«Окно в подводный мир»

435

Описание

Научно-популярная книга о применении телевидения при освоении морских глубин.



Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

Окно в подводный мир (fb2) - Окно в подводный мир 663K скачать: (fb2) - (epub) - (mobi) - Николай Всеволодович Вершинский

Николай Всеволодович Вершинский Окно в подводный мир

«- Вы любите море, капитан?

— Да, я люблю море! Море — это все! Оно покрывает собой семь десятых земного шара. Дыхание его чисто, животворно. В его безбрежной пустыне человек не чувствует себя одиноким, ибо вокруг себя он ощущает биение жизни. В лоне морей обитают невиданные, диковинные существа. Море — это вечное движение и любовь, вечная жизнь, как сказал один из ваших поэтов. И в самом деле, господин профессор, водная среда представляет для развития жизни исключительные преимущества. Тут представлены все три царства природы: минералы, растения, животные… Море- обширный резервуар природы. Если можно так выразиться, морем началась жизнь земного шара, морем и окончится!».

«…Позвольте уверить вас, господин профессор, что вы не пожалеете о времени, проведенном на борту моего корабля. Вы совершите путешествие в страну чудес! Смена впечатлений взволнует ваше воображение. Вы постоянно будете находиться в восторженном состоянии. Вы не устанете восхищаться виденным. Жизнь подводного мира будет развертываться перед вашими глазами, не пресыщая ваш взор!».

Жюль Верн. «Двадцать тысяч лье под водой».

Много тайн скрыто в глубине морей. Не удивительно, что с древних времен люди проявляют большой интерес к изучению морских глубин. Мореплаватели и рыбаки, искатели жемчуга и охотники-водолазы, наконец, ученые, наблюдая жизнь моря в течение веков, собрали много интересных данных о жизни в подводном мире.

В море обитает более половины всех известных на Земле живых существ (не считая насекомых). Самые большие в мире животные обитают в море и самые длинные растения — на дне у берегов океана. Статистика установила, что ежегодно в море открывают до 20 видов новых существ, ранее науке не известных. Например, совсем недавно были пойманы удивительные животные на глубинах, где давление составляет около 1000 атмосфер и где поэтому раньше жизнь считалась невозможной.

Творцы народных легенд, авторы научно-фантастических романов населили дно океана таинственными существами, и ведь до сих пор нет полной уверенности в том, что ни одно из них не существует. Вспомним хотя бы, каких «чудищ» наблюдали Тур Хейердал и его спутники во время плавания на плоту «Кон-тики». Подводные луга и джунгли, хребты и пропасти ждут своих исследователей.

Драгоценные жемчужины лежат в раковинах на дне теплых морей, а древние легенды говорят о громадных кладах, сокрытых, в трюмах погибших кораблей. Но на дне океанов имеются гораздо более значительные ценности, чем жемчужины и золотые монеты. На дне морском найдены обширные залежи горных пород с очень высоким содержанием марганца и железа, редкие металлы молибден и ванадий. Не исключено, что будут обнаружены и другие металлы, в которых нуждается современная индустрия.

Но море крепко хранит свои секреты и нелегко расстается с ними. Много отчаянных смельчаков заплатили своей жизнью за попытки поглубже проникнуть в морскую глубь. Человек изобрел водолазный колокол, скафандр, под- водную лодку. Но этого было слишком мало для беспрепятственных путешествий в подводном мире на сколько-нибудь значительной глубине. Ученые могли только мечтать о таких условиях наблюдения жизни морей и океанов, какие открывал чудесный корабль «Наутилус», с детства знакомый нам по известному роману Жюля Верна. Капитан Немо мог опустить «Наутилус» на любую глубину, открыть металлические шторы иллюминаторов, осветить море электрическим прожектором, — и перед профессором-океанографом Пьером Аронаксом и его друзьями открывалось чудесное зрелище подводного мира.

Однако современная наука и техника предоставляют в распоряжение океанографов несравненно более совершенный метод всестороннего изучения жизни моря. Таким методом является подводное телевидение.

Давайте познакомимся поближе с этой новой областью применения электронной техники.

ТЕЛЕПЕРЕДАЧА ИЗ МОРСКИХ ГЛУБИН

Над палубой экспедиционного судна висит» покачиваясь, передающая камера подводной телевизионной установки. Она заключена в массивный металлический корпус. Инженер в последний раз проверяет затяжку гаек.

Мы находимся в затененном салоне судна, где стоит телевизионный приемник. В такт покачиваниям Камеры на его экране качаются палубные надстройки, кусочек моря. Когда набегает волна побольше, камера начинает раскачиваться сильнее. Тогда на экране появляется четкая линия далекого берега.

Все приготовления к спуску закончены. До нас доносится команда: «Майна!» Камера начинает опускаться в море.

Вот морская волна стремительно набегает на экран, виден пенистый всплеск, и затем экран темнеет. Снизу вверх по нему быстро пробегают несколько воздушных пузырей, сначала крупные, потом все более мелкие и редкие. Камера погружается глубже. Экран телевизора кажется теперь серым и пустым. Может быть, что-нибудь случилось, отказала аппаратура? Нет. На экране четко видна «удочка», прикрепленная к передающей камере. К концу «удочки» привязан кусок веревки, и хорошо видно, как натягивает и треплет его встречное течение.

Еще некоторое время экран остается пустым, а потом на нем вдруг появляется крупным планом сверкающая медуза.

— Стоп!

Спуск камеры прекращается. Медуза на секунду застывает в центре экрана. Ее студенистое тело ритмично пульсирует. Хорошо видны детали внутреннего строения.

Снова включается лебедка, и спуск камеры продолжается. Медуз становится больше. Вот появились и новые обитатели моря: тысячи мальков. Они сбились плотным слоем и, влекомые течением, медленно дрейфуют в одном направлении. Рыбок так много, что иногда кажется, будто спуск камеры встречает ощутимое сопротивление. Но все мальки какие-то сонные, на появление камеры они почти не обращают внимания. Только при столкновении с горячей лампочкой подводного светильника пострадавшие делают резкие движения и уходят в сторону. Может быть, мальки крепко спят?

Спуск телевизионной камеры продолжается. Мальков становится все меньше, и через несколько метров они исчезают совсем. Теперь в луче подводного прожектора изредка вспыхивают отдельные точки. Число их возрастает, и картина на экране телевизора напоминает чистое небо в безлунную ночь, усеянное звездами. Но это — не звезды. Это — планктон, огромные скопления мельчайших растительных и животных организмов, пассивно переносимых движением воды. Чистая вода морских глубин рассеивает мало света и поэтому кажется черной. Но как пылинки в луче солнца на воздухе, мельчайшие планктонные организмы рассеивают свет прожектора, и мы их наблюдаем в виде мерцающих ярких точек.

Неожиданно экран заполняют рачки — миллионы рачков. Они тоже столпились здесь тесно, как и мальки в слое, оставшемся выше. Тихо покачиваясь, рачки медленно передвигаются по экрану, уносимые течением. Иногда среди рачков появляются какие-то не известные нам создания, похожие на очень крупных головастиков с большими мохнатыми ногами. Таких животных в этом море до сих пор еще никто не находил. Биологи высказывают предположение, что подобные формы свойственны соседнему Среди-земному Морю. Очевидно, их принесло сюда какое-то пока еще не изученное течение. Систематические подводные телевизионные наблюдения позволят проследить путь этого течения, нанести его на карту и определить пути проникновения к нам неизвестных пришельцев.

Слой рачков кончается. Его толщина, по-видимому, не превышает нескольких метров. Но в этих нескольких метрах сосредоточены миллионы маленьких существ! Оказывается, море, во всяком случае в некоторых местах, напоминает слоеный пирог. Около «сладкой» прослойки из планктона собираются любители хорошо покушать: мальки и рачки. И не только они собрались на обильное угощение. Временами мы видим на экране силуэты крупных рыб, быстро пронизывающих слои малоподвижной «мелочи». Деловито шныряя вверх и вниз, они явно не теряют времени даром, набивая свои желудки. Крупные рыбы держатся осторожно и близко к камере не подходят.

Глубже слои воды опять становятся безжизненными. Близко дно моря.

Через несколько минут передающая телевизионная камера останавливается в нескольких метрах от дна. Великолепная картина! Прямо перед камерой чуть колышатся густые кусты водорослей. Ботаники определяют, что это филифора — ценное сырье. Из ее стеблей добывают агар-агар. Заросли филофоры простираются направо и налево. Неподалеку колеблются ветви куста цистозиры — другого морского растения. Между его стеблями плавают рыбы. По характерной форме тела, широкой и плоской, легко определить, что это морские караси. В камнях удобно устроился морской петух. Испуганный движением камеры, он распускает свои большие плавники, похожие на крылья, и исчезает из поля зрения. Около большого камня притаился краб. Он не боится камеры, она его даже явно интересует: вместо того чтобы бежать, он взбирается на камень и вытягивает свои клешни.

Вот на экране появилась какая-то светлая полоса, вскоре она заняла весь экран, и мы видим, что это рыбачья сеть. Хорошо видны отдельные ее ячейки. Если задержаться здесь подольше, то можно сделать много полезных наблюдений: узнать о поведении рыб при встрече с орудиями лова, выбрать наилучшую конструкцию сети, ее материал.

…Телепередача из морских глубин закончена. Попробуем теперь представить себе, какую службу мог бы сослужить нам старый знакомый — телевизионный приемник.

В поведении рыб, например, имеется еще много загадок, и подводное телевидение открывает новый путь для их изучения. Недаром в устье одной из английских рек установлен постоянный телевизионный пикет для наблюдения за рыбами. Подводная телевизионная аппаратура является хорошим средством изучения глубинных течений. Определение направления, в котором движется планктон — «кормовое поле» промысловых рыб, открывает новые перспективы промысловой разведки рыбы. Буксируя телевизионную камеру над подводными лугами, можно узнать их площадь и установить запасы ценных водорослей.

Есть у подводного телевидения и другая область применения.

Весной 1951 года английская подводная лодка «Эфрей» потерпела аварию в проливе Ла-Манш. Использование для поисков обычных металлоискателей было затруднено тем, что на дне в этом районе лежит большое количество других затонувших судов. Применение подводной телевизионной аппаратуры позволило быстро найти погибшую лодку. На экране телевизора-приемника поисковая команда опознала контуры погибшей лодки и прочитала ее название. Телевизионная аппаратура была использована также для исследования положения лодки на грунте и выяснения причин аварии.

Кроме аварийно-спасательных работ, подводную телевизионную аппаратуру можно эффективно применять, например, при прокладке различных подводных кабелей и трубопроводов, когда особенно важно знать, что кабель или трубопровод правильно легли на дно, что под ними нет острых скал. Проверить это может только водолаз или телевизионная передающая камера.

Мы знаем, что геологическое строение дна океанов так же сложно, как и строение суши. На дне есть и высокие горы, и глубокие пропасти, и горные хребты, и равнины. Эти открытия сделаны с помощью эхолота. Но таким путем можно обнаруживать и промерять лишь большие детали геологического строения дна. А для суждения о возможных запасах полезных руд или нефти, для изучения геологической истории земной коры важно знать такие мелкие детали, которые можно обнаружить с помощью подводной телевизионной аппаратуры.

Геолог, работающий на поверхности земли, имеет возможность рассмотреть все интересующие его детали геологического строения. Не один десяток километров проходят ежедневно участники поисковых геологических партий. Но если геолог надевает водолазный костюм и превращается в водолаза, то пройти и осмотреть за день всего пять километров представляет для него трудную задачу даже на малых глубинах. А на больших глубинах такая возможность исключается совсем. Приходится пользоваться дно-черпателями, трубками для забора проб грунта или фотографировать дно с помощью фото или киноаппаратов, опуская их в специальных камерах. Но снимать на пленку подряд все морское дно, даже в наиболее интересных в геологическом отношении районах, конечно, невозможно, Слишком много надо пленки! А при выборочной съемке отдельных мест легко пропустить важные детали. Использование подводной телевизионной аппаратуры позволяет непрерывно просматривать большие площади дна.

Осмотр подводных частей различных гидротехнических сооружений — плотин, волноломов, молов — также очень облегчается.

Известно, как трудна работа водолазов. Она относится в настоящее время к числу наиболее тяжелых видов человеческого труда. Рабочий день водолаза уже на глубине в несколько десятков метров ограничен небольшим количеством минут. Если водолаз проработает дольше, он рискует тяжело заболеть. А подводная телевизионная аппаратура, если соединить с ней специальные машины и орудия для выполнения различных трудовых операций, позволит работать под водой как угодно долго и без участия водолазов.

ПРЕИМУЩЕСТВА ПОДВОДНОГО ТЕЛЕВИДЕНИЯ

Подводное телевидение еще только начинает входить в обиход исследований морских глубин. Но для того чтобы заглянуть под поверхность моря, существуют и другие средства.

Широкое распространение получили например, акваланги. (О возможностях, которые они открывают, рассказывает книжка Бориса Зюкова «В тайны глубин». М., Изд-во «Знание», 1960. Серия «Прочти, товарищ!») Но акваланги хороши только для плавания в верхних слоях океана. Жесткие водолазные скафандры позволяют опуститься несколько глубже. А как же быть, если нужно опуститься на несколько сотен метров?

Для этой цели была применена батисфера.

Это прочная стальная камера, опускаемая в море с судна на стальном тросе. Через люк в нее садится исследователь. Наблюдение ведется сквозь толстые стеклянные иллюминаторы.

Знаменитый исследователь морских глубин Вильям Биб рассказывает о том, каковы были его первые впечатления при пробных спусках:

«…На глубине 890 метров я уловил по телефону металлический треск, и когда я спросил, в чем дело, я получил какой-то уклончивый ответ. Позднее я узнал, что один из вспомогательных тросов, употребляемых для наматывания поступающего главного троса на барабан, внезапно порвался с ужасающим треском. Это был жуткий момент для всех на палубе, пока они не убедились, что порвался вспомогательный трос, а не основной…».

Слова эти написаны смелым человеком, впервые решившимся заглянуть в морские глубины.

«Ужасающий треск…». Но, может быть, так было только при первом опыте? Может быть, при дальнейших спусках исследователи были освобождены от тяжелых переживаний? Ведь происходило все это более четверти века назад.

Современные батисферы значительно усовершенствованы, и погружение в них стало менее опасным. Но подвеска батисферы на тросе ограничивает глубину погружения и лишает исследователя возможности свободно передвигаться в толще воды.

Подводная лодка значительно удобнее. Вероятно, многие из читателей слышали про «Северянку», подводную лодку Всесоюзного научно-исследовательского института рыбного хозяйства и океанографии. «Северянка» — довольно большая лодка, на которой научные работники проводят важные исследования.

Несомненный интерес представляют индивидуальные подводные лодки, освоенные производством в Италии. Образец такой лодочки типа «Наутилус» изображен на цветной вкладке. Двухместные лодочки имеют длину всего 6 метров, а диаметр корпуса — около одного метра. Корпус лодки сделан из пластмассы. Максимальная глубина погружения составляет около 60 метров, скорость хода под водой до 7 километров в час.

На другой цветной вкладке показано «Ныряющее блюдце» Кусто. Это тоже особая подводная лодка, отличающаяся большой маневренностью и малыми габаритами.

Но все же обычные подводные лодки не могут глубоко опускаться, поэтому громадным шагом вперед в освоении человеком больших океанских глубин явилось создание батискафа.

Батискаф — разновидность подводной лодки для плавания на больших и предельных глубинах океана. Батискаф отдаленно напоминает аэростат (или дирижабль). Его легкий корпус заполнен бензином, а в качестве балласта применена стальная дробь, которую удерживает электромагнит. Выпуская часть бензина (как аэростат — водорода), батискаф опускается. Для подъема на поверхность батискаф сбрасывает часть балласта. Команда находится в сферической очень прочной гондоле. Под водой батискаф приводится в движение электромоторами.

Самоходный батискаф, имеющий возможность самостоятельно маневрировать в любых направлениях, является совершенным и относительно безопасным устройством для исследования морских глубин.

23 января 1959 года батискаф «Триест», имея на борту профессора Пикара и нескольких других ученых, опустился на дно Марианской впадины. Это — самое глубокое место Тихого океана. По данным этого спуска, достигнутая глубина составляет 10914 метров. Об этом рекордном погружении газета «Вечерняя Москва» в номере от 26 января 1959 года писала следующее:

«…Погружение «Триеста» заняло в общей сложности 8 часов 35 минут, из которых 4 часа 48 минут ушло на опускание и 3 часа 17 минут- на подъем. На дне батискаф оставался 30 минут. Когда исследователи поднялись на поверхность, они дрожали от холода, который установился в батискафе на глубине, их одежда была совершенно мокрой от скопившейся внутри «Триеста» влаги. На дне Марианской впадины, по словам ученых, царит вечный мрак, и лучи солнца туда совершенно не доходят. Дно оказалось «очень мягким».

«Триест» был оснащен мощными прожекторами. Во время спуска и подъема Пикар и его коллеги наблюдали обитателей больших глубин. Однако на самом дне не удалось заметить каких-либо признаков жизни. Впрочем, нервное напряжение участников погружения было настолько велико, что они не полагаются на свое зрительное восприятие…».

Смелым исследователям приходилось, что называется, туго! Плавание в батискафе требует высоких специальных технических познаний, поэтому длительное время спуски в батискафах выполнялись лишь специалистами инженерами и моряками. И, наконец, батискафы очень дороги.

При использовании современного высококачественного телевидения картина, получаемая на экране телевизора, очень мало отличается от той, которую наблюдатель видит через толстые стекла батисферы, а использование стереоскопической передачи практически полностью устраняет разницу в обоих видах наблюдений. Если потребуется взять пробу грунта или поймать какое-либо глубоководное животное, то придется прибегать к помощи механизмов — манипуляторов и ловушек. Только в первом случае исследователь будет спокойно управлять манипулятором сверху, наблюдая за экраном телевизора, стоящего в салоне экспедиционного судна, а во втором случае он будет рисковать собой, опустившись в бездну.

Современная техника позволяет проводить подводные телевизионные наблюдения на глубинах свыше километра. Несомненно, наступит день, когда можно будет опустить передающую телевизионную камеру на предельные глубины океана.

ПЕРВЫЕ ОПЫТЫ

Тринадцать лет назад в Советском Союзе еще не было подводной телевизионной аппаратуры и никто не хотел заниматься ее разработкой. А мне очень хотелось заглянуть в тайны морских глубин с помощью электроники.

Когда я в первый раз пришел в Институт океанологии, представился заместителю директора профессору В. Г. Богорову (ныне член-корреспондент АН СССР) и сказал, что хочу поступить на работу в институт, то Вениамин Григорьевич со свойственной ему любезностью внимательно выслушал меня, расспросил о моей специальности, а потом сказал, что… электроники институту не требуются.

Немного спустя я снова пришел в институт. Мое появление вызвало легкую улыбку. Но на этот раз я лучше подготовился.

Директор института академик Петр Петрович Ширшов одобрил идею внедрения электроники в океанографические исследования. Его заинтересовало телевидение под водой. И моя судьба была решена — я получил приглашение поступить в институт.

Начинать приходилось буквально на пустом месте. Мне было разрешено пригласить в новую лабораторию одного сотрудника. Выбор мой пал на Александра Александровича Депрейса. А. А. Депрейс — энтузиаст телевидения, и его увлекла идея создания подводной установки. Трудности нас не пугали.

У лаборатории не было главного — помещения. Посоветовавшись, решили рассчитывать, изготовлять и настраивать первую отечественную подводную телевизионную установку на квартире у А. А. Депрейса.

Группа из руководителя и одного сотрудника — это очень мало для разработки, постройки и наладки целой подводной телевизионной установки. Но мы поняли это вполне лишь позже.

Тогда в литературе не было еще опубликовано описаний портативных передвижных телевизионных станций. Действовавший в Москве телевизионный центр мы, конечно, не могли копировать. Недостаток площади на экспедиционных судах не позволил бы разместить такую громоздкую аппаратуру! Трудно было разрабатывать упрощенную схему, но, наконец, все как будто было готово.

Теперь много хлопот доставлял нам герметический кожух для передающей камеры. Ведь для того, чтобы передающую телевизионную аппаратуру можно было опускать глубоко под воду, ее нужно поместить в корпус, способный выдерживать огромное давление — т. е. в сущности в ту же батисферу.

Мы не знали точно, как надо делать герметический корпус, чтобы он не пропускал воду. После того, как нам удалось разработать чертеж, нашли какое-то СМУ, которое согласилось взять наш заказ. И вот кожух готов. Решили испытать его на Химкинском водохранилище.

Вдвоем с водолазом института Е. Васильевым мы долго долбили лед, потом с помощью подоспевших работников с соседней спасательной станции опустили кожух в воду на глубину 20 метров. Обратно поднимать кожух было тяжело. Когда дружными усилиями нам удалось его вытащить, из него ручьем полилась вода. Кожух тек, как решето! Потом выяснилось, что это было его хроническим заболеванием. Сколько ни варили его сварщики СМУ, он продолжал течь. Нам удалось вылечить его от этой болезни лишь значительно позже, с помощью дипломированных сварщиков Новороссийского вагоноремонтного завода. Этот завод много помогал нам и впоследствии.

В конце концов мы привезли нашу первую установку в Голубую бухту.

Это поэтичное название присвоено ей не зря. Клин голубой воды, врезанный в скалистые берега. Два десятка красивых домиков, раскиданных так, как будто они были сброшены на парашютах с самолета. Чудесный галечный пляж, над которым бездонное небо, такое же голубое, как и море. Вот в каком месте разместилась Черноморская станция Института океанологии Академии наук.

Станция в то время была еще очень мала, и для нас в ее здании не нашлось места. Мы расположились прямо на берегу моря, у палатке. Но осенние холода, неожиданно рано начавшиеся в тот год, и сильные ветры очень затрудняли сборку нашей установки. К счастью, на станции в то время работал В. Ф. Лец — мастер на все руки. В штате станции он числился столяром, но большую часть своего рабочего времени посвящал различным изобретениям. (Он был занят тогда особыми драгами для сбора филофоры с морского дна). Он всерьез заинтересовался нашей работой и, видя наши затруднения, предложил нам переселиться в его мастерскую. Она находилась в дощатом сарае около причала Конечно, мы не замедлили воспользоваться этим приглашением. Там было тесно, но зато тепло, и не мешал ветер. Позже нам удалось получить в том же сарае крохотное соседнее помещение, ранее служившее караульной.

Теперь у нас появилось хоть какое-то помещение и можно было приступить к дальнейшей работе.

Скоро обнаружилось, что в щели стен нашей мастерской проникает морская сырость, портит изоляцию и создает утечку тока в схеме установки. Затем — вопрос о кабеле. На первых порах у нас не было специального подводного телевизионного кабеля. После некоторых колебаний мы решили воспользоваться обычным, камерным кабелем. Он промок при погружении камеры в море на глубину 20 метров, но дал возможность произвести первые наблюдения у причала Голубой бухты.

Они были очень интересными, эти первые наблюдения в холодную зиму на Черном море.

К этому времени мы получили комнату для лаборатории в новом здании института, в Москве, и отличный домик на берегу моря в Голубой бухте. А немного позже к нам пришли новые люди. Так начались годы напряженной работы. Коллектив подобрался дружный. Мы разрабатывали новые установки, испытывали их в море, изучали особенности поведения различных передающих трубок в водах разной прозрачности.

Очень затрудняло работу отсутствие у лаборатории собственного судна.

Черноморская станция имеет несколько экспедиционных судов, обслуживающих нужды нескольких лабораторий. Нам обычно давалось самое маленькое судно один раз в год на очень ограниченный срок, дней на 10-12. Вот и попробуй за этот срок погрузить на судно новую аппаратуру, расставить ее, наладить (это самое трудное) и успеть произвести испытания аппаратуры в море! А тут еще шторм обязательно подвернется и загонит судно на несколько Дней в дальний угол бухты с самой грязной водой. На земле телевизионщики не встречаются с подобными затруднениями!

Одной из наших главных задач было определить, насколько хорошо новая установка способна видеть в воде.

Сначала мы сделали так: спустили на морское дно в мелком месте стальной стол. На него поставили передающую камеру. Поблизости поставили светильники. А рядом с камерой попросили встать водолаза. Другому водолазу дали в руки стандартную тест-таблицу, которую все видят на экранах своих телевизоров перед началом передачи. Чтобы в воде таблица не размокла, ее заклеили в органическое стекло.

Водолаз держал таблицу поблизости от камеры, а затем, после настройки аппаратуры, мы по телефону просили его постепенно отходить дальше. Идет водолаз по морскому дну, считает шаги, а на таблицу в его руках одновременно смотрят передающая камера и другой водолаз, который остался у камеры — целая подводная телевизионная студия! В каюте судна, на экране приемного телевизора видно, как изображение таблицы становится все менее четким и резким и, наконец, совсем пропадает. Водолаз, стоящий у камеры, также передает свои наблюдения за таблицей по телефону.

Таким путем мы получили возможность измерить дальность видения камеры и сравнить ее с дальностью видимости водолаза.

Но у этого способа измерения быстро обнаружилось несколько больших недостатков. Необходимость использования водолазов очень осложняла организацию опытов. Водолазы, передвигаясь по дну, поднимали ногами донные отложения и мутили воду. И, наконец, такие измерения было удобно производить лишь на мелководье, где и без того вода не отличается прозрачностью. А нам очень важно было провести измерения в более прозрачной воде. Прозрачную воду в море легко найти подальше от берега. А там глубоко. Поэтому надо было придумать какой-то другой способ измерения дальности видения. После нескольких опытов мы остановились на следующем. Длинную легкую раму прикрепляли к передающей камере и вместе с ней опускали в море. На раме, на разных расстояниях от камеры, находились предметы, за изменением видимости которых и велись наблюдения.

Применение рамы оказалось удобным для небольших наблюдаемых объектов. Постепенно росла дальность видения, и надо было увеличивать длину рамы. На небольшом судне работа с рамой длиной около 10 метров была уже довольно затруднительна. Использовать же раму длиной в 20-30 метров на судне длиной 18 метров и думать не приходилось.

Выход, оказалось, существовал. Надо было приспосабливать для подводных телевизионных работ не раму, а целое судно…

И тут мы впервые подумали о понтоне. Понтон, достаточно большой и хорошо приспособленный для проведения гидрооптических и телевизионных измерений, нас вполне устроит. Пусть он не сможет передвигаться сам — для этого найдется буксир. Но мы получим плавучую лабораторию, и можно будет вести систематические исследования! Не надо будет тратить каждый раз массу сил на погрузку и выгрузку аппаратуры, на ее наладку. Аппаратура не будет биться при перевозках и перегрузках. Освободится много времени, которое можно будет использовать с пользой для дела.

Но тут возникло новое препятствие: как сделать понтон достаточно прочным, надежным. Ведь море не шутит. Чтобы успокоить скептиков, я предложил остановить выбор на артиллерийском понтоне. Это — самая прочная из всех известных конструкций понтонов. Прямые попадания артиллерийских снарядов не способны его утопить. Для того чтобы приспособить такой понтон для телевизионных работ, в нем потребуется сделать некоторые изменения. Необходима рубка, в которой разместится телевизионная аппаратура, а также помещение для электростанции. А главное необходима ферма, которая могла бы опускаться в море с испытуемыми приборами. Двухлодочная конструкция понтона очень удобна для подвески такой фермы между лодками. Но для того чтобы ферму можно было поднимать и опускать в море, нужны лебедки.

Кроме того, понтон должен иметь якоря. Для подъема якорей нужен брашпиль. Нужны также стояночные огни, а во время буксировки на понтоне должны гореть все фонари, какие полагаются по морским законам. Словом, дедка — за репку, бабка — за дедку и т. д. Возникло множество специфических вопросов, которые не могли быть решены нашими силами.

Тогда мы привлекли к делу конструкторов Новороссийского судоремонтного завода. В один из чудесных летних вечеров я привез на совещание из Новороссийска в Голубую бухту заведующего техническим отделом судоремонтного завода тов. Пашкова и конструктора тов. Светашова. Мы рассказали им о нашей мечте и с трепетом ждали, что они скажут. Против ожидания, тов. Пашков одобрил идею постройки понтона и сказал, что Новороссийский завод сможет его сделать. Нужны только чертежи. За изготовление чертежей взялся В. К. Светашов.

Тотчас после спуска долгожданный понтон был использован для проведения наблюдений.

«Во всех изысканиях человеческого разума самое трудное — это начало». Слова эти, принадлежащие знаменитому философу древности, видимо, не утратили своего значения до сих пор. Из этой небольшой главы читатель мог увидеть, какие неожиданные трудности возникали, когда мы приступили к созданию аппаратуры для подводного телевидения.

Но, конечно, потом одна к другой стали вырастать перед нами проблемы уже специального характера.

МОЛОКО И ЧЕРНИЛА

Читатель вправе спросить: причем тут молоко и чернила? Ведь эта книжка о телевидении под водой!

Дело в том, что оптические свойства воды приближенно напоминают свойства смеси из чернил и молока.

При погружении передающей камеры в воду характерно резкое сокращение дальности видения. Максимальная дальность видения в воде при помощи телевизионной аппаратуры составляет около 45 метров. Цифра эта относится к наблюдениям в относительно прозрачных водах Атлантического океана. Для более мутных вод многих других морских бассейнов дальность видения обычно не превосходит 15-20 метров. В морских портах, где вода особенно загрязнена, она обычно составляет не более 1,5-2 метров, а в речных портах — еще меньше.

Совершенно очевидно, что для многих применений подводного телевидения этого недостаточно. Поэтому центральной проблемой современного подводного телевидения является увеличение дальности видения. Но дело это отнюдь не легкое. Для того чтобы понять, как следует преодолевать эту трудность, нужно познакомиться с физическими особенностями распространения света в воде.

Луч света при прохождении через воду очень быстро ослабляется. Ослабление света водой настолько велико, что один метр довольно прозрачной воды Черного моря ослабляет свет примерно так же, как и слой воздуха, толщиной более километра. Уже на сравнительно небольших глубинах в морях темно. Измерения в Черном море показывают, что в полдень, когда на поверхности моря освещенность составляет около 100000 люксов, на глубине 100 метров освещенность равна всего 4 люксам. Достаточно опуститься под воду лишь на сотню метров, чтобы из сверкающего полудня попасть в сумерки. Быстрое изменение освещенности с глубиной вынуждает снабжать подводные телевизионные камеры светосильными объективами.

Ослабление света в воде зависит от прозрачности воды и вызывается совместным действием рассеяния и поглощения световых лучей.

Черные чернила являются примером водной среды, в которой ослабление света происходит главным образом за счет поглощения. При поглощении энергия света идет в основном на нагревание воды. В воде сильно поглощаются красные лучи спектра и еще более сильно — инфракрасные.

Рассеяние вызывает ослабление направленного светового потока за счет отклонения световых лучей в стороны. Рассеяние света — это главная причина, которая ограничивает видимость наблюдаемых объектов. Если бы не было рассеяния, то нужно было бы просто усилить источник света или увеличить чувствительность передающей трубки. Но рассеяние световых лучей образует световую дымку и фон, которые понижают контраст видимого предмета и как бы маскируют его. Усиление источника света тут помочь не может.

Молоко представляет собой среду, ослабляющую свет преимущественно за счет рассеяния. В абажурах и плафонах для предохранения наших глаз от слишком яркого света используются молочные стекла, сильно рассеивающие лучи света

В морской воде поглощение и рассеивание действуют вместе. Вот почему, с оптической точки зрения, воду, конечно, очень приближенно, можно рассматривать, как «смесь чернил и молока».

Вода в зависимости от состава спектра проходящего через нее света проявляет больше свойства или рассеивающей, или поглощающей среды.

Но и воды различных бассейнов обладают разными оптическими свойствами. Например, ослабление света в воде может происходить преимущественно за счет рассеяния. В этой воде как бы преобладают свойства молока над свойствами чернил. Возможен и такой случай, когда ослабление света в воде будет происходить преимущественно за счет поглощения. Проводя дальше нашу прежнюю аналогию, можно сказать, что в такой воде больше «чернил», чем «молока».

А в одной и той же воде соотношение между поглощением и рассеянием зависит от длины волны световых лучей.

КАК СДЕЛАТЬ ВОДУ ПРОЗРАЧНЕЙ?

Однажды в английский порт пришло судно с большой пробоиной ниже ватерлинии. Судно получило опасный крен. Требовался срочный ремонт. Необходимо было прежде всего осмотреть место повреждения. Но вода в порту была такой грязной, что ни водолазы, ни подводная телевизионная камера ничего не могли рассмотреть. Тогда-то и был изобретен контейнер прозрачной воды. Снабженная им передающая телевизионная камера позволила быстро осмотреть пробоину, и судно было отремонтировано.

Что же представляет собой контейнер прозрачной воды?

Это большая оптическая насадка на телевизионную передающую камеру. Контейнер прозрачной воды представляет собой металлический корпус, внутри пустой, а по торцам закрытый стеклянными иллюминаторами. Сделан корпус из легкого сплава. Одним концом корпус крепится непосредственно на передающую камеру. Если контейнер предназначается для работы с камерой на больших глубинах, то его внутренность наполняется чистой водой. Кроме того, для работы на больших глубинах контейнер снабжается клапаном, позволяющим выравнивать гидростатическое давление внутри и снаружи без смешивания жидкостей.

Большой иллюминатор контейнера можно вплотную приложить к наблюдаемому предмету, и теперь можно с успехом рассматривать его даже в очень мутной воде, потому что между ним и передающей камерой на всем расстоянии нет мутной воды. Без контейнера передающую камеру пришлось бы прижимать вплотную к месту повреждения. Но беда в том, что поле зрения получилось бы таким маленьким, что в большинстве случаев осмотр потерял бы смысл. Да и объектив трудно фокусировать на очень коротких дистанциях.

Применение контейнера облегчает телевизионные наблюдения в мутной воде лишь на малых расстояниях и увеличивает дальность видения с 90 до 270 сантиметров, и только! Нельзя сделать металлический контейнер длиной в десятки метров. Между тем для многих целей очень важно иметь дальность видения в воде побольше. Как же быть? Нельзя ли придумать какие-нибудь другие способы увеличения дальности видения? По-видимому, можно.

Например, известно, что некоторые химические соединения обладают свойством просветлять воду. К их числу относятся квасцы. Да, обыкновенные квасцы! Если к мутной водопроводной воде добавить некоторое количество квасцов, то она очищается. Мельчайшие взвешенные частицы, делавшие ее мутной, выпадают на дно в виде осадка. Под действием квасцов отдельные мельчайшие частички укрупняются и уже не могут больше свободно плавать в воде. Сила тяжести берет верх. Такой способ очистки воды применяется в лабораториях. Но еще никто не пробовал применять его в море или в реке. Слишком большое количество очищающего вещества — коагулятора надо было бы ввести для очистки.

Но нельзя ли вместо квасцов найти какой-нибудь другой более эффективный коагулятор? Представьте себе, что химики найдут вещество, в 10 раз более активное, чем квасцы. Специальный насос будет впрыскивать этот эффективный коагулятор в просматриваемое пространство перед телевизионной камерой. И тогда, пока течение и волны не перемешают очищенный объем воды с окружающей мутной водой, можно будет провести необходимые наблюдения.

Этот способ напоминает отчасти времена парусного флота. Тогда, чтобы на некоторое время ослабить волнение, моряки лили за борт масло. Растекаясь, оно уменьшало волну, и корабль мог за эти несколько минут пройти через наиболее опасные места.

Но у нас пока еще нет достаточно эффективного коагулятора…

СВЕТОВАЯ ДЫМКА

Главное препятствие для телевизионных наблюдений в воде — это дымка рассеянного света. Поэтому наблюдаемые в воде предметы освещать надо так, чтобы обеспечить минимальную яркость дымки. Но как это сделать?

Посмотрим с улицы в комнату через окно, прикрытое тюлевой занавеской. Если дело происходит днем, мы не увидим в комнате почти ничего. Если же в комнате горит свет, то мы свободно рассмотрим ее внутренность, несмотря на наличие той же занавески. При освещении изнутри занавеска в значительно меньшей степени препятствует наблюдениям. И происходит это потому, что обращенная к нам вуаль (т. е. занавеска) не освещена снаружи: она почти не понижает контраст. Между освещенными предмета-ми за ней, т. е. в комнате, и темнотой вокруг окна.

Именно с этим явлением мы сталкиваемся при наблюдении в воде самосветящихся объектов. Горящая в воде электрическая лампа видна на значительно большем расстоянии, чем предметы, освещенные посторонним источником света. Увеличивает дальность видимости и более высокий контраст, которым обладает нить лампы, и то, что световая дымка образована лишь за счет рассеянных лучей, идущих от лампы. При наблюдении обычных, не самосветящихся предметов световая дымка образована рассеянными световыми лучами, идущими сначала к освещаемому объекту, а затем от него к объективу передающей камеры. Естественно, что яркость световой дымки в этом случае ярче и видимость ухудшается.

Однако, как мы сейчас увидим, и обычные, не самосветящиеся предметы можно поставить в условия, приближающиеся к условиям наблюдения самосветящихся, создать для них такой же режим освещения. Для этого необходимо расположить источники света как можно ближе к наблюдаемому предмету. Тогда световая дымка будет образовываться только при распространении отраженных световых лучей, т. е. создадутся условия, близкие к тем, при которых наблюдается самосветящийся предмет. Вследствие этого возрастает и возможная дальность видимости.

Однако на практике далеко не всегда можно выполнить это условие. Попробуйте-ка поднести сильную осветительную лампу вплотную к какой-нибудь крупной рыбе, находящейся в десятке метров от передающей камеры! Наверное вы не сможете этого сделать. А если сможете, то не лучше ли будет передвинуть поближе уже не только осветительную лампу, но и самую передающую камеру? Очевидно, такой способ освещения применим лишь в тех случаях, когда к объекту наблюдения можно вплотную подвинуть осветитель, но нельзя приблизить передающую камеру.

Если неудобно выносить светильники далеко вперед, то не могут ли их заменить световые вспышки, производимые с помощью каких-либо патронов, начиненных световым составом? Световые патроны должны каким-то простейшим путем достигать наблюдаемого предмета и только по достижении его вспыхивать. Очевидно, этот способ также практически неудобен.

БЫСТРЕЕ СВЕТА?!

Нельзя ли создать условия освещения, обеспечивающие отсутствие дымки, или, точнее говоря, минимальную дымку, и при обычном расположении светильников, т. е. вблизи камеры?

Предполагают, что можно, но для этого нужно, чтобы источник света горел не непрерывно, а давал бы отдельные вспышки, импульсы. Световой импульс посылается источником на объект, отражается от него и возвращается к передающей камере. Если длительность светового импульса, воспринимаемого камерой, достаточно коротка, рассеянное излучение придет к камере позже основной части импульса, отраженного от наблюдаемого объекта. Чтобы отсечь часть светового импульса, несущую полезную информацию от объекта, от его хвоста, состоящего из рассеянного света, камера должна быть снабжена особым быстродействующим затвором. Открытие затвора должно происходить с определенной задержкой в зависимости от длины пути световых импульсов в воде. Вся установка в целом для освещения в воде на новом принципе несколько напоминает современный радиолокатор, но отличается от него рядом очень существенных особенностей. Прежде всего необходима очень малая длительность световой посылки.

Английские ученые, например, считают, что новая система должна работать на световых импульсах, имеющих длительность порядка одной сотой микросекунды. Но получить достаточно мощный световой импульс длительностью в одну стомиллионную долю секунды — это сама по себе сложная задача.

В данном случае она осложняется еще и тем, что необходимо обеспечить достаточно высокую частоту повторения световых посылок.

Будущее покажет, какой из новых методов освещения даст наилучшие результаты в подводном телевидении. А пока, как это часто бывает, в технике подводного освещения идут на компромиссное решение вопроса. Для уменьшения влияния световой дымки светильники стараются отнести, по возможности, в стороны от передающей камеры и выдвигают их как можно дальше вперед.

КАК ВИДЯТ РЫБЫ И ПЕРЕДАЮЩИЕ КАМЕРЫ?

Как видят рыбы? Ответ на этот вопрос очень интересен для конструкторов подводных телевизионных установок. Ведь рыбы живут в воде миллионы и миллионы лет! Можно предполагать, что уж они-то хорошо приспособились для наблюдений в воде. Поэтому было бы очень интересно узнать, каково поле зрения у рыб, какие цвета они наиболее хорошо видят, какова контрастная чувствительность их зрения и, наконец, как далеко они могут видеть в воде.

Но не так-то просто получить у рыб ответы на все эти вопросы!

Уже довольно давно американскому физику Вуду удалось определить поле зрения глаза рыб. С помощью ряда остроумных опытов он нашел, что поле зрения каждого глаза рыбы составляет около 180°. Это очень много — видеть в целой полусфере одним глазом. Для сравнения можно сказать, что поле зрения человеческого глаза в воздухе не составляет и двух третей поля зрения рыбы. Если вспомнить, что глаза у рыб расположены по бокам головы, то надо признать, что рыбы могут видеть одновременно вперед и назад, т. е. просматривать почти все окружающее их пространство воды. Столь широкое поле зрения необходимо и при подводных телевизионных наблюдениях. Но современная оптика подводного телевидения еще далека от достижения этой цели, хотя, судя по сообщениям печати, уже имеются камеры, поле зрения которых в воде составляет несколько более 100°.

Использование передающей камеры с большим углом зрения позволяет сразу увидеть большой участок поверхности. Это особенно важно при проведении контрольных наблюдений в портах, где обычно вода мало прозрачна и поэтому передающую камеру нельзя отнести подальше от осматриваемого судна. Созданы объективы с углом зрения в 180° (в воздухе), но в подводном телевидении они пока не применяются Причиной этого является ряд недостатков, в том числе малая светосила.

А телевидение под водой нуждается в светосильных объективах, так как вследствие значительного ослабления света его под водой не хватает для обеспечения нормальной работы передающей трубки.

Каково же цветное зрение рыб? Кандидат биологических наук В. Р. Протасов нашел, что спектральная чувствительность глаз рыбы не охватывает всего видимого человеку светового диапазона. У разных рыб имеется различная чувствительность по спектру. Например, рыбы, проводящие всю жизнь в чистых «голубых» водах (например, акула), совершенно не видят красных лучей. Глаза других рыб, как, например, живущего в мутной воде сома, наоборот, имеют максимум чувствительности в области красных лучей. Максимальная спектральная чувствительность глаз различных рыб примерно совпадает с максимальной прозрачностью воды, в которой живет данный вид.

Итак, рыбы довольно хорошо приспособлены для видения в воде, чего нельзя пока сказать про современные передающие трубки.

«ДАЙТЕ МНЕ ТОЧКУ ОПОРЫ!..»

Это восклицание, приписываемое знаменитому ученому древности Архимеду, мы не раз вспоминали при разработке механизма для поворота передающей камеры в воде. Предание говорит, что Архимед был намерен с помощью рычага сдвинуть земной шар. Наша задача была значительно скромнее: требовалось лишь найти способ уверенного управления в воде положением маленькой передающей камеры. Однако и это оказалось не так уж просто.

Как это часто бывает в науке, над решением одной задачи одновременно работали в разных странах.

Видимо, одним из первых некоторых успехов в этой области добился Торрингтон, в Канаде. Он использовал для поворота своей камеры гребные винты, приводимые в движение небольшими электромоторами. Камера Торрингтона имела три таких винта, которые и обеспечивали ее поворот в различных направлениях. Но этот способ не очень удобен по нескольким причинам. Например, для того чтобы удержать камеру под водой в определенном направлении, необходимо часто подрабатывать винтами. При наличии течения или волнения может случиться так, что придется заставлять винты работать непрерывно. И это тоже очень неудобно. Работающие винты создают вокруг струи воды, которые могут распугать наблюдаемых животных, а при наблюдениях: у дна струи от винтов могут поднять ил со дна и взмутить воду. Кроме того, работающие винты создают шум, который иногда может быть очень нежелательным. Надо было найти какой-то другой, лучший способ.

Английские ученые предложили использовать принцип перископа. В этом случае сама передающая камера с трубкой остается неподвижной, а вращается перископическая головка. Но и у этого способа есть свои недостатки. Наблюдаемый предмет может оказаться за пределами поля зрения камеры. Кроме того, во многих случаях желательно, чтобы поворачивалась вся камера целиком. Это совершенно необходимо, например, если на самой камере укреплены ловушки для отлова наблюдаемых животных.

Почему нельзя точно управлять движениями камеры в воде? Нет точки опоры. Вот когда мы вспомнили Архимеда! Камера висит на конце длинного и относительно тонкого троса или кабель-троса. Ни тот, ни другой не обладают достаточным сопротивлением на скручивание. Если взять электрический моторчик, подвесить его на конце длинного троса, а к его валу прикрепить передающую* камеру, то при включении моторчика в сеть начнет вращаться… Как вы думаете, что? Вопреки ожиданию, вертеться начнет… статор мотора! Он будет закручивать трос, на котором подвешен, а передающая камера будет оставаться на месте! Происходит это потому, что момент инерции у тяжелой камеры обычно значительно больше момента инерций легкого электромоторчика. Но если сделать момент инерции поворотного устройства во много раз больше, чем момент инерции передающей камеры, то с помощью мотора камера сможет поворачиваться.

Как, однако, это сделать? Ведь увеличить момент инерции любого предмета — это значит увеличить его массу и увеличить расстояние этой массы от оси вращения. Но увеличить массу — значит сделать предмет более тяжелым. А это очень нежелательно. Передающая камера подводной телевизионной установки не должна весить на воздухе больше 50 килограммов, иначе с ней трудно обращаться во время качки судна. Массу механизма поворота желательно сделать по крайней мере в 10 раз больше массы камеры: десятикратное увеличение момента инерции камеры является минимальным. Лучше, если масса поворотного механизма будет больше, например, в 100 раз. Тогда при повороте камеры вращающий ее механизм будет оставаться практически неподвижным. Но в этом случае слишком уж тяжелой получается вся комбинация из камеры и механизма для ее поворота.

Выход был все же найден.

Любое тело, находящееся в воздухе или в воде, как бы присоединяет к себе некоторое количество окружающего его воздуха или воды. Иначе говоря, во всех движениях данного тела принимает участие некоторое количество окружающего его вещества. Присоединенная масса зависит от формы тела. Для тел хорошо обтекаемой формы она мала. Наоборот, для тел плохо обтекаемой формы присоединенная масса велика. Например, для хорошо обтекаемого тела веретенообразной формы (для дирижабля) присоединенная масса (вычисленная от его объема) составляет всего лишь 8 процентов. У шара присоединенная масса равна 50 процентам, а для плоской пластинки она еще больше. Вот эту-то массу и удобно использовать для стабилизации механизма поворота. Следует лишь снабдить его кожух плоской пластинкой достаточных размеров. При погружении в воду к пластинке присоединится значительная масса окружающей ее воды — и необходимый высокий момент инерции обеспечен. А поднимать и спускать камеру будет нетрудно, так как стабилизатор из легкого сплава весит мало!

Первый опыт мы сделали в лаборатории. Вместо передающей камеры Александр Сергеевич Абрамов, инженер и главный механик лаборатории, взял кусок здоровенной трубы из красной меди и подвесил ее к потолку на тонком тросе. Труба повисла над полом в горизонтальном положении. К трубе снизу он прикрепил электромоторчик с редуктором, на выходном валу которого укрепил в качестве стабилизатора флажок из фанеры. Под трубу снизу подставил большой противень с водой, в которую погрузился флажок. Большинство сотрудников лаборатории с недоверием смотрело на странное сооружение. Но при включении тока в цепь моторчика тяжеленная труба вдруг начала медленно вращаться! Правда, стабилизатор в воде тоже не оставался на месте. Но все же это был успех.

Были сделаны необходимые вычисления, и конструктор Б. Рыхлов разработал компактный механизм, который был способен поворачивать шаровидную передающую камеру в море.

Спустя несколько месяцев мы производили испытания нового устройства в Голубой бухте. В чистой воде у борта экспедиционного судна «Форель» было хорошо видно, как большой и тяжелый стальной шар, повинуясь воле оператора, поворачивался в любом направлении: вправо и влево, вверх и вниз; а большой стабилизатор, прикрепленный к корпусу, в котором был заключен механизм, оставался практически неподвижным. Стоял, что называется, как вкопанный. Это была уже настоящая победа!

Присоединенная масса, многим казавшаяся мифической, работала великолепно!

ОТ САНЕЙ К ПОДВОДНОМУ ВЕРТОЛЕТУ

Представим себе, что мы решили осмотреть с помощью подводной телевизионной установки какой-то участок морского дна. Для этого мы спустим передающую камеру в море, попросим капитана дать самый малый ход и будем буксировать нашу камеру. Но дно моря редко бывает ровным, и очень скоро может случиться так, что иллюминатор камеры зароется в ил, а то. еще хуже, камера ударится о скалу. Как же надо поступать, чтобы этого не случилось? Первоначально мы применили для буксировки камеры… сани. Да, более или менее обычные стальные сани, которые едут на буксире у судна по морскому дну, а на санях укреплена передающая камера, объектив которой смотрит на дно.

Но разве сани могут считаться удовлетворительным средством передвижения по морскому дну! В самом деле, предположим, что нам необходимо детально осмотреть какой-то участок. Для этого необходимо постепенно, метр за метром, передвигать передающую камеру, делая остановки в нужных местах. Как быть в этом случае? Делать это, маневрируя судном, с которого опущена камера? Однако передвижение с места на место в пределах нескольких десятков метров даже не очень большого судна вызывает, как правило, большие затруднения.

Перемещать камеру с помощью тросов вдоль борта судна? Допустим. А что делать, если нужно осмотреть какую-то скалу, находящуюся в 5-10 метрах по перпендикуляру от борта судна? Поскольку у судов бокового хода нет, то ничего иного не остается, как судну сниматься с якоря, проходить немного вперед или назад, долго маневрировать, прежде чем удастся попасть в нужную точку. Ведь нет никакой гарантии, что с первого захода удастся выйти на нужное место и что маневр не придется повторять несколько раз. Это отнимает много времени и утомляет экипаж.

Не маневрируя судном, задачу можно решить, если поставить передающую камеру на самоходную тележку, способную передвигаться по морскому дну. Одна из последних заграничных самоходных тележек для этой цели имеет гусеничный ход и способна удаляться до 8 километром от своей базы. Она имеет около десятка различных телевизионных камер. Глубину погружения предполагают вскоре довести до 6 километров. С появлением подобных тележек подводное телевидение получило ноги. На гусеницах тележка способна передвигаться по морскому дну. А как быть, если надо осмотреть затонувшее судно или пролезть под ним? Такая надобность встречается при аварийно-спасательных работах. Для обеспечения спасательных операций под затонувшем судном бывает необходимо протащить стропу (так называется прочная стальная лента, к которой потом прикрепляются понтоны для подъема затонувшего судна на поверхность). Но если самоходная тележка будет зарываться в ил, стремясь пройти под затонувшим судном, то она сильно замутит воду и оператор не сможет ничего увидеть с помощью телевизионной камеры. Как же в этом случае он будет управлять тележкой? Тут на помощь может прийти кибернетика.

Кибернетика позволяет снабдить самоходную тележку необходимыми автоматическими устройствами, наделенными некоторыми «познаниями» на случай, если на пути встретятся какие-либо препятствия. Например, она сможет самостоятельно зажечь газовую горелку и проделать себе проход.

Макет подобной тележки построен инженером А. С. Абрамовым. Тележка имеет колеса, обладающие магнитным притяжением. Благодаря этому она может передвигаться по стальной обшивке судна под водой и нести на себе небольшой груз. Тележка имеет руль, с помощью которого ее можно направить в любую сторону. За собой тележка тянет кабель. Подобные тележки с передающими камерами можно будет применять со временем для осмотра судов без захода в док.

Однако даже хорошая самоходная тележка не может решить всех задач, возникших при подводных наблюдениях. Ведь очень часто бывает нужно осмотреть какой-то предмет, который находится не только в стороне от экспедиционного судна, но и в нескольких метрах над дном. Такой случай возникает, например, при необходимости осмотра сетей или других орудий лова, находящихся на несколько метров выше дна моря. В этом случае самоходная тележка помочь уже не сможет. Поэтому необходимо иметь возможность маневрировать передающей камерой по вертикали. Подобные камеры уже существуют. Такая камера имеет многие узлы, делающие ее похожей на подводную лодку. Например, в верхней части самоходной камеры имеется бак, который является балластной цистерной. Сбоку камеры имеются баллоны со сжатым воздухом, служащим для продувки балластной цистерны и, возможно, для питания двигателей двух гребных винтов. Камера связана с судном-маткой (или с берегом) специальным кабелем, длина которого достигает 600 метров. Она имеет подводные светильники, легко управляется и обладает достаточно высокой точностью хода. Но у такой камеры имеются и недостатки, свойственные подводным лодкам. Это прежде всего ограниченная глубина погружения. Для того чтобы избавиться от этого ограничения, при создании глубоководных самоходных телевизионных камер, видимо, предстоит воспользоваться опытом, накопленным в строительстве батискафов.

Заслуживает внимания предложенная недавно профессором Пикаром идея создания подводного «вертолета» для изучения предельных глубин океана.

СТАЛЬНАЯ РУКА

«…Странную картину видели недавно ученые-атомники, приглашенные в одну из лабораторий фирмы «Дженерал электрик».

В комнате ловко двигалась замысловатая машина, похожая на марсианина из фантастических романов. Как заправский кавалер, она помогала даме надевать и снимать пальто, доставала и подавала ей различные вещи. Движения кавалера были точными и ловкими». Это — отрывок из статьи в журнале «Знание — сила» (№8 за 1957 год), в которой описывается «стальной кавалер» — робот, построенный для работы на атомных центрах. Во время описанной демонстрации робот управлялся по многожильному кабелю длиной всего 6 метров, но предполагается, что в дальнейшем будет возможно управление им по радио на расстоянии до 6000 километров.

В павильоне, посвященном мирному использованию атомной энергии, на Выставке достижений народного хозяйства СССР, в Москве, есть любопытный экспонат — механические «руки» или манипуляторы. После небольшой практики нетрудно научиться производить с их помощью различные несложные операции в большом застекленном шкафу, находясь от него на расстоянии в несколько метров. Работа «рук»-манипуляторов очень точна. С помощью их можно сделать даже свою подпись, сохраняя характерные особенности почерка.

Возникает вопрос: нельзя ли снабдить механическими «руками» подводную телевизионную камеру? Они могли бы оказаться очень полезными в тех случаях, когда нужно поднять со дна какой-либо предмет или взять образец данной растительности.

Но большинство известных конструкций механических «рук» основано на использовании тросов, связывающих исполнительный механизм, т. е. собственно механическую «руку», с датчиком, управляемым оператором. Ясно, что с помощью тросов нельзя передать движение на достаточно большое расстояние, необходимое для выполнения подводных работ. Ведь наибольший интерес представляет использование механически к их рук для работы на глубинах до 500-1000 метров. Такой длины тросик в воду не опустишь!

Очевидно, механическая «рука» для подводных работ должна быть достаточно сильной для выполнения самых тяжелых работ. А управление действиями механической руки должно производиться по кабелю. При таком разделении функций от оператора уже не потребуется значительных усилий. Он должен лишь управлять каким-то командным устройством, а вся механическая работа ляжет на исполнительный механизм. Система управления должна быть очень гибкой и с максимальной четкостью обеспечивать выполнение команд оператора.

Весьма важно создать в механических «руках» некоторое подобие чувства осязания.

Известно, например, что искусный машинист тяжелого пневматического молота может разбить с его помощью скорлупу ореха, не раздавив зерна! При достаточно совершенной системе управления квалифицированный оператор настолько «сливается» со своей машиной, что вырабатывает как бы осязание «на кончиках пальцев» мощной механической «руки». Оператору манипулятора во многих случаях очень важно знать, с какой силой он воздействует на тот или иной объект. Частичным решением задачи является снабжение «рук» различными индикаторами, которые могли бы показывать усилие, развиваемое клешней при захвате той или иной детали.

Очевидно, подобная сигнализация не сможет заменить чувства осязания. Удастся ли практически при работе с мощным механическим захватом, сила которого значительно превосходит человеческую, все же иметь в любой момент более или менее точное представление о развиваемом усилии? На этот и на другие важные вопросы, возникающие перед конструкторами, должны дать ответ исследователи.

Для управления манипуляторами предлагают применить сельсины. Так называются особые электрические машины, позволяющие точно повторять механическое движение на расстоянии. Механическая рука, предназначенная для выполнения хотя бы самых простейших работ под водой, должна «уметь» делать несколько различных движений. Например, для отвинчивания или завинчивания гаек необходимо вращательное движение, сжимание и разжимание клешни и несколько других движений, требующихся для приближения к гайке (т. е. вправо — влево, вверх- вниз, вперед — назад). Получается, что нужно иметь минимум пять-шесть сельсинов для осуществления такого же количества различных движений. Только в этом случае мы будем иметь возможность с большим или меньшим успехом производить простейшие работы под водой. Каждый сельсин требует пять проводов. Пять сельсинов — двадцать пять проводов. Это много, получится толстый кабель. Но главная беда не в этом. Настоящее затруднение заключается в том, что нет сельсинов, пригодных для работы в морской воде под большим давлением. Следовательно, нужно еще каждый сельсин заключать в герметичный кожух!

Но ведь уже созданы электромоторы, которые не боятся погружения в воду. Подобные электромоторы можно видеть в одном из павильонов ВДНХ. Они лежат на дне аквариума и отлично работают в воде. Обмотка статора этих моторов пропитана специальными смолами, не пропускающими воду. А ротор этих моторчиков сделан так, что влияния воды не боится. Такой электродвигатель можно использовать для вращения масляного насоса. Тогда можно применить гидравлический привод, как это и было сделано нами в первой модели манипулятора.

Пройдет немного времени, и телевизионная камера займет место водителя на таком подводном комбайне.

Трудности в развитии подводного телевидения, конечно, велики. Но мощь человеческого разума, прогресс современной техники позволят нам в конце концов преодолеть все препятствия.

* * *

Море сопротивляется, оно очень неохотно открывает человеку свои тайны. Но окно в подводный мир открывается все шире и шире. Несомненно, мы получим, наконец, возможность осмотреть и изучить дно самых глубоких морей и океанов. На экранах наших телевизоров появятся подводные ландшафты и жители пока еще почти недоступных глубин.

Под нашим наблюдением на дне будут работать машины-автоматы и полуавтоматы, начнутся разработки полезных ископаемых, возделывание подводных плантаций ценнейших растений.

Сейчас трудно даже представить себе, какие разнообразные применения может получить в будущем подводное телевидение.

Оглавление

  • ТЕЛЕПЕРЕДАЧА ИЗ МОРСКИХ ГЛУБИН
  • ПРЕИМУЩЕСТВА ПОДВОДНОГО ТЕЛЕВИДЕНИЯ
  • ПЕРВЫЕ ОПЫТЫ
  • МОЛОКО И ЧЕРНИЛА
  • КАК СДЕЛАТЬ ВОДУ ПРОЗРАЧНЕЙ?
  • СВЕТОВАЯ ДЫМКА
  • БЫСТРЕЕ СВЕТА?!
  • КАК ВИДЯТ РЫБЫ И ПЕРЕДАЮЩИЕ КАМЕРЫ?
  • «ДАЙТЕ МНЕ ТОЧКУ ОПОРЫ!..»
  • ОТ САНЕЙ К ПОДВОДНОМУ ВЕРТОЛЕТУ
  • СТАЛЬНАЯ РУКА Fueled by Johannes Gensfleisch zur Laden zum Gutenberg

    Комментарии к книге «Окно в подводный мир», Николай Всеволодович Вершинский

    Всего 0 комментариев

    Комментариев к этой книге пока нет, будьте первым!

    РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

    Популярные и начинающие авторы, крупнейшие и нишевые издательства