волокна тоньше и в большинстве случаев не имеют миелиновой оболочки: это волокна серых связующих ветвей, идущие от узлов симпатического пограничного ствола к периферическим спинномозговым нервам. Периферические узлы вегетативной нервной системы лежат как вне органов (симпатические превертебральные и паравертебральные ганглии, парасимпатические узлы головы), так и в стенке органов в составе интрамуральных нервных сплетений, залегающих в пищеварительном тракте, сердце, матке, мочевом пузыре и др.
Оболочки головного и спинного мозга
Головной и спинной мозг покрыты тремя видами оболочек: мягкой (непосредственно прилегающей к тканям мозга), паутинной и твердой (граничит с костной тканью черепа и позвоночника). Мягкая мозговая оболочка покрывает ткань мозга, она отграничена от нее лишь краевой глиальной мембраной. В этой оболочке имеются в большом количестве кровеносные сосуды, питающие мозг, и многочисленные нервные волокна, концевые аппараты и одиночные нервные клетки. Паутинная оболочка представляет собой очень нежный, рыхлый слой волокнистой соединительной ткани. Между ней и мягкой мозговой оболочкой лежит субарахноидальное пространство, которое сообщается с желудочками мозга и содержит цереброспинальную жидкость. Твердая мозговая оболочка образована плотной волокнистой соединительной тканью, она состоит из большого числа эластических волокон. В полости черепа она плотно сращена с надкостницей. В спинномозговом канале твердая мозговая оболочка отграничена от периоста позвонков эпидуральным пространством, заполненным слоем рыхлой волокнистой неоформленной соединительной ткани, что обеспечивает ей некоторую подвижность. В субдуральном пространстве содержится небольшое количество жидкости.
Тема 19. СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА
Сердце, кровеносные и лимфатические сосуды в совокупности представляют собой сердечно-сосудистую систему. Благодаря ей ткани и органы человеческого организма обеспечиваются питательными и биологически активными веществами, газами, продуктами метаболизма и тепловой энергий.
Кровеносные сосуды
Это замкнутые в виде кольца трубочки различного диаметра, осуществляющие транспортную функцию, а также налаживающие кровоснабжение органов и обмен веществ между кровью и окружающими тканями. В кровеносной системе выделяют артерии, артериолы, гемокапилляры, венулы, вены и артериоло-венулярные анастомозы. Сосуды малого калибра в сумме составляют микроциркуляторное русло.
Развитие кровеносных сосудов – ангиогенез
Ангиогенез – процесс образования и роста кровеносных сосудов. Он происходит так в нормальных условиях (например, в области фолликула яичника после овуляции), так и в патологических (при заживлении ран, росте опухоли, в ходе иммунных реакций, наблюдается при неоваскулярной глаукоме, ревматоидном артрите и других патологических состояниях). Для выживания клеток необходимы кислород и питательные вещества. Минимальное расстояние для эффективной диффузии газа от кровеносного сосуда (источник кислорода) до клетки составляет 100 – 200 мкм. В случае превышения этой величины образуются новые кровеносные сосуды. Ангиогенез вызывают низкое рО2, снижение рН, гипогликемия, механическое напряжение в ткани вследствие пролиферации клеток, инфильтрация ткани иммуно-компетентными или поддерживающими воспаление клетками, мутации (например, активация онкогенов или делеция генов-супрессоров опухоли, контролирующих образование ангиогенных факторов).
Ангиогенные факторы
Данные факторы стимулируют образование кровеносных сосудов. Это факторы роста, продуцируемые опухолями, компоненты внеклеточного матрикса, ангиогенные факторы, вырабатываемые самими эндотелиальными клетками. Ангиогенез стимулируют сосудистый эндотелиальный фактор роста (VEGF), ангиогенин, факторы роста фибробластов (aFGF – кислый и bFGF – щелочной), трансформирующий фактор роста (TGFa). Все ангиогенные факторы можно подразделить на две группы: первая – прямо действующие на эндотелиальные клетки и стимулирующие их митозы и подвижность, и вторая – факторы непрямого влияния, воздействующие на макрофаги, которые, в свою очередь, выделяют факторы роста и цитокины. К факторам второй группы относят, в частности, ангиогенин. В ответ на действие ангиогенного фактора эндотелиальные клетки начинают размножаться и менять свой фенотип. Пролиферативная активность клеток может увеличиваться в 100 раз. Эндотелиальные клетки через собственную базальную мембрану проникают в прилежащую соединительную ткань, участвуя в формировании почки капилляра. По окончании действия ангиогенного фактора фенотип эндотелиальных клеток возвращается в исходное спокойное состояние. На более поздних стадиях ангиогенеза в ремоделировании сосуда участвует ангиопоэтин-1, с действием которого также связывают стабилизирующее влияние на сосуд.
Торможение ангиогенеза. Данный процесс имеет важное значение, его можно рассматривать как потенциально эффективный метод борьбы с развитием опухолей на ранних стадиях, а также других заболеваний, связанных с ростом кровеносных сосудов например, неоваскулярной глаукомы, ревматоидного артрита). Ингибиторы ангиогенеза – факторы, тормозящие пролиферацию главных клеточных типов сосудистой стенки: ангиостатин, эндостатин, ингибиторы матриксной металлопротеиназы – α-ИФН, р-ИФН, γ-ИФН, ИЛ-4, ИЛ-12, ИЛ-18, пролактин, плазменный фактор свертывания крови IV. Естественный источник факторов, тормозящих ангиогенез, – ткани, не содержащие кровеносных сосудов (эпителий, хрящ).
Злокачественные опухоли требуют для роста интенсивного кровоснабжения и достигают заметных размеров после развития в них системы кровоснабжения. В опухолях происходит активный ангиогенез, связанный с синтезом и секрецией опухолевыми клетками ангиогенных факторов.
Разновидности кровеносных сосудов и их строение
К артериям относят сосуды, по которым кровь идет от сердца к органам. Как правило, эта кровь насыщена кислородом, исключением являются системы легочной артерии, несущей венозную кровь. К венозным относят сосуды, по которым кровь идет к сердцу и содержит мало кислорода, кроме крови в легочных венах. Через сосуды микроциркуляции (артериолы, гемокапилляры, венулы и артериоло-венулярные анастомозы) происходит обмен между тканями и кровью.
Гемокапилляры соединяют артериальное звено кровеносной системы с венозным помимо сетей, капилляры которых располагаются либо между двумя артериями (например, в клубочках почки), либо между двумя венами (например, в дольках печени). Структурой сосуда определяется его функция, а также гемодинамические показатели крови (кровяное давление, скорость кровотока).
Все артерии делятся на три типа: эластический, мышечный и смешанный (мышечно-эластический). Стенка всех артерий и вен состоит из трех оболочек: внутренней, средней и наружной. Их толщина, тканевый состав и функциональные особенности неодинаковы в сосудах разных типов. К артериям эластического типа причисляют сосуды крупного калибра (аорту и легочную артерию): в них кровь вливается под высоким давлением (120 – 130 мм рт. ст.) и с большой скоростью (0,5 – 1,3 м/с) или непосредственно из сердца, или вблизи от него из дуги аорты. Главная функция этих сосудов – транспортная. Высокое давление и большая скорость протекающей крови определяют строение стенки сосудов эластического типа. Так, внутренняя оболочка крупных артерий включает эндотелий с базальной мембраной, далее идет подэндотелиальный слой и сплетение эластических волокон. Эндотелий человека состоит из клеток различных по своей форме и размерам. По всей длине сосуда размеры и форма клеток неодинаковы: иногда клетки иногда могут достигать 500 мкм в длину и 150 мкм в ширину. Как правило, они бывают одноядерными, но встречаются и многоядерные. Подэндотелиальный слой представлен рыхлой тонкофибриллярной соединительной тканью, богатой малодифференцированными клетками звездчатой формы. Толщина подэндотелиального слоя значительная. Иногда могут встречаться отдельные продольно направленные гладкие мышечные клетки. Межклеточное вещество внутренней оболочки крупного сосуда или реже других оболочкек содержит большое количество гликозаминогликанов и фосфолипиды, обнаруживаемые при соответствующей обработке. При этом известно, что у людей старше 40 – 50 лет обнаруживаются холестерин и жирные кислоты. Большое значение в трофике стенки сосуда имеет аморфное вещество. Средняя оболочка крупного сосуда состоит из большого количества эластических окончатых мембран, связанных посредством эластических волокон. В итоге вместе с другими оболочками они образуют единый эластический каркас. Между мембранами залегают гладкомышечные клетки (ГМК), которые имеют по отношению к мембранам косое направление, и немного фибробластов. Благодаря такому строению в крупных сосудах смягчаются толчки крови, выбрасываемой в сосуд при сокращении левого желудочка сердца, а также обеспечивается поддержание тонуса сосудистой стенки во время диастолы. Наружная оболочка состоит из рыхлой волокнистой соединительной ткани, имеющей множество эластических и коллагеновых волокон с продольным направлением. Строение и функциональные особенности артерий смешанного вида занимают промежуточное положение между сосудами мышечного и эластического типа. К таким сосудам относятся сонная и подключичная артерии. Их стенка также состоит из внутренней оболочки, подэндотелиального слоя и внутренней эластической мембраны. Средняя оболочка артерий смешанного типа имеет одинаковое количество гладких мышечных клеток, эластических волокон и окончатых эластических мембран. А в наружной оболочке артерий выделяют два слоя: внутренний, содержащий отдельные пучки гладких мышечных клеток, и наружный, состоящий преимущественно из продольно и косо расположенных пучков коллагеновых и эластических волокон и соединительно-тканных клеток, сосудов и нервных волокон. К артериям мышечного типа относятся преимущественно артерии тела, конечностей и внутренних органов среднего и мелкого калибра, т. е. большинство артерий организма. Их отличительной особенностью является большое количество гладких мышечных клеток, которые обеспечивают дополнительную нагнетательную силу и регулируют приток крови к органам. Внутренняя оболочка состоит из эндотелия, подэнтелиального слоя и внутренней эластической мембраны. Из сосудов микроциркуляторного русла образуется густая сеть анастомозов прекапиллярных, капиллярных и посткапиллярных сосудов, причем возможны и другие варианты с выделением предпочтительного канала, например прекапиллярной артериолы и др. Артериолы являются мелкими артериями мышечного типа, постепенно они переходят в капилляры. В артериолах сохраняются три оболочки, характерные для более крупных артерий, однако степень их выраженности мала. Под электронным микроскопом в артериолах, особенно в прекапиллярных, можно выявить перфорации в базальной мембране эндотелия и внутренней эластической мембране, благодаря которым осуществляется непосредственный тесный контакт эндотелиоцитов и гладких мышечных клеток. Кровеносные капилляры – наиболее многочисленные и самые тонкие сосуды, однако диаметр их просвета может варьироваться. Это обусловлено как органными особенностями капилляров, так и функциональным состоянием сосудистой системы. Площадь поперечного сечения среза капиллярного русла в любой области во много раз превышает площадь поперечного среза исходной артерии. В стенке капилляров различают три тонких слоя как рудименты трех оболочек сосудов. Между клетками оболочек капилляров можно обнаружить щели (или поры), которые видны даже под световым микроскопом. Фенестры и щели облегчают проникновение различных макромолекулярных и корпускулярных веществ через стенку капилляров. Растяжимость эндотелия и проницаемость для коллоидных частиц в венозном отделе капилляра оказывается выше, чем в артериальном. Стенка капилляров является полупроницаемой мембраной, тесно связанной функционально и морфологически с окружающей соединительной тканью и активно регулирующей обмен веществ между кровью и другими тканями. Венозной частью капилляров начинается отводящий отдел микроциркуляторного русла, для них характерны более крупные микроворсинки на люминальной поверхности эндотелия и складки, напоминающие створки клапанов, чаще обнаруживаются фенест-ры в эндотелии. В посткапиллярные венулы собирается кровь из капиллярного русла. Строение этих сосудов отличается более короткими размерами эндотелиальных клеток, округлостью ядер, выраженностью наружной соединительно-тканной оболочки. Венозный отдел микроциркуляторного русла выполняет дренажную функцию, регулируя равновесие между кровью и внесосудистой жидкостью, удаляя продукты метаболизма тканей. Через стенки венул часто мигрируют лейкоциты. Медленный кровоток и низкое кровяное давление, а также растяжимость этих сосудов создают условия для депонирования крови.
Артериоловенулярные анастомозы представляют собой соединения сосудов, несущих артериальную и венозную кровь в обход капиллярного русла. Они наличие имеются место почти во всех органах.
Различают две группы анастомозов:
1) истинные артериоловенулярные анастомозы (шунты), по которым сбрасывается чистая артериальная кровь;
2) атипичные артериоловенулярные соустья (полушунты), по которым течет смешанная кровь.
Внешняя форма первой группы анастомозов может быть различной – в виде прямых коротких соустьев, петлеобразных, иногда в виде ветвящихся соединений.
В гистоструктурном отношении они подразделяются на две подгруппы:
1) сосуды, не имеющие специальных запирательных устройств;
2) сосуды, снабженные специальными сократительными структурами.
Во второй подгруппе анастомозы могут иметь специальные сократительные сфинктеры в виде продольных валиков или подушек в подэндотелиальном слое (артериоловенулярные анастомозы типа замыкающих артерий). Сокращение мышечных подушек, выступающих в просвет анастомоза, приводит к прекращению кровотока. Простые анастомозы эпителиоидного типа (вторая подгруппа) характеризуются наличием в средней оболочке внутреннего продольного и наружного циркулярного слоев гладких мышечных клеток, которые по мере приближения к венозному концу заменяются на короткие овальные светлые клетки, похожие на эпителиальные, способные к набуханию и отбуханию, благодаря чему происходит изменение просвета анастомоза. В венозном сегменте артериоловенулярного анастомоза стенка его резко истончается. Средняя оболочка здесь содержит лишь незначительное количество поясков циркулярно расположенных гладких мышечных клеток. Наружная оболочка состоит из плотной соединительной ткани. Артериоловенулярные анастомозы, особенно клубочкового типа, богато иннервированы, при этом они могут периодически сокращаться. Артериоловенулярные анастомозы играют большую роль в компенсаторных реакциях организма при нарушении кровообращения. Венозная система составляет отводящее звено крови. Она начинается посткапиллярными венулами в сосудах микроциркуляторного русла. Строение вен тесно связано с гемодинамическими условиями их функционирования. Количество же гладких мышечных клеток в стенке вен неодинаково и зависит от того, движется ли в них кровь к сердцу под действием силы тяжести или против нее. Из-за того, что в нижних конечностях кровь необходимо поднимать против силы тяжести, в венах нижних конечностей имеется сильное развитие гладкомышечных элементов, в отличие от вен верхних конечностей, головы и шеи. В венах, особенно подкожных, имеются клапаны. Исключение составляют вены головного мозга и его оболочек, вены внутренних органов, подчревные, подвздошные, полые и безымянные. По степени развития мышечных элементов в стенке вен они могут быть разделены на две группы: вены безмышечного типа и вены мышечного типа. Вены мышечного типа, в свою очередь, подразделяются на вены со слабым развитием мышечных элементов и вены со средним и сильным развитием мышечных элементов. В венах так же, как и в артериях, различают три оболочки: внутреннюю, среднюю и наружную. При этом степень выраженности этих оболочек в венах существенно отличается. Вены безмышечного типа – это вены твердой и мягкой мозговых оболочек, вены сетчатки глаза, костей, селезенки и плаценты. Под действием крови эти вены способны к растяжению, но скопившаяся в них кровь сравнительно легко под действием собственной силы тяжести оттекает в более крупные венозные стволы. Вены мышечного типа отличают развитием в них мышечных элементов. К таким венам относят вены нижней части туловища. Также в некоторых видах вен имеется большое количество клапанов, что препятствует обратному току крови, под силой собственной тяжести. Кроме того, ритмические сокращения циркулярно расположенных мышечных пучков также способствуют продвижению крови к сердцу. Кроме того, существенная роль в продвижении крови по направлению к сердцу принадлежит сокращениям скелетной мускулатуры нижних конечностей.
Лимфатические сосуды
По лимфатическим сосудам происходит отток лимфы в венозное русло. К лимфатическим сосудам относят лимфатические капилляры, интра– и экстраорганные лимфатические сосуды, отводящие лимфу от органов, и лимфатические стволы тела, к которым относятся грудной проток и правый лимфатический проток, впадающие в крупные вены шеи. Лимфатические капилляры являются началом лимфатической системы сосудов, в которые поступают из тканей продукты обмена веществ, а в патологических случаях – инородные частицы и микроорганизмы. Также уже давно доказано, что по лимфатическим сосудам могут распространяться и клетки злокачественных опухолей. Лимфатические капилляры представляют собой систему замкнутых и анастомозирующих друг с другом и пронизывающих весь организм. Диаметр лимфатических капилляров может быть больше кровеносных. Стенка лимфатических капилляров представлена эндотелиальными клетками, которые, в отличие от подобных клеток кровеносных капилляров, не имеют базальной мембраны. Границы клеток извилистые. Эндотелиальная трубка лимфатического капилляра тесно связана с окружающей соединительной тканью. У лимфатических сосудов, приводящих лимфатическую жидкость к сердцу, отличительной особенностью строения является наличие в них клапанов и хорошо развитой наружной оболочки. Это можно объяснить сходством лимфо– и гемодинамических условий функционирования этих сосудов: наличием низкого давления и направлением тока жидкости от органов к сердцу. По размерам диаметра все лимфатические сосуды делятся на мелкие, средние и крупные. Как и вены, эти сосуды по своему строению могут быть безмышечными и мышечными. Мелкие сосуды главным образом являются внутриорганными лимфатическими сосудами, мышечные элементы в них отсутствуют, и их эндотелиальная трубка окружена только соединительно-тканной оболочкой. Средние и крупные лимфатические сосуды имеют три хорошо развитые оболочки – внутреннюю, среднюю и наружную. Во внутренней оболочке, покрытой эндотелием, находятся продольно и косо направленные пучки коллагеновых и эластических волокон. На внутренней оболочке сосудов имеются клапаны. Они состоят из центральной соединительно-тканной пластинки, покрытой с внутренней и наружной поверхностей эндотелием. Границей между внутренней и средней оболочеками лимфатического сосуда является не всегда четко выраженная внутренняя эластическая мембрана. Средняя оболочка лимфатических сосудов слабо развита в сосудах головы, верхней части туловища и верхних конечностей. В лимфатических сосудах нижних конечностей она, наоборот, выражена очень отчетливо. В стенке этих сосудов находятся пучки гладких мышечных клеток, имеющие циркулярное и косое направление. Мышечный слой стенки лимфатического сосуда достигает хорошего развития в коллекторах подвздошного лимфатического сплетения, около аортальных лимфатических сосудов и шейных лимфатических стволов, сопровождающих яремные вены. Наружная оболочка лимфатических сосудов образована рыхлой волокнистой неоформленной соединительной тканью, которая без резких границ переходит в окружающую соединительную ткань.
Васкуляризация. Все крупные и средние кровеносные сосуды имеют для своего питания собственную систему, носящую название «сосуды сосудов». Эти сосуды необходимы для питания самой стенки крупного сосуда. В артериях сосуды сосудов проникают до глубоких слоев средней оболочки. Внутренняя оболочка артерий получает питательные вещества непосредственно из крови, протекающей в данной артерии. В диффузии питательных веществ через внутреннюю оболочку артерий большую роль играют белково-мукополисахаридные комплексы, входящие в состав основного вещества стенок этих сосудов. Иннервация сосудами получается от вегетативной нервной системы. Нервные волокна этого отдела нервной системы, как правило, сопровождают сосуды и заканчиваются в их стенке. По строению нервы сосудов являются либо миелиновыми, либо безмиелиновыми. Чувствительные нервные окончания в капиллярах многообразны по форме. Артериоловенулярные анастомозы имеют сложные рецепторы, расположенные одновременно на анастомозе, артериоле и венуле. Конечные разветвления нервных волокон заканчиваются на гладких мышечных клетках маленькими утолщениями – нервно-мышечными синапсами. Эффекторы на артериях и венах однотипны. По ходу сосудов, особенно крупных, встречаются отдельные нервные клетки и небольшие ганглии симпатической природы. Регенерация. Кровеносные и лимфатические сосуды обладают высокой способностью к восстановлению как после травм, так и после различных патологических процессов, происходящих в организме. Восстановление дефектов сосудистой стенки после ее повреждения начинается с регенерации и роста ее эндотелия. Уже через 1 – 2 дня на месте бывшего повреждения наблюдается массовое амитотическое деление эндотелиальных клеток, а на 3 – 4-й день появляется митотический вид размножения эндотелиальных клеток. Мышечные пучки поврежденного сосуда, как правило, восстанавливаются более медленно и неполно по сравнению с другими тканевыми элементами сосуда. По скорости восстановления лимфатические сосуды несколько уступают кровеносным.
Сосудистые афференты
Изменения рО2, рСО2 крови, концентрация Н+, молочной кислоты, пирувата и ряда других метаболитов оказывают как локальное воздействие на стенку сосудов, так и регистрируются встроенными в стенку сосудов хеморецепторами, а также барорецепторами, реагирующими на давление в просвете сосудов. Эти сигналы достигают центров регуляции кровообращения и дыхания. Ответы центральной нервной системы реализует двигательная вегетативная иннервация гладкомышечной клетки стенки сосудов и миокарда. Кроме того, существует мощная система гуморальных регуляторов гладкомышечных клеток стенки сосудов (вазоконстрикторы и вазодилататоры) и проницаемости эндотелия. Барорецепторы особенно многочисленны в дуге аорты и в стенке крупных вен, лежащих близко к сердцу. Эти нервные окончания образованы терминалями волокон, проходящих в составе блуждающего нерва. В рефлекторной регуляции кровообращения участвуют каротидный синус и каротидное тельце, а также подобные им образования дуги аорты, легочного ствола, правой подключичной артерии.
Строение и функции каротидного синуса. Каротидный синус расположен вблизи бифуркации общей сонной артерии. Это расширение просвета внутренней сонной артерии тотчас у места ее ответвления от общей сонной артерии. В области расширения средняя оболочка истончена, а наружная, напротив, утолщена. Здесь, в наружной оболочке, присутствуют многочисленные барорецепторы. Если учесть, что средняя оболочка сосуда в пределах каротидного синуса относительно тонка, то легко представить, что нервные окончания в наружной оболочке высокочувствительны к любым изменениям артериального давления. Отсюда информация поступает в центры, регулирующие деятельность сердечно-сосудистой системы. Нервные окончания барорецепторов каротидного синуса – терминали волокон, проходящих в составе синусного нерва – ветви языкоглоточного нерва.
Каротидное тельце. Каротидное тельце реагирует на изменения химического состава крови. Тельце расположено в стенке внутренней сонной артерии и состоит из клеточных скоплений, погруженных в густую сеть широких капилляров синусоидоподобного типа. Каждый клубочек каротидного тельца (гломус) содержит 2 – 3 гломусные клетки (или клетки типа I), а на периферии клубочка расположены 1 – 3 клетки типа II. Афферентные волокна для каротидного тельца содержат вещество Р и относящиеся к кальцитониновому гену пептиды.
Клетки типа I образуют синаптические контакты с терминалями афферентных волокон. Для клеток типа I характерно обилие митохондрий, светлых, и электроноплотных синаптических пузырьков. Клетки типа I синтезируют ацетилхолин, содержат фермент синтеза этого нейромедиатора (холинацетилтрансфераза), а также эффективно работающую систему захвата холина. Физиологическая роль ацетилхолина остается неясной. Клетки типа I имеют Н– и М-холинорецепторы. Активация любого из этих типов холинорецепторов вызывает или облегчает освобождение из клеток типа I другого нейромедиатора – дофамина. При снижении рО2 секреция дофамина из клеток типа I возрастает. Клетки типа I могут формировать между собой контакты, похожие на синапсы.
Эфферентная иннервация
На гломусных клетках заканчиваются волокна, проходящие в составе синусного нерва (Херинга), и постганглионарные волокна из верхнего шейного симпатического ганглия. Терминали этих волокон содержат светлые (ацетилхолин) или гранулярные (катехоламины) синаптические пузырьки.
Функция
Каротидное тельце регистрирует изменения рСО2 и рО2, а также сдвиги рН крови. Возбуждение передается через синапсы на афферентные нервные волокна, по которым импульсы поступают в центры, регулирующие деятельность сердца и сосудов. Афферентные волокна от каротидного тельца проходят в составе блуждающего и синусного нервов (Херинга).
Главные клеточные типы сосудистой стенки
Гладкомышечная клетка. Просвет кровеносных сосудов уменьшается при сокращении гладкомышечных клеток средней оболочки или увеличивается при их расслаблении, что изменяет кровоснабжение органов и величину артериального давления.
Гладкомышечные клетки сосудов имеют отростки, образующие с соседними ГМК многочисленные щелевые контакты. Такие клетки электрически сопряжены, через контакты возбуждение (ионный ток) передается от клетки к клетке, Это обстоятельство важно, так как в контакте с двигательными терминалями находятся только ГМК, расположенные в наружных слоях t. media. ГМК стенки сосудов (в особенности артериол) имеют рецепторы к разным гуморальным факторам.
Вазоконстрикторы и вазодилататоры. Эффект вазоконстрикции реализуется при взаимодействии агонистов с α-адренорецепторами, рецепторами серотонина, ангиотензина II, вазопрессина, тромбоксана. Стимуляция α-адренорецепторов приводит к сокращению гладкомышечных клеток сосудов. Норадреналин – по преимуществу антагонист α-адренорецепторов. Адреналин – антагонист α– и β-адренорецепторов. Если сосуд имеет гладкомышечные клетки с преобладанием α-адренорецепторов, то адреналин вызывает сужение просвета таких сосудов.
Вазодилататоры. Если в ГМК преобладают α-адренорецепторы, то адреналин вызывает расширение просвета сосуда. Антагонисты, вызывающие в большинстве случаев расслабление ГМК: атриопептин, брадикинин, VIP, гистамин, относящиеся к кальцитониновому гену пептиды, простагландины, оксид азота NО.
Двигательная вегетативная иннервация. Вегетативная нервная система регулирует величину просвета сосудов.
Адренергическая иннервация расценивается как преимущественно сосудосуживающая. Сосудосуживающие симпатические волокна обильно иннервируют мелкие артерии и артериолы кожи, скелетных мышц, почек и чревной области. Плотность иннервации одноименных вен значительно меньше. Сосудосуживающий эффект реализуется при помощи норадреналина – антагониста α-адренорецепторов.
Холинергическая иннервация. Парасимпатические холинергические волокна иннервируют сосуды наружных половых органов. При половом возбуждении вследствие активации парасимпатической холинергической иннервации происходит выраженное расширение сосудов половых органов и увеличение в них кровотока. Холинергический сосудорасширяющий эффект прослежен также в отношении мелких артерий мягкой мозговой оболочки.
Пролиферация
Численность популяции ГМК сосудистой стенки контролируют факторы роста и цитокины. Так, цитокины макрофагов и В-лимфоцитов (трансформирующий фактор роста ИЛ-1,) сдерживают пролиферацию ГМК. Эта проблема имеет важное значение при атеросклерозе, когда пролиферация ГМК усиливается под действием факторов роста, вырабатываемых в сосудистой стенке (тромбоцитарного фактора роста [PDGF], щелочного фактора роста фибробластов, инсулиноподобного фактора роста 1 [IGF-1] и фактора некроза опухоли).
Фенотипы ГМК
Различают два варианта ГМК сосудистой стенки: сократительный и синтетический.
Сократительный фенотип. ГМК имеют многочисленные миофиламенты и отвечают на воздействие вазоконстрикторов и вазодилататоров. Гранулярная эндоплазматическая сеть в них выражена умеренно. Подобные ГМК не способны к миграции и не вступают в митозы, так как нечувствительны к эффектам факторов роста.
Синтетический фенотип. ГМК имеют хорошо развитые гранулярную эндоплазматическую сеть и комплекс Гольджи, клетки синтезируют компоненты межклеточного вещества (коллаген, эластин, протеогликан), цитокины и факторы. ГМК в области атеросклеротического поражения сосудистой стенки перепрограммируются с сократительного на синтетический фенотип. При атеросклерозе ГМК вырабатывают факторы роста (например, тромбоцитарный фактор PDGF], щелочной фактор роста фибробластов [bFGF], усиливающие пролиферацию соседних ГМК.
Регуляция фенотипа ГМК. Эндотелий вырабатывает и секретирует гепариноподобные вещества, поддерживающие сократительный фенотип ГМК. Факторы паракринной регуляции, продуцируемые эндотелиальными клетками, контролируют тонус сосудов. Среди них – производные арахидоновой кислоты (простагландины, лейкотриены и тромбоксаны), эндотелин-1, оксид азота NО и др. Одни из них вызывают вазодилатацию (например, простациклин, оксид азота NО), другие – вазоконстрикцию (например, эндотелин-1, ангиотензин-II). Недостаточность NО вызывает повышение АД, образование атеросклеротических бляшек избыток NО может привести к коллапсу.
Эндотелиальная клетка
Стенка кровеносного сосуда очень тонко реагирует на изменения гемодинамики и химического состава крови. Своеобразным чувствительным элементом, улавливающим эти изменения, является эндотелиальная клетка, которая с одной стороны омывается кровью, а другой обращена к структурам сосудистой стенки.
Восстановление кровотока при тромбозе.
Воздействие лигандов (АДФ и серотонина, тромбинтромбина) на эндотелиальную клетку стимулирует секрецию NO. Его мишени – расположенные поблизости ГМК. В результате расслабления гладкомышечной клетки просвет сосуда в области тромба увеличивается, и кровоток может восстановиться. К аналогичному эффекту приводит активация других рецепторов эндотелиальной клетки: гистамина, М-холинорецепторов, α2-адренорецепторов.
Свертывание крови. Эндотелиальная клетка – важный компонент процесса гемокоагуляции. На поверхности эндотелиальных клеток может происходить активация протромбина факторами свертывания. С другой стороны, эндотелиальная клетка проявляет антикоагуляционные свойства. Прямое участие эндотелия в свертывании крови состоит в секреции эндотелиальными клетками некоторых плазменных факторов свертывания (например, фактора Виллебранда). В нормальных условиях эндотелий слабо взаимодействует с форменными элементами крови, как и с факторами свертывания крови. Эндотелиальная клетка вырабатывает простациклин PGI2, тормозящий адгезию тромбоцитов.
Факторы роста и цитокины. Эндотелиальные клетки синтезируют и секретируют факторы роста и цитокины, влияющие на поведение других клеток сосудистой стенки. Этот аспект имеет важное значение в механизме развития атеросклероза, когда в ответ на патологическое воздействие со стороны тромбоцитов, макрофагов и ГМК эндотелиальные клетки вырабатывают тромбоцитарный фактор роста (PDGF), щелочной фактор роста фибробластов (bFGF), инсулиноподобный фактор роста-1 (IGF-1), ИЛ-1, трансформирующий фактор роста. С другой стороны, эндотелиальные клетки являются мишенями факторов роста и цитокинов. Например, митозы эндотелиальных клеток индуцируются щелочным фактором роста фибробластов (bFGF), а пролиферацию только эндотелиальных клеток стимулирует фактор роста эндотелиальных клеток, вырабатываемый тромбоцитами. Цитокины из макрофагов и В-лимфоцитов – трансформирующий фактор роста (TGFp), ИЛ-1 и α-ИФН – угнетают пролиферацию эндотелиальных клеток.
Процессинг гормонов. Эндотелий участвует в модификации циркулирующих в крови гормонов и других биологически активных веществ. Так, в эндотелии сосудов легких происходит конверсия ангиотензина-I в ангиотензин-II.
Инактивация биологически активных веществ. Эндотелиальные клетки метаболируют норадреналин, серотонин, брадикинин, простагландины.
Расщепление липопротеинов. В эндотелиальных клетках происходит расщепление липопротеинов с образованием триглицеридов и холестерина.
Хоминг лимфоцитов. Венулы в паракортикальной зоне лимфатических узлов, миндалин, пейеровой бляшки подвздошной кишки, содержащие скопление лимфоцитов, имеют высокий эндотелий, экспрессирующий на своей поверхности сосудистый адрессин, узнаваемый молекулой CD44 циркулирующих в крови лимфоцитов. В этих областях лимфоциты прикрепляются к эндотелию и выводятся из кровотока (хоминг).
Барьерная функция. Эндотелий контролирует проницаемость сосудистой стенки. Наиболее наглядно эта функция проявляется в гематоэнцефалическом и гематотимическом барьерах.
Сердце
Развитие
Сердце закладывается на 3-й неделе внутриутробного развития. В мезенхиме между энтодермой и висцеральным листком спланхиотомы образуются две эндокардиальные трубки, выстланные эндотелием. Эти трубки – зачаток эндокарда. Трубки растут и окружаются висцеральной спланхиотомой. Эти участки спланхиотомы утолщаются и дают начало миоэпикардиальным пластинкам. По мере смыкания кишечной трубки обе закладки сближаются и срастаются. Теперь общая закладка сердца (сердечная трубка) имеет вид двухслойной трубки. Из эндокардиальной ее части развивается эндокард, а из миоэпикардиальной пластинки – миокард и эпикард. Мигрирующие из нервного гребня клетки участвуют в формировании выносящих сосудов и клапанов сердца (дефекты нервного гребня – причина 10% врожденных пороков сердца, например транспозиции аорты и легочного ствола).
В течение 24 – 26 суток первичная сердечная трубка быстро удлиняется и приобретает s-образную форму. Это оказывается возможным благодаря локальным изменениям формы клеток сердечной трубки. На этом этапе выделяются следующие отделы сердца: венозный синус – камера на каудальном конце сердца, в нее впадают крупные вены. Краниальнее венозного синуса располагается расширенная часть сердечной трубки, образующая область предсердия. Из средней изогнутой части сердечной трубки развивается желудочек сердца. Желудочковая петля изгибается в каудальном направлении, что перемещает будущий желудочек, находившийся краниальнее предсердия, в дефинитивное положение. Область сужения желудочка и его перехода в артериальный ствол – конус. Между предсердием и желудочком просматривается отверстие – атриовентрикулярный канал.
Разделение на правое и левое сердце. Сразу же после образования предсердия и желудочка появляются признаки разделения сердца на правую и левую половины, которое протекает на 5 и 6-й неделе. На этом этапе формируются межжелудочковая перегородка, межпредсердная перегородка и эндокардиальные подушки. Межжелудочковая перегородка растет из стенки первичного желудочка в направлении от верхушки к предсердию. Одновременно с формированием межжелудочковой перегородки в суженной части сердечной трубки между предсердием и желудочком образуются две большие массы рыхло организованной ткани – эндокардиальные подушечки. Эндокардиальные подушки, состоящие из плотной соединительной ткани, участвуют в образовании правого и левого атриовентрикулярных каналов.
'В конце 4-й недели внутриутробного развития на краниальной стенке предсердия появляется срединная перегородка в форме полукруглой складки – первичная межпредсердная перегородка.
Одна дуга складки проходит по вентральной стенке предсердий, а другая – по дорсальной. Дуги сливаются вблизи атриовентрикулярного канала, но между ними остается первичное межпредсердное отверстие. Одновременно с этими изменениями венозный синус перемещается вправо и открывается в предсердие справа от межперсердной перегородки. В этом месте формируются венозные клапаны.
Полное разделение сердца. Полное разделение сердца происходит после развития легких и их сосудистой сети. Когда первичная перегородка сливается с эндокардиальными подушками атриовентрикулярного клапана, первичное предсердное отверстие закрывается. Массовая гибель клеток в краниальной части первичной перегородки приводит к образованию множества мелких отверстий, образующих вторичное межпредсердное отверстие. Оно контролирует равномерное поступление крови в обе половины сердца. Вскоре в правом предсердии между венозными клапанами и первичной межпредсердной перегородкой формируется вторичная межпредсердная перегородка. Вогнутый ее край направлен вверх к месту впадения синуса, а в дальнейшем – нижней полой вены. Формируется вторичное отверстие овальное окно. Остатки первичной межпредсердной перегородки, закрывающие овальное отверстие во вторичной межпредсердной перегородке, формируют клапан, распределяющий кровь между предсердиями.
Направление движения крови
Так как выходное отверстие нижней полой вены лежит вблизи овального отверстия, то кровь из нижней полой вены попадает в левое предсердие. При сокращении левого предсердия кровь прижимает створку первичной перегородки к овальному отверстию. В результате кровь не поступает из правого предсердия в левое, а перемещается из левого предсердия в левый желудочек.
Первичная перегородка функционирует как односторонний клапан в овальном отверстии вторичной перегородки. Кровь поступает из нижней полой вены через овальное отверстии в левое предсердие. Кровь из нижней полой вены смешивается с кровью, поступающей в правое предсердие из верхней полой вены.
Кровоснабжение плода. Обогащенная кислородом кровь плаценты с относительно низкой концентрацией СО2 по пупочной вене поступает в печень, а из печени – в нижнюю полую вену. Часть крови из пупочной вены через венозный проток, минуя печень, сразу поступает в систему нижней полой вены. В нижней полой вене кровь перемешивается. Кровь с высоким содержанием СО2 поступает в правое предсердие из верхней полой вены, которая собирает кровь из верхней части тела. Через овальное отверстие часть крови поступает из правого предсердия в левое. При сокращении предсердий клапан закрывает овальное отверстие, и кровь из левого предсердия поступает в левый желудочек и далее в аорту, т. е. в большой круг кровообращения. Из правого желудочка кровь направляется в легочный ствол, который артериальным или боталловым протоком связан с аортой. Следовательно, через артериальный проток сообщаются малый и большой круги кровообращения. На ранних этапах внутриутробного развития потребность в крови в несформированных легких еще невелика, кровь из правого желудочка поступает в бассейн легочной артерии. Поэтому уровень развития правого желудочка будет определяться уровнем развития легкого.
По мере развития легких и увеличения их объема все больше крови направляется к ним и все меньше проходит через артериальный проток. Артериальный проток закрывается вскоре после рождения, когда легкие забирают всю кровь из правого сердца. После рождению перестают функционировать и редуцируются, превращаясь в соединительно-тканные тяжи и другие сосуды – пуповина, венозный проток. Овальное окно закрывается также вскоре после рождения.
Сердце – основной орган, приводящий в движение кровь по кровеносным сосудам, своего рода «насос».
Сердце представляет собой полый орган, состоящий из двух предсердий и двух желудочков. Стенка его состоит их трех оболочек: внутренней (эндокарда), средней, или мышечной (миокарда) и наружной, или серозной (эпикарда).
Внутренняя оболочка сердца – эндокард – изнутри покрывает все камеры сердца, а также клапаны сердца. На различных участках толщина его различна. Наибольших размеров он достигает в левых камерах сердца, особенно на межжелудочковой перегородке и у устья крупных артериальных стволов – аорты и легочной артерии. В то время как на сухожильных нитях он значительно тоньше.
Эндокард состоит из нескольких видов клеток. Так, на стороне, обращенной в полость сердца, эндокард выстлан эндотелием, состоящим из полигональных клеток. Далее идет подэндотелиальный слой, образованный соединительной тканью, богатой малодифференцированными клетками. Глубже располагаются мышцы.
Самый глубокий слой эндокарда, лежащий на границе с миокардом, носит название наружного соединительно-тканного слоя. Он состоит из соединительной ткани, содержащей толстые эластические волокна. Кроме эластических волокон, в эндокарде имеются длинные извитые коллагеновые и ретикулярные волокна.
Питание эндокарда осуществляется в основном диффузно за счет крови, находящейся в камерах сердца.
Далее идет мышечный слой клеток – миокард (его свойства описывались в главе о мышечной ткани). Мышечные волокна миокарда прикрепляются к опорному скелету сердца, который образован фиброзными кольцами между предсердиями и желудочками и плотной соединительной тканью в устьях крупных сосудов.
Наружная оболочка сердца, или эпикард, представляет собой висцеральный листок перикарда, сходный по строению с серозными оболочками.
Между перикардом и эпикардом имеется щелевидная полость, в которой находится небольшое количество жидкости, благодаря которой при сокращении сердца уменьшается сила трения.
Между предсердиями и желудочками сердца, а также желудочками и крупными сосудами располагаются клапаны. При этом они имеют специфические названия. Так, предсердно-желудочковый (атриовентрикулярный) клапан в левой половине сердца – двустворчатый (митральный), в правой – трехстворчатый. Они представляют собой покрытые эндотелием тонкие пластинки плотной волокнистой соединительной ткани с небольшим количеством клеток.
В подэндотелиальном слое клапанов обнаружены тонкие коллагеновые фибриллы, которые постепенно переходят в фиброзную пластинку створки клапана, а в месте прикрепления дву-и трехстворчатого клапанов – в фиброзные кольца. В основном веществе створок клапанов обнаружено большое количество гликозаминогликанов.
При этом надо знать, что строение предсердной и желудочковой сторон створок клапанов неодинаково. Так, предсердная сторона клапана, гладкая с поверхности, имеет в подэндотелиальном слое густое сплетение эластических волокон и пучки гладких мышечных клеток. Количество мышечных пучков заметно увеличивается в основании клапана. Желудочковая сторона неровная, снабжена выростами, от которых начинаются сухожильные нити. Эластические волокна в небольшом количестве располагаются на желудочковой стороне лишь непосредственно под эндотелием.
Клапаны также имеются и на границе между восходящей частью дуги аорты и левым желудочком сердца (аортальные клапаны), между правым желудочком и легочным стволом расположены клапаны полулунные (названные так из-за специфического строения).
На вертикальном разрезе в створке клапана можно различить три слоя внутренний, средний и наружный.
Внутренний слой, обращенный к желудочку сердца, представляет собой продолжение эндокарда. В нем под эндотелием продольно и поперечно идут эластические волокна, за которыми следует смешанная эластико-коллагеновая прослойка.
Средний слой тонкий, состоит из рыхлой волокнистой соединительной ткани, богатой клеточными элементами.
Наружный слой, обращенный к аорте, содержит коллагеновые волокна, которые берут начало от фиброзного кольца вокруг аорты.
Питательные вещества сердце получает из системы венечных артерий.
Кровь из капилляров собирается в коронарные вены, впадающие в правое предсердие, или венозный синус. Лимфатические сосуды в эпикарде сопровождают кровеносные.
Иннервация. В оболочках сердца обнаруживаются несколько нервных сплетений и небольшие нервные ганглии. Среди рецепторов имеются как свободные, так и инкапсулированные окончания, располагающиеся в соединительной ткани, на мышечных клетках и в стенке венечных сосудов. Тела чувствительных нейронов лежат в спинномозговых узлах (С7 – Th6), а их аксоны, покрытые миелиновой оболочкой, вступают в продолговатый мозг. Также имеется внутрисердечная проводящая система – так называемая автономная проводящая система, генерирующая импульсы для сокращения сердца.
Тема 20. ЭНДОКРИННАЯ СИСТЕМА
Эндокринная система вместе с нервной системой оказывают регуляторное воздействие на все другие органы и системы организма, заставляя его функционировать как единую систему.
К эндокринной системе относятся железы, не имеющие выводных протоков, но выделяющие во внутреннюю среду организма высокоактивные биологические вещества, действующие на клетки, ткани и органы вещества (гормоны), стимулирующие или ослабляющие их функции.
Клетки, у которых выработка гормонов становится основной или преобладающей функцией, получают наименование эндокринных. В организме человека эндокринная система представлена секреторными ядрами гипоталамуса, гипофизом, эпифизом, щитовидной, околощитовидными железами, надпочечниками, эндокринными частями половых и поджелудочной желез, а также отдельными железистыми клетками, рассеянными по другим (неэндокринным) органам или тканям.
С помощью выделяемых эндокринной системой гормонов осуществляются регуляция и координация функций организма и приведение их в соответствие с его потребностями, а также с раздражениями, получаемыми из внешней и внутренней среды.
По химической природе большинство гормонов принадлежит к белкам – протеинам или гликопротеинам. Другие же гормоны являются производными аминокислот (тирозина) или стероидами. Многие гормоны, попадая в ток крови, связываются с сывороточными белками и в виде таких комплексов транспортируются по организму. Соединение гормона с белком-носителем хотя и предохраняет гормон от преждевременной деградации, но ослабляет его активность. Освобождение гормона от носителя происходит в клетках органа, воспринимающего данный гормон.
Поскольку гормоны выделяются в ток крови, обильное кровоснабжение эндокринных желез составляет непременное условие их функционирования. Каждый гормон действует только на те клетки-мишени, которые имеют специальные химические рецепторы в плазматических мембранах.
К органам-мишеням, обычно причисляемым к неэндокринным, можно отнести почку, в юкстагломерулярном комплексе которой вырабатывается ренин; слюнные и предстательную железы, в которых обнаруживаются особые клетки, продуцирующие фактор, стимулирующий рост нервов; а также специальные клетки (энтериноциты), локализующиеся в слизистой оболочке желудочно-кишечного тракта и вырабатывающие ряд энтериновых (кишечных) гормонов. Многие гормоны (в том числе эндорфины и энкефалины), обладающие широким спектром действия, образуются в головном мозге.
Связь нервной и эндокринной систем
Нервная система, посылая свои эфферентные импульсы по нервным волокнам прямо к иннервируемому органу, вызывает направленные локальные реакции, которые быстро наступают и столь же быстро прекращаются.
Гормональным дистантным влияниям принадлежит преимущественная роль в регуляции таких общих функций организма, как обмен веществ, соматический рост, репродуктивные функции. Совместное участие нервной и эндокринной систем в обеспечении регуляции и координации функций организма определяется тем, что регуляторные влияния, оказываемые как нервной, так и эндокринной системами, реализуются принципиально одинаковыми механизмами.
Вместе с тем все нервные клетки проявляют способность синтезировать белковые вещества, о чем свидетельствуют сильное развитие гранулярной эндоплазматической сети и обилие рибонуклеопротеидов в их перикарионах. Аксоны таких нейронов, как правило, заканчиваются на капиллярах, и синтезированные продукты, аккумулировавшиеся в терминалях, выделяются в кровь, с током которой разносятся по организму и оказывают в отличие от медиаторов не локальное, а дистантное регулирующее действие подобно гормонам эндокринных желез. Такие нервные клетки получили наименование нейросекреторных, а вырабатываемые и выделяемые ими продукты – нейрогормонов. Нейросекреторные клетки, воспринимая, как всякий нейроцит, афферентные сигналы от других отделов нервной системы, посылают свои эфферентные импульсы через кровь, т. е. гуморально (как эндокринные клетки). Поэтому нейросекреторные клетки, занимая в физиологическом отношении промежуточное положение между нервными и эндокринными, объединяют нервную и эндокринную системы в единую нейроэндокринную систему и таким образом выступают в роли нейроэндокринных трансмиттеров (переключателей).
В последние годы было установлено, что в составе нервной системы имеются пептидергические нейроны, которые, помимо медиаторов, выделяют и ряд гормонов, способных модулировать секреторную деятельность эндокринных желез. Поэтому, как уже отмечалось выше, нервная и эндокринная системы выступают как единая регулирующая нейроэндокринная система.
Классификация эндокринных желез
В начале развития эндокринологии как науки железы внутренней секреции пытались группировать по их происхождению из того или иного эмбрионального зачатка зародышевых листков. Однако дальнейшее расширение знаний о роли эндокринных функций в организме показало, что общность или близость эмбриональных закладок совершенно не предрешает совместного участия желез, развивающихся из таких зачатков, в регуляции функций организма.
Согласно современным представлениям, в эндокринной системе выделяют следующие группы желез внутренней секреции: нейроэндокринные трансмиттеры (секреторные ядра гипоталамуса, эпифиз), которые с помощью своих гормонов переключают информацию, поступающую в центральную нервную систему, на центральное звено регуляции аденогипофиззависимых желез (аденогипофиз) и нейрогемальный орган (задняя доля гипофиза, или нейрогипофиз). Аденогипофиз благодаря гормонам гипоталамуса (либеринам и статинам) выделяет адекватное количество тропных гормонов, которые стимулируют функцию аденогипофиззависимых желез (коры надпочечников, щитовидной и половой желез). Взаимоотношения аденогипофиза и зависимых от него желез внутренней секреции осуществляются по принципу обратной связи (или плюс-минус). Нейрогемальный орган собственных гормонов не продуцирует, но накапливает гормоны крупноклеточных ядер гипоталамуса (окситоцин, АДГ-вазопрессин), затем выделяет их в кровяное русло и таким образом регулирует деятельность так называемых органов-мишеней (матки, почек). В функциональном отношении нейросекреторные ядра, эпифиз, аденогипофиз и нейрогемальный орган составляют центральное звено эндокринной системы, тогда как эндокринные клетки неэндокринных органов (пищеварительной системы, воздухоносных путей и легких, почек и мочеотводящих путей, вилочковой железы), аденогипофиззависимые железы (щитовидная железа, кора надпочечников, половые железы) и аденогипофизнезависимые железы (околощитовидные железы, мозговое вещество надпочечников) являются периферическими железами внутренней секреции (или железами-мишенями).
Суммируя все выше сказанное, можно сказать, что эндокринная система представлена следующими основными структурными компонентами.
1. Центральные регуляторные образования эндокринной системы:
1) гипоталамус (нейросекреторные ядра);
2) гипофиз;
3) эпифиз.
2. Периферические эндокринные железы:
1) щитовидная железа;
2) околощитовидные железы;
3) надпочечники:
а) корковое вещество;
б) мозговое вещество надпочечников.
3. Органы, объединяющие эндокринные и неэндокринные функции:
1) гонады:
а) семенник;
б) яичник;
2) плацента;
3) поджелудочная железа.
4. Одиночные гормонопродуцирующие клетки:
1) нейроэндокринные клетки группы ПОДПА (APUD) (нервного происхождения);
2) одиночные гормонопродуцирующие клетки (не нервного происхождения).
Гипоталамус
Гипоталамус занимает базальную область межуточного мозга и окаймляет нижнюю часть III желудочка головного мозга. Полость III желудочка продолжается в воронку, стенка которой становится гипофизарной ножкой и на своем дистальном конце дает начало задней доле гипофиза (или нейрогипофизу).
В сером веществе гипоталамуса обособляются его ядра (свыше 30 пар), которые группируются в переднем, среднем (медиобазальном или туберальном) и заднем отделах гипоталамуса. Некоторые из гипоталамических ядер представляют скопления нейросекреторных клеток, а другие образованы сочетанием нейросекреторных клеток и нейронов обычного типа (преимущественно адренергическими).
В ядрах среднего гипоталамуса вырабатываются гипоталамические аденогипофизотропные гормоны, которые регулируют секрецию (и, вероятно, также продукцию) гормонов в передней и средней долях гипофиза. Аденогипофизотропные гормоны являются низкомолекулярными белками (олигопептидами), которые либо стимулируют (либерины), либо угнетают (статины) соответствующие гормонообразовательные функции аденогипофиза. Важнейшие ядра этой части гипоталамуса локализуются в сером бугре: аркуатное, или инфундибулярное, ядро и вентромедиальное ядро. Вентромедиальное ядро отличается большими размерами и оказывается основным местом выработки аденогипофизотропных гормонов, но наряду с ним эта функция присуща также аркуатному ядру. Указанные ядра образованы мелкими нейросекреторными клетками в сочетании с адренергическими нейронами обычного типа. Аксоны как мелких нейросекреторных клеток медиобазального гипоталамуса, так и соседствующих с ними адренергических нейронов направляются в медиальную эминенцию, где заканчиваются на петлях первичной капиллярной сети.
Таким образом, нейросекреторные образования гипоталамуса делятся на две группы: холинергическую (крупноклеточные ядра переднего гипоталамуса) и адренергическую (мелкие нейросекреторные клетки медиобазального гипоталамуса).
Деление нейросекреторных образований гипоталамуса на пептидохолинергические и пептидоадренергические отражает их принадлежность соответственно к парасимпатической или симпатической части гипоталамуса.
Связь переднего гипоталамуса с задней долей гипофиза, а медиобазального гипоталамуса – с аденогипофизом позволяет расчленить гипоталамо-гипофизарный комплекс на гипоталамонейрогипофизарную и гипоталамо-аденогипофизарную системы. Значение задней доли гипофиза состоит в том, что в ней аккумулируются и выделяются в кровь нейрогормоны, вырабатываемые крупноклеточными пептидохолинергическими ядрами переднего гипоталамуса. Следовательно, задняя доля гипофиза не является железой, а представляет собой вспомогательный нейрогемальный орган гипоталамо-нейрогипофизарной системы.
Аналогичным нейрогемальным органом гипоталамо-аденогипофизарной системы оказывается медиальная эминенция, в которой накапливаются и поступают в кровь аденогипофизотропные гормоны (либерины и статины), продуцируемые пептидоадренергическими нейросекреторными клетками медиобазального гипоталамуса.
Гипофиз
В гипофизе выделяют несколько долей: аденогипофиз, нейрогипофиз.
В аденогипофизе различают переднюю, среднюю (или промежуточную) и туберальную части. Передняя часть имеет трабекулярное строение. Трабекулы, сильно разветвляясь, сплетаются в узкопетлистую сеть. Промежутки между ними, заполнены рыхлой соединительной тканью, по которой проходят многочисленные синусоидные капилляры.
В каждой трабекуле можно различить несколько разновидностей железистых клеток (аденоцитов). Одни из них, располагающиеся по периферии трабекул, более крупные по размерам, содержат секреторные гранулы и интенсивно окрашиваются на гистологических препаратах, поэтому эти клетки именуют хромофильными. Другие клетки хромофобные, занимающие середину трабекул, отличаются от хромофильных слабо окрашивающейся цитоплазмой. Ввиду количественного преобладания в составе трабекул хромофобных клеток их иногда называют главными.
Хромофильные клетки делятся на базофильные и ацидофильные. Базофильные клетки, или базофилы, продуцируют гликопротеидные гормоны, и их секреторные гранулы на гистологических препаратах окрашиваются основными красками.
Среди них различают две основные разновидности – гонадотропные и тиротропные.
Одни из гонадотропных клеток вырабатывают фолликулостимулирующий гормон (фоллитропин), другим приписывается продукция лютеинизирующего гормона (лютропина).
Если организм испытывает недостаточность половых гормонов, продукция гонадотропинов, особенно фоллитропина, настолько усиливается, что некоторые гонадотропные клетки гипертрофируются и сильно растягиваются крупной вакуолью, в результате чего цитоплазма приобретает вид тонкого ободка, а ядро оттесняется на край клетки («клетки кастрации»).
Вторая разновидность – тиротропная клетка, продуцирующая тиротропный гормон (тиротропин), – отличается неправильной или угловатой формой. При недостаточности в организме гормона щитовидной железы продукция тиротропина усиливается, а тиротропоциты частично трансформируются в клетки тиреоидэктомии, которые характеризуются более крупными размерами и значительным расширением цистерн эндоплазматической сети, вследствие чего цитоплазма приобретает вид крупноячеистой пены. В этих вакуолях обнаруживаются альдегидфуксинофильные гранулы, более крупные, чем секреторные гранулы исходных тиротропоцитов.
Для ацидофильных клеток, или ацидофилов, характерны крупные плотные гранулы, окрашивающиеся на препаратах кислыми красителями. Ацидофильные клетки также делятся на две разновидности: соматотропные, или соматотропоциты, вырабатывающие соматотропный гормон (соматотропин), и маммотропные, или маммотропоциты, вырабатывающие лактотропный гормон (пролактин).
Функция этих клеток аналогична базофильным.
Кортикотропная клетка в передней доле гипофиза вырабатывает адренокортикотропный гормон (АКТГ или кортикотропин), активирующий кору надпочечников.
Средняя часть аденогипофиза представляет собой узкую полоску многослойного эпителия, однородного по строению. Аденоциты средней доли способны вырабатывать белковый секрет, который, накапливаясь между соседними клетками, приводит к формированию в средней доли фолликулоподобных полостей (кист).
В средней части аденогипофиза вырабатывается меланоцитостимулирующий гормон (меланотропин), влияющий на пигментный обмен и пигментные клетки, а также липотропин – гормон, усиливающий метаболизм жиролипоидных веществ.
Туберальная часть – отдел аденогипофизарной паренхимы, прилежащей к гипофизарной ножке и соприкасающейся с нижней поверхностью медиальной эминенции гипоталамуса.
Функциональные свойства туберальной части выяснены недостаточно.
Задняя доля гипофиза – нейрогипофиз – образована нейроглией. Глиальные клетки этой доли представлены преимущественно небольшими отростчатыми или веретеновидными клетками – питуицитами. В заднюю долю входят аксоны нейросекреторных клеток супраоптического и паравентрикулярного ядер переднего гипоталамуса. В задней доле эти аксоны заканчиваются расширенными терминалями (накопительными тельцами, или тельцами Херринга), которые контактируют с капиллярами.
Задняя доля гипофиза накапливает антидиуретический гормон (вазопрессин) и окситоцин, вырабатываемые нейросекреторными клетками супраоптического и паравентрикулярного ядер переднего гипоталамуса. Возможно, что в передаче этих гормонов из накопительных телец в кровь участвуют питуициты.
Иннервация. Гипофиз, а также гипоталамус и эпифиз получают нервные волокна от шейных ганглиев (главным образом от верхних) симпатического ствола. Экстирпация верхних шейных симпатических ганглиев или перерезка шейного симпатического ствола приводят к усилению тиротропной функции гипофиза, тогда как раздражение тех же ганглиев вызывает ее ослабление.
Кровоснабжение. Верхние гипофизарные артерии вступают в медиальную эминенцию, где распадаются на первичную капиллярную сеть. Ее капилляры образуют петли и клубочки, внедряющиеся в эпендиму медиальной эминенции. К этим петлям подходят аксоны пептидоадренергических клеток медиобазального гипоталамуса, образуя на капиллярах аксовазальные синапсы (контакты), в которых совершается передача гипоталамических либеринов и статинов в ток крови. Затем капилляры первичной сети собираются в портальные вены, идущие вдоль гипофизарной ножки в паренхиму аденогипофиза, где они вновь распадаются на вторичную капиллярную сеть, синусоидные капилляры которой, разветвляясь, оплетают трабекулы. Наконец, синусоиды вторичной сети сливаются в выносящие вены, отводящие кровь, обогатившуюся аденогипофизарными гормонами, в общую циркуляцию.
Щитовидная железа
В щитовидной железе выделяют две доли (правую и левую соответственно) и перешеек.
Снаружи она окружена плотной соединительно-тканной капсулой, от которой внутрь железы отходят перегородки. Составляя строму железы, они разветвляются и делят тиреоидную паренхиму на дольки.
Функциональной и структурной единицей щитовидной железы являются фолликулы – замкнутые шаровидные или округлые образования варьирующихся размеров с полостью внутри. Иногда стенки фолликулов образуют складки, и фолликулы приобретают неправильные очертания. В просвете фолликулов накапливается секреторный продукт – коллоид, имеющий при жизни консистенцию вязкой жидкости и состоящий в основном из тиреоглобулина.
Кроме того, в соединительно-тканных прослойках всегда встречаются лимфоциты и плазматические клетки, количество которых при ряде заболеваний (тиреотоксикозе, аутоиммунном тиреоидите) резко увеличивается вплоть до возникновения лимфоидных скоплений и даже лимфоидных фолликулов с центрами размножения. В тех же межфолликулярных прослойках обнаруживаются парафолликулярные клетки, а также тучные клетки (тканевые базофилы).
Тироциты – железистые клетки щитовидной железы, составляющие стенку (выстилку) фолликулов и располагающиеся в один слой на базальной мембране, ограничивают фолликул снаружи. Форма, объем и высота тироцитов изменяются в соответствии со сдвигами функциональной активности щитовидной железы.
Когда же потребности организма в тиреоидном гормоне возрастают и функциональная активность щитовидной железы усиливается (гиперфункциональное состояние), тироциты фолликулярной выстилки увеличиваются в объеме и высоте и принимают призматическую форму.
Интрафолликулярный коллоид становится более жидким, в нем появляются многочисленные вакуоли, и на гистологических препаратах он приобретает вид пены.
Апикальная поверхность тироцита образует микроворсинки, вдающиеся в просвет фолликула. По мере усиления функциональной активности щитовидной железы количество и размеры микроворсинок возрастают. Одновременно базальная поверхность тироцитов, почти ровная в период функционального покоя щитовидной железы, при активизации ее становится складчатой, что приводит к увеличению контакта тироцитов с перикапиллярными пространствами.
Секреторный цикл любой железистой клетки состоит из следующих фаз: поглощения исходных веществ, синтеза гормона и его выделения.
Фаза продукции. Выработка тиреоглобулина (а следовательно, тиреоидного гормона) начинается в цитоплазме базальной части тироцита и завершается в полости фолликула на его апикальной поверхности (на границе с интрафолликулярным коллоидом). Исходные продукты (аминокислоты, соли), приносимые к щитовидной железе кровью и поглощаемые тироцитами через их основание, концентрируются в эндоплазматической сети, и на рибосомах совершается синтез полипептидной цепочки – основы будущей молекулы тиреоглобулина. Получающийся продукт накапливается в цистернах эндоплазматической сети и затем перемещается в зону пластинчатого комплекса, где конденсируется тиреоглобулин (но еще не йодированный) и формируются мелкие секреторные везикулы, смещающиеся затем в верхнюю часть тироцита. Йод поглощается тироцитами из крови в форме йодида, и синтезируется тироксин.
Фаза выведения. Осуществляется путем реабсорбции интрафолликулярного коллоида. В зависимости от степени активации щитовидной железы эндоцитоз протекает в разных формах. Выведение гормона из железы, находящейся в состоянии функционального покоя или слабого возбуждения, протекает без образования апикальных псевдоподий и без появления капель интрацеллюлярного коллоида внутри тироцитов. Оно осуществляется путем протеолиза тиреоглобулина, совершающегося в периферическом слое интрафолликулярного коллоида на границе с микроворсинками, и последующего микропиноцитоза продуктов этого расщепления.
Парафолликулярные клетки (кальцитониноциты), встречающиеся в тиреоидной паренхиме, резко отличаются от тироцитов отсутствием способности поглощать йод. Как упоминалось выше, они вырабатывают белковый гормон – кальцитонин (тирокальцитонин), понижающий уровень кальция в крови и являющийся антагонистом паратирина (гормона околощитовидных желез).
Околощитовидные железы (паращитовидные железы)
Считается, что у каждого из полюсов щитовидной железы находятся паращитовидные железы (всего их 4 – 6 шт.)
Каждая околощитовидная железа окружена тонкой соединительно-тканной капсулой. Их паренхима образована эпителиальными тяжами (трабекулами) либо скоплениями железистых клеток (паратироцитов), разделенными тонкими прослойками рыхлой соединительной ткани с многочисленными капиллярами.
Среди паратироцитов различаются главные, промежуточные и ацидофильные (оксифильные) клетки, которые, однако, следует рассматривать не как отдельные разновидности железистых клеток околощитовидных желез, а как функциональные или возрастные состояния паратироцитов.
Во время усиления секреторной активности околощитовидных желез главные клетки набухают и увеличиваются в объеме, в них гипертрофируются эндоплазматическая сеть и пластинчатый комплекс. Выделение паратирина из железистых клеток в межклеточные щели осуществляется путем экзоцитоза. Высвобожденный гормон поступает в капилляры и выносится в общую циркуляцию.
Кровоснабжение щитовидной и паращитовидных желез осуществляется из верхних и нижних щитовидных артерий.
Надпочечники
Парные органы, образованные сочетанием двух самостоятельных желез разного происхождения и различного физиологического значения: корковой и мозговой (медуллярной). Гормоны надпочечников принимают участие в защитно-приспособительных реакциях организма, регуляции обмена веществ и деятельности сердечно-сосудистой системы.
В надпочечниках выделяют: корковый слой и мозговой слой.
Корковое вещество надпочечников делится на три зоны: клубочковую, пучковую и сетчатую.
Клубочковая (наружная) зона образована железистыми клетками (адренокортикоцитами) удлиненной формы, которые наслаиваются друг на друга, образуя округлые скопления, чем и обусловливается наименование данной зоны.
В клетках клубочковой зоны отмечается большое содержание рибонуклеопротеидов и высокая активность ферментов, участвующих в стероидогенезе.
Клубочковая зона вырабатывает альдостерон – гормон, регулирующий уровень натрия в организме и предотвращающий потерю организмом этого элемента с мочой. Поэтому альдостерон может быть назван минералокортикоидным гормоном. Минералокортикоидная функция обязательна для жизни, и поэтому удаление или разрушение обоих надпочечников, захватывающее их клубочковую зону, смертельно. Одновременно минералокортикоиды ускоряют течение воспалительных процессов и способствуют образованию коллагена.
Среднюю часть коркового вещества занимает наибольшая по ширине пучковая зона. Адренокортикоциты этой зоны отличаются крупными размерами и кубической или призматической формой, их ось ориентируется вдоль эпителиального тяжа.
Пучковая зона коры надпочечников вырабатывает глюкокортикоидные гормоны – кортикостерон, кортизол (гидрокортизон) и кортизон. Эти гормоны влияют на обмен углеводов, белков и липидов, усиливают процессы фосфорилирования и способствуют образованию веществ, аккумулирующих и освобождающих энергию в клетках и тканях организма. Глюкокортикоиды способствуют глюконеогенезу (т. е. образованию глюкозы за счет белков), отложению гликогена в печени и миокарде, мобилизации тканевых белков. Глюкокортикоидные гормоны повышают сопротивляемость организма к действию различных повреждающих агентов среды, например к тяжелым травмам, отравлению ядовитыми веществами и интоксикациям бактериальными токсинами, а также в других экстремальных состояниях, мобилизуя и усиливая защитные и компенсаторные реакции организма.
В то же время глюкокортикоиды усиливают гибель лимфоцитов и эозинофилов, приводя к лимфоцитопении и эозинопении крови, и ослабляют как воспалительные процессы, так и иммуногенез (образование антител).
Во внутренней сетчатой зоне эпителиальные тяжи теряют правильное расположение и, разветвляясь, образуют рыхлую сеть, в связи с чем данная зона коры получила свое название. Адренокортикоциты в этой зоне уменьшаются в объеме и становятся разнообразными по форме (кубическими, округлыми или многоугольными).
В сетчатой зоне вырабатывается андрогенный гормон (мужской половой гормон, близкий по химической природе и физиологическим свойствам к тестостерону семенника). Поэтому опухоли коры надпочечников у женщин нередко оказываются причиной развития вторичных половых признаков мужского пола, например усов и бороды. Кроме того, в сетчатой зоне образуются и женские половые гормоны (эстроген и прогестерон), но в небольших количествах.
Мозговая часть надпочечников отделена от корковой части тонкой, местами прерывающейся, внутренней соединительнотканной капсулой. Мозговое вещество надпочечников образовано скоплением сравнительно крупных клеток, преимущественно округлой формы, расположенных между кровеносными сосудами. Эти клетки являются видоизмененными симпатическими нейронами, в них содержатся катехоламины (норадреналин и адреналин).
По физиологическому действию оба катехоламина сходны, но норадреналин является медиатором, опосредующим передачу нервного импульса с постганглионарного симпатического нейрона на иннервируемый эффектор, тогда как адреналин оказывается гормоном и медиаторным свойством не обладает. Норадреналин и адреналин проявляют сосудосуживающее действие и повышают артериальное давление, но сосуды головного мозга и поперечно-полосатых мышц под влиянием адреналина расширяются. Адреналин повышает уровень глюкозы и молочной кислоты, усиливая распад гликогена в печени, а норадреналину это менее свойственно.
Кровоснабжение надпочечника осуществляется из надпочечниковых артерий.
Иннервация надпочечников представлена главным образом волокнами чревных и блуждающих нервов.
Тема 21. ПИЩЕВАРИТЕЛЬНАЯ СИСТЕМА
Пищеварительная система человека представляет собой пищеварительную трубку с расположенными рядом с ней, но вне ее железами (слюнными железами, печенью и поджелудочной железой), секрет которых участвует в процессе пищеварения. Иногда пищеварительную систему называют желудочно-кишечным трактом.
Процессом пищеварением называются процессы химической и механической обработки пищи с последующим всасыванием продуктов ее расщепления.
Роль желудочно-кишечного тракта в организме человека очень велика: из него идет поступление веществ, обеспечивающих организм необходимой энергией и строительными материалами для восстановления постоянно разрушающихся его структур.
Весь пищеварительный тракт весьма условно делят на три основных отдела – передний, средний и задний.
В передний отдел входят ротовая полость со всеми ее структурными компонентами, глотка и пищевод. В переднем отделе происходит главным образом механическая обработка пищи.
Средний отдел включает в себя желудок, тонкий и толстый кишечник, печень и поджелудочную железу. В этом отделе происходит химическая обработка пищи, всасывание продуктов ее расщепления и формирование каловых масс.
Задний отдел включает в себя каудальную часть прямой кишки, выполняющую функцию эвакуации непереваренных остатков пищи из пищеварительного канала.
Развитие пищеварительной системы
Тканевые источника развития
Энтодерма. На ранних стадиях (4-недельный эмбрион) зачаток пищеварительного тракта имеет вид энтеродермальной трубки (первичная кишка), замкнутой на обоих концах. В средней части первичная кишка сообщается при помощи желточного стебелька с желточным мешком. На переднем конце формируется жаберный аппарат.
Эктодерма. Направленные к слепым концам первичной кишки впячивания эктодермы образуют ротовую полость и анальную бухту.
Ротовая бухта (стомодеум) отделена от переднего конца первичной кишки ротовой (стокной) пластинкой.
Анальная бухта (проктодеум) отделена от задней кишки клоакальной мембраной.
Мезенхима. В состав стенки пищеварительной входят производные мезенхимы – прослойки соединительной ткани, гладкомышечные клетки и кровеносные сосуды.
Мезодерма образует мезотелий серозных покровов, поперечно-полосатые мышечные волокна.
Нейроэктодерма. Производные нейроэктодермы (в особенности нервного гребня) – существенная часть желудочно-кишечного тракта (энтеральная нервная система, часть эндокринных клеток).
Развитие переднего отдела желудочно-кишечного тракта
Развитие лица и ротовой полости. В развитии лица и ротовой полости участвуют эктодерма, мезенхима, нейроэктодерма (нервный гребень и эктодермальные плакоды).
Эктодерма дает начало многослойному плоскому эпителию кожи, железам и покровному эпителию слизистой оболочки ротовой полости.
Мезенхима. Производные мезенхимы головы развиваются из нескольких зачатков.
Мезенхима сомитов и латеральной пластинки головного отдела зародыша формирует произвольные мышцы черепно-лицевой области, собственно кожу и соединительную ткань дорсальной области головы.
Мезенхима нервного гребня образует структуры лица и глотки – хрящи, кости, сухожилия, собственно кожу, дентин, соединительно-тканную строму желез.
Эктодермальные плакоды. Часть чувствительных нейронов ганглия тройничного нерва (ganglion trigeminale) и ганглия коленца (ganglion geniculi) промежуточного нерва происходит из эктодермальных плакод. Из этого же источника развиваются все нейроны VIII (спиральный ганглий, ganglion spirale cochleae), Х (узловатый ганглий, ganglion nodosum), IX (каменистый ганглий, ganglion petrosum) ганглиев черепных нервов.
Лицо развивается из семи зачатков: двух рано сливающихся нижнечелюстных отростка, двух верхнечелюстных отростка, два латеральных носовых отростка и медиального носового отростока. Верхнечелюстные и нижнечелюстные отростки происходят из первой жаберной дуги.
В лицевой области к 4-й неделе формируется лобный выступ, расположенный по срединной линии и покрывающий передний мозг. Лобный выступ дает начало медиальному и латеральным носовым отросткам. Формирующиеся обонятельные ямки отделяют медиальный носовой отросток от латеральных. По направлению к срединной линии растут верхнечелюстные отростки, вместе с нижнечелюстным отростком образующие углы рта. Таким образом, вход в ротовую полость ограничен медиальным носовым отростком, парными верхнечелюстными отростками и нижнечелюстным отростком.
К 5-й неделе верхнечелюстные отростки отделены от латеральных носовых отростков носослезной бороздой, из которой позже развивается носослезный канал. На 6-й неделе в ходе формирования верхней челюсти растущие к срединной линии верхнечелюстные отростки сближают носовые отростки, которые одновременно увеличиваются и постепенно закрывают нижнюю часть лобного выступа. На 7-й неделе верхнечелюстные и мeдиальные носовые отростки срастаются, образуя губной (подносовой) желобок. Из материала срастающихся верхнечелюстных отростков формируется максиллярный сегмент, из которого развиваются первичное небо и премаксиллярная часть зубной дуги. Костные структуры лица формируются в конце 2 – начале 3-го месяца развития.
Развитие твердого неба. Развивающееся вторичное небо разделяет первичную ротовую полость на носовую и вторичную (окончательную) ротовую полость. На внутренней поверхности верхнечелюстных отростков образуются небные отростки. На 6 – 7-й неделе их края направлены наклонно вниз и лежат вдоль дна ротовой полости по бокам от языка. По мере развития нижней челюсти и увеличения объема ротовой полости язык опускается вниз, а края небных отростков поднимаются вверх до срединной линии. После срастания небных отростков и образования вторичного неба носовые камеры сообщаются с носоглоткой посредством окончательных хоан.
При незаращении медиального и латерального носовых отростков наблюдается щель верхней губы. Косая лицевая щель проходит от верхней губы к глазу по линии соединения верхнечелюстного и латерального носового отростков. При неполном соединении верхнечелюстного и нижнечелюстного отростков развивается ненормально широкий рот – макростомия. Помимо косметических дефектов, эти пороки челюстно-лицевой области вызывают у ребенка в первые дни жизни серьезные нарушения дыхания и питания. При недоразвитии небных отростков наблюдается расщелина твердого и мягкого неба. Иногда расщелина присутствует только в мягком небе.
Жаберный аппарат и его производные. В начальном отделе передней кишки образуется жаберный аппарат, участвующий в формировании лица, органов ротовой полости и шейной области. Жаберный аппарат состоит из пяти пар глоточных карманов и такого же количества жаберных дуг и щелей.
Развитие и роль глоточных карманов и жаберной щели. Из структур жаберного аппарата первыми появляются глоточные карманы. Это выпячивания энтодермы в области боковых стенок глоточного отдела первичной кишки.
Навстречу глоточным карманам энтодермы растут впячивания эктодермы шейной области, получившие название жаберных щелей.
Жаберные дуги. Материал между соседними глоточными карманами и щелями называют жаберными дугами. Их четыре, пятая жаберная дуга – рудиментарное образование. Жаберные дуги на переднебоковой поверхности шеи образуют валикообразное возвышение. В мезенхимную основу каждой жаберной дуги проникают кровеносные сосуды (аортальные дуги) и нервы. Вскоре в каждой из них развиваются мышцы и хрящевой скелет. Самая крупная – первая жаберная дуга, внечелюстная. Вторая жаберная дуга называется гиоидной. Меньшие по размерам третья, четвертая и пятая дуги не доходят до срединной линии и срастаются с расположенными выше. От нижнего края второй жаберной дуги растет жаберная складка (operculum), покрывающая снаружи нижние жаберные дуги. Эта складка срастается с кожным покровом шеи, образуя переднюю стенку глубокой ямки (sinus cervicalis), на дне которой располагаются нижние жаберные дуги. Этот синус сначала сообщается с внешней средой, а потом отверстие над ним зарастает. При незаращении шейного синуса на шее ребенка остается фистулезный ход, сообщающийся с глоткой, если происходит прорыв второй жаберной дуги.
Развитие преддверия полости рта. На 7-й неделе развития вблизи наружной части челюсти параллельно с образованием эпителиальной зубной пластинки возникает еще одно разрастание эпителия, называемое лабио-гингивальной пластинкой (lamina labio-gingivalis). Она образует борозду, отделяющую зачатки верхней и нижней челюсти от губы.
Развитие языка. Язык развивается из нескольких зачатков, имеющих вид бугорков и расположенных на дне первичной ротовой полости в области вентральных отделов жаберных дуг. На 8 – 9-й неделе начинается развитие сосочков на верхней поверхности передней части тела языка, тогда как лимфоидная ткань развивается в задней части слизистой оболочки языка. Мышцы языка происходят из миотомов верхних (передних) сомитов.
В закладке языка участвует материал всех четырех жаберных дуг. Два крупных боковых язычных бугорка и непарный язычный бугорок (tuberculum impar) происходят из первой жаберной дуги. Корень языка развивается из скобы, которая происходит из второй,третей, чертвертой жаберных дуг. Из материала между непарным язычным бугорком и скобой закладывается щитовидная железа. Выводной проток (язычно-щитовидный проток) ее зачатка открывается на поверхности зачатка языка слепым отверстием.
На 4-й неделе появляется непарный язычный бугорок (tuberculum impar), pacположенный по срединной линии между первой и второй жаберными дугами. Из этого бугорка развивается небольшая часть спинки языка, лежащая кпереди от слепого гретая (foramen coecum). Кроме того, на внутренней стороне первой жаберной дуги образуется два парных утолщения, называемых боковыми язычными бугорками. Из этих трех выступов формируются значительная часть тела языка и его кончик.
Корень языка возникает из утолщения слизистой оболочки, лежащего позади слепого отверстия, на уровне второй, третий и четвертой жаберных дуг. Это скоба (copula).
Непарный бугорок довольно быстро уплощается. Все зачатки языка срастаются между собой, образуя единый орган.
Граница между корнем и телом языка. В дальнейшем границей между корнем и телом языка служит линия расположения желобоватых сосочков. На вершине этого угла располагается слепое отверстие, устье язычно-щитовидного протока. Из остатков этого протока в толще языка могут развиваться эпителиальные кисты.
Пищеварительная трубка, несмотря на морфологические и физиологические особенности ее отделов, имеет общий план строения. Стенка ее состоит из слизистой оболочки, выстилающей трубку изнутри, подслизистой основы, мышечной оболочки и наружной оболочки, которая представлена серозной либо адвентициальной оболочкой.
Слизистая оболочка. Свое название она получила в связи с тем, что поверхность ее постоянно увлажняется выделяемой железами слизью. Эта оболочка состоит, как правило, из трех пластинок: эпителия, собственной пластинки слизистой оболочки и мышечной пластинки слизистой оболочки. Эпителий в переднем и заднем отделах пищеварительной трубки (в ротовой полости, глотке, пищеводе, каудальной части прямой кишки) многослойный плоский, а в среднем отделе, т. е. в желудке и кишечнике, – однослойный цилиндрический. Железы расположены либо эндоэпителиально (например, бокаловидные клетки), либо экзоэпителиально (в собственной пластинке слизистой оболочки и в подслизистой основе), либо за пределами пищеварительного канала (в печени, поджелудочной железе).
В состав слизистой оболочки входит собственная пластинка, которая лежит под эпителием, отделена от него базальной мембраной и представлена рыхлой волокнистой неоформленной соединительной тканью. В ней проходят кровеносные и лимфатические сосуды, нервные элементы, скопления лимфоидной ткани.
Расположением мышечной пластинки слизистой оболочки является граница с подслизистой основой. Данная пластинка состоит из нескольких слоев, образованных гладкими мышечными клетками.
Рельеф слизистой оболочки на протяжении всего пищеварительного канала неоднороден. Он может быть как гладким (губы, щеки), так и образовывать углубления (ямки в желудке, крипты в кишечнике), складки, ворсинки (в тонкой кишке).
Подслизистая основа представлена рыхлой волокнистой неоформленной соединительной тканью, она как бы соединяет слизистую оболочку с подлежащими образованиями (мышечной оболочкой или костной основой). Благодаря ей слизистая оболочка имеет подвижность и может образовывать складки.
Мышечную оболочку составляет гладкомышечная ткань, в этом случае расположение мышечных волокон может быть циркулярным (внутренний слой) и продольным (наружный слой).
Эти слои разделены соединительной тканью, в которой расположены кровеносные и лимфатические сосуды и межмышечное нервное сплетение. При сокращении мышечной оболочки происходит перемешивание и продвижение пищи в процессе пищеварения.
Серозная оболочка. Основная масса желудочно-кишечного тракта покрыта серозной оболочкой – висцеральным листком брюшины. Брюшина состоит из соединительно-тканной основы, в которой имеются сосуды и нервные элементы, и из мезотелия, окружающего ее снаружи. При этом по отношению к этой оболочке органы могут находиться нескольких состояниях: интроперитониально (орган покрыт ее на весь диаметр), мезоперитониально (орган покрыт ей всего на 2/3) и эстраперитониально (орган покрыт ей всего с одной стороны).
Некоторые отделы (пищевод, часть прямой кишки) не содержат серозной оболочки. В таких местах пищеварительный канал покрыт снаружи адвентициальной оболочкой, состоящей из соединительной ткани.
Кровоснабжение желудочно-кишечного тракта весьма обильное.
Самые мощные сплетения – в подслизистом слое, они тесно связаны с артериальными сплетениями, лежащими в собственной пластинке слизистой оболочки. В тонкой кишке артериальные сплетения формируются также в мышечной оболочке. Капиллярные сети образуются под эпителием слизистой оболочки, вокруг желез, крипт, желудочных ямок, внутри ворсинок, сосочков языка и в мышечных слоях. Вены также формируют сплетения подслизистой основы и слизистой оболочки.
Лимфатические капилляры принимают участие в образовании сети под эпителием, вокруг желез в собственной пластинке слизистой оболочки, а также в подслизистой основе и мышечной оболочке.
Эфферентная иннервация всех органов пищеварения происходит из ганглиев вегетативной нервной системы, расположенных либо вне пищеварительной трубки (экстрамуральные симпатические ганглии), либо в толще ее (интрамуральные парасимпатические ганглии).
Афферентная иннервация осуществляется окончаниями дендритов чувствительных нервных клеток, происходит за счет интрамуральных ганглиев, у которых окончания – дендриты от спинальных ганглиев. Чувствительные нервные окончания располагаются в мышцах, эпителии, волокнистой соединительной ткани и нервных ганглиях.
Ротовая полость
Слизистая оболочка, выстилающая ротовую полость, отличается следующими особенностями: наличием многослойного плоского эпителия, полным отсутствием или слабым развитием мышечной пластинки слизистой оболочки и отсутствием в некоторых участках подслизистого слоя. При этом в ротовой полости имеются места, где слизистая оболочка твердо сращена с подлежащими тканями и лежит непосредственно на мышцах (например, в спинке языка) или на кости (в деснах и твердом небе). Слизистая оболочка может образовывать складки, в которых располагаются скопления лимфоидной ткани. Такие участки называют миндалинами.
В слизистой оболочке находится много мелких кровеносных сосудов, просвечивающих через эпителий и придающих ей характерный розовый цвет. Хорошо увлажненный эпителий способен пропускать многие вещества в лежащие под ним кровеносные сосуды, поэтому во врачебной практике часто используется введение таких лекарств, как нитроглицерин, валидол и иное, через слизистую оболочку полости рта.
Губы. В губе различают три части – кожную, переходную (или красную) и слизистую. В толще губы находится поперечно-полосатая мускулатура. Кожная часть губы имеет строение кожи. Она покрыта многослойным плоским ороговевающим эпителием и снабжена сальными, потовыми железами и волосами. Эпителий этой части расположен на базальной мембране, под которой лежит рыхлая волокнистая соединительная ткань, образующая высокие сосочки, которые вдаются в эпителий.
Переходная (или красная) часть губы, в свою очередь, состоит из двух зон: наружной (гладкой) и внутренней (ворсинчатой). В наружной зоне роговой слой эпителия сохраняется, но становится тоньше и прозрачнее. В этой области нет волос, постепенно исчезают потовые железы, а сохраняются только сальные железы, открывающиеся своими протоками на поверхность эпителия. Сальных желез больше в верхней губе, особенно в области угла рта. Собственная пластинка слизистой оболочки является продолжением соединительно-тканной части кожи, ее сосочки в этой зоне невысокие. Внутренняя зона у новорожденных покрыта эпителиальными сосочками, которые иногда называют ворсинками. Эти эпителиальные сосочки по мере развития организма постепенно сглаживаются и становятся малозаметными. Для внутренней зоны переходной части губы взрослого человека характерен очень высокий, лишенный рогового слоя эпителий. В этой зоне, как правило, сальные железы отсутствуют. Собственная пластинка слизистой оболочки, вдаваясь в эпителий, образует очень высокие сосочки, в которых находятся многочисленные капилляры. Циркулирующая в них кровь просвечивает через эпителий и придает этой области красноватый оттенок. Сосочки содержат огромное количество нервных окончаний, поэтому красный край губы очень чувствителен.
Слизистая часть губы покрыта многослойным плоским неороговевающим эпителием, но иногда в клетках поверхностного слоя эпителия все же можно выявить небольшое количество зерен кератина.
Собственная пластинка слизистой оболочки здесь также образует сосочки, однако они менее высокие, чем в лежащей рядом ворсинчатой зоне губы. Мышечная пластинка слизистой оболочки отсутствует, поэтому собственная пластинка без резкой границы переходит в подслизистую основу, примыкающую непосредственно к поперечно-полосатым мышцам. В подслизистой основе слизистой части губы располагаются секреторные отделы слюнных губных желез. Их выводные протоки открываются на поверхности эпителия. Железы довольно крупные, иногда достигают величины горошины. По строению это сложные альвеолярно-трубчатые железы. По характеру секрета они относятся к смешанным слизисто-белковым железам. Выводные протоки их выстланы многослойным плоским неороговевающим эпителием. В подслизистой основе слизистой части губы проходят большие артериальные стволы, и там же находится обширное венозное сплетение, распространяющееся и в красную часть губы.
Щеки представляют собой мышечное образование, которое покрыто снаружи кожей, а изнутри слизистой оболочкой. В слизистой оболочке щеки различают три зоны – верхнюю (максиллярную), среднюю (промежуточную) и нижнюю (мандибулярную). При этом отличительной особенностью щек является то, что в слизистой оболочке отсутствует мышечная пластинка.
Максиллярная часть щеки имеет строение, сходное со строением слизистой части губы. Она покрыта многослойным плоским неороговевающим эпителием, сосочки собственной пластинки слизистой оболочки небольших размеров. В этих зонах имеется большое количество слюнных желез щеки.
Средняя (промежуточная) зона щеки идет от угла рта до ветви нижней челюсти. Сосочки собственной пластинки слизистой оболочки здесь, как и в переходной части губы, больших размеров. Слюнных желез не имеется. Все перечисленные особенности свидетельствуют о том, что промежуточная зона щеки, как и переходная часть губы, является зоной перехода кожи в слизистую оболочку ротовой полости.
В подслизистой основе располагается много кровеносных сосудов и нервов. Мышечная оболочка щеки образована щечной мышцей, в толще которой лежат щечные слюнные железы. Их секреторные отделы представлены смешанными белково-слизистыми и чисто слизистыми железами.
Десны – образования, покрытые слизистой оболочкой, плотно сращенной с надкостницей верхней и нижней челюстей. Слизистая оболочка выстлана многослойным плоским эпителием, который может ороговевать. Собственная пластинка слизистой оболочки образует длинные сосочки, которые состоят из рыхлой соединительной ткани. Сосочки становятся ниже в той части десны, которая непосредственно прилежит к зубам. В собственной пластинке слизистой оболочки располагаются кровеносные и лимфатические сосуды. Десна богато иннервирована. В эпителии находятся свободные нервные окончания, а в собственной пластинке слизистой оболочки – инкапсулированные и неинкапсулированные нервные окончания.
Твердое небо. Состоит из костной основы, покрытой слизистой оболочкой.
Слизистая оболочка твердого неба выстлана многослойным плоским неороговевающим эпителием, при этом подслизистая основа отсутствует.
Собственная пластинка слизистой оболочки твердого неба образована волокнистой неоформленной соединительной тканью.
Собственная пластинка слизистой оболочки имеет одну особенность: пучки коллагеновых волокон сильно переплетаются между собой и вплетаются в надкостницу, особенно хорошо это выражено в тех местах, где слизистая оболочка плотно сращена с костью (например, в области шва и зоны перехода в десны).
Мягкое небо и язычок представлены сухожильно-мышечной основой, покрытой слизистой оболочкой. В мягком небе и язычке различают ротовую (переднюю) и носовую (заднюю) поверхности.
Слизистая оболочка ротовой части мягкого неба и язычка покрыта многослойным плоским неороговевающим эпителием. Собственная пластинка слизистой оболочки, состоящая из рыхлой волокнистой неоформленной соединительной ткани, образует высокие узкие сосочки, глубоко вдающиеся в эпителий. Глубже имеется выраженная подслизистая основа, образованная рыхлой волокнистой неоформленной соединительной тканью с большим количеством жировых элементов и слизистыми слюнными железами. Выводные протоки этих желез открываются на ротовой поверхности мягкого неба и язычка.
Слизистая оболочка носовой поверхности мягкого неба покрыта однослойным призматическим многорядным мерцательным эпителием с большим количеством бокаловидных клеток.
Язык человека, кроме участия во вкусовом восприятии, механической обработке пищи и акте глотания, выполняет важную функцию органа речи. Основу языка составляет поперечно-полосатая мышечная ткань, сокращение которой носит произвольный характер.
Рельеф покрывающей его слизистой оболочки различен на нижней, боковых и верхней поверхностях языка. Эпителий на нижней стороне языка многослойный, плоский, неороговевающий, небольшой толщины. Слизистая оболочка верхней и боковых поверхностей языка неподвижно сращена с его мышечным телом. Она содержит особые образования – сосочки.
На поверхности языка имеется четыре вида сосочков: нитевидные, грибовидные, окруженные валом и листовидные.
Большую часть составляют нитевидные сосочки языка. По размерам они наиболее маленькие среди сосочков языка. По форме эти сосочки могут быть либо нитевидными, либо коническими. При некоторых формах заболеваний процесс отторжения поверхностных ороговевающих эпителиоцитов может замедляться, и эпителиальные клетки, накапливаясь в больших количествах на вершинах сосочков, образуют таким образом пленку (налет).
Второе место по частоте встречаемости занимают грибовидные сосочки языка, они находятся на спинке языка среди нитевидных сосочков (более всего на кончике языка и по его краям). Основная масса их имеет форму гриба.
Желобоватые сосочки языка (сосочки языка, окруженные валом) находятся на верхней поверхности языка в количестве от 6 до 12. Расположены они между телом и корнем языка вдоль пограничной линии. В отличие от взрослых листовидные сосочки языка хорошо развиты только у детей, находятся они по правому и левому краям языка.
Слизистая оболочка корня языка не имеет сосочков. Возвышения эпителия образуются за счет того, что в собственной пластинке слизистой оболочки имеются скопления лимфоидной ткани, достигающие иногда 0,5 см в диаметре. Между этими скоплениями эпителий образует углубления – крипты. В крипты впадают протоки многочисленных слизистых желез. Совокупность скоплений лимфоидной ткани в корне языка называется язычной миндалиной.
Мышцы языка образуют тело этого органа, они представлены поперечно-полосатым типом пучков, и располагаются в трех взаимно перпендикулярных направлениях.
Слюнные железы языка по характеру выделяемого ими секрета могут быть поделены на три вида – белковые, слизистые и смешанные.
Кровоснабжение языка осуществляется язычными артериями.
Мышцы языка иннервируются ветвями подъязычного нерва и барабанной струны.
Чувствительная иннервация передних 2/3 языка осуществляется ветвями тройничного нерва, задней 1/3 – ветвями языко-глоточного нерва.
Слюнные железы. В полости рта имеются отверстия выводных протоков трех пар больших слюнных желез – околоушных, подчелюстных и подъязычных.
Все слюнные железы представляют собой сложные альвеолярные или альвеолярно-трубчатые железы. Они включают в себя секреторные концы отделов и протоков, выводящие секрет.
Секреторные отделы по строению и характеру выделяемого секрета бывают трех типов – боковыми (серозными), слизистыми и смешанными (т. е. белково-слизистыми).
Выводные протоки слюнных желез подразделяются на вставочные, исчерченные, внутридольковые, междольковые выводные протоки и общий выводной проток.
Слюнные железы выполняют экзокринные и эндокринные функции.
Экзокринная функция заключается в регулярном отделении в ротовую полость слюны. Слюна состоит из воды (около 99%), белковых веществ, в том числе ферментов, небелковых веществ (солей), неорганических веществ, а также из клеточных элементов (клеток эпителия, лейкоцитов).
Эндокринная функция слюнных желез обеспечивается наличием в слюне биологически активных веществ типа гормонов (калликреина и брадикинина, инсулиноподобного вещества, фактора роста нервов, фактора роста эпителия, тимоциттрансформирующего фактора, фактора летальности и др.).
Зубы являются основной частью жевательного аппарата. Существует несколько видов зубов: вначале образуются выпадающие (молочные) зубы, а затем постоянные. В лунках челюстных костей зубы укрепляются плотной соединительной тканью – периодонтом, который в области шейки зуба образует циркулярную зубную связку. Коллагеновые волокна зубной связки имеют преимущественно радиальное направление, при этом с одной стороны они проникают в цемент корня зуба, а с другой – в альвеолярную кость. Периодонт выполняет не только механическую, но и трофическую функцию, так как в нем проходят кровеносные сосуды, питающие корень зуба.
Развитие зубов. Закладка молочных зубов начинается в конце 2-го месяца внутриутробного развития. В формировании зубного зачатка участвуют следующие структуры: зубная пластинка, эмалевый орган, зубной сосочек и зубной мешочек.
Зубная пластинка появляется на 7-й неделе внутриутробного развития как утолщение эпителия верхней и нижней челюстей. На 8-й неделе зубная пластинка врастает в подлежащую мезенхиму.
Эмалевый орган – локальное скопление клеток зубной пластинки, соответствующее положению зуба, определяет форму коронки будущего зуба. Клетки органа образуют наружный и внутренний эмалевый эпителий. Между ними локализована рыхлая масса клеток – эмалевая пульпа. Клетки внутреннего эмалевого эпителия дифференцируются в цилиндрические клетки, образующие эмаль, – амелобласты (энамелобласты). Эмалевый орган соединен с зубной пластинкой, а затем (на 3 – 5-м месяце внутриутробного развития) полностью отделяется от нее.
Амелобластома – доброкачественная, но локально инвазивная опухоль ротовой полости, происходящая из остатков эпителия эмалевого органа.
Зубной сосочек – скопление мезенхимных клеток, происходящих из нервного гребня и расположенных внутри бокаловидного эмалевого органа. Клетки образуют плотную массу, которая принимает форму коронки зуба. Периферические клетки дифференцируются в одонтобласты.
Зубной мешочек
Зубной мешочек – мезенхима, окружающая зачаток зуба. Клетки, вступающие в контакт с дентином корня, дифференцируются в цементобласты и откладывают цемент. Наружные клетки зубного мешочка формируют соединительную ткань периодонта.
Развитие молочного зуба. У двухмесячного плода зачаток зуба представлен только сформированной зубной пластинкой в виде эпителиального выроста в подлежащую мезенхиму. Конец зубной пластинки расширен. Из него в дальнейшее разовьется эмалевый орган. У трехмесячного плода сформированный эмалевый орган связан с зубной пластинкой при помощи тонкого эпителиального тяжа – шейки эмалевого органа. В эмалевом органе видны внутренние эмалевые клетки цилиндрической формы (амелобласты). По краю эмалевого органа внутренние эмалевые клетки переходят в наружные, лежащие на поверхности эмалевого органа и имеющие уплощенную форму. Клетки центральной части эмалевого органа (пульпы) приобретают звездчатую форму. Часть клеток пульпы, прилегающая непосредственно к слою энамелобластов, образует промежуточный слой эмалевого органа, состоящий из 2 – 3 рядов кубических клеток. Зубной мешочек окружает эмалевый орган и далее сливается у основания зубного зачатка с мезенхимой зубного сосочка. Зубной сосочек увеличивается в размерах еще глубже врастает в эмалевый орган. В него проникают кровеносные сосуды.
На поверхности зубного сосочка из мезенхимных клеток дифференцируются клетки с темной базофильной цитоплазмой, расположенные в несколько рядов. Этот слой отделен от амелобластов при помощи тонкой базальной мембраны. В окружности зубного зачатка формируются перекладины костной ткани зубных альвеол. На 6-м месяце развития ядра амелобластов перемещаются в сторону, противоположную первоначальному их положению. Теперь ядро располагается в бывшей апикальной части клетки, граничащей с пульпой эмалевого органа. В зубном сосочке определяется периферический слой правильно расположенных одонтобластов грушевидной формы, длинный отросток которых обращен к эмалевому органу. Эти клетки образуют узкую полоску неминерализованного предентина, снаружи от которого располагается некоторое количество зрелого минерализованного дентина. На стороне, обращенной к слою дентина, образуется полоска органического матрикса эмалевых призм. Образование дентина и эмали распространяется от вершины коронки к корню, который полностью формируется после того, как прорежется коронка.
Закладка постоянных зубов. Постоянные зубы закладываются в конце 4-го месяца внутриутробного развития. Из общей зубной пластинки позади каждого зачатка молочного зуба формируется зачаток постоянного зуба. Сначала молочный и постоянный зуб находятся в общей альвеоле. Позже их разделит костная перегородка. К 6 – 7 годам остеокласты разрушают эту перегородку и корень выпадающего молочного зуба.
Смена зубов. Первый набор зубов (молочные зубы) состоит из 10 в верхней и 10 в нижней челюстях. Прорезывание молочных зубов у ребенка начинается на 6 – 7-м месяце жизни. Первыми по обе стороны от средней линии в верхней и нижней челюстях прорезываются центральные (медиальные) и латеральные резцы. В дальнейшем латеральнее резцов появляются клыки, за которыми прорезываются по два моляра. Полный набор молочных зубов формируется приблизительно в двухлетнем возрасте. Молочные зубы служат в течение последующих 4 лет. Смена молочных зубов происходит в интервале от 6 до 12 лет. Постоянные передние зубы (клыки, малые коренные) сменяют соответствующие молочные зубы и называются замещающими постоянными зубами. Премоляры (постоянные малые коренные зубы) приходят на смену молочным молярам (большим коренным зубам). Зачаток второго большого коренного зуба формируется на 1-м году жизни, а третьего моляра (зуба мудрости) – к 5-му году. Прорезывание постоянных зубов начинается в возрасте 6 – 7 лет. Первым прорезывается большой коренной зуб (первый моляр), затем центральные и боковые резцы. В 9 – 14 лет прорезываются премоляры, клыки и второй моляр. Зубы мудрости прорезываются позже всех – в возрасте 18 – 25 лет.
Строение зуба. Он включает в себя две части: твердую и мягкую. В твердой части зуба выделяют эмаль, дентин и цемент, мягкие части зуба представлены так называемой пульпой. Эмаль представляет собой верхнюю оболочку и покрывает коронки зуба. Толщина эмали составляет 2,5 мм по режущему краю или в области жевательных бугорков коренных зубов и уменьшается по мере приближения к шейке.
В коронке под эмалью расположен характерно исчерченный дентин, сплошной массой продолжающийся в корень зуба. В образовании эмали (синтезе и секреции компонентов ее органического матрикса) участвуют клетки, отсутствующие в зрелой эмали и прорезавшемся зубе, – энамелобласты (амелобласты), так что регенерация эмали при кариесе невозможна.
Эмаль имеет высокий показатель преломления – 1,62, плотность эмали – 2,8 – 3,0 г на квадратный сантиметр площади.
Эмаль – самая твердая ткань организма. Однако, эмаль хрупкая. Ее проницаемость ограниченна, хотя в эмали имеются поры, через которые могут проникать водные и спиртовые растворы низкомолекулярных веществ. Сравнительно небольшого размера молекулы воды, ионы, витамины, моносахариды, аминокислоты могут медленно диффундировать в веществе эмали. Фториды (питьевой воды, зубной пасты) включаются в кристаллы эмалевых призм, увеличивая сопротивление эмали к кариесу. Проницаемость эмали увеличивается под действием кислот, спирта, при дефиците кальция, фосфора, фтора.
Эмаль образуют органические вещества, неорганические вещества, вода. Их относительное содержание в весовых процентах: 1 : 96 : 3. По объему: органических вещества 2%, воды – 9%, неорганических веществ – до 90%. Фосфат кальция, входящий в состав кристаллов гидроксиапатита, составляет 3/4 всех неорганических веществ. Кроме фосфата, в небольшом количестве присутствуют карбонат и фторид кальция – 4%. Из органических соединений имеется небольшое количество белка – две фракции (растворимая в воде и нерастворимая в воде и слабых кислотах), в эмали обнаружено небольшое количество углеводов и липидов.
Структурная единица эмали – призма диаметром около 5 мкм. Ориентация эмалевых призм – почти перпендикулярная по отношению к границе между эмалью и дентином. Соседние призмы формируют параллельные пучки. На параллельных по отношению к поверхности эмали срезах призмы имеют форму гнезда для ключа: удлиненная часть призмы одного ряда ложится в другом ряду между двумя телами соседних призм. Благодаря такой форме, в эмали почти нет пространств между призмами. Имеются призмы и иной (в сечении) формы: овальные, неправильных очертаний и т. д. Перпендикулярный по отношению к поверхности эмали и эмалево-дентинной границе ход призм имеет s-образные изгибы. Можно сказать, что призмы винтообразно изогнуты.
На границе с дентином, а также на поверхности эмали призмы отсутствуют (беспризменная эмаль). Окружающий призмы материал также имеет иные характеристики и носит имя «оболочка призмы» (так называемые склеивающее (или спайное) вещество), толщина такой оболочки около 0,5 мкм, местами оболочка отсутствует.
Эмаль – исключительно твердая ткань, что объясняется не просто высоким содержанием в ней солей кальция, но и тем, что фосфат кальция находится в эмали в виде кристаллов гидрокси-апатита. Соотношение кальция и фосфора в кристаллах в норме варьируется от 1,3 до 2,0. При увеличении этого коэффициента устойчивость эмали повышается. Кроме гидроксиапатита, присутствуют и другие кристаллы. Соотношение разных типов кристаллов: гидроксиапатита – 75%, карбонатапатита – 12%, хлор-апатита – 4,4%, фторапатита – 0,7%.
Между кристаллами присутствуют микроскопические пространства – микропоры, совокупность которых и является той средой, в которой возможна диффузия веществ. Помимо микропор, в эмали имеются пространства между призмами – поры. Микропоры и поры – материальный субстрат проницаемости эмали.
В эмали присутствуют три типа линий, отражающих неравномерный во времени характер образования эмали: поперечная исчерченность эмалевых призм, линии Ретциуса и так называемая линия новорожденности.
Поперечная исчерченность эмалевых призм имеет период около 5 мкм и соответствует суточной периодичности роста призм.
За счет различий в оптической плотности из-за меньшей минерализации на границе между элементарными единицами эмали формируются линии Ретциуса. Они имеют вид арок, расположенных параллельно на расстоянии 20 – 80 мкм. Линии Ретциуса могут прерываться, их особенно много в области шейки. Эти линии не достигают поверхности эмали в области жевательных бугорков и по режущему краю зуба. Элементарные единицы эмали – прямоугольные пространства, отграниченные друг от друга вертикальными линиями – границами между призмами и горизонтальными линиями (поперечная исчерченность призм). В связи с неодинаковой скоростью образования эмали в начале и в конце амелогенеза имеет значение и величина элементарных единиц, различающаяся между поверхностными и глубокими слоями эмали. Там, где линии Ретциуса достигают поверхности эмали, присутствуют борозды – перихимы, параллельными рядами идущие по поверхности эмали зуба.
Линия новорожденности разграничивает эмаль, образованную до и после рождения, видна как косая полоса, хорошо просматриваемая на фоне призм и проходящая под острым углом к поверхности зуба. Эта линия состоит преимущественно из беспризменной эмали. Линия новорожденности образуется в результате изменений в режиме формирования эмали при рождении. Эти эмали имеются в эмали всех временных зубов и, как правило, в эмали первого премоляра.
Поверхностные участки эмали плотнее подлежащих ее частей, здесь выше концентрация фтора, имеются борозды, ямки, возвышения, беспризменные участки, поры, микроотверстия. На поверхности эмали могут появиться разные наслоения, в том числе колонии микроорганизмов в сочетании с аморфной органикой (зубные бляшки). При отложении в область бляшки неорганических веществ образуется зубной камень.
Полосы Хантеро – Шрегера в эмали хорошо видны в поляризованном свете в виде чередующихся полос различной оптической плотности, направляющихся от границы между дентином практически перпендикулярно к поверхности эмали. Полосы отражают факт отклонения призм от перпендикулярного расположения по отношению к поверхности эмали или к эмалево-дентинной границе. В одних участках эмалевые призмы оказываются рассеченными продольно (светлые полосы), в других – поперечно (темные полосы).
Дентин – разновидность минерализованной ткани, составляет основную массу зуба. Дентин в области коронки покрыт эмалью, в области корня – цементом. Дентин окружает полость зуба в области коронки, а в области корня – корневой канал.
Дентин плотнее костной ткани и цемента, но много мягче эмали. Плотность – 2,1 г/см3. Проницаемость дентина значительно больше, чем проницаемость эмали, что связано не столько с проницаемостью самого вещества дентина, сколько с наличием в минерализованном веществе дентина канальцев.
Состав дентина: органические вещества – 18%, неорганические вещества – 70%, вода – 12%. По объему – органические вещества составляет 30%, неорганические вещества – 45%, вода – 25%. Из органических веществ главный компонент – коллаген, значительно меньше хондроитинсульфата и липидов. Дентин сильно минерализован, основной неорганический компонент – кристаллы гидроксиапатита. Помимо фосфата кальция, в дентине присутствует карбонат кальция.
Дентин пронизан канальцами. Направление канальцев – от границы между пульпой и дентином к дентиноэмалевому и дентиноцементному соединениям. Дентинные канальцы расположены параллельно друг другу, но имеют извилистый ход (S-образный на вертикальных шлифах зуба). Диаметр канальцев – от 4 мкм ближе к пульпарному краю дентина до 1 мкм по периферии дентина. Ближе к пульпе на долю канальцев приходится до 80% объема дентина, ближе дентиноэмалевому соединению – около 4%. В корне зуба ближе к дентиноцементной границе канальцы не только ветвятся, но и формируют петли – область зернистого слоя Томса.
На проходящем параллельно эмалево-дентинному соединению срезе видны неоднородности минерализации дентина. Просвет канальцев охвачен двойной концентрической манжеткой с плотной периферией – околоканальцевый дентин, зубные (или ноймановские) влагалища. Дентин ноймановских влагалищ минерализован сильнее, чем межканальцевый дентин. Самые наружные и самые внутренние части околоканальцевого дентина минерализованы слабее срединной части манжетки. В околоканальцевом дентине нет фибрилл коллагена, а кристаллы гидроксиапатита организованы различно в околоканальцевом и межканальцевом дентине. Ближе к предентину околоканальцевый дентин практически отсутствует. Околоканальцевый дентин образуется постоянно, поэтому у взрослых околоканальцевого дентина существенно больше, чем у детей, соответственно проницаемость дентина у детей выше.
В разных частях зуба дентин неоднороден.
Первичный дентин сформирован в ходе массового дентиногенеза. В плащевом (поверхностном) и околопульпарном дентине ориентация коллагеновых волокон различна. Плащевой дентин минерализован меньше околопульпарного дентина. Плащевой дентин расположен на границе с эмалью. Околопульпарный дентин – основная масса дентина.
Зернистый и гиалиновый слои дентина. В корне зуба между основной массой дентина и бесклеточным цементом расположены зернистый и гиалиновый слои дентина. В гиалиновом слое ориентация волокон войлокообразная. Зернистый слой состоит из чередующихся участков гипо– или совсем неминерализованного дентина (интерглобулярные пространства) и полностью минерализованного дентина в виде шаровидных образований (дентинных шаров или калькосферитов).
Вторичный дентин (или дентин раздражения) откладывается между основной массой дентина (первичным дентином) и предентином. Дентин раздражения постоянно образуется в течение всей жизни при стирании жевательных поверхностей или разрушении дентина.
Регулярный дентин (организованный дентин) расположен в области корня зуба.
Нерегулярный дентин раздражения (неорганизованный дентин) расположен в верхушечной части полости зуба.
Предентин (или неминерализованный дентин) расположен между слоем одонтобластов и дентина. Предентин – новообразованный и неминерализованный дентин. Между предентином и околопульпарным дентином располагается пластинка минерализующегося предентина – промежуточный дентин обызвествления.
В дентине имеется несколько типов структурных линий. Линии перпендикулярны по отношению к дентинным канальцам. Различают следующие основные типы линий: связанные с изгибами дентинных канальцев линии Шрегера и Оуэна, связанные с неравномерной минерализацией, нарушениями минерализации и ее ритмичностью – линии Эбнера и линии минерализации. Кроме того, имеется линия новорожденности.
Линии Оуэна видны в поляризованном свете и формируются при наложении друг на друга вторичных изгибов дентинных канальцев. Контурные линии Оуэна довольно редки в первичном дентине, они чаще расположены на границе между первичным и вторичным дентином.
Это линии расположены перпендикулярно канальцам на расстоянии около 5 мкм друг от друга.
Линии минерализации формируются за счет неравномерной скорости обызвествления при дентиногенезе. Так как фронт минерализации не обязательно строго параллелен предентину, ход линий может быть извилистым.
Линии новорожденности, как и в эмали, отражают факт изменения режима дентиногенеза при рождении. Эти линии выражены в молочных зубах и в первом постоянном моляре.
Цемент покрывает дентин корня тонким слоем, утолщающимся к вершине корня. Цемент, расположенный ближе к шейке зуба, не содержит клеток и называется бесклеточным. Верхушку корня одевает цемент, содержащий клетки, – цементоциты (клеточный цемент). Бесклеточный цемент состоит из коллагеновых волокон и аморфного вещества. Клеточный цемент напоминает грубоволокнистую костную ткань, но не содержит кровеносных сосудов.
Пульпа – мягкая часть зуба, представлена рыхлой соединительной тканью и состоит из периферического, промежуточного и центрального слоев. Периферический слой содержит одонтобласты – аналоги остеобластов кости – высокие цилиндрические клетки с отростком, идущим от апикального полюса клетки к границе между дентином и эмалью. Одонтобласты секретируют коллаген, гликозаминогликаны (хондроитинсульфат) и липиды, входящие в состав органического матрикса дентина. По мере минерализации предентина (необызвествленного матрикса) отростки одонтобластов оказываются замурованными в дентинных канальцах. В промежуточном слое расположены предшественники одонтобластов и формирующиеся коллагеновые волокна. Центральный слой пульпы – рыхлая волокнистая соединительная ткань с множеством анастомозирующих капилляров и нервных волокон, терминали которых разветвляются в промежуточном и периферическом слоях. У пожилых людей в пульпе часто обнаруживаются неправильной формы обызвествленные образования – дентикли. Истинные дентикли состоят из дентина, окруженного снаружи одонтобластами. Ложные дентикли – концентрические отложения обызвествленного материала вокруг некротизировавшихся клеток.
Глотка
Это место пересечения дыхательного и пищеварительного путей. Соответственно функциональным условиям в глотке различают три отдела, которые имеют различное строение, – носовой, ротовой и гортанный. Все они отличаются строением слизистой оболочки, которая представлена различными видами эпителиев.
Слизистая оболочка носового отдела глотки покрыта многорядным мерцательным эпителием, содержит смешанные железы (респираторный тип слизистой оболочки).
Слизистая оболочка ротового и гортанного отделов выстлана многослойным плоским эпителием, располагающимся на собственной пластинке слизистой оболочки, в которой имеется хорошо выраженный слой эластических волокон.
Пищевод
Пищевод представляет собой полую трубку, которая состоит из слизистой оболочки, подслизистой основы, мышечной и адвентициальной оболочек.
Слизистая оболочка вместе с подслизистой основой образует в пищеводе 7 – 10 продольно расположенных складок, вдающихся в его просвет.
Слизистая оболочка пищевода состоит из эпителия, собственной и мышечной пластинок. Эпителий слизистой оболочки многослойный, плоский, неороговевающий.
Собственная пластинка слизистой оболочки пищевода представляет собой слой рыхлой волокнистой неоформленной соединительной ткани, вдающейся в виде сосочков в эпителий.
Мышечная пластинка слизистой оболочки пищевода состоит из расположенных вдоль него пучков гладких мышечных клеток, окруженных сетью эластических волокон.
Подслизистая основа пищевода, образованная рыхлой волокнистой неоформленной соединительной тканью, обеспечивает большую подвижность слизистой оболочки по отношению к мышечной оболочке. Вместе со слизистой она образует многочисленные продольные складки, которые расправляются во время проглатывания пищи. В подслизистой основе находятся собственные железы пищевода.
Мышечная оболочка пищевода состоит из внутреннего циркулярного и наружного продольного слоев, разделенных прослойкой рыхлой волокнистой неоформленной соединительной ткани. При этом в верхнем отделе мышцы пищевода относятся к поперечно-полосатой ткани, в среднем – к поперечно-полосатой ткани и гладкой мускулатуре, а в нижнем – только к гладкой.
Адвентициальная оболочка пищевода состоит из рыхлой волокнистой неоформленной соединительной ткани, которая, с одной стороны, связана с прослойками соединительной ткани в мышечной оболочке, а с другой – с окружающей пищевод соединительной тканью средостения.
Брюшной отдел пищевода покрыт серозной оболочкой.
Кровоснабжение пищевода производится из артерии, входящей в пищевод, при этом образуются сплетения в подслизистой основе (крупнопетлистые и мелкопетлистые), из которых кровь поступает в крупнопетлистое сплетение собственной пластинки слизистой оболочки.
Иннервация. Интрамуральный нервный аппарат образован связанными между собой тремя сплетениями: адвентициальным (наиболее развитым в средней и нижней третях пищевода), субадвентициальным (лежащим на поверхности мышечной оболочки и хорошо выраженным только в верхних частях пищевода), межмышечным (находящимся между циркулярным и продольным мышечными слоями).
Желудок
Главной из функций желудка является секреторная. Она заключается в выработке железами желудочного сока. В его состав входят ферменты пепсин (способствующий расщеплению белков), химозин (способствующий створаживанию молока), липаза (способствующая расщеплению липидов), а также соляная кислота и слизь.
Механическая функция желудка состоит в перемешивании пищи с желудочным соком и проталкивании переработанной пищи в двенадцатиперстную кишку.
Также стенкой желудка вырабатывается антианемический фактор, который способствует поглощению витамина В12.
Эндокринная функция желудка заключается в выработке ряда биологически активных веществ – гастрина, гистамина, серотонина, мотилина, энтероглюкагона и др. Вместе эти вещества оказывают стимулирующее или тормозящее действие на моторику и секреторную активность железистых клеток желудка и других отделов пищеварительного тракта.
Строение. Стенка желудка состоит из слизистой оболочки, подслизистой основы, мышечной и серозной оболочек.
Слизистая оболочка желудка имеет неровную поверхность из-за наличия в ней трех видов образований – складок, полей и ямок.
Эпителий, выстилающий поверхность слизистой оболочки желудка и ямок, однослойный цилиндрический. Особенность этого эпителия – его железистый характер: все эпителиальные клетки постоянно выделяют мукоидный (слизеподобный) секрет. Каждая железистая клетка четко подразделяется на две части: базальную и апикальную.
Собственная пластинка слизистой оболочки желудка представлена рыхлой волокнистой неоформленной соединительной тканью. В ней в большем или меньшем количестве всегда имеются скопления лимфоидных элементов в виде либо диффузных инфильтратов, либо солитарных (одиночных) лимфатических фолликулов.
Мышечная пластинка слизистой оболочки желудка располагается на границе с подслизистой основой. Она состоит из трех слоев, образованных гладкой мышечной тканью: внутреннего и наружного циркулярных и среднего продольного. Каждый из этих слоев состоит из пучков гладких мышечных клеток.
Железы желудка в различных его отделах имеют неодинаковое строение. Различают три вида желудочных желез: собственные желудочные, пилорические и кардиальные.
Собственные железы желудка содержат несколько видов железистых клеток – главные, париетальные (обкладочные), слизистые, шеечные и эндокринные (аргирофильные).
Главные клетки собственных желез располагаются преимущественно в области их дна и тел. В них различают базальную и апикальную части. Базальная часть клетки расположена основанием на базальной мембране, граничащей с собственной пластинкой слизистой оболочки, и обладает хорошо выраженной базофилией. В апикальной части клетки обнаруживаются гранулы белкового секрета. Главные клетки секретируют пепсиноген – профермент, который в присутствии соляной кислоты превращается в активную форму – пепсин. Предполагают, что химозин, расщепляющий белки молока, также вырабатывается главными клетками.
Париетальные клетки собственных желез располагаются снаружи от главных и слизистых клеток, плотно прилегая к их базальным концам. По размерам они больше главных клеток, форма их неправильно округлая.
Основная роль париетальных клеток собственных желез желудка состоит в выработке хлоридов, из которых образуется соляная кислота.
Слизистые клетки собственных желез желудка представлены двумя видами. Одни располагаются в теле собственных желез и имеют уплотненное ядро в базальной части клеток.
В апикальной части этих клеток обнаружено множество круглых или овальных гранул, небольшое количество митохондрий и пластинчатый комплекс. Другие слизистые клетки (шеечные) располагаются только в шейке собственных желез.
Пилорические железы желудка расположены в небольшой зоне около его выхода в двенадцатиперстную кишку. Секрет, вырабатываемый пилорическими железами, имеет щелочную реакцию. В шейке желез расположены также промежуточные (шеечные) клетки, которые уже были описаны в собственных железах желудка.
Кардиальные железы желудка – простые трубчатые железы с сильно разветвленными концевыми отделами. По-видимому, секреторные клетки этих желез идентичны клеткам, выстилающим пилорические железы желудка и кардиальные железы пищевода.
Эндокринные аргирофильные клетки. В желудке по морфологическим, биохимическим и функциональным признакам выделено несколько видов эндокринных клеток.
ЕС-клетки – самая большая группа клеток, располагаются в области дна желез между главными клетками. Эти клетки секретируют серотонин и мелатонин.
G-клетки (гастринпродуцирующие) находятся в основном в пилорических железах, а также в кардиальных, располагаясь в области их тела и дна, иногда шейки. Выделяемый ими гастрин стимулирует секрецию пепсиногена главными клетками и соляной кислоты – париетальными, а также моторику желудка.
Р-клетки секретируют бомбезин, стимулирующий выделение соляной кислоты и панкреатического сока, богатого ферментами, а также усиливают сокращение гладкой мускулатуры желчного пузыря.
ЕСХ-клетки (энтерохромаффиноподобные) характеризуются разнообразием формы и располагаются главным образом в теле и дне фундальных желез. Эти клетки вырабатывают гистамин, который регулирует секреторную активность париетальных клеток, вырабатывающих соляную кислоту.
Подслизистая основа желудка состоит из рыхлой волокнистой неоформленной соединительной ткани, содержащей большое количество эластических волокон. В этом слое находятся артериальные и венозные сплетения, сеть лимфатических сосудов и подслизистое нервное сплетение.
Мышечная оболочка желудка характеризуется слабым развитием в области его дна, хорошей выраженностью в теле и достижением наибольшего развития в привратнике. В мышечной оболочке желудка различают три слоя, образованные гладкой мышечной тканью.
Серозная оболочка желудка образует наружную часть его стенки. Ее основу составляет рыхлая волокнистая неоформленная соединительная ткань, прилегающая к мышечной оболочке желудка. С поверхности эта соединительно-тканная прослойка покрыта однослойным плоским эпителием – мезотелием.
Артерии, питающие стенку желудка, проходят через серозную и мышечную оболочки, отдавая им соответствующие ветви, а далее переходят в мощное сплетение в подслизистой основе. К основным источникам питания относят правую и левую желудочковые артерии. От желудка кровь оттекает в портальную вену.
Иннервация. Желудок имеет два источника эфферентной иннервации – парасимпатический (от блуждающего нерва) и симпатический (из пограничного симпатического ствола).
В стенке желудка располагаются три нервных сплетения – межмышечное, подслизистое и субсерозное.
Тонкая кишка
В тонкой кишке подвергаются химической обработке все виды питательных веществ – белки, жиры и углеводы. В переваривании белков участвуют ферменты энтерокиназа, киназоген и трипсин, расщепляющие простые белки, эрепсин (смесь пептидаз), расщепляющий пептиды до аминокислот, и нуклеаза, которая переваривает сложные белки (нуклеопротеиды). Переваривание углеводов происходит за счет амилазы, мальтозы, сахарозы, лактозы и фосфатазы, а жиров – фермента липазы.
В тонкой кишке происходит также процесс всасывания продуктов расщепления белков, жиров и углеводов в кровеносные и лимфатические сосуды.
Также тонкая кишка выполняет механическую функцию: проталкивает химус в каудальном направлении.
Эндокринная функция, выполняемая специальными секреторными клетками, заключается в выработке биологически активных веществ – серотонина, гистамина, мотилина, секретина, энтероглюкагона, холецистокинина, панкреозимина, гастрина и ингибитора гастрина.
Строение. Стенка тонкой кишки состоит из слизистой оболочки, подслизистой основы, мышечной и серозной оболочек.
Рельеф благодаря наличию ряда образований (складок, ворсинок и крипт) является весьма специфичным для слизистой оболочки тонкой кишки.
Эти структуры увеличивают общую поверхность слизистой оболочки тонкой кишки, что способствует выполнению его основных функций.
С поверхности каждая кишечная ворсинка выстлана однослойным цилиндрическим эпителием. В эпителии различают три вида клеток – каемчатые, бокаловидные и эндокринные (аргирофильные).
Энтероциты с исчерченной каемкой составляют основную массу эпителиального пласта, покрывающего ворсинку. Они характеризуются выраженной полярностью строения, что отражает их функциональную специализацию – обеспечение резорбции и транспорта веществ, поступающих с пищей.
На апикальной поверхности клеток видна каемка, образованная множеством микроворсинок. Из-за такого большого количества ворсинок поверхность всасывания кишки увеличивается в 30 – 40 раз.
Выявлено, что расщепление пищевых веществ и всасывание их наиболее интенсивно происходят в области исчерченной каемки. Этот процесс получил название пристеночного пищеварения в отличие от полостного, совершающегося в просвете кишечной трубки, и внутриклеточного.
Бокаловидные кишечные. По строению это типичные слизистые клетки. В них наблюдаются циклические изменения, связанные с накоплением и последующим выделением слизи.
Под эпителием ворсинки находится слабо выраженная базальная мембрана, за которой следует рыхлая волокнистая неоформленная соединительная ткань собственной пластинки слизистой оболочки.
В строме ворсинки всегда присутствуют отдельные гладкие мышечные клетки: производные мышечного слоя слизистой оболочки. Пучки гладких мышечных клеток обвиты сетью ретикулярных волокон, которые связывают их со стромой ворсинки и базальной мембраной.
Сокращение миоцитов способствует всасыванию продуктов гидролиза пищи в кровь и лимфу ворсин кишечника.
Кишечные крипты тонкой кишки представляют собой трубчатые углубления эпителия, лежащие в собственной пластинке ее слизистой оболочки, а устье открывается в просвет между ворсинками.
Эпителиальная выстилка кишечных крипт содержит следующие виды клеток: каемчатые, безкаемчатые кишечные клетки, бокаловидные, эндокринные (аргирофильные) и кишечные клетки с ацидофильной зернистостью (клетки Панета). Кишечные энтероциты с исчерченной каемкой составляют основную массу эпителиальной выстилки крипт.
Собственная пластинка слизистой оболочки тонкой кишки с основном состоит из большого количества ретикулярных волокон. Они образуют густую сеть по всей собственной пластинке и, подходя к эпителию, участвуют в образовании базальной мембраны. С ретикулярными волокнами тесно связаны отростчатые клетки с бледным ядром овальной формы. По виду они напоминают ретикулярные клетки кроветворных органов.
В слизистой оболочке много одиночных лимфатических фолликулов и агрегатов фолликулов. Одиночные (солитарные) лимфатические фолликулы встречаются на всем протяжении тонкой кишки. Крупные фолликулы, лежащие в дистальных отделах тонкой кишки, проникают в мышечную пластинку слизистой оболочки и располагаются частично в подслизистой основе. Более крупные скопления лимфоидной ткани – агрегаты (или групповые лимфатические фолликулы (пейеровы бляшки)), как правило, располагаются в подвздошной кишке, но иногда встречаются в тощей и двенадцатиперстной кишках.
В подслизистой основе находятся сосуды и нервные сплетения.
Мышечная оболочка представлена двумя слоями гладкомышечной ткани – внутренним (циркулярным) и наружным (продольным).
Серозная оболочка покрывает кишку со всех сторон, за исключением двенадцатиперстной кишки, которая покрыта брюшиной только спереди.
Кровоснабжение тонкой кишки осуществляется за счет артерий, входящих в стенку тонкой кишки с образованием в ней сплетения во всех слоях оболочки кишки.
Лимфатические сосуды тонкой кишки представлены очень широко разветвленной сетью. В каждой кишечной ворсинке есть центрально расположенный, слепо оканчивающийся на ее вершине лимфатический капилляр.
Иннервация. Тонкая кишка иннервируется симпатическими и парасимпатическими нервами.
Афферентная иннервация осуществляется чувствительным мышечно-кишечным сплетением, образованным чувствительными нервными волокнами спинальных ганглиев и их рецепторными окончаниями.
Эфферентная парасимпатическая иннервация осуществляется за счет мышечно-кишечного и подслизистого нервных сплетений. Мышечно-кишечное сплетение наиболее развито в двенадцатиперстной кишке, где наблюдаются многочисленные, плотно расположенные крупные ганглии.
Толстая кишка
В толстой кишке происходит всасывание воды из химуса и формирование каловых масс. В толстой кишке выделяется значительное количество слизи, которая облегчает продвижение содержимого по кишечнику и способствует склеиванию непереваренных частиц пищи. Также в толстой кишке происходят процессы выделения. Через слизистую оболочку этой кишки выделяется ряд веществ, например кальций, магний, фосфаты, соли тяжелых металлов и др. Также есть сведения о том, что в толстой кишке вырабатываются витамин К, в этом принимает участие бактериальная флора, постоянно присутствующая в кишечнике. С помощью бактерий в толстой кишке происходит переваривание клетчатки.
В толстой кишке выделяют ободочную кишку и прямую.
Ободочная кишка. Стенка ободочной кишки так же, как и всего желудочно-кишечного тракта, состоит из слизистой оболочки, подслизистой основой, мышечной и серозной оболочек.
В слизистой оболочке имеется большое количество складок и крипт, значительно увеличивающих ее поверхность, но отсутствуют ворсинки.
Складки образуются на внутренней поверхности кишки из слизистой оболочки и подслизистой основы. Они располагаются поперек и имеют полулунную форму (отсюда название – полулунные складки). Крипты в ободочной кишке развиты лучше, чем в тонкой. При этом эпителий однослойный призматический, в его состав входят клетки кишечного эпителия с исчерченной каемкой, бокаловидные и кишечные клетки без каемки.
Собственная пластинка слизистой оболочки состоит из рыхлой волокнистой неоформленной соединительной ткани. Ее тонкие прослойки видны между кишечными криптами.
Мышечная пластинка слизистой оболочки выражена сильнее, чем в тонкой кишке, и состоит из двух полосок. Внутренняя ее полоска более плотная, образована преимущественно циркулярно расположенными пучками гладких мышечных клеток. Наружная полоска представлена пучками гладких мышечных клеток, ориентированных частично продольно, частично косо по отношению к оси кишки.
Подслизистая основа состоит из рыхлой волокнистой неоформленной соединительной ткани, в которой много жировых клеток. Здесь располагаются сосудистые, а также нервные подслизистые сплетения. В подслизистой основе ободочной кишки всегда очень много лимфатических фолликулов, они распространяются сюда из собственной пластинки слизистой оболочки.
Мышечная оболочка представлена двумя слоями гладкой мышечной ткани: внутренним (или циркулярным) и наружным (или продольным), который образует три ленты, тянущиеся вдоль всей длины кишки.
В частях кишки, лежащих между лентами, обнаруживается лишь тонкий слой, состоящий из незначительного количества продольно расположенных пучков гладких мышечных клеток. Эти участки образуют вздутия – гаустры.
Серозная оболочка покрывает ободочную кишку, однако есть отделы, покрытые серозной оболочкой со всех сторон, а есть отделы, покрытые только с трех сторон – мезоперитониально (восходящий и нисходящие отделы толстой кишеки).
Червеобразный отросток является рудиментарным образованием толстой кишки, в нем имеются большие скопления лимфоидной ткани. Слизистая оболочка червеобразного отростка имеет крипты, которые расположены радиально по отношению к его просвету.
Эпителий слизистой оболочки цилиндрический, каемчатый, с небольшим количеством бокаловидных клеток.
Собственная пластинка слизистой оболочки состоит из рыхлой волокнистой неоформленной соединительной ткани, которая без резкой границы (вследствие слабого развития мышечной пластинки слизистой) переходит в подслизистую основу.
В подслизистой основе червеобразного отростка, образованной рыхлой волокнистой неоформленной соединительной тканью, залегают кровеносные сосуды и нервное подслизистое сплетение.
Мышечная оболочка также образована двумя слоями.
Червеобразный отросток осуществляет защитную функцию. Установлено, что в фолликулах происходит дифференцировка В-лимфоцитов.
Прямая кишка. Прямая кишка является продолжением ободочной кишки.
В анальной части кишки различают три зоны – столбчатую, промежуточную и кожную. В столбчатой зоне продольные складки образуют заднепроходные столбы.
Слизистая оболочка прямой кишки состоит из эпителия, собственной и мышечной пластинок. Эпителий в верхнем отделе прямой кишки однослойный, цилиндрический, в столбчатой зоне нижнего отдела – многослойный, кубический, в промежуточной – многослойный, плоский, неороговевающий, в кожной – многослойный, плоский, ороговевающий. Переход от многослойного, кубического эпителия к многослойному, плоскому выделяется в виде зигзагообразной линии.
Собственная пластинка слизистой оболочки образована рыхлой волокнистой неоформленной соединительной тканью. Она принимает участие в формировании складок прямой кишки. Здесь располагаются одиночные лимфатические фолликулы и сосуды. В области столбчатой зоны в этой пластинке залегает сеть тонкостенных кровеносных лакун, кровь из которых оттекает в геморроидальные вены.
В промежуточной зоне прямой кишки собственная пластинка содержит большое количество эластических волокон, элементов лимфоидной ткани.
В кожной зоне, окружающей анальное отверстие, к сальным железам присоединяются волосы. Потовые железы в собственной пластинке слизистой оболочки появляются на расстоянии 1 – 1,5 см от ануса, представляют собой трубчатые железы.
Мышечная пластинка слизистой оболочки, как и в других отделах толстой кишки, состоит из двух полосок.
Подслизистая основа представлена рыхлой волокнистой не-оформленной соединительной тканью. В ней располагаются сосудистые и нервные сплетения. В подслизистой основе лежит сплетение геморроидальных вен. В случае нарушения тонуса стенки этих сосудов появляются варикозные расширения.
Мышечная оболочка образована гладкой мышечной тканью и состоит из двух слоев – внутреннего (циркулярного) и наружного (продольного). Циркулярный слой на разных уровнях прямой кишки образует два утолщения, которые выделяются как отдельные анатомические образования – сфинктеры.
Серозная оболочка покрывает прямую кишку в верхней ее части, в нижних отделах прямая кишка имеет соединительнотканную оболочку.
Печень
Печень – одна из крупных желез пищеварительного тракта, выполяющая многочисленные функции.
В ней происходят следующие процессы:
1) обезвреживание различных продуктов обмена веществ;
2) разрушение различных биологически активных веществ;
3) разрушение половых гормонов;
4) различные защитные реакции организма;
5) она принимает участие в образовании гликогена (основного источника глюкозы);
6) образование различных белков;
7) кроветворение;
8) в ней накапливаются витамины;
9) образование желчи.
Строение. Печень – это непарный орган, находящийся в брюшной полости, покрытый брюшиной со всех сторон. В ней выделяют несколько долей, 8 сегментов.
Основной структурно-функциональной единицей печени является печеночная долька. Она представляет собой шестигранную призму из печеночных клеток (гепатоцитов, собранных в виде балок). Каждая долька покрыта соединительно-тканной оболочкой, в которой проходят желчные протоки и кровеносные сосуды. От периферии дольки (по системе капилляров портальной вены и печеночной артерии) к ее центру кровь по кровеносным сосудам проходит, очищаясь, и по центральной вене печеночной дольки попадает в собирательные вены, далее в печеночные вены и в нижнюю полую вену.
Между рядами гепатоцитов, образующих балку печеночной дольки, проходят желчные капилляры. Эти капилляры не имеют собственной стенки. Их стенка образована соприкасающимися поверхностями гепатоцитов, на которых имеются небольшие углубления, совпадающие друг с другом и вместе образующие просвет желчного капилляра.
Суммируя выше сказанное, можно сделать заключение о том, что у гепатоцита имеется две поверхности: одна – капиллярная (обращенная к кровеносному сосуду), другая – билиарная (обращенная к просвету желчного капилляра).
При этом надо знать, что просвет желчного капилляра не сообщается с межклеточной щелью благодаря тому, что мембраны соседних гепатоцитов в этом месте плотно прилегают друг к другу, образуя замыкательные пластинки, что, в свою очередь, предотвращает проникновение желчи в кровеносные сосуды. В этих случаях желчь разносится по всему организму и окрашивает его ткани в желтый цвет.
Основные клеточные типы
Гепатоциты образуют печеночные пластинки (тяжи), содержат в изобилии практически все органеллы. Ядро имеет 1 – 2 ядрышка и чаще всего расположено в центре клетки. 25% гепатоцитов имеют два ядра. Для клеток характерна полиплоидия: 55 – 80% гепатоцитов – тетраплоидны, 5 – 6% – октаплоидны и только 10% – диплоидны. Хорошо развита гранулярная и гладкая эндоплазматическая сеть. Элементы комплекса Гольджи присутствуют в различных отделах клетки. Количество митохондрий в клетке может достигать 2000. Клетки содержат лизосомы и пероксисомы. Последние имеют вид окруженного мембраной пузырька диаметром до 0,5 мкм. Пероксисомы содержат окислительные ферменты – аминооксидазу, уратоксидазу, каталазу. Как и в митохондриях, в пероксисомах происходит утилизация кислорода. Прямое отношению к образованию этих органелл имеет гладкая эндоплазматическая сеть. В цитоплазме присутствуют многочисленные включения, преимущественно гликогена. Каждый гепатоцит имеет два полюса – синусоидный и желчный (или билиарный).
Синусоидный полюс обращен к пространству Диссе. Он покрыт микроворсинками, которые участвуют в транспорте веществ из крови в гепатоциты и обратно. Микроворсинки гепатоцитов соприкасаются с поверхностью эндотелиальных клеток. Билиарный полюс также имеет микроворсинки, что облегчает экскрецию компонентов желчи. В месте контакта билиарных полюсов двух гепатоцитов образуются желчные капилляры.
Холангиоциты (или эпителиальные клетки внутрипеченочных желчных протоков) составляют 2 – 3% общей популяции клеток печени. Общая протяженность внутрипеченочных желчных протоков составляет приблизительно 2,2 км, что играет важную роль в формировании желчи. Холангиоциты участвуют в транспорте белков и активно секретируют воду и электролиты.
Стволовые клетки. Гепатоциты и холангиоциты относятся к растущим клеточным популяциям энтодермального эпителия. Стволовыми клетками для тех и других являются овальные клетки, расположенные в желчных протоках.
Синусоидные клетки печени. Известны и интенсивно изучаются четыре клеточных типа, постоянно присутствующих в синусоидах печени: эндотелиальные клетки, звездчатые клетки Купфера, клетки Ито и ямочные клетки. Согласно данным морфометрического анализа синусоидные клетки занимают около 7% объема печени.
Эндотелиальные клетки контактируют при помощи многочисленных отростков, отделяя просвет синусоида от пространства Диссе. Ядро расположено вдоль клеточной мембраны со стороны пространства Диссе. В клетках содержатся элементы гранулярной и гладкой эндоплазматической сети. Комплекс Гольджи расположен между ядром и просветом синусоида. В цитоплазме эндотелиальных клеток содержатся многочисленные пиноцитозные пузырьки и лизосомы. Фенестры, не затянутые диафрагмами, занимают до 10% эндотелия и регулируют поступление в пространство Диссе частиц более 0,2 в диаметре, например хиломикронов. Для эндотелиальных клеток синусоидов характерен эндоцитоз всех типов молекул и частиц с диаметром не более 0,1 мкм. Отсутствие типичной базальной мембраны, способность к эндоцитозу и наличие фенестр отличают эндотелий синусоидов от эндотелия других сосуд.
Клетки Купфера относятся к системе мононуклеарных фагоцитов и располагаются между эндотелиальными клетками в составе стенки синусоида. Основным местом локализации купферовских клеток являются перипортальные области печени. В их цитоплазме присутствуют лизосомы с высокой активностью пероксидазы, фагосомы, включения железа, пигменты. Клетки Купфера удаляют из крови чужеродный материал, фибрин, избыток активированных факторов свертывания крови, участвуют в фагоцитозе стареющих и поврежденных эритроцитов, обмене гемоглобина и железа. Железо из разрушенных эритроцитов или из крови аккумулируется в виде гемосидерина для последующего использования в синтезе НЬ. Метаболиты арахидоновой кислоты, фактор активации тромбоцитов вызывают активацию клеток Купфера. Активированные клетки, в свою очередь, начинают вырабатывать комплекс биологически активных веществ, таких, как радикалы кислорода, активатор плазминогена, фактор некроза опухоли TNF, ИЛ-1, ИЛ-6, трансформирующий фактор роста, которые могут вызвать токсическое повреждение гепатоцитов.
Ямочные клетки (Pit-cells) – лимфоциты, располагающиеся на эндотелиальных клетках или между ними. Предполагают, что ямочные клетки могут быть NK-клетками и действуют против опухолевых и инфицированных вирусами клеток. В отличие от клеток Купфера, которым необходима активация, цитолитическое действие ямочных клеток проявляется спонтанно, без предварительной активации со стороны других клеток или биологически активных веществ.
Жиронакапливающие клетки (липоциты, клетки Ито) имеют отростчатую форму, локализуются в пространстве Диссе или между гепатоцитами. Клетки Ито выполняют важную роль в метаболизме и накоплении ретиноидов. Около 50 – 80% витамина А, находящегося в организме, накапливается в печени, и до 90% всех ретиноидов печени депонировано в жировых каплях клеток Ито. Эфиры ретинола попадают в гепатоциты в составе хиломикронов. В гепатоцитах эфиры ретинола конвертируются в ретинол и образуется комплекс витамина А с ретиносвязывающим белком. Комплекс секретируется в пространство Диссе, откуда депонируется клетками Ито. In vitro для клеток Ито показана способность синтезировать коллаген, в связи с чем предполагают их участие в развитии цирроза и фиброза печени.
Основные функции печени
Секреция желчи. Гепатоциты продуцируют и через билиарный полюс секретируют желчь в желчные капилляры. Желчь – водный раствор электролитов, желчных пигментов, желчных кислот. Желчные пигменты – конечные продукты обмена Нb и других порфиринов. Гепатоциты из крови захватывают свободный билирубин, конъюгируют его с глюкуроновой кислотой и секретируют нетоксичный, связанный билирубин в желчные капилляры. Желчные кислоты – конечный продукт обмена холестерина, необходимы для переваривания и всасывания липидов. С желчью из организма выводятся также физиологически активные вещества, например конъюгированные формы глюкокортикоидов. В составе желчи иммуноглобулины класса А из пространств Диссе поступает в просвет кишки.
Синтез белков. Гепатоциты секретируют в пространство Диссе альбумины, (фибриноген, протромбин, фактор III, ангиотензиноген, соматомедины, тромбопоэтин и др.). Большинство белков плазмы продуцируется гепатоцитами.
Метаболизм углеводов. Избыток глюкозы в крови, возникающий после приема пищи, при помощи инсулина поглощается гепатоцитами и запасается в виде гликогена. При дефиците глюкозы глюкокортикоиды стимулируют в гепатоцитах глюконеоогенез (превращение аминокислот и липидов в глюкозу).
Метаболизм липидов. Хиломикроны из пространств Диссе попадают в гепатоциты, где запасаются в качестве триглицеридов (липогенез) или секретируются в кровь в виде липопротеинов.
Запасание. В гепатоцитах запасаются триглицериды, углеводы, железо, медь. Клетки Ито накапливают липиды и до 90% ретиноидов, депонируемых в печени.
Детоксикация. Инактивация продуктов обмена Нb, белков, ксенобиотиков (например, лекарственных препаратов, наркотиков, индустриальных химикатов, токсических веществ, продуктов метаболизма бактерий в кишечнике) происходит при помощи ферментов в ходе реакций окисления, метилирования и связывания. В гепатоцитах образуется нетоксичная форма билирубина, из аммиака (конечного продукта обмена белков) синтезируется мочевина, подлежащая выведению через почки, подвергаются распаду половые гормоны.
Защита организма. Клетки Купфера удаляют из крови микроорганизмы и продукты их жизнедеятельности. Ямочные клетки активны против опухолевых и инфицированных вирусом клеток. Гепатоциты транспортируют IgA из пространства Диссе в желчь и далее – в просвет кишки.
Кроветворная. Печень участвует в пренатальном гемопоэзе. В постнатальном периоде в гепатоцитах синтезируется тромбопоэтин.
Желчевыводящие пути представляют собой систему желчных сосудов, по которым происходит транспорт желчи из печени в просвет двенадцатиперстной кишки. Выделяют внутрипеченочные и внепеченочные желчные протоки. К внутрипеченочным принадлежат междольковые желчные протоки, а к внепеченочным – правый и левый печеночные протоки, общий печеночный, пузырный и общий желчный протоки (холедох).
Желчный пузырь – это полый орган с тонкой стенкой (около 1,5 – 2 мм). Он вмещает 40 – 60 мл желчи. Стенка желчного пузыря состоит из трех оболочек: слизистой, мышечной и адвентициальной. Последняя со стороны брюшной полости покрыта серозной оболочкой.
Слизистая оболочка желчного пузыря образует складки, анастомозирующие друг с другом, а также крипты или синусы в виде карманов.
В области шейки пузыря в ней находятся альвеолярно-трубчатые железы, выделяющие слизь. Эпителий слизистой оболочки обладает способностью всасывать воду и некоторые другие вещества из желчи, заполняющей полость пузыря. В связи с этим пузырная желчь всегда более густой консистенции и более темного цвета, чем желчь, выходящая непосредственно из печени.
Мышечная оболочка желчного пузыря состоит из гладких мышечных клеток (расположенных в виде сети, в которой преобладает их циркулярное направление), которые особенно хорошо развиты в области шейки пузыря. Здесь находятся сфинктеры желчного пузыря, способствующие удерживанию желчи в просвете пузыря.
Адвентициальная оболочка желчного пузыря состоит из плотной волокнистой соединительной ткани.
Иннервация. В капсуле печени находится вегетативное нервное сплетение, ветви которого, сопровождая кровеносные сосуды, продолжаются в междольковую соединительную ткань.
Поджелудочная железа
Поджелудочная железа – это орган пищеварительной системы, в составе которого находятся экзокринная и эндокринная части. Экзокринная часть отвечает за выработку панкреатического сока, содержащего пищеварительные ферменты (трипсин, липаза, амилаза и др.), поступающего по выводным протокам в двенадцатиперстную кишку, где его ферменты участвуют в расщеплении белков, жиров и углеводов до конечных продуктов. В эндокринной части синтезируется ряд гормонов (инсулин, глюкагон, соматостатин, панкреатический полипептид), принимающих участие в регуляции углеводного, белкового и жирового обмена в тканях.
Строение. Поджелудочная железа – непарный орган брюшной полости, на поверхности покрытый соединительно-тканной капсулой, срастающейся с висцеральным листком брюшины. Ее паренхима разделена на дольки, между которыми проходят соединительно-тканные тяжи. В них расположены кровеносные сосуды, нервы, интрамуральные нервные ганглии, пластинчатые тельца (тельца Фатера – Пачини) и выводные протоки.
Ацинус является структурно-функциональной единицей. Он состоит из клеток поджелудочной железы, включает в себя секреторный отдел и вставочный отдел, с которого начинается протоковая система железы.
Ацинозные клетки выполняют секреторную функцию, синтезируя пищеварительные ферменты панкреатического сока. Они имеют форму конуса с суженной верхушкой и широким основанием, лежащим на базальной мембране ацинуса.
Секреция гормонов происходит циклически. Фазы секреции те же, что и у других желез. Однако выделение секрета по мерокриновому типу происходит в зависимости от физиологических потребностей организма в пищеварительных ферментах, этот цикл может сократиться или, наоборот, увеличиться.
Выделившийся секрет проходит по протокам (вставочным, межацинарным, внутридольковым), которые, объединяясь, впадают в вирсунгов проток.
Стенки этих протоков выстланы однослойным кубическим эпителием. Их цитолемма образует внутренние складки и микроворсинки.
Эндокринная часть поджелудочной железы находится в виде островков (округлой или овальной формы), лежащих между ацинусами, при этом их объем не превышает 3% объема всей железы.
Островки состоят из эндокринных инсулярных клеток – инсулоцитов. Между ними находятся кровеносные капилляры фенестрированного типа. Капилляры окружены перикапиллярным пространством. Гормоны, выделяемые инсулярными клетками, сначала попадают в это пространство, а затем через стенку капилляров в кровь.
Среди инсулярных клеток различают пять основных видов: В-клетки (базофильные), А-клетки (ацидофильные), D-клетки (дендритические), D1-клетки (аргирофильные) и РР-клетки.
В-клетки составляют основную массу клеток островков (около 70 – 75%). Гранулы В-клеток состоят из гормона инсулина, А-клетки составляют примерно 20 – 25% от всей массы инсулярных клеток. В островках они занимают преимущественно периферическое положение.
В гранулах А-клеток обнаружен гормон глюкагон. По своему действию он является антагонистом инсулина.
Число D-клеток в островках невелико – 5 – 10%.
D-клетки секретируют гормон соматостатин. Этот гормон задерживает выделение инсулина и глюкагона А– и В-клетками, а также подавляет синтез ферментов ацинозными клеткам поджелудочной железы.
РР-клетки (2 – 5%) вырабатывают панкреатический полипептид, стимулирующий выделение желудочного и панкреатического сока.
Это полигональные клетки с очень мелкими зернами в цитоплазме (размер гранул не более 140 нм). РР-клетки обычно локализуются по периферии островков в области головки железы, а также встречаются вне островков среди экзокринных отделов и протоков.
Кровоснабжение поджелудочной железы происходит из ветвей чревного ствола. Венозная кровь оттекает от поджелудочной железы в воротную вену.
Иннервация. Эфферентная иннервация поджелудочной железы осуществляется блуждающим и симпатическим нервами.
Тема 22. ДЫХАТЕЛЬНАЯ СИСТЕМА
В состав дыхательной системы входят различные органы, выполняющие воздухопроводящую и дыхательную (газообменную) функции: полость носа, носоглотка, гортань, трахея, внелегочные бронхи и легкие.
Основной функцией дыхательной системы является внешнее дыхание, т. е. поглощение из вдыхаемого воздуха кислорода и снабжение им крови, а также удаление из организма углекислого газа (газообмен осуществляется легкими, их ацинусами). Внутреннее, тканевое дыхание происходит в виде окислительных процессов в клетках органов при участии крови. Наряду с этим органы дыхания выполняют ряд других важных негазообменных функций: терморегуляцию и увлажнение вдыхаемого воздуха, очищение его от пыли и микроорганизмов, депонирование крови в обильно развитой сосудистой системе, участие в поддержании свертываемости крови благодаря выработке тромбопластина и его антагониста (гепарина), участие в синтезе некоторых гормонов и в водно-солевом, липидном обмене веществ, а также в голосообразовании, обонянии и иммунологической защите.
Развитие
На 22 – 26-й день внутриутробного развития на вентральной стенке передней кишки появляется респираторный дивертикул – зачаток органов дыхания. Он отделяется от передней кишки двумя продольными эзофаготрахеальными (трахеопищеводными) бороздами, вдающимися в просвет передней кишки в виде гребней. Эти гребни, сближаясь, сливаются, и формируется эзофаготрахеальная перегородка. В результате передняя кишка разделяется на дорсальную часть (пищевод) и вентральную часть (трахею и легочные почки). По мере отделения от передней кишки респираторный дивертикул, удлиняясь в каудальном направлении, формирует структуру, лежащую по средней линии, – будущую трахею; она заканчивается двумя мешковидными выпячиваниями. Это легочные почки, наиболее дистальные части которых составляют респираторный зачаток. Таким образом, эпителий, выстилающий зачаток трахеи и легочные почки, имеет энтодермальное происхождение. Слизистые железы воздухоносных путей, являющиеся производными эпителия, также развиваются из энтодермы. Хрящевые клетки, фибробласты и ГМК происходят из спланхической мезодермы, окружающей переднюю кишку. Правая легочная почка делится на три, а левая – на два главных бронха, предопределяя присутствие трех долей легкого справа и двух слева. Под индуктивным воздействием окружающей мезодермы ветвление продолжается, в итоге формируется бронхиальное дерево легких. К концу 6-го месяца насчитывают 17 ветвлений. Позднее происходит еще 6 дополнительных ветвлений, процесс ветвления заканчивается после рождения. К рождению легкие содержат около 60 млн первичных альвеол, их количество интенсивно увеличивается в первые 2 года жизни. Затем скорость роста замедляется, и к 8 – 12 годам количество альвеол достигает приблизительно 375 млн, что равно количеству альвеол у взрослых.
Стадии развития. Дифференцировка легких проходит следующие стадии – железистую, канальцевую и альвеолярную.
Железистая стадия (5 – 15 недель) характеризуется дальнейшим ветвлением воздухоносных путей (легкие приобретают вид железы), развитием хрящей трахеи и бронхов, появлением бронхиальных артерий. Эпителий, выстилающий респираторный зачаток, состоит из цилиндрических клеток. На 10-й неделе из клеток цилиндрического эпителия воздухоносных путей появляются бокаловидные клетки. К 15-й неделе формируются первые капилляры будущего респираторного отдела.
Канальцевая стадия (16 – 25 недель) характеризуется появлением выстланных кубическим эпителием респираторных и терминальных бронхиол, а также канальцев (прообразов альвеолярных мешочков) и подрастанием к ним капилляров.
Альвеолярная (или стадия терминальных мешочков (26 – 40 недель)) характеризуется массовым преобразованием канальцев в мешочки (первичные альвеолы), увеличением числа альвеолярных мешочков, дифференцировкой альвеолоцитов типов I и II и появлением сурфактанта. К концу 7-го месяца значительная часть клеток кубического эпителия респираторных бронхиол дифференцируется в плоские клетки (альвеолоциты типа I), тесно связанных кровеносными и лимфатическими капиллярами, и становится возможным газообмен. Остальные клетки сохраняют кубическую форму (альвеолоциты типа II) и начинают вырабатывать сурфактант. В течение последних 2 месяцев пренатальной и нескольких лет постнатальной жизни число терминальных мешочков постоянно увеличивается. Зрелые альвеолы до рождения отсутствуют.
Легочная жидкость
К рождению легкие заполнены жидкостью, в большом количестве содержащей хлориды, белок, некоторое количество слизи, поступающей из бронхиальных желез, и сурфактант.
После рождения легочная жидкость быстро резорбируется кровеносными и лимфатическими капиллярами, а небольшое ее количество удаляется через бронхи и трахею. Сурфактант остается в виде тонкой пленки на поверхности альвеолярного эпителия.
Пороки развития
Трахеопищеводный свищ возникает в результате неполного расщепления первичной кишки на пищевод и трахею.
Принципы организации дыхательной системы
Просвет воздухоносных путей и альвеол легкого – внешняя среда. В воздухоносных путях и на поверхности альвеол – расположен пласт эпителия. Эпителий воздухоносных путей осуществляет защитную функцию, которая выполняется, с одной стороны, самим фактом присутствия пласта, а с другой стороны, за счет секреции защитного материала – слизи. Ее продуцирует присутствующие в составе эпителия бокаловидные клетки. Кроме того, под эпителием находятся железы, также секретирующие слизь, выводные протоки этих желез открываются на поверхность эпителия.
Воздухоносные пути функционируют как установка юнирования воздуха. Характеристики внешнего воздуха (температура, влажность, загрязненность частицами разного сорта, наличие микроорганизмов) варьируются весьма значительно. Но в респираторный отдел должен поступать воздух, отвечающий определенным требованиям. Функцию доведения воздуха до необходимых кондиций играют воздухоносные пути.
Посторонние частицы осаждаются в находящейся на поверхности эпителия слизистой пленке. Далее загрязненная слизь удаляется из воздухоносных путей при ее постоянном перемещении по направлению к выходу из дыхательной системы с последующим откашливанием. Такое постоянное движение слизистой пленки обеспечивается за счет направленных к выходу из воздухоносных путей синхронных и волнообразных колебаний ресничек, находящих на поверхности эпителиальных клеток. Кроме того, перемещением слизи к выходу предупреждается ее попадание на поверхность альвеолярных клеток, через которые происходит диффузия газов.
Кондиционирование температуры и влажности вдыхаемого воздуха осуществляется при помощи крови, находящейся в сосудистом русле стенки воздухоносных путей. Этот процесс происходит главным образом в начальных отделах, а именно в носовых ходах.
Слизистая оболочка воздухоносных путей участвует в защитных реакциях. В составе эпителия слизистой оболочки присутствуют клетки Лангерханса, тогда как собственный слой содержит значительное количество различных иммунокомпетентных клеток (Т– и В-лимфоциты, плазматические клетки, синтезирующие и секретирующие IgG, IgA, IgE, макрофаги, дендритные клетки).
Тучные клетки весьма многочисленны в собственном слое слизистой оболочки. Гистамин тучных клеток вызывает бронхоспазм, вазодилатацию, гиперсекрецию слизи из желез и отек слизистой оболочки (как результат вазодилатации и увеличения проницаемости стенки посткапиллярных венул). Кроме гистамина, тучные клетки наряду с эозинофилами и другими клетками выделяют ряд медиаторов, действие которых приводит к воспалению слизистой оболочки, повреждению эпителия, сокращению ГМК и сужению просвета воздухоносных путей. Все вышеперечисленные эффекты характерны для бронхиальной астмы.
Воздухоносные пути не спадаются. Просвет постоянно изменяется и регулируется в связи с ситуацией. Спадение просвета воздухоносных путей предотвращает присутствие в их стенке плотных структур, образованных в начальных отделах костной, а далее – хрящевой тканью. Изменение величины просвета воздухоносных путей обеспечивают складки слизистой оболочки, активность гладких мышечных клеток и структуры стенки.
Регуляция тонуса ГМК. Тонус ГМК воздухоносных путей регулируют нейромедиаторы, гормоны, метаболиты арахидоновой кислоты. Эффект зависит от присутствия соответствующих рецепторов в ГМК. ГМК стенки воздухоносных путей имеют М-холинорецепторы, рецепторы гистамина. Нейромедиаторы секретируются из терминалей нервных окончаний вегетативного отдела нервной системы (для блуждающего нерва – ацетилхолин, для нейронов симпатического ствола – норадреналин). Бронхоконстрикцию вызывают холин, вещество Р, нейрокинин А, гистамин, тромбоксан ТХА2, лейкотриены LTC4, LTD4, LTE4. Бронходилатацию вызывают VIP, адреналин, брадикинин, простагландин PGE2. Сокращение ГМК (вазоконстрикцию) вызывают адреналин, лейкотриены, ангиотензин-II. Расслабляющий эффект на ГМК сосудов оказывают гистамин, брадикинин, VIP, простагландин PG.
Поступающий в дыхательные пути воздух подвергается химической экспертизе. Ее осуществляют обонятельный эпителий и хеморецепторы в стенке воздухоносных путей. К таким хеморецепторам относятся чувствительные окончания и специализированные хемочувствительные клетки слизистой оболочки.
Воздухоносные пути
К воздухоносным путям дыхательной системы относят носовую полость, носоглотку, гортань, трахею и бронхи. При продвижении воздуха происходит его очищение, увлажнение, приближение температуры вдыхаемого воздуха к температуре тела, рецепция газовых, температурных и механических раздражителей, а также регуляция объема вдыхаемого воздуха.
Кроме этого, гортань принимает участие в звукообразовании.
Полость носа
Она делится на преддверие и собственно носовую полость, состоящую из дыхательной и обонятельной областей.
Преддверие образовано полостью, находится под хрящевой частью носа, покрыто многослойным плоским эпителием.
Под эпителием в соединительно-тканном слое имеются сальные железы и корни щетинковых волос. Щетинковые волосы выполняют очень важную функцию: они задерживают пылевые частицы из вдыхаемого воздуха в носовой полости.
Внутренняя поверхность собственно носовой полости в дыхательной части выстлана слизистой оболочкой, состоящей из многорядного призматического реснитчатого эпителия и соединительно-тканной собственной пластинки.
Эпителий состоит из несколько видов клеток: реснитчатых, микроворсинчатых, базальных и бокаловидных. Между реснитчатыми клетками располагаются вставочные клетки. Бокаловидные клетки являются одноклеточными слизистыми железами, выделяющими свой секрет на поверхность мерцательного эпителия.
Собственная пластинка слизистой оболочки образована рыхлой волокнистой неоформленной соединительной тканью, содержащей большое количество эластических волокон. В ней залегают концевые отделы слизистых желез, выводные протоки которых открываются на поверхности эпителия. Секрет этих желез, как и секрет бокаловидных клеток, увлажняет слизистую оболочку.
Слизистая оболочка носовой полости очень хорошо кровоснабжается, что способствует согреванию вдыхаемого воздуха в холодное время года.
Лимфатические сосуды образуют густую сеть. Они связаны с субарахноидальным пространством и периваскулярными влагалищами различных частей мозга, а также с лимфатическими сосудами больших слюнных желез.
Слизистая оболочка носовой полости имеет обильную иннервацию, многочисленные свободные и инкапсулированные нервные окончания (механо-, термо– и ангиорецепторы). Чувствительные нервные волокна берут начало из полулунного узла тройничного нерва.
В области верхней носовой раковины слизистая оболочка покрыта особым обонятельным эпителием, содержащим рецепторные (обонятельные) клетки. Слизистая оболочка околоносовых пазух, в том числе лобных и верхнечелюстных, имеет ту же структуру, что и слизистая оболочка дыхательной части носовой полости, с той лишь разницей, что собственная соединительно-тканная пластинка в них значительно тоньше.
Гортань
Сложный по строению орган воздухоносного отдела дыхательной системы, участвующий не только воздухопроведении, но и в звукопроизведении. Гортань в своей структуре имеет три оболочки – слизистую, фиброзно-хрящевую и адвентициальную.
Слизистая оболочка гортани человека, кроме голосовых связок, выстлана многорядным реснитчатым эпителием. Собственная пластинка слизистой оболочки, образованная рыхлой волокнистой неоформленной соединительной тканью, содержит многочисленные эластические волокна, не имеющие определенной ориентировки.
В глубоких слоях слизистой оболочки эластические волокна постепенно переходят в надхрящницу, а в средней части гортани проникают между поперечно-полосатыми мышцами голосовых связок.
В средней части гортани имеются складки слизистой оболочки, образующие так называемые истинные и ложные голосовые связки. Складки покрывает многослойный плоский эпителий. В слизистой оболочке залегают смешанные железы. Благодаря сокращению поперечно-полосатых мышц, заложенных в толще голосовых складок, происходит изменение величины щели между ними, что влияет на высоту звука, производимого воздухом, проходящим через гортань.
Фиброзно-хрящевая оболочка состоит из гиалиновых и эластических хрящей, окруженных плотной волокнистой соединительной тканью. Эта оболочка является своеобразным каркасом гортани.
Адвентициальная оболочка состоит из волокнистой соединительной ткани.
Гортань отделена от глотки надгортанником, основу которого составляет эластический хрящ. В области надгортанника происходит переход слизистой оболочки глотки в слизистую оболочку гортани. На обеих поверхностях надгортанника слизистая оболочка покрыта многослойным плоским эпителием.
Трахея
Это воздухопроводящий орган дыхательной системы, представляющий собой полую трубку, состоящую из слизистой оболочки, подслизистой основы, волокнисто-хрящевой и адвентициальной оболочек.
Слизистая оболочка при помощи тонкой подслизистой основы связана с подлежащими плотными частями трахеи и благодаря этому не образует складок. Она выстлана многорядным призматическим реснитчатым эпителием, в котором различают реснитчатые, бокаловидные, эндокринные и базальные клетки.
Реснитчатые клетки призматической формы мерцают в направлении, противоположном вдыхаемому воздуху, наиболее интенсивно при оптимальной температуре (18 – 33 °С) и в слабощелочной среде.
Бокаловидные клетки – одноклеточные эндоэпителиальные железы, выделяют слизистый секрет, который увлажняет эпителий и создает условия для прилипания попадающих с воздухом пылевых частиц, удаляемых при откашливании.
В слизи содержится иммуноглобулины, выделяемые иммунокомпетентными клетками слизистой оболочки, которые обезвреживают многие микроорганизмы, попадаемые с воздухом.
Эндокринные клетки имеют пирамидальную форму, округлое ядро и секреторные гранулы. Они встречаются как в трахее, так и в бронхах. Эти клетки выделяют пептидные гормоны и биогенные амины (норадреналин, серотонин, дофамин) и регулируют сокращение мышечных клеток воздухоносных путей.
Базальные клетки – камбиальные клетки, имеющие овальную или треугольную форму.
Подслизистая основа трахеи состоит из рыхлой волокнистой неоформленной соединительной ткани, без резкой границы переходящей в плотную волокнистую соединительную ткань надхрящницы незамкнутых хрящевых полуколец. В подслизистой основе располагаются смешанные белково-слизистые железы, выводные протоки которых, образуя на своем пути колбообразные расширения, открываются на поверхности слизистой оболочки.
Волокнисто-хрящевая оболочка трахеи состоит из 16 – 20 гиалиновых хрящевых колец, не замкнутых на задней стенке трахеи. Свободные концы этих хрящей соединены пучками гладких мышечных клеток, прикрепляющихся к наружной поверхности хряща. Благодаря такому строению задняя поверхность трахеи оказывается мягкой, податливой. Эта свойство задней стенки трахеи имеет большое значение: при глотании пищевые комки, проходящие по пищеводу, расположенному непосредственно позади трахеи, не встречают препятствия со стороны ее хрящевого скелета.
Адвентициальная оболочка трахеи состоит из рыхлой волокнистой неоформленной соединительной ткани, которая соединяет этот орган с прилежащими частями средостения.
Кровеносные сосуды трахеи так же, как в гортани, образуют в ее слизистой оболочке несколько параллельно расположенных сплетений, а под эпителием – густую капиллярную сеть. Лимфатические сосуды также формируют сплетения, из которых поверхностное находится непосредственно под сетью кровеносных капилляров.
Нервы, подходящие к трахее, содержат спинномозговые (цереброспинальные) и вегетативные волокна и образуют два сплетения, ветви которых заканчиваются в ее слизистой оболочке нервными окончаниями. Мышцы задней стенки трахеи иннервируются из ганглиев вегетативной нервной системы.
Легкие
Легкие представляют собой парные органы, занимающие большую часть грудной клетки и постоянно изменяющие свою форму в зависимости от фазы дыхания. Поверхность легкого покрыта серозной оболочкой (висцеральной плеврой).
Строение. Легкое состоит из разветвлений бронхов, входящих в состав воздухоносных путей (бронхиального дерева), и системы легочных пузырьков (альвеол), выполняющих роль респираторных отделов дыхательной системы.
В состав бронхиального дерева легкого входят главные бронхи (правое и левое), которые делятся на внелегочные долевые бронхи (крупные бронхи I порядка), а затем на крупные зональные внелегочные (по 4 в каждом легком) бронхи (бронхи II порядка). Внутрилегочные бронхи сегментарные (по 10 в каждом легком) подразделяются на бронхи III – V порядков (субсегментарные), которые по своему диаметру относятся к средним (2 – 5 мм). Средние бронхи подразделяются на мелкие (1 – 2 мм в диаметре) бронхи и конечные бронхиолы. За ними начинаются респираторные отделы легкого, выполняющие газообменную функцию.
Строение бронхов (хотя и неодинаково на протяжении бронхиального дерева) имеет общие черты. Внутренняя оболочка бронхов – слизистая – выстлана подобно трахее реснитчатым эпителием, толщина которого постепенно уменьшается за счет изменения формы клеток от высоких призматических до низких кубических. Среди эпителиальных клеток, помимо реснитчатых, бокаловидных, эндокринных и базальных, в дистальных отделах бронхиального дерева встречаются у человека и животных секреторные клетки (клетки Клара), каемчатые (щеточные), а также безреснитчатые клетки.
Секреторные клетки характеризуются куполообразной верхушкой, лишенной ресничек и микроворсинок и заполненной секреторными гранулами. Они содержат округлое ядро, хорошо развитую эндоплазматическую сеть агранулярного типа, пластинчатый комплекс. Эти клетки вырабатывают ферменты, расщепляющие сурфактант, покрывающий респираторные отделы.
Безреснитчатые клетки встречаются в бронхиолах. Они имеют призматическую форму. Их апикальный конец несколько возвышается над уровнем смежных реснитчатых клеток.
В апикальной части содержатся скопления гранул гликогена, митохондрии и секретоподобные гранулы. Функция их не ясна.
Каемчатые клетки отличаются овоидной формой и наличием на апикальной поверхности коротких и тупых микроворсинок. Эти клетки встречаются редко. Полагают, что они выполняют функцию хеморецепторов.
Собственная пластинка слизистой оболочки бронхов богата продольно направленными эластическими волокнами, которые обеспечивают растяжение бронхов при вдохе и возвращение их в исходное положение при выдохе. Слизистая оболочка бронхов имеет продольные складки, обусловленные сокращением косоциркулярных пучков гладких мышечных клеток, отделяющих слизистую оболочку от подслизистой соединительно-тканной основы. Чем меньше диаметр бронха, тем относительно толще оказывается мышечная пластинка слизистой. В слизистой оболочке бронхов, особенно крупных, встречаются лимфатические фолликулы.
В подслизистой соединительной основе залегают концевые отделы смешанных слизисто-белковых желез. Они располагаются группами, особенно в местах, которые лишены хряща, а выводные протоки проникают в слизистую оболочку и открываются на поверхности эпителия. Их секрет увлажняет слизистую оболочку и способствует прилипанию, обволакиванию пылевых и других частиц, которые впоследствии выделяются наружу. Слизь обладает бактериостатическими и бактерицидными свойствами. В бронхах малого калибра (диаметром 1 – 2 мм) железы отсутствуют.
Фиброзно-хрящевая оболочка по мере уменьшения калибра бронха характеризуется постепенной сменой незамкнутых хрящевых колец у главных бронхов хрящевыми пластинками (долевыми, зональными, сегментарными, субсегментарными бронхами) и островки хрящевой ткани (в бронхах среднего калибра). В бронхах среднего калибра гиалиновая хрящевая ткань сменяется эластической хрящевой тканью. В бронхах малого калибра фиброзно-хрящевая оболочка отсутствует.
Наружная адвентициальная оболочка построена из волокнистой соединительной ткани, переходящей в междолевую и междольковую соединительную ткань паренхимы легкого. Среди соединительно-тканных клеток обнаруживаются тканевые базофилы, принимающие участие в регуляции состава межклеточного вещества и свертываемости крови.
Конечные (терминальные) бронхиолы имеют диаметр около 0,5 мм. Слизистая оболочка их выстлана однослойным кубическим реснитчатым эпителием, в котором встречаются щеточные клетки и секреторные клетки Клара. В собственной пластинке слизистой оболочки этих бронхиол расположены продольно идущие эластические волокна, между которыми залегают отдельные пучки гладких мышечных клеток. Вследствие этого бронхиолы легко растяжимы при вдохе и возвращаются в исходное положение при выдохе.
Респираторный отдел. Структурно-функциональной единицей респираторного отдела легкого является ацинус. Он представляет собой систему альвеол, расположенных в стенке респираторной бронхиолы, альвеолярных ходов и мешочков, которые осуществляют газообмен между кровью и воздухом альвеол. Ацинус начинается респираторной бронхиолой I порядка, которая дихотомически делится на респираторные бронхиолы II, а затем III порядка. В просвет бронхиол открываются альвеолы, которые в связи с этим носят название альвеолярных. Каждая респираторная бронхиола III порядка, в свою очередь, подразделяется на альвеолярные ходы, а каждый альвеолярный ход заканчивается двумя альвеолярными мешочками. В устье альвеол альвеолярных ходов имеются небольшие пучки гладких мышечных клеток, которые на поперечных срезах видны в виде пуговчатых утолщений. Ацинусы отделены друг от друга тонкими соединительно-тканными прослойками, 12 – 18 ацинусов образуют легочную дольку. Респираторные бронхиолы выстланы однослойным кубическим эпителием. Мышечная пластинка истончается и распадается на отдельные, циркулярно направленные пучки гладких мышечных клеток.
На стенках альвеолярных ходов и альвеолярных мешочков располагается несколько десятков альвеол. Общее количество их у взрослых людей достигает в среднем 300 – 400 млн. Поверхность всех альвеол при максимальном вдохе у взрослого человека может достигать 100 м2, а при выдохе она уменьшается в 2 – 2,5 раза. Между альвеолами лежат тонкие соединительно-тканные перегородки, по которым проходят кровеносные капилляры.
Между альвеолами существуют сообщения в виде отверстий диаметром около 10 – 15 мкм (альвеолярные поры).
Альвеолы имеют вид открытого пузырька. Внутренняя поверхность выстлана двумя основными видами клеток: респираторными альвеолярными клетками (альвеолоцитами I типа) и большими альвеолярными клетками (альвеолоцитами II типа). Кроме того, у животных существуют в альвеолах клетки III типа – каемчатые.
Альвеолоциты I типа имеют неправильную, уплощенную, вытянутую форму. На свободной поверхности цитоплазмы этих клеток имеются очень короткие цитоплазматические выросты, обращенные в полость альвеол, что значительно увеличивает общую площадь соприкосновения воздуха с поверхностью эпителия. В их цитоплазме обнаруживаются мелкие митохондрии и пиноцитозные пузырьки.
Важным компонентом аэрогематического барьера является сурфактантный альвеолярный комплекс. Он играет важную роль в предотвращении спадения альвеол на выдохе, а также в предохранении их от проникновения через стенку альвеол микроорганизмов из вдыхаемого воздуха и транссудации жидкости из капилляров межальвеолярных перегородок в альвеолы. Сурфактант состоит из двух фаз: мембранной и жидкой (гипофазы). Биохимический анализ сурфактанта показал, что в его состав входят фосфолипиды, белки и гликопротеиды.
Альвеолоциты II типа несколько крупнее по высоте, чем клетки I типа, но цитоплазматические отростки их, наоборот, короткие. В цитоплазме выявляются более крупные митохондрии, пластинчатый комплекс, осмиофильные тельца и эндоплазматическая сеть. Эти клетки называются также секреторными из-за их способности выделять липопротеидные вещества.
В стенке альвеол также обнаруживаются щеточные клетки и макрофаги, содержащие захваченные инородные частицы, избыток сурфактанта. В цитоплазме макрофагов всегда находится значительное количество липидных капель и лизосом. Окисление липидов в макрофагах сопровождается выделением тепла, которое обогревает вдыхаемый воздух.
Сурфактант
Общее количество сурфактанта в легких крайне невелико. На 1 м2 альвеолярной поверхности приходится около 50 мм3 сурфактанта. Толщина его пленки составляет 3% общей толщины аэрогематического барьера. Компоненты сурфактанта поступают в альвеолоциты II типа из крови.
Возможен также их синтез и хранение в пластинчатых тельцах этих клеток. 85% компонентов сурфактанта используется повторно, и только небольшое количество синтезируется вновь. Удаление сурфактанта из альвеол происходит несколькими путями: через бронхиальную систему, через лимфатическую систему и при помощи альвеолярных макрофагов. Основное количество сурфактанта вырабатывается после 32-й недели беременности, достигая максимального количества к 35-й неделе. До рождения образуется избыток сурфактанта. После рождения этот избыток удаляется альвеолярными макрофагами.
Респираторный дистресс-синдром новорожденных развивается у недоношенных детей вследствие незрелости альвеолоцитов типа II. Из-за недостаточного количества сурфактанта, выделяемого этими клетками на поверхность альвеол, последние оказываются нерасправленными (ателектаз). В результате развивается дыхательная недостаточность. Из-за ателектаза альвеол газообмен осуществляется через эпителий альвеолярных ходов и респираторных бронхиол, что приводит к их повреждению.
Состав. Легочный сурфактант – эмульсия фосфолипидов, белков и углеводов, 80% составляют глицерофосфолипиды, 10% – холестерол и 10% – белки. Эмульсия образует на поверхности альвеол мономолекулярный слой. Главный поверхностно активный компонент – дипальмитоилфосфатидилхолин, ненасыщенный фосфолипид, составляющий более 50% фосфолипидов сурфактанта. Сурфактант содержит ряд уникальных белков, способствующих адсорбции дипальмитоилфосфатидилхолина на границе двух фаз. Среди белков сурфактанта выделяют SP-A, SP-D. Белки SP-B, SP-C и глицерофосфолипиды сурфактанта ответственны за уменьшение поверхностного натяжения на границе воздух – жидкость, а белки SP-A и SP-D участвуют в местных иммунных реакциях, опосредуя фагоцитоз.
Рецепторы SP-A имеются в альвеолоцитах типа II и в макрофагах.
Регуляция выработки. Образованию компонентов сурфактанта у плода способствуют глюкокортикостероиды, пролактин, гормоны щитовидной железы, эстрогены, андрогены, факторы роста, инсулин, цАМФ. Глюкокортикоиды усиливают синтез SP-A, SP-B и SP-C в легких плода. У взрослых продукцию сурфактанта регулируют ацетилхолин и простагландины.
Сурфактант – компонент защитной системы легких. Сурфактант предотвращает непосредственный контакт альвеолоцитов с вредными частицами и инфекционными агентами, попадающими в альвеолы с вдыхаемым воздухом. Циклические изменения поверхностного натяжения, происходящие при вдохе и выдохе, обеспечивают зависимый от дыхания механизм очистки. Обволакиваемые сурфактантом пылевые частицы транспортируются из альвеол в бронхиальную систему, из которой они удаляются со слизью.
Сурфактант регулирует количество макрофагов, мигрирующих в альвеолы из межальвеолярных перегородок, стимулируя активность этих клеток. Бактерии, проникающие в альвеолы с воздухом, опсонизируются сурфактантом, что облегчает их фагоцитоз альвеолярными макрофагами.
Сурфактант присутствует в бронхиальном секрете, покрывая реснитчатые клетки, и имеет тот же химический состав, что и сурфактант легких. Очевидно, сурфактант необходим для стабилизации дистальных воздухоносных путей.
Иммунная защита
Макрофаги
Макрофаги составляют 10 – 15% всех клеток в альвеолярных перегородках. На поверхности макрофагов присутствует множество микроскладок. Клетки формируют довольно длинные цитоплазматические отростки, которые позволяют макрофагам мигрировать через межальвеолярные поры. Находясь внутри альвеолы, макрофаг с помощью отростков может прикрепляться к поверхности альвеолы и захватывать частицы. Альвеолярные макрофаги секретируют α1-антитрипсин – гликопротеин из семейства сериновых протеаз, защищающий эластин альвеол от: расщепления эластазой лейкоцитов. Мутация гена α1-антитрипсина приводит к врожденной эмфиземы легких (поражению эластического каркаса альвеол).
Пути миграции. Нагруженные фагоцитированным материалом клетки могут мигрировать в различных направлениях: вверх по отделам ацинуса и в бронхиолы, где макрофаги попадают в слизистую пленку, постоянно смещающуюся по поверхности эпителия по направлению к выходу из воздухоносных путей; внутрь – во внутреннюю среду организма, т. е. в межальвеолярные перегородки.
Функция. Макрофаги фагоцитируют микроорганизмы и пылевые частицы, попадающие с вдыхаемым воздухом, обладают антимикробной и противоспалительной активностью, опосредованной кислородными радикалами, протеазами и цитокинами. У макрофагов легких антигенпредставляющая функция выражена слабо. Более того, эти клетки вырабатывают факторы, ингибирующие функцию Т-лимфоцитов, что снижает иммунный ответ.
Антигенпредставляющие клетки
Дендритные клетки и клетки Лангерганса относятся к системе мононуклеарных фагоцитов, именно они являются главными антигенпредставляющими клетками легкого. Дендритные клетки и клетки Лангерганса многочисленны в верхних дыхательных путях и трахее. С уменьшением калибра бронхов число этих клеток уменьшается. Как антигенпредставляющие легочные клетки Лангерганса и дендритные клетки экспрессируют молекулы МНС класса 1. Эти клетки имеют рецепторы Fc-фрагмента IgG, фрагмента С3b-компонента комплемента, ИЛ-2, синтезируют ряд цитокинов, включая ИЛ-1, ИЛ-6, фактор некроза опухоли, стимулируют Т-лимфоциты, проявляя повышенную активность в отношении антигена, впервые оказавшегося в организме.
Дендритные клетки
Дендритные клетки находятся в плевре, межальвеолярных перегородках, перибронхиальной соединительной ткани, в лимфоидной ткани бронхов. Дендритные клетки, дифференцируясь из моноцитов, довольно подвижны и могут мигрировать в межклеточном веществе соединительной ткани. В легких они появляются перед рождением. Важное свойство дендритных клеток – их способность стимулировать пролиферацию лимфоцитов. Дендритные клетки имеют удлиненную форму и многочисленные длинные отростки, неправильной формы ядро и в изобилии типичные клеточные органеллы. Фагосомы отсутствуют, поскольку клетки практически не обладают фагоцитарной активностью.
Клетки Лангерганса
Клетки Лангерганса присутствуют только в эпителии воздухоносных путей и отсутствуют в альвеолярном эпителии. Клетки Лангерганса дифференцируются из дендритных клеток, причем такая дифференцировка возможна только в присутствии эпителиальных клеток. Соединяясь с цитоплазматическими отростками, проникающими между эпителиоцитами, клетки Лангерганса образуют развитую внутриэпителиальную сеть. Клетки Лангерганса морфологически сходны с дендритными клетками. Характерной чертой клеток Лангерганса является наличие в цитоплазме специфических электроноплотных гранул, имеющих пластинчатую структуру.
Метаболическая функция легких
В легких метаболизирует ряд биологически активных веществ.
Ангиотензины. Активация известна только в отношении ангиотензина I, который конвертируется в ангиотензин-II. Конверсию катализирует ангиотензинконвертирующий фермент, локализованный в эндотелиальных клетках капилляров альвеол.
Инактивация. Многие биологически активные вещества частично или полностью инактивируются в легких. Так, брадикинин инактивируется на 80% (при помощи ангиотензинконвертирующего фермента). В легких инактивируется серотонин, но не с участием ферментов, а путем выведения из крови, часть серотонина поступает в тромбоциты. С помощью соответствующих ферментов в легких инактивируются простагландины PGE, PGE2, PGE2a и норадреналин.
Плевра
Легкие снаружи покрыты плеврой, называемой легочной (или висцеральной). Висцеральная плевра плотно срастается с легкими, эластические и коллагеновые волокна ее переходят в интерстициальную ткань, поэтому изолировать плевру, не травмируя легкие, трудно. В висцеральной плевре встречаются гладкие мышечные клетки. В париетальной плевре, выстилающей наружную стенку плевральной полости, эластических элементов меньше, гладкие мышечные клетки встречаются редко.
Кровоснабжение в легком осуществляется по двум системам сосудов. С одной стороны, легкие получают артериальную кровь из большого круга кровообращения по бронхиальным артериям, а с другой – в них поступает венозная кровь для газового обмена из легочных артерий, т. е. из малого круга кровообращения. Ветви легочной артерии, сопровождая бронхиальное дерево, доходят до основания альвеол, где они образуют капиллярную сеть альвеол. Через альвеолярные капилляры, диаметр которых колеблется в пределах 5 – 7 мкм, эритроциты проходят в 1 ряд, что создает оптимальное условие для осуществления газового обмена между гемоглобином эритроцитов и альвеолярным воздухом. Альвеолярные капилляры собираются в посткапиллярные венулы, которые, сливаясь, образуют легочные вены.
Бронхиальные артерии отходят непосредственно от аорты, питают бронхи и легочную паренхиму артериальной кровью. Проникая в стенку бронхов, они разветвляются и образуют артериальные сплетения в их подслизистой основе и слизистой оболочке. В слизистой оболочке бронхов происходит сообщение сосудов большого и малого круга путем анастомозирования разветвлений бронхиальных и легочных артерий.
Лимфатическая система легкого состоит из поверхностной и глубокой сетей лимфатических капилляров и сосудов. Поверхностная сеть располагается в висцеральной плевре. Глубокая сеть находится внутри легочных долек, в междольковых перегородках, залегая вокруг кровеносных сосудов и бронхов легкого.
Иннервация осуществляется симпатическими и парасимпатическими нервами и небольшим количеством волокон, идущих от спинномозговых нервов. Симпатические нервы проводят импульсы, вызывающие расширение бронхов и сужение кровеносных сосудов, парасимпатические – импульсы, обусловливающие, наоборот, сужение бронхов и расширение кровеносных сосудов. Разветвления этих нервов образуют в соединительнотканных прослойках легкого нервное сплетение, расположенное по ходу бронхиального дерева и кровеносных сосудов. В нервных сплетениях легкого встречаются крупные и мелкие ганглии, от которых отходят нервные ветви, иннервирующие, по всей вероятности, гладкую мышечную ткань бронхов. Нервные окончания выявлены по ходу альвеолярных ходов и альвеол.
Тема 23. КОЖА И ЕЕ ПРОИЗВОДНЫЕ
Кожа образует внешний покров организма, площадь которого у взрослого человека достигает 1,5 – 2 м2. Из придатков кожи у человека имеются волосы, ногти, потовые и сальные железы.
Кожа
Функция кожи – защита подлежащих частей организма от повреждений. Здоровая кожа непроницаема для микроорганизмов, многих ядовитых и вредных веществ. Кожа участвует в водо-и теплообмене с внешней средой. В течение суток через кожу человека выделяется около 500 мл воды, что составляет 1% всего ее количества в организме. Кроме воды, через кожу вместе с потом выводятся различные соли, главным образом хлориды, а также молочная кислота и продукты азотистого обмена. Около 82% всех тепловых потерь организма происходит через кожную поверхность. В случаях нарушения этой функции (например, при длительной работе в резиновом комбинезоне) может возникнуть перегревание организма и тепловой удар. В коже под действием ультрафиолетовых лучей синтезируется витамин D. Отсутствие его в организме вызывает рахит – тяжелое заболевание. Кожный покров находится в определенном соотношении с половыми железами организма. Вследствие этого большая часть вторичных половых признаков проявляется именно в коже. Наличие в коже обильной сосудистой сети и артериоло-венулярных анастомозов определяет ее значение как депо крови. У взрослого человека в сосудах кожи может задерживаться до 1 л крови. Вследствие обильной иннервации кожный покров представляется рецепторным полем, состоящим из осязательных, температурных и болевых нервных окончаний. На некоторых участках кожи, например, на голове и кистях, на 1 см2 ее поверхности насчитывается до 300 чувствительных точек.
Развитие кожи
Два основных компонента кожи имеют различное происхождение. Эпидермис развивается из эктодермы, а собственно кожа – из мезенхимы.
Развитие эпидермиса. Ранний эмбрион покрыт одним слоем эктодермальных клеток. В начале 2-го месяца развития в формирующемся эпидермисе различают плоские поверхностные клетки и подлежащий базальный слой эпителиальных клеток кубической формы, ответственный за образование новых клеток. Позднее между поверхностным и базальным слоями формируется промежуточный слой. К концу 4-го месяца в эпидермисе различают базальный слой, широкий слой шиповатых клеток, зернистый и роговой слои. В ходе первых 3 месяцев развития эпидермис заселяют мигранты из нервного гребня. Позднее появляются клетки костномозгового генеза.
Развитие собственно кожи. Собственно кожа (дерма) имеет мезенхимное происхождение. В ее образовании участвуют клетки, выселяющиеся из дерматома сомитов. На 3 – 4-м месяце формируются вдающиеся в эпидермис выросты соединительной ткани – сосочки кожи.
Смазка кожи. Кожа плода покрыта белой смазкой, состоящей из секрета сальных желез, фрагментов клеток эпидермиса и волос. Смазка защищает кожу от воздействия амниотической жидкости.
Строение
Кожа состоит из двух частей – эпителиальной и соединительно-тканной.
Эпителий кожи называется надкожицей (или эпидермисом), а соединительно-тканная основа – дермой (или собственно кожей). Соединение кожи с подлежащими частями организма происходит посредством слоя жировой ткани – подкожной клетчаткой (или гиподермой). Толщина кожи в различных отделах тела варьируется от 0,5 до 5 мм. Эпидермис состоит из плоского ороговевающего эпителия. Его толщина составляет от 0,03 до 1,5 мм и более. Наиболее толстый эпидермис на ладонях и подошвах, состоящий из множества слоев клеток. Данные клетки состоят из 5 основных слоев, к числу которых относятся базальный, шиповатый, зернистый, блестящий и роговой. Непосредственно на базальной мембране, отграничивающей эпителий от дермы, лежат клетки, составляющие базальный слой. Среди них различают базальные эпидермоциты, меланоциты (пигментные клетки), количественное соотношение между которыми примерно 10 : 1. Форма базальных эпидермоцитов может быть цилиндрической или овальной, с наличием базофильной цитоплазмы и округлого ядра, насыщенного хроматином. В них выявляются органеллы общего значения, тонофибриллы и гранулы темно-коричневого или черного пигмента (меланина). Их соединение друг с другом и с вышележащими клетками происходит посредством десмосом, а с базальной мембраной – полудесмосом.
Меланоциты на препаратах, окрашенных гематоксилинэозином, имеют вид светлых клеток. Меланоциты не имеют десмосом и лежат свободно. Их цитоплазма содержит в большом количестве зерна меланина, но слабо развиты органеллы и отсутствуют тонофибриллы. Над базальными клетками в 5 – 10 слоев располагаются клетки полигональной формы, образующие шиповатый слой. Между клетками хорошо видны многочисленные короткие цитоплазматические отростки («мостики»), в месте встречи которых находятся десмосомы. В десмосомах заканчиваются тонофибриллы. Кроме эпидермоцитов, в шиповатом слое наблюдаются белые отростчатые клетки (клетки Лангерганса). Они лишены тонофибрилл и не образуют десмосом. В их цитоплазме много лизосом, и встречаются гранулы меланина, захваченные из отростков меланоцитов. В настоящее время многими авторами эти клетки расцениваются как эпидермальные макрофаги, мигрирующие в эмбриогенезе в эпидермис из мезенхимы. Особенностью базального и глубоких уровней шиповатого слоя эпидермиса является способность эпидермоцитов к размножению путем митотического деления. Поэтому нередко их объединяют под названием росткового (зародышевого) слоя. Благодаря нему обновление эпидермиса происходит в различных участках кожи человека в течение 10 – 30 дней (физиологическая регенерация). Зернистый слой представляет собой 3 – 4 слоя сравнительно плоских клеток. Их цитоплазма содержит рибосомы, митохондрии, лизосомы и их разновидность – кератиносомы (в виде слоистых телец), а также пучки фрагментированных тонофибрилл и лежащие рядом с ними крупные гранулы кератогиалина. Окрашивание гранул происходит посредством применения основных красителей, состоящих из полисахаридов, липидов и белков, отличающихся высоким содержанием основных аминокислот (пролина, аргинина), а также серосодержащей аминокислоты (цистина). Наличие в клетках зернистого слоя комплекса кератогиалина с тонофибриллами говорит о начале процессов ороговения, так как, по мнению многих авторов, он является начальной стадией образования рогового вещества (кератина). Следующий слой (блестящий) также состоит из 3 – 4 слоев плоских клеток, в которых ядра вследствие их гибели перестают окрашиваться, а цитоплазма диффузно пропитана белковым веществом – элеидином, который, с одной стороны, не окрашивается красителями, а с другой – хорошо преломляет свет. Из-за этого структура клеток в блестящем слое границы является незаметной, а весь слой по виду представляет блестящую полосу. Полагают, что элеидин образуется из белков тонофибрилл и кератогиалина путем окисления их сульфгидрильных групп. Сам элеидин рассматривается как предшественник кератина.
Роговой слой представлен множеством роговых чешуек. Чешуйки содержат роговое вещество кератин и пузырьки воздуха. Кератин – это богатый серой (до 5%) белок, характеризующийся устойчивостью к различным химическим агентам (кислотам, щелочам и др.). Внутри клеток располагаются кератиновые фибриллы. В редких случаях имеют место остатки тонофибрилл, представляющие нежную сеть и образовавшуюся полость на месте погибшего ядра. Роговые чешуйки, находящиеся на поверхности постоянно отпадают, слущиваются и заменяются новыми, происходящими из слоев, лежащих ниже. При слущивании большое значение имеют кератиносомы, которые выходят из клеток, концентрируясь в межклеточных пространствах. В результате наблюдается лизис (растворение) десмосом и отхождение роговых клеток друг от друга. Значение рогового слоя определяется тем, что он обладает большой упругостью и плохой теплопроводностью. Таким образом, в процессе ороговения эпидермиса кожи участвует ряд компонентов клеток: тонофибриллы, кератогиалин, кератиносомы, десмосомы. По сравнению с кожей ладоней и подошв в других участках кожи эпидермис значительно тоньше. Толщина его, например, на волосистой части головы не превышает 170 мкм. Блестящий слой в нем отсутствует, а роговой представлен лишь 2 – 3 рядами ороговевших клеток (чешуек). По всей вероятности, ороговение в этом случае протекает по сокращенному циклу. Следовательно, большая часть кожи имеет эпидермис, который состоит из 3 основных слоев – росткового, зернистого и рогового. При этом каждый из них значительно тоньше, чем соответствующие слои эпидермиса кожи ладоней и подошв. Под влиянием некоторых внешних и внутренних факторов характер эпидермиса может существенно изменяться. Так, например, при сильных механических воздействиях, при А-авитаминозе, под влиянием гидрокортизона резко усиливаются процессы ороговения.
Понятие пролиферативной единицы. Пролиферативная единица – клон, объединяющий различные стадии дифферона, клетки разной степени дифференцировки и происходящие из одной стволовой клетки, расположенной в базальном слое и контактирующей с базальной мембраной. По мере дифференцировки клетки смещаются к поверхности пласта.
Дифферовка. Стволовая клетка контактирует с базальной мембраной. По мере дифференцировки и размножения клетки смещаются к поверхности эпидермиса, образуя в совокупности пролиферативную единицу эпидермиса, которая в виде колонки занимает определенную его область. Кератиноциты, закончившие жизненный цикл, слущиваются с поверхности рогового слоя. Пролиферативная единица – структура, образованная кератиноцитами различных слоев эпидермиса, разной степени дифференцировки и происходящая из одной стволовой клетки базального слоя.
Характер популяции. Кератиноциты относят к обновляющейся клеточной популяции. Их максимальная митотическая активность наблюдается ночью, а продолжительность жизни составляет 2 – 4 недели.
Понятие твердого и мягкого кератина. По физико-химическим свойствам различают твердый и мягкий кератин. Твердый кератин присутствует в корковом веществе и кутикуле волоса. Эта разновидность кератина у человека встречается в волосах и ногтях. Он более прочен и в химическом отношении более стоек. Мягкий кератин наиболее распространен, присутствует в эпидермисе, в волосе локализуется в мозговом веществе и во внутреннем корневом влагалище, по сравнению с твердым содержит меньше цистина и дисульфидных связей.
Влияние гормонов и факторов роста на слои эпидермиса. Кератиноциты служат мишенями многочисленных гормонов и факторов роста. Наибольшее значение имеют эпидермальный фактор роста (EGF), фактор роста кератиноцитов, фибробластов, фактор роста FGF7, трансформирующий фактор роста (TGFoc), стимулирующие митозы кератиноцитов. Аналогичным действием обладает вещество Р, выделяющееся из терминалей чувствительных нервных волокон. 1а,25-дигидроксихолекальциферол подавляет в кератиноцитах секрецию, синтез ДНК и стимулирует терминальную дифференцировку.
Применение: 1а,25-дигидроксихолекальциферола применяется при псориазе, когда нарушается процесс дифференцировки кератиноцитов и усиливается их пролиферация, дает положительный лечебный эффект.
Меланоциты. Меланоциты расположены в базальном слое, их количество значительно варьируется в различных участках кожи. Меланоциты происходят из нервного гребня и синтезируют пигменты (меланины), заключенные в специальные пузырьки – меланосомы.
Тирозиназа. Для меланоцитов характерен содержащий медь и чувствительный к ультрафиолету фермент – тирозиназа (тирозингидроксилаза), катализирующая превращение тирозина в ДОФА. Недостаточность тирозиназы или ее блокирование в меланоцитах приводит к развитию разных форм альбинизма.
Меланосомы. Тирозиназа после синтеза на рибосомах гранулярной эндоплазматической сети поступает в комплекс Гольджи, где «упаковывается» в пузырьки, которые затем сливаются с премеланосомами. Меланин образуется в меланосомах.
ДОФА окисляется под действием ДОФА-оксидазы и в ходе химических реакций превращается в меланин. Гистохимическая реакция на ДОФА позволяет идентифицировать меланоциты среди других клеток кожи.
Меланин. Длинные отростки меланоцитов уходят в шиповатый слой. По ним транспортируются меланосомы, содержимое которых (меланин) в выделяется из меланоцитов и захватывается кератиноцитами. Здесь меланин подвергается деградации под действием ферментов лизосом. Меланин защищает подлежащие структуры от воздействия ультрафиолетового излучения. Приобретение загара свидетельствует об усилении выработки меланина под действием ультрафиолета. В коже человека присутствуют меланины двух типов – эумеланин (черный пигмент) и феомеланин (красный пигмент). Эумеланин – фотопротектор, феомеланин, наоборот, может способствовать ультрафиолетовому повреждению кожи вследствие образования свободных радикалов в ответ на облучение. Люди с каштановыми (рыжими) волосами, светлыми глазами и кожей содержат преимущественно феомеланин в волосах и коже, характеризуются сниженной способностью вырабатывать эумеланин, приобретают слабый загар и подвержены риску переоблучения ультрафиолетом.
Меланокортины. Из меланокортинов α-меланотропин регулирует в коже соотношение эумеланина и феомеланина. В частности, α-меланотропин стимулирует синтез эумеланина в меланоцитах. Специфический белок агути блокирует действие меланотропинов через меланокортиновые рецепторы, что способствует уменьшению выработки эумеланина.
Клетки Лангерганса. Они составляют 3% всех клеток эпидермиса. Эти антигенпредставляющие клетки несут на клеточной мембране белки МНС первого и второго классов и участвуют в иммунном ответе. Они происходят из костного мозга и относятся к системе мононуклеарных фагоцитов. Дифференцировку клеток Лангерханса из плюрипотентной стволовой СD34+-клетки поддерживают TGFβ1, TNFα и GM-CSF. В эпидермисе эти клетки расположены преимущественно в шиповатом слое. Клетки содержат ядро неправильной формы с инвагинациями, умерен-но развитую гранулярную эндоплазматическую сеть, комплекс Гольджи, небольшое количество микротрубочек и удлиненные цитоплазматические гранулы Бирбека с продольной исчерчен-ностью. Маркер клеток Лангерганса – гликопротеин лангерин.
Собственно кожа, или дерма, имеет толщину от 0,5 до 5 мм, наибольшую – на спине, плечах, бедрах. Дерма состоит из 2 слоев (сосочкового и сетчатого), не имеющих между собой четкой границы. Сосочковый слой располагается непосредственно под эпидермисом и состоит из рыхлой волокнистой неоформленной соединительной ткани, отвечающей за трофическую функцию. Данный слой был назван в связи с наличием многочисленных сосочков, вдающихся в эпителий. Различные части, составляющие кожу, неодинаковы по величине и количеству. Основная часть сосочков (высотой до 0,2 мм) сосредоточена в коже ладоней и подошв. Сосочки кожи лица имеют слабое развитие, а с возрастом могут исчезнуть. Рисунок на поверхности кожи определяется посредством сосочкового слоя дермы, имеющего строго индивидуальный характер. Соединительная ткань сосочкового слоя состоит из тонких коллагеновых, эластических и ретикулярных волокон, клеток с наиболее часто встречающимися фибробластами, макрофагами, тканевыми базофилами (тучные клетки) и др. Кроме того, здесь имеют место гладкие мышечные клетки, в некоторых местах собранные в небольшие пучки. Многие из них относятся к мышцам, поднимающим волосы, но есть мышечные пучки, не имеющие связь с ними. Особенно большое их количество сосредоточено в коже головы, щек, лба и тыльной поверхности конечностей. Сокращение этих клеток обусловливает появление так называемой гусиной кожи. При этом уменьшается приток крови к коже, вследствие чего понижается теплоотдача организма. Сетчатый слой состоит из плотной неоформленной соединительной ткани с наличием мощных пучков коллагеновых волокон, проходящих либо параллельно поверхности кожи, либо косо, и сети эластических волокон. Вместе они образуют сеть, где посредством функциональной нагрузки на кожу определяется ее строение. В участках кожи, испытывающих сильное давление (кожа стопы, подушечек пальцев, локтей и др.), хорошо развита широкопетлистая, грубая сеть коллагеновых волокон. В тех же участках, где кожа значительно растягивается (область суставов, тыльная сторона стопы, лицо и т. д.), в сетчатом слое имеется узкопетлистая коллагеновая сеть. Ход эластических волокон в основном совпадает с ходом коллагеновых пучков. Их количество преобладает в участках кожи, часто испытывающих растяжение (в коже лица, суставов и т. д.). Ретикулярные волокна встречаются в небольшом количестве. Они обычно располагаются вокруг кровеносных сосудов и потовых желез. Клеточные элементы сетчатого слоя представлены главным образом фибробластами. В большинстве участков кожи человека в ее сетчатом слое находятся потовые и сальные железы, а также корни волос. Строение сетчатого слоя полностью соответствует выполняемой им функции – обеспечению прочности всей кожи.
Пучки коллагеновых волокон из сетчатого слоя дермы переходят в слой подкожной клетчатки. Между ними остаются значительные промежутки, заполненные дольками жировой ткани. Подкожная клетчатка смягчает действие на кожу различных механических факторов, поэтому она особенно хорошо развита на таких местах, как подушечки пальцев, ступни и т. д. Здесь наблюдается полное сохранение подкожной клетчатки, несмотря на крайнюю степень истощения организма. Кроме того, подкожный слой обеспечивает некоторую подвижность кожи по сравнению с нижележащими частями, что ведет к предохранению ее от разрывов и других механических повреждений. Наконец, подкожная клетчатка представляет собой наиболее обширное жировое депо организма, а также обеспечивает его терморегуляцию.
Кожный пигмент, за очень небольшим исключением, имеется в коже у всех людей. Люди, организм которых лишен пигмента, называются альбиносами. Кожный пигмент относится к группе меланинов. Образуется меланин при окислении аминокислоты тирозина под влиянием фермента тирозиназы и ДОФА-оксидазы. В дерме кожи пигмент располагается в цитоплазме дермальных меланоцитов (клеток отростчатой формы), однако в отличие от меланоцитов эпидермиса они не дают положительной ДОФА-реакции. Из-за этого пигментные клетки дермы содержат, но не синтезируют пигмент. Каким путем пигмент попадает в эти клетки, точно неизвестно, но предполагают, что он поступает из эпидермиса. Дермальные меланоциты имеют мезенхимальное происхождение. Сравнительно часто они встречаются лишь в определенных местах кожи – в области анального отверстия и в околососковых кружках. Пигментный обмен в коже тесно связан с содержанием в ней витаминов, а также зависит от эндокринных факторов. При недостатке витаминов группы В меланогенез в эпидермисе понижается, а недостаток витаминов А, С и РР вызывает обратный эффект. Непосредственное влияние на уровень меланиновой пигментации кожи оказывают гормоны гипофиза, надпочечников, щитовидной и половых желез. Кровеносные сосуды участвуют в образовании в коже сплетений, от которых отходят весточки, участвующие в питании различных ее частей. Сосудистые сплетения располагаются в коже на разных уровнях. Различают глубокое и поверхностное артериальные сплетения, а также одно глубокое и два поверхностных венозных сплетения. Артерии кожи берут начало из широкопетлистой сосудистой сети, расположенной между мышечными фасциями и подкожной жировой клетчаткой (фасциальной артериальной сети). От этой сети отходят сосуды, которые по прохождении слоя подкожной жировой ткани разветвляются, образуя глубокую кожную артериальную сеть, от которой идут веточки, участвующие в снабжении кровью жировых долек, потовых желез и волос. Из глубокой кожной артериальной сети начинаются артерии, которые по прохождении сетчатого слоя дермы в основании сосочкового слоя распадаются на артериолы, участвующие в образовании подсосочковой (поверхностной) артериальной сети, от которой разветвляются веточки, которые в сосочках распадаются на капилляры, по форме напоминающие шпильки длиной не более 0,4 мм. Короткие артериальные веточки, отходящие от подсосочковой сети, снабжают кровью группы сосочков. Характерно, что они не анастомозируют друг с другом. Этим можно объяснить, почему иногда покраснение или побледнение кожи происходит пятнами. От подсосочковой сети разветвляются артериальные сосуды по направлению к сальным железам и корням волос.
Капилляры сосочкового слоя, сальных желез и корней волос собираются в вены, впадающие в подсосочковые венозные сплетения. Различают два подсосочковых сплетения, лежащих одно за другим, из которых кровь направляется в кожное (глубокое) венозное сплетение, лежащее между дермой и подкожной жировой клетчаткой. В это же сплетение от жировых долек и потовых желез направляется кровь. Соединение кожного сплетения с фасциальным происходит посредством венозного сплетения, от которого отходят более крупные венозные стволы. В коже широко распространены артериоловенулярные анастомозы (гломусы), особенно многочисленные на кончиках пальцев рук и ног и в области ногтевого ложа. Они имеют прямое отношение к процессу терморегуляции. Лимфатические сосуды кожи образуют два сплетения – поверхностное, лежащее несколько ниже подсосочковых венозных сплетений, и глубокое, расположенное в подкожной жировой клетчатке.
Иннервация кожи происходит как посредством ветвей цереброспинальных нервов, так и посредством нервов вегетативной системы. Цереброспинальная нервная система включает многочисленные чувствительные нервы, образующие в коже огромное количество чувствительных нервных окончаний. Нервы вегетативной нервной системы иннервируют в коже сосуды, гладкие миоциты и потовые железы. Нервы в подкожной жировой клетчатке образуют основное нервное сплетение кожи, от которого отходят многочисленные стволики, играющие основную роль в создании новых сплетений, расположенных вокруг корней волос, потовых желез, жировых долек и в сосочковом слое дермы. Густое нервное сплетение сосочкового слоя участвует в передаче в соединительную ткань и в эпидермис миелиновых и безмиелиновых нервных волокон, участвующих в образовании множества чувствительных нервных окончаний, которые распределены в коже неравномерно. Большое их множество наблюдается в участках кожи с повышенной чувствительностью, например на ладонях и подошвах, на лице, в области половых органов. Ими является и большая группа несвободных нервных окончаний, таких как пластинчатые нервные тельца, концевые колбы, осязательные тельца, генитальные тельца и осязательные диски. Считается, что чувство боли передается расположенными в эпидермисе свободными нервными окончаниями, доходящими до зернистого слоя, а также нервными окончаниями, лежащими в сосочковом слое дермы. Чувство прикосновения (осязание) воспринимается осязательными тельцами и дисками, а также нервными сплетениями (манжетками) волос. Первые находятся в сосочковом слое дермы, вторые – в ростковом слое эпидермиса. Нервные манжетки представляют собой нервные сети, оплетающие корни волос до уровня, на котором расположены сальные железы. В эпидермисе, кроме того, встречаются осязательные клетки (клетки Меркеля), контактирующие с осязательными дисками. Это крупные, округлой или удлиненной формы клетки со светлой вакуолиизированной цитоплазмой, в которой присутствуют осмофильные гранулы. Предполагают, что клетки Меркеля имеют глиальное происхождение. Чувство давления связано с наличием в коже пластинчатых нервных телец. Это самые крупные нервные окончания (диаметром до 2 мм), лежащие глубоко в коже. Чувство тепла, вероятно, воспринимается свободными нервными окончаниями, а чувство холода – клетками Меркеля.
Волосы
Волосы покрывают почти всю поверхность кожи. Наибольшая плотность их расположения на голове, где их общее число может достигать 100 тыс. Длина волос колеблется от нескольких миллиметров до 1,5 м, толщина – от 0,005 до 0,6 мм.
Различают три вида волос: длинные (волосы головы, бороды, усов, а также располагающиеся в подмышечных впадинах и на лобке), щетинистые (волосы бровей, ресниц, а также растущие в наружном слуховом проходе и в преддверии носовой полости); пушковые (волосы, покрывающие остальные участки кожного покрова).
Строение. Волосы являются эпителиальными придатками кожи. В волосе различают две части – стержень и корень. Стержень волоса находится над поверхностью кожи. Корень волоса скрыт в толще кожи и доходит до подкожной жировой клетчатки. Стержень волоса образован корковым веществом и кутикулой. Корень длинных и щетинистых волос состоит из коркового вещества, мозгового вещества и кутикулы, в пушковых волосах – только из коркового вещества и кутикулы.
Корень волоса располагается в волосяном мешке (или фолликуле), стенка которого состоит из внутреннего и наружного эпителиальных (корневых) влагалищ и соединительно-тканной волосяной сумки.
Корень волоса заканчивается расширением (волосяной луковицей). С ней сливаются оба эпителиальных влагалища. Снизу в волосяную луковицу вдается соединительная ткань с капиллярами в виде волосяного сосочка. В месте перехода корня волоса в стержень эпидермис кожи образует небольшое углубление – волосяную воронку. Здесь волос, выйдя из воронки, появляется над поверхностью кожи. Ростковый слой эпидермиса воронки переходит в наружное эпителиальное влагалище. Внутреннее эпителиальное влагалище на этом уровне заканчивается. В волосяную воронку открывается проток одной или нескольких сальных желез. Ниже сальных желез в косом направлении проходит мышца, поднимающая волос.
Волосяная луковица является волосяной матрицей, т. е. той частью волоса, из которой происходит его рост. Она состоит из эпителиальных клеток, способных к размножению. Размножаясь, клетки волосяной луковицы передвигаются в мозговое и корковое вещество корня волоса, его кутикулу и во внутреннее эпителиальное влагалище. Таким образом, за счет клеток волосяной луковицы происходит рост самого волоса и его внутреннего эпителиального (корневого) влагалища. Питание волосяной луковицы осуществляется сосудами, расположенными в волосяном сосочке. По мере того как клетки волосяной луковицы переходят в мозговое и корковое вещество, в кутикулу волоса и внутреннее эпителиальное влагалище, они все больше и больше удаляются от источника своего питания – от сосудов волосяного сосочка. В связи с этим в них медленно нарастают необратимые изменения и связанные с ними процессы ороговения. В более удаленных от волосяной луковицы участках клетки погибают и превращаются в роговые чешуйки. Поэтому строение корня волоса, его кутикулы и внутреннего эпителиального влагалища на разных уровнях неодинаковое.
Наиболее интенсивно процесс ороговения клеток происходит в корковом веществе и кутикуле волоса. В результате в них образуется твердый кератин, который отличается по физическим и химическим свойствам от мягкого кератина. Твердый кератин более прочный. У человека из него, кроме того, построены ногти. Твердый кератин плохо растворяется в воде, кислотах и щелочах, в его составе больше, чем в мягком кератине, серосодержащей аминокислоты цистина.
При образовании твердого кератина отсутствуют промежуточные стадии – накопление в клетках зерен кератогиалина и элеидина.
В мозговом веществе волоса и внутреннем эпителиальном влагалище процессы ороговения протекают так же, как в эпидермисе кожи, т. е. в клетках появляются сначала зерна кератогиалина (трихогиалина), которые затем превращаются в мягкий кератин.
Мозговое вещество волоса хорошо выражено только в длинных и щетинистых волосах. В пушковых волосах оно отсутствует. Мозговое вещество состоит из клеток полигональной формы, лежащих друг на друге в виде монетных столбиков. Они содержат ацидофильные блестящие гранулы трихогиалина, мелкие пузырьки газа и небольшое количество зерен пигмента. Пигмент образуется в волосяной луковице меланоцитами, которые располагаются непосредственно вокруг волосяного сосочка. Процессы ороговения в мозговом веществе протекают медленно, поэтому примерно до уровня протоков сальных желез мозговое вещество состоит из не полностью ороговевших клеток, в которых обнаруживаются уплотненные ядра или их остатки. Только выше указанного уровня клетки подвергаются полному ороговению.
Трихогиалин отличается от кератогиалина тем, что окрашивается не основными, а кислыми красками.
С возрастом процессы ороговения в мозговом веществе волоса усиливаются, в клетках снижается количество пигмента и увеличивается число пузырьков воздуха – волосы седеют.
Корковое вещество волоса составляет основную его массу. Процессы ороговения в корковом веществе протекают интенсивно и без промежуточных стадий. На протяжении большей части корня и всего стержня волоса корковое вещество состоит из плоских роговых чешуек. Только в области шейки волосяной луковицы в этом веществе встречаются не полностью ороговевшие клетки с овальными ядрами. В роговых чешуйках содержатся твердый кератин, остатки ядер в виде тоненьких пластинок, зерна пигмента и пузырьки газа.
Чем лучше в волосе развито корковое вещество, тем он прочнее, эластичнее и менее ломкий. К старости в роговых чешуйках коркового вещества, как и в мозговом веществе, нарастает количество пузырьков газа.
Кутикула волоса непосредственно прилежит к корковому веществу. Ближе к волосяной луковице она представлена цилиндрическими клетками, лежащими перпендикулярно к поверхности коркового вещества. В более поверхностных участках корня волоса эти клетки приобретают наклонное положение и превращаются в роговые чешуйки, налегающие друг на друга в виде черепицы. Эти чешуйки содержат твердый кератин, но полностью лишены пигмента и остатка ядер.
Внутреннее корневое влагалище является производным волосяной луковицы. В нижних отделах корня волоса оно переходит в вещество волосяной луковицы, а в верхних отделах на уровне протоков сальных желез исчезает. В нижних отделах во внутреннем корневом влагалище различают три слоя: кутикулу, гранулосодержаший эпителиальный слой (слой Гексли) и бледный эпителиальный слой (слой Генле). В средних и верхних отделах корня волоса все эти 3 слоя сливаются, и здесь внутреннее корневое влагалище состоит только из полностью ороговевших клеток, содержащих мягкий кератин.
Наружное корневое влагалище образуется из росткового слоя эпидермиса кожи, который продолжается вплоть до волосяной луковицы. При этом он постепенно истончается и в месте перехода в волосяную луковицу состоит всего из 1 – 2 слоев клеток. Клетки имеют светлую вакуолизированную цитоплазму вследствие наличия в ней значительного количества гликогена.
Волосяная сумка – соединительно-тканная оболочка волоса. В ней различают наружный продольный слой волокон, внутренний и циркулярный слои волокон и базальную мембрану.
Мышца, поднимающая волос, состоит из гладких мышечных клеток. У щетинистых, пушковых волос, волос бороды и подмышечных впадин она отсутствует или развита слабо. Мышца залегает в косом направлении и одним концом вплетается в волосяную сумку волоса, а другим – в сосочковый слой дермы. При ее сокращении корень принимает перпендикулярное направление к поверхности кожи и в результате этого стержень волоса несколько приподнимается над кожей (волосы встают дыбом). Сокращение мышцы вызывает также некоторое сжатие кожи и лежащих в ее верхних слоях кровеносных сосудов (гусиная кожа). Вследствие этого понижается отдача организмом тепла через кожу.
Смена волос. Продолжительность жизни волоса – от нескольких месяцев до 2 – 4 лет, поэтому в течение жизни происходит периодическая смена волос. Процесс этот заключается в том, что волосяной сосочек волоса редуцируется, в волосяной луковице клетки утрачивают свою способность размножаться и подвергаться ороговению, что приводит к образованию так называемой волосяной колбы, и рост волоса прекращается. Волосяная колба отделяется от волосяного сосочка и по футляру, образованному наружным корневым влагалищем, смещается вверх к месту прикрепления мышцы, поднимающей волос. В этом месте в стенке волосяного мешка образуется небольшое впячивание – волосяное ложе. В него и помещается волосяная колба. Запустевшая часть эпителиального футляра при этом спадается и превращается в клеточный тяж. На конце этого тяжа впоследствии вновь формируется волосяной сосочек. Он врастает в конец эпителиального тяжа и дает начало новой волосяной луковице. Из нее и начинается рост нового волоса. Новый волос растет по эпителиальному тяжу, который при этом превращается в его наружное эпителиальное влагалище.
По мере дальнейшего роста новый волос вытесняет старый из его волосяного ложа, и процесс заканчивается выпадением старого и появлением на поверхности кожи нового волоса.
Ногти
Ногти – производное эпидермиса кожи. Они развиваются на 3-м месяце внутриутробного периода. Прежде чем появиться ногтю, на месте его будущей закладки образуется так называемое ногтевое ложе. При этом эпителий, покрывающий дорсальные поверхности терминальных фаланг пальцев рук и ног, утолщается и несколько погружается в подлежащую соединительную ткань. В более поздней стадии из эпителия проксимальной части ногтевого ложа начинает вырастать сам ноготь. Вследствие медленного роста (около 0,25 – 1 мм в неделю) только к последнему месяцу беременности ноготь достигает кончика пальца. Ноготь – плотная роговая пластинка, лежащая на ногтевом ложе. Ногтевое ложе с боков и у основания ограничено кожными складками (или ногтевыми валиками), задним и боковыми. Между ногтевым ложем и ногтевыми валиками имеются ногтевые щели (задняя и боковые). Ногтевая (роговая) пластинка своими краями вдается в эти щели. Ногтевая пластинка подразделяется на корень, тело и край. Корнем ногтя называется задняя часть ногтевой пластинки, лежащая в задней ногтевой щели. Лишь небольшая часть корня выступает из задней ногтевой щели (из-под заднего ногтевого валика) в виде беловатого участка полулунной формы (луночки ногтя). Остальная часть ногтевой пластинки, расположенная на ногтевом ложе, составляет тело ногтя. Свободный конец ногтевой пластинки, выступающий за пределы ногтевого ложа, называется краем (выступом) ногтя. Образование ногтевой пластинки происходит благодаря прилегающим друг к другу роговым чешуйкам, в которых содержится твердый кератин. Ногтевое ложе состоит из эпителия и соединительной ткани. Эпителий ногтевого ложа представлен ростковым слоем эпидермиса. Лежащая непосредственно на нем ногтевая пластинка является его роговым слоем. Соединительная ткань ложа содержит большое количество волокон, часть которых располагается параллельно ногтевой пластинке, а часть – перпендикулярно к ней. Последние достигают костной фаланги пальца и соединяются с ее надкостницей. Соединительная ткань ногтевого ложа образует продольные складки, в которых проходят кровеносные сосуды. Участок эпителия ногтевого ложа, на котором лежит корень ногтя, является местом его роста и носит название ногтевой матрицы. В ногтевой матрице постоянно происходит процесс размножения и ороговения клеток. Образующиеся роговые чешуйки смещаются в ногтевую (роговую) пластинку, которая в результате этого увеличивается в размере, т. е. происходит рост ногтя. Соединительная ткань ногтевой матрицы образует сосочки, в которых лежат многочисленные кровеносные сосуды. Ногтевые валики представляют собой кожные складки. Ростковый слой их эпидермиса переходит в эпителий ногтевого ложа, а роговой слой частично – в ногтевую пластинку, а частично надвигается на нее сверху (особенно на ее основание), образуя так называемую надногтевую кожицу.
Железы кожи
В коже человека находится три вида желез – молочные, потовые и сальные. Поверхность железистого эпителия потовых и сальных желез примерно в 600 раз превышает поверхность эпидермиса. Эти кожные железы обеспечивают терморегуляцию (около 20% тепла отдается организмом путем испарения пота), защиту кожи от повреждений (жировая смазка предохраняет кожу от высыхания, а также от мацерации водой и влажным воздухом), выделение из организма некоторых продуктов обмена веществ (мочевины, мочевой кислоты, аммиака и др.). Потовые железы встречаются почти во всех участках кожного покрова. Их количество достигает 2 – 2,5 млн. Наиболее богата потовыми железами кожа подушечек пальцев рук и ног, ладоней и подошв, подмышечных и паховых складок. В этих местах на 1 см2 поверхности кожи открывается свыше 300 желез, тогда как в других участках кожи – 120 – 200 желез. Секрет потовых желез (пот) представляет собой жидкость с низкой относительной плотностью, он содержит 98% воды и 2% плотного остатка. За сутки выделяется около 500 – 600 мл пота. Потовые железы могут быть подразделены на мерокриновые и апокриновые. Апокриновые железы находятся лишь в определенных местах кожного покрова, например в подмышечных впадинах, области заднего прохода, коже лба, больших половых губах. Развиваются апокриновые железы в период полового созревания организма и отличаются несколько большими размерами. Секрет их богаче белковыми веществами, которые при разложении на поверхности кожи придают ему особенный, резкий запах. Разновидностью апокриновых потовых желез являются железы век и железы, выделяющие ушную серу. Потовые железы имеют простое трубчатое строение. Они состоят из длинного выводного протока, идущего прямолинейно или слегка извиваясь, и из не менее длинного концевого отдела, закрученного в виде клубочка. Диаметр клубочка – около 0,3 – 0,4 мм. Концевые отделы располагаются в глубоких частях сетчатого слоя на границе его с подкожной жировой клетчаткой, а выводные протоки, пройдя через оба слоя дермы и эпидермис, открываются на поверхности кожи так называемой потовой порой. Выводные протоки многих апокриновых желез не образуют потовых пор, а впадают вместе с выводными протоками сальных желез в волосяные воронки. Концевые отделы мерокриновых потовых желез имеют диаметр около 30 – 35 мкм. Они выстланы однослойным эпителием, клетки которого в зависимости от фазы секреции могут иметь кубическую или цилиндрическую форму. В слабобазофильной цитоплазме секреторных клеток постоянно встречаются капли жира, гранулы гликогена и зернышки пигмента. Обычно в них содержится высокоактивная щелочная фосфатаза. Кроме секреторных клеток, на базальной мембране концевых отделов располагаются миоэпителиальные клетки. Своим сокращением они способствуют выделению секрета. Концевые отделы апокриновых желез более крупные: их диаметр достигает 150 – 200 мкм. Секреторные клетки имеют оксифильную цитоплазму и не отличаются высокой активностью щелочной фосфатазы. В процессе секреции апикальные концы клеток разрушаются и входят в состав секрета. Функция апокриновых потовых желез связана с функцией потовых желез – в предменструальный и менструальный периоды и во время беременности секреция апокриновых желез возрастает. Переход концевого отдела в выводной проток совершается резко. Стенка выводного протока состоит из двухслойного кубического эпителия, клетки которого окрашиваются более интенсивно. Проходя через эпидермис, выводной проток приобретает штопорообразный ход. Здесь его стенка образована плоскими клетками. Есть указания, что при введении в организм ацетилхолина усиливается метаболизм не только клеток концевых отделов, но и выводных протоков. На основании этих данных можно предположить, что клетки выводных протоков потовых желез обладают секреторной способностью.
Сальные железы достигают наибольшего развития в период полового созревания. В отличие от потовых сальные железы почти всегда связаны с волосами. Только там, где нет волос (губы, соски и др.), они лежат самостоятельно. Больше всего сальных желез на голове, лице и верхней части спины. На ладонях и подошвах они отсутствуют. Секрет сальных желез (кожное сало) служит жировой смазкой для волос и эпидермиса кожи. За сутки сальные железы человека выделяют около 20 г кожного сала. Оно смягчает кожу, придает ей эластичность и облегчает трение соприкасающихся поверхностей кожи, а также препятствует развитию на ней микроорганизмов. В отличие от потовых сальные железы располагаются более поверхностно – в пограничных отделах сосочкового и сетчатого слоев дермы. Около одного корня волоса можно встретить 1 – 3 железы. Сальные железы по строению являются простыми альвеолярными с разветвленными концевыми отделами. Секретируют они по голокриновому типу. Концевые отделы, диаметр которых колеблется от 0,2 до 2 мм, состоят из двух видов клеток – малодифференцированных клеток, способных к митотическому делению, и клеток, находящихся в разных стадиях жирового перерождения. Первый вид клеток образует наружный ростковый слой концевого отдела. Кнутри от него располагаются более крупные клетки, в цитоплазме которых появляются капли жира. Постепенно процесс ожирения усиливается, и одновременно клетки смещаются в сторону выводного протока. Наконец, ожирение заходит так далеко, что происходит гибель клеток, которые распадаются и образуют секрет железы. Выводной проток короткий, открывается в волосяную воронку. Стенка его состоит из многослойного плоского эпителия. Ближе к концевому отделу количество слоев в стенке протока уменьшается, и он переходит в наружный ростковый слой концевого отдела.
Тема 24. ВЫДЕЛИТЕЛЬНАЯ СИСТЕМА
К выделительной системе относятся почки, мочеточники, мочевой пузырь и мочеиспускательный канал.
Развитие выделительной системы
Мочевыделительная и половая системы развиваются из промежуточной мезодермы. При этом последовательно формируются пронефрос, мезонефрос и метанефрос. Пронефрос рудиментарен и не функционирует, мезонефрос действует на ранних стадиях внутриутробного развития, метанефрос формирует постоянную почку.
Пронефрос. В конце 3 – начале 4-й недели развития промежуточная мезодерма шейной области отделяется от сомитов и формирует сегментированные клеточные скопления, имеющие форму стебелька с внутренней полостью, – нефротомы, растущие в латеральном направлении. Нефротомы дают начало нефрическим канальцам, медиальные концы которых открываются в полость тела, а латеральные растут в каудальном направлении. Нефрические канальцы соседних сегментов объединяются и образуют парные продольные протоки, растущие по направлению к клоаке (первичный почечный проток). От дорсальной аорты отделяются небольшие ветви, одна из которых внедряется в стенку нефритического канальца, а другая – в стенку целомической полости, формируя соответственно внутренний и наружный клубочки. Клубочки состоят из шаровидного сплетения капилляров и вместе с канальцами образуют выделительные единицы (нефроны). По мере появления последующих нефротомов происходит дегенерация предыдущих. К концу 4-й недели внутриутробного развития все признаки нефротомов отсутствуют.
Мезонефрос. По мере дегенерации пронефроса каудальнее появляются первые канальца мезонефроса. Они удлиняются, формируя s-образную петлю, медиальный конец которой достигает капиллярного клубочка. Клубочек внедряется в стенку канальца, и в этом месте каналец формирует эпителиальную капсулу. Капсула и клубочек образуют почечное тельце. Латеральный конец канальца впадает в первичный почечный проток, который теперь называется вольфовым (мезонефрический проток). В дальнейшем канальцы удлиняются, становясь все более извитыми. Их окружает сплетение капилляров, образованных постгломерулярными сосудами. К середине 2-го месяца мезонефрос достигает максимальной величины. Это крупный орган овоидной формы, расположенный по обе стороны от срединной линии. С медиальной его стороны размещается зачаток гонад. Возвышение, формируемое обоими органами, известно как урогенитальный валик. Когда каудальные канальцы мезонефроса еще формируются, краниальные канальцы и клубочки уже дегенерируют, к концу 2-го месяца большинство из них исчезает. Небольшая часть каудальных канальцев и мезонефрический проток, однако, сохраняются у плода мужского пола. Из канальцев мезонефроса впоследствии формируется ряд структур мужской половой системы. С началом дегенерации мезонефроса начинается формирование метанефроса.
Функция мезонефроса сходна с функцией канальцев нефрона дефинитивной почки. Фильтрат крови из клубочка поступает в капсулу, затем в каналец, далее – в мезонефрический проток. При этом в канальце происходит реабсорбция ряда веществ. Однако в мезонефросе моча слабо концентрируется, что связано с отсутствием структур мозгового вещества, необходимых для удержания воды.
Метанефрос (или постоянная почка) развивается из метанефрогенной бластомы – источника канальцев нефрона и метанефрического дивертикула – источника собирательных трубочек и более крупных мочевыводящих путей. Метанефрос появляется в течение 5-й недели развития. Его канальцы развиваются аналогично тому, как это происходило в мезонефросе.
Метанефрический дивертикул и метанефрогенная бластома. При впадении в клоаку мезонефрический проток образует вырост – метанефрический дивертикул. Этот вырост внедряется в каудальную часть промежуточной мезодермы, которая уплотняется вокруг дивертикула, образуя метанефрогенную бластому. Далее дивертикул дихотомически делится, формируя систему собирательных протоков, постепенно углубляющихся в ткань метанефроса. Производное метанефрического дивертикула – собирательная трубочка – на дистальном конце покрыта «шапочкой» метанефрогенной бластомы.
Под индуктивным влиянием трубочек из этой ткани формируются небольшие пузырьки, дающие начало канальцам. В свою очередь, развивающиеся канальцы индуцируют дальнейшее ветвление собирательных трубочек. Канальцы, объединяясь с капиллярным клубочком, формируют нефроны. Проксимальный конец нефрона образует капсулу, в которую глубоко внедряется клубочек. Дистальный конец соединяется с одной из собирательных трубочек. Далее каналец удлиняется, в результате чего образуются проксимальный извитый каналец, петля Хенле и дистальный извитый каналец. Сначала почка располагается в области таза. В дальнейшем она перемещается краниальнее. Кажущийся подъем почки связан с уменьшением кривизны тела при развитии плода и его ростом в поясничной и крестцовой областях.
Функции у плода. Моча плода гипотонична относительно плазмы, слегка кислая (рН 6,0). Поддержание объема амниотической жидкости – одна из главных функций мочевыделительной системы плода. Начиная примерно с 9-й недели развития плод выделяет мочу в амниотическую полость (10 мл/кг/ч), а также поглощает амниотическую жидкость в объеме до 0,5 л в день. Азотистые остатки из организма плода удаляются путем диффузии через плаценту в кровь матери.
Почка новорожденного. У новорожденного почка имеет выраженный дольчатый вид. Дольчатость в дальнейшем исчезает в результате роста, но не формирования вновь нефронов. Нефрогенез завершается к 36-й неделе развития, к этому сроку в каждой почке около 1 млн нефронов.
Почки
Они являются мочеобразующим органом. Остальные органы составляют мочевыводящие пути, по которым моча выводится из организма. Вместе с мочой выделяется свыше 80% конечных продуктов обмена веществ. Почки – парные органы, в которых непрерывно образуется моча. Расположены они на внутренней поверхности задней брюшной стенки и имеют форму боба. Вогнутая их поверхность называется воротами. В ворота почек вступают почечные артерии и выходят почечные вены и лимфатические сосуды. Здесь же начинаются мочеотводящие пути – почечные чашечки, почечные лоханки и мочеточники.
Строение. Почка покрыта соединительно-тканной капсулой и серозной оболочкой. Вещество почки подразделяется на корковое и мозговое. Корковое вещество темно-красного цвета, располагается общим слоем под капсулой. Мозговое вещество более светлой окраски, разделено на 8 – 12 пирамид. Вершины пирамид, или сосочки, свободно выступают в почечные чашечки. В процессе развития почки ее корковое вещество, увеличиваясь в массе, проникает между основаниями пирамид в виде почечных колонок. В свою очередь, мозговое вещество тонкими лучами врастает в корковое, образуя мозговые лучи. Опору почки составляет рыхлая соединительная ткань, богатая ретикулярными клетками и ретикулярными волокнами. Паренхима почки представлена эпителиальными почечными канальцами, которые при участии кровеносных капилляров образуют нефроны. В каждой почке их насчитывают около 1 млн. Нефрон – структурная и функциональная единица почки. Длина его канальцев – от 18 до 50 мм, а всех нефронов – в среднем около 100 км. Нефрон начинается почечным тельцем, включающим капсулу, охватывающую клубочек из кровеносных капилляров. На другом конце нефрон переходит в собирательную трубку. Собирательная трубка продолжается в сосочковый канал, открывающийся на вершине пирамиды в полость почечной чашечки. В нефроне различают четыре основных отдела – почечное тельце, проксимальный отдел, петлю нефрона с нисходящей и восходящей частями, дистальный отдел. Проксимальный и дистальный отделы представлены извитыми канальцами нефрона. Нисходящая и восходящая части петли являются прямыми канальцами нефрона. Около 80% нефронов почти целиком располагаются в корковом веществе, и лишь колена их петель находятся в мозговом веществе. Они носят название корковых нефронов. Остальные 20% нефронов располагаются в почке так, что их почечные тельца, проксимальные и дистальные отделы лежат в корковом веществе на границе с мозговым веществом, тогда как петли глубоко уходят в мозговое вещество. Это околомозговые (юкстамедуллярные) нефроны. Собирательные трубки, в которые открываются нефроны, начинаются в корковом веществе, где они входят в состав мозговых лучей. Затем они переходят в мозговое вещество и у вершины пирамид вливаются в сосочковый канал. Таким образом, корковое и мозговое вещество почки образовано различными отделами нефронов. Корковое вещество составляют почечные тельца, проксимальные и дистальные отделы нефронов, имеющие вид извитых канальцев. Мозговое вещество состоит из прямых нисходящих и восходящих частей петель нефронов, а также конечных отделов собирательных трубок и сосочковых каналов. Кровь приносится к почкам по почечным артериям, которые, войдя в почки, распадаются на междолевые артерии, идущие между мозговыми пирамидами. На границе между корковым и мозговым веществом происходит их разветвление на дуговые артерии, от которых происходит ответвление прямых артерий в мозговое вещество, а междольковых – в корковое вещество. От междольковых артерий в стороны расходятся приносящие артериолы. Верхние из них направляются к корковым нефронам, нижние – к юкстамедуллярным нефронам. В связи с этим в почках условно различают кортикальное кровообращение, обслуживающее корковые нефроны, и юкстамедуллярное, связанное с околомозговыми нефронами. В кортикальной системе кровообращения приносящие артериолы распадаются на капилляры, образующие сосудистые клубочки почечных телец корковых нефронов. Происходит сбор капилляров клубочков в выносящие артериолы, которые примерно в 2 раза меньше по диаметру, чем приносящие артериолы. Благодаря этому в капиллярах клубочков корковых нефронов кровяное давление необычайно высокое (70 – 90 мм рт. ст.). Это является причиной первой фазы мочеобразования, имеющей характер процесса фильтрации веществ из плазмы крови в нефрон. Выносящие артериолы, пройдя короткий путь, вновь распадаются на капилляры, оплетающие канальца нефрона и образующие перитубулярную капиллярную сеть. В этих вторичных капиллярах давление крови, наоборот, относительно низкое (около 10 – 12 мм рт. ст.), что способствует второй фазе мочеобразования, которая носит характер процесса обратного всасывания ряда веществ из нефрона в кровь. Из вторичных капилляров кровь собирается в верхних отделах коркового вещества сначала в звездчатые вены, а затем в междольковые, в средних отделах коркового вещества – прямо в междольковые. Междольковые вены впадают в дуговые вены, переходящие в междолевые, которые образуют почечные вены, выходящие из ворот почек. Таким образом, корковые нефроны в результате особенностей кортикального кровообращения (высокого кровяного давления в капиллярах сосудистых клубочков и наличия перитубулярной сети капилляров с низким давлением крови) активно участвуют в мочеобразовании. В юкстамедуллярной системе кровообращения приносящие и выносящие артериолы сосудистых клубочков почечных телец околомозговых нефронов почти одинаковые по размеру или выносящие артериолы даже несколько больше, из-за чего кровяное давление в капилляров этих клубочков не превышает 40 мм рт. ст., т. е. значительно ниже, чем в клубочках корковых нефронов. Выносящие артериолы не распадаются на широкую перитубулярную сеть капилляров, что характерно для корковых нефронов, а по типу артериоловенулярных анастомозов переходят в прямые вены, которые впадают в дуговые венозные сосуды. Поэтому околомозговые нефроны, в отличие от корковых, менее активны при участии в мочеобразовании. В то же время юкстамедуллярное кровообращение играет роль шунта, т. е. короткого и легкого пути, являющегося местом прохождения крови через почки в условиях их сильного кровенаполнения, например при выполнении человеком тяжелой физической работы. Нефрон начинается почечным тельцем, представленным сосудистым клубочком и его капсулой. Сосудистый клубочек состоит более чем из 100 кровеносных капилляров. Их эндотелиальные клетки имеют многочисленные фенестры (возможно, кроме того, и поры). Эндотелиальные клетки капилляров располагаются на внутренней поверхности толстой, трехслойной базальной мембраны. С наружной стороны на ней лежит эпителий внутреннего листка капсулы клубочка. Капсула клубочка по форме напоминает двустенную чашу, в которой, кроме внутреннего листка, имеется наружный листок, а между ними расположена щелевидная полость – полость капсулы, переходящая в просвет проксимального канальца нефрона. Внутренний листок капсулы проникает между капиллярами сосудистого клубочка и охватывает их почти со всех сторон. Он образован крупными (до 30 мкм) неправильной формы эпителиальными клетками – подоцитами. От тел подоцитов отходят несколько больших широких отростков – цитотрабекул, от которых, в свою очередь, начинаются многочисленные мелкие отростки (цитоподии), прикрепляющиеся к трехслойной базальной мембране. Между цитоподиями располагаются узкие щели, сообщающиеся через промежутки между телами подоцитов с полостью капсулы. Трехслойная базальная мембрана, являющаяся общей для эндотелия кровеносных капилляров и подоцитов внутреннего листка капсулы, включает наружный и внутренний слои (менее плотные (светлые)) и средний слой (более плотный (темный)). В среднем слое мембраны имеются микрофибриллы, образующие сеточку с диаметром ячеек до 7 нм. Все три названных компонента (стенка капилляров клубочка, внутренний листок капсулы и общая для них трехслойная базальная мембрана) составляют биологический барьер, через который из крови в полость капсулы фильтруются составные части плазмы крови, образующие первичную мочу. Таким образом, в составе почечных телец находится почечный фильтр. Он участвует в первой фазе мочеобразования, имеющей характер процесса фильтрации. Почечный фильтр обладает избирательной проницаемостью, задерживая все то, что больше размеров ячеек в среднем слое базальной мембраны. В норме через него не проходят форменные элементы крови и некоторые белки плазмы крови с наиболее крупными молекулами: иммунные тела, фибриноген и др. При повреждении фильтра в случаях заболевания почек (например, при нефритах) их можно обнаружить в моче больных. В сосудистых клубочках почечных телец в тех местах, куда между капиллярами не могут проникнуть подоциты внутреннего листка капсулы, лежит еще один вид клеток – мезангиальные клетки. После эндотелиоцитов и подоцитов они являются третьим видом клеточных элементов почечных телец, образуя их мезангий. Мезангиоциты, подобно перицитам капилляров, имеют отростчатую форму способны к фагоцитозу, а в условиях патологии, кроме того, и к волокнообразованию. Наружный листок капсулы клубочка представлен одним слоем плоских и низких кубических эпителиальных клеток, расположенных на базальной мембране. Эпителий наружного листка капсулы переходит в эпителий проксимального отдела нефрона. Проксимальный отдел имеет вид извитого канальца диаметром до 60 мкм с узким неправильной формы просветом. Стенка канальца образована высоким цилиндрическим каемчатым эпителием. Он осуществляет облигатную реабсорбцию – обратное всасывание в кровь (в капилляры перитубулярной сети) из первичной мочи ряда содержащихся в ней веществ. Механизм этого процесса связан с гистофизиологией эпителиоцитов проксимального отдела. Поверхность этих клеток покрыта щеточной каемкой с высокой активностью щелочной фосфатазы, участвующей в полном обратном всасывании глюкозы. В цитоплазме клеток образуются пиноцитозные пузырьки и находятся лизосомы, богатые протеолитическими ферментами, с помощью которых осуществляется полное обратное всасывание белков. Клетки имеют базальную исчерченность, образованную внутренними складками цитолеммы и расположенными между ними митохондриями. Митохондрии, содержащие сукцинатдегидрогеназу и другие ферменты, играют важную роль в обратном активном всасывании некоторых электролитов, а складки цитолеммы имеют большое значение для пассивного обратного всасывания части воды. В результате облигатной реабсорбции первичная моча претерпевает значительные качественные изменения: из нее полностью исчезает сахар и белок. При заболеваниях почек эти вещества могут обнаруживаться в окончательной моче больного вследствие поражения проксимальных отделов нефронов. Петля нефрона состоит из нисходящей тонкой части и восходящей толстой части. Нисходящая часть – прямой каналец диаметром около 13 – 15 мкм. Стенка его образована плоскими эпителиальными клетками, ядросодержащие части которых выбухают в просвет канальца. Цитоплазма у клеток светлая, бедная органеллами. Цитолемма образует глубокие внутренние складки. Через стенку этого канальца происходит пассивное всасывание в кровь воды. Восходящая часть петли также имеет вид прямого эпителиального канальца, но большего диаметра – до 30 мкм. По строению и роли в реабсорбции этот каналец близок к дистальному отделу нефрона. Дистальный отдел нефрона представляет собой извитый каналец. Его стенка образована цилиндрическим эпителием, участвующим в факультативной реабсорбции: обратном всасывании в кровь электролитов. Эпителиальные клетки канальца лишены щеточной каемки, но в связи с активным переносом электролитов имеют выраженную базальную исчерченность – скопление большого числа митохондрий в базальных участках цитоплазмы. Факультативная реабсорбция является ключевым звеном во всем процессе мочеобразования, так как от нее зависят количество и концентрация выделяемой мочи. Механизм этого процесса, названного противоточно-множительным, представляется следующим: при обратном всасывании электролитов в дистальном отделе меняется осмотическое давление в крови и в окружающей нефрон соединительной ткани, а от этого зависит уровень пассивного обратного всасывания воды из канальцев нефрона. Собирательные трубки в верхней корковой части выстланы однослойным кубическим эпителием, а в нижней мозговой части – однослойным низким цилиндрическим эпителием. В эпителии различают светлые и темные клетки. Светлые клетки бедны органеллами, их цитоплазма образует внутренние складки. Темные клетки по своей ультраструктуре напоминают обкладочные клетки желез желудка, секретирующие соляную кислоту. В собирательных трубках с помощью светлых клеток завершается пассивное обратное всасывание из мочи в кровь части воды. Кроме того, происходит подкисление мочи, что, вероятно, связано с секреторной деятельностью темных эпителиальных клеток. Таким образом, мочеобразование – сложный процесс, который осуществляется в нефронах. В почечных тельцах нефронов происходит первая фаза этого процесса, или фильтрация, в результате чего образуется первичная моча (более 100 л в сутки). В канальцах нефронов протекает вторая фаза мочеобразования, т. е. реабсорбция (облигантная и факультативная), следствием чего является качественное и количественное изменение мочи. Из нее полностью исчезает сахар и белок, а также снижается ее количество (до 1,5 – 2 л в сутки), что приводит к резкому возрастанию в окончательной моче концентрации выделяемых шлаков: креатиновых тел – в 75 раз, аммиака – в 40 раз и т. д. Заключительная (третья) секреторная фаза мочеобразования осуществляется в собирательных трубках, где реакция мочи становится слабокислой. Все фазы образования мочи – биологические процессы, т. е. результат активной деятельности клеток нефронов. Юкстагломерулярный аппарат почек (ЮГА), или околоклубочковый аппарат, секретирует в кровь ренин, который является катализатором образования в организме ангиотензинов, оказывающих сильное сосудосуживающее действие, а также стимулирует продукцию гормона альдостерона в надпочечниках. Кроме того, возможно, что ЮГА принадлежит важная роль в выработке эритропоэтинов. В состав ЮГА входят юкстагломерулярные клетки, плотное пятно и клетки Гурмагтига. Расположением юкстагломерулярных клеток является стенка приносящих и выносящих артериол под эндотелием. Они имеют овальную или полигональную форму, а в цитоплазме – крупные секреторные (рениновые) гранулы, которые не окрашиваются обычными гистологическими методами, но дают положительную ШИК-реакцию. Плотное пятно является участком стенки дистального отдела нефрона там, где его прохождение осуществляется рядом с почечным тельцем между приносящей и выносящей артериолами. В плотном пятне эпителиальные клетки более высокие, почти лишены базальной складчатости, а их базальная мембрана чрезвычайно тонкая (по некоторым данным полностью отсутствует). Допускают, что плотное пятно подобно натриевому рецептору улавливает изменения содержания натрия в моче и воздействует на околоклубочковые клетки, секретирующие ренин. Клетки Гурмагтига лежат в треугольном пространстве между приносящей и выносящей артериолами и плотным пятном. Их форма может быть овальной или неправильной, образуют простирающие отростки, имеющие связь клетками мезангия клубочка. В их цитоплазме выявляются фибриллярные структуры. Некоторые авторы причисляют к ЮГА также мезангиальные клетки сосудистых клубочков. Предполагают, что клетки Гурмагтига и мезангия включаются в продукцию ренина при истощении юкстагломерулярных клеток. Ингперстициальные клетки (ИК) почек мезенхимального происхождения находятся в строме мозговых пирамид в горизонтальном направлении. Их вытянутое тело имеет отростки, некоторые из них сплетаются в канальцы петли нефронов, а другие – кровеносные капилляры. В цитоплазме ИК хорошо развиты органеллы и находятся липидные (осмиофильные) гранулы.
По поводу роли этих клеток высказывают два предположения:
1) участие в работе противоточно-множительной системы;
2) продукция одного из видов простагландинов, который оказывает антигипертензивное действие, т. е. снижает кровяное давление.
Таким образом, ЮГА и ИК – эндокринный комплекс почек, регулирующий общее и почечное кровообращение, через которое оказывается влияние на мочеобразование. Непосредственно на функцию нефронов воздействуют альдостерон (надпочечники) и вазопрессин, или антидиуретический гормон (гипоталамус). Под влиянием первого гормона усиливается реабсорбция натрия в дистальных отделах нефронов, а под влиянием второго – реабсорбция воды в канальцах нефронов и в собирательных трубках. Лимфатическая система почки представлена сетью капилляров, окружающих канальцы коркового вещества и почечные тельца. В сосудистых клубочках лимфатических капилляров нет. Лимфа из коркового вещества оттекает через футлярообразную сеть лимфатических капилляров, окружающих междольковые артерии и вены, в отводящие лимфатические сосуды I порядка, которые, в свою очередь, окружают дуговые артерии и вены. В эти сплетения лимфатических сосудов впадают лимфатические капилляры мозгового вещества, окружающие прямые артерии и вены. Лимфатические сосуды I порядка образуют более крупные лимфатические коллекторы II, III и IV порядка, которые вливаются в междолевые синусы почки. Из этих сосудов лимфа поступает в регионарные лимфатические узлы. Иннервацию почки осуществляют эфферентные симпатические и парасимпатические нервы и афферентные заднекорешковые нервные волокна. Распределение нервов в почке различное. Одни из них имеют отношение к сосудам почки, другие – к почечным канальцам. Почечные канальцы снабжаются нервами симпатической и парасимпатической систем. Их окончания локализуются под мембраной эпителия. Однако по некоторым данным нервы могут проходить через базальную мембрану и оканчиваться на эпителиальных клетках почечных канальцев. По строению эти нервы напоминают секреторные нервные окончания. Описаны также поливалентные окончания, когда одна веточка нерва заканчивается на почечном канальце, а другая – на капилляре.
Мочевыводящие пути
К мочевыводящим путям относятся почечные чашечки и лоханки, мочеточники, мочевой пузырь и мочеиспускательный канал, который у мужчин одновременно выполняет функцию выведения из организма семенной жидкости и поэтому будет описан в главе, посвященной половой системе. Строение стенок почечных чашечек и лоханок, мочеточников и мочевого пузыря в общих чертах сходно. В них различают слизистую оболочку, состоящую из переходного эпителия и собственной пластинки, подслизистую основу, мышечную и наружную оболочки. В стенке почечных чашечек и почечных лоханок вслед за переходным эпителием располагается собственная пластинка слизистой оболочки, незаметно переходящая в соединительную ткань подслизистой основы. Мышечная оболочка состоит из двух тонких слоев гладких мышечных клеток – внутреннего (продольного) и наружного (циркулярного). Однако вокруг сосочков почечных пирамид сохраняется только один циркулярный слой гладких мышечных клеток. Наружная оболочка без резких границ переходит в соединительную ткань, окружающую крупные почечные сосуды. Мочеточники обладают выраженной способностью к растяжению благодаря наличию в них глубоких продольных складок слизистой оболочки. Подслизистая основа нижней части мочеточников имеет мелкие альвеолярно-трубчатые железы, по строению напоминающие предстательную железу. Мышечная оболочка мочеточников в верхней половине состоит из двух слоев – внутреннего (продольного) и наружного (циркулярного). Мышечная оболочка нижней части мочеточников имеет три слоя – внутренний и наружный слои продольного направления и средний слой – циркулярного. В мышечной оболочке мочеточников в местах их прохождения через стенку мочевого пузыря пучки гладких мышечных клеток идут только в продольном направлении. Сокращаясь, они раскрывают отверстие мочеточника независимо от состояния гладких мышц мочевого пузыря. Снаружи мочеточники покрыты соединительно-тканной адвентициальной оболочкой. Слизистая оболочка мочевого пузыря состоит из переходного эпителия и собственной пластинки. В ней мелкие кровеносные сосуды особенно близко подходят к эпителию. В спавшемся или умеренно растянутом состоянии слизистая оболочка мочевого пузыря имеет множество складок. Они отсутствуют в переднем отделе дна пузыря, где в него впадают мочеточники и выходит мочеиспускательный канал. Этот участок стенки мочевого пузыря, имеющий форму треугольника, лишен подслизистой основы, и его слизистая оболочка плотно сращена с мышечной оболочкой. Здесь в собственной пластинке слизистой оболочки заложены железы, подобные железам нижней части мочеточников. Мышечная оболочка мочевого пузыря состоит из трех ограниченных слоев – внутреннего, наружного с продольным расположением гладких мышечных клеток и среднего – циркулярного. Гладкие мышечные клетки часто напоминают расщепленные веретена. Прослойки соединительной ткани разделяют мышечную ткань в этой оболочке на отдельные крупные пучки. В шейке мочевого пузыря циркулярный слой образует мышечный сфинктер. Наружная оболочка на верхнезадней и частично на боковых поверхностях мочевого пузыря характеризуется листком брюшины (серозная оболочка), в остальной его части она является адвентициальной. Стенка мочевого пузыря богато снабжена кровеносными и лимфатическими сосудами. Мочевой пузырь иннервируется как симпатическими и парасимпатическими, так и спинальными (чувствительными) нервами. Кроме того, в мочевом пузыре обнаружено значительное число нервных ганглиев и рассеянных нейронов вегетативной нервной системы. Особенно много нейронов у места впадения в мочевой пузырь мочеточников. В серозной, мышечной и слизистой оболочках мочевого пузыря имеется также большое число рецепторных нервных окончаний.
Тема 25. ПОЛОВАЯ СИСТЕМА
Развитие половых органов
Источниками развития половых органов являются половые валики и первичные половые клетки.
Половые (или гонадные) валики – это индифферентные гонады, зачатки будущих половых будущих органов (как мужских, так и женских) – яичек и яичников.
Половые валики формируются уже на 4-й неделе внутриутробного развития, однако на этом сроке нельзя идентифицировать мужские это зачатки или женские. После закладки индифферентные гонады заселяются первичными половыми клетками коркового и мозгового вещества.
Первичные половые клетки образуются в стенке желточного мешка, после чего мигрируют в половые гонады. После миграции и половой дифференцировки первичные половые клетки под влиянием определенных факторов превращаются в сперматогонии в яичках и в овогонии в яичниках. Однако для окончательной дифференцировки в сперматозоиды и яйцеклетки половые клетки должны пройти стадии размножения, роста, созревания и формирования.
До 8-й недели внутриутробного развития найти различия в мужских и женских половых органах невозможно. 45 – 50-й день (8 неделя) – критический период развития эмбриона, именно на этом сроке происходит половая дифференцировка.
Во время оплодотворения происходит хромосомная детерминация, при этом Y-хромосома обеспечивает последующее генетическое развитие мужского пола. Y-хромосома кодирует регуляторный фактор TDF – один из индукторов мужской половой системы, фактор, детерминирующий развитие мужских гонад. Под влиянием TDF-фактора из первичных гонад развиваются яички, а развитие дальнейших половых структур обеспечивается мужскими половыми гормонами и мюллеровым ингибирующим фактором, также продуцируемым в яичках.
Индифферентные гонады состоят из коркового и мозгового вещества. В женском организме в гонадах развивается корковое вещество, а мужское вещество атрофируется, в мужском организме, наоборот атрофируется корковое вещество, а развитие получает мозговое. На 8-й неделе эмбриогенеза яички располагаются на уровне верхних поясничных позвонков, а от нижнего их полюса тянется поддерживающая связка, которая тянется вниз и выполняет для яичек роль проводника из брюшной полости в мошонку. Окончательное опущение яичек происходит к концу 1-го месяца жизни.
Внегонадовые половые протоки происходят из мезонефрического (вольфова) и парамезонефрического (мюллерова) протоков, наружные половые органы дифференцируются из мочеполового синуса, полового бугорка и половых валиков.
Первичная почка эмбриона дренируется при помощи мезонефрического (или вольфова) протока. У мальчиков под влиянием мужского полового гормона тестостерона он формирует сеть яичка, придаток, семенные пузырьки и семявыносящие протоки. У женщин вследствие иного гормонального фона данные проток облитерируется.
В яичках мальчиков имеются клетки Сертоли, которые синтезируют мюллеров ингибирующий фактор. Он приводит к облитерации и регрессии парамезонефрических (или мюллеровых) протоков.
Парамезонефрический проток (или женский проток) – тонкая труба, которая тянется параллельного мезонефральному протоку вдоль первичной почки. В проксимальном (краниальном) отделе парамезонефральные протоки идут отдельно, параллельного друг другу, а в дистальном (или каудальном) отделе они сливаются и открываются в мочеполовой синус.
Краниальные отдел парамезонефрических протоков дифференцируется в маточные трубы и матку, а каудальные отдел в верхнюю часть влагалища. Дифференцировка осуществляется при отсутствии мюллерова ингибирующего фактора вне зависимости от того имеются женские половые (овариальные) гормоны или нет. В мужском организме под влиянием мюллерова ингибирующего фактора парамезонефрические протоки подвергаются дегенерации.
Дифференцировка наружных половых органов осуществляется из мочеполового синуса, полового бугорка, половых складок и половых валиков. Развитие наружных половых органов детерминируется половыми гормонами.
У мальчиков под влиянием тестостерона из мочеполового синуса развиваются предстательная железа и бульбоуретральные железы. Образование других наружных половых органов – полового члена и мошонки осуществляется под влиянием дигидротестостерона на 12 – 14-й неделе внутриутробного развития.
Развитие наружных половых органов по женском типу происходит при отсутствии мужских половых гормонов (андрогенов). Мочеполовой синус дает начало нижней части влагалища, половой бугорок превращается в клитор, а половые валики и половые складки – в большие и малые половые губы.
Гаметогенез
Сперматогенез
Процесс образования мужских половых клеток проходит четыре стадии – размножения, роста, созревания и формирования.
Стадия размножения и роста. После образования первичные половые клетки мигрируют в зачатки гонад, где происходит их деление и дифференцировка в сперматогонии. В стадии сперматогонии половые клетки находятся в состоянии покоя до периода полового размножения. Под влиянием мужские половых гормонов и прежде всего тестостерона начинается размножение сперматогониев. Тестостерон синтезируется клетками Лейдига. Их деятельность, в свою очередь, регулируется гипоталамусом, где синтезируется гонадолиберины, активирующие секрецию гонадотропных гормонов аденогипофиза, влияющих на секрецию клеток Лейдига. На стадии размножения выделяют сперматогонии двух типов – А и В.
Сперматогонии типа А отличаются по степени конденсации хроматина на светлые и темные. Темные сперматогонии являются резервуарными клетками и редко вступают в митоз, светлые сперматогонии являются полустволовыми клетками, они постоянно и очень активно делятся, причем интерфаза сменяется митозом. Митоз светлых клеток типа А может протекать симметрично (при этом образуются два сперматогония типа В) и асимметрично, при котором образуется один сперматогоний типа В и одна светлая клетка типа А.
Сперматогонии типа В имеют круглое ядро и конденсированный хроматин. Они вступают в митоз, однако при этом остаются связанными друг с другом при помощи цитоплазматических мостиков. Пройдя несколько последовательных митотических делений, сперматогонии типа В дифференцируются в сперматоциты первого порядка. Сперматоциты первого порядка из базального пространства перемещаются в адлюминальное и вступают в стадию роста.
На стадии роста происходит увеличение в размерах сперматоцитов первого порядка примерно в 4 раза.
Стадия созревание включает в себя мейотическое деление сперматоцитов первого порядка с образованием сначала из 1-й клетки двух сперматоцитов второго порядка, а затем 4 сперматид, содержащих гаплоидный набор хромосом – по 22 аутосомы плюс Х– или Y-хромосома. По размерам сперматида меньше сперматоцита первого порядка в 4 раза. После образования они располагаются вблизи просвета канальца.
Последняя стадия сперматогенеза – стадия формирования. Она отсутствует в овогенезе. На этой стадии происходит морфологическая дифференцировка сперматид и образование сперматозоидов. В этой стадии сперматозоиды приобретают свой окончательный вид – образуется хвостик, энергетические запасы. Происходит уплотнение ядра, центриоли мигрируют к одному из полюсов ядра, организуя аксонему. Митохондрии располагаются спирально, образуя оболочку вокруг аксонемы. Комплекс Гольджи превращается в акросому.
Процесс сперматогенеза от сперматогонии до образования сформировавшегося сперматозоида длится около 65 дней, но окончательная дифференцировка сперматозоидов происходит в протоке придатка яичка в течение еще 2 недель.
Только после этого сперматозоиды становятся окончательно зрелыми и приобретают способность к самостоятельному передвижению в женских половых путях.
На стадиях размножения, роста и созревания сперматогенные клетки образуют клеточные ассоциации. Например, светлые сперматогонии типа А образуют синцитий, в котором клетки связаны цитоплазматическими мостиками до стадии формирования. Клеточная ассоциация в своем развитии от стадии сперматогонии до сперматозоида проходит шесть стадий, для каждой из которых характерно определенное сочетание сперматогенных клеток.
Овогенез
В отличие от сперматогенеза овогенез включает в себя три стадии – стадии размножения, роста и созревания.
Стадия размножения осуществляется в женском организме во время внутриутробного развития. К 7-му месяцу эмбриогенеза овогонии прекращают делиться. В этом время в яичниках плода женского пола насчитывается до 10 млн в овоцитов первого порядка.
После завершения стадии роста овоциты первого порядка в профазе первого деления мейоза приобретают оболочку из фолликулярных клеток, после чего впадают в длительное состояние покоя, завершающееся в период полового развития.
В яичниках новорожденной девочки содержится около 2 млн овоцитов первого порядка.
Стадия созревания наступает в период половой зрелости, после установления овариально-менструального цикла. На высоте лютеинизирующего гормона происходит завершение первого деления мейоза, после этого овоцит первого порядка выходит в маточную трубу. Второе мейотическое деление происходит только при условии оплодотворения, при этом образуется один овоцит второго порядка и полярное (или направительное) тельце. Зрелая яйцеклетка содержит гаплоидный набор хромосом – 22 аутосомы и одну Х-хромосому.
Мужская половая система
К мужской половой системе относятся половые железы – яички, совокупность протоков (выносящих канальцов, протока придатка, семявыносящего протока, семявыбрасывающего протока), добавочные половые железы (семенные пузырьки, предстательная железа и бульбоуретральные железы) и половой член.
В отличие от яичников, которые располагаются в малом тазе (в брюшной полости), яички располагаются вне полостей тела – в мошонке. Такое их расположение можно объяснить необходимостью определенной температуры (не выше 34 °С) для нормального протекания сперматогенеза.
Снаружи яичко покрыто соединительно-тканной пластинкой или белочной оболочкой. Внутренний слой оболочки, богатый кровеносными сосудами, образует сосудистую оболочку. Белочная оболочка образует утолщение, которое с одной стороны вдается в паренхимы яички, образуя тем самым средостение яичка (или гаймарово тело). От гаймарова тела внутрь яичка проходит белочная оболочка, пронзая перегородки, разделяющие паренхиму на дольки конической формы. В каждой дольке содержится от одного до четырех извитых семенных канальцев, выстланных сперматогенным эпителием. Извитые семенные канальца выполняют главную функцию яичка – сперматогенез.
Между семенными канальцами расположена рыхлая соединительная ткань. В ней находятся интерстициальные клетки Лейдига. Клетки Лейдига можно отнести к клеткам эндокринной системы. В них происходит синтез мужских половых гормонов – андрогенов. Для клеток Лейдига характерен высокоразвитый синтетический аппарат – гладкая эндоплазматическая сеть, многочисленные митохондрии и вакуоли.
Среди мужских половых гормонов, которые синтезируются в клетках Лейдига, выделяют тестостерон и дигидротестостерон. Стимуляция синтеза данных гормонов осуществляется под влиянием лютропина – гормона, оказывающиего стимулирующее действие на интерстициальные клетки. После выделение из клеток Лейдига тестостерон поступает в кровь, где связывается с транспортными белками плазмы, а при поступлении в ткани яичка – с андрогенсвязывающим белком.
Функцией андрогенсвязывающего белка является поддержание высокого (необходимого для сперматогенеза) уровня тестостерона в сперматогенном эпителии путем транспорта тестостерона в просвете семенных канальцев.
По мере приближения к средостению яичка извитые семенные канальца превращаются в прямые. Стенка прямых канальцев выстлана кубическим эпителием, расположенным на базальной мембране. Прямые канальца образуют сеть яичка – систему анастомозирующих трубочек, которые затем продолжаются в выносящие канальца придатка.
Строение извитых семенных канальцев и клеток Сертоли. Извитые семенные канальца выстланы изнутри сперматогенным эпителием, который содержит клетки двух типов – гаметы, находящиеся на различных стадиях развития (сперматогонии, сперматоциты первого и второго порядков, сперматиды и сперматозоиды), а также поддерживающие клетки Сертоли.
Снаружи извитые семенные канальцы окружены тонкой соединительно-тканной оболочкой.
Клетки Сертоли (или поддерживающие клетки) расположены на базальной мембране, причем их широкое основание расположено на мембране, а апикальная часть обращена в просвет канальца. Клетки Сертоли делят сперматогенный эпителий на базальное и адлюминальное пространство.
В базальном пространстве располагаются только сперматогонии, а в адлюминальном пространстве находятся сперматоциты первого и второго порядков, сперматиды и сперматозоиды.
Функции клеток Сертоли:
1) секреция андрогенсвязывающего белка, который регулирует уровень тестостерона в сперматогенном эпителии извитых семенных канальцев;
2) трофическая функция. Клетки Сертоли обеспечивают развивающиеся гаметы питательными веществами;
3) транспортная. Клетки сертоли обеспечивают секрецию жидкости, необходимой для транспорт а сперматозоидов в семенных канальцах;
4) фагоцитарная. Клетки сертоли фагоцитируют остатки цитоплазмы формирующихся сперматозоидов, поглощают различные продукты метаболизма и дегенерирующие половые клетки;
5) секреция SCF-фактора (фактора стволовых клеток), обеспечивающего выживание сперматогоний.
Гормональная регуляция сперматогенеза. В гипоталамусе выделяются гонадолиберины, которые активируют синтез и секрецию гонадотропных гормонов гипофиза. Они, в свою очередь, влияют на деятельность клеток Лейдига и Сертоли. В яичках вырабатываются гормоны, которые регулируют синтез рилизинг-факторов по принципу обратной связи. Таким образом секреция гонадотропных гормонов гипофиза стимулируется гонадолиберином, а тормозится тестикулярными гормонами.
Гонадолиберин поступает в кровь из аксонов нейросекреторных клеток в пульсирующем режиме, с пиковыми интервалами около 2 ч. Гонадотропные гормоны поступают в кровоток также в пульсирующем режиме, с интервалами в 90 – 120 мин.
К гонадотропным гормонам относят лютропин и фоллитропин. Мишенями данных гормонов являются яички, причем клетки Сертоли имеют рецепторы к фоллитропину, а клетки Лейдига к лютропину.
В клетках Сертоли под влиянием фоллитропина активируется синтез и секреция андрогенсвязывающего белка, ингибина (вещества, ингибирующего синтез фоллитропина при его избытке), эстрогенов, активаторов плазминогена.
Под влиянием лютропина в клетках Лейдига стимулируется синтез тестостерона и эстрогенов. Клетки Лейдига синтезируют около 80% всех эстрогенов, вырабатываемых в мужском организме (оставшиеся 20% синтезируются клетками пучковой и сетчатой зон коры надпочечников и клетками Сертоли). Функцией эстрогенов является подавление синтеза тестостерона.
Строение придатка яичка. Придаток яичка состоит из головки, тела и хвоста. Головка состоит из 10 – 12 выносящих канальцев, тело и хвост представлены протоком придатка, в который открывается семявыносящих проток.
Выносящие канальца придатка выстланы гирляндным эпителием – у него клетки имеют различную высоту. Имеются высокие цилиндрические клетки, снабженные ресничками, способствующие перемещению сперматозоидов, и низкий кубический эпителий, в составе которого имеются микроворсинки и лизосомы, чья функция заключается в реабсорбции жидкости, образовавшейся в яичках.
Проток тела придатка выстлан многорядным цилиндрическим эпителием, в котором различают два типа клеток – базальные вставочные и высокие цилиндрические. Цилиндрические клетки снабжены стереоцилиями, склеенными в виде конуса, – плазменный эпителий. Между основаниями цилиндрических клеток расположены мелкие вставочные клетки, являющиеся их предшественниками. Под эпителиальным слоем располагается слой циркулярно ориентированных мышечных волокон. Мышечный слой становится более выраженным по направлению к семявыносящему протоку.
Главная роль мускулатуры – продвижение сперматозоидов в семявыносящий проток.
Строение семявыносящего протока. Стенка семявыносящего протока достаточно толстая и представлена тремя слоями – слизистой, мышечной и адвентициальной оболочками.
Слизистая оболочка состоит из собственного слоя и многорядного эпителия. В проксимальной части он одинаков по строению с эпителием протока придатка. Мышечная оболочка имеет три слоя – внутренний продольный, средний циркулярный и наружный продольный. На значение мышечной оболочки – выброс спермы во время эякуляции. Снаружи проток покрыт адвентициальной оболочкой, состоящей из волокнистой соединительной ткани с кровеносными сосудами, нервами и группами гладких мышечных клеток.
Строение предстательной железы. Развитие предстательной железы осуществляется под влиянием тестостерона. До периода полового созревания объем железы незначительный. С активацией синтеза в организме мужских половых гормонов начинается ее активная дифференцировка, рост и созревание.
Предстательная железа состоит из 30 – 50 разветвленных трубчато-альвеолярных желез. Она покрыта снаружи соединительнотканной капсулой, содержащей гладких мышечные клетки. От капсулы в глубь железы отходят соединительно-тканные перегородки, которые разделяют железу на дольки. В состав этих перегородок входит кроме соединительной ткани хорошо развитая гладкая мускулатура.
Слизистая оболочка секреторных отделов образована однослойный кубическим или цилиндрическим эпителием, что зависит от фазы секреции.
Выводные протоки железы выстланы многорядным призматическим эпителием, который в дистальных отделах становится переходным. Каждая долька железы имеет собственный выводной проток, который открывается в просвет уретры.
Секреторные клетки предстательной железы образуют жидкость, которая за счет сокращения гладкомышечной мускулатуры выделяется в мочеиспускательный канал. Секрет железы принимает участие в разжижении спермы и способствует ее продвижению по мочеиспускательному каналу во время эякуляции.
В секрете предстательной железы находятся липиды, выполняющие трофическую функцию, ферменты – фибринолизин, препятствующие склеиванию сперматозоидов, а также кислая фосфатаза.
Семенные пузырьки бульбоуретральные железы. Семенные пузырьки – это две симметричные, сильно извитые трубки, имеющие длину до 15 см. Они открываются в семявыбрасывающий проток сразу же после семявыносящего протока.
Стенка семенных пузырьков состоит из трех оболочек – внутренней слизистой, средней мышечной и наружной соединительно-тканной.
Слизистая оболочка образована однослойным многорядным цилиндрическим эпителием, содержащим секреторные и базальные клетки. Она имеет многочисленные складки.
Мышечная оболочка состоит из двух слоев – внутреннего циркулярного и наружного продольного.
Семенные пузырьки секретируют жидкость, имеющую желтоватый цвет. В ее состав входят фруктоза, аскорбиновая и лимонная кислоты, простагландины. Все эти вещества обеспечивают энергетический запас сперматозоидов и повышают их выживаемость в женских половых путях. Секрет семенных пузырьков выбрасывается в семявыбрасывающий проток во время эякуляции.
Бульбоуретральные железы (или железы Купера) имеют трубчато-альвеолярное строение. Слизистая оболочка секреторных клеток желез выстлана кубическим и цилиндрическим эпителием. Значение секрета желез – смазка уретры перед эякуляцией. Секрет выделяется во время полового возбуждения и готовит слизистую оболочку уретры к движению сперматозоидов.
Строение мужского полового члена. Мужской половой член состоит из трех кавернозных тел. Пещеристые тела являются парными и цилиндрическими и располагаются на дорсальной стороне органа. На вентральной стороне по срединной линии находится губчатое тело мочеиспускательного канала, формирующее на дистальном конце головку полового члена. Кавернозные тела образованы анастомозирующей сетью перегородок (трабекул) из соединительной ткани и гладких мышечных клеток. В свободные пространства между покрытыми эндотелиями перегородками открываются капилляры.
Головка полового члена образована плотной волокнистой соединительной тканью, содержащей сеть крупных извитых вен.
Кавернозные тела снаружи окружены плотной соединительно-тканной белочной оболочкой, состоящей из двух слоев коллагеновых волокон – внутреннего циркулярного и наружного продольного. На головке белочная оболочка отсутствует.
Головку покрывает тонкая кожа, в которой много сальных желез.
Кавернозные тела объединены фасцией полового члена.
Крайней плотью называют циркулярную складку кожи, покрывающую головку.
В расслабленном состоянии крупные артерии полового члена, которые проходят в перегородках кавернозных тел, спирально закручены. Данные артерии являются сосудами мышечного типа, так как имеют толстую мышечную оболочку. Продольное утолщение внутренней оболочки, состоящее из пучков гладкомышечных клеток и коллагеновых волокон, выбухает в просвет сосуда и служит клапаном, закрывающим просвет сосуда. Значительная часть этих артерий открываются напрямую в межтрабекулярное пространство.
Вены полового члена имеют многочисленные гладкомышечные элементы. В средней оболочке находится циркулярный слой гладкомышечных волокон, во внутренней и наружных оболочках присутствуют продольные слои гладкомышечной ткани.
Во время эрекции происходит расслабление гладкомышечной ткани перегородок и спиральных артерий. За счет расслабления гладкомышечной ткани кровь практически без сопротивления поступает в свободные пространства кавернозных тел. Одновременно с расслаблением гладкой мускулатуры перегородок и артерий спирального типа происходит сокращение гладких мышечных клеток вен, в результате чего развивается сопротивление оттоку крови из межтрабекулярных пространств, переполненных ей.
Расслабление полового члена (или детумесценция) происходит в результате обратного процесса – расслабления гладкой мускулатуры вен и сокращения мышц артерий спирального типа, в результате чего улучшается отток крови из межтрабекулярных пространств и затрудняется приток.
Иннервация полового члена осуществляется следующим образом.
Кожа и сосудистое сплетение головки, фиброзные оболочки кавернозные тел, слизистая и мышечная оболочка перепончатой и простатической частей уретры являются сильными рефлексогенными зонами, насыщенными разнообразными рецепторами.
Каждая из этих зон играет свою роль при половом акте, являясь рефлексогенной зоной, лежащей в основе безусловных рефлексов – эрекции, эякуляции, оргазма.
Среди нервных элементов в половом члене можно выделить – свободные нервные окончания, тельца Фатера – Пачини, Мейснера, колбы Краузе.
Строение мужской уретры. Мочеиспускательный канал у мужчин представляет собой трубку длиной около 12 см, проходящую через простату, прободающую фасцию мочеполовой диафрагмы, проникающую в губчатое тело мочеиспускательного канала и открывающуюся наружным отверстием уретры на головке полового члена.
В мужском мочеиспускательном канале соответственно выделяют:
1) простатическую часть;
2) перепончатую часть;
3) губчатую часть;
В простатической части просвет уретры имеет v-образную форму. Эта форма обусловлена v-образным выпячиванием стенки гребня уретры. Вдоль гребня располагаются два синуса, в которые открываются протоки главных и подслизистых желез. По обе стороны от гребня открываются семяизвергающие каналы. В области внутреннего отверстия мочеиспускательного канала гладких мышечные клетки наружного циркулярного слоя участвуют в образовании сфинктера мочевого пузыря.
Наружный сфинктер мочевого пузыря образуется за счет скелетной мускулатуры диафрагмы таза. Если для простатической части уретры был характерен переходный эпителий, то в перепончатой части он замещается на многослойный цилиндрический. Слизистая и мышечная оболочки как простатической, так и перепончатой частей имеют мощную рецепторную иннервацию.
Во время эякуляции происходят сильные периодические сокращения гладких мышечных клеток, вызывающие раздражение чувствительных окончаний и оргазм.
После прохождения через луковицы губчатого вещества полового члена уретра расширяется, образуя луковицу мочеиспускательного канала. Расширение уретры в головке полового члена называется ладьевидной ямкой. До ладьевидной ямки слизистая оболочка уретры была выстлана многослойным цилиндрическим эпителием, а после нее он замещается на многослойный плоский ороговевающий и покрывает головку полового члена.
Тема 26. ЖЕНСКАЯ ПОЛОВАЯ СИСТЕМА
Женская половая система состоит из парных яичников, матки, маточных труб, влагалища, наружных половых органов и парных молочных желез.
Основные функции женской половой системы и отдельных ее органов:
1) главная функция – репродуктивная;
2) яичники выполняют герминативную функцию, участвуя в процессах овогенеза и овуляции, а также эндокринную функцию; в яичниках вырабатываются эстрогены, во время беременности в яичниках формируется желтое тело, которое синтезирует прогестерон;
3) матка предназначена для вынашивания плода;
4) маточные трубы осуществляют связь между яичниками и полостью матки для продвижения оплодотворенной яйцеклетки в полость матки, с последующей имплантацией;
5) канал шейки матки и влагалища образуют родовые пути;
6) молочные железы синтезируют молоко для вскармливания новорожденного ребенка.
Организм небеременной женщины постоянно подвергается циклическим изменением, что связано с циклическими изменениями гормонального фона. Такой комплекс изменений в организме женщины получил название «овариально-менструальный цикл».
Овариальный цикл – это цикл овогенеза, т. е. фазы роста и созревания, овуляции и формирования желтого тела. Овариальный цикл находится под влиянием фолликулостимулирующего и лютеинизирующего гормонов.
Менструальный цикл – это изменения слизистой оболочки матки, целью которых является подготовка наиболее благоприятных условий для имплантации зародыша, а при ее отсутствии они завершаются отторжением эпителия, проявляющимся менструацией.
Средняя продолжительность овариально-менструального цикла составляет около 28 дней, однако продолжительность может быть сугубо индивидуальной.
Женские половые гормоны
Все женские половые гормоны можно разделить на две группы – эстрогены и прогестины.
Эстрогены образуются фолликулярными клетками, желтым телом и плацентой.
Различают следующие гормоны эстрогены:
1) эстрадиол – гормон, образующийся из тестостерона, при помощи ароматизации последнего под влиянием ферментов ароматазы и эстрогенсинтетазы. Образование данных ферментов индуцируется фоллитропином. Он обладает значительной эстрогенной активностью;
2) эстрол образуется путем ароматизации андростендиона, имеет небольшую эстрогенную активность, выделяется с мочой у беременных. Он обнаружен также в фолликулярной жидкости растущих фолликулов яичника и в плаценте;
3) эстриол – гормон, образующийся из эстрола, выделяется с мочой у беременных, в значительном количестве обнаружен в плаценте.
К прогестинам относится гормон прогестерон. Он синтезируется клетками желтого тела в лютеиновую фазу овариально-менструального цикла. Синтез прогестерона осуществляется также клетками хориона при наступлении беременности. Образование данного гормона стимулируется лютропином и хорионическим гонадотропином. Прогестерон – гормон беременности.
Строение яичника
Снаружи яичник покрыт одним слоем кубического эпителия. Под ним располагается толстая соединительно-тканная пластинка (или белочная оболочка) яичника. На поперечном разрезе видно, что яичник состоит из коркового и мозгового вещества.
Мозговое вещество яичника образовано рыхлой соединительной тканью, в нем много эластических волокон, кровеносных сосудов и нервных сплетений.
Корковое вещество яичника содержит примордиальные фолликулы, растущие первичные и вторичные фолликулы, желтое и белое тело, а также атретические фолликулы.
Овариальный цикл. Особенности строения первичного, вторичного и третичного фолликулов
Овариальный цикл состоит из двух половин:
1) фолликулярной фазы. В эту фазу под влиянием фолликулостимулирующего гормона происходит развитие примордиальных фолликулов;
2) лютеиновой фазы. Под влиянием лютеинового гормона из клеток граафова тела формируется желтое тело яичника, вырабатывающее прогестерон.
Между двумя этими фазами цикла происходит овуляция.
Развитие фолликула осуществляется следующим образом:
1) примордиальный фолликул;
2) первичный фолликул;
3) вторичный фолликул;
4) третичный фолликул (или граафов пузырек).
Во время овариального цикла происходят изменения уровня гормонов в крови.
Строение и развитие примордиальных фолликулов. Под белочной оболочкой яичника в виде компактных групп располагаются примордиальные фолликулы. В состав примордиального фолликула входит одни овоцит первого порядка, который покрыт одним слоем плоских фолликулярных клеток (клеток гранулематозной ткани) и окружен базальной мембраной.
После рождения в яичниках девочки содержится около 2 млн примордиальных фолликулов. В течение репродуктивного периода около 98% их погибает, остальные 2% достигают стадии первичного и вторичного фолликулов, однако в граафов пузырек развиваются только не более 400 фолликулов, после чего происходит овуляция. В течение одного овариально-менструального цикла овулирует 1, крайне редко 2 или 3 овоцита первого порядка.
При длительной продолжительности жизни овоцита первого порядка (до 40 – 50 лет в организме матери) значительно увеличивается риск различных генных дефектов, что связано с действием факторов внешней среды на фолликул.
В течение одного овариально-менструального цикла от 3 до 30 примордиальных фолликулов под влияние фолликулостимулирующего гормона переходят в фазу роста, в результате чего образуются первичные фолликулы. Все фолликулы, которые начали свой рост, но не достигли стадии овуляции, подвергаются атрезии.
Атрезированные фолликулы состоят из погибшего овоцита, сморщенной прозрачной оболочки, которая окружена дегенерированными фолликулярными клетками. Между ними расположены волокнистые структуры.
При отсутствии фолликулотропного гормона примордиальные фолликулы развиваются только до стадии первичного фолликула. Это возможно при беременности, до периода полового созревания, а также при применении гормональных контрацептивов. Таким образом цикл будет ановуляторным (без овуляции).
Строение первичных фолликулов. После стадии роста и своего формирования фолликулярная клетка плоской формы превращается в цилиндрическую и начинает активно делиться. При делении образуется несколько слоев фолликулярных клеток, которые окружают овоцит первого порядка. Между овоцитом первого порядка и образовавшимся окружением (фолликулярными клетками) расположена достаточно толстая прозрачная оболочка. Наружная оболочка растущего фолликула формируется из элементов стромы яичника.
В наружной оболочке можно выделить внутренний слой, содержащий интерстициальные клетки, синтезирующие андрогены, богатую капиллярную сеть и наружный слой, который образован соединительной тканью. Внутренний клеточный слой называют тека. Образовавшиеся фолликулярные клетки имеют рецепторы к фолликулостимулирующему гормону, эстрогенам и тестостерону.
Фолликулостимулирующий гормон способствует синтезу ароматазы в клетках гранулозы. Также он стимулирует образование эстрогенов из тестостерона и других стероидов.
Эстрогены стимулируют пролиферацию фолликулярных клеток, при этом количество клеток гранулозы значительно увеличивается, и фолликул увеличивается в размерах, также они стимулируют образование новых рецепторов к фолликулостимулирующему гормону и стероидам. Эстрогены усиливают действие фоллитропина на фолликулярные клетки, предотвращая тем самым атрезию фолликула.
Интерстициальные клетки – это клетки паренхимы яичника, они имеют одинаковое происхождение с клетками теки. Функции интерстициальных клеток – синтез и секреция андрогенов.
Норадреналин действует на клетки гранулозы через α2-адренорецепторы, стимулирует образование в них стероидов, облегчает действие гонадотропных гормонов на продукцию стероидов и тем самым ускоряет развитие фолликула.
Строение вторичного фолликула. При росте первичного фолликула между фолликулярными клетками образуются округлые полости, заполненные жидкостью. Вторичные фолликулы характеризуются дальнейшим ростом, при этом появляется доминантный фолликул, который по своему развитию опережает остальные, в его составе наиболее выражена тека.
Фолликулярные клетки усиливают продукцию эстрогенов. Эстрогены по аутокринному механизму увеличивают плотность рецептов фоллитропина в мембранах фолликулярных клеток.
Фоллитропин стимулирует появление в мембране фолликулярных клеток рецепторов лютропина.
Высокое содержание эстрогенов в крови блокирует синтез фоллитропина, что тормозит развитие других первичных фолликулов и стимулирует секрецию Л Г.
В конце фолликулярной стадии цикла повышается уровень лютропина, образуется лютеинизирующий гормон, который стимулирует образование андрогенов в клетках теки.
Андрогены из теки через базальную мембрану (стекловидную оболочку на более поздних этапах развития фолликула проникают в глубь фолликула, в клетки гранулозы, где при помощи ароматазы превращаются в эстрогены.
Строение третичного фолликула. Третичный фолликул (или граафов пузырек) является зрелым фолликулом. Он достигает 1 – 2,5 см в диаметре прежде всего за счет накопления жидкости в его полости. В полость граафова пузырька вдается холмик из фолликулярных клеток, внутри которого находится яйцеклетка. Яйцеклетка на стадии овоцита первого порядка окружена прозрачной оболочкой, кнаружи от которой располагаются фолликулярные клетки.
Таким образом стенка граафова пузырька состоит из прозрачной и зернистой оболочки, а также теки.
За 24 – 36 ч до овуляции повышающийся уровень эстрогенов в организме достигает максимальных величин.
Содержание ЛГ увеличивается до середины цикла. Через 12 – 14 ч после наступления пика эстрогенов его содержание также значительно повышается.
Лютропин стимулирует лютеинизацию клеток гранулозы и теки (при этом происходит накопление липидов, желтого пигмента) и индуцирует преовуляторный синтез прогестерона. Такое его повышение облегчает обратное положительное действие эстрогенов, а также индуцирует преовуляторный пик фоллитропина за счет усиления гипофизарного ответа на гонадолиберин.
Через 24 – 36 ч после пика эстрогенов или через 10 – 12 ч после пика ЛГ происходит овуляция. Чаще всего на 11 – 13-й день 28-дневного цикла. Однако теоретически овуляция возможна от 8 до 20-го дня.
Под влиянием простагландинов и протеолитического действия ферментов гранулозы происходит истончение и разрыв стенки фолликула.
Овоцит первого порядка проходит первое мейотическое деление, в результате чего образуется овоцит второго порядка и полярное тельце. Первый мейоз завершается уже в зрелом фолликуле перед овуляцией на фоне пика ЛГ.
Второй мейоз завершается только после оплодотворения.
Строение и функции желтого тела. Под влиянием ЛГ в лютеиновую стадию овариально-менструального цикла на месте лопнувшего фолликула образуется менструальное желтое тело. Оно развивается из граафова пузырька и состоит из лютеинезированных фолликулов и клеток теки, между которыми располагаются капилляры синусоидального типа.
В лютеиновую стадию цикла функционирует менструальное желтое тело, которое поддерживает в крови высокий уровень эстрогенов и прогестерона и обеспечивает подготовку эндометрия к имплантации.
В последующем развитие желтого тела стимулируется хорионическим гонадотропином (только при условии оплодотворения). Если оплодотворение не произошло, то желтое тело подвергается инволюции, после чего в крови значительно понижаются уровни прогестерона и эстрогенов.
Менструальное желтое тело функционирует до завершения цикла до имплантации. Максимальный уровень прогестерона наблюдается через 8 – 10 дней после овуляции, что примерно соответствует времени имплантации.
При условии оплодотворения и имплантации дальнейшее развитие желтого тела происходит под стимулирующим действием хорионического гонадотропина, который вырабатывается в трофобласте, в результате чего образуется желтое тело беременности.
Клетками трофобласта при беременности секретируется хорионический гонадотропин, который через рецепторы ЛГ стимулирует рост желтого тела. Оно достигает размеров 5 см и стимулирует синтез эстрогенов.
Высокий уровень прогестерона, образующегося в желтом теле, и эстрогенов позволяет сохранить беременность.
Кроме прогестерона, клетками желтого тела синтезируется релаксин – гормон семейства инсулинов, который снижает тонус миометрия и уменьшает плотность лонного сочленения, что является также очень важными факторами для сохранения беременности.
Наиболее активно желтое тело беременности функционирует в первом и начале второго триместров, затем его функция постепенно угасает, а синтез прогестерона начинает осуществляться сформировавшейся плацентой. После дегенерации желтого тела, на его прежнем месте формируется соединительно-тканный рубец, называемый белым телом.
Гормональная регуляция овариально-менструального цикла Овариально-менструальный цикл регулируется гормонами гипофиза – фолликулостимулирующим гормоном и лютеинизирующим гормоном. Регуляция синтеза этих гормонов находится под влиянием рилизинг-факторов гипоталамуса. Гормоны яичника – эстрогены, прогестерон, ингибин – оказывают влияние на синтез гормонов гипоталамуса и гипофиза по принципу обратной связи.
Гонадолиберин. Секреция данного гормона осуществляется пульсирующим образом: в течение нескольких минут наблюдается усиленная секреция гормона, которая сменяется несколькочасовыми перерывами с низкой секреторной активностью (обычно интервал между пиками секреции составляет 1 – 4 ч). Регуляция секреции гонадолиберина находится под контролем уровня эстрогенов и прогестерона.
В конце каждого овариально-менструального цикла наблюдается инволяция желтого тела яичника. Соответственно значительно понижается концентрация эстрогенов и прогестерона. По принципу обратной связи снижение концентрации этих гормонов стимулирует активность нейросекреторных клеток гипоталамуса, что приводит к выделению гонадолиберина с пиками продолжительностью несколько минут и интервалами между ними около 1 ч.
Первоначально гормон секретируется из пула, запасенного в гранулах нейросекреторных клеток, а затем непосредственно сразу после секреции. Активный режим секреции гонадолиберина активирует гонадотропные клетки аденогипофиза.
В лютеиновую стадию овариально-менструального цикла активно функционирует желтое тело. Происходит постоянный синтез прогестерона и эстрогенов, концентрация которых в крови значительна. При этом интервал между пика секреторной активности гипоталамуса увеличивается до 2 – 4 ч. Такая секреция недостаточная для активации гонадотропных гормонов аденогипофиза.
Фоллитропин. Секреция данного гормона осуществляется в фолликулярную стадию, в самом начале овариально-менструального цикла, на фоне пониженной концентрации в крови эстрогенов и прогестерона. Стимуляция секреции осуществляется под влиянием гонадолиберина. Эстрогены, пик которых наблюдается за сутки до овуляции, и ингибин подавляют секрецию фолликулостимулирующего гормона.
Фоллитропин оказывает влияние на фолликулярные клетки. Эстрадиол и фолликулостимулирующий гормон способствуют повышению количества рецепторов на мембранах клеток гранулозы, что усиливает действие фоллитропина на фолликулярные клетки.
Фоллитропин оказывает стимулирующие действие на фолликулы, вызывая их рост. Гормон также активизирует ароматазу и секрецию эстрогенов.
Лютропин. Секреция лютропина осуществляется в конце фолликулярной стадии цикла. На фоне высокой концентрации эстрогенов блокируется выделение фоллитропина и стимулируется секреция лютропина. Наибольшая концентрация лютропина наблюдается за 12 ч до овуляции. Снижение концентрации лютропина наблюдается при секреции прогестерона клетками гранулозы.
Лютропин взаимодействует со специфическими рецепторами, расположенными на мембранах клеток теки и гранулозы, при этом происходит лютеинизация фолликулярных клеток и клеток теки.
Основным действием лютропина является стимуляция синтеза андрогенов в клетках теки и индукция прогестерона клетками гранулозы, а также активация протеолитических ферментов клеток гранулозы. На пике лютропина завершается первое мейотическое деление.
Эстрогены и прогестерон. Эстрогены секретируются клетками гранулозы. Секреция постепенно нарастает в фолликулярную стадию цикла и достигает пика за сутки до овуляции.
Выработка прогестерона начинается в клетках гранулозы до овуляции, а основным источником прогестерона является желтое тело яичника. Синтез эстрогенов и прогестерона значительно усиливается в лютеиновую стадию цикла.
class="book">Половые гормоны (эстрогены) взаимодействуют со специфическими рецепторами, расположенными на мембранах нейросекреторных клеток гипоталамуса, гонадотрофных клеток аденогипофиза, фолликулярных клеток яичника, альвеолярных клетках молочных желез, слизистых оболочках матки, маточных труб и влагалища.Эстрогены и прогестерон оказывают регулирующее влияние на синтез гонадолиберина. При одновременно высокой концентрации эстрогенов и прогестерона в крови пики секреции гонадотропных гормонов увеличиваются до 3 – 4 ч, а при их низкой концентрации снижаются до 1 ч.
Эстрогены контролируют пролиферативную фазу менструального цикла – способствуют восстановлению функционально активного эпителия матки (эндометрия). Прогестерон контролирует секреторную фазу – осуществляет подготовку эндометрия к имплантации оплодотворенной яйцеклетки.
Одновременное снижение в крови концентрации прогестерона и эстрогенов приводит к отторжению функционального слоя эндометрия, развитию маточного кровотечения – менструальная фаза цикла.
Под влиянием эстрогенов, прогестерона, пролактина, а также хорионического соматомаммотропина стимулируется дифференцировка секреторных клеток молочной железы.
Строение и функция маточных труб
В стенке маточной трубы (яйцевода) можно выделить три оболочки – внутреннюю слизистую, среднюю мышечную и наружную серозную. Во внутриматочном участке трубы слизистая оболочка отсутствует.
Слизистая оболочка маточной трубы окружает ее просвет. Она образует огромное количество ветвящихся складок. Эпителий слизистой оболочки представлен одним слоем цилиндрических клеток, среди которых различают реснитчатые и секреторные клетки. Собственная пластинка слизистой состоит из рыхлой волокнистой неоформленной соединительной ткани, богата кровеносными сосудами.
Секреторные клетки слизистой оболочки имеют выраженную гранулярную эндоплазматическую сеть и комплекс Гольджи. В апикальной части таких клеток имеется значительное количество секреторных гранул. Клетки более активны в секреторную стадию овариально-менструального цикла и выполняют продукцию слизи. Направление движения слизи – из маточной трубы в полость матки, что способствует движению оплодотворенной яйцеклетки.
Реснитчатые клетки имеют на апикальной поверхности реснички, которые совершают движения по направлению к матке. Эти реснички способствуют продвижению оплодотворенной яйцеклетки из дистального отдела маточной трубы, где происходит оплодотворения, к полости матки.
Мышечная оболочка маточной трубы представлена двумя слоями гладких мышц – наружного циркулярного и внутреннего продольного. Между слоями расположена прослойка из соединительной ткани, в которой имеется большое количество кровеносных сосудов. Сокращение гладких мышечных клеток также способствует движению оплодотворенной яйцеклетки.
Серозная оболочка покрывает поверхность маточной трубы, обращенную в брюшную полость.
Матка
Стенка матки состоит из трех слоев – слизистого, мышечного и серозного.
Слизистая оболочка матки (эндометрий) образована однослойным цилиндрическим эпителием, который лежит на собственной пластинке слизистой, представленной рыхлой волокнистой неоформленной соединительной тканью. Эпителиальные клетки можно разделить на секреторные и реснитчатые. В собственной пластинке слизистой оболочки имеются маточные железы (крипты) – длинные изогнутые простые трубчатые железы, которые открываются в просвет матки.
Мышечная оболочка (миометрий) состоит из трех слоев гладкомышечной ткани. Наружный слой представлен продольными волокнами, средний – циркулярными, внутренний – также продольными. В среднем слое находится большое количество кровеносных сосудов. При беременности значительно увеличивается толщина мышечной оболочки, а также величина гладкомышечных волокон.
Снаружи матка покрыта серозной оболочкой, представленной соединительной тканью.
Строение шейки матки. Шейка матки – это нижний сегмент органа, частично выступающий во влагалище. Выделяют надвлагалищную и влагалищную части шейки матки. Надвлагалищная часть шейки матки располагается выше места прикрепления стенок влагалища и открывается в просвет матки внутренним маточным зевом. Влагалищная часть шейки матки открывается наружным маточным зевом. Снаружи влагалищная часть шейки матки покрыта многослойным плоским эпителием. Этот эпителий полностью обновляется каждые 4 – 5 дней при помощи десквамации поверхностных и пролиферации базальных клеток.
Шейка матки представляет узкий канал, незначительно расширяющийся в средней части.
Стенка шейки матки состоит из плотной соединительной ткани, среди коллагеновых и эластических волокон которых встречаются отдельные гладкомышечные элементы.
Слизистая оболочка канала шейки матки представлена однослойным цилиндрическим эпителием, который в области наружного зева переходит в многослойный плоский эпителий, и собственным слоем. В эпителии различают железистые клетки, которые продуцируют слизь и клетки, имеющие реснички. В собственной пластинке слизистой оболочки имеются многочисленные разветвленные трубчатые железы, которые открываются в просвет канала шейки матки.
В собственном слое слизистой оболочки шейки матки отсутствую спиральные артерии, поэтому в менструальную стадию цикла слизистая оболочка шейки матки не отторгается подобно эндометрию тела матки.
Влагалище
Это фиброзно-мышечная трубка, состоящая из трех слоев – слизистого, мышечного и адвентициального.
Слизистая оболочка представлена многослойным плоским эпителием и собственной пластинкой слизистой оболочки.
Многослойный плоский эпителий состоит из базальных, промежуточных и поверхностных клеток.
Базальные клетки являются ростковыми. За счет них происходит постоянное обновление эпителия и его регенерация. Эпителий подвергается частичному ороговению – в поверхностных слоях можно обнаружить гранулы кератогиалина. Рост и созревание эпителия находится под гормональным контролем. Во время месячных эпителий истончается, а во время репродуктивного периода – увеличивается за счет деления.
В собственном слое слизистой оболочки имеются лимфоциты, зернистые лейкоциты, иногда можно обнаружить лимфатические фолликулы. Во время менструации лейкоциты могут легко проникать в просвет влагалища.
Мышечная оболочка состоит из двух слоев – внутреннего циркулярного и наружного продольного.
Адвентициальная оболочка состоит из волокнистой соединительной ткани и соединяет влагалище с окружающими структурами.
Строение наружных половых органов
Большие половые губы
Большие половые губы – это две кожные складки, расположенные по боковым сторонам от половой щели. С наружной стороны большие половые губы покрыты кожей, имеющей сальные и потовые железы. На внутренней поверхности волосяных фолликулов нет.
В толще больших половых губ расположены венозные сплетения, жировая клетчатка и бартолиновы железы преддверия. Бартолиновы железы являются парными образованиями, имеют размер не больше горошины и находятся на границе передней и средней трети половых губ.
Железы представляют собой трубчато-альвеолярные структуры, которые открываются в преддверие влагалище. Их секрет увлажняет слизистую оболочку преддверия и входа во влагалище при половом возбуждении.
Малые половые губы
Малые половые губы расположены кнутри от больших и в норме скрыты большими. Малые половые губы не имеют жировой ткани. В состав их входят многочисленные эластические волокна, а также кровеносные сосуды в виде сплетений. Пигментированная кожа содержит сальные и небольшие слизистые железы, которые открываются в преддверие влагалища.
Клитор
Клитор является аналогом дорсальной поверхности мужского полового члена. Он состоит из двух пещеристых тел, формирующих на дистальном конце клитора головку. Клитор снаружи имеет слизистую оболочку, состоящую из многослойного плоского эпителия со слабым ороговением (отсутствуют волосы, сальные и потовые железы). Кожа содержит многочисленные свободные и инкапсулированные нервные окончания.
Менструальный цикл
Цикличные изменения слизистой оболочки матки называются менструальным циклом.
В течение каждого цикла эндометрий проходит менструальную, пролиферативную и секреторные фазы. В эндометрии различают функциональный и базальный слои. Базальный слой эндометрия кровоснабжается из прямых артерий и сохраняется в менструальную фазу цикла. Функциональный слой эндометрия, который отторгается во время менструации, кровоснабжается из спиральных артерий, склерозирующихся в менструальную фазу, в результате чего возникает ишемия функционального слоя.
После менструации и отторжения функционального слоя эндометрия развивается пролиферативная фаза, которая длится до овуляции. В это время происходит активных рост фолликула и одновременно под влиянием эстрогенов – пролиферация клеток базального слоя эндометрия. Эпителиальные клетки желез базального слоя мигрируют на поверхность, пролиферируют и образуют новую эпителиальную выстилку слизистой оболочки. В эндометрии формируются новые маточные железы, из базального слоя вырастают новые спиральные артерии.
После овуляции и до момента начала менструации длится секреторная фаза, в зависимости от общей продолжительности цикла она может варьировать от 12 до 16 дней. В эту фазу в яичнике функционирует желтое тело, которое вырабатывает прогестерон и эстрогены.
За счет высокого уровня прогестерона создаются благоприятные условия для имлантации.
В эту стадию расширяются маточные железы, они становятся извилистыми. Железистые клетки прекращают деление, гипертрофируются и начинают секретировать гликоген, гликопротеины, липиды и муцин. Этот секрет поднимается к устью маточных желез и выделяется в просвет матки.
В секреторную фазу спиральные артерии приобретают более извитый характер и приближаются к поверхности слизистой оболочки.
В поверхности компактного слоя увеличивается количество соединительно-тканных клеток, а в цитоплазме накапливаются гликоген и липиды. Вокруг клеток формируются коллагеновые и ретикулярные волокна, которые образованы коллагеном I и III типов.
Клетки стромы приобретают черты децидуальных клеток плаценты.
Таким образом в эндометрии создаются две зоны – компактная, обращенная в просвет полости матки, и губчатая – более глубокая.
Менструальная фаза овариально-менструального цикла – это отторжение функционального слоя эндометрия, что сопровождается маточным кровотечением.
Если происходит оплодотворение и имплантация, то менструальное желтое тело подвергается инволюции, а в крови значительно повышается уровень гормонов яичника – прогестерона и эстрогенов. Это приводит к скручиванию, склерозированию и уменьшению просвета спиральных артерий, снабжающих кровью две трети функционального слоя эндометрия. В результате этих изменений происходит изменение – ухудшение кровоснабжения функционального слоя эндометрия. При менструации функциональный слой полностью отторгается, а базальный слой сохраняется.
Длительность овариально-менструального цикла составляет около 28 дней, однако подвержен значительным вариациям. Продолжительность менструаций составляет от 3 до 7 дней.
Изменение влагалища во время овариально-менструального цикла.
Во время начала фолликулярной стадии влагалищный эпителий тонкий и бледный. Под влиянием эстрогенов происходит пролиферация эпителия, которая достигает своей максимальной толщины. В клетках при этом накапливается значительное количество гликогена, используемого влагалищной микрофлорой. Образующаяся при этом молочная кислота препятствует развитию патогенных микроорганизмов. В эпителии появляются признаки кератинизации.
В лютеиновую стадию рост и созревание эпителиальных клеток блокируется. На поверхности эпителия появляются лейкоциты и роговые чешуйки.
Строение молочной железы
Молочная железа представляет собой производное эпидермиса и относится к кожным железам. Развитие железы зависит от пола – от вида половых гормонов.
Во внутриутробном развитии закладываются молочные линии – эпидермальные валики, залегающие с обеих сторон туловища от подмышечной области до паха.
В среднегрудном отделе эпителиальные тяжи валиков врастают в собственно кожу и впоследствии дифференцируются в сложные трубчато-альвеолярные железы.
Гистологическое строение молочной железы зависит от степени ее зрелости. Кардинальные различия имеются между ювенильной молочной железой, зрелой неактивной и активной железами.
Ювенильная молочная железа представлена междольковыми и внутридольковыми протоками, разделенными соединительнотканными перегородками. Секреторные отделы в ювенильной железе отсутствуют.
Зрелая неактивная железа формируется в период полового созревания. Под влиянием эстрогенов значительно увеличивается ее объем. Выводные протоки становятся более разветвленными, а среди соединительно-тканных перемычек накапливается жировая ткань. Секреторные отделы отсутствуют.
Лактирующая железа формируется под влиянием прогестерона в сочетании с эстрогенами, пролактином и хорионическим соматомаммотропином. Под действием этих гормонов индуцируется дифференцировка секреторных отделов молочной железы.
На 3-ем месяце беременности из растущих концевых отделов внутридольковых протоков формируются почки, дифференцирующиеся в секреторные отделы – альвеолы. Они выстланы кубическим, секреторным эпителием. Снаружи стенку альвеол и выводных протоков окружают многочисленные миоэпителиальные клетки. Внутридольковые протоки выстланы однослойным кубическим эпителием, который в молочных протоках переходит в многослойный плоский.
В лактирующей железе соединительно-тканные перегородки, которые разделяют дольки молочной железы, менее выражены по сравнению с ювенильной и функционально неактивной железами.
Секреция и выделение молока осуществляется в железах под влиянием пролактина. Наибольшая секреция осуществляется в утренние часы (с 2 до 5 ч утра). Под влиянием пролактина в мембранах альвеолярных клеток увеличивается плотность рецепторов как к пролактину, так и к эстрогенам.
Во время беременности концентрация эстрогенов высока, что блокирует действие пролактина. После рождения ребенка в крови значительно понижается уровень эстрогенов, а затем увеличивается пролактин, что позволяет ему индуцировать секрецию молока.
В первые 2 – 3 дня после родов молочная железа секретирует молозиво. По своему составу молозиво отличается от молока. В нем больше белков, но меньше углеводов и жиров. В молозиве можно обнаружить клеточные фрагменты, а иногда и целые клетки, содержащие ядра – молозивные тельца.
В период активной лактации альвеолярные клетки секретируют жиры, казеин, лактоферрин, сывороточный альбумин, лизоцим, лактозу. В состав молока входят также жир и вода, соли и иммуноглобулины класса А.
Секреция молока осуществляется по апокриновому типу. Основные компоненты молока выделяются путем экзоцитоза. Исключением являются только жиры, которые высвобождаются участком клеточной мембраны.
К гормонам, которые регулируют лактацию относятся пролактин и окситоцин.
Пролактин поддерживает лактацию во время кормления ребенка. Максимальная секреция пролактина осуществляется в ночные часы – с 2 до 5 ч утра. Секрецию пролактина стимулирует также сосание груди ребенком, при этом в течение получаса в крови резко увеличивается концентрация гормона, после чего начинается активная секреция альвеолярными клетками молока для следующего кормления. На фоне лактации подавляется секреция гонадотропных гормонов. Это связано с увеличением уровня эндорфинов, которые блокируют выделение гонадолиберина нейросекреторными клетками гипоталамуса.
Окситоцин – это гормон задней доли гипофиза, стимулирующий сокращение миоэпителиальных клеток, что способствует продвижению молока в протоках железы.
Тема 27. ОРГАН ЗРЕНИЯ
Органы чувств – это органы, которые воспринимают информацию из окружающей среды, после чего производится ее анализ и коррекция действий человека.
Органы чувств образуют сенсорные системы. Сенсорная система состоит из трех отделов:
1) рецепторов. Это периферические нервные окончания афферентных нервов, которые воспринимают информацию из окружающей среды. К рецепторам относятся, например палочки и колбочки в органе зрения, нейросенсорные клетки кортиевого органа – в органе слуха, вкусовые сосочки и почки языка – у органа вкуса.
2) проводящего пути включающего в себя афферентные отростки нейрона, по которым электрический импульс, образовавшийся в результате раздражения рецептора, передается в третий отдел.
3) коркового центра анализатора.
Орган зрения
Орган зрения как любой анализатор состоит из трех отделов:
1) глазного яблока, в котором расположены рецепторы – палочки и колбочки;
2) проводящего аппарата – 2-я пара черепных нервов – зрительный нерв;
3) коркового центра анализатора, расположенного в затылочной доле коры больших полушарий.
Развитие органа зрения
Зачаток глаза появляется у 22-дневного эмбриона в виде парных неглубоких инвагинаций – глазных бороздок в переднем мозге. После закрытия нейропор инвагинации увеличиваются и формируются глазные пузыри. Из нервного гребня выселяются клетки, которые участвуют в образовании склеры и цилиарной мышцы, а также дифференцируются в эндотелиальные клетки и фибробласты роговицы.
Глазные пузыри связаны с эмбриональным мозгом при помощи глазных стебельков. Глазные пузыри вступают в контакт с эктодермой будущей лицевой частью головы и индуцируют развитие в ней хрусталика. Инвагинация стенки глазного пузыря приводит к формированию двухслойного глазного бокала.
Наружный слой глазного бокала образует пигментный слой сетчатки. Внутренний слой формирует сетчатку. Аксоны дифференцирующихся ганглиозных клеток прорастают в глазной стебелек, после чего входят в состав зрительного нерва.
Из окружающей глазной бокал клеток мезенхимы формируется сосудистая оболочка.
Из эктодермы развивается эпителий роговицы.
Хрусталиковая плакода отделяется из эктодермы и образует хрусталиковый пузырек, над которым смыкается эктодерма. При развитии хрусталикового пузырька изменяется толщина его стенок, в связи с чем появляется тонкий передний эпителий и комплекс плотно упакованных удлиненных эпителиальных клеток веретенообразной формы – хрусталиковые волокна, расположенные на задней поверхности.
Хрусталиковые волокна удлиняются, заполняют полость пузырька. В эпителиальных клетках хрусталика синтезируются специальные для хрусталика белки – кристаллины. На начальных стадиях дифференцировки хрусталика синтезируется небольшое количество альфа– и бета– кристаллинов. По мере развития хрусталика, кроме двух данных белков, начинают синтезироваться гамма– кристаллины.
Строение глазного яблока
Стенка глазного яблока состоит из трех оболочках – наружной – фиброзной оболочки (в задней поверхности это непрозрачная склера, которая в передней части глазного яблока переходит в прозрачную роговицу), средней оболочки – сосудистой, внутренней оболочки – сетчатки.
Строение роговицы
Роговица – это передняя стенка глазного яблока, прозрачная. Кзади прозрачная роговица переходит в непрозрачную склеру. Граница их перехода друг в друга получила название лимба. На поверхности роговицы находится пленка, состоящая из секрета слезных и слизистых желез, в состав которого входит лизоцим, лактоферрин и иммуноглобулины. Поверхность роговицы покрыта многослойным плоским неороговевающим эпителием.
Передняя пограничная мембрана (или боуменова оболочка) – это слой, имеющий толщину от 10 до 16 мкм, не содержащий клеток. Передняя пограничная мембрана состоит из основного вещества, а также тонких коллагеновых и ретикулярных волокон, которые принимают участи в поддержание формы роговицы.
Собственное вещество роговицы состоит из правильно расположенных коллагеновых пластин, уплощенных фибробластов погруженных в матрикс из сложных сахаров, включая кератин-и хондроэтинсульфат.
Задняя пограничная мембрана (или десцементова оболочка) – это прозрачный слой роговицы, расположен он между собственным веществом роговицы и эндотелием задней поверхности роговицы. Этот слой состоит из коллагеновых волокон седьмого типа и аморфного вещества. Эндотелий роговицы ограничивает спереди переднюю камеру глаза.
Строение склеры
Склера – это наружная непрозрачная оболочка глазного яблока. Склера состоит из плотных тяжей коллагеновых волокон, между которыми находятся уплощенной формы фибробласты. В месте соединения склеры и роговицы расположены небольшие, сообщающиеся друг с другом полости, которые в совокупности образуют шлеммов канал (или венозную пазуху) склеры, который обеспечивает отток внутриглазной жидкости из передней камеры глаза.
Склера взрослого человека обладает достаточно высокой устойчивостью к повышению внутриглазного давления. Однако при этом отмечаются отдельные области истончения склеры, особенно в области лимба.
У детей склера слабо устойчива к растяжению, поэтому при повышении внутриглазного давления значительно увеличиваются размеры глазного яблока.
Самое тонкое место склеры – область решетчатой пазухи. Через отверстие решетчатой пластинки проходят пучки волокон зрительного нерва. Волокна зрительного нерва проходят через отверстия в решетчатой пластине.
Строение сосудистой оболочки
Основной функцией сосудистой оболочки является осуществление питания сетчатки.
Сосудистая оболочка состоит из нескольких слоев – надсосудистой, хориокапиллярной и базальной пластинок.
Надсосудистая оболочка расположена на границе со склерой и состоит из рыхлой волокнистой соединительной ткани с многочисленными пигментными клетками.
Сосудистая пластинка содержит сплетения артерий и вен, состоит из рыхлой соединительной ткани, в которой располагаются пигментные клетки и гладкомышечные волокна.
Хориокапиллярная пластина образована сплетением капилляров синусоидального типа.
На границе сосудистой оболочки и сетчатки расположена базальная пластина. В передней части глаза сосудистая оболочка образует радужку и цилиарной тело.
Строение радужки
Радужная оболочка – это продолжение сосудистой оболочки глаза, располагается между роговицей и хрусталиком, разделяет переднюю и заднюю камеры глаза.
Радужная оболочка состоит из нескольких слоев – эндотелиального (или переднего), сосудистого наружнего, и внутреннего пограничных слоев, а также пигментного слоя.
Эндотелий представляет собой продолжение эндотелия роговицы.
Наружный и внутренний пограничные слои имеют сходное строение, содержат фибробласты, мелоноциты, погруженные в основное вещество.
Сосудистый слой – это рыхлая волокнистая соединительная ткань, которая содержит многочисленные сосуды и меланоциты.
Задний пигментный слой переходит в двухслойный эпителий сетчатки, который покрывает цилиарное тело.
В составе радужки имеются мышцы, суживающие и расширяющие зрачок. При раздражении парасимпатических нервных волокон происходит сужение зрачка, а при раздражении симпатических – его расширение.
Строение цилиарного тела
В области угла глаза сосудистая оболочка утолщается, образуя при этом цилиарное тело.
На срезе оно имеет вид треугольника, обращенного основанием в переднюю камеру глаза.
Цилиарное тело состоит из мышечных волокон – цилиарной мышцы, участвующей в регуляции аккомодации глаза. Гладкомышечные волокна, расположенные в цилиарной мышце, проходят в трех взаимно перпендикулярных направлениях.
От цилиарного тела отходят по направлению к хрусталику глаза цилиарные отростки. Они содержат массу капилляров, покрыты двумя слоями эпителия – пигментным и цилиарным секреторным, который продуцирует водянистую влагу. К цилиарным отросткам прикрепляется циннова связка. При сокращении цилиарной мышцы циннова связка расслабляется и выпуклость хрусталика увеличивается.
Строение хрусталика
Хрусталик представляет собой двояковыпуклую линзу. Передняя поверхность хрусталика образована однослойным кубическим эпителием, который по направлению к экватору становится выше. Между эпителиальными клетками хрусталика имеются щелевидные контакты. Хрусталик состоит из тонких хрусталиковых волокон, которые составляют его основную массу и содержат кристаллины. Снаружи хрусталик покрыт капсулой – толстой базальной мембраной со значительным содержанием ретикулярных волокон.
Камеры глаза, движение внутриглазной жидкости
В глазу имеются две камеры – передняя и задняя. Передняя камера глаза – это пространство, ограниченное спереди роговицей, сзади радужкой, а в области зрачка – центральной частью передней поверхности хрусталика. Глубина передней камеры глаза наибольшая в центральной части, где достигает 3 мм. Угол между задней поверхностью периферической части роговицы и передней поверхностью корня радужки получил название «угол передней камеры глаза». Он располагается в области перехода склеры в роговицу, а также радужки – в цилиарное тело.
Задняя камера глаза – это пространство за радужкой, ограниченное хрусталиком, цилиарным и стекловидным телом.
Внутриглазная жидкость образуется в задней камере глаза из капилляров и эпителия цилиарных отростков. Из задней камеры глаза между радужкой и хрусталиком она проходит в переднюю камеру. По составу внутриглазная жидкость состоит из белков плазмы крови, деполимеризированной гиалуроновой кислоты, гипертонична по отношению к плазме крови и не содержит фибриногена.
Из элементов радужки, роговицы и стекловидного тела формируется трабекула, образующая заднюю стенку шлеммова канала. Она имеет крайне важное значение для оттока влаги из передней камеры глаза. Из трабекулярной сети влага оттекает в шлеммов канал, а затем всасывается в венозных сосудах глаза.
Равновесие между образованием и всасыванием водянистой влаги формирует и определяет величину внутриглазного давления.
Между кровью и тканями глаза сформирован гематотканевой барьер. Клетки цилиарного эпителия плотно связаны между собой прочными контактами и не пропускают макромолекулы.
Строение стекловидного тела
Между хрусталиком и сетчаткой расположена полость, заполненная одной из прозрачных сред глаза – стекловидным телом. По своему строению стекловидное тело представляет собой гель, состоящий из воды, коллагена, второго, девятого и одиннадцатого типов, белка витреина и гиалуроновой кислоты.
Стекловидное тело заключено в стекловидную мембрану, представляющую собой скопление коллагеновых волокон, формирующих капсулу стекловидного тела.
Через стекловидное тело по направлению от хрусталика к сетчатке проходит канал – остаток эмбриональной системы глаза.
Строение, функции сетчатой оболочки
Сетчатая оболочка (или сетчатка) – внутренняя оболочка глаза. Состоит из двух отделов – зрительного, где расположены фоторецепторы, и слепого. У заднего края оптической оси глаза сетчатка имеет округлое желтое пятно диаметром около 2 мм. Центральная ямка сетчатки расположена в средней части желтого пятна. Это место наилучшего восприятия изображения глазом. Зрительный нерв выходит из сетчатки медиальнее желтого пятна, образуя при этом сосок зрительного нерва. В месте выхода зрительного нерва в сетчатке отсутствуют фоторецепторы, восприятие изображения в этом месте сетчатки не происходит, поэтому оно получило название слепого пятна.
В центре диска зрительного нерва можно увидеть углубление, в котором просматриваются питающие сетчатку сосуды, выходящие из зрительного нерва.
Пигментный слой сетчатки – самый наружный, обращенный к стекловидному телу, содержит полигональные клетки, прилежащие к сосудистой оболочке.
Одна клетка пигментного эпителия взаимодействует с наружными сегментами десятка фоторецепторных клеток – палочек и колбочек. Клетки пигментного эпителия содержат запасы витамина А, участвуют в его превращениях и передают его производные фоторецепторам для образования зрительного пигмента.
Наружный ядерный слой включает в себя ядросодержащие части фоторецепторных клеток. Колбочки концентрируются наибольшим образом в области желтого пятна и обеспечивают цветное зрение. При этом глазное яблоко устроено таким образом, что на колбочки падает центральная часть отображаемого с какого-либо объекта света.
По периферии сетчатки расположены палочки, основной функцией которых является восприятие сигналов в сумеречном освещении.
Наружный сетчатый слой – это место контакта внутренних сегментов палочек и колбочек с отростками биполярных клеток.
Внутренний ядерный слой. В этом слое расположены тела биполярных клеток. Биполярные клетки имеют два отростка. При помощи одного – короткого – они осуществляют связь между телами и фоторецепторами, а при помощи длинных – с ганглиозными клетками. Таким образом, биполярные клетки являются связующим звеном между фоторецепторами и ганглиозными клетками.
В этом слое расположены также горизонтальные и амакринные клетки.
Внутренний сетчатый слой – слой, в котором осуществляется контакт отростков биполярных и ганглиозных клеток, при этом амакринные клетки выступают в качестве вставочных нейронов. В настоящее время считают, что один тип биполярных клеток передает информацию 16 типам ганглиозных клеток при участии 20 типов амакринных клеток.
Ганглиозный слой содержит тела ганглиозных клеток.
Установлено, что множество фоторецепторных клеток передают сигнал на одну биполярную, а несколько биполярных на одну ганглиозную, т. е. количество клеток в слоях сетчатки постепенно уменьшается, а объем информации получаемой одной клеткой увеличивается.
К фоторецепторам сетчатки относятся палочки и колбочки.
Установлено, что в области желтого пятна и центральной ямки сетчатки расположены преимущественно колбочки. При этом одна колбочка осуществляет одну связь с одной биполярной клеткой, что обеспечивает надежность передачи зрительного сигнала.
В фоторецепторах расположен зрительный пигмент. В палочках это родопсин, а в колбочках – красный, зеленый и синий пигменты.
В фоторецепторах имеются наружный и внутренние сегменты.
Наружный сегмент содержит зрительный пигмент и обращен к сосудистой оболочке.
Внутренний сегмент заполнен митохондриями и содержит базальное тельце, от которого в наружный сегмент отходят 9 пар микротрубочек.
Основной функцией колбочек является восприятие цвета, при этом имеются три типа зрительного пигмента, основной функцией палочек является восприятие формы предмета.
Теория цветного зрения была предложена в 1802 г. Томасом Янгом. При этом цветное зрение у человека в этой теории объяснялось наличием трех типов зрительного пигмента. Эта возможность различать любые цвета, определяющаяся присутствием в сетчатке колбочек трех типов, получила название трихромазиий.
У человека возможны дефекты цветового восприятия, дихромазия из цветов не воспринимается фоторецепторами сетчатки.
Строение нейронов сетчатки и клеток глии
Нейроны сетчатки синтезируют ацетилхолин, дофамин, глицин, α-аминомасляную кислоты. Некоторые нейроны содержат серотонин и его аналоги.
В составе слоев сетчатки имеются горизонтальные и амакринные клетки.
Горизонтальные клетки расположены в наружной части внутреннего ядерного слоя, а отростки этих клеток входят в область синапсов между фоторецепторами и биполярными клетками. Горизонтальные клетки получают информацию от колбочек и передают ее также колбочкам. Соседние горизонтальные клетки соединяются между собой при помощи щелевидных контактов.
Амакринные клетки находятся во внутренней части внутреннего ядерного слоя, в области синапсов между биполярными и ганглиозными клетками, при этом амакринные клетки выполняют функцию вставочных нейронов.
Биполярные клетки реагируют на контрастность изображения. Некоторые из этих клеток сильнее реагируют на цветной, нежели на черно-белый контраст. Некоторые биполярные клетки получают информацию преимущественно от палочек, другие, наоборот, – преимущественно от колбочек.
Кроме нейронов, сетчатка содержит также крупные клетки радиальной глии – мюллеровские клетки.
Их ядра расположены на уровне центральной части внутреннего ядерного слоя.
Наружные отростки этих клеток заканчиваются ворсинками, при этом образуется пограничный слой.
Внутренние отростки имеют расширение (или ножку) во внутреннем пограничном слое на границе со стекловидным телом. Глиальные клетки играют важную роль в регуляции ионного гомеостаза сетчатки. Они снижают концентрацию ионов калия во внеклеточном пространстве, где концентрация их при раздражении светом значительно увеличивается. Плазматическая мембрана мюллеровской клетки в области ножки характеризуется высокой проницаемостью для ионов калия, выходящих из клетки. Мюллеровская клетка захватывает калий из наружных слоев сетчатки и направляет поток этих ионов через свою ножку в жидкость стекловидного тела.
Механизм фотовосприятия
При попадании кванта света на наружные сегменты фоторецепторых клеток последовательно происходят следующие реакции: активация родопсина и фотоизомеризация, каталитическая реакция G-белка родопсином, активация фосфодиэстеразы при связывании с белком, гидролиз цГМФ, переход цГМФ-зависимых натриевых каналов из открытого состояния в закрытое, в результате чего возникает гиперполяризация плазмолеммы фоторецепторной клетки и передача сигнала на биполярные клетки. Увеличение активности цГМФ-фосфодиэстразы снижает концентрацию цГМФ, что приводит к закрытию ионных каналов и гиперполяризации плазмолеммы фоторецепторной клетки. Это служит сигналом для изменения характера секреции медиатора в синапсе между внутренним сегментом рецепторной клетки и дендритом биполярной клетки. В темноте ионные каналы в клеточной мембране рецепторных клеток поддерживаются в открытом состоянии за счет связывания белков ионных каналов с циклической ГМФ. Протоки внутрь клетки ионов натрия и кальция через открытые каналы обеспечивают темновой ток.
Строение слезной железы
Слезная железа относится к вспомогательному аппарату глаза. Железа окружена группой сложных трубчато-альвеолярных железок, секреторные отделы окружены миоэпителиальными клетками. Секрет железы (слезная жидкость) по 6 – 12 протокам поступает в свод конъюнктивы. Из слезного мешка по носослезному каналу слезная жидкость попадает в нижний носовой ход.
Тема 28. ОРГАНЫ ВКУСА И ОБОНЯНИЯ
Обонятельный анализатор состоит, как любой, из центрального и периферического отделов.
Периферический отдел обонятельного анализатора представлен обонятельным полем – обонятельной выстилкой, которая находится на средней части верхней носовой раковины и соответствующем участке слизистой оболочки перегородки носа.
Обонятельный эпителий содержит рецепторные клетки. Их центральные отростки – аксоны – передают информацию в обонятельную луковицу. Обонятельные рецепторы являются первым нейроном обонятельного пути и окружены опорными клетками.
Тело обонятельной клетки содержит многочисленные митохондрии, цистерны эндоплазматической сети с рибосомами, элементы комплекса Гольджи, лизосомы. Обонятельные клетки, кроме центральной, имеют также короткий периферический отросток – дендрит, заканчивающийся на поверхности обонятельного эпителия сферическим утолщением – обонятельной булавой диаметром 1 – 2 мм. В ней присутствуют митохондрии, мелкие вакуоли и базальные тельца, отходящие от вершины булавы несколько обонятельных волосков длиной до 10 мм, имеющих строение типичных ресничек.
В подэпителиальной соединительной ткани расположены концевые отделы боуменовых желез, кровеносных сосудов, а также пучки безмиелиновых нервных волокон обонятельного нерва. Слизь, которая секретируется боуменовыми железами покрывает поверхность обонятельной выстилки.
В процессе хемовосприятия участвуют обонятельные реснички, погруженные в слизь.
Обонятельный нерв – совокупность тонких обонятельных нитей, проходящих через отверстие в решетчатой кости в мозг к обонятельным луковицам. Кроме безмиелиновых волокон, в соединительно-тканном слое обонятельной выстилки проходят отдельные миелиновые волокна тройничного нерва.
Рецепторные клетки обонятельной выстилки регистрируют 25 – 35 запахов.
Их комбинации образуют много миллионов воспринимаемых запахов. Обонятельные рецепторные нейроны в ответ на адекватную стимуляцию деполяризуются. В плазмолемму обонятельных ресничек встроена цАМФ-зависимые воротные ионные каналы, открывающиеся при взаимодействии с цАМФ.
цАМФ-зависимые воротные каналы активируются в результате последовательности событий – взаимодействия с белком-рецептором в плазмолемме обонятельных ресничек, активации G-белка, повышения активности аденилатциклазы, увеличения уровня цАМФ.
К механизму хемовосприятия в органе обоняния имеет также отношение система инозитолтрифосфата. При действии некоторых пахучих веществ быстро возрастает уровень инозитолтрифосфата, который взаимодействует с кальциевыми каналами в плазмолемме обонятельных рецепторных нейронов. Таким образом, системы вторичных посредников цАМФ и инозитолтрифосфата взаимодействуют между собой, обеспечивая лучшее восприятие различных запахов.
Через цАМФ-зависимые воротные ионные каналы внутрь клетки проходят не только одновалентные катионы, но и ионы кальция, который связывается с кальмодулином. Образовавшийся при этом комплекс «кальций – кальмодулин» взаимодействует с каналом, что препятствует активации цАМФ, в результате чего рецепторная клетка становится нечувствительной к действию пахучих веществ-раздражителей.
Продолжительность жизни обонятельных клеток составляет около 30 – 35 дней. Обонятельные рецепторы составляют исключение среди всех других нейронов, они обновляются за счет клеток-предшественников – базальных клеток эпителия обонятельной выстилки.
Опорные клетки. Среди них различают высокие цилиндрические и клетки меньших размеров, не достигающие поверхности рецепторного слоя. Цилиндрические клетки на апикальной поверхности содержат микроворсинки длиной 3 – 5 мкм. Кроме хорошо развитых органелл общего значения, опорные клетки в апикальной части содержат множество секреторных гранул.
Вкусовой анализатор, так же как и обонятельный, состоит из центрального и периферического отделов. Периферический отдел вкусового анализатора представлен вкусовыми почками, которые обнаруживаются в эпителии полости рта, переднего отдела глотки, пищевода, а также гортани. Их основная локализация – хемочувствительные сосочки языка (грибовидные, желобовидные и листовидные). У детей вкусовые сосочки встречаются также в эпителии слизистой губ, надгортанника, голосовых связок.
Вкусовая почка имеет эллипсовидную форму, высоту 27 – 115 мкм и ширину 16 – 70 мкм. В их апикальном отделе находится заполненный аморфным веществом вкусовой канал, открывающийся на поверхности эпителия вкусовой порой.
Почка образована 30 – 80 удлиненными клетками, тесно прилегающими одна к другой. Большинство этих клеток вступает в контакт с нервными волокнами, проникающими в почку из подэпителиального нервного сплетения, содержащего миелиновые и безмиелиновые нервные волокна. Все клеточные типы вкусовой почки образуют афферентные синапсы с нервными терминалями.
Развитие вкусовых почек языка протекает параллельно с прорастанием нервных волокон в эпителий. Дифференцировка почек начинается одновременно с появления скоплений безмиелиновых нервных волокон непосредственно под областью расположения будущей почки.
Клетки вкусовых почек морфологически неоднородны. Выделяют четыре типа клеток.
Клетки типа I в апикальной части имеют до 40 микроворсинок, выступающих в полость вкусового канала. Верхушечная часть клеток содержит большое количество электроноплотных гранул. Цитоскелет представлен хорошо выраженными пучками микрофиламентов и микротрубочек. Часть этих структур образует компактный пучок, суженный конец которого связан с парой центриолей. Комплекс Гольджи, имеющий отношение к образованию электроноплотных гранул, расположен над ядром. В базальной части клетки присутствуют небольшие плотные митохондрии. В этой же области сосредоточена хорошо развитая гранулярная эндоплазматическая сеть.
Клетки типа II имеют более светлую цитоплазму. В ней наряду с варьирующимися по размерам вакуолями содержатся расширенные цистерны гладкой эндоплазматической сети. В апикальной части клетки расположены редкие и мелкие микроворсинки. Встречаются мультивезикулярные тельца, лизосомы.
Клетки типа III содержат в апикальной части невысокие микроворсинки, центриоли и незначительное количество пузырьков диаметром до 120 нм. Гранулярная эндоплазматическая сеть развита слабо. Многочисленные уплощенные цистерны и пузырьки образуют хорошо выраженную гладкую эндоплазматическую сеть. Характерная особенность клеток – наличие в цитоплазме гранулярных пузырьков диаметром 80 – 150 нм, а также светлых пузырьков диаметром 30 – 60 нм. Эти пузырьки, в первую очередь светлые, имеют отношение к афферентным синапсам. Гранулярные пузырьки располагаются и в других частях клетки, но всегда присутствуют в области синапсов.
Клетки типа IV расположены в базальной части вкусовой почки и не достигают вкусового канала. Они содержат крупное ядро и пучки микрофиламенты. Функция этих клеток остается неясной. Не исключено, что клетки типа IV являются предшественниками для всех типов клеток вкусовой почки.
Хеморецепторные клетки. Хотя контакты с афферентными волокнами образуют все типы клеток, функцию хемовосприятия связывают преимущественно с клетками типа III. В пресинаптической области вкусовых клеток гранулярные пузырьки содержат серотонин, медиатор афферентного синапса. Сладкие раздражители активируют во вкусовых рецепторных клетках аденилатциклазу, что приводит к увеличению уровня цАМФ. Горечи действуют через G-белок, называемый гастдуцином, что через увеличение активности фосфодиэстеразы приводит к снижению уровня цАМФ.
Во вкусовом рецепторе происходит постоянное обновление клеток. Из периферической области вкусовой почки клетки перемещаются в центральную ее часть со скоростью 0,06 мкм/ч. Средняя продолжительность жизни клеток вкусового органа составляет 250 ± 50 ч. После повреждения нервов, иннервирующих вкусовые почки, последние дегенерируют, а при регенерации нервов происходит их восстановление. Результаты этих исследований дают основание полагать, что вкусовые почки находятся под нейротрофическим контролем.
Тема 29. СТРОЕНИЕ ОРГАНА СЛУХА И РАВНОВЕСИЯ
Развитие органа слуха и равновесия
У 22-х дневного эмбриона на уровне ромбовидного мозга появляются парные утолщения эктодермы – слуховые плакоды. Путем инвагинации и последующего отделения от эктодермы формируется слуховой пузырек. С медиальной стороны к слуховому пузырьку прилежит зачаток слухового ганглия, из которого впоследствии дифференцируется ганглий преддверия и ганглий улитки. По мере развития в слуховом пузырьке появляются две части – эллипсовидный мешочек (утрикулюс с полукружными каналами) и сферический мешочек (саккулюс) с зачатком канала улитки.
Строение органа слуха
Наружное ухо включает в себя ушную раковину, наружный слуховой проход и барабанную перепонку, передающую звуковые колебания на слуховые косточки среднего уха. Ушная раковина образована эластическим хрящом, покрытым тонкой кожей. Наружный слуховой проход выстлан кожей, содержащей волосяные фолликулы, типичные сальные железы и церуминозные железы – видоизмененные сальные железы, вырабатывающие ушную серу. Наружная поверхность барабанной перепонки покрыта кожей. Изнутри, со стороны барабанной полости, барабанная перепонка выстлана однослойным кубическим эпителием, который отделен от наружного слоя тонкой соединительно-тканной пластинкой.
Среднее ухо содержит слуховые косточки – молоточек, наковаленку и стремечко, которые передают колебания с барабанной перепонки на мембрану овального окна. Барабанная полость выстлана многослойным эпителием, который переходит в однослойный цилиндрический мерцательный у отверстия слуховой трубы. Между эпителием и костью располагается прослойка плотной волокнистой соединительной ткани. Кость медиальной стенки барабанной полости имеет два окна – овальное и круглое, которые отделяют барабанную полость от костного лабиринта внутреннего уха.
Внутреннее ухо образовано костным лабиринтом височной кости, который содержит повторяющий его рельеф перепончатый лабиринт. Костный лабиринт – система полукружных каналов и сообщающаяся с ними полость-преддверие. Перепончатый лабиринт – система тонкостенных соединительно-тканных трубок и мешочков, расположенная внутри костного лабиринта. В костных ампулах перепончатые каналы расширяются. В преддверии перепончатый лабиринт образует два сообщающихся между собой мешочка: улюс (эллиптический мешочек), в который открываются перепончатые каналы и саккулюс (сферический мешочек). Перепончатые полукружные каналы и мешочки преддверия заполнены эндолимфой и сообщаются с улиткой, а также с расположенным в полости черепа эндолимфатическим мешком, где эндолимфа резорбируется. Эпителиальная выстилка эндолимфатического мешка содержит цилиндрические клетки с плотной цитоплазмой и ядрами неправильной формы, а также цилиндрические клетки со светлой цитоплазмой, высокими микроворсинками, многочисленными пиноцитозными пузырьками и вакуолями. В просвете мешка присутствуют макрофаги и нейтрофилы.
Строение улитки. Улитка – это спирально закрученный костный канал, развившийся как вырост преддверия. Улитка образует 2,5 завитка длиной около 35 мм. Базилярная (основная) и вестибулярная мембраны, расположенные внутри канала улитки, делят его полость на три части: барабанную лестницу, вестибулярную лестницу и перепончатый канал улитки, (среднюю лестницу или улитковый ход). Эндолимфа заполняет перепончатый канал улитки, а перилимфа – вестибулярную и барабанную лестницы. Барабанная лестница и вестибулярная лестница сообщаются у вершины улитки с помощью отверстия (геликотремы). В перепончатом канале улитки на базилярной лестнице расположен рецепторный аппарат – спиральный (или кортиев) орган.
Концентрация К+ в эндолимфе в 100 раз больше, чем в перилимфе; концентрация Na+ в эндолимфе в 10 раз меньше, чем в перилимфе.
Перилимфа по химическому составу близка к плазме крови и си жидкости и занимает промежуточное положение между ними по содержанию белка.
Строение кортиевого органа. Кортиев орган содержит несколько рядов волосковых клеток, связанных с текториальной (покровной мембраной). Различают внутренние и наружные волосковые и поддерживающие клетки.
Волосковые клетки – рецепторные, образуют синаптические контакты с периферическими отростками чувствительных нейронов спирального ганглия. Внутренние волосковые клетки образуют один ряд, имеют расширенное основание, 30 – 60 неподвижных микроворсинок (стереоцилий), проходящих через кутикулу в апикальной части. Стереоцилии расположены полукругом, открытым в сторону наружных структур кортиева органа. Внутренние волосковые клетки – первичные сенсорные клетки, которые возбуждаются в ответ на звуковой раздражитель и передают возбуждение афферентным волокнам слухового нерва. Смещение покровной мембраны вызывает деформацию стереоцилий, в мембране которых открываются механочувствительные ионные каналы и возникает деполяризация. В свою очередь, деполяризация способствует открытию потенциалочувствительных Са2+ и К+-каналов, встроенных в базолатеральную мембрану волосковой клетки. Возникающее повышение в цитозоле концентрации Са2+ инициирует секрецию (наиболее вероятен глютамат) из синаптических пузырьков с последующим его воздействием на постсинаптическую мембрану в составе афферентных терминалей слухового нерва.
Наружные волосковые клетки расположены в 3 – 5 рядов, имеют цилиндрическую форму и стереоцилии. Миозин распределяется вдоль стереоцилии волокнистой клетки.
Поддерживающие клетки. Среди поддерживающих клеток различают внутренние фаланговые клетки, внутренние клетки-столбы, наружные фаланговые клетки Дейтерса, наружные клетки-столбы, клетки Гензена, клетки Беттхера. Фаланговые клетки вступают в контакт с волосковыми на базальной мембране. Отростки наружных фаланговых клеток проходят параллельно наружным волосковым клеткам, не соприкасаясь с ними на значительном протяжении, и на уровне апикальной части волосковых клеток вступают с ними в контакт. Поддерживающие клетки связаны щелевыми контактами, образованными мембранным белком щелевого контакта коннексином-26. Щелевидные контакты участвуют в восстановлении уровня К+ в эндолимфе в ходе следовых реакций после возбуждения волосковых клеток.
Путь передачи слухового раздражения
Цепочка передачи звукового давления выглядит следующим образом: барабанная перепонка далее слуховые косточки – молоточек, наковаленка, стремечко, далее – мембрана овального окна, перилимфа базилярная и текториальная мембраны и мембрана круглого окна.
При смещении стремечка частицы перелимфы перемещаются по вестибулярной лестнице и затем через геликотрему по барабанной лестнице – к круглому окну.
Жидкость, сдвинутая смещением мембраны овального окна, создает избыточное давление в вестибулярном канале. Под действием этого давления базальный участок основной мембраны смешается в сторону барабанной лестницы. Колебательная реакция в виде волны распространяется от базальной части основной мембраны к геликотреме. Смещение текториальной мембраны относительно волосковых клеток при действии звука вызывает их возбуждение. Смещение мембраны относительно сенсорного эпителия отклоняет стереоцилии волосковых клеток, что открывает механочувствительные каналы в клеточной мембране и приводит к деполяризации клеток. Возникающая электрическая реакция, названная микрофонным эффектом, по своей форме повторяет форму звукового сигнала.
Строение и функционирование органа равновесия
В ампулярном расширении полукружного канала находятся кристы (или гребешки). Чувствительные области в мешочках называются пятнами.
В состав эпителия пятен и крист входят чувствительные волосковые и поддерживающие клетки. В эпителии пятен киноцилии распределяются особым образом. Здесь волосковые клетки образуют группы из нескольких сот единиц. Внутри каждой группы киноцилии ориентированы одинаково, однако ориентация самих групп различна. Эпителий пятен покрыт отолитовой мембраной. Отолиты – кристаллы карбоната кальция. Эпителий крист окружен желатинообразным прозрачным куполом.
Волосковые клетки присутствуют в каждой ампуле полукружных каналов и в пятнах мешочков преддверия. Различают два типа волосковых клеток. Клетки типа I обычно расположены в центре гребешков, а клетки типа II – по периферии. Клетки обоих типов в апикальной части содержат 40 – 110 неподвижных волосков (стереоцилий) и одну ресничку (киноцилию), расположенную на периферии пучка стереоцилий. Самые длинные стереоцилии находятся вблизи киноцилии, а длина остальных уменьшается по мере удаления от киноцилии.
Волосковые клетки чувствительны к направлению действия стимула (дирекционная чувствительность). При направлении раздражающего воздействия от стереоцилии к киноцилии волосковая клетка возбуждается. При противоположном направлении стимула происходит угнетение ответа. Клетки типа I имеют форму амфоры с закругленным дном и размещены в бокалообразной полости афферентного нервного окончания. Эфферентные волокна образуют синаптические окончания на афферентных волокнах, связанных с клетками I типа. Клетки типа II имеют вид цилиндров с округлым основанием. Характерная особенность этих клеток заключается в их иннервации: нервные окончания здесь могут быть как афферентными (большинство), так и эфферентными.
При сверхпороговом звуковом раздражении (акустическая травме) и при действии некоторых ототоксических препаратов (антибиотиков стрептомицина, гентамицина) волосковые клетки погибают. Возможность их регенерации из клеток-предшественниц нейросенсорного эпителия имеет важное практическое значение, считается установленным для птиц и интенсивно изучается на млекопитающих.
Вестибулярный нерв образован отростками биполярных нейронов в составе вестибулярного ганглия. Периферические отростки этих нейронов подходят к волосковым клеткам каждого полукружного канала, утрикулюса и саккулюса, а центральные направляются в вестибулярные ядра продолговатого мозга.
Тема 30. ОРГАНЫ КРОВЕТВОРЕНИЯ И ИММУНОЛОГИЧЕСКОЙ ЗАЩИТЫ
К органам кроветворения и иммунологической защиты относят красный костный мозг, вилочковую железу (тимус), лимфатические узлы, селезенку, а также лимфатические фолликулы пищеварительного тракта (миндалины, лимфатические фолликулы кишечника) и других органов. Они образуют единую с кровью систему.
Их делят на центральные и периферические органы кроветворения и иммунологической защиты.
К центральным органам относятся красный костный мозг, вилочковая железа и пока неизвестный у млекопитающих аналог сумки Фабрициуса. В красном костном мозге из стволовых клеток образуются эритроциты, гранулоциты, кровяные пластинки (тромбоциты), В-лимфоциты и предшественники Т-лимфоцитов. В вилочковой железе предшественники Т-лимфоцитов превращаются в Т-лимфоциты. В центральных органах происходит антигеннезависимое размножение лимфоцитов.
В периферических кроветворных органах (лимфатических узлах, гемолимфатических узлах, селезенке) происходит размножение приносимых сюда из центральных органов Т– и В-лимфоцитов и дифференцировка их под влиянием антигенов в эффекторные клетки, осуществляющие иммунологическую защиту. Кроме того, здесь происходит выбраковка отмирающих клеток крови.
Органы кроветворения функционируют содружественно и обеспечивают поддержание морфологического состава крови и иммунологического гомеостаза в организме.
Несмотря на различия в специализации органов гемопоэза, все они имеют сходные структурно-функциональные признаки. В основе их лежит ретикулярная соединительная, а иногда эпителиальная ткань (в вилочковой железе), которая вместе с фибробластами и макрофагами образует строму органов и выполняет роль специфического микроокружения для развивающихся клеток. В этих органах происходит размножение кроветворных клеток, временное депонирование крови или лимфы. Кроветворные органы благодаря наличию в них специальных фагоцитирующих и иммунокомпетентных клеток осуществляют также защитную функцию и способны очищать кровь или лимфу от инородных частиц, бактерий и остатков погибших клеток.
Костный мозг
Костный мозг – центральный кроветворный орган, где находится самоподдерживающаяся популяция стволовых клеток, где образуются клетки как миелоидного, так и лимфоидного ряда.
Строение. Во взрослом организме человека различают красный и желтый костный мозг.
Красный костный мозг является кроветворной частью костного мозга. Он заполняет губчатое вещество плоских костей и эпифизов трубчатых костей и во взрослом организме составляет в среднем около 4 – 5% общей массы тела. Красный костный мозг имеет темно-красный цвет и полужидкую консистенцию, что позволяет легко приготовить из него тонкие мазки на стекле.
Ретикулярная ткань структурной основы костного мозга обладает низкой пролиферативной активностью. Строма пронизана множеством кровеносных сосудов микроциркуляторного русла, между которыми располагаются гемопоэтические клетки: стволовые, полустволовые (морфологически неидентифицируемые), различные стадии созревания эритробластов и миелоцитов, мегакариобласты, мегакариоциты, лимфобласты, В-лимфоциты, макрофаги и зрелые форменные элементы крови. Лимфоциты и макрофаги принимают участие в защитных реакциях организма. Наиболее интенсивно кроветворение происходит вблизи эндоста, где концентрация стволовых кроветворных клеток примерно в 3 раза больше, чем в центре костномозговой полости.
Гемопоэтические клетки располагаются островками. Эритробласты в процессе созревания окружают макрофаг, содержащий железо фагоцитированных эритроцитов, и получают от него молекулу этого металла для построения геминовой части гемоглобина. Макрофаги служат своего рода кормильцами для эритробластов, которые за их счет постепенно обогащаются железом. Макрофаги фагоцитируют обломки клеток и неполноценные клетки. Незрелые эритроидные клетки окружены гликопротеидами. По мере созревания клеток количество этих биополимеров уменьшается.
Гранулоцитопоэтические клетки также располагаются в виде островков, но не связаны с макрофагами. Незрелые клетки гранулоцитарных рядов окружены протеингликанами. В процессе созревания гранулоциты депонируются в красном костном мозге, где их насчитывается примерно в 3 раза больше, чем эритроцитов, и в 20 раз больше, чем гранулоцитов в периферической крови.
Мегакариобласты и мегакариоциты располагаются в тесном контакте с синусами так, что периферическая часть их цитоплазмы проникает в просвет сосуда через поры. Отделение фрагментов цитоплазмы в виде кровяных пластинок происходит непосредственно в кровяное русло.
Среди островков клеток миелоидного ряда встречаются небольшие скопления костномозговых лимфоцитов (нулевых лимфоцитов, В-лимфоцитов) и моноцитов, которые обычно плотными кольцами окружают кровеносный сосуд. Эксперименты с пересадкой костномозговых лимфоцитов в селезенку облученных смертельной дозой животных показали наличие среди них стволовых, полустволовых и унипотентных кроветворных клеток.
При дифференцировке В-лимфоцитов осуществляется депрессия структурных и регуляторных генов иммуноглобулинов, синтез иммуноглобулинов внутри клетки и появление их на мембране В-лимфоцитов в виде антигенраспознающих рецепторов.
В обычных физиологических условиях через стенку синусов костного мозга проникают лишь созревшие форменные элементы крови. Миелоциты и нормобласты попадают в кровь только при патологических состояниях организма. Причины такой избирательной проницаемости стенки синуса остаются недостаточно ясными, но факт проникновения незрелых клеток в кровяное русло всегда служит верным признаком расстройства костномозгового кроветворения.
Вышедшие в кровоток клетки выполняют свои функции либо в сосудах микроциркуляторного русла (эритроциты, кровяные пластинки), либо при попадании в соединительную ткань (лимфоциты, лейкоциты) и в периферические лимфоидные органы (лимфоциты). В частности, предшественники лимфоцитов (нулевые лимфоциты) и зрелые В-лимфоциты мигрируют в тимуснезависимые зоны селезенки, где они клонируются на клетки иммунологической памяти и клетки, непосредственно дифференцирующиеся в антителопродуценты (плазматические клетки) уже при первичном иммунном ответе.
Желтый костный мозг у взрослых находится в диафизах трубчатых костей. Он представляет собой перерожденную ретикулярную ткань, клетки которой содержат жировые включения. Благодаря наличию в жировых клетках пигментов типа липохромов костный мозг в диафизах имеет желтый цвет, чем и определяется его название. В обычных условиях желтый костный мозг не осуществляет кроветворной функции, но в случае больших кровопотерь или при токсических отравлениях организма в нем появляются очаги миелопоэза за счет дифференцировки приносимых сюда с кровью стволовых и полустволовых клеток.
Резкой границы между желтым и красным костным мозгом не существует. Небольшое количество жировых клеток постоянно встречается и в красном костном мозге. Соотношение желтого и красного костного мозга может меняться в зависимости от возраста, условий питания, нервных, эндокринных и других факторов.
Васкуляризация. Костный мозг снабжается кровью посредством сосудов, проникающих через надкостницу в специальные отверстия в компактном веществе кости. Войдя в костный мозг, артерии разветвляются на восходящую и нисходящую ветви, от которых радиально отходят артериолы, которые сначала переходят в узкие капилляры (2 – 4 мкм), а затем в области эндоста продолжаются в широкие тонкостенные со щелевидными порами синусоидные капилляры (или синусы) диаметром 10 – 14 мкм. Из синусов кровь собирается в центральную венулу.
Вилочковая (или зобная) железа (тимус)
Вилочковая железа – центральный орган лимфоцитопоэза и иммуногенеза. Из костномозговых предшественников Т-лимфоцитов в ней происходит антигеннезависимая дифференцировка их в Т-лимфоциты, разновидности которых осуществляют реакции клеточного иммунитета и регулируют реакции гуморального иммунитета.
Вилочковая железа – непарный, не до конца разделенный на дольки орган, в основе которого лежит отростчатая эпителиальная ткань, инвагинировавшая в процессе развития так, что базальный слой эпителия с базальной мембраной обращен наружу и граничит с окружающей соединительной тканью, которая образует соединительно-тканную капсулу. От нее внутрь отходят перегородки, разделяющие железу на дольки. В каждой дольке различают корковое и мозговое вещество.
Корковое вещество долек инфильтрировано Т-лимфоцитами, которые густо заполняют просветы сетевидного эпителиального остова, придавая этой части дольки характерный вид и темную окраску на препаратах. В подкапсулярной зоне коркового вещества находятся крупные лимфоидные клетки – лимфобласты, которые под влиянием гемопоэтических факторов (тимозина), выделяемых эпителиальными клетками стромы, пролиферируют. Эти предшественники Т-лимфоцитов мигрируют сюда из красного костного мозга. Новые генерации лимфоцитов появляются в вилочковой железе каждые 6 – 9 ч. Т-лимфоциты коркового вещества мигрируют в кровоток, не входя в мозговое вещество. Эти лимфоциты отличаются по составу маркеров и рецепторов от Т-лимфоцитов мозгового вещества. С током крови они попадают в периферические органы лимфоцитопоэза – лимфатические узлы и селезенку.
Клетки коркового вещества определенным образом отграничены от крови гематотканевым барьером, предохраняющим дифференцирующиеся лимфоциты коркового вещества от избытка антигенов. В его состав входят эндотелиальные клетки гемокапилляров с базальной мембраной, перикапиллярное пространство с единичными лимфоцитами, макрофагами и межклеточным веществом, а также эпителиальные клетки с их базальной мембраной.
Мозговое вещество дольки на препаратах имеет более светлую окраску, так как по сравнению с корковым веществом содержит меньшее количество лимфоцитов. Лимфоциты этой зоны представляют собой рециркулирующий пул Т-лимфоцитов и могут входить и выходить в кровоток через посткапиллярные венулы и лимфатические сосуды. Особенностью ультрамикроскопического строения отростчатых эпителиальных клеток является наличие в цитоплазме гроздевидных вакуолей и внутриклеточных канальцев, поверхность которых образует микровыросты. Базальная мембрана редуцируется.
Васкуляризация. Внутри органа артерии ветвятся на междольковые и внутридольковые, которые образуют дуговые ветви. От них почти под прямым углом отходят кровеносные капилляры, образующие густую сеть, особенно в корковой зоне. Капилляры коркового вещества окружены непрерывной базальной мембраной и слоем эпителиальных клеток, отграничивающим перикапиллярное пространство (барьер). В перикапиллярном пространстве, заполненном жидким содержимым, встречаются лимфоциты и макрофаги. Большая часть корковых капилляров переходит непосредственно в подкапсулярные венулы.
Комментарии к книге «Гистология. Полный курс за 3 дня», Татьяна Дмитриевна Селезнева
Всего 0 комментариев