Р. Фейнман, Р. Лейтон, М. Сэндс Фейнмановские лекции по физике Том 2. Электромагнетизм и материя
От редактора
Этим выпуском мы начинаем печатание перевода второго тома лекций, прочитанных Р. Фейнманом студентам второго курса. Весь материал второго тома составляет 42 главы и займет три выпуска русского издания (5—7). Основное содержание этих глав-лекций — электричество, магнетизм, физика сплошных сред. Остальные лекции, в которых рассказывалось о квантовой механике, составили третий том и войдут в русском издании в вып. 8 и 9. Кроме того, вышли три тетради задач по курсу (по тетради к каждому тому). В нашем издании они составят дополнительный выпуск: «Задачи и упражнения».
О втором томе хотелось бы сделать два замечания. Первое относится к гл. 19 (вып. 6). Это не обычная лекция, а скорее доклад на научном семинаре; понять его смогут, по-видимому, лишь самые сильные студенты (и то, если хорошо поработают!). Фейнман рассказывает о том, как можно, посмотрев иначе на совсем разные разделы физики, увидеть между ними много общего. Это рассказ о принципе наименьшего действия, как его понимает Фейнман, а также замечания о близких по духу задачах, которые, как признает сам автор, не понимает даже он сам. Смотреть на все своими глазами — замечательное качество. Именно это и надо понять, читая гл. 19.
Второе замечание относится к гл. 30 (вып. 7). В американском издании в эту главу в качестве § 19 включена самая настоящая научная статья из журнала Английской Академии наук (или, как ее называют с давних пор, Королевского общества). Эта статья имеет непосредственное отношение к содержанию главы, она посвящена моделированию явлений в кристалле. Но рассказ о методе ведет не лектор, а сами авторы метода — английские физики Брэгг и Най. При этом создатели курса добивались еще одной цели — познакомить читателя с оригинальной научной работой из серьезного журнала. В русском издании перевод ее (немного сокращенный) помещен в конце вып. 7 в виде приложения.
Так, читая «Фейнмановские лекции по физике», вы будете понемногу приобщаться к живой, развивающейся науке.
Я. Смородинский
Декабрь 1965 г.
P. S. В ноябре 1965 г. Ричард Фейнман вместе с двумя другими физиками-теоретиками (Швингером и Томонага) за работы по квантовой электродинамике получил Нобелевскую премию.
Предисловие
Много лет Ричард П. Фейнман размышляет о таинственных механизмах физического мира и упорно стремится найти порядок в кажущемся хаосе. Последние два года он отдавал свою энергию еще и лекциям для начинающих студентов. Для этих лекций он отобрал самое важное из того, что знал сам, и нарисовал физическую картину Вселенной так, что студенты могли надеяться в ней разобраться. В эти лекции он вложил блеск и ясность мысли, оригинальность и живость метода, заразительный энтузиазм рассказчика. Его рассказ доставлял истинную радость слушателям. В основу первого тома легли лекции, прочитанные для студентов первого курса. Во второй том мы включили запись части лекций для второго курса[1]. Они были прочитаны в течение 1962/63 учебного года. Оставшиеся лекции для второкурсников войдут в третий том[2].
Лекции для второго курса на две трети были посвящены весьма обстоятельному изучению физики электричества и магнетизма. При этом преследовалась двоякая цель. Во-первых, мы хотели дать студентам полную картину одного из самых больших разделов физики — от первых, сделанных ощупью шагов Франклина, через великий синтез Максвелла, до лоренцевой электронной теории свойств вещества, включая еще не решенные дилеммы электромагнитной собственной энергии. Во-вторых, мы надеялись ввести с самого начала исчисление векторных полей и дать таким образом солидное введение в математику полевых теорий. Чтоб подчеркнуть общую полезность математических методов, порой родственные вопросы из других областей физики анализировались одновременно с их электрическими двойниками. Мы пытались все время внедрять в сознание общность математики («одинаковые уравнения имеют одинаковые решения»). Это подчеркивалось характером упражнений, а потом и экзаменов.
После электромагнетизма две главы посвящены упругости, а две — течению жидкости. В первой главе каждой из этих тем обсуждаются лишь элементарные и практические вопросы, вторые главы посвящены попытке обзора всего сложного круга явлений, к которым ведет рассматриваемая задача. Эти четыре главы, впрочем, можно без особого ущерба опустить, поскольку они вовсе не обязательны для понимания материала.
Примерно вся последняя четверть второго курса была посвящена введению в квантовую механику. Она вошла в третий том.
Публикуя запись лекций Фейнмана, мы хотели осуществить нечто большее, нежели просто переложить на бумагу то, что было им сказано устно. Мы хотели, чтобы на бумагу как можно более ясно легли те идеи, на которых основывались лекции. Для некоторых лекций этого удалось добиться, пришлось внести лишь небольшую правку в стенографические записи, другие же потребовали значительной работы и довольно серьезного редактирования. Иногда мы чувствовали, что для большей ясности нужно включить добавочный материал. При этом мы прибегали постоянно к помощи и советам самого Фейнмана.
«Перевод» в столь сжатые сроки свыше миллиона устных слов в связный текст — работа громадная, особенно если к этому еще добавляются другие обязанности, сопровождающие обычно чтение нового курса,— подготовка к опросу, семинары, упражнения, экзамены и т. д. Потребовалось множество рук и голов. Я все же надеюсь, что в ряде случаев нам удалось верно отразить фейнмановский оригинал. В других же мы оказались очень далеки от идеала. Нашими успехами мы обязаны всем, кто помогал нам. Мы очень сожалеем о неудачах.
Как мы подробно объясняли в предисловии к первому тому, эти лекции были всего частью программы, которую наметил и за выполнением которой следил Комитет по пересмотру курса (Р. Лейтон — председатель, Г. Неер и М. Сэндс) КАЛТЕХа при финансовой поддержке Фонда Форда. Кроме того, в подготовке текста лекций второго тома участвовали Т. Кохи, М. Клейтон, Д. Курцио, Д. Хартл, Т. Харвей, М. Израэль, В. Карзас, Р. Каванах, Д. Мэтьюс, М. Плессет, Ф. Уоррен, В. Уэйлинг, С. Уилтс и Б. Циммерман. В работе над лекциями помогали Дж. Блю, Дж. Чаплин, М. Клаузер, Р. Доллен, Г. Хилл и А. Тайтл. Мне хотелось бы особо сказать здесь о постоянной помощи профессора Нойгебауера. И все же если бы не выдающееся дарование и активность самого Фейнмана, то этот рассказ о физике, который вы сейчас читаете, никогда бы не прозвучал.
Мэтью Сэндс
Март 1964 г.
Выпуск 5. Электричество и магнетизм
Глава 1 ЭЛЕКТРОМАГНЕТИЗМ
Повторить: гл. 12 (вып. 1) «Характеристики силы»
§ 1. Электрические силы
Рассмотрим силу, которая, подобно тяготению, меняется обратно квадрату расстояния, но только в миллион биллионов биллионов биллионов раз более сильную. И которая отличается еще в одном. Пусть существуют два сорта «вещества», которые можно назвать положительным и отрицательным. Пусть одинаковые сорта отталкиваются, а разные — притягиваются в отличие от тяготения, при котором происходит только притяжение. Что же тогда случится?
Все положительное оттолкнется со страшной силой и разлетится в разные стороны. Все отрицательное — тоже. Но совсем другое произойдет, если положительное и отрицательное перемешать поровну. Тогда они с огромной силой притянутся друг к другу, и в итоге эти невероятные силы почти нацело сбалансируются, образуя плотные «мелкозернистые» смеси положительного и отрицательного; между двумя грудами таких смесей практически не будет ощущаться ни притяжения, ни отталкивания.
Такая сила существует: это электрическая сила. И все вещество является смесью положительных протонов и отрицательных электронов, притягивающихся и отталкивающихся с неимоверной силой. Однако баланс между ними столь совершенен, что, когда вы стоите возле кого-нибудь, вы не ощущаете никакого действия этой силы. А если бы баланс нарушился хоть немножко, вы бы это сразу почувствовали. Если бы в вашем теле или в теле вашего соседа (стоящего от вас на расстоянии вытянутой руки) электронов оказалось бы всего на 1% больше, чем протонов, то сила вашего отталкивания была бы невообразимо большой. Насколько большой? Достаточной, чтобы поднять небоскреб? Больше! Достаточной, чтобы поднять гору Эверест? Больше! Силы отталкивания хватило бы, чтобы поднять «вес», равный весу нашей Земли!
Раз такие огромные силы в этих тонких смесях столь совершенно сбалансированы, то нетрудно понять, что вещество, стремясь удержать свои положительные и отрицательные заряды в тончайшем равновесии, должно обладать большой жесткостью и прочностью. Верхушка небоскреба, скажем, отклоняется при порывах ветра лишь на пару метров, потому что электрические силы удерживают каждый электрон и каждый протон более или менее на своих местах. А с другой стороны, если рассмотреть достаточно малое количество вещества так, чтобы в нем насчитывалось лишь немного атомов, то там необязательно будет равное число положительных и отрицательных зарядов, и могут проявиться большие остаточные электрические силы. Даже если числа тех и других зарядов одинаковы, все равно между соседними областями может действовать значительная электрическая сила. Потому что силы, действующие между отдельными зарядами, изменяются обратно пропорционально квадратам расстояний между ними и может оказаться, что отрицательные заряды одной части вещества ближе к положительным зарядам (другой части), чем к отрицательным. Силы притяжения тогда превзойдут силы отталкивания, и в итоге возникнет притяжение между двумя частями вещества, в которых нет избыточного заряда. Сила, удерживающая атомы, и химические силы, скрепляющие между собой молекулы,— все это силы электрические, действующие там, где число зарядов неодинаково или где промежутки между ними малы.
Вы знаете, конечно, что в атоме имеются положительные протоны в ядре и электроны вне ядра. Вы можете спросить: «Если эти электрические силы так велики, то почему же протоны и электроны не налезают друг на друга? Если они стремятся образовать тесную компанию, почему бы ей не стать еще теснее?» Ответ связан с квантовыми эффектами. Если попытаться заключить наши электроны в малый объем, окружающий протон, то, согласно принципу неопределенности, у них должен возникнуть средний квадратичный импульс, тем больший, чем сильнее мы их ограничим. Именно это движение (требуемое законами квантовой механики) мешает электрическому притяжению еще больше сблизить заряды.
Тут возникает другой вопрос: «Что скрепляет ядро?» В ядре имеется несколько протонов, и все они положительно заряжены. Почему же они не разлетаются? Оказывается, что в ядре, помимо электрических сил, еще действуют и неэлектрические силы, называемые ядерными. Эти силы более мощные, чем электрические, и они способны, несмотря на электрическое отталкивание, удержать протоны вместе. Действие ядерных сил, однако, простирается недалеко; оно падает гораздо быстрее, чем 1/r2. И это приводит к важному результату. Если в ядре имеется слишком много протонов, то ядро становится чересчур большим и оно уже не может удержаться. Примером может служить уран с его 92 протонами. Ядерные силы действуют в основном между протоном (или нейтроном) и его ближайшим соседом, а электрические силы действуют на большие расстояния и вызывают отталкивание каждого протона в ядре от всех остальных. Чем больше в ядре протонов, тем сильнее электрическое отталкивание, пока (как у урана) равновесие не станет столь шатким, что ядру почти ничего не стоит разлететься от действия электрического отталкивания. Стоит его чуть-чуть «толкнуть» (например, послав внутрь медленный нейтрон) — и оно разваливается надвое, на две положительно заряженные части, разлетающиеся врозь в результате электрического отталкивания. Энергия, которая при этом высвобождается,— это энергия атомной бомбы. Ее обычно именуют «ядерной» энергией, хотя на самом деле это «электрическая» энергия, высвобождаемая, как только электрические силы превзойдут ядерные силы притяжения.
Наконец, можно спросить, чем скрепляется отрицательно заряженный электрон (ведь в нем нет ядерных сил)? Если электрон весь состоит из вещества одного сорта, то каждая его часть должна отталкивать остальные. Тогда почему же они не разлетаются в разные стороны? А точно ли существуют у электрона «части»? Может быть, следует считать электрон просто точкой и говорить, что электрические силы действуют только между разными точечными зарядами, так что электрон не действует сам на себя? Возможно. Единственно, что можно сейчас сказать,— что вопрос о том, чем скреплен электрон, вызвал много трудностей при попытке создать полную теорию электромагнетизма. И ответа на этот вопрос так и не получили. Мы займемся обсуждением его немного позже.
Как мы видели, можно надеяться, что сочетание электрических сил и квантовомеханических эффектов определит структуру больших количеств вещества и, следовательно, их свойства. Одни материалы — твердые, другие — мягкие. Некоторые из них — электрические «проводники», потому что их электроны свободны и могут двигаться; другие — «изоляторы», их электроны привязаны каждый к своему атому. Позже мы выясним, откуда появляются такие свойства, но вопрос этот очень сложен, поэтому рассмотрим сначала электрические силы в самых простых ситуациях. Начнем с изучения одних только законов электричества, включив сюда и магнетизм, так как и то и другое в действительности суть явления одной и той же природы.
Мы сказали, что электрические силы, как и силы тяготения, уменьшаются обратно пропорционально квадрату расстояния между зарядами. Это соотношение называется законом Кулона. Однако этот закон перестает выполняться точно, если заряды движутся. Электрические силы зависят также сложным образом и от движения зарядов. Одну из частей силы, действующей между движущимися зарядами, мы называем магнитной силой. На самом же деле это только одно из проявлений электрического действия. Потому мы и говорим об «электромагнетизме».
Существует важный общий принцип, позволяющий относительно просто изучать электромагнитные силы. Мы обнаруживаем экспериментально, что сила, действующая на отдельный заряд (независимо от того, сколько там еще есть зарядов или как они движутся), зависит только от положения этого отдельного заряда, от его скорости и величины. Силу F, действующую на заряд q, движущийся со скоростью v, мы можем написать в виде
(1.1)
здесь Е — электрическое поле в точке расположения заряда, а В — магнитное поле. Существенно, что электрические силы, действующие со стороны всех прочих зарядов Вселенной, складываются и дают как раз эти два вектора. Значения их зависят от того, где находится заряд, и могут меняться со временем. Если мы заменим этот заряд другим, то сила, действующая на новый заряд, изменяется точно пропорционально величине заряда, если только все прочие заряды мира не меняют своего движения или положения. (В реальных условиях, конечно, каждый заряд действует на все прочие расположенные по соседству заряды и может заставить их двигаться, так что иногда при замене одного данного заряда другим поля могут измениться.)
Из материала, изложенного в первом томе, мы знаем, как определить движение частицы, если сила, действующая на нее, известна. Уравнение (1.1) в сочетании с уравнением движения дает
(1.2)
Значит, если Е и В известны, то можно определить движение зарядов. Остается только узнать, как получаются Е и В.
Один из самых важных принципов, упрощающих получение величины полей, состоит в следующем. Пусть некоторое количество движущихся каким-то образом зарядов создает поле E1, а другая совокупность зарядов — поле Е2. Если действуют оба набора зарядов одновременно (сохраняя те же свои положения и движения, какими они обладали, когда рассматривались порознь), то возникающее поле равно в точности сумме
(1.3)
Этот факт называется принципом наложения полей (или принципом суперпозиции). Он выполняется и для магнитных полей.
Принцип этот означает, что если нам известен закон для электрического и магнитного полей, образуемых одиночным зарядом, движущимся произвольным образом, то, значит, нам известны все законы электродинамики. Если мы хотим знать силу, действующую на заряд А, нам нужно только рассчитать величину полей Е и В, созданных каждым из зарядов В, С, D и т. д., и сложить все эти Е и В; тем самым мы найдем поля, а из них — силы, действующие на А. Если бы оказалось, что поле, создаваемое одиночным зарядом, отличается простотой, то это стало бы самым изящным способом описания законов электродинамики. Но мы уже описывали этот закон (см. вып. 3, гл. 28), и, к сожалению, он довольно сложен.
Оказывается, что форма, в которой законы электродинамики становятся простыми, совсем не такая, какой можно было бы ожидать. Она не проста, если мы захотим иметь формулу для силы, с которой один заряд действует на другой. Правда, когда заряды покоятся, закон силы — закон Кулона — прост, но когда заряды движутся, соотношения усложняются из-за запаздывания во времени, влияния ускорения и т. п. В итоге лучше не пытаться строить электродинамику с помощью одних лишь законов сил, действующих между зарядами; гораздо более приемлема другая точка зрения, при которой с законами электродинамики легче управляться.
§ 2. Электрические и магнитные поля
Первым делом нужно несколько расширить наши представления об электрическом и магнитном векторах Е и В. Мы определили их через силы, действующие на заряд. Теперь мы намереваемся говорить об электрическом и магнитном полях в точке, даже если там нет никакого заряда. Следовательно, мы утверждаем, что раз на заряд «действуют» силы, то в том месте, где он стоял, остается «нечто» и тогда, когда заряд оттуда убрали. Если заряд, расположенный в точке (х, у, z), в момент t ощущает действие силы F, согласно уравнению (1.1), то мы связываем векторы Е и В с точкой (х, у, z) в пространстве. Можно считать, что Е (х, y, z, t) и В (х, у, z, t) дают силы, действие которых ощутит в момент t заряд, расположенный в (х, у, z), при условии, что помещение заряда в этой точке не потревожит ни расположения, ни движения всех прочих зарядов, ответственных за поля.
Следуя этому представлению, мы связываем с каждой точкой (х, у, z) пространства два вектора Е и В, способных меняться со временем. Электрические и магнитные поля тогда рассматриваются как векторные функции от х, у, z и t. Поскольку вектор определяется своими компонентами, то каждое из полей Е (х, у, z, t) и В (х, у, z, t) представляет собой три математические функции от х, у, z и t.
Именно потому, что Е (или В) может быть определено для каждой точки пространства, его и называют «полем». Поле — это любая физическая величина, которая в разных точках пространства принимает различные значения. Скажем, температура — это поле (в этом случае скалярное), которое можно записать в виде Т (х, у, z). Кроме того, температура может меняться и во времени, тогда мы скажем, что температурное поле зависит от времени, и напишем Т (х, у, z, t). Другим примером поля может служить «поле скоростей» текущей жидкости. Мы записываем скорость жидкости в любой точке пространства в момент t в виде v(х, у, z, t). Поле это векторное.
Вернемся к электромагнитным полям. Хотя формулы, по которым они создаются зарядами, и сложны, у них есть следующее важное свойство: связь между значениями полей в некоторой точке и значениями их в соседней точке очень проста. Нескольких таких соотношений (в форме дифференциальных уравнений) достаточно, чтобы полностью описать поля. Именно в такой форме законы электродинамики и выглядят особенно просто.
Немало изобретательности было потрачено на то, чтобы помочь людям мысленно представить поведение полей. И самая правильная точка зрения — это самая отвлеченная: надо просто рассматривать поля как математические функции координат и времени. Можно также попытаться получить мысленную картину поля, начертив во многих точках пространства по вектору так, чтобы каждый из них показывал напряженность и направление поля в этой точке. Такое представление приводится на фиг. 1.1.
Фиг. 1.1. Векторное поле, представленное множеством стрелок, длина и направление которых отмечают величину векторного поля в тех точках, откуда выходят стрелки.
Можно пойти и дальше: начертить линии, которые в любой точке будут касательными к этим векторам. Они как бы следуют за стрелками и сохраняют направление поля. Если это сделать, то сведения о длинах векторов будут утеряны, но их можно сохранить, если в тех местах, где напряженность поля мала, провести линии пореже, а где велика — погуще. Договоримся, что число линий на единицу площади, расположенной поперек линий, будет пропорционально напряженности поля. Это, конечно, всего лишь приближение; иногда нам придется добавлять новые линии, чтобы их количество отвечало напряженности поля. Поле, изображенное на фиг. 1.1, представлено линиями поля на фиг. 1.2.
Фиг. 1.2. Векторное поле, представленное линиями, касательными к направлению векторного поля в каждой точке. Плотность линий указывает величину вектора поля.
§ 3. Характеристики векторных полей
Векторные поля обладают двумя математически важными свойствами, которыми мы будем пользоваться при описании законов электричества с полевой точки зрения. Представим себе замкнутую поверхность и зададим вопрос, вытекает ли из нее «нечто», т. е. обладает ли поле свойством «истечения»? Скажем, для поля скоростей мы можем поинтересоваться, всегда ли скорость направлена от поверхности, или, в более общем случае, вытекает ли из поверхности больше жидкости (в единицу времени), нежели втекает. Общее количество жидкости, вытекающее через поверхность, мы назовем «потоком скорости» через поверхность за единицу времени. Поток через элемент поверхности равен составляющей скорости, перпендикулярной к элементу, умноженной на его площадь. Для произвольной замкнутой поверхности суммарный поток равен среднему значению нормальной компоненты скорости (отсчитываемой наружу), умноженному на площадь поверхности:
(1.4)
В случае электрического поля можно математически определить понятие, сходное с потоком жидкости; мы тоже называем его потоком, но, конечно, это уже не течение какой-то жидкости, потому что электрическое поле нельзя считать скоростью чего-то. Оказывается все же, что математическая величина, определяемая как средняя нормальная компонента поля, по-прежнему имеет полезное значение. Тогда мы говорим о потоке электричества, также определяемом уравнением (1.4). Наконец, полезно говорить и о потоке не только сквозь замкнутую, но и сквозь любую ограниченную поверхность. Как и прежде, поток сквозь такую поверхность определяется как средняя нормальная компонента вектора, умноженная на площадь поверхности. Эти представления иллюстрируются фиг. 1.3.
Фиг. 1.3. Поток векторного поля через поверхность, определяемый как произведение среднего значения перпендикулярной составляющей вектора на площадь этой поверхности.
Другое свойство векторных полей касается не столько поверхностей, сколько линий. Представим опять поле скоростей, описывающее поток жидкости. Можно задать интересный вопрос: циркулирует ли жидкость? Это значит: существует ли вращательное ее движение вдоль некоторого замкнутого контура (петли)? Вообразите себе, что мы мгновенно заморозили жидкость повсюду, за исключением внутренней части замкнутой в виде петли трубки постоянного сечения (фиг. 1.4).
Фиг. 1.4. Поле скоростей в жидкости (а). Представьте себе трубку постоянного сечения, уложенную вдоль произвольной замкнутой кривой (б). Если жидкость внезапно заморозить повсюду, кроме трубки, то жидкость в трубке начнет циркулировать (в).
Снаружи трубки жидкость остановится, но внутри она может продолжать двигаться, если в ней (в жидкости) сохранился импульс, т. е. если импульс, который гонит ее в одном направлении, больше импульса в обратном. Мы определяем величину, называемую циркуляцией, как скорость жидкости в трубке, умноженную на длину трубки. Опять-таки мы можем расширить наши представления и определить «циркуляцию» для любого векторного поля (даже если там нет ничего движущегося). У всякого векторного поля циркуляция по любому воображаемому замкнутому контуру определяется как средняя касательная компонента вектора (с учетом направления обхода), умноженная на протяженность контура (фиг. 1.5):
(1.5)
Фиг. 1.5. Циркуляция векторного поля, равная произведению средней касательной составляющей вектора (с учетом ее знака по отношению к направлению обхода) на длину контура.
Вы видите, что это определение действительно дает число, пропорциональное циркуляции скорости в трубке, просверленной в быстрозамороженной жидкости.
Пользуясь только этими двумя понятиями — понятием о потоке и понятием о циркуляции,— мы способны описать все законы электричества и магнетизма. Вам, быть может, трудно будет отчетливо понять значение законов, но они дадут вам некоторое представление о том, каким способом в конечном счете может быть описана физика электромагнитных явлений.
§ 4. Законы электромагнетизма
Первый закон электромагнетизма описывает поток электрического поля:
(1.6)
где ε0 — некоторая постоянная (читается эпсилон-нуль). Если внутри поверхности нет зарядов, а вне ее (даже совсем рядом) есть, то все равно средняя нормальная компонента Е равна нулю, так что никакого потока через поверхность нет. Чтобы показать пользу от такого типа утверждений, мы докажем, что уравнение (1.6) совпадает с законом Кулона, если только учесть, что поле отдельного заряда обязано быть сферически симметричным. Проведем вокруг точечного заряда сферу. Тогда средняя нормальная компонента в точности равна значению Е в любой точке, потому что поле должно быть направлено по радиусу и иметь одну и ту же величину во всех точках сферы. Тогда наше правило утверждает, что поле на поверхности сферы, умноженное на площадь сферы (т. е. вытекающий из сферы поток), пропорционально заряду внутри нее. Если увеличивать радиус сферы, то ее площадь растет, как квадрат радиуса. Произведение средней нормальной компоненты электрического поля на эту площадь должно по-прежнему быть равно внутреннему заряду, значит, поле должно убывать, как квадрат расстояния; так получается поле «обратных квадратов».
Если взять в пространстве произвольную кривую и измерить циркуляцию электрического поля вдоль этой кривой, то окажется, что она в общем случае не равна нулю (хотя в кулоновом поле это так). Вместо этого для электричества справедлив второй закон, утверждающий, что
(1.7)
И, наконец, формулировка законов электромагнитного поля будет закончена, если написать два соответствующих уравнения для магнитного поля В:
(1.8)
А для поверхности S, ограниченной кривой С:
(1.9)
Появившаяся в уравнении (1.9) постоянная с2 — это квадрат скорости света. Ее появление оправдано тем, что магнетизм по существу есть релятивистское проявление электричества. А константа ε0 поставлена для того, чтобы возникли привычные единицы силы электрического тока.
Уравнения (1.6) — (1.9), а также уравнение (1.1) — это все законы электродинамики[3].
Как вы помните, законы Ньютона написать было очень просто, но из них зато вытекало множество сложных следствий, так что понадобилось немало времени, чтобы изучить их все. Законы электромагнетизма написать несравненно трудней, и мы должны ожидать, что следствия из них будут намного более запутаны, и теперь нам придется очень долго в них разбираться.
Мы можем проиллюстрировать некоторые законы электродинамики серией несложных опытов, которые смогут нам показать хотя бы качественно взаимоотношения электрического и магнитного полей. С первым членом в уравнении (1.1) вы знакомитесь, расчесывая себе волосы, так что о нем мы говорить не будем. Второй член в уравнении (1.1) можно продемонстрировать, пропустив ток по проволоке, висящей над магнитным бруском, как показано на фиг. 1.6.
Фиг. 1.6. Магнитная палочка, создающая возле провода поле В. Когда по проводу идет ток, провод смещается из-за действия силы F=qv×B.
При включении тока проволока сдвигается из-за того, что на нее действует сила F=qv×B. Когда по проводу идет ток, заряды внутри него движутся, т. е. имеют скорость v, и на них действует магнитное поле магнита, в результате чего провод отходит в сторону.
Когда провод сдвигается влево, можно ожидать, что сам магнит испытает толчок вправо. (Иначе все это устройство можно было бы водрузить на платформу и получить реактивную систему, в которой импульс не сохранялся бы!) Хотя сила чересчур мала, чтобы можно было заметить движение магнитной палочки, однако движение более чувствительного устройства, скажем стрелки компаса, вполне заметно.
Каким же образом ток в проводе толкает магнит? Ток, текущий по проводу, создает вокруг него свое собственное магнитное поле, которое и действует на магнит. В соответствии с последним членом в уравнении (1.9) ток должен приводить к циркуляции вектора В; в нашем случае линии поля В замкнуты вокруг провода, как показано на фиг. 1.7. Именно это поле В и ответственно за силу, действующую на магнит.
Фиг. 1.7. Магнитное поле тока, текущего по проводу, действует на магнит с некоторой силой.
Уравнение (1.9) сообщает нам, что при данной величине тока, текущего по проводу, циркуляция поля В одинакова для любой кривой, окружающей провод. У тех кривых (окружностей, например), которые лежат далеко от провода, длина оказывается больше, так что касательная компонента В должна убывать. Вы видите, что следует ожидать линейного убывания В с удалением от длинного прямого провода.
Мы сказали, что ток, текущий по проводу, образует вокруг него магнитное поле и что если имеется магнитное поле, то оно действует с некоторой силой на провод, по которому идет ток. Значит, следует думать, что если магнитное поле будет создано током, текущим в одном проводе, то оно будет действовать с некоторой силой и на другой провод, по которому тоже идет ток. Это можно показать, применив два свободно подвешенных провода (фиг. 1.8). Когда направление токов одинаково, провода притягиваются, а когда направления противоположны — отталкиваются.
Фиг. 1.8. Два провода, по которым течет ток, тоже действуют друг на друга с определенной силой.
Короче говоря, электрические токи, как и магниты, создают магнитные поля. Но тогда что же такое магнит? Раз магнитные поля создаются движущимися зарядами, то не может ли оказаться, что магнитное поле, созданное куском железа, на самом деле есть результат действия токов? Видимо, так оно и есть. В наших опытах можно заменить магнитную палочку катушкой с навитой проволокой, как показано на фиг. 1.9.
Фиг. 1.9. Магнитная палочка, показанная на фиг. 1.6, может быть заменена катушкой, по которой течет ток. На провод по-прежнему будет действовать сила.
Когда ток проходит по катушке (как и по прямому проводу над нею), наблюдается точно такое же движение проводника, как и прежде, когда вместо катушки стоял магнит. Все выглядит так, как если бы внутри куска железа непрерывно циркулировал ток. Действительно, свойства магнитов можно понять как непрерывный ток внутри атомов железа. Сила, действующая на магнит на фиг. 1.7, объясняется вторым членом в уравнении (1.1).
Откуда же берутся эти токи? Один источник — это движение электронов по атомным орбитам. У железа это не так, но у некоторых материалов происхождение магнетизма именно таково. Кроме вращения вокруг ядра атома, электрон вращается еще вокруг своей собственной оси (что-то похожее на вращение Земли); вот от этого-то вращения и возникает ток, создающий магнитное поле железа. (Мы сказали «что-то похожее на вращение Земли», потому что на самом деле в квантовой механике вопрос столь глубок, что не укладывается достаточно хорошо в классические представления.) В большинстве веществ часть электронов вертится в одну сторону, другая — в другую, так что магнетизм исчезает, а в железе (по таинственной причине, о которой мы поговорим позже) многие электроны вращаются так, что их оси смотрят в одну сторону и это служит источником магнетизма.
Поскольку поля магнитов порождаются токами, то в уравнения (1.8) и (1.9) нет нужды вставлять добавочные члены, учитывающие существование магнитов. В этих уравнениях речь идет о всех токах, включая круговые токи от вращающихся электронов, и закон оказывается правильным. Надо еще отметить, что, согласно уравнению (1.8), магнитных зарядов, подобных электрическим зарядам, стоящим в правой части уравнения (1.6), не существует. Они никогда не были обнаружены.
Первый член в правой части уравнения (1.9) был открыт Максвеллом теоретически; он очень важен. Он говорит, что изменение электрических полей вызывает магнитные явления. На самом деле без этого члена уравнение утеряло бы смысл, ведь без него исчезли бы токи в незамкнутых контурах. А на деле такие токи существуют; об этом говорит следующий пример. Представьте конденсатор, составленный из двух плоских пластин. Он заряжается током, притекающим к одной из пластин и оттекающим от другой, как показано на фиг. 1.10.
Фиг. 1.10. Циркуляция поля В по кривой С определяется либо током, текущим сквозь поверхность S1 либо быстротой изменения потока, поля Е сквозь поверхность S2.
Проведем вокруг одного из проводов кривую С и натянем на нее поверхность (поверхность S1), которая пересечет провод. В соответствии с уравнением (1.9) циркуляция поля В по кривой С дается величиной тока в проводе (умноженной на с2). Но что будет, если мы натянем на кривую другую поверхность S2 в форме чашки, донышко которой расположено между пластинами конденсатора и не касается провода? Через такую поверхность никакой ток, конечно, не проходит. Но ведь простое изменение положения и формы воображаемой поверхности не должно изменять реального магнитного поля! Циркуляция поля В должна остаться прежней. И действительно, первый член в правой части уравнения (1.9) так комбинируется со вторым членом, что для обеих поверхностей S1 и S2 возникает одинаковый эффект. Для S2 циркуляция вектора В выражается через степень изменения потока вектора Е от одной пластины к другой. И получается, что изменение Е связано с током как раз так, что уравнение (1.9) оказывается выполненным. Максвелл видел необходимость этого и был первым, кто написал полное уравнение.
С помощью устройства, изображенного на фиг. 1.6, можно продемонстрировать другой закон электромагнетизма. Отсоединим концы висящей проволочки от батарейки и присоединим их к гальванометру — прибору, регистрирующему прохождение тока по проводу. Стоит лишь в поле магнита качнуть проволоку, как по ней сразу пойдет ток. Это новое следствие уравнения (1.1): электроны в проводе почувствуют действие силы F=qv×B. Скорость их сейчас направлена в сторону, потому что они отклоняются вместе с проволочкой. Это v вместе с вертикально направленным полем В магнита приводит к силе, действующей на электроны вдоль провода, и электроны отправляются к гальванометру.
Положим, однако, что мы оставили проволочку в покое и принялись перемещать магнит. Мы чувствуем, что никакой разницы быть не должно, ведь относительное движение то же самое, и впрямь ток по гальванометру идет. Но как же магнитное поле действует на покоящиеся заряды? В соответствии с уравнением (1.1) должно возникнуть электрическое поле. Движущийся магнит должен создавать электрическое поле. На вопрос — как это происходит, отвечает количественно уравнение (1.7). Это уравнение описывает множество практически очень важных явлений, происходящих в электрических генераторах и трансформаторах.
Наиболее замечательное следствие наших уравнений — это то, что, сочетая уравнения (1.7) и (1.9), можно понять, отчего электромагнитные явления распространяются на дальние расстояния. Причина этого, грубо говоря, примерно такова: предположим, что где-то имеется магнитное поле, которое возрастает по величине, скажем, оттого, что внезапно пустили ток по проводу. Тогда из уравнения (1.7) следует, что должна возникнуть циркуляция электрического поля. Когда электрическое поле начинает постепенно возрастать для возникновения циркуляции, тогда, согласно уравнению (1.9), должна возникать и магнитная циркуляция. Но возрастание этого магнитного поля создаст новую циркуляцию электрического поля и т. д. Таким способом поля распространяются сквозь пространство, не нуждаясь ни в зарядах, ни в токах нигде, кроме источника полей. Именно таким способом мы видим друг друга! Все это спрятано в уравнениях электромагнитного поля.
§ 5. Что это такое — «поля»?
Сделаем теперь несколько замечаний о принятом нами способе рассмотрения этого вопроса. Вы можете сказать: «Все эти потоки и циркуляции чересчур абстрактны. Пусть в каждой точке пространства есть электрическое поле, кроме того, имеются эти самые «законы». Но что же там на самом деле происходит? Почему вы не можете объяснять все это, скажем, тем, что что-то, что бы это ни было, протекает между зарядами?» Все зависит от ваших предрассудков. Многие физики часто говорят, что прямое действие сквозь пустоту, сквозь ничто, немыслимо. (Как они могут называть идею немыслимой, если она уже вымышлена?) Они говорят: «Посмотрите, ведь единственные силы, которые нам известны,— это прямое действие одной части вещества на другую. Невозможно, чтобы существовала сила без чего-то, передающего ее». Но что в действительности происходит, когда мы изучаем «прямое действие» одного куска вещества на другой? Мы обнаруживаем, что первый из них вовсе не «упирается» во второй; они слегка отстоят друг от друга, и между ними существуют электрические силы, действующие в малом масштабе. Иначе говоря, мы обнаруживаем, что собрались объяснить так называемое «действие посредством прямого контакта» — при помощи картины электрических сил. Конечно, неразумно пытаться стоять на том, что электрическая сила должна выглядеть так же, как старый привычный мышечный тяни-толкай, если все равно оказывается, что все наши попытки тянуть или толкать приводят к электрическим силам! Единственно разумная постановка вопроса — спросить, какой путь рассмотрения электрических эффектов наиболее удобен. Одни предпочитают представлять их как взаимодействие зарядов на расстоянии и пользоваться сложным законом. Другим по душе силовые линии. Они их все время чертят, и им кажется, что писать разные Е и В слишком абстрактно. Но линии поля — это всего лишь грубый способ описания поля, и очень трудно сформулировать строгие, количественные законы непосредственно в терминах линий поля. К тому же понятие о линиях поля не содержит глубочайшего из принципов электродинамики — принципа суперпозиции. Даже если мы знаем, как выглядят силовые линии одной совокупности зарядов, затем другой совокупности, мы все равно не получим никакого представления о картине силовых линий, когда обе совокупности зарядов действуют вместе. А с математических позиций наложение проделать легко, надо просто сложить два вектора. У силовых линий есть свои достоинства, они дают наглядную картину, но есть у них и свои недостатки. Способ рассуждений, основанный на понятии о непосредственном взаимодействии (близкодействии), тоже обладает большими преимуществами, пока речь идет о покоящихся электрических зарядах, но обладает и большими недостатками, если иметь дело с быстрым движением зарядов.
Лучше всего пользоваться абстрактным представлением о поле. Жаль, конечно, что оно абстрактно, но ничего не поделаешь. Попытки представить электрическое поле как движение каких-то зубчатых колесиков или с помощью силовых линий или как напряжения в каких-то материалах потребовали от физиков больше усилий, чем понадобилось бы для того, чтобы просто получить правильные ответы на задачи электродинамики. Интересно, что правильные уравнения поведения света в кристаллах были выведены Мак-Куллохом еще в 1843 г. Но все ему говорили: «Позвольте, ведь нет же ни одного реального материала, механические свойства которого могли бы удовлетворить этим уравнениям, а поскольку свет — это колебания, которые должны происходить в чем-то, постольку мы не можем поверить этим абстрактным уравнениям». Если бы у его современников не было этой предвзятости, они бы поверили в правильные уравнения поведения света в кристаллах намного раньше того, чем это на самом деле случилось.
А что касается магнитных полей, то можно высказать следующее замечание. Предположим, что вам в конце концов удалось нарисовать картину магнитного поля при помощи каких-то линий или каких-то шестеренок, катящихся сквозь пространство. Тогда вы попытаетесь объяснить, что происходит с двумя зарядами, движущимися в пространстве параллельно друг другу и с одинаковыми скоростями. Раз они движутся, то они ведут себя как два тока и обладают связанным с ними магнитным полем (как токи в проводах на фиг. 1.8). Но наблюдатель, который мчится вровень с этими двумя зарядами, будет считать их неподвижными и скажет, что никакого магнитного поля там нет. И «шестеренки», и «линии» пропадают, когда вы мчитесь рядом с предметом! Все, чего вы добились,— это изобрели новую проблему. Куда могли деваться эти шестерни?! Если вы чертили силовые линии — у вас появится та же забота. Не только нельзя определить, движутся ли эти линии вместе с зарядами или не движутся, но и вообще они могут полностью исчезнуть в какой-то системе координат.
Мы бы еще хотели подчеркнуть, что явление магнетизма — это на самом деле чисто релятивистский эффект. В только что рассмотренном случае двух зарядов, движущихся параллельно друг другу, можно было бы ожидать, что понадобится сделать релятивистские поправки к их движению порядка v2/c2. Эти поправки должны отвечать магнитной силе. Но как быть с силой взаимодействия двух проводников в нашем опыте (фиг. 1.8)? Ведь там магнитная сила — это вся действующая сила. Она не очень-то смахивает на «релятивистскую поправку». Кроме того, если оценить скорости электронов в проводе (вы сами можете это проделать), то вы получите, что их средняя скорость вдоль провода составляет около 0,01 см/сек. Итак, v2/с2 равно примерно 10-25. Вполне пренебрежимая «поправка». Но нет! Хоть в этом случае магнитная сила и составляет 10-25 от «нормальной» электрической силы, действующей между движущимися электронами, вспомните, что «нормальные» электрические силы исчезли в результате почти идеального баланса из-за того, что количества протонов и электронов в проводах одинаковы. Этот баланс намного более точен, чем 1/1025, и тот малый релятивистский член, который мы называем магнитной силой,— это единственный остающийся член. Он становится преобладающим.
Почти полное взаимное уничтожение электрических эффектов и позволило физикам изучить релятивистские эффекты (т. е. магнетизм) и открыть правильные уравнения (с точностью до v2/с2), даже не зная, что в них происходит. И по этой-то причине после открытия принципа относительности законы электромагнетизма не пришлось менять. В отличие от механики они уже были правильны с точностью до v2/с2.
§ 6. Электромагнетизм в науке и технике
В заключение мне хочется закончить эту главу следующим рассказом. Среди многих явлений, изучавшихся древними греками, были два очень странных. Первое: натертый кусочек янтаря мог поднять маленькие клочки папируса, и второе: близ города Магнезия были удивительные камни, которые притягивали железо. Странно думать, что это были единственные известные грекам явления, в которых проявлялись электричество и магнетизм. А почему только это и было им известно, объясняется прежде всего сказочной точностью, с которой сбалансированы в телах заряды (о чем мы уже упоминали). Ученые, жившие в позднейшие времена, раскрыли одно за другим новые явления, в которых выражались некоторые стороны тех же эффектов, связанных с янтарем и с магнитным камнем. Сейчас нам ясно, что и явления химического взаимодействия и в конечном счете саму жизнь нужно объяснять с помощью понятий электромагнетизма.
И по мере того как развивалось понимание предмета электромагнетизма, появлялись такие технические возможности, о которых древние не могли даже мечтать: стало возможным посылать сигналы по телеграфу на большие расстояния, беседовать с человеком, который находится за много километров от вас, без помощи какой-либо линии связи, включать огромные энергетические системы — большие водяные турбины, соединенные многосоткилометровыми линиями проводов с другой машиной, которую пускает в ход один рабочий простым поворотом колеса; многие тысячи разветвляющихся проводов и десятки тысяч машин в тысячах мест приводят в движение различные механизмы на фабриках и в квартирах. Все это вращается, двигается, работает благодаря нашему знанию законов электромагнетизма.
Сегодня мы используем и еще более тонкие эффекты. Гигантские электрические силы можно сделать очень точными, их можно контролировать и использовать на всякий лад. Наши приборы так чувствительны, что мы способны узнать, что сейчас делает человек только по тому, как он воздействует на электроны, заключенные в тонком металлическом прутике за сотни километров от него. Для этого только нужно приспособить этот прутик в качестве телевизионной антенны!
В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием XIX столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть мелким провинциальным происшествием.
Глава 2 ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ВЕКТОРНЫХ ПОЛЕЙ
§ 1. Понимание физики
Физик должен обладать умением подходить к задаче с разных точек зрения. Точный анализ реальных физических проблем обычно крайне сложен, и любое конкретное физическое явление может оказаться слишком запутанным и не поддающимся анализу путем решения дифференциальных уравнений. Но можно все же получить хорошее представление о поведении системы, выработав в себе особую способность чувствовать характер решения в различных обстоятельствах. Этой цели хорошо служат представления о линиях поля, о емкостном, индуктивном и активном сопротивлениях. Мы потратим достаточно много времени на их изучение. Это поможет нам приобрести способность ощущать, что происходит в тех или иных электромагнитных явлениях. С другой стороны, ни одна из вспомогательных, эвристических моделей (например, картина силовых линий) на самом деле не может вместить в себя адекватно и точно все события. Имеется лишь один точный способ представления законов — способ дифференциальных уравнений. Уравнения обладают тем преимуществом, что, во-первых, они фундаментальны, а во-вторых (насколько нам известно), точны. Если вы их выучили, вы всегда можете к ним вернуться. В них нет ничего, что следовало бы потом забыть.
Чтобы начать понимать, что должно произойти в тех или иных условиях, вам понадобится какое-то время. Вам придется порешать уравнения, и всякий раз, когда вы решите их, вы тем самым узнаете что-то новое о характере решений. Чтобы запомнить эти решения, полезно также сформулировать их смысл на языке линий поля и иных подобных понятий. Таков путь, на котором приходит истинное «понимание» уравнений. В этом и заключается разница между физикой и математикой. Математики или люди с математическим складом ума часто при «изучении» физики теряют физику из виду и впадают в заблуждение. Они говорят: «Послушайте, эти дифференциальные уравнения — уравнения Максвелла — ведь это все, что есть в электродинамике; ведь сами физики признают, что нет ничего, что бы не содержалось в этих уравнениях. Уравнения эти сложны; ладно, но это всего лишь математические уравнения, и если я разберусь в них математически, я разберусь и в физике». Но ничего из этого не выходит. Математики, которые подходят к физике с этой точки зрения (а таких очень много), обычно не делают большого вклада в физику, да, кстати, и в математику. Их постигает неудача оттого, что настоящие физические ситуации реального мира так запутаны, что нужно обладать гораздо более широким пониманием уравнений.
Дирак объяснил, что значит действительно понять уравнение — понять, не ограничиваясь его строгим математическим смыслом. Он сказал: «Я считаю, что понял смысл уравнения, если в состоянии представить себе общий вид его решения, не решая его непосредственно». Значит, если у нас есть способ узнать, что случится в данных условиях, не решая уравнения непосредственно, мы «понимаем» уравнения в применении к этим условиям. Физическое понимание — это нечто неточное, неопределенное и абсолютно нематематическое, но для физика оно совершенно необходимо.
Обычно курс физики подобного рода строится так, что физические представления развиваются постепенно: начиная с самых простейших явлений, переходят ко все более и более сложным. Кое-что из изученного при этом неминуемо забывается (то, что верно лишь в определенных условиях, а не всегда). К примеру, «закон» обратных квадратов для электрической силы верен не всегда. Нам больше по душе обратный подход. Лучше начать с полных, самых общих законов, а затем повернуть вспять и применять их к простым задачам, развивая физические представления по мере продвижения вперед. Так мы и собираемся сделать.
Наш подход совершенно противоположен подходу историческому, когда изложение слепо следует за экспериментами, в которых впервые была получена нужная информация. Но ведь физику развивают множество очень умных людей уже свыше 200 лет, а у нас времени мало и нам нужно овладеть знаниями побыстрее. Поэтому мы не можем охватить все, что они сделали. Так что в этих лекциях мы будем вынуждены пренебречь историей предмета и не будем рассказывать об опытах. Мы надеемся, что вы восполните пропущенное на лабораторных занятиях; и, конечно, очень полезно почитать статьи и книги по истории физики.
§ 2. Скалярные и векторные поля — Т и h
Мы начинаем сейчас рассмотрение абстрактного, математического подхода к теории электричества и магнетизма. Наша цель — объяснить смысл законов, написанных в гл. 1. Но для этого надо сперва объяснить новые особенные обозначения, которые мы хотим использовать. Давайте поэтому на время позабудем электромагнетизм и разберемся в математике векторных полей. Она очень важна не только в электромагнетизме, но и во многих физических обстоятельствах, подобно тому как обычное дифференциальное и интегральное исчисление важно во всех областях физики. Мы переходим к дифференциальному исчислению векторов.
Ниже перечислены некоторые сведения из алгебры векторов. Считается, что вы с ними уже знакомы
(2.1)
(2.2)
(2.3)
(2.4)
(2.5)
(2.6)
Мы будем также пользоваться следующими двумя равенствами:
(2.7)
(2.8)
Уравнение (2.7) справедливо, конечно, только при Δx, Δy и Δz→0.
Простейшее из физических полей — скалярное. Полем, как вы помните, называется величина, зависящая от положения в пространстве. Скалярное поле — это просто такое поле, которое в каждой точке характеризуется одним-единственным числом — скаляром. Это число, конечно, может меняться во времени, но пока мы на это не будем обращать внимания. (Речь будет идти о том, как поле выглядит в данное мгновение.) В качестве примера скалярного поля рассмотрим брусок из какого-то материала. В одних местах брусок нагрет, в других — остужен, так что его температура меняется от точки к точке каким-то сложным образом. Температура тогда будет функцией х, у и z — положения в пространстве, измеренного в прямоугольной системе координат. Температура — это скалярное поле.
Один способ представить себе скалярное поле — это вообразить «контуры», т. е. мысленные поверхности, проведенные через точки с одинаковыми значениями поля, подобно горизонталям на картах, соединяющим точки на одной высоте над уровнем моря. Для температурного поля контуры носят название «изотермические поверхности», или изотермы. На фиг. 2.1 показано температурное поле и зависимость Т от х и у при z=0. Проведено несколько изотерм.
Фиг. 2.1. Температура Т — пример скалярного поля. С каждой точкой (х, у, z) в пространстве связывается число Т(х, у, z). Все точки на поверхности с пометкой Т=20° (изображенной в виде кривой при z=0) имеют одну и ту же температуру. Стрелки — это примеры вектора потока тепла h.
Поля бывают также векторными. Идея их очень проста. В каждой точке пространства задается вектор. Он меняется от точки к точке. Рассмотрим в виде примера вращающееся тело. Скорость материала тела во всякой точке — это вектор, который является функцией ее положения (фиг. 2.2).
Фиг. 2.2. Скорости атомов во вращающемся теле — пример векторного поля.
Другой пример — поток тепла в бруске из некоторого материала. Если в одной части бруска температура выше, а в другой — ниже, то от горячей части к холодной будет идти поток тепла. Тепло в разных частях бруска будет растекаться в различных направлениях. Поток тепла — это величина, имеющая направление; обозначим ее h; длина этого вектора пусть измеряет количество протекающего тепла. Векторы потока тепла также изображены на фиг. 2.1.
Определим теперь h более точно. Длина вектора потока тепла в данной точке — это количество тепловой энергии, проходящее за единицу времени и в пересчете на единицу площади сквозь бесконечно малый элемент поверхности, перпендикулярный к направлению потока. Вектор указывает направление потока (фиг. 2.3).
Фиг. 2.3. Тепловой поток — векторное поле. Вектор h указывает направление потока. Абсолютная величина его выражает энергию, переносимую за единицу времени через элемент поверхности, ориентированный поперек потока, деленную на площадь элемента поверхности.
В буквенных обозначениях: если ΔJ — тепловая энергия, протекающая за единицу времени сквозь элемент поверхности Δа, то
(2.9)
где еf — единичный вектор направления потока Вектор h можно определить и иначе — через его компоненты. Зададим себе вопрос, сколько тепла протекает через малую поверхность под произвольным углом к направлению потока. На фиг. 2.4 мы изобразили малую поверхность Δa2 под некоторым углом к поверхности Δat, которая перпендикулярна к потоку.
Фиг. 2.4. Тепловые потоки сквозь Aа2 и сквозь Aa1 одинаковы.
Единичный вектор n перпендикулярен к поверхности Δа2. Угол θ между n и h равен углу между поверхностями (так как h — нормаль к Δa1). Чему теперь равен поток тепла через Δа2 на единицу площади? Потоки сквозь Δа2 и Δа1 равны между собой, отличаются только площади. Действительно, Δа1=Δа2cosθ. Поток тепла через Δа2 равен
(2.10)
Поясним это уравнение: поток тепла (в единицу времени и на единицу площади) через произвольный элемент поверхности с единичной нормалью n равен h·n. Можно еще сказать так: компонента потока тепла, перпендикулярная к элементу поверхности Δа2, равна h·n. Можно, если мы хотим, считать эти утверждения определением h. Сходные идеи мы применим и к другим векторным полям.
§ 3. Производные полей — градиент
Когда поля меняются со временем, то их изменение можно описать, задав их производные по t. Мы хотим также описать и их изменение в пространстве, потому что мы интересуемся связью, скажем, между температурой в некоторой точке и в точке с ней рядом. Как же задать производную температуры по координате? Дифференцировать температуру по х? Или по у, или по z?
Осмысленные физические законы не зависят от ориентации системы координат. Поэтому их нужно писать так, чтобы по обе стороны знака равенства стояли скаляры или векторы. Что же такое производная скалярного поля, скажем, ∂T/∂x? Скаляр ли это, или вектор, или еще что? Это, как легко понять, ни то ни другое, потому что если взять другую ось х, то ∂T/∂x изменится. Но заметьте: у нас есть три возможных производных: ∂T/∂x, ∂T/∂y и ∂T/∂z. Три сорта производных, а ведь мы знаем, что нужно как раз три числа, чтобы образовать вектор. Может быть, эти три производные и представляют собой компоненты вектора:
(2.11)
Ясно, конечно, что, вообще говоря, не из любых трех чисел можно составить вектор. О векторе можно говорить только тогда, когда при повороте системы координат компоненты преобразуются по правильному закону. Так что следует проследить, как меняются эти производные при повороте системы координат. Мы покажем, что (2.11) — действительно вектор. Производные действительно преобразуются при вращении системы координат так, как полагается.
В этом можно убедиться по-разному. Можно, например, задать себе вопрос, ответ на который не должен зависеть от системы координат, и попытаться выразить ответ в «инвариантной» форме. К примеру, если S=A·B и если А и В — векторы, то мы знаем (это доказано в вып. 1, гл. 11), что S — скаляр. Мы знаем, что S — скаляр, не проверяя, меняется ли он при изменении системы координат. Ему ничего иного не остается, раз он является скалярным произведением двух векторов. Подобным же образом, если мы знаем, что А — вектор, и у нас есть три числа B1, B2, В3, и мы обнаруживаем, что
(2.12)
(где S в любой системе координат одно и то же), то три числа B1, B2, В3 обязаны быть компонентами Вх, Ву, Вz некоторого вектора В.
Рассмотрим теперь температурное поле. Возьмем две точки P1 и Р2, разделенные маленьким расстоянием ΔR. Температура в Р1 есть T1, а в Р2 она равна T2, и их разница ΔТ=Т2-Т1. Температура в этих реальных физических точках, конечно, не зависит от того, какие оси мы выбрали для измерения координат. В частности, ΔT — тоже число, не зависящее от системы координат. Это скаляр.
Выбрав удобную систему координат, мы можем написать
где Δx, Δy, Δz — компоненты вектора ΔR (фиг. 2.5).
Фиг. 2.5. Вектор ΔR с компонентами Δх, Δу, Δz.
Вспомнив (2.7), напишем
(2.13)
Слева в (2.13) стоит скаляр, а справа — сумма трех произведений каких-то чисел на Δx, Δy, Δz, которые являются компонентами вектора. Значит, три числа
тоже х-, у- и z-компоненты вектора. Мы напишем этот новый вектор при помощи символа ∇Т. Символ ∇ (называемый набла) — это Δ вверх ногами; он напоминает нам о дифференцировании. Читают ∇T по-разному: «набла T», или «градиент T», или «gradT»:
[4] (2.14)
С этим обозначением (2.13) переписывается в более компактной форме
(2.15)
Или, выражая словами: разница температур в двух близких точках есть скалярное произведение градиента Т на вектор смещения второй точки относительно первой. Форма (2.15) также служит иллюстрацией к нашему утверждению, что ∇Т — действительно вектор.
Быть может, вы еще не убеждены? Тогда докажем иначе. (Хотя, вглядевшись внимательно, вы увидите, что это на самом деле то же самое доказательство, только подлиннее!) Мы покажем, что компоненты ∇Т преобразуются абсолютно так же, как и компоненты R, а значит, ∇Т — тоже вектор в соответствии с первоначальным определением вектора в вып. 1, гл. 11. Мы выберем новую систему координат х', у', z' и в ней вычислим ∂T/∂x', ∂T/∂y', ∂T/∂z'. Для простоты положим z=z', так что о третьей координате мы можем позабыть. (Можете сами заняться проверкой более общего случая.)
Выберем систему х', у', повернутую относительно х, y-системы на угол θ (фиг. 2.6, а).
Фиг. 2.6. Переход к повернутой системе координат (а) и частный случай интервала ΔR, параллельного к оси х (б).
Координаты точки (х, у) в штрихованной системе имеют вид
(2.16)
(2.17)
или, решая относительно x и y,
(2.18)
(2.19)
Если всякая пара чисел преобразуется так же, как x и y, то она является компонентами вектора.
Рассмотрим теперь разницу в температурах двух соседних точек Р1 и Р2 (фиг. 2.6, б). В координатах х, у запишем
(2.20)
так как Δу=0.
А в штрихованной системе? Там мы бы написали
(2.21)
Глядя на фиг. 2.6, б, мы видим, что
(2.22)
и
(2.23)
так как Δy отрицательно при положительном Δx. Подставляя в (2.21), получаем
(2.24)
(2.25)
Сравнивая (2.25) с (2.20), мы видим, что
(2.26)
Это уравнение говорит нам, что ∂T/∂x получается из ∂T/∂x' и ∂T/∂y' в точности так же, как х из х' и у' в (2.18). Значит, ∂T/∂x — это x-компонента вектора. Сходные же рассуждения показывают, что ∂T/∂y и ∂T/∂z суть у- и z-компоненты. Стало быть, ∇Т есть на самом деле вектор. Это векторное поле, образованное из скалярного поля Т.
§ 4. Оператор ∇
А сейчас мы проделаем крайне занятную и остроумную вещь — одну из тех, которые так украшают математику. Доказательство того, что gradТ, или ∇T является вектором, не зависит от того, какое скалярное поле мы дифференцируем. Все доводы остались бы в силе, если бы Т было заменено любым скалярным полем. А поскольку уравнения преобразований одинаковы независимо от того, что дифференцируется, то можно Т убрать и уравнение (2.26) заменить операторным уравнением
(2.27)
Как выразился Джинс, мы оставляем операторы «жаждущими продифференцировать что угодно».
Так как сами дифференциальные операторы преобразуются как компоненты векторного поля, то можно назвать их компонентами векторного оператора. Можно написать
(2.28)
это означает, конечно,
(2.29)
Мы абстрагировали градиент от Т — в этом и есть остроумие.
Конечно, вы должны все время помнить, что ∇ — это оператор. Сам по себе он ничего не означает. А если ∇ сам по себе ничего не означает, то что выйдет, если мы градиент помножим на скаляр, например на T, чтобы получилось произведение T∇? (Ведь вектор всегда можно умножить на скаляр.) Это опять ничего не означает. Компонента х этого выражения равна
(2.30)
а это не число, а все еще какой-то оператор. Однако в согласии с алгеброй векторов Т∇ по-прежнему можно называть вектором.
А сейчас помножим ∇ на скаляр с другой стороны. Получится произведение ∇T. В обычной алгебре
(2.31)
но нужно помнить, что операторная алгебра немного отличается от обычной векторной. Надо всегда выдерживать правильный порядок операторов, чтобы их операции имели смысл. Тогда у вас трудностей не возникнет, если вы припомните, что оператор ∇ подчиняется тем же условиям, что и производные. То, что вы дифференцируете, должно быть поставлено справа от ∇ Порядок здесь существен.
Если помнить о порядке, то сразу ясно, что Т∇ — это оператор, а произведение ∇Т — это уже не «жаждущий» оператор, его жажда утолена. Это физическая величина, имеющая смысл. Он представляет собой скорость пространственного изменения Т: x-компонента ∇Т показывает, насколько быстро Т изменяется в x-направлении. А куда направлен вектор ∇Т? Мы знаем, что скорость изменения Т в каком-то направлении — это компонента ∇Т в этом направлении [см. (2.15)]. Отсюда следует, что направление ∇Т — это то, по которому ∇Т обладает самой длинной проекцией; иными словами, то, по которому ∇Т меняется быстрее всего. Направление градиента Т — это направление быстрейшего подъема величины Т.
§ 5. Операции с ∇
Можно ли с векторным оператором ∇ производить другие алгебраические действия? Попробуем скомбинировать его с вектором. Из двух векторов можно составить скалярное произведение, причем двоякого рода:
Первое выражение пока что ничего не означает — это все еще оператор. Окончательный смысл его зависит от того, на что он будет действовать. А второе произведение — это некое скалярное поле (потому что А·В — всегда скаляр).
Попробуем составить скалярное произведение ∇ на известное поле, скажем на h. Распишем покомпонентно
(2.32)
или
(2.33)
Эта сумма инвариантна относительно преобразования координат. Если выбрать другую систему (отмеченную штрихами), то получилось бы[5]
(2.34)
а это — то же самое число, которое получилось бы и из (2.33), хотя с виду оно выглядит иначе, т. е.
(2.35)
в любой точке пространства. Итак, ∇·h — это скалярное поле, и оно должно представить собой некоторую физическую величину. Вы должны понимать, что комбинация производных в ∇·h имеет довольно специальный вид. Могут быть и другие комбинации всяческого вида, скажем dhy/dx, которые не являются ни скалярами, ни компонентами векторов.
Скалярная величина ∇·(Вектор) очень широко применяется в физике. Ей присвоили имя «дивергенция», или «расходимость». Например,
(2.36)
Можно было бы, как и для ∇T, описать физический смысл ∇·h. Но мы отложим это до лучших времен.
Посмотрим сначала, что еще можно испечь из векторного оператора ∇. Как насчет векторного произведения? Можно надеяться, что
(2.37)
Компоненты этого вектора можно написать, пользуясь обычным правилом для векторного произведения [см. (2.2)]:
(2.38)
Подобно этому,
(2.39)
и
(2.40)
Комбинацию ∇×h называют «ротор» (пишут rot h), или (редко) «вихрь h» (пишут curl h). Происхождение этого названия и физический смысл комбинации мы обсудим позже.
В итоге мы получили три сорта комбинаций, куда входит ∇:
Используя эти комбинации, можно пространственные вариации полей записывать в удобном виде, т. е. в виде, не зависящем от той или иной совокупности осей координат.
В качестве примера применения нашего векторного дифференциального оператора ∇ выпишем совокупность векторных уравнений, в которой содержатся те самые законы электромагнетизма, которые мы словесно высказали в гл. 1. Их называют уравнениями Максвелла.
Уравнения Максвелла
(2.41)
где ρ (ро) — «плотность электрического заряда» (количество заряда в единице объема), а j — «плотность электрического тока» (скорость протекания заряда сквозь единицу площади). Эти четыре уравнения содержат в себе законченную классическую теорию электромагнитного поля. Видите, какой элегантной и простой записи мы добились с помощью наших новых обозначений!
§ 6. Дифференциальное уравнение потока тепла
Приведем другой пример векторной записи физического закона. Этот закон не из точных, но во многих металлах и других материалах, проводящих тепло, он проявляется совершенно четко. Известно, что если взять плиту из какого-то материала и нагреть одну ее сторону до температуры Т2, а другую охладить до Т1, то тепло потечет от T2 к Т1 (фиг. 2.7, а). Поток тепла пропорционален площади торцов А и разнице температур. Кроме того, он обратно пропорционален расстоянию между торцами. (Для заданной разницы температур чем тоньше плита, тем мощнее поток тепла.)
Фиг. 2.7. Тепловой поток через плиту (а) и бесконечно малая плитка, параллельная изотермической поверхности в большом блоке вещества (б).
Обозначая через J тепловую энергию, проходящую сквозь плиту за единицу времени, мы напишем
(2.42)
Коэффициент пропорциональности ϰ (каппа) называется теплопроводностью.
Что произойдет в более сложных случаях, скажем, в блоке материала необычной формы, в котором температура как-то прихотливо меняется? Рассмотрим тонкий слой материала и представим себе плиту наподобие изображенной на фиг. 2.7, а, но в миниатюре. Ориентируем ее торцы параллельно изотермическим поверхностям (фиг. 2.7, б), так что для этой малой плиты выполняется уравнение (2.42).
Если площадь этой плиты ΔА, то поток тепла за единицу времени равен
(2.43)
где Δs — толщина плиты. Но ΔJ/ΔA мы раньше определили как абсолютную величину h — вектора, направленного туда, куда течет тепло. Тепло течет от T1+ΔT к T1, так что вектор h перпендикулярен изотермам (фиг. 2.7, б). Далее, ΔТ/Δs как раз равно быстроте изменения Т с изменением положения. А поскольку изменения положения перпендикулярны изотермам, то наше ΔT/Δs — это максимальная скорость изменения. Она равна поэтому величине ∇Т. И, наконец, раз направления ∇Т и h противоположны, то (2.43) можно записать в виде векторного уравнения
(2.44)
(Знак минус написан потому, что тепло течет в сторону понижения температуры.) Уравнение (2.44) — это дифференциальное уравнение теплопроводности в массиве вещества. Вы видите, что это чисто векторное уравнение. С обеих сторон стоят векторы (если ϰ число). Это обобщение на произвольный случай частного соотношения (2.42), верного для прямоугольной плиты.
Мы с вами должны будем научиться выписывать все соотношения элементарной физики [наподобие (2.42)] в этих хитроумных векторных обозначениях. Они полезны не только потому, что уравнения начинают от этого выглядеть проще. В них намного яснее проступает физическое содержание уравнений безотносительно к выбору системы координат.
§ 7. Вторые производные векторных полей
Пока мы имели дело только с первыми производными. А почему не со вторыми? Из вторых производных можно составить несколько комбинаций:
(2.45)
Вы можете убедиться, что никаких иных комбинаций быть не может.
Посмотрим сперва на вторую комбинацию (б). Она имеет ту же форму, что и
потому что А×А всегда нуль. Значит,
(2.46)
Можно понять, как это получается, если расписать одну из компонент:
(2.47)
что равно нулю [по уравнению (2.8)]. Это же верно и для других компонент. Стало быть, ∇×(∇T)=0 для любого распределения температур, да и для всякой скалярной функции.
Возьмем второй пример. Посмотрим, нельзя ли получить нуль другим путем. Скалярное произведение вектора на векторное произведение, содержащее этот вектор, равно нулю
(2.48)
потому что А×В перпендикулярно к А и не имеет тем самым составляющих вдоль А. Сходная комбинация стоит в списке (2.45) под номером (г):
(2.49)
В справедливости этого равенства опять-таки легко убедиться, проделав выкладки на компонентах.
Теперь сформулируем без доказательства две теоремы. Они очень интересны и весьма полезны для физиков.
В физических задачах часто оказывается, что ротор какой-то величины (скажем, векторного поля А) равен нулю. Мы видели в уравнении (2.46), что ротор градиента равен нулю. (Это легко запоминается по свойствам векторов.) Далее, может оказаться, что А будет градиентом какой-то величины, потому что тогда ротор А с необходимостью обратится в нуль. Имеется интересная теорема, утверждающая, что если ротор А есть нуль, то тогда А непременно окажется чьим-то градиентом; существует некоторое скалярное поле ψ (пси), такое, что A=gradψ. Иными словами, справедлива
ТЕОРЕМА
(2.50)
Сходная теорема формулируется и для случая, когда дивергенция А есть нуль. Из уравнения (2.49) видно, что дивергенция ротора любой величины равна всегда нулю. Если вам случайно встретилось векторное поле D, для которого div D — нуль, то вы имеете право заключить, что D это ротор некоторого векторного поля С.
ТЕОРЕМА
(2.51)
Перебирая всевозможные сочетания двух операторов ∇, мы обнаружили, что два из них всегда дают нуль. Займемся теперь теми, которые не равны нулю. Возьмем комбинацию ∇·(∇T), первую в нашем списке. В общем случае это не нуль. Выпишем компоненты
Далее,
(2.52)
что может, вообще говоря, быть любым числом. Это скалярное поле.
Вы видите, что скобок можно не ставить, а вместо этого писать, не рискуя ошибиться:
(2.53)
Можно рассматривать ∇2 как новый оператор. Это скалярный оператор. Так как он в физике встречается часто, ему дали особое имя — лапласиан.
(2.54)
Раз оператор лапласиана —оператор скалярный, он может действовать и на вектор. Под этим мы подразумеваем, что он применяется к каждой компоненте вектора
Рассмотрим еще одну возможность: ∇×(∇×h) [(д) в списке (2.45)]. Ротор от ротора можно написать иначе, если использовать векторное равенство (2.6)
(2.55)
Заменим в этой формуле А и В оператором ∇ и положим C=h. Получится
Погодите-ка! Здесь что-то не так. Как и положено, первые два члена — векторы (операторы утолили свою жажду), но последний член совсем не такой. Он все еще оператор. Ошибка в том, что мы не были осторожны и не выдержали нужного порядка членов. Вернувшись обратно, вы увидите, что (2.55) можно с равным успехом записать в виде
(2.56)
Такой порядок членов выглядит уже лучше. Сделаем нашу подстановку в (2.56). Получится
(2.57)
С этой формулой уже все в порядке. Она действительно правильна, в чем вы можете убедиться, расписав компоненты. Последний член — это лапласиан, так что с равным успехом можно написать
(2.58)
Из нашего списка (2.45) двойных ∇ мы разобрали все комбинации, кроме (в), ∇(∇·h). В ней есть смысл, это — векторное поле, но больше сказать о ней нечего. Это просто векторное поле, которое может случайно возникнуть в каком-нибудь расчете.
Удобно будет все наши рассуждения свести теперь в таблицу:
(2.59)
Вы могли заметить, что мы не пытались изобрести новый векторный оператор ∇×∇. Понимаете, почему?
§ 8. Подвохи
Мы применили наши знания обычной векторной алгебры к алгебре оператора ∇. Здесь нужно быть осторожным, иначе легко напутать. Нужно упомянуть о двух подвохах (впрочем, в нашем курсе они не встретятся). Что можете вы сказать о следующем выражении, куда входят две скалярные функции ψ и φ (фи):
Вы можете подумать, что это нуль, потому что оно похоже на
а это всегда равно нулю (векторное произведение двух одинаковых векторов А×А всегда нуль). Но в нашем примере два оператора ∇ отнюдь не одинаковы! Первый действует на одну функцию, ψ, а второй — на другую, φ. И хотя мы изображаем их одним и тем же значком ∇, они все же должны рассматриваться как разные операторы. Направление ∇ψ зависит от функции ψ, а направление ∇φ — от функции φ, так что они не обязаны быть параллельными:
К счастью, к таким выражениям мы прибегать не будем. (Но сказанное нами не меняет того факта, что ∇φ×∇ψ=0 в любом скалярном поле: здесь обе ∇ действуют на одну и ту же функцию.) Подвох номер два (он тоже в нашем курсе не встретится): правила, которые мы здесь наметили, выглядят просто и красиво только в прямоугольных координатах. Например, если мы хотим написать x-компоненту выражения ∇2h, то сразу пишем
(2.60)
Но это выражение не годится, если мы ищем радиальную компоненту ∇2h. Она не равна ∇2hr. Дело в том, что в алгебре векторов все их направления полностью определены. А когда мы имеем дело с векторными полями, то их направления в разных местах различны. Когда мы пробуем описать векторное поле, например, в полярных координатах, то «радиальное» направление меняется от точки к точке. И начав дифференцировать компоненты, вы запросто можете попасть в беду. Даже в постоянном векторном поле радиальная компонента от точки к точке меняется.
Обычно безопаснее и проще всего держаться прямоугольных координат. Но стоит упомянуть и одно исключение: поскольку лапласиан ∇2 есть скаляр, то можно писать его в любой системе координат (скажем, в полярных координатах). Но так как это дифференциальный оператор, то применять его надо только к векторам с фиксированным направлением компонент, т. е. к заданным в прямоугольных координатах. Итак, расписывая наши векторные дифференциальные уравнения покомпонентно, мы будем предварительно выражать все наши векторные поля через их х-, у-, z-компоненты.
Глава 3 ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ВЕКТОРОВ
§ 1. Векторные интегралы; криволинейный интеграл от ∇ψ
В предыдущей главе мы видели, что брать производные от поля можно по-разному. Одни приводят к векторным полям; другие — к скалярным. Хотя формул было выведено довольно много, все их можно подытожить одним правилом: операторы ∂/∂x, ∂/∂y и ∂/∂z суть три компоненты векторного оператора ∇. Сейчас нам хотелось бы лучше разобраться в значении производных поля. Тогда мы легче почувствуем смысл векторных уравнений поля.
Мы уже говорили о смысле операции градиента (∇ на скаляр). Обратимся теперь к смыслу операций вычисления дивергенции (расходимости) и ротора (вихря). Толкование этих величин лучше всего сделать на языке векторных интегралов и уравнений, связывающих эти интегралы. Но уравнения эти, к несчастью, нельзя вывести из векторной алгебры при помощи каких-либо легких подстановок, так что вам придется учить их как что-то новое. Одна из этих интегральных формул практически тривиальна, а другие две — нет. Мы выведем их и поясним их смысл. Эти формулы фактически являются математическими теоремами. Они полезны не только для толкования смысла и содержания понятий дивергенции и ротора, но и при разработке общих физических теорий. Для теории полей эти математические теоремы — все равно что теорема о сохранении энергии для механики частиц. Подобные теоремы общего характера очень важны для более глубокого понимания физики. Но вы увидите, что, за немногими простыми исключениями, они мало что дают для решения задач. К счастью, как раз в начале нашего курса многие простые задачи будут решаться именно этими тремя интегральными формулами. Позже, однако, когда задачи станут потруднее, этими простыми методами мы больше обойтись не сможем.
Фиг. 3.1. Иллюстрация уравнения (3.1). Вектор ∇ψ вычисляется на линейном элементе ds.
Мы начнем с той интегральной формулы, куда входит градиент. Мысль, которая содержится в ней, очень проста: раз градиент есть быстрота изменения величины поля, то интеграл от этой быстроты даст нам общее изменение поля. Пусть у нас есть скалярное поле ψ(x, у, z). В двух произвольных точках (1) и (2) функция ψ имеет соответственно значения ψ(1) и ψ(2). [Используется такое удобное обозначение: (2) означает точку (x2, y2, z2), а ψ(2) это то же самое, что ψ(x2, y2, z2).] Если Γ (гамма) — произвольная кривая, соединяющая (1) и (2) (фиг. 3.1), то справедлива
ТЕОРЕМА 1
(3.1)
Интеграл, стоящий здесь, это криволинейный интеграл от (1) до (2) вдоль кривой Γ от скалярного произведения вектора ∇ψ на другой вектор, ds, являющийся бесконечно малым элементом дуги кривой Γ [направленной от (1) к (2)].
Напомним, что мы понимаем под криволинейным интегралом. Рассмотрим скалярную функцию f(x, y, z) и кривую Γ, соединяющую две точки (1) и (2). Отметим на кривой множество точек и соединим их хордами, как на фиг. 3.2. Длина i-й хорды равна Δsi,-, где i пробегает значения 1, 2, 3,.... Под криволинейным интегралом
подразумевается предел суммы
где fi — значение функции где-то на i-й хорде. Предел — это то, к чему стремится сумма, когда растет число хорд (разумным образом, чтобы даже наибольшее Δsi→0).
В нашей теореме (3.1) интеграл означает то же самое, хоть и выглядит чуть по-иному. Вместо f стоит другой скаляр — составляющая ∇ψ в направлении Δs. Если обозначить эту составляющую через (∇ψ)t, то ясно, что
(3.2)
Интеграл в (3.1) и подразумевает сумму таких членов.
А теперь посмотрим, почему уравнение (3.1) правильно. В гл. 1 мы показали, что составляющая ∇ψ вдоль малого смещения ΔR равна быстроте изменения ψ в направлении ΔR. Рассмотрим хорду кривой Δs от точки (1) до точки а на фиг. 3.2.
Фиг. 3.2. Криволинейный интеграл есть предел суммы.
По нашему определению
(3.3)
Точно так же мы имеем
(3.4)
где, конечно, (∇ψ)1 означает градиент, вычисленный на хорде Δs1, а (∇ψ)2 — градиент, вычисленный на Δs2. Сложив (3.3) и (3.4), получим
(3.5)
Вы видите, что, продолжая прибавлять такие члены, мы получаем в итоге
(3.6)
Левая часть не зависит от того, как выбирать интервалы — лишь бы точки (1) и (2) были теми же самыми, так что справа можно перейти к пределу. Так доказывается уравнение (3.1). Из нашего доказательства видно, что, подобно тому как равенство не зависит и от выбора точек а, b, с,..., точно так же оно не зависит от выбора самой кривой Γ. Теорема верна для любой кривой, соединяющей точки (1) и (2).
Два слова об обозначениях. Не будет путаницы, если писать для удобства
(3.7)
Тогда наша теорема примет такой вид:
ТЕОРЕМА 1
(3.8)
§ 2. Поток векторного поля
Прежде чем рассматривать следующую интегральную теорему — теорему о дивергенции,— хотелось бы разобраться в одной идее, смысл которой в случае теплового потока легко усваивается. Мы уже определили вектор h, представляющий количество тепла, протекающего сквозь единицу площади в единицу времени. Положим, что внутри тела имеется замкнутая поверхность S, ограничивающая объем V (фиг. 3.3). Нам хочется узнать, сколько тепла вытекает из этого объема. Мы это можем, конечно, определить, рассчитав общий тепловой поток через поверхность S.
Обозначим через da площадь элемента поверхности. Этот символ заменяет двумерный дифференциал. Если, например, элемент окажется в плоскости ху, то
Позже мы будем иметь дело с интегралами по объему, и тогда будет удобно рассматривать элемент объема в виде малого кубика и обозначать его dV, подразумевая, что
Кое-кто пишет и d2a вместо da, чтобы напомнить самому себе, что это выражение второй степени; вместо dV пишут также d3V. Мы будем пользоваться более простыми обозначениями, а вы уж постарайтесь не забывать, что у площадей бывают два измерения, у объемов — три.
Поток тепла через элемент поверхности da равен произведению площади на составляющую h, перпендикулярную к da. Мы уже определяли n — единичный вектор, направленный наружу перпендикулярно к поверхности (см. фиг. 3.3).
Фиг. 3.3. Замкнутая поверхность S, ограничивающая объем V. Единичный вектор n — внешняя нормаль к элементу поверхности da, а h — вектор теплового потопа сквозь элемент поверхности.
Искомая составляющая h равна
(3.9)
и тогда поток тепла сквозь da равен
(3.10)
А весь поток тепла через произвольную поверхность получается суммированием вкладов от всех элементов поверхности. Иными словами, (3.10) интегрируется по всей поверхности
(3.11)
Этот интеграл мы будем называть «поток h через поверхность». Мы рассматриваем h как «плотность потока» тепла, а поверхностный интеграл от h — это общий поток тепла наружу через поверхность, т. е. тепловая энергия за единицу времени (джоули в секунду).
Мы хотим эту идею обобщить на случай, когда вектор не представляет собой потока какой-то величины, а, скажем, является электрическим полем. Конечно, если это будет нужно, то и в этом случае все равно можно проинтегрировать нормальную составляющую электрического поля по площади. Хотя теперь она уже не будет ничьим потоком, мы все еще будем употреблять слово «поток». Мы будем говорить, что
(3.12)
Слову «поток» мы придаем смысл «поверхностного интеграла от нормальной составляющей» некоторого вектора. То же определение будет применяться и тогда, когда поверхность незамкнута.
А возвращаясь к частному случаю потока тепла, обратим внимание на те случаи, когда количество тепла сохраняется. Представьте себе, к примеру, материал, в котором после первоначального подогрева не происходит ни дальнейшего подвода, ни поглощения тепла. Тогда, если из какой-то замкнутой поверхности наружу поступает тепло, содержание тепла во внутреннем объеме должно падать. Так что в условиях, когда количество тепла сохраняется, мы говорим, что
(3.13)
где Q — запас тепла внутри S. Поток тепла из S наружу равен со знаком минус быстроте изменения со временем общего запаса тепла Q внутри S. Это толкование возможно оттого, что речь идет о потоке тепла, и оттого, что мы предположили, что количество тепла сохраняется. Конечно, если бы внутри объема создавалось тепло, нельзя было бы говорить о полном запасе тепла в нем.
Укажем теперь на интересное свойство потока любого вектора. Можете при этом представлять себе вектор потока тепла, но верно это будет и для произвольного векторного поля С. Представьте себе замкнутую поверхность S, окружающую объем V. Разобьем теперь объем на две части каким-то «сечением» (фиг. 3.4). Получились два объема и две замкнутые поверхности. Объем V1 окружен поверхностью S1, составленной частью из прежней поверхности Sa и частью из «сечения» Sab. Объем V2 окружен поверхностью S2, составленной из остатка прежней поверхности (Sb) и замкнутой сечением Sab. Зададим вопрос: если мы рассчитаем поток через поверхность S1 и прибавим к нему поток сквозь поверхность S2, будет ли их сумма равна потоку через первоначальную поверхность? Ответ гласит: «Да». Потоки через часть Sab, общую обеим поверхностям S1 и S2, в точности сократятся. Для потока вектора С из V1 можно написать
(3.14)
а для потока из V2:
(3.15)
Заметьте, что во втором интеграле мы обозначили внешнюю нормаль к Sab буквой n1, если она относится к S1, и буквой n2, если она относится к S2 (см. фиг. 3.4).
Фиг. 3.4. Объем V, заключенный внутри поверхности S, делится на две части «сечением» (поверхностью Sab). Получается объем V1, окруженный поверхностью S1=Sa+Sab, и объем V2, окруженный поверхностью S2=Sb+Sab.
Ясно, что n1=-n2, и тем самым
(3.16)
Складывая теперь уравнения (3.14) и (3.15), мы убеждаемся, что сумма потоков сквозь S1 и S2 как раз равна сумме двух интегралов, которые, взятые вместе, дают поток через первоначальную поверхность S=Sa+Sb.
Мы видим, что поток через всю внешнюю поверхность S можно рассматривать как сумму потоков из тех двух частей, на которые разрезан объем. Эти части можно еще разрезать: скажем, V1 разбить пополам. Опять придется прибегнуть к тем же доводам. Так что для любого способа разбиения первоначального объема всегда остается справедливым то свойство, что поток через внешнюю поверхность (первоначальный интеграл) равен сумме потоков изо всех внутренних частей.
§ 3. Поток из куба; теорема Гаусса
Рассмотрим теперь частный случай потока из маленького кубика[6] и получим интересную формулу. Ребра куба пусть направлены вдоль осей координат (фиг. 3.5), координаты вершины, ближайшей к началу, суть х, у, z, ребро куба в направлении х равно Δx, ребро куба (а точнее, бруска) в направлении у равно Δy, а в направлении z равно Δz. Мы хотим найти поток векторного поля С через поверхность куба. Для этого вычислим сумму потоков через все шесть граней. Начнем с грани 1 (см. фиг. 3.5).
Фиг. 3.5. Вычисление потока вектора С из маленького кубика.
Поток наружу сквозь нее равен x-компоненте С с минусом, проинтегрированной по площади грани. Он равен
Так как куб считается малым, этот интеграл можно заменить значением Сх в центре грани 1эту точку мы обозначили (1), умноженным на площадь грани ΔyΔz:
Подобным же образом поток наружу через грань 2 равен
Величины Cx(1) и Сх(2), вообще говоря, слегка отличаются. Если Δх достаточно мало, то можно написать
Существуют, конечно, и другие члены, но в них входит (Δx)2 и высшие степени Δx, и в пределе малых Δx ими запросто можно пренебречь. Значит, поток сквозь грань 2 равен
Складывая потоки через грани 1 и 2, получаем
Производную нужно вычислять в центре грани 1, т. е. в точке [x, y+(Δy/2), z+(Δz/2)]. Но если куб очень маленький, мы сделаем пренебрежимую ошибку, если вычислим ее в вершине (х, у, z).
Повторяя те же рассуждения с каждой парой граней, мы получаем
а
А общий поток через все грани равен сумме этих членов. Мы обнаруживаем, что
Сумма производных в скобках как раз есть ∇·С, а ΔxΔyΔz=ΔV (объем куба). Таким образом, мы можем утверждать, что для бесконечно малого куба
(3.17)
Мы показали, что поток наружу с поверхности бесконечно малого куба равен произведению дивергенции вектора на объем куба. Теперь мы понимаем «смысл» понятия дивергенции вектора. Дивергенция вектора в точке Р — это поток С («истечение» С наружу) на единицу объема, взятого в окрестности Р. Мы связали дивергенцию С с потоком С из бесконечно малого объема. Для любого конечного объема можно теперь использовать факт, доказанный выше, что суммарный поток из объема есть сумма потоков из отдельных его частей. Иначе говоря, мы можем проинтегрировать дивергенцию по всему объему. Это приводит нас к теореме, согласно которой интеграл от нормальной составляющей произвольного вектора по замкнутой поверхности может быть представлен также в виде интеграла от дивергенции вектора по объему, заключенному внутри поверхности. Теорему эту называют теоремой Гаусса.
ТЕОРЕМА ГАУССА
(3.18)
где S — произвольная замкнутая поверхность, V — объем внутри нее.
§ 4. Теплопроводность; уравнение диффузии
Чтобы привыкнуть к теореме, разберем на примере, как ее применяют. Обратимся опять к распространению тепла, скажем в металле. Рассмотрим совсем простой случай: все тепло было подведено к телу заранее, а теперь тело остывает. Источников тепла нет, так что количество тепла сохраняется. Сколько же тогда тепла должно оказаться внутри некоего определенного объема в какой-то момент времени? Оно должно уменьшаться как раз на то количество, которое уходит с поверхности объема. Если этот объем — маленький кубик, то, следуя формуле (3.17), можно написать
(3.19)
Но это должно быть равно скорости потери тепла внутренностью куба. Если q — количество тепла в единице объема, то весь запас тепла в кубе qΔV, а скорость потерь равна
(3.20)
Сравнивая (3.19) с (3.20), мы видим, что
(3.21)
Внимательно вглядитесь в форму этого уравнения; эта форма часто встречается в физике. Она выражает закон сохранения, в данном случае закон сохранения тепла. В уравнении (3.13) тот же физический факт был выражен иначе. Там была интегральная форма уравнения сохранения, а здесь у нас — дифференциальная форма.
Уравнение (3.21) мы получили, применив формулу (3.13) к бесконечно малому кубу. Можно пойти и по другому пути. Для большого объема V, ограниченного поверхностью S, закон Гаусса утверждает, что
(3.22)
Интеграл в правой части можно, используя (3.21), преобразовать как раз к виду -dQ/dt, и тогда получится формула (3.13).
Теперь рассмотрим другой случай. Представим, что в блоке вещества имеется маленькая дырочка, а в ней идет химическая реакция, генерирующая тепло. Можно еще представить себе, что к маленькому сопротивлению внутри блока подведены проволочки, нагревающие его электрическим током. Предположим, что тепло создается практически в одной точке, а W представляет собой энергию, возникающую в этой точке за секунду. В остальной же части объема пусть тепло сохраняется и, кроме того, пусть генерация тепла началась так давно, что сейчас температура уже нигде больше не изменяется. Вопрос состоит в следующем: как выглядит вектор потока тепла h в разных точках металла? Сколько тепла перетекает через каждую точку?
Мы знаем, что если мы будем интегрировать нормальную составляющую h по замкнутой поверхности, окружающей источник, то всегда получится W. Все тепло, которое генерируется в точечном источнике, должно протечь через поверхность, ибо предполагается, что поток постоянен. Перед нами трудная задача отыскания такого векторного поля, которое после интегрирования по произвольной поверхности всегда давало бы W. Но мы сравнительно легко можем найти это поле, выбрав поверхность специального вида. Возьмем сферу радиусом R с центром в источнике и предположим, что поток тепла радиален (фиг. 3.6).
Фиг. 3.6. В области близ точечного источника поток тепла направлен по радиусу наружу.
Интуиция нам подсказывает, что h должен быть направлен по радиусу, если блок вещества велик и мы не приближаемся слишком близко к его границам; кроме того, величина h во всех точках сферы должна быть одинакова. Вы видите, что для получения ответа к нашим выкладкам мы вынуждены добавить известное количество домыслов (обычно это именуют «физической интуицией»).
Когда h радиально и сферически симметрично, интеграл от нормальной компоненты h по площади поверхности вычисляется очень просто, потому что нормальная компонента в точности равна h и постоянна. Площадь, по которой интегрируется, равна 4πR2. Тогда мы получаем
(3.23)
где h — абсолютная величина h. Этот интеграл должен быть равен W — скорости, с которой источник генерирует тепло. Получается
или
(3.24)
где, как всегда, er обозначает единичный вектор в радиальном направлении. Этот результат говорит нам, что h пропорционален W и меняется обратно квадрату расстояния от источника.
Только что полученный результат применим к потоку тепла вблизи точечного источника тепла. Теперь попытаемся найти уравнения, которые справедливы для теплового потока самого общего вида (придерживаясь единственного условия, что количество тепла должно сохраняться). Нас будет интересовать только то, что происходит в местах вне каких-либо источников или поглотителей тепла.
Дифференциальное уравнение распространения тепла было получено в гл. 2. В соответствии с уравнением (2.44),
(3.25)
(Помните, что это соотношение приближенное, но для некоторых веществ вроде металлов выдерживается неплохо.) Применимо оно, конечно, только в тех частях тела, где нет ни выделения, ни поглощения тепла. Выше мы вывели другое соотношение (3.21), которое выполняется тогда, когда количество тепла сохраняется. Если мы это уравнение скомбинируем с (3.25), то получим
или
(3.26)
если ϰ — величина постоянная. Напоминаю, что q — это количество тепла в единичном объеме, а ∇·∇=∇2 — лапласиан, т. е. оператор
Если мы теперь сделаем еще одно допущение, сразу возникнет одно очень интересное уравнение. Допустим, что температура материала пропорциональна содержанию тепла в единице объема, т. е. что у материала есть определенная удельная теплоемкость. Когда это допущение верно (а так бывает часто), мы можем писать
или
(3.27)
Скорость изменения количества тепла пропорциональна скорости изменения температуры. Коэффициент пропорциональности cv здесь — удельная теплоемкость на единицу объема материала. Подставляя (3.27) в (3.26), получаем
(3.28)
Мы обнаружили, что быстрота изменения со временем температуры Т в каждой точке пропорциональна лапласиану от Т, т. е. вторым производным от пространственного распределения температур. Мы имеем дифференциальное уравнение — в переменных х, у, z и t — для температуры Т.
Дифференциальное уравнение (3.28) называется уравнением диффузии тепла, или уравнением теплопроводности. Часто его пишут в виде
(3.29)
где D — постоянная. Она равна ϰ/cv.
Уравнение диффузии появляется во многих физических задачах: о диффузии газов, диффузии нейтронов и других. Мы уже обсуждали физику некоторых таких явлений в вып. 4, гл. 43. Теперь перед вами полное уравнение, описывающее диффузию в самом общем виде. Немного позже мы займемся решением уравнения диффузии, чтобы посмотреть, как распределяется температура в некоторых случаях. А сейчас вернемся к рассмотрению других теорем о векторных полях.
§ 5. Циркуляция векторного поля
Мы хотим теперь рассмотреть ротор поля примерно так же, как рассматривали дивергенцию. Мы вывели теорему Гаусса, вычисляя интеграл по поверхности, хотя с самого начала отнюдь не было ясно, что мы будем иметь дело с дивергенцией. Откуда же можно было знать, что для ее получения надо интегрировать по поверхности? Этот результат вовсе не был очевиден. И столь же неоправданно мы сейчас вычислим другую характеристику поля и покажем, что она связана с ротором. На этот раз мы подсчитаем так называемую циркуляцию векторного поля. Если С — произвольное векторное поле, мы возьмем его составляющую вдоль кривой линии и проинтегрируем эту составляющую по замкнутому контуру. Интеграл называется циркуляцией векторного поля по контуру. Мы уже раньше в этой главе рассматривали криволинейный интеграл от ∇ψ. Сейчас мы то же самое проделываем с произвольным векторным полем С.
Пусть Γ — произвольный замкнутый контур в пространстве (воображаемый, разумеется). Пример мы видим на фиг. 3.7.
Фиг. 3.7. Циркуляция вектора С но кривой Γ есть криволинейный интеграл от Сt (касательной составляющей С).
Криволинейный интеграл от касательной составляющей С по контуру записывается в виде
(3.30)
Заметьте, что интеграл берется по всему замкнутому пути, а не от одной точки до другой, как это делалось раньше. Кружочек на знаке интеграла должен нам напоминать об этом. Такой интеграл называется циркуляцией векторного поля по кривой Γ. Название связано с тем, что первоначально так рассчитывали циркуляцию жидкости. Но название это, как и поток, было распространено на любые поля, даже такие, в которых «циркулировать» нечему.
Забавляясь той же игрой, как с потоком, мы можем показать, что циркуляция вдоль контура есть сумма циркуляции вдоль двух меньших контуров. Положим, что, соединив две точки (1) и (2) первоначальной кривой с помощью некоторой линии, мы разбили кривую на два контура Γ1 и Γ2 (фиг. 3.8).
Фиг. 3.8. Циркуляция по всему контуру есть сумма циркуляции по двум контурам: Γ1=Γa+Γab и Γ2=Γь+ΓaЬ.
Контур Γ1 состоит из Γa — части первоначальной кривой слева от (1) и (2) и «соединения» Γab. Контур Γ2 состоит из остатка первоначальной кривой плюс то же соединение.
Циркуляция вдоль Γ1 есть сумма интеграла вдоль Γа и вдоль ΓаЬ. Точно так же и циркуляция вдоль Γ2 есть сумма двух частей, одной вдоль Γb, другой — вдоль Гab. Интеграл вдоль Гab для кривой Γ2 имеет знак, противоположный тому знаку, который он имел для кривой Γ1, потому что направления обхода противоположны (в обоих криволинейных интегралах направления поворота нужно брать одни и те же).
Повторяя прежние аргументы, мы можем убедиться, что сумма двух циркуляции даст как раз криволинейный интеграл вдоль первоначальной кривой Γ. Интегралы по Γ ab сократятся. Циркуляция по одной части плюс циркуляция вдоль другой равняется циркуляции вдоль внешней линии. Этот процесс разрезания большого контура на меньшие можно продолжить. При сложении циркуляции по меньшим контурам смежные части будут сокращаться, так что сумма их сведется к циркуляции вдоль единственного первоначального контура.
Теперь предположим, что первоначальный контур — это граница некоторой поверхности. Существует бесконечное множество поверхностей, границей которых служит все тот же первоначальный замкнутый контур. Наши результаты не зависят, однако, от выбора этих поверхностей. Сперва мы разобьем наш первоначальный контур на множество малых контуров, лежащих на выбранной поверхности (фиг. 3.9).
Фиг. 3.9. Некоторая поверхность, ограниченная контуром Γ. Поверхность разделена на множество маленьких участков, каждый примерно в форме квадрата. Циркуляция по Γ есть сумма циркуляции по всем маленьким контурам.
Какой бы ни была форма поверхности, но если малые контуры сделать достаточно малыми, всегда можно будет считать каждый из них замыкающим достаточно плоскую поверхность. Кроме того, каждый из них можно сделать очень похожим на квадрат. И циркуляцию вокруг большого контура Γ можно найти, подсчитав циркуляции по всем квадратикам и сложив их.
§ 6. Циркуляция по квадрату; теорема Стокса
Как нам найти циркуляцию по каждому квадратику? Все зависит от того, как квадрат ориентирован в пространстве. Если ориентация его подобрана удачно (к примеру, он расположен в одной из координатных плоскостей), то расчет сделать легко. Так как пока мы не делали никаких предположений об ориентации осей координат, мы вправе выбрать их так, чтобы тот квадратик, на котором мы сосредоточили свое внимание, оказался в плоскости ху (фиг. 3.10).
Фиг. 3.10. Вычисление циркуляции вектора С по маленькому квадратику.
Если результат расчета будет выражен в векторной записи, то можно говорить, что он не зависит от специальной ориентации плоскости.
Мы хотим теперь найти циркуляцию поля С по нашему квадратику. Криволинейное интегрирование легко проделать, если квадратик сделать таким маленьким, чтобы вектор С на протяжении одной стороны квадрата менялся очень мало. (Это предположение выполняется тем лучше, чем меньше квадратик, так что на самом деле речь идет о бесконечно малых квадратиках.) Отправившись от точки (х, у) — в левом нижнем углу фигуры,— мы обойдем весь квадрат в направлении, указанном стрелками. Вдоль первой стороны, отмеченной цифрой 1, касательная составляющая равна Сх(1), а расстояние равно Δх. Первая часть интеграла равна Cx(1) Δх. Вдоль второй стороны получится Су(2) Δy. Вдоль третьей мы получим -Сx(3) Δх, а вдоль четвертой -Cy(4) Δy. Знаки минус стоят потому, что нас интересует касательная составляющая в направлении обхода. Весь криволинейный интеграл тогда равен
(3.31)
Посмотрим теперь на первый и третий члены. В сумме они дают
(3.32)
Вам может показаться, что в принятом приближении эта разность равна нулю. Но это только в первом приближении. Мы можем быть более точными и учесть скорость изменения Сх, тогда можно написать
(3.33)
В следующем приближении пойдут члены с (Δy)2, но ввиду того, что нас интересует в конечном счете только предел при Δy→0, то этими членами можно пренебречь. Подставляя (3.33) в (3.32), мы получаем
(3.34)
Производную при нашей точности можно брать в точке (х, у). Подобным же образом оставшиеся два члена можно написать в виде
(3.35)
и циркуляция по квадрату тогда равна
(3.36)
Интересно, что в скобках получилась как раз z-компонента ротора С. Множитель ΔxΔy— это площадь нашего квадрата. Так что циркуляцию (3.36) можно записать как
Но z-компонента это на самом деле компонента, нормальная к элементу поверхности. Поэтому циркуляцию вокруг квадратика можно задать и в инвариантной векторной записи:
(3.37)
В результате имеем: циркуляция произвольного вектора С по бесконечно малому квадрату равна произведению составляющей ротора С, нормальной к поверхности, на площадь квадрата.
Циркуляция по произвольному контуру Γ легко теперь может быть увязана с ротором векторного поля. Натянем на контур любую подходящую поверхность S (как на фиг. 3.11) и сложим между собой циркуляции по всем бесконечно малым квадратикам на этой поверхности.
Фиг. 3.11. Циркуляция вектора С по Γ равна поверхностному интегралу от нормальной компоненты вектора ∇×С.
Сумма может быть записана в виде интеграла. В итоге получится очень полезная теорема, называемая теоремой Стокса [по имени физика Стокса].
ТЕОРЕМА СТОКСА
(3.38)
где S — произвольная поверхность, ограниченная контуром Γ. Теперь мы должны ввести соглашение о знаках. На приведенной ранее фиг. 3.10 ось z показывает на вас, если система координат «обычная», т. е. «правая». Когда в криволинейном интеграле мы брали «положительное» направление обхода, то циркуляция получилась равной z-компоненте вектора ∇×C. Обойди мы контур в другую сторону, мы бы получили противоположный знак. Как вообще узнавать, какое направление надо выбирать для положительного направления «нормальной» компоненты вектора ∇×C? «Положительную» нормаль надо всегда связывать с направлением так, как это сделано было на фиг. 3.10. Общий случай показан на фиг. 3.11.
Для запоминания годится «правило правой руки». Если вы расположите пальцы вашей правой руки вдоль контура Γ, чтобы кончики пальцев показывали положительное направление обхода ds, то ваш большой палец укажет направление положительной нормали к поверхности S.
§ 7. Поля без роторов и поля без дивергенций
Теперь перейдем к некоторым следствиям из наших новых теорем. Возьмем сперва случай вектора, у которого ротор (или вихрь) повсюду равен нулю. Тогда, согласно теореме Стокса, циркуляция по любому контуру — нуль. Если мы теперь возьмем две точки (1) и (2) на замкнутой кривой (фиг. 3.12), то криволинейный интеграл от касательной составляющей от (1) до (2) не должен зависеть от того, какой из двух возможных путей мы выбрали.
Фиг. 3.12. Если ∇×С равно нулю, то циркуляция по замкнутой привой Γ тоже нуль. Криволинейный интеграл от C·ds на участке от (1) до (2) вдоль а должен быть равен интегралу вдоль b.
Можно заключить, что интеграл от (1) до (2) может зависеть только от расположения этих точек, т. е. что он есть функция только от координат точек. Той же логикой мы пользовались в вып. 1, гл. 14, когда доказывали, что если интеграл от некоторой величины по произвольному замкнутому контуру всегда равен нулю, то этот интеграл может быть представлен в виде разности функций от координат двух концов. Это позволило нам изобрести понятие потенциала. Мы доказали далее, что векторное поле является градиентом этой потенциальной функции [см. вып. 1, уравнение (14.13)].
Отсюда следует, что любое векторное поле, у которого ротор равен нулю, может быть представлено в виде градиента некоторой скалярной функции, т. е. если ∇×C=0 всюду, то существует некоторая функция ψ (пси), для которой С=∇ψ (полезное представление). Значит, мы можем, если захотим, описывать этот род векторных полей при помощи скалярных полей.
Теперь докажем еще одну формулу. Пусть у нас есть произвольное скалярное поле φ (фи). Если взять его градиент ∇φ, то интеграл от этого вектора по любому замкнутому контуру должен быть равен нулю. Криволинейный интеграл от точки (1) до точки (2) равен [φ(2)-φ(1)]. Если точки (1) и (2) совпадают, то наша теорема 1 [уравнение (3.8)] сообщает нам, что криволинейный интеграл равен нулю:
Применяя теорему Стокса, можно заключить, что
по любой поверхности. Но раз интеграл по любой поверхности равен нулю, то подынтегральное выражение обязано быть равно нулю. Значит,
Тот же результат был доказан в гл. 2, § 7 при помощи векторной алгебры.
Рассмотрим теперь частный случай, когда на маленький контур Γ натягивается большая поверхность S (фиг. 3.13).
Фиг. 3.13. При переходе к пределу замкнутой поверхности поверхностный интеграл от (∇×С)n должен обратиться в нуль.
Мы хотим посмотреть, что случится, когда контур стянется в точку. Тогда граница поверхности исчезнет, а сама поверхность превратится в замкнутую. Если вектор С повсюду конечен, то криволинейный интеграл по Γ должен стремиться к нулю по мере стягивания контура (интеграл в общем-то пропорционален длине контура Γ, а она убывает). Согласно теореме Стокса, поверхностный интеграл от (∇×С)n тоже должен убывать до нуля. Когда поверхность замыкается, то при этом каким-то образом в интеграл привносится вклад, который взаимно уничтожается с накопленным ранее. Получается новая теорема:
Это нас должно заинтересовать, потому что у нас уже есть одна теорема о поверхностном интеграле векторного поля. Такой поверхностный интеграл равен объемному интегралу от дивергенции вектора, как это следует из теоремы Гаусса [уравнение (3.18)]. Теорема Гаусса в применении к ∇×С утверждает, что
(3.40)
Мы заключаем, что интеграл в правой части должен обращаться в нуль
(3.41)
и что это должно быть справедливо для любого векторного поля С, каким бы оно ни было. Раз уравнение (3.41) выполнено для произвольного объема, то в каждой точке пространства подынтегральное выражение должно быть равно нулю. Получается, что
Тот же результат был выведен с помощью векторной алгебры в гл. 2, § 7. Теперь мы начинаем понимать, как все здесь прилажено одно к другому.
§ 8. Итоги
Подытожим теперь все, что мы узнали о векторном исчислении. Вот самые существенные моменты гл. 2 и 3.
1. Операторы ∂/∂x, ∂/∂y и ∂/∂z можно рассматривать как три составляющих векторного оператора ∇; формулы, следующие из векторной алгебры, остаются правильными, если этот оператор считать вектором
2. Разность значений скалярного поля в двух точках равна криволинейному интегралу от касательной составляющей градиента этого скаляра вдоль любой кривой, соединяющей первую точку со второй:
(3.42)
3. Поверхностный интеграл от нормальной составляющей произвольного вектора по замкнутой поверхности равен интегралу от дивергенции вектора по объему, лежащему внутри этой поверхности:
(3.43)
4. Криволинейный интеграл от касательной составляющей произвольного вектора по замкнутому контуру равен поверхностному интегралу от нормальной составляющей ротора этого вектора по произвольной поверхности, ограниченной этим контуром
(3.44)
От редактора.
Начиная изучать уравнения Максвелла, обратите внимание, что в этих лекциях используется рационализированная система единиц, в которой уравнения Максвелла не содержат коэффициентов.
Более привычно вместо ε0 писать ε0/4π; тогда коэффициент 4π исчезает из знаменателя закона Кулона (4.9), но появляется в правых частях уравнений (4.1) и (4.3). [Улучшение системы единиц всегда похоже на Тришкин кафтан.]
Кроме того, вместо квадрата скорости света вводят новую постоянную μ0=ε0/c2, называют ее (довольно неудачно) магнитной проницаемостью пустоты (так же, как ε0 называют диэлектрической проницаемостью пустоты) и обозначают ε0E=D, B=μ0H.
Будьте осторожны! Проверяйте систему единиц, когда открываете новую книгу об электричестве!
Глава 4 ЭЛЕКТРОСТАТИКА
Повторишь: гл.13 и 14 (вып. 1) «Работа и потенциальная энергия»
§ 1. Статика
Начнем теперь подробное изучение теории электромагнетизма. Она вся (весь электромагнетизм целиком) запрятана в уравнениях Максвелла:
(4.1)
(4.2)
(4.3)
(4.4)
Явления, описываемые этими уравнениями, могут быть очень сложными. Но прежде чем перейти к более сложным, мы начнем со сравнительно простых и сначала научимся обращаться с ними. Самым легким для изучения является случай, который называют статическим. Это случай, когда от времени ничего не зависит, когда все заряды либо намертво закреплены на своих местах, либо если уж движутся, то их ток постоянен (т. е. ρ и j постоянны во времени). В этих условиях в уравнениях Максвелла все члены, являющиеся производными по времени, обращаются в нуль, и уравнения приобретают следующий вид:
Электростатика
(4.5)
(4.6)
Магнитостатика
(4.7)
(4.8)
Обратите внимание на интересное свойство этой системы четырех уравнений. Она распалась на две части. Электрическое поле Е появляется только в первой паре уравнений, а магнитное поле В — только во второй. Между собой эти два поля совсем не связаны. Это означает, что коль скоро заряды и токи постоянны, то электричество и магнетизм — явления разные. Нельзя обнаружить никакой зависимости полей Е и В друг от друга, пока не возникают изменения в зарядах или токах, скажем, пока конденсатор не начнет заряжаться или магнит двигаться. Только когда возникают сравнительно быстрые изменения, так что временные производные в уравнениях Максвелла достигают заметной величины, Е и В начинают влиять друг на друга.
Если вы всмотритесь в уравнения статики, то обнаружите, что для изучения математических свойств векторных полей эти два предмета — электростатика и магнитостатика — являются идеальным объектом. Электростатика — это чистый пример векторного поля с нулевым ротором и заданной дивергенцией, а магнитостатика — чистейший пример поля с нулевой дивергенцией и заданным ротором. Более общепринятый (и, быть может, с чьей-то точки зрения более удовлетворительный) путь изложения теории электромагнетизма состоит в том, чтобы начать с электростатики и выучить тем самым все про дивергенцию. Магнитостатику и ротор оставляют на потом. И лишь в конце объединяют и электричество, и магнетизм. Мы же с вами начали с полной теории векторного исчисления. Применим теперь ее к частному случаю электростатики, к полю Е, задаваемому первой парой уравнений.
Начнем с самых простых задач, в которых положения всех зарядов фиксированы. Если бы нам нужно было изучить электростатику только на этом уровне (а этим мы и будем заниматься в ближайших двух главах), то жизнь наша была бы очень проста. Все было бы почти тривиальным и нам понадобился бы, как вы в этом сейчас убедитесь, только закон Кулона да несколько интегрирований. Однако во многих реальных электростатических задачах мы вначале не знаем, где находятся заряды. Мы знаем только, что они в зависимости от свойств вещества распределились как-то и где-то. Положение, которое примут заряды, зависит от поля Е, а оно в свою очередь зависит от расположения зарядов. И тогда все сразу усложняется. Если, например, заряженное тело поднесено к проводнику или к изолятору, то электроны и протоны в проводнике или изоляторе начнут перетекать на новое место. Одна часть плотности заряда ρ в уравнении (4.5) будет нам известна — это тот заряд, который мы подносим; но в ρ войдут и другие части от тех зарядов, которые перетекают. Мы обязаны будем учесть движение всех зарядов. Возникнут довольно тонкие и интересные задачи.
Однако настоящая глава, хоть она и посвящена электростатике, не будет касаться самых красивых и тонких вопросов этой науки. В ней будут рассмотрены лишь такие ситуации, в которых можно предположить, что расположение всех зарядов известно. Но и в этом случае, прежде чем научиться справляться со сложными случаями, естественно сначала освоиться с простыми.
§ 2. Закон Кулона; наложение сил
Логично было бы принять за отправную точку уравнения (4.5) и (4.6). Но легче начать с другого, а потом вернуться к этим уравнениям. Результат получится одинаковый. Мы начнем с закона, о котором говорилось раньше,— с закона Кулона, утверждающего, что между двумя покоящимися зарядами действует сила, прямо пропорциональная произведению зарядов и обратно пропорциональная квадрату расстояния между ними. Сила направлена по прямой от одного заряда к другому.
Закон Кулона
(4.9)
здесь F1 — сила, действующая на заряд q1; е12 — единичный вектор, направленный от q2 к q1, а r12— расстояние между q1 и q2. Сила F2, действующая на q2, равна и противоположна силе F1. Множитель пропорциональности по историческим причинам пишется в виде 1/4πе0. В системе единиц СИ, которой мы пользуемся, он определяется как 10-7 от квадрата скорости света. Так как скорость света примерно 3·108 м/сек, то множитель приблизительно равен 9·109, и единица оказывается равной ньютон·м2/кулон2, или вольт·м/кулон
(4.10)
Если зарядов больше двух (а именно такие случаи наиболее интересны), то закон Кулона нужно дополнить другим существующим в природе фактом: сила, действующая на заряд, есть векторная сумма кулоновских сил, действующих со стороны всех прочих зарядов. Этот экспериментальный факт называется «принципом наложения», или «принципом суперпозиции». Это и есть все, что имеется в электростатике. Если добавить к закону Кулона принцип наложения, то больше ничего в ней не останется. Точно к таким же выводам, ни больше, ни меньше, приведут уравнения электростатики, уравнения (4.5) и (4.6).
Применяя закон Кулона, удобно ввести понятие об электрическом поле. Мы говорим, что поле F(1) — это сила, действующая со стороны прочих зарядов на единицу заряда q1. Деля (4.9) на q1, мы получаем для действия всех зарядов, кроме q1
(4.11)
Кроме того, мы считаем, что Е(1) описывает нечто, существующее в точке (1), даже если в ней нет заряда q1 (в предположении, что все прочие заряды сохранили свои позиции). Мы говорим: Е(1) — это электрическое поле в точке (1).
Электрическое поле Е — это вектор, так что в (4.11) на самом деле написаны три уравнения, по одному для каждой компоненты. Расписывая x-компоненту в явном виде, получаем
(4.12)
и точно так же для остальных компонент.
Если зарядов много, то поле Е в любой точке (1) равно сумме вкладов от всех зарядов. Каждый член в сумме будет выглядеть как (4.11) или (4.12). Пусть qj — величина j-го заряда, а r1j — смещение qj от точки (1); тогда мы напишем
(4.13)
что означает, конечно,
(4.14)
и т. д.
Часто бывает удобно игнорировать тот факт, что заряды всегда существуют в виде отдельных кусочков, таких, как электроны или протоны, а считать, что они размазаны сплошным пятном, или, как говорят, описываются «распределением». До тех пор пока нам все равно, что происходит в малых масштабах, такое описание вполне законно. Распределение заряда описывается «плотностью заряда» ρ (х, у, z). Если количество заряда в небольшом объеме ΔV2 близ точки (2) есть Δq2, то ρ определяется равенством
(4.15)
Пользуясь теперь законом Кулона при непрерывном распределении заряда, мы заменяем в уравнениях (4.13) или (4.14) суммы интегралами по всему объему, содержащему заряды. Получается
(4.16)
Некоторые предпочитают писать
где r12 — вектор смещения от (2) к (1) (фиг. 4.1).
Фиг. 4.1. В точке (1) электрическое поле Е от некоторого распределения зарядов получается из интеграла по распределению. Точка (I) может находится также внутри распределения.
Интеграл для Е тогда запишется в виде
(4.17)
Если мы хотим действительно провести интегрирование до конца, то обычно приходится интегралы расписывать подробнее. Для x-компоненты уравнений (4.16) или (4.17) получается
(4.18)
Мы не собираемся вычислять что-либо по этой формуле. Написали мы ее здесь только для того, чтобы подчеркнуть, что мы полностью решили те электростатические задачи, в которых известно расположение всех зарядов.
Дано: Заряды.
Определить: Поля.
Решение: Возьми этот интеграл.
Так что по существу все сделано; остается только проделать сложные интегрирования по трем переменным. Эта работа в самый раз для счетной машины!
Пользуясь этими интегралами, мы можем найти поле заряженной плоскости, заряженной линии, заряженной сферы и любого выбранного распределения. Хотя мы сейчас начнем чертить силовые линии, говорить о потенциалах и вычислять дивергенции, важно понимать, что ответ на все решаемые задачи в принципе уже готов. Просто порой бывает легче взять интеграл, придумав фокус, чем проделывать все выкладки честно. Но чтобы догадываться, нужно научиться разным ухищрениям. Быть может, лучше было бы вычислять интегралы непосредственно, а не тратить силы на остроумные способы решения да демонстрировать свою сообразительность. Но все-таки мы пойдем по пути развития сообразительности. Переходим, таким образом, к обсуждению некоторых других особенностей электрического поля.
§ 3. Электрический потенциал
Для начала усвоим понятие электрического потенциала, связанное с работой переноса заряда из одной точки в другую. Пусть имеется какое-то распределение зарядов. Оно создает электрическое поле. Спрашивается, какую работу надо затратить, чтобы перенести небольшой заряд из одной точки в другую? Работа, произведенная против действия электрических сил при переносе заряда по некоторому пути, равна минус компоненте электрической силы в направлении движения, проинтегрированной по этому пути. Если заряд переносится от точки а к точке b, то
где F — электрическая сила, действующая на заряд в каждой точке, а ds — дифференциал вектора перемещения вдоль траектории (фиг. 4.2).
Фиг. 4.2. Работа переноса заряда от а к b равна минус интегралу от F·ds по выбранному пути.
Для наших целей интереснее рассмотреть работу переноса единицы заряда. Тогда сила, действующая на такой заряд, численно совпадает с электрическим полем. Обозначая в этом случае работу против действия электрических сил буквой Wедин, напишем
(4.19)
Вообще говоря, то, что получается при интегрированиях такого сорта, зависит от выбранного пути интегрирования. Но если бы интеграл в (4.19) зависел от пути, мы бы могли извлечь из поля работу, поднеся заряд к b по одному пути и унеся обратно к а по другому. Можно было бы подойти к b по тому пути, где W меньше, а удалиться по тому пути, где оно больше, получив работы больше, чем было вложено.
В принципе нет ничего невозможного в том, чтобы получать работу из поля. Мы еще познакомимся с полями, в которых это возможно. Может оказаться, что, двигая заряды, вы действуете на остальную часть всего «механизма» с какой-то силой. Если «механизм» сам движется против этой силы, он будет терять энергию, и полная энергия будет тем самым оставаться постоянной. В электростатике, однако, никакого «механизма» нет. Мы знаем, каковы те силы отдачи, которые действуют на источники поля. Это кулоновские силы, действующие на заряды, ответственные за создание поля. Если положения всех прочих зарядов зафиксированы (а это допущение делается в одной только электростатике), то силы отдачи на них не смогут действовать. И тогда нет способа извлечь из них энергию, разумеется, при условии, что принцип сохранения энергии в электростатике справедлив. Мы, конечно, верим, что это так, однако попробуем все же показать, как это следует из закона силы Кулона.
Посмотрим сначала, что происходит в поле, созданном единичным зарядом q. Пусть точка а удалена от q на расстояние r1, а точка b — на расстояние r2. Перенесем теперь другой заряд, называемый «пробным» и равный единице, от а до b. Изберем сперва самый легкий для расчета путь. Перенесем наш пробный заряд сначала по дуге круга, а после по радиусу (фиг. 4.3, а).
Фиг. 4.3. При переносе пробного заряда от а к b по любому пути тратится одна и та же работа.
Рассчитать работу переноса по такому пути — детская забава (а иначе бы мы его и не выбрали). Во-первых, на участке aa' работа не производится. Поле по закону Кулона радиально, т. е. направлено поперек направления движения. Во-вторых, на участке a'b поле меняется как 1/r2 и направлено по движению. Так что работа переноса пробного заряда от а к b равна
(4.20)
Выберем теперь другой легкий путь, скажем тот, который изображен на фиг. 4.3, б. Он идет попеременно то по дуге окружности, то по радиусу. Каждый раз, когда путь пролегает по дуге, никакой работы не затрачивается. Каждый раз, когда путь идет по радиусу, интегрируется 1/r2. По первому радиальному участку интеграл берется от ra до ra', по следующему — от rа. до rа" и т. д. Сумма всех таких интегралов как раз равна одному интегралу, но в пределах от rа до rb. В общем получится тот же ответ, что и в первом испробованном нами пути. Ясно, что и для любого пути, составленного из произвольного числа участков такого вида, получится тот же результат.
Ну а как насчет плавных траекторий? Получим ли мы тот же ответ? Этот вопрос мы обсудили в вып. 1, гл. 13. Пользуясь теми же доводами, что и тогда, мы можем заключить, что работа переноса единичного заряда от а до b от пути не зависит:
А раз выполняемая работа зависит только от концов пути, то она может быть представлена в виде разности двух чисел. В этом можно убедиться следующим образом. Выберем отправную точку Р0 и договоримся оценивать наш интеграл, пользуясь только теми траекториями, которые проходят через точку Р0. Обозначим работу, выполненную при движении против поля от Р0 до точки а, через φ(а), а работу на участке от Р0 до точки b — через φ(b) (фиг. 4.4).
Фиг. 4.4. Работа, затраченная на движение вдоль любого пути от а до b, равна минус работе от некоторой точки Р0 до а плюс работа от Р0 до b.
Работа перехода от а к Р0 (по дороге к b) равна φ(a) с минусом, так что
(4.21)
Так как повсюду будет встречаться только разность значений функции φ в двух точках, то положение точки Р0 в сущности безразлично. Однако как только отправная точка выбрана, число φ тем самым определяется в любой точке пространства; значит, φ является скалярным полем, функцией от х, у, z. Эту скалярную функцию мы называем электростатическим потенциалом в произвольной точке.
Электростатический потенциал
(4.22)
Часто очень удобно брать отправную точку на бесконечности. Тогда потенциал φодиночного заряда в начале координат, взятый в произвольной точке (х, у, z), равен [см. уравнение (4.20)]
(4.23)
Электрическое поле нескольких зарядов можно записать в виде суммы электрических полей от первого заряда, от второго, от третьего и т. д. Интегрируя сумму для того, чтобы определить потенциал, мы придем к сумме интегралов. Каждый из них — это потенциал соответствующего заряда. Значит, потенциал φ множества зарядов есть сумма потенциалов каждого из зарядов по отдельности. Таким образом, и для потенциалов существует принцип наложения. Пользуясь такими же аргументами, как и тогда, когда мы искали электрическое поле группы зарядов или распределения зарядов, мы можем получить окончательные формулы для потенциала φ в точке, обозначенной как (1):
(4.24)
(4.25)
Не забывайте, что потенциал φ имеет физический смысл: это потенциальная энергия, которую имел бы единичный заряд, если его перенести в указанную точку пространства из некоторой отправной точки.
§ 4. E=-∇φ
С какой стати нас заинтересовал потенциал φ? Силы, действующие на заряды, даются величиной Е — электрическим полем. Вся соль в том, что Е из φ очень легко получить, не труднее, чем вычислить производную. Рассмотрим две точки с одинаковыми у и z, но с разными х: у одной х, у другой x+Δx; поинтересуемся, какую работу надо совершить, чтобы перенести единичный заряд из одной точки в другую. Путь переноса — горизонтальная линия от х до х+Δх. Работа равна разности потенциалов в двух точках
Но работа против действия силы на том же отрезке равна
Мы видим, что
(4.26)
Равным образом, Еу=-∂φ/∂y, Ez=-∂φ/∂z; все это в обозначениях векторного анализа можно подытожить так:
(4.27)
Это дифференциальная форма уравнения (4.22). Любую задачу, в которой заряды заданы, можно решить, вычислив по (4.24) или (4.25) потенциал и рассчитав по (4.27) поле. Уравнение (4.27) согласуется также с тем, что получается в векторном анализе: с тем, что для любого скалярного поля
(4.28)
Согласно уравнению (4.25), скалярный потенциал φ представляется трехмерным интегралом, подобным тому, который мы писали для Е. Есть ли какая выгода в том, что вместо Е вычисляется φ? Да. Для вычисления φ нужно взять один интеграл, а для вычисления Е — три (ведь это вектор). Кроме того, обычно 1/r интегрировать легче, чем x/r3. Во многих практических случаях оказывается, что для получения электрического поля легче сперва подсчитать φ, а после взять градиент, чем вычислять три интеграла для Е. Это просто вопрос удобства.
Но потенциал φ имеет и глубокий физический смысл. Мы показали, что Е закона Кулона получается из Е=-gradφ, где φ дается уравнением (4.22). Но если Е — это градиент скалярного поля, то, как известно из векторного исчисления, ротор Е должен обратиться в нуль:
(4.29)
Но это и есть наше второе основное уравнение электростатики — уравнение (4.6). Таким образом, мы показали, что закон Кулона дает поле Е, удовлетворяющее этому условию. Так что до сих пор все в порядке.
На самом деле то, что ∇×Е равно нулю, было доказано еще до того, как мы определили потенциал. Мы показали, что работа обхода по замкнутому пути равна нулю, т. е.
по любому пути. Мы видели в гл. 3, что в таком поле ∇×Е должно быть всюду равно нулю. Электрическое поле электростатики — это поле без роторов.
Вы можете потренироваться в векторном исчислении, доказав равенство нулю вектора ∇×Е другим способом, т. е. вычислив компоненты вектора ∇×Е для поля точечного заряда по формулам (4.11). Если получится нуль, то принцип наложения обеспечит нам обращение ∇×Е в нуль для любого распределения зарядов.
Следует подчеркнуть важный факт. Для любой радиальной силы выполняемая работа не зависит от пути и существует потенциал. Если вы вдумаетесь в это, то увидите, что все наши доказательства того, что интеграл работы не зависит от пути, сами определялись только тем, что сила от отдельного заряда была радиальна и сферически симметрична. То, что зависимость силы от расстояния имела вид 1/r2, не имело никакого значения, при любой зависимости от r получилось бы то же самое. Существование потенциала и обращение в нуль ротора Е вытекают на самом деле только из симметрии и направленности электростатических сил. По этой причине уравнение (4.28) или (4.29) может содержать в себе только часть законов электричества.
§ 5. Поток поля Е
Теперь мы хотим вывести уравнение, которое непосредственно и в лоб учитывает тот факт, что закон силы — это закон обратных квадратов. Кое-кому кажется «вполне естественным», что поле меняется обратно пропорционально квадрату расстояния, потому что «именно так, мол, все распространяется». Возьмите световой источник, из которого льется поток света; количество света, проходящее через основание конуса с вершиной в источнике, одно и то же независимо от того, насколько основание удалено от вершины. Это с необходимостью следует из сохранения световой энергии. Количество света на единицу площади — интенсивность — должно быть обратно пропорционально площади, вырезанной конусом, т. е. квадрату расстояния от источника. Ясно, что по той же причине и электрическое поле должно изменяться обратно квадрату расстояния!
Но здесь ведь нет ничего похожего на «ту же причину». Ведь никто не может сказать, что электрическое поле есть мера чего-то такого, что похоже на свет и что поэтому должно сохраняться. Если бы у нас была такая «модель» электрического поля, в которой вектор поля представлял бы направление и скорость (ну, например, был бы током) каких-то вылетающих маленьких «дробинок», и если бы эта модель требовала, чтобы число дробинок сохранялось и ни одна не могла пропасть после вылета из заряда, вот тогда мы могли бы говорить, что «чувствуем» неизбежность закона обратных квадратов. С другой стороны, непременно должен был бы существовать математический способ выражения этой физической идеи. Если бы электрическое поле было подобно сохраняющимся дробинкам, то оно менялось бы обратно пропорционально квадрату расстояния и мы могли бы описать такое поведение некоторым уравнением, т. е. чисто математическим путем. Если мы не утверждаем, что электрическое поле сделано из дробинок, а понимаем, что это просто модель, помогающая нам прийти к правильной математической теории, то ничего плохого в таком способе рассуждений нет.
Предположим, что мы на мгновение представили себе электрическое поле в виде потока чего-то сохраняющегося и текущего повсюду, за исключением того места, где расположен сам заряд (должен же этот поток откуда-то начинаться!). Представим что-то (что именно — неважно), вытекающее из заряда в окружающее пространство. Если бы Е было вектором такого потока (как h — вектор теплового потока), то вблизи от точечного источника оно обладало бы зависимостью 1/r2. Теперь мы желаем использовать эту модель для того, чтобы глубже сформулировать закон обратных квадратов, а не просто говорить об «обратных квадратах». (Вам может показаться удивительным, почему вместо того, чтобы сходу, прямо и открыто сформулировать столь простой закон, мы хотим трусливо протащить то же самое, но с заднего хода. Немного терпения! Это окажется небесполезным.)
Спросим себя: чему равно «вытекание» Е из произвольной замкнутой поверхности в окрестности точечного заряда? Для начала возьмем простенькую поверхность — такую, как показано на фиг. 4.5.
Фиг. 4.5. Поток E из поверхности S равен нулю.
Если поле Е похоже на поток, то суммарное вытекание из этого ящика должно быть равно нулю. Это и получается, если под «вытеканием» из этой поверхности мы понимаем поверхностный интеграл от нормальной составляющей Е, т. е. поток Е в том смысле, который был установлен в гл. 3. На боковых гранях нормальная составляющая Е равна нулю. На сферических гранях нормальная составляющая Е равна самой величине Е, с минусом на меньшей грани и с плюсом на большей. Величина Е убывает как 1/r2, а площадь грани растет как r2, так что их произведение от r не зависит. Приток Е через грань а в точности гасится оттоком через грань b. Суммарный поток через S равен нулю, а это все равно, что сказать, что
(4.30)
на этой поверхности.
Теперь покажем, что две «торцевые» поверхности могут быть без ущерба для величины интеграла (4.30) перекошены относительно радиуса. Хотя это верно всегда, но для наших целей достаточно только показать, что это справедливо тогда, когда «торцы» малы и стягивают малый угол с вершиной в источнике, т. е. в действительности бесконечно малый угол. На фиг. 4.6 показана поверхность S, «боковые грани» которой радиальны, а «торцы» перекошены.
Фиг. 4.6. Поток Е из поверхности S равен нулю.
На рисунке они не малы, но надо представить себе, что на самом деле они очень малы. Тогда поле Е над поверхностью будет достаточно однородным, так что можно взять его значение в центре. Если торец наклонен на угол θ, то его площадь возрастает в 1/cosθ раз, а Еn — компонента Е, нормальная к поверхности торца, убывает в cosθ раз, так что произведение ЕnΔа не меняется. Поток из всей поверхности S по-прежнему равен нулю.
Теперь уже легко разглядеть, что и поток из объема, окруженного произвольной поверхностью S, обязан быть равным нулю. Ведь любой объем можно представить себе составленным из таких частей, как на фиг. 4.6. Вся поверхность разделится на пары торцевых участков, а поскольку потоки через каждую из них внутрь и наружу объема попарно уничтожаются, то и суммарный поток через поверхность обратится в нуль. Идея эта иллюстрируется фиг. 4.7.
Фиг. 4.7. Всякий объем можно представлять себе состоящим из бесконечно малых усеченных конусов. Поток E сквозь один конец каждого конического сегмента равен и противоположен потоку сквозь другой конец. Общий поток из поверхности S поэтому равен пулю.
Мы получаем совершенно общий результат: суммарный поток Е через любую поверхность S в поле точечного заряда равен нулю.
Будьте, однако, внимательны! Наше доказательство работает только тогда, когда поверхность S не окружает заряд. А что случилось бы, если бы точечный заряд оказался внутри поверхности? Как и раньше, поверхность можно было бы разделить на пары площадок, связанные радиальными прямыми, проходящими через заряд (фиг. 4.8).
Фиг. 4.8. Если заряд находится внутри поверхности, поток наружу не равен нулю.
Потоки через эти участки по той же причине, что и раньше, по-прежнему попарно равны, но только теперь их знаки одинаковы. Поток из поверхности, окружающей заряд, не равен нулю. Тогда чему же он равен? Это можно определить с помощью фокуса. Допустим, что мы «убрали» заряд «изнутри», окружив его маленькой поверхностью S' так, чтобы она лежала целиком внутри первоначальной поверхности 5 (фиг. 4.9).
Фиг. 4.9. Поток через S равен потоку через S'.
Теперь в объеме, заключенном между двумя поверхностями S и S', никакого заряда нет. Общий поток из этого объема (включая поток через S') равен нулю, в чем можно убедиться при помощи прежних аргументов. Они говорят нам, что поток через S' внутрь объема такой же, как поток через S наружу.
Для S' мы можем выбрать любую, какую угодно форму, поэтому давайте сделаем ее сферой с зарядом в центре (фиг. 4.10).
Фиг. 4.10. Поток через сферическую поверхность, охватывающую точечный заряд q, равен qlε0.
Тогда поток через нее подсчитать легко. Если радиус малой сферы равен r, то значение Е повсюду на ее поверхности равно
и направлено всегда по нормали к поверхности. Весь поток через S' получится, если эту нормальную составляющую Е умножить на площадь поверхности:
(4.31)
т. е. равен числу, не зависящему от радиуса сферы! Значит, и поток наружу через S тоже равен q/ε0; это значение не зависит от формы S до тех пор, пока заряд q находится внутри. Наши выводы мы можем записать так:
(4.32)
Давайте вернемся к нашей аналогии с «дробинками» и посмотрим, есть ли в ней смысл. Наша теорема утверждает, что суммарный поток дробинок через поверхность равен нулю, если поверхность не окружает собой ружье, стреляющее дробью. А если ружье окружено поверхностью, то какого бы размера или формы она ни была, количество проходящих через нее дробинок всегда одно и то же — оно дается скоростью, с которой дробинки вылетают из ружья. Все это выглядит вполне разумно для сохраняющихся дробинок. Но сообщает ли эта модель нам хоть что-то сверх того, что получается просто из уравнения (4.32)? Никому не удалось добиться того, чтобы «дробинки» произвели на свет что-нибудь сверх этого закона. Кроме него, они порождают только ошибки. Поэтому-то мы сегодня предпочитаем чисто абстрактное представление об электромагнитном поле.
§ 6. Закон Гаусса; дивергенция поля Е
Наш изящный результат — уравнение (4.32) — был доказан для отдельного точечного заряда. А теперь допустим, что имеются два заряда: заряд q1 —в одной точке и заряд (q2 — в другой. Задача выглядит уже потруднее. Теперь электрическое поле, нормальную составляющую которого мы интегрируем, это уже поле, созданное обоими зарядами. Иначе говоря, если E1—то электрическое поле, которое создал бы один только заряд q1,a E2 — электрическое поле, создаваемое одним зарядом q2, то суммарное электрическое поле равно Е=Е1+Е2. Поток через произвольную замкнутую поверхность S равен
(4.33)
Поток при наличии двух зарядов — это поток, вызванный одним зарядом, плюс поток, вызванный другим. Если оба находятся снаружи S, то поток сквозь S равен нулю. Если q1 находится внутри S, а q2 — снаружи, то первый интеграл даст q1/ε0, а второй — нуль. Если поверхность окружает оба заряда, то каждый внесет вклад в интеграл и поток окажется равным (q1+q2)/ε0. Общее правило очевидно: суммарный поток из замкнутой поверхности равен суммарному заряду внутри нее, деленному на ε0.
Этот результат представляет собой важный общий закон электростатического поля, и называется он теоремой Гаусса, или законом Гаусса:
Закон Гаусса:
(4.34)
или
(4.35)
где
(4.36)
Если мы описываем расположение зарядов на языке плотности зарядов ρ, то мы можем считать, что каждый бесконечно малый объем dV содержит «точечный» заряд ρdV. Тогда сумма по всем зарядам есть интеграл
(4.37)
Из нашего вывода видно, что закон Гаусса вытекает из того факта, что показатель степени в законе Кулона в точности равен двум. Поле с законом 1/r3, да и любое поле 1/rn с n≠2, не привело бы к закону Гаусса. Значит, закон Гаусса как раз выражает (только в другой форме) закон сил Кулона, действующих между двумя зарядами. Действительно, отправляясь от закона Гаусса, можно вывести закон Кулона. Оба они совершенно равноценны до того момента, пока силы между зарядами действуют радиально.
Теперь мы хотим записать закон Гаусса на языке производных. Чтобы это сделать, применим его к поверхности бесконечно малого куба. В гл. 3 мы показали, что поток Е из такого куба равен дивергенции ∇·Е, помноженной на объем dV куба. Заряд внутри dV по определению ρ равен ρdV, так что закон Гаусса дает
или
(4.38)
Дифференциальная форма закона Гаусса — это первое из наших фундаментальных уравнений поля в электростатике, уравнение (4.5). Мы теперь показали, что два уравнения электростатики (4.5) и (4.6) эквивалентны закону силы Кулона. Разберем один пример применения закона Гаусса (другие примеры будут рассмотрены позже).
§ 7. Поле заряженного шара
Одной из самых трудных задач, которую пришлось нам решать, когда мы изучали теорию гравитационного притяжения, было доказать, что сила, создаваемая твердым шаром на его поверхности, такая же, как если бы все вещество шара было сконцентрировано в его центре. Много лет Ньютон не решался обнародовать свою теорию тяготения, так как не был уверен в правильности этой теоремы. Мы доказали ее в вып. 1, гл. 13, взяв интеграл для потенциала и вычислив силу тяготения по градиенту. Теперь эту теорему мы можем доказать очень просто. Но на этот раз мы докажем не совсем ее, а сходную теорему для однородно заряженного электричеством шара. (Поскольку законы электростатики и тяготения совпадают, то то же доказательство может быть проведено и для поля тяготения.)
Зададим вопрос: каково электрическое поле Е в точке Р где-то снаружи сферы, наполненной однородно распределенным зарядом? Так как здесь нет «выделенного» направления, то законно допустить, что Е всюду направлено прямо от центра сферы. Рассмотрим воображаемую сферическую поверхность, концентрическую со сферой зарядов и проходящую через точку Р (фиг. 4.11).
Фиг. 4.11. Применение закона Гаусса для определения поля однородно заряженного шара. 1 — распределение заряда ρ; 2 — гауссова поверхность S.
Для этой сферы поток наружу равен
Закон Гаусса утверждает, что этот поток равен суммарному заряду сферы Q (деленному на ε0):
или
(4.39)
а это как раз та формула, которая получилась бы для точечного заряда Q. Мы решили проблему Ньютона проще, без интеграла. Конечно, это кажущаяся простота; вам пришлось затратить какое-то время на то, чтобы разобраться в законе Гаусса, и вы можете думать, что на самом деле время нисколько не сэкономлено. Но когда вам придется часто применять эту теорему, то она практически окупится. Все дело в привычке.
§ 8. Линии поля; эквипотенциальные поверхности
Теперь мы собираемся дать геометрическое описание электростатического поля. Два закона электростатики: один — о пропорциональности потока и внутреннего заряда и другой — о том, что электрическое поле есть градиент потенциала, могут также быть изображены геометрически. Мы проиллюстрируем это двумя примерами.
Первый пример: возьмем поле точечного заряда. Проведем линии в направлении поля, которые повсюду касательны к векторам поля (фиг. 4.12).
Фиг. 4.12. Линии поля и эквипотенциальные поверхности для положительного точечного заряда.
Их называют линиями поля. Линии поля всюду показывают направление электрического вектора. Но, кроме этого, мы хотим изобразить и абсолютную величину вектора. Можно ввести такое правило: пусть напряженность электрического поля представляется «плотностью» линий. Под этим мы подразумеваем число линий на единицу площади, перпендикулярной линиям. С помощью этих двух правил мы можем начертить картину электрического поля. Для точечного заряда плотность линий должна убывать как 1/r2. Но площадь сферической поверхности, перпендикулярной к линиям на всех радиусах r, возрастает как r2, так что если мы сохраним всюду, на всех расстояниях от центра, одно и то же число линий, то их плотность останется пропорциональной величине поля. Мы можем гарантировать неизменность числа линий на всех расстояниях, если обеспечим непрерывность линий, т. е. если уж линия вышла из заряда, то она никогда не кончится. На языке линий поля закон Гаусса утверждает, что линии могут начинаться только в плюс-зарядах и кончаться только в минус-зарядах. А число линий, покидающих заряд q, должно быть равно q/ε0.
Сходную геометрическую картину можно отыскать и для потенциала φ. Проще всего изображать его, рисуя поверхности, на которых φ постоянно. Их называют эквипотенциальными, т. е. поверхностями одинакового потенциала. Какова геометрическая связь эквипотенциальных поверхностей и линий поля? Электрическое поле является градиентом потенциала. Градиент направлен по самому быстрому изменению потенциала, поэтому он перпендикулярен к эквипотенциальной поверхности. Если бы Е не было перпендикулярно к поверхности, у него существовала бы составляющая вдоль поверхности и потенциал изменялся бы вдоль поверхности и тогда нельзя было бы считать ее эквипотенциальной. Эквипотенциальные поверхности должны поэтому непременно всюду проходить поперек линий электрического поля.
У отдельно взятого точечного заряда эквипотенциальные поверхности — это сферы с зарядом в центре. На фиг. 4.12 показано пересечение этих сфер с плоскостью, проведенной через заряд.
В качестве второго примера рассмотрим поле близ двух одинаковых зарядов, одного положительного, а другого отрицательного. Это поле получить легко. Это суперпозиция (наложение) полей каждого из зарядов. Значит, мы можем взять две картинки, похожие на фиг. 4.12, и наложить их... нет, это невозможно! Тогда получились бы пересекающиеся линии поля, а этого быть не может, потому что Е не может иметь в одной точке двух направлений. Неудобство картины линий поля теперь становится очевидным. С помощью геометрических рассуждений невозможно в простой форме проанализировать, куда пойдут новые линии. Из двух независимых картин нельзя получить их сочетание. Принцип наложения, столь простой и глубокий принцип теории электрических полей, в картине полевых линий не имеет простого соответствия.
Картина полевых линий все же имеет свою область применимости, так что мы можем все же захотеть начертить эту картину для пары равных (и противоположных) зарядов. Если мы вычислим поля из уравнения (4.13), а потенциалы из (4.23), то сумеем начертить и линии поля и эквипотенциалы. Фиг. 4.13 демонстрирует этот результат. Но сперва пришлось решить задачу аналитически!
Фиг. 4.13. Линии поля и эквипотенциальные поверхности для двух равных, но »разноименных точечных зарядов.
Глава 5 ПРИМЕНЕНИЯ ЗАКОНА ГАУССА
§ 1. Электростатика—это есть закон Гаусса плюс...
Существуют два закона электростатики: поток электрического поля из объема пропорционален заряду внутри него — закон Гаусса, и циркуляция электрического поля равна нулю — Е есть градиент. Из этих двух законов следуют все предсказания электростатики. Но одно дело высказать эти вещи математически, и совсем другое — применять их с легкостью и с нужной долей остроумия. В этой главе мы будем заниматься только такими расчетами, которые могут быть проделаны непосредственно на основе закона Гаусса. Мы докажем некоторые теоремы и опишем некоторые эффекты (в частности, в проводниках), которые на основе закона Гаусса очень легко понять. Сам по себе закон Гаусса не может дать решения ни одной задачи, потому что должны быть выполнены и какие-то другие законы. Значит, применяя закон Гаусса к решению частных задач, нужно всегда к нему что-то добавлять. Мы должны, например, заранее делать какие-то предположения о том, как выглядит поле, основываясь, скажем, на соображениях симметрии. Или должны будем особо вводить представление о том, что поле есть градиент потенциала.
§ 2. Равновесие в электростатическом поле
Рассмотрим сначала следующий вопрос: в каких условиях точечный заряд может пребывать в механическом равновесии в электрическом поле других зарядов? В качестве примера представим себе три отрицательных заряда в вершинах равностороннего треугольника, расположенного в горизонтальной плоскости. Останется ли на своем месте положительный заряд, помещенный в центр треугольника? (Для простоты тяжестью пренебрежем; но и учет ее влияния не изменит выводов.) Сила, действующая на положительный заряд, равна нулю, но устойчиво ли это равновесие? Вернется ли заряд в положение равновесия, если его чуть сдвинуть с этого места? Ответ гласит: нет.
Ни в каком электростатическом поле не существует никаких точек устойчивого равновесия, за исключением случая, когда заряды сидят друг на друге. Применяя закон Гаусса, легко понять почему. Во-первых, чтобы заряд пребывал в равновесии в некоторой точке Р0, поле в ней должно быть равно нулю. Во-вторых, чтобы равновесие было устойчивым, требуется, чтобы смещение заряда из Р0 в любую сторону вызывало восстанавливающую силу, направленную против смещения. Векторы электрического поля во всех окрестных точках должны показывать внутрь — на точку Р0. Но как легко видеть, это нарушает закон Гаусса, если в Р0 нет заряда.
Возьмем небольшую воображаемую поверхность, окружающую точку Р0 (фиг. 5.1).
Фиг. 5.1. Если бы точка Р0 отмечала положение устойчивого равновесия положительного заряда, то электрическое поле повсюду в ее окрестности было бы направлено к Р0.
Если повсюду вблизи Р0 электрическое поле направлено к Р0, то поверхностный интеграл от нормальной составляющей определенно не равен нулю. В случае, изображенном на фигуре, поток через поверхность должен быть отрицательным числом. Но, согласно закону Гаусса, поток электрического поля сквозь любую поверхность пропорционален количеству заряда внутри нее. Если в Р0 нет заряда, то изображенное нами поле нарушит закон Гаусса. Уравновесить положительный заряд в пустом пространстве, в точке, в которой нет какого-нибудь отрицательного заряда, невозможно. Но если положительный заряд размещен в центре распределенного отрицательного заряда, то он может находиться в равновесии. Конечно, распределение отрицательного заряда должно само удерживаться на своем месте посторонними, неэлектрическими силами!
Этот вывод мы проделали для точечного заряда. Соблюдается ли он для сложной расстановки зарядов, относительное расположение которых чем-то фиксировано (скажем, стержнями)? Разберем этот вопрос на примере двух одинаковых зарядов, закрепленных на стержне. Может ли эта комбинация в каком-то электрическом поле застыть в равновесии? И опять ответ гласит: нет. Суммарная сила, действующая на стержень, не способна возвращать его к положению равновесия при любых направлениях смещения.
Обозначим суммарную силу, действующую на стержень в любом положении, буквой F. Тогда F — это векторное поле. Повторяя те же рассуждения, что и выше, мы придем к заключению, что в положении устойчивого равновесия дивергенция F должна быть числом отрицательным. Но суммарная сила, действующая на стержень, равна произведению первого заряда на поле в том месте, где он находится, плюс произведение второго заряда на поле в том месте, где он находится:
(5.1)
Дивергенция F дается выражением
Если каждый из двух зарядов q1 и q2 находится в свободном пространстве, то и ∇·Е1, и ∇·Е2 равны нулю, и ∇·F тоже нуль, а не отрицательное число, как должно было бы быть при равновесии. Дальнейшее расширение этого доказательства покажет, что никакая жесткая комбинация любого числа зарядов не способна замереть в положении устойчивого равновесия в электростатическом поле в пустом пространстве.
Но мы не собираемся доказывать, что если заряд может скользить по стержням или опираться на другие механические связи, то равновесие все равно невозможно. Это не так. Возьмем для примера трубку, в которой заряд может свободно двигаться вперед и назад (но не в сторону). Теперь легко устроить электрическое поле, которое на концах трубки направлено внутрь нее (при этом близ центра трубки ему разрешается быть направленным наружу, в сторону). Для этого надо просто поместить по положительному заряду на каждом конце трубки (фиг. 5.2).
Фиг. 5.2. Заряд может быть в равновесии, если имеются механические ограничения.
Теперь точка равновесия существует даже в том случае, когда дивергенция Е равна нулю. Конечно, заряд не оказался бы в устойчивом равновесии, если бы не «неэлектрические» силы от стенок трубки.
§ 3. Равновесие с проводниками
В системе закрепленных зарядов устойчивого места для пробного заряда нет. А как обстоит дело с системой заряженных проводников? Может ли система заряженных проводников создать поле, в котором для точечного заряда хоть где-нибудь найдется устойчивое местечко? (Конечно, имеется в виду не место на поверхности проводника.) Вы знаете, что проводники характерны тем, что заряды по ним могут двигаться свободно. Может быть, если чуть сдвинуть точечный заряд, то прочие заряды на проводниках так сместятся, что на точечный заряд начнет действовать восстанавливающая сила? Ответ по-прежнему отрицательный, хотя из приведенного нами доказательства этого вовсе не следует. В этом случае доказательство сложнее, и мы только наметим его ход.
Во-первых, мы замечаем, что когда заряды перераспределяются по проводникам, то это возможно только тогда, когда от их движения их суммарная потенциальная энергия сокращается. (Часть их энергии, когда они движутся по проводнику, переходит в тепло.) А мы уже показали, что когда заряды, создающие поле, стационарны, то вблизи любой точки Р0, в которой поле равно нулю, существует направление, в котором смещение точечного заряда из Р0 уменьшит энергию системы (так как сила направлена от Р0). Любое перемещение зарядов по проводникам может только еще больше снизить их потенциальную энергию, так что (по принципу виртуальной работы) их движение только увеличит силу в этом указанном направлении, но никак не обратит ее знак.
Наши слова не означают, что заряд невозможно уравновесить электрическими силами. Это можно сделать, если специальными устройствами контролировать расположение или размер поддерживаемых зарядов. Вы же знаете, что стержень, стоящий в гравитационном поле на своем нижнем конце, неустойчив, но отсюда не следует, что его нельзя уравновесить на кончике пальца. Точно так же и заряд можно удержать на одном месте с помощью одних только электрических сил, если вовремя изменять эти силы. Но этого нельзя сделать с помощью пассивной, т. е. статической, системы сил.
§ 4. Устойчивость атомов
Раз заряды не могут иметь устойчивого положения, то, разумеется, неправильно представлять вещество построенным из статических точечных зарядов (электронов и протонов), управляемых только законами электростатики. Такая статическая конфигурация немыслима, она обвалится!
В свое время предлагалось считать положительный заряд атома распределенным однородно по шару, а отрицательные заряды (электроны) покоящимися внутри положительного заряда (фиг. 5.3).
Фиг. 5.3. Томсоновская модель атома. 1 — однородно распределенный положительный заряд; 2 — отрицательный заряд, сконцентрированный в центре.
Это была первая атомная модель, предложенная Томсоном. Но Резерфорд из опыта, проделанного Гейгером и Марсденом, сделал вывод, что положительные заряды очень сильно сконцентрированы и образуют то, что мы называем ядром. И статическую модель Томсона пришлось отставить. Затем Резерфорд и Бор предположили, что равновесие может быть динамическим — электроны обращаются по орбитам (фиг. 5.4).
Фиг. 5.4. Модель атома Резерфорда—Бора. 1 — положительные ядра в центре; 2 — отрицательные электроны на планетных орбитах.
Орбитальное движение в этом случае удерживало бы электроны от падения на ядро. Но мы с вами знакомы по крайней мере с одной трудностью, возникающей и при таком представлении об атоме. При движении по орбитам электроны ускоряются (из-за вращательного движения), и поэтому они излучали бы энергию. При этом они потеряют кинетическую энергию, необходимую для того, чтобы остаться на орбитах, и они должны будут падать, двигаясь по спирали, на ядро. Опять неустойчивость!
Сейчас стабильность атома объясняется с помощью квантовой механики. Электростатические силы притягивают электрон к ядру насколько это возможно, но электрон вынужден оставаться размазанным в пространстве на расстоянии, диктуемом принципом неопределенности. Если бы он держался в очень узком пространстве близ ядра, у него была бы большая неопределенность в импульсе. Но это означало бы, что его ожидаемая энергия высока и может быть использована для того, чтобы разорвать электрическое притяжение ядра. Выходит, что в итоге электрическое равновесие не слишком отличается от идеи Томсона, но только на этот раз размазан отрицательный заряд (потому что масса электрона несравненно меньше массы протона).
§ 5. Поле заряженной прямой линии
Закон Гаусса может быть применен для решения множества задач, связанных с электрическим полем, обладающим специальной симметрией (чаще всего сферической, цилиндрической или плоской). В оставшейся части этой главы мы займемся применением закона Гаусса к некоторым задачам подобного рода. Легкость, с которой будут решаться эти задачи, может создать ошибочное впечатление о мощи метода и о возможности с его помощью перейти к решению многих других задач. К сожалению, это не так. Список задач, легко решаемых по закону Гаусса, быстро исчерпывается. В дальнейших главах мы разовьем куда более мощные методы исследования электростатических полей.
В качестве первого примера рассмотрим систему с цилиндрической симметрией. Пусть у нас имеется длинная-длинная равномерно заряженная спица. Под этим мы понимаем электрические заряды, равномерно распределенные по длине бесконечно длинной прямой, так что на единицу длины приходится заряд λ. Мы хотим определить электрическое поле. Конечно, задачу можно решить интегрированием вкладов в поле от всех частей прямой. Но мы собираемся решить ее без интегрирования, только с помощью закона Гаусса и некоторых догадок. Во-первых, легко догадаться, что электрическое поле будет направлено по радиусу. Любой осевой составляющей от зарядов, лежащих с одной стороны от некоторой плоскости, должна отвечать такая же осевая составляющая от зарядов, лежащих с другой стороны. В итоге должно остаться только радиальное поле. Кроме того, резонно полагать, что во всех точках, равноотстоящих от прямой, поле имеет одинаковую величину. Это очевидно. (Может быть, это нелегко доказать, но это верно, если пространство симметрично, а мы считаем, что это так.)
Применить закон Гаусса можно следующим образом. Вообразим себе поверхность, имеющую форму цилиндра, ось которого совпадает с нашей прямой (фиг. 5.5).
Фиг. 5.5. Цилиндрическая гауссова поверхность, коаксиальная заряженной прямой. 1 — гауссова поверхность; 2 — заряженная прямая.
Согласно закону Гаусса, весь поток Е из этой поверхности равен заряду внутри нее, деленному на ε0. Раз поле считается нормальным к поверхности, то его нормальная составляющая — это величина вектора поля. Обозначим ее Е. Пусть радиус цилиндра будет r, а длина его для удобства выбрана равной единице. Поток сквозь цилиндрическую поверхность равен произведению Е на площадь поверхности, т. е. на 2πr. Поток через торцы равен нулю, потому что поле касательно к ним. Весь заряд внутри нашей поверхности равен как раз λ, потому что длина оси цилиндра равна единице. Тогда закон Гаусса дает
(5.2)
Электрическое поле заряженной прямой обратно пропорционально первой степени расстояния от прямой.
§ 6. Заряженная плоскость; пара плоскостей
В качестве другого примера рассчитаем поле однородно заряженного плоского листа. Предположим, что лист имеет бесконечную протяженность и заряд на единицу площади равен σ. Сразу приходит в голову следующее соображение: из симметрии следует, что поле направлено всюду поперек плоскости, и если не существует поля от всех прочих зарядов в мире, то поля по обе стороны плоскости должны совпадать (по величине). На этот раз за гауссову поверхность мы примем прямоугольный ящик, пересекающий нашу плоскость (фиг. 5.6).
Фиг. 5.6. Электрическое поле возле однородно заряженной плоскости, найденное с помощью теоремы Гаусса, применяемой к воображаемому ящику. 1 — однородно заряженная плоскость; 2 — гауссова поверхность.
Каждая из граней, параллельных плоскости, имеет площадь А. Поле нормально к этим двум граням и параллельно остальным четырем. Суммарный поток равен Е, умноженному на площадь первой грани, плюс Е, умноженному на площадь противоположной грани; от остальных граней никаких слагаемых не войдет. Заряд внутри ящика равен σА. Уравнивая поток с зарядом, напишем
откуда
(5.3)
Простой, но важный результат.
Вы помните, может быть, что тот же результат был получен в первых главах интегрированием по всей плоскости. Закон Гаусса дает ответ намного быстрее (хотя он не так широко применим, как прежний метод).
Подчеркнем, что этот результат относится только к полю, созданному зарядами, размещенными на плоскости. Если по соседству есть другие заряды, общее поле близ плоскости было бы суммой (5.3) и поля прочих зарядов. Закон Гаусса тогда только гарантировал бы, что
(5.4)
где E1 и Е2 — поля, направленные на каждой стороне плоскости наружу от нее.
Задача о двух параллельных плоскостях с равными и противоположными плотностями зарядов +σ и -σ решается тоже просто, если только снова предположить, что внешний мир абсолютно симметричен. Составите ли вы суперпозицию двух решений для отдельных плоскостей или построите гауссов ящик, охватывающий обе плоскости, в обоих случаях легко видеть, что поле снаружи плоскостей равно нулю (фиг. 5.7, а). Но, заключив в ящик только одну или только другую поверхность, как показано на фиг. 5.7, б или в, мы легко обнаружим, что поле между плоскостями должно быть вдвое больше поля отдельной плоскости.
Фиг. 5.7. Поле между двумя заряженными листами равно σ/ε0.
Итог таков:
(5.5)
(5.6)
§ 7. Однородно заряженный шар; заряженная сфера
В гл. 4 мы уже применяли закон Гаусса, когда должны были найти поле вне однородно заряженной шаровой области. Тот же метод может дать нам и поле в точках внутри шара. Этот расчет, например, может быть использован для получения хорошего приближения к полю внутри атомного ядра. Вопреки тому, что протоны в ядре взаимно отталкиваются, они из-за сильного ядерного притяжения распределены по всему ядру почти однородно.
Пусть у нас имеется сфера радиуса R, однородно наполненная зарядами. Пусть заряд в единице объема равен ρ. Снова, используя соображения симметрии, можно предположить, что поле радиально и в точках, равноудаленных от центра, по величине одинаково. Чтобы определить поле в точке на расстоянии r от центра, представим сферическую гауссову поверхность радиуса r (r<R), как показано на фиг. 5.8.
Фиг. 5.8. Закон Гаусса можно применить для определения поля внутри однородно заряженного шара.
Поток из нее равен
Заряд внутри нее равен внутреннему объему, умноженному на ρ, т. е.
Применяя закон Гаусса, получаем величину поля
(5.7)
Вы видите, что при r=R эта формула дает правильный результат. Электрическое поле пропорционально расстоянию от центра и направлено по радиусу наружу.
Аргументы, которые мы только что приводили для однородно заряженного шара, можно применить и к заряженной сфере. Опять предполагая радиальность и сферическую симметрию поля, из закона Гаусса немедленно получаем, что поле вне сферы во всем подобно полю точечного заряда, поле же внутри сферы — нуль (если мы проведем гауссову поверхность внутри сферы, то внутри нее зарядов не окажется).
§ 8. Точен ли закон Кулона?
Если мы вглядимся чуть пристальнее в то, как поле внутри сферы оказывается нулевым, то лучше поймем, почему закон Гаусса обязан своим происхождением закону Кулона, т. е. точной зависимости силы от второй степени расстояния. Возьмем произвольную точку Р внутри однородно заряженной сферической поверхности. Представим узкий конус, который начинается в точке Р и тянется до поверхности сферы, вырезая там небольшой сферический участок Δa1 (фиг. 5.9).
Фиг. 5.9. Во всякой точке Р внутри заряженной сферической оболочки поле равно нулю.
В точности симметричный конус по другую сторону вершины вырежет на поверхности площадь Δа2. Если расстояния от Р до этих двух элементов площади равны r1 и r2, то площади находятся в отношении
(Вы можете доказать это для любой точки шара с помощью геометрии.)
Если поверхность сферы заряжена равномерно, то заряд Δq на каждом элементе поверхности пропорционален его площади
Тогда закон Кулона утверждает, что величины полей, создаваемых в Р этими двумя элементами поверхности, находятся в отношении
Поля в точности взаимно уничтожаются. Таким способом можно разбить на пары всю сферу. Значит, все поле в точке Р равно нулю. Но вы видите, что этого не было бы, окажись показатель степени r в законе Кулона не равным в точности двойке.
Справедливость закона Гаусса зависит от закона обратных квадратов Кулона. Если бы закон силы не подчинялся в точности зависимости 1/r2, то поле внутри однородно заряженной сферы не было бы в точности равно нулю. Например, если бы поле менялось быстрее (скажем, как 1/r3), то часть сферы, которая ближе к точке Р, создала бы в точке Р более сильное поле, чем дальняя часть. Получилось бы (для положительного поверхностного заряда) радиальное поле, направленное к центру. Эти заключения подсказывают нам элегантный путь проверки точности выполнения закона обратных квадратов. Для этого нужно только узнать, в точности ли поле внутри однородно заряженной сферы равно нулю.
Наше счастье, что такой способ существует. Ведь обычно трудно измерить физическую величину с высокой точностью. Добиться однопроцентной точности было бы нетрудно, но как быть, если нам понадобится измерить закон Кулона с точностью, скажем, до одной миллиардной? Можно почти ручаться, что измерить с такой точностью силу, действующую между двумя заряженными телами, не способны даже лучшие приборы. Но если только нужно убедиться в том, что поле внутри сферы меньше некоторого значения, то можно провести довольно точное измерение справедливости закона Гаусса и тем самым проверить обратную квадратичную зависимость в законе Кулона. В сущности происходит сравнение закона силы с идеальным законом обратных квадратов. Именно такие сравнения одинаковых, или почти одинаковых, вещей обычно становятся основой самых точных физических измерений.
Как же наблюдать поле внутри заряженной сферы? Один из способов — это попытаться зарядить тело, дотронувшись им до внутренней части сферического проводника. Вы знаете, что если коснуться металлическим шариком заряженного тела, затем электрометра, то прибор зарядится и стрелка отклонится от нуля (фиг. 5.10, а).
Фиг. 5.10. Внутри замкнутой проводящей оболочки электрическое поле равно нулю.
Шар собирает на себя заряды, потому что снаружи заряженной сферы имеются электрические поля, заставляющие заряды переходить на шарик (или с него). А если вы проделаете тот же опыт, коснувшись шариком внутренности заряженной сферы, то увидите, что к электрометру заряд не подводится. Из такого опыта сразу видно, что внутреннее поле составляет в лучшем случае несколько процентов от внешнего и что закон Гаусса верен, по крайней мере, приближенно.
Кажется, первым, заметившим, что поле внутри заряженной сферы равно нулю, был Бенджамен Франклин. Это показалось ему странным. Когда он сообщил об этом Пристли, тот заподозрил, что это связано с законом обратных квадратов, потому что было известно, что сферический слой вещества не создает внутри себя поля тяготения. Но Кулон измерил обратную квадратичную зависимость только через 18 лет, а закон Гаусса появился на свет и того позже.
Закон Гаусса был проверен очень тщательно; для этого электрометр помещали внутрь большой сферы и наблюдали, отклонится ли стрелка, когда сферу зарядят до высокого напряжения. Результат всегда получался отрицательным. Если знать геометрию аппарата и чувствительность прибора, можно рассчитать наименьшее поле, которое еще доступно наблюдению. Из этого числа можно установить верхний предел отклонения показателя степени от двух. Если записать зависимость электростатической силы от расстояния в виде r-2+ε, то можно определить верхнюю границу ε. Этим способом Максвелл узнал, что ε меньше 1/10000. Опыт был повторен и усовершенствован в 1936 г. Плимптоном и Лафтоном. Они обнаружили, что кулонов показатель отличается от 2 меньше чем на одну миллиардную.
Это подводит нас к интересному вопросу: как точно выполняется закон Кулона в различных обстоятельствах? В только что описанных опытах измерялась зависимость поля от расстояния на расстояниях порядка десятков сантиметров. А что можно сказать о внутриатомных расстояниях, скажем внутри атома водорода, где, как мы считаем, электрон притягивается к ядру по тому же закону обратных квадратов? Конечно, для описания механической части поведения электрона нужна квантовая механика, но сила здесь — по-прежнему привычная электростатическая сила. В постановке задачи об атоме водорода известна потенциальная энергия электрона как функция расстояния от ядра, и тогда закон Кулона приводит к потенциалу, обратно пропорциональному первой степени расстояния. С какой точностью этот показатель известен на таких малых расстояниях? В итоге очень тщательных измерений относительного расположения уровней энергии водорода, проведенных в 1947 г. Лэмбом и Ризерфордом, нам теперь известно, что и на расстояниях порядка атомных, т. е. порядка ангстрема (10-8см), показатель выдерживается с точностью до одной миллиардной.
Такая точность измерений Лэмба и Ризерфорда оказалась возможной опять благодаря одной физической «случайности». Среди состояний атома водорода есть два таких, у которых энергии должны быть почти одинаковыми лишь в том случае, если потенциал меняется точно по закону 1/r. Измерялась очень малая разница в энергиях по частоте ω фотонов, испускаемых или поглощаемых при переходах из одного состояния в другое (согласно формуле ΔE=ℏω). Расчеты показали, что ΔE заметно отличалась бы от наблюдавшегося значения, если бы показатель степени в законе силы 1/r2 отличался бы от 2 только на одну миллиардную.
А верен ли этот закон и на еще меньших расстояниях? В ядерной физике измерения показали, что на типично ядерных расстояниях (порядка 10-13 см) существуют электростатические силы и что меняются они все еще как обратные квадраты расстояний. Одно из свидетельств в пользу этого мы разберем в следующих главах. Мы уверены, таким образом, что закон Кулона еще выполняется и на расстояниях около 10-13 см.
А что можно сказать о расстоянии 10-14 см? Этот интервал исследовали, бомбардируя протоны очень энергичными электронами и следя за тем, как они рассеиваются. Сегодняшние данные указывают на то, что на этих расстояниях закон терпит крах. Электрические силы на расстояниях меньше 10-14 см оказываются чуть ли не в 10 раз слабее. Этому есть два объяснения. То ли закон Кулона на таких маленьких расстояниях не действует, то ли эти тела (электроны и протоны) не являются точечными зарядами. Возможно, что один из них как-то размазан (а может, и оба). Большинство физиков предпочитают думать, что размазан заряд протона. Мы знаем, что протоны сильно взаимодействуют с мезонами. Это означает, что протон время от времени существует в виде нейтрона с π+-мезоном вокруг. Такое расположение в среднем выглядело бы как небольшой шарик положительного заряда. А мы знаем, что нельзя считать поле шара зарядов меняющимся вплоть до самого центра по закону 1/r2. Вполне вероятно, что заряд протона размазан, но теория пионов еще очень несовершенна, и не исключено, что и закон Кулона на малых расстояниях отказывает. Вопрос пока остается открытым.
Еще один каверзный вопрос: если закон обратных квадратов верен и на расстояниях порядка 1м и на расстояниях порядка 10-10 м, то остается ли тем же коэффициент 1/4πε0? Да,— гласит ответ,— по крайней мере с точностью до 15 миллионных.
Вернемся теперь к важному вопросу, от которого мы отмахнулись, когда говорили об опытном подтверждении закона Гаусса. Вас могло удивить, как в опыте Максвелла и Плимптона— Лафтона удалось достичь такой точности. Ведь вряд ли сферический проводник мог быть идеальной сферой. Достичь точности в одну миллиардную — это прекрасно; но резонно спросить: как могли они столь точно изготовить сферу? Наверняка на сфере были небольшие неправильности, как на всякой реальной сфере, и не могли ли эти нерегулярности создать какое-то поле внутри? Мы хотим показать теперь, что в идеальной сфере вовсе нет необходимости. Оказывается можно доказать, что внутри замкнутой проводящей оболочки любой формы поля не бывает. Иными словами, опыты зависели от 1/r2, но никак не были связаны со сферической формой поверхности (разве что со сферой легче было бы рассчитать поле, если бы закон Кулона оказался ошибочным). Итак, мы снова возвращаемся к этому вопросу. Для решения его нам нужно знать кое-какие свойства проводников электричества.
§ 9. Поля проводника
Проводник электричества — это твердое тело, в котором есть много «свободных» электронов. Электроны могут двигаться в веществе свободно, но не могут покидать поверхности. В металле бывает так много свободных электронов, что всякое электрическое поле приводит многие из них в движение. И либо возникший таким образом ток электронов должен непрерывно поддерживать свое существование за счет внешних источников энергии, либо движение электронов прекращается, как только они разрядят источники, вызвавшие поле вначале. В условиях «электростатики» мы не рассматриваем непрерывных источников тока (о них мы будем говорить в магнитостатике), так что электроны движутся только до тех пор, пока не расположатся так, что повсюду внутри проводника создастся нулевое электрическое поле. (Как правило, это происходит в малые доли секунды.) Если бы осталось внутри хоть какое-нибудь поле, оно бы вынудило двигаться еще какие-то электроны; возможно только такое электростатическое решение, когда поле всюду внутри равно нулю.
Теперь рассмотрим внутренность заряженного проводящего тела. (Мы имеем в виду внутреннюю часть самого металла.) Так как металл — проводник, то внутреннее поле должно быть нулем, а значит, и градиент потенциала φ равен нулю. Это значит, что φ от точки к точке не меняется. Любой проводник — это эквипотенциальная область, и его поверхность — эквипотенциальна. Раз в проводящем материале электрическое поле повсюду равно нулю, то и дивергенция Е тоже равна нулю, и по закону Гаусса плотность заряда во внутренней части проводника обращается в нуль.
Но если внутри проводника не может быть зарядов, как же он вообще может быть заряжен? Что мы имеем в виду, когда говорим, что проводник «заряжен»? Где эти заряды? Они находятся на поверхности проводника, где существуют большие силы, не дающие им покинуть ее, так что они не вполне «свободны». Когда мы будем изучать физику твердого тела, мы увидим, что избыточный заряд в любом проводнике находится только в узком слое у поверхности, толщиной в среднем в один-два атома. Для наших нынешних целей достаточно правильно будет говорить, что любой заряд, попавший на (или в) проводник, собирается на его поверхности; внутри проводника никаких зарядов нет.
Мы замечаем также, что электрическое поле возле самой поверхности проводника должно быть нормально к поверхности. Касательной составляющей у него быть не может. Если бы она появилась, электроны двигались бы вдоль поверхности; нет сил, которые способны помешать этому. Это можно выразить и иначе: мы знаем, что линии электрического поля должны всегда быть направлены поперек эквипотенциальной поверхности.
Применяя закон Гаусса, мы можем связать напряженность поля у самой поверхности проводника с локальной плотностью заряда на поверхности. За гауссову поверхность мы примем небольшой цилиндрический стакан, наполовину погруженный в проводник, а наполовину выдвинутый из него (фиг. 5.11).
Фиг. 5.11. Электрическое поле у самой внешней поверхности проводника пропорционально локальной поверхностной плотности заряда. 1 — гауссова поверхность; 2 — локальная плотность поверхностного заряда σ.
Вклад в общий поток Е дает только та часть стакана, которая находится вне проводника. Тогда поле у наружной поверхности проводника равно
Вне проводника:
(5.8)
Почему слой зарядов на проводнике создает не такое поле, как слой зарядов сам по себе? Иначе говоря, почему (5.8) вдвое больше (5.3)? Но ведь мы не утверждали, будто в проводнике нет больше никаких «других» зарядов. В действительности для того, чтобы в проводнике Е было равно 0, в нем обязательно должны присутствовать какие-то заряды. В непосредственной близости от точки Р на поверхности заряды действительно создают поле Eлок=σлок/2ε0 как внутри, так и снаружи поверхности. Но все прочие заряды проводника сообща «устраивают заговор», чтобы создать в точке Р добавочное поле, равное по величине Елок. Суммарное внутреннее поле обращается в нуль, а наружное удваивается: 2Eлок=σ/ε0.
§ 10. Поле внутри полости проводника
Вернемся теперь к проблеме пустотелого резервуара — проводника, имеющего внутри полость. В металле поля нет, а вот есть ли оно в полости? Покажем, что если полость пуста, то поля в ней быть не может, какова бы ни была форма проводника или полости (фиг. 5.12). Рассмотрим гауссову поверхность, подобную S на фиг. 5.12, которая окружает собой полость, но остается всюду в веществе проводника. Всюду на поверхности S поле равно нулю, так что потока сквозь S быть не может, и суммарный заряд внутри S должен быть равен нулю. Затем можно вывести из симметрии, что на внутренней поверхности сферической оболочки нет никакого заряда. Но в более общем случае мы только можем сказать, что на внутренней поверхности проводника имеется равное количество положительного и отрицательного зарядов. Может быть, окажется, что на одной части имеется положительный заряд, а где-то в другом месте — отрицательный (см. фиг. 5.12)? Такие вещи законом Гаусса не исключаются.
Фиг. 5.12. Чему равно поле в пустой полости проводника произвольной формы?
На самом деле, конечно, получается, что равные, но противоположные заряды на внутренней поверхности должны были бы соскользнуть навстречу друг другу и уничтожить друг друга. Мы можем убедиться в том, что они уничтожат друг друга, применив закон о равенстве нулю циркуляции Е (электростатику). Пусть на каких-то частях внутренней поверхности оказались заряды. Мы знаем, что еще где-то должно присутствовать равное количество противоположных зарядов. Но любые линии поля Е начинаются на положительных зарядах и кончаются на отрицательных (мы рассматриваем случай, когда свободных зарядов в полости нет). Представим себе теперь контур Γ, пересекающий полость вдоль линии силы от какого-то положительного заряда к какому-то отрицательному и возвращающийся к исходной точке по телу проводника (см. фиг. 5.12). Интеграл вдоль такой линии сил в пределах от положительного до отрицательного заряда не был бы равен нулю, а интеграл по пути через металл равен нулю, так как там Е=0. Так что мы бы имели
Но криволинейный интеграл от Е по любому замкнутому контуру в электростатическом поле всегда равен нулю. Значит, внутри пустой полости не может быть никаких полей, равно как не может быть никаких зарядов на внутренней поверхности.
Заметьте, что мы все время подчеркивали, что полость пуста. Если поместить какие-то заряды в фиксированных местах полости (скажем, на изоляторе или на небольшом проводнике, изолированном от основного), то внутри полости могут быть поля. Но тогда она уже не будет «пустой».
Мы показали, что если полость целиком окружена проводником, то никакое статическое распределение зарядов снаружи никогда не создаст поля внутри. Это объясняет принцип «защиты» электрического оборудования, которое помещается в металлическую коробку. К тем же рассуждениям можно прибегнуть, если нужно показать, что никакое статическое распределение зарядов внутри замкнутого сплошного проводника не может создать поля вне его. Защита действует в обе стороны! В электростатике (но не в изменяющихся полях) поля по обе стороны сплошной проводящей оболочки полностью не зависят одно от другого.
Теперь вы понимаете, почему удалось проверить закон Кулона с такой точностью. Форма полой оболочки не имела значения. Она вовсе не должна была быть круглой, она могла быть и кубом! Если закон Гаусса точен, то поле внутри всегда равно нулю. Вы понимаете теперь, почему вполне безопасно сидеть внутри высоковольтного генератора Ван-де-Граафа в миллион вольт, не боясь, что вас ударит ток, — Вас охраняет сам Гаусс!
Глава 6 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В РАЗНЫХ ФИЗИЧЕСКИХ УСЛОВИЯХ
Повторить: гл. 23 (вып. 2) «Резонанс»
§ 1. Уравнения электростатического потенциала
В этой главе мы расскажем о поведении электрического поля в тех или иных обстоятельствах. Вы познакомитесь с тем, как ведет себя электрическое поле, и с некоторыми математическими методами, используемыми для определения поля.
Отметим для начала, что математически вся задача состоит в решении двух уравнений — максвелловских уравнений электростатики:
(6.1)
(6.2)
Фактически оба эти уравнения можно объединить в одно. Из второго уравнения сразу же следует, что поле может считаться градиентом некоего скаляра (см. гл. 3, § 7):
(6.3)
Электрическое поле каждого частного вида можно, если нужно, полностью описать с помощью потенциала поля φ. Дифференциальное уравнение, которому должно удовлетворять φ, получится, если (6.3) подставить в (6.1):
(6.4)
Расходимость градиента φ — это то же, что ∇2, действующее на φ:
(6.5)
так что уравнение (6.4) мы запишем в виде
(6.6)
Оператор ∇2 называется лапласианом, а уравнение (6.6) — уравнением Пуассона. Весь предмет электростатики с математической точки зрения заключается просто в изучении решений одного-единственного уравнения (6.6). Как только из (6.6) вы найдете φ, поле Е немедленно получается из (6.3).
Обратимся сперва к особому классу задач, в которых ρ задано как функция х, у, z. Такая задача почти тривиальна, потому что решать уравнение (6.6) в общем случае мы уже умеем. Мы ведь показали, что если ρ в каждой точке известно, то потенциал в точке (1) равен
(6.7)
где ρ(2) — плотность заряда, dV2 — элемент объема в точке (2), а r12 — расстояние между точками (1) и (2). Решение дифференциального уравнения (6.6) свелось к интегрированию по пространству. Решение (6.7) нужно отметить особо, потому что в физике часто встречаются ситуации, приводящие к уравнениям, которые выглядят так:
и (6.7) является прототипом решения любой такой задачи.
Проблема расчета электростатического поля, таким образом, решается совершенно честно, если только положения всех зарядов известны. Давайте посмотрим на нескольких примерах, как действует эта формула.
§ 2. Электрический диполь
Сначала возьмем два точечных заряда +q и -q, разделенных промежутком d. Проведем ось z через заряды, а начало координат поместим посредине между ними (фиг. 6.1).
Фиг. 6.1. Диполь: два заряда +q и -q, удаленные друг от друга на расстояние d.
Тогда по формуле (4.24) потенциал системы двух зарядов дается выражением
(6.8)
Мы не собираемся выписывать формулу для электрического поля, но всегда при желании можем это сделать, раз мы знаем потенциал. Так что задача двух зарядов решена.
Существует важный частный случай этой задачи, когда заряды расположены близко друг к другу, иными словами, когда нас интересует поле на таких расстояниях от зарядов, что по сравнению с ними промежуток между зарядами кажется незначительным. Такую тесную пару зарядов называют диполем. Диполи встречаются очень часто.
«Дипольную» антенну можно часто приближенно рассматривать как два заряда, разделенные небольшим расстоянием (если нас не интересует поле у самой антенны). (Обычно интерес представляют антенны с движущимися зарядами; уравнения статики тогда неприменимы, но для некоторых целей они все же представляют весьма сносное приближение.)
Важнее, пожалуй, диполи атомные. Если в каком-то веществе есть электрическое поле, то электроны и протоны испытывают влияние противоположных сил и смещаются друг относительно друга. Вы помните, что в проводнике некоторые электроны сдвигаются к поверхности, так что внутреннее поле обращается в нуль. В изоляторе электроны не могут сильно разойтись; им мешает притяжение ядра. И все же они как-то смещаются. Так что хотя атом (или молекула) и остается нейтральным, во внешнем электрическом поле все же возникает еле заметное разделение положительных и отрицательных зарядов, и атом становится микроскопическим диполем. Если нам нужно знать поле этих атомных диполей поблизости от предмета обычных размеров, то мы имеем дело с расстояниями, большими по сравнению с промежутками между зарядами.
В некоторых молекулах из-за самой их формы заряды несколько разделены даже в отсутствие внешних полей. В молекуле воды, например, имеется отрицательный заряд на атоме кислорода и положительный заряд на обоих атомах водорода, которые расположены несимметрично (фиг. 6.2).
Фиг. 6.2. Молекула воды Н2O.
Хоть заряд всей молекулы равен нулю, все же имеется распределение заряда с небольшим преобладанием отрицательного заряда на одной стороне и положительного на другой. Это расположение, конечно, не такое простое, как у двух точечных зарядов, но если смотреть на него издалека, оно действует как диполь. Как мы увидим чуть позже, поле на больших расстояниях нечувствительно к мелким деталям расположения.
Взглянем теперь на поле двух зарядов противоположных знаков, расстояние d между которыми мало. Если d станет нулем, два заряда сойдутся в одном месте, два потенциала сократятся, поле исчезнет. Но если они не совсем слились, то можно получить хорошее приближение к потенциалу, разложив слагаемые в (6.8) в ряд по степеням малой величины d (по формуле бинома Ньютона). Оставляя только первые степени d, мы напишем
Удобно обозначить
Тогда
и
Разлагая в биномиальный ряд [1-(zd/r2)]-1/2 и отбрасывая члены с высшими степенями d, мы получаем
Подобно этому, и
Вычитая эти два члена, имеем для потенциала
(6.9)
Потенциал, а значит, и поле, являющееся его производной, пропорциональны qd — произведению заряда на расстояния между зарядами. Это произведение называется дипольным моментом пары зарядов, и мы обозначим его символом р (не путайте с импульсом!):
(6.10)
Уравнение (6.9) можно также записать в виде
(6.11)
так как z/r=cosθ, где θ — угол между осью диполя и радиус-вектором к точке (х, у, z) (см. фиг. 6.1). Потенциал диполя убывает как 1/r2 при фиксированном направлении (а у точечного заряда он убывает как 1/r). Электрическое поле Е диполя поэтому убывает как 1/r3.
Мы можем записать нашу формулу и в векторном виде, если определим р, как вектор, абсолютная величина которого равна р, а направление выбрано вдоль оси диполя от q- к q+. Тогда
(6.12)
где еr— единичный радиальный вектор (фиг. 6.3).
Фиг. 6.3. Векторные обозначения, для диполя.
Кроме того, точку (x, y, z) можно обозначить буквой r. Итак,
Дипольный потенциал:
(6.13)
Эта формула справедлива для диполя произвольной ориентации и положения, если r — вектор, направленный от диполя к интересующей нас точке.
Если нас интересует электрическое поле диполя, то нужно взять градиент φ. Например, z-компонента поля есть -∂φ/∂z. Для диполя, ориентированного вдоль оси z, мы можем использовать (6.9):
или
(6.14)
А х- и y-компоненты равны
Из этих двух компонент можно составить компоненту, перпендикулярную к оси z, которая называется поперечной компонентой E┴:
или
(6.15)
Поперечная компонента Е┴ лежит в плоскости ху и направлена прямо от оси диполя. Полное поле, конечно, равно
Поле диполя меняется обратно пропорционально кубу расстояния от диполя. На оси при θ=0 оно вдвое сильнее, чем при θ=90°. При обоих этих углах электрическое поле обладает только z-компонентой. Знаки ее при я=0 и при z=90° противоположны (фиг. 6.4).
Фиг. 6.4. Электрическое поле диполя.
§ 3. Замечания о векторных уравнениях
Здесь, пожалуй, уместно сделать общее замечание, касающееся векторного анализа. Хотя его теоремы и доказаны в общем виде, однако, приступая к расчетам и анализу какой-либо задачи, следует с толком выбирать направление осей координат. Вспомните, что когда мы вычисляли потенциал диполя, то ось выбиралась не как попало, а мы направили ее по оси диполя. Это намного облегчило нашу задачу. Потом уже уравнения были переписаны в векторной форме и сразу перестали зависеть от выбора системы координат. Теперь стало возможным выбирать какую угодно систему координат, зная, что формула отныне всегда будет справедлива. Вообще нет смысла вводить произвольную систему координат, где оси направлены под каким-то сложным углом, если можно в данной задаче выбрать систему получше, а уже в самом конце выразить результат в виде векторного уравнения. Так что старайтесь использовать то преимущество векторных уравнений, что они не зависят ни от какой системы координат.
С другой стороны, если вы хотите подсчитать дивергенцию какого-то вектора, то вместо того, чтобы смотреть на ∇·Е и вспоминать, что это такое, лучше расписать это в виде
Если вы затем вычислите по отдельности х-, у- и z-компоненты электрического поля и продифференцируете, то получите искомую дивергенцию. Часто при этом испытывают такое чувство, как будто произошло что-то некрасивое — словно, расписав вектор покомпонентно, потерпели неудачу; все время кажется, будто все действия надо проделывать только с векторными операторами ∇. Но часто от них нет никакого проку. Когда вы впервые сталкиваетесь с какой-то новой задачей, то, как правило, полезно расписать все в компонентах, чтобы удостовериться, что вы правильно представляете себе, что происходит. Нет ничего некрасивого в том, что в уравнения подставляются числа, и нет ничего неприличного в том, чтобы подставлять производные на место причудливых символов. Наоборот, в этом-то и проявляется ваша мудрость. Конечно, в специальном журнале статья будет выглядеть гораздо приятнее (да и понятнее), если все записано в векторном виде. Но там надо экономить еще и место.
§ 4. Дипольный потенциал как градиент
Мы хотели бы теперь отметить любопытное свойство формулы диполя (6.13). Потенциал можно записать также в виде
(6.16)
Действительно, вычислив градиент 1/r, вы получите
и (6.16) совпадет с (6.13).
Как мы догадались об этом? Мы просто вспомнили, что er/r2 уже появлялось в формуле для поля точечного заряда и что поле — это градиент потенциала, изменяющегося как 1/r.
Существует и физическая причина того, что дипольный потенциал может быть записан в форме (6.16). Пусть в начало координат помещен точечный заряд q. Потенциал в точке Р(х, у, z) равен
(Множитель 1/4πε0 опустим, а в конце мы его можем снова вставить.) Если заряд +q мы сдвинем на расстояние Δz, то потенциал в точке Р чуть изменится, скажем на Δφ+. На сколько же именно? Как раз на столько, на сколько изменился бы потенциал, если б заряд оставили в покое, а Р сместили на столько же вниз (фиг. 6.5).
Фиг. 6.5. Потенциал в точке Р от точечного заряда, поднятого на Δz над началом координат, равен потенциалу в точке Р' (на Δz ниже Р) того же заряда, но помещенного вначале координат.
Иначе говоря,
где Δz означает то же, что и d/2. Беря φ0=q/r, мы получаем для потенциала положительного заряда
(6.17)
Повторяя те же рассуждения с потенциалом отрицательного заряда, можно написать
(6.18)
А общий потенциал—просто сумма (6.17) и (6.18):
(6.19)
При других расположениях диполя смещение положительного заряда можно изобразить вектором Δr+, а уравнение (6.17) представить в виде
где Δr впоследствии надо будет заменить на d/2. Завершая доказательство так, как это было сделано выше, мы приведем уравнение (6.19) к виду
Это то же уравнение, что и (6.16). Надо только заменить qd на р и вставить потерянный по дороге множитель 1/4πε0. Взглянув на это уравнение по-иному, видим, что дипольный потенциал (6.13) можно толковать как
(6.20)
где Ф0=1/4πε0r — потенциал единичного точечного заряда.
Хотя потенциал данного распределения зарядов всегда может быть найден при помощи интегрирования, иногда можно сберечь время, применив какой-нибудь хитроумный прием. Например, на помощь часто приходит принцип наложения. Если нам дано распределение зарядов, которое можно составить из двух распределений с уже известными потенциалами, то искомый потенциал легко получить, просто сложив уже известные между собой. Наш вывод формулы (6.20) — один из примеров применения этого приема.
А вот и другой. Пусть имеется сферическая поверхность, на которой поверхностный заряд распределен пропорционально косинусу полярного угла. Интегрировать такое распределение— задача, откровенно говоря, не из приятных. Но как ни странно, на помощь приходит принцип наложения. Представьте себе шар с однородной объемной плотностью положительных зарядов и другой шар с такой же однородной объемной плотностью зарядов, но противоположного знака. Первоначально они вложены друг в друга, образуя нейтральный, т. е. незаряженный шар. Если затем положительный шар чуть сместить по отношению к отрицательному, то нутро незаряженного шара так и останется незаряженным, но на одной стороне возникнет небольшой положительный заряд, а на противоположной — такой же отрицательный (фиг. 6.6).
Фиг. 6,6. Две равномерно заряженные сферы, вложенные друг в друга и слегка смещенные, эквивалентны неоднородному распределению поверхностного заряда.
И если относительное смещение двух шаров мало, то эти заряды эквивалентны существованию поверхностного заряда (на сферической поверхности) с плотностью, пропорциональной косинусу полярного угла.
Когда же нам понадобится потенциал этого распределения, то брать интегралы не нужно. Мы знаем, что потенциал каждого заряженного шара — в точках вне его— совпадает с потенциалом точечного заряда. А два смещенных шара — все равно, что два точечных заряда; значит, искомый потенциал и есть как раз потенциал диполя.
Таким путем можно показать, что распределение зарядов на сфере радиуса а с поверхностной плотностью
создает снаружи сферы такое же поле, как и диполь с моментом
Можно также показать, что внутри сферы поле постоянно и равно
Если θ — угол с положительной осью z, то электрическое поле внутри сферы направлено по отрицательной оси z. Рассмотренный нами пример отнюдь не досужая выдумка составителя задач; он нам встретится еще в теории диэлектриков.
§ 5. Дипольное приближение для произвольного распределения
Столь же интересно и не менее важно поле диполя, возникающее при других обстоятельствах. Пусть у нас есть тело со сложным распределением заряда, скажем, как у молекулы воды (см. фиг. 6.2), а нас интересует только поле вдали от него. Мы покажем, что можно получить сравнительно простое выражение для полей, пригодное для расстояний, много больших, чем размеры тела.
Мы можем смотреть на это тело, как на скопление точечных зарядов qi в некоторой ограниченной области (фиг. 6.7). (Позже, если понадобится, мы qi заменим на ρdV.)
Фиг. 6.7. Вычисление потенциала в точке Р, сильно удаленной от группы зарядов.
Пускай заряд qi удален от начала координат, выбранного где-то внутри группы зарядов, на расстояние di. Чему равен потенциал в точке Р, расположенной где-то на отлете, на расстоянии R, много большем, чем самое большое из di,? Потенциал всего нашего скопления выражается формулой
(6.21)
где ri — расстояние от Р до заряда qi (длина вектора R-di). Если расстояние от зарядов до Р (до точки наблюдения) чрезвычайно велико, то каждое из ri можно принять за R. Каждый член в сумме станет равным qi/R, и 1/R можно будет вынести из-под знака суммы. Получится простой результат
(6.22)
где Q — суммарный заряд тела. Таким образом, мы убедились, что из точек, достаточно удаленных от скопления зарядов, оно кажется просто точечным зарядом. Этот результат в общем не очень удивителен.
Но что, если положительных и отрицательных зарядов в группе окажется поровну? Суммарный заряд Q тогда будет равен нулю. Это не такой уж редкий случай; мы знаем, что большинство тел нейтрально. Нейтральна молекула воды, но заряды в ней размещаются отнюдь не в одной точке, так что, приблизившись вплотную, мы должны будем заметить какие-то признаки того, что заряды разделены. Для потенциала произвольного распределения зарядов в нейтральном теле мы нуждаемся в приближении, лучшем, чем даваемое формулой (6.22). Уравнение (6.21) по-прежнему годится, но полагать ri=R больше нельзя. Для ri нужно выражение поточнее. В хорошем приближении ri можно считать отличающимся от R (если точка Р сильно удалена) на проекцию вектора d на вектор R (см. фиг. 6.7, но вы должны только представлять себе, что Р намного дальше, чем показано). Иными словами, если er — единичный вектор в направлении R, то за следующее приближение к ri нужно принять
(6.23)
Но нам ведь нужно не ri, а 1/ri; оно в нашем приближении (с учетом di≪R) равно
(6.24)
Подставив это в (6.21), мы увидим, что потенциал равен
(6.25)
Многоточие указывает члены высшего порядка по d/R, которыми мы пренебрегли. Как и те члены, которые мы выписали, это последующие члены разложения 1/ri в ряд Тэйлора в окрестности 1/R по степеням di/R,
Первый член в (6.25) мы уже получили; в нейтральных телах он пропадает. Второй член, как и у диполя, зависит от 1/R2. Действительно, если мы определим
(6.26)
как величину, описывающую распределения зарядов, то второй член потенциала (6.25) обратится в
(6.27)
т. е. как раз в дипольный потенциал. Величина р называется дипольным моментом распределения. Это обобщение нашего прежнего определения; оно сводится к нему в частном случае точечных зарядов.
В итоге мы выяснили, что достаточно далеко от любого набора зарядов потенциал оказывается дипольным, лишь бы этот набор был в целом нейтральным. Он убывает, как 1/R2, и меняется, как cos θ, а величина его зависит от дипольного момента распределения зарядов. Именно по этой причине поля диполей и важны; сами же по себе пары точечных зарядов встречаются крайне редко.
У молекулы воды, например, дипольный момент довольно велик. Электрическое поле, создаваемое этим моментом, ответственно за некоторые важные свойства воды. А у многих молекул, скажем у CO2, дипольный момент исчезает благодаря их симметрии. Для таких молекул разложение нужно проводить еще точнее, до следующих членов потенциала, убывающих как 1/R3 и называемых квадрупольным потенциалом. Эти случаи мы рассмотрим позже.
§ 6. Поля заряженных проводников
Мы покончим на этом с примерами таких физических задач, в которых распределение зарядов известно с самого начала. Такие задачи решаются без особых затруднений, в худшем случае требуя нескольких интегрирований. Теперь мы обратимся к совершенно новому типу задач — определению полей вблизи заряженных проводников.
Представим себе, что какие-то заряды, произвольные по величине Q, помещены на проводнике. Теперь уже мы не можем точно сказать, где они расположатся. Они как-то растекутся по поверхности. Как же узнать, как они на ней распределятся? Распределиться они должны так, чтобы потенциал вдоль всей поверхности был одним и тем же. Если бы поверхность не была эквипотенциальной, то внутри проводника существовало бы электрическое поле и заряды вынуждены были бы двигаться до тех пор, пока поле не исчезло бы. Общую задачу такого рода можно было бы решать так. Предположим, что распределение зарядов такое-то, и рассчитаем потенциал. Если он оказывается на поверхности повсюду одинаковым, то задача решена. Если же поверхность не эквипотенциальна, то значит, мы сделали неправильное предположение о распределении зарядов; сделаем новое предположение и постараемся, чтобы оно было удачнее! Так может продолжаться без конца, разве что вы здорово набьете руку на таких пробах.
Вопрос о том, как догадываться о распределениях, математически труден. Конечно, у природы есть время решать его; заряды притягиваются и отталкиваются до тех пор, пока не уравновесятся взаимно. А когда мы пробуем решить задачу, то каждая проба занимает так много времени, что этот метод оказывается очень громоздким. Когда имеется произвольный сложный набор проводников и зарядов, задача весьма усложняется, и в общем случае не может быть решена без специально разработанных численных методов. Такие численные расчеты в наши дни выполняются на счетных машинах, которые могут все посчитать за нас, если мы им объясним, как это сделать.
С другой стороны, имеется множество мелких практических случаев, в которых, к нашему удовольствию, удается добиться решения каким-то прямым методом, не составляя программы для машины. На наше счастье, во многих случаях с помощью того или иного фокуса можно выжать ответ из природы.
Первый такой фокус, который мы хотим вам показать, состоит в использовании уже известных решений задач с фиксированным расположением зарядов.
§ 7. Метод изображений
Мы определили поле двух точечных зарядов. На фиг. 6.8 показаны некоторые линии поля и эквипотенциальные поверхности, полученные из расчетов, приведенных в гл. 5.
Фиг. 6.8. Линии поля и эквипотенциальные поверхности двух точечных зарядов.
Рассмотрим теперь эквипотенциальную поверхность А. Предположим, что мы изогнули тонкий лист металла так, что он в точности накладывается на эту поверхность. Если его действительно наложить и установить на нем правильное значение потенциала, то никто не будет даже знать, что он там лежит, потому что ничего от его появления не изменилось.
А теперь взгляните внимательнее! На самом-то деле мы решили задачу уже с новым условием: поверхность изогнутого проводника с заданным потенциалом помещена близ точечного заряда. Если наш металлический лист, уложенный на эквипотенциальную поверхность, замыкается сам на себя (или тянется очень далеко), то получается картина, рассмотренная в гл. 5, § 10, когда пространство делится на две области: одна внутри, другая снаружи замкнутой проводящей поверхности. Там мы пришли к выводу, что поля в этих двух областях совершенно не зависят друг от друга. Так что независимо от того, каково поле внутри замкнутого проводника, снаружи поле всегда одно и то же. Можно даже заполнить всю сердцевину проводника проводящим материалом. Выходит, нам удалось найти поле при конфигурации проводников и зарядов, изображенной на фиг. 6.9.
Фиг. 6.9. Поле вне проводника, изогнутого вдоль эквипотенциальной поверхности А на предыдущем рисунке.
В пространстве вне проводника поле как раз такое, как у двух точечных зарядов (см. фиг. 6.8). Внутри проводника оно нуль. И, кроме того, электрическое поле, как и следовало ожидать, у самой поверхности проводника нормально к ней.
Итак, мы можем рассчитать поля на фиг. 6.9, вычисляя поле, созданное зарядом q и воображаемым точечным зарядом —q, помещенным в подходящем месте. А точечный заряд, который мы представили себе существующим за проводящей поверхностью, так и называется зарядом-изображением.
В книгах можно найти длинные перечни решений задачи электростатики для гиперболических поверхностей и других сложных штук. Вас могло бы удивить, как это удалось рассчитать поля близ поверхностей столь ужасной формы. Но они были рассчитаны задом наперед! Кто-то решил простую задачу с фиксированными зарядами. А затем обнаружил, что появляются некоторые эквипотенциальные поверхности новой формы, ну и написал работу, в которой указал, что поля снаружи проводника такой формы могут быть изображены так-то и так-то.
§ 8. Точечный заряд у проводящей плоскости
В качестве простейшего применения этого метода используем плоскую эквипотенциальную поверхность В (см. фиг. 6.8). Она поможет нам решить задачу о заряде вблизи проводящей плоскости. Для этого зачеркнем просто левую часть фигуры. Линии поля нашего решения показаны на фиг. 6.10. Заметьте, что плоскость обладает нулевым потенциалом, потому что она находится как раз на полпути между зарядами. Мы решили задачу о положительном заряде вблизи заземленной проводящей плоскости.
Так мы узнали суммарное поле, но что можно сказать о том, каковы те реальные заряды, которые создали его? Кроме нашего положительного точечного заряда, ими являются какие-то отрицательные заряды, наведенные на проводящей плоскости и притянутые положительным зарядом (с каких-то далеких расстояний). Но теперь пусть вам захотелось узнать (то ли для технических целей, то ли просто из любопытства), как распределены эти отрицательные заряды по поверхности. Поверхностную плотность заряда вы сможете узнать, использовав результат, полученный в гл. 5, § 6 при помощи теоремы Гаусса. Нормальная составляющая электрического поля возле самого проводника равна плотности поверхностного заряда σ, деленной на ε0. Мы можем узнать плотность заряда в каждой точке поверхности, отправляясь назад от нормальной составляющей электрического поля на поверхности. А ее мы знаем, потому что вообще нам известно поле в любой точке.
Рассмотрим точку поверхности на расстоянии ρ от той точки, которая расположена прямо против положительного заряда (см. фиг. 6.10).
Фиг. 6.10. Поле заряда, помещенного близ плоской проводящей поверхности, найденное методом изображений.
Электрическое поле в этой точке нормально к поверхности и направлено внутрь нее. Составляющая поля положительного точечного заряда, нормальная к поверхности, равна
(6.28)
К ней мы должны добавить электрическое поле, созданное отрицательным зеркальным зарядом. Это удвоит нормальную составляющую (и уничтожит все прочие), так что плотность заряда σ в произвольной точке поверхности будет равна
(6.29)
Проинтегрировав σ по всей поверхности, мы сможем проверить наши расчеты. Мы должны получить весь наведенный заряд, т. е. -q.
Еще один вопрос: действует ли на точечный заряд сила? Да, потому что наведенные на плоскости отрицательные заряды должны его притягивать. А раз мы знаем, каковы эти поверхностные заряды [по формуле (6.29)], то можем с помощью интегрирования подсчитать силу, действующую на наш положительный заряд. Но мы ведь знаем также, что сила, действующая на него, в точности такая, какой она была бы, если бы вместо плоскости был один только отрицательный зеркальный заряд, потому что поля поблизости от них в обоих случаях одинаковы. Точечный заряд тем самым испытывает силу притяжения к плоскости, равную
(6.30)
Мы определили эту силу очень легко, без интегрирования по отрицательным зарядам.
§ 9. Точечный заряд у проводящей сферы
А какие еще поверхности, кроме плоскости, имеют простое решение? Самая простая из них — сфера. Попробуем определить поля вокруг металлической сферы с точечным зарядом q вблизи нее (фиг. 6.11).
Фиг. 6.11. Точечный заряд q наводит на заземленной проводящей сфере заряды, которые создают поле, такое же, как у заряда-изображения, помещенного в указанной точке.
Придется поискать простую физическую задачу, для которой сфера есть эквипотенциальная поверхность. Если мы просмотрим те задачи, которые уже решены, то увидим, что у поля двух неравных точечных зарядов одна из эквипотенциальных поверхностей как раз и есть сфера. Отметим себе это! Если мы как следует подберем положение заряда-изображения и нужную его величину, может быть, тогда мы и сможем подогнать эквипотенциальную поверхность к нашей сфере. Это и впрямь может быть сделано, если действовать по следующему рецепту.
Положим, что вы хотите, чтобы эквипотенциальная поверхность была сферой радиуса а с центром, отстоящим от заряда q на расстояние b. Поместите изображение заряда величины q'=-q(a/b) на радиусе, проходящем через заряд на расстоянии a2/b от центра. Потенциал сферы пусть будет нуль.
Математически причина состоит в том, что сфера есть геометрическое место точек, отношение расстояний которых от двух данных точек постоянно. Как следует из фиг. 6.11, потенциал в точке Р от зарядов q и q' пропорционален сумме
и будет равен нулю во всех точках, для которых
Если мы помещаем q' на расстоянии а2/b от центра, то отношение r2/r1 равно постоянной величине a/b. Тогда если
(6.31)
то сфера станет эквипотенциалью. Потенциал ее на самом деле будет равен нулю.
А что, если нам понадобится сфера с ненулевым потенциалом? Ведь он равен нулю только тогда, когда ее суммарный заряд случайно окажется равным q'! Конечно, если ее заземлить, то наведенные на ней заряды окажутся в точности такими, как надо. Ну, а если она заизолирована и мы не снабдили ее никаким зарядом? Или снабдили ее зарядом Q≠q'? Или она находится под напряжением, не равным нулю? Такие вопросы разрешаются сходу. Всегда ведь можно добавить в центр сферы точечный заряд q". По принципу наложения сфера всегда останется эквипотенциальной, а изменится только величина потенциала.
Если у нас, скажем, есть проводящая сфера, предварительно разряженная и изолированная от всего, и мы поднесли к ней положительный заряд q, то суммарный заряд сферы останется равным нулю. Решение можно найти, взяв тот же, что и прежде, заряд-изображение q' и вдобавок к нему заряд в центре сферы, такой, что
(6.32)
Поля повсюду вне сферы будут получаться наложением полей от q, q' и q". Задача решена.
Теперь ясно, что между сферой и точечным зарядом q должна существовать сила притяжения. Она не пропадает, даже если сфера нейтральна, на ней нет никакого заряда. Откуда же берется притяжение? Когда вы подносите к проводящей сфере положительный заряд, то он притягивает отрицательные заряды на ближний конец сферы, положительные же оставляет на дальнем. А притяжение отрицательными зарядами перевешивает отталкивание положительными; в итоге остается притяжение. Силу его можно прикинуть, подсчитав силу, действующую на q в поле, созданном q' и q". Суммарная сила равна силе притяжения между зарядами q и q'=-(a/b)q на расстоянии b-(а2/b) плюс сила отталкивания q и заряда q"=+(a/b)q на расстоянии b.
Если вы в детстве любили разглядывать журнал, на обложке которого был показан мальчик, разглядывающий журнал, на обложке которого показан мальчик, разглядывающий журнал, на обложке которого..., то вас заинтересует и следующая задача. Две одинаковые сферы, одна с зарядом +Q, а другая с зарядом -Q, расположены на некотором расстоянии друг от друга. Какова сила притяжения между ними? Задача решается при помощи бесконечного количества изображений. Первое приближает каждую сферу зарядом в ее центре. Эти заряды создают свои изображения на другой сфере. У изображений в свою очередь есть свои изображения и т. д., и т. д., и т. д. Решение здесь — все равно что картинка на обложке. Сходится оно очень быстро.
§ 10. Конденсаторы; параллельные пластины
Теперь обратимся к другому роду задач, связанных с проводниками. Рассмотрим две широкие металлические пластины, параллельные между собой и разделенные узким (по сравнению с их размерами) промежутком. Предположим, что пластины наэлектризованы равными, но противоположными зарядами. Заряды одной пластины будут притягивать к себе заряды другой и потом равномерно распределятся на внутренней поверхности пластин. Пусть поверхностная плотность зарядов на пластинах будет +σ и -σ соответственно (фиг. 6.12).
Фиг. 6.12. Плоский конденсатор.
Из гл. 5 мы знаем, что поле между пластинами равно σ/ε0, а поле снаружи пластин равно нулю. Пластины обладают неравными потенциалами φ1 и φ2. Их разности V удобно дать особое имя, ее часто называют «напряжением»
[некоторые обозначают буквой V потенциал, мы же его обозначили буквой φ].
Разность потенциалов V — это работа (на единицу заряда), требуемая для переноса небольшого заряда с одной пластины на другую, так что
(6.33)
где ±Q — суммарный заряд каждой пластины, А — ее площадь, d — щель между пластинами.
Мы видим, что напряжение пропорционально заряду. Эта пропорциональность между V и Q соблюдается для любых двух проводников в пространстве, если на одном из них имеется плюс-заряд, а на другом равный ему минус-заряд. Разность потенциалов между ними, т. е. напряжение, оказывается пропорциональной заряду. (Мы предполагаем, что вокруг нет никаких других зарядов.)
Почему возникает эта пропорциональность? Просто из-за принципа наложения. Пусть нам известно решение для одной совокупности зарядов, а потом мы наложим на него другое такое же решение. Заряды удвоятся, поля удвоятся, работа переноса заряда от точки к точке тоже удвоится. По этой причине разность потенциалов двух точек пропорциональна заряду. В частности, разность потенциалов двух проводников пропорциональна их зарядам. Эту пропорциональность когда-то решили записывать иначе. И стали писать
где С — постоянное число. Этот коэффициент пропорциональности назвали емкостью, а систему двух проводников — конденсатором. Для нашего конденсатора из параллельных пластин
(6.34)
Эта формула неточна, потому что поле в противоречии с нашим предположением на самом деле не всюду однородно. Поле не кончается сразу на ребрах пластин, а похоже скорее на то, что изображено на фиг. 6.13.
Фиг. 6.13. Электрическое поле у краев двух параллельных пластин.
Суммарный заряд тоже равен не σА, как мы предположили; существует маленькая поправка на краевой эффект. Чтобы знать, какова она, надо точнее рассчитать поле и посмотреть, что происходит на краях. Это очень сложная математическая задача, однако ее можно решить при помощи техники, о которой мы, впрочем, говорить здесь не будем. Расчеты показывают, что плотность зарядов возле края пластин слегка возрастает. Это значит, что емкость пластин чуть выше, чем мы думали. [Хорошее приближение для емкости можно получить, если в уравнении (6.34) принять за А площадь, которую имели бы пластины, если б их расширили на 3/8 расстояния между ними.]
Мы говорили пока только о емкости двух проводников. Иногда люди говорят о емкости предмета самого по себе. Так, говорят, что емкость сферы радиусом а есть 4πε0а. При этом подразумевается, что вторым полюсом является сфера бесконечного радиуса, т. е. что если на сфере помещен заряд +Q, то противоположным зарядом -Q обладает бесконечно большая сфера. Можно говорить также о емкостях и тогда, когда проводников три или больше трех, но обсуждение этого вопроса мы отложим до лучших времен.
Пусть нам необходимо иметь конденсатор очень большой емкости. Большую емкость можно получить, взяв очень большую площадь и очень малый промежуток. Можно проложить алюминиевые ленты провощенной бумагой и смотать их в трубку. (Поместив ее в пластмассовую упаковку, мы получим типичный радиоконденсатор.) Зачем они нужны? Они пригодны для того, чтобы накапливать заряд. Если бы мы захотели, например, собрать заряд на каком-то шаре, то его потенциал быстро подскочил бы, а вскоре так поднялся бы, что заряды стали бы стекать в воздух, и от шара посыпались бы искры. Но если тот же заряд поместить внутрь конденсатора большой емкости, то напряжение близ конденсатора будет очень малым.
Во многих электронных схемах полезно иметь устройство, способное поглощать или выделять большие количества зарядов, заметно не изменяя потенциал. Вот конденсатор (или «емкость»)— как раз такое устройство. Он имеет множество применений и в электронных приборах и в счетных машинах. Там он используется для получения определенного изменения в напряжении в ответ на то или иное изменение заряда. С подобным применением мы уже познакомились в вып. 2, гл. 23, когда описывали свойства резонансных контуров.
Из определения С мы получаем, что единица емкости есть кулон/вольт. Эту единицу называют также фарадой (ф). А вглядевшись в уравнение (6.34), мы видим, что ε0 можно выразить в фарадах/метр (ф/м); эта единица обычно и применяется.
Типичные емкости конденсаторов лежат в интервале от 1 микромикрофарады (мкмкф) [или, что тоже самое, 1 пикофарады (1 пф)] до миллифарад. Небольшие конденсаторы на несколько пикофарад используются в высокочастотных контурах настройки, а емкости порядка сотен или тысяч микрофарад мы находим в силовых фильтрах. Пара обкладок с площадью 1 см2 с промежутком 1 мм имеет емкость примерно 1 пф.
§ 11. Пробой при высоком напряжении
Сейчас мы качественным образом рассмотрим некоторые характеристики полей вокруг проводников. Зарядим электричеством проводник, но на сей раз не сферический, а такой, у которого есть острие или ребро (например, в форме, изображенной на фиг. 6.14).
Фиг. 6.14. Электрическое поле у острого края проводника очень велико.
Тогда поле в этом месте окажется намного сильнее, чем в других местах. Причина в общих чертах состоит в том, что заряды стремятся как можно шире растечься по поверхности проводника, а кончик острия всегда отстоит дальше всего от остальной поверхности. Поэтому часть зарядов на пластине течет к острию. Относительно малое количество заряда на нем может создать большую поверхностную плотность, а высокая плотность означает сильное поле близ проводника в этом месте.
Вообще в тех местах проводника, в которых радиус кривизны меньше, поле оказывается сильнее. Чтобы убедиться в этом, рассмотрим комбинацию из большой и маленькой сфер, соединенных проводом, как показано на фиг. 6.15.
Фиг. 6.15. Поле остроконечного предмета можно приближенно считать полем двух сфер одинакового потенциала.
Сам провод не будет сильно влиять на внешние поля; его дело — уравнять потенциалы сфер. Возле какого шара поле окажется более напряженным? Если радиус левого шара а, а заряд Q, то его потенциал примерно равен
(Конечно, наличие одного шара скажется на распределении зарядов на другом, так что на самом деле ни на одном из них заряды не будут распределены симметрично. Но если нас интересует лишь примерная величина поля, то можно пользоваться формулой для потенциала сферического заряда.) Если меньший шар радиусом b обладает зарядом q, то его потенциал примерно равен
Но φ1=φ2, так что
С другой стороны, поле у поверхности [см. уравнение (5.8)] пропорционально поверхностной плотности заряда, которая в свою очередь пропорциональна суммарному заряду, деленному на квадрат радиуса. Получается, что
(6.35)
Значит, у поверхности меньшей сферы поле больше. Поля обратно пропорциональны радиусам.
Этот результат с технической точки зрения очень важен, потому что в воздухе возникает пробой, если поле чересчур велико. Какой-нибудь свободный заряд в воздухе (электрон или ион) ускоряется этим полем, и если оно очень сильное, то заряд может набрать до столкновения с атомом такую скорость, что вышибет из атома новый электрон. В итоге появляется все больше и больше ионов. Их движение и составляет искру, или разряд. Если вам требуется зарядить тело до высокого потенциала так, чтобы оно не разрядилось в воздух, вы должны быть уверены, что поверхность тела гладкая, что на нем нет мест, где поле чересчур велико.
§ 12. Ионный микроскоп
Сверхвысокое электрическое поле, окружающее всякий острый выступ заряженного проводника, получило интересное применение в одном приборе. Работа ионного микроскопа обусловлена мощными полями, возникающими вокруг металлического острия[7]. Устроен этот прибор так. Очень тонкая игла, диаметр кончика которой не более 1000 Å, помещена в центре стеклянной сферы, из которой выкачан воздух (фиг. 6.16).
Фиг. 6.16. Ионный микроскоп.
Внутренняя поверхность сферы покрыта тонким проводящим слоем флуоресцирующего вещества, и между иглой и флуоресцирующим покрытием создана очень высокая разность потенциалов.
Посмотрим сперва, что будет, если игла по отношению к флуоресцирующему экрану заряжена отрицательно. Линии поля у кончика иглы сконцентрированы очень сильно. Электрическое поле может достигать 40·106 в на 1 см. В таких сильных полях электроны отрываются от поверхности иглы и ускоряются на участке от иглы до экрана за счет разности потенциалов. Достигнув экрана, они вызывают в этом месте свечение (в точности, как на экране телевизионной трубки).
Электроны, пришедшие в данную точку флуоресцирующей поверхности,— это, в очень хорошем приближении, те самые электроны, которые покинули другой конец радиальной линии поля, потому что электроны движутся вдоль линий поля, соединяющих кончик иглы с поверхностью сферы. Так что на поверхности мы видим своего рода изображение кончика иглы. А точнее, мы видим картину испускательной способности поверхности иглы, т. е. легкости, с которой электроны могут оставить поверхность металлического острия. Если сила разрешения достаточно высока, то можно рассчитывать разрешить положения отдельных атомов на кончике иглы. Но с электронами такого разрешения достичь нельзя по следующим причинам. Во-первых, возникает квантовомеханическая дифракция электронных волн, и изображение затуманится. Во-вторых, в результате внутреннего движения в металле электроны имеют небольшую поперечную начальную скорость в момент вырывания из иглы и эта случайная поперечная составляющая скорости приведет к размазыванию изображения. В общей сложности эти эффекты ограничивают разрешимость деталей величиной порядка 25А.
Если, однако, мы переменим знак напряжения и впустим в колбу немного гелия, то детали разрешены будут лучше. Когда атом гелия сталкивается с кончиком острия, мощное поле срывает с атома электрон, и атом заряжается положительно. Затем ион гелия ускоряется вдоль силовой линии, пока не попадет в экран. Поскольку ион гелия несравненно тяжелее электрона, то и квантовомеханические длины волн у него намного меньше. А если к тому же температура не очень высока, то и влияние тепловых скоростей также значительно слабее, чем у электрона. Изображение размазывается меньше и получается куда более резкое изображение кончика иглы. С микроскопом, работающим на принципе ионной эмиссии, удалось добиться увеличения вплоть до 2 000 000 раз, т. е. в десять раз лучше, чем на лучших электронных микроскопах.
Фие. 6.17. Изображение, полученное ионным микроскопом.
На фиг. 6.17 показано, что удалось получить на таком микроскопе, применив вольфрамовую иглу. Центры атомов вольфрама ионизуют атомы гелия чуть иначе, чем промежутки между атомами вольфрама. Расположение пятен на флуоресцирующем экране демонстрирует расстановку отдельных атомов на вольфрамовом острие. Почему пятна имеют вид колец, можно понять, если представить себе большой ящик, набитый шарами, уложенными в прямоугольную сетку и образующими таким образом кубическую решетку. Эти шары — как бы атомы в металле. Если вы из этого ящика вырежете примерно сферическую часть, то увидите картину колец, характерную для атомной структуры. Ионный микроскоп впервые снабдил человечество средством видеть атомы. Замечательное достижение, да еще полученное с таким простым прибором.
Глава 7 ЭЛЕКТРИЧЕСКОЕ ПОЛЕ В РАЗНЫХ ФИЗИЧЕСКИХ УСЛОВИЯХ (ПРОДОЛЖЕНИЕ)
§ 1. Методы определения электростатического поля
В этой главе мы продолжим рассмотрение характеристик электрических полей в различных условиях. Сперва мы опишем один из наиболее разработанных методов расчета полей в присутствии проводников. Мы не рассчитываем, конечно, что эти усовершенствованные методы будут вами тотчас усвоены. Но вам должно быть интересно получить какое-то представление о характере задач, которые удается решать при помощи техники, излагаемой в специальных, более глубоких курсах. Затем мы приведем два примера, в которых нет ни заранее фиксированных распределений зарядов, ни растекания зарядов по проводнику, а вместо этого распределение определяют другие физические законы.
Как мы выяснили в гл. 6, задача об электростатическом поле решается очень просто, когда распределение зарядов оговорено заранее; остается только взять интеграл. Когда же имеются проводники, то возникают усложнения, потому что распределение зарядов на проводниках с самого начала неизвестно; заряды вынуждены сами распределять себя по поверхности проводника так, чтобы весь проводник приобрел одинаковый потенциал. Эти задачи так просто не решаются.
Мы рассмотрели обходный путь решения таких задач, при котором сначала отыскивают эквипотенциальные поверхности некоторого заданного распределения зарядов и потом одну из них заменяют проводящей поверхностью. Таким манером можно составить каталог частных решений для проводников любой формы, плоской, сферической и т. п. Использование изображений, описанное в гл. 6, является примером косвенного способа решения. Другой такой способ мы опишем в этой главе.
Если наша задача не относится к тем, для которых годен обходный путь, приходится решать ее в лоб. Математической основой такого способа решения задач является решение уравнения Лапласа
(7.1)
при условии, что потенциал φ на некоторой границе (поверхностях проводников) равен условленной константе. Задачи, связанные с решением дифференциального уравнения поля, удовлетворяющего некоторым граничным условиям, называются задачами о граничных значениях. Они явились предметом интенсивного математического изучения. Для сложных проводников общих аналитических методов решения нет. Даже такая простая задача, как поле заряженного металлического цилиндра с запаянными торцами — консервной банки, представляет огромные математические трудности. Ее можно решить лишь приближенно, численным методом. Единственный общий метод решения — численный.
Имеется несколько задач, в которых уравнение (7.1) все же решается. К примеру, задача о заряженном проводнике, имеющем форму эллипсоида вращения, может быть решена с помощью некоторых специальных функций. Решение для тонкого диска тогда можно получить, бесконечно сплющив эллипсоид. А бесконечно вытянув тот же эллипсоид, получим поле заряженной иглы. Но надо подчеркнуть, что единственный прямой способ, применимый всюду и всегда, это путь численных расчетов.
Задачу о граничных значениях можно также решать на ее физическом аналоге. Уравнение Лапласа возникает во многих физических ситуациях: при изучении установившегося потока тепла, безвихревого течения жидкости, отклонений упругой мембраны. Часто можно соорудить физическую модель, являющуюся аналогом решаемой нами электрической задачи. Измерив в модели величину, аналогичную интересующей нас, можно узнать решение задачи. Примером аналоговой техники является применение электролитической ванны для решения двумерных задач электростатики. Решение удается потому, что дифференциальное уравнение для потенциала в однородной проводящей среде такое же, как и в вакууме.
Имеется много физических задач, в которых физические поля в каком-то одном направлении не изменяются или этим изменением можно пренебречь по сравнению с изменениями в двух других направлениях. Такие задачи называют двумерными; поле зависит только от двух координат. Скажем, если вдоль оси z протянуть длинную заряженную проволоку, то в точках неподалеку от нее электрическое поле зависит от x и y, а не от z; задача двумерная. Так как в двумерных задачах ∂φ/∂z=0, то уравнение для φ в свободном пространстве имеет вид
(7.2)
Поскольку двумерное уравнение сравнительно простое, то существует широкий класс условий, в которых оно решается аналитически. Действительно, существует могучая математическая техника, связанная с теоремами теории функций комплексного переменного. К изложению ее мы сейчас и перейдем.
§ 2. Двумерные поля; функции комплексного переменного
Комплексная величина ℨ определяется так:
(Не перепутайте ℨ с координатой z; координата z не встретится в дальнейшем, потому что зависимости полей от z не будет.) Тогда каждой точке на плоскости (х, у) отвечает комплексное число ℨ. Мы можем считать ℨ особой (комплексной) переменной величиной и с ее помощью записывать обычные математические функции F(ℨ). Например,
или
или
Если дана некоторая определенная функция F(ℨ), то можно подставить ℨ=x+iy; получится функция от х и у с действительной и мнимой частями. Например,
(7.3)
Любую функцию F(ℨ) можно записать в виде суммы чисто действительной и чисто мнимой частей, и каждая из частей будет функцией от х и у:
(7.4)
где U(x, у) и V(x, у) — действительные функции. Значит, из любой комплексной функции F(ℨ) можно произвести две новые функции U (х, у) и V(x,y). К примеру, F(ℨ)=ℨ2 дает две функции:
(7.5)
и
(7.6)
Мы подошли сейчас к удивительной математической теореме, столь прекрасной, что доказательство ее придется отложить до соответствующего математического курса. (Если мы начнем заранее приоткрывать все тайны математики, она покажется вам потом скучной.) Теорема эта состоит вот в чем. Для любой «нормальной» функции (что это такое, математики вам объяснят лучше) функции U и V автоматически удовлетворяют соотношениям
(7.7)
и
(7.8)
Отсюда немедленно следует, что каждая из функций U и V удовлетворяет уравнению Лапласа:
(7.9)
(7.10)
Сразу видно, что для функций (7.5) и (7.6) эти уравнения выполняются.
Значит, всегда, отправившись от какой угодно обычной функции, можно прийти к двум функциям U (х, у) и V (х, у), которые обе есть решения двумерного уравнения Лапласа. Каждая функция представляет некоторый электростатический потенциал. Любая выбранная нами функция F(ℨ) обязана снабдить нас решением какой-то задачи из электростатики, вернее даже двух задач, потому что решением является как U, так и V. Так можно выписать сколько угодно решений: просто напридумывать множество функций и останется только найти задачи с такими решениями. Такой подход к задачам вполне допустим, хоть он и производится задом наперед.
Для примера посмотрим, к какой физической задаче приведет нас функция Р(ℨ)=ℨ2. Из нее мы получаем две потенциальные функции (7.5) и (7.6). Чтобы увидеть, какую задачу решает функция U, мы найдем эквипотенциальные поверхности, полагая U равным постоянному числу А:
Это уравнение прямоугольной гиперболы. Перебирая разные значения А, мы получаем семейство гипербол, начерченное на фиг. 7.1. Когда A=0, то гиперболы вырождаются в пару диагоналей, проходящих через начало.
Фиг. 7.1. Два семейства ортогональных кривых, которые могут представлять собой эквипотенциальные линии двумерного электростатического поля.
Такое семейство эквипотенциальных поверхностей встречается в нескольких физических задачах. В одной из них оно изображает детали структуры поля возле точки между двумя одинаковыми точечными зарядами. В другой оно изображает поле внутри прямого угла, образованного двумя проводящими плоскостями. Если есть два электрода, изогнутых так, как показано на фиг. 7.2, и имеющих разные потенциалы, то поле внутри угла С будет выглядеть в точности так же, как поле около начала координат на фиг. 7.1.
Фиг. 7.2. Поле возле точки С такое же, как на фиг. 7.1.
Сплошные линии — это эквипотенциальные поверхности, а пересекающие их штриховые — это линии поля Е. Вблизи острия или выступа электрическое поле повышается, а возле впадины или отверстия оно слабеет.
Найденное нами решение отвечает также гиперболическому электроду, помещенному около прямого угла, или двум гиперболам при соответствующих потенциалах. Заметьте, что поле фиг. 7.1 имеет интересное свойство. Составляющая х электрического поля Е дается выражением
т. е. электрическое поле пропорционально расстоянию от оси координат. Этот факт был использован, чтобы создать устройство (называемое квадрупольной линзой), необходимое для фокусирования пучков частиц (см. вып. 6, гл. 29, § 9). Фокусирующее поле обычно получают с помощью четырех гиперболических электродов, изображенных на фиг. 7.3.
Фиг. 7.3. Поле квадрупольной линзы.
Проводя здесь линии электрического поля, мы просто перечертили с фиг. 7.1 семейство штриховых кривых V=const. Эти линии достались нам совершенно бесплатно! Кривые V=const перпендикулярны к кривым U=const, как это следует из уравнений (7.7) и (7.8). Как только мы выбираем функцию F(ℨ), то получаем из U и V сразу же эквипотенциальные линии и линии поля. Мы давно знаем, что можно решить на выбор любую из двух задач, смотря по тому, какое семейство кривых мы примем за эквипотенциальное.
Другим примером послужит функция
(7.11)
Если мы напишем
где
и
то
откуда следует
(7.12)
Кривые U (х, у)=А и V (х, у)=В, где U и V взяты из уравнения (7.12), проведены на фиг. 7.4.
Фиг. 7.4. Кривые постоянных U(x, у) и V(x, у) ив уравнения (7.12).
И здесь тоже можно назвать немало случаев, описываемых этими полями. Один из самых интересных — это поле у края тонкой пластинки. Если линия В=0 направо от оси у изображает тонкую заряженную пластину, то линии поля близ нее даются кривыми с различными А. Физическая картина показана на фиг. 7.5.
Фиг. 7.5. Электрическое поле возле края тонкой заземленной пластины.
Дальнейшие примеры — это функция
(7.13)
дающая нам поле снаружи прямого угла, функция
(7.14)
дающая поле заряженной нити, и функция
(7.15)
изображающая поле двумерного аналога электрического диполя, т. е. двух параллельных прямых, заряженных противоположным знаком и помещенных вплотную друг к другу.
Больше этим вопросом в нашем курсе мы заниматься не будем; мы должны только подчеркнуть, что, хотя техника комплексных переменных часто оказывается очень мощной, она ограничена все же только двумерными задачами; к тому же это все-таки косвенный метод.
§ 3. Колебания плазмы
Займемся теперь такими физическими задачами, в которых поле создается не закрепленными зарядами и не зарядами на проводящих поверхностях, а сочетанием обоих факторов. Иными словами, полем управляют одновременно две системы уравнений: 1) уравнения электростатики, связывающие электрическое поле с распределением зарядов; 2) уравнения из другой области физики, определяющие положение или движения зарядов в поле.
Сперва мы разберем один динамический пример. В нем движение зарядов контролируется законами Ньютона. Простой пример такого положения вещей наблюдается в плазме, в ионизованном газе, состоящем из ионов и свободных электронов, распределенных в какой-то области пространства. Ионосфера (верхний слой атмосферы) служит примером такой плазмы. Ультрафиолетовые лучи Солнца отрывают от молекул воздуха электроны и создают свободные электроны и ионы. В плазме положительные ионы намного тяжелее электронов, так что можно пренебречь движением в ней ионов по сравнению с движением электронов.
Пусть n0 будет плотностью электронов в невозмущенном равновесном состоянии. Такой же должна быть и плотность положительных ионов, потому что в невозмущенном состоянии плазма нейтральна. Теперь допустим, что электроны каким-то образом выведены из равновесия. Что тогда получится? Если плотность электронов в какой-то области возросла, они начнут отталкиваться и стремиться вернуться в прежнее положение равновесия. Двигаясь к своим первоначальным положениям, они наберут кинетическую энергию и вместо того, чтобы замереть в равновесной конфигурации, проскочат мимо. Начнутся колебания. Нечто похожее наблюдается в звуковых волнах, но там возвращающей силой было давление газа. В плазме возвращающая сила — это действующее на электроны электрическое притяжение.
Чтобы упростить рассуждения, мы будем заниматься только одномерным движением электронов — скажем, в направлении x. Предположим, что электроны, первоначально находившиеся в точке х, к моменту t сместились из положения равновесия на расстояние s (x, t). Раз они сместились, то плотность их, вообще говоря, изменилась. Это изменение подсчитать легко. Если посмотреть на фиг. 7.6, то видно, что электроны, вначале находившиеся между плоскостями а и b, сдвинулись и теперь находятся между плоскостями а' и b'. Количество электронов между а и b прежде было пропорционально n0Δх; теперь то же их количество находится в промежутке шириной Δx+Δs.
Фиг. 7.6. Движение волны в плазме. Электроны от плоскости а сдвигаются к а', а от b —к b'.
Плотность теперь стала
(7.16)
Если изменение плотности мало, то можно написать [заменяя с помощью биномиального разложения (1+ε)-1 на (1-ε)]
(7.17)
Что касается ионов, то предположим, что они не сдвинулись заметно с места (инерция-то у них куда больше), так что плотность их осталась прежней, n0. Заряд каждого электрона -qe, и средняя плотность заряда в любой точке равна
или
(7.18)
(здесь Δs/Δx записано через дифференциалы).
Далее, уравнения Максвелла связывают с плотностью зарядов электрическое поле. В частности,
(7.19)
Если задача действительно одномерна (и никаких полей, кроме вызываемых смещением электронов, нет), то у электрического поля Е есть одна-единственная составляющая Ех. Уравнение (7.19) вместе с (7.18) приведет к
(7.20)
Интегрируя (7.20), получаем
(7.21)
Постоянная интегрирования К равна нулю, потому что Ех=0 при s=0.
Сила, действующая на смещенный электрон, равна
(7.22)
т. е. возвращающая сила пропорциональна смещению s электрона. Это приведет к гармоническим колебаниям электронов. Уравнение движения смещенного электрона имеет вид
(7.23)
Отсюда следует, что s меняется по гармоническому закону. Во времени s меняется как cos ωt или, если использовать экспоненту (см. вып. 3), как
(7.24)
Частота колебаний ωр определяется из (7.23):
(7.25)
Это число, характеризующее плазму, называют собственной частотой колебаний плазмы, или плазменной частотой.
Оперируя с электронами, многие предпочитают получать ответы в единицах e2, определяемых как
(7.26)
При этом условии (7.25) превращается в
(7.27)
В таком виде эту формулу можно встретить во многих книгах.
Итак, мы обнаружили, что возмущения плазмы приводят к свободным колебаниям электронов вблизи положения равновесия с собственной частотой ωр, пропорциональной корню квадратному из плотности электронов. Плазменные электроны ведут себя как резонансная система, подобная описанным в вып. 2, гл. 23.
Этот собственный резонанс плазмы приводит к интересным эффектам. Например, при прохождении радиоволн сквозь ионосферу обнаруживается, что они могут пройти только в том случае, если их частота выше плазменной частоты. А иначе они отражаются обратно. Для связи с искусственным спутником мы используем высокие частоты. Если же мы хотим связаться с радиостанцией, расположенной где-то за горизонтом, то необходимы частоты меньшие, чем плазменная частота, иначе сигнал не отразится обратно к Земле.
Другой интересный пример колебаний плазмы наблюдается в металлах. В них содержится плазма из положительных ионов и свободных электронов. Плотность n0 там очень высока, значит, велика и ωр. Но колебания электронов все же можно обнаружить. Ведь, согласно квантовой механике, гармонический осциллятор с собственной частотой ωр обладает уровнями энергии, отличающимися друг от друга на величину ℏωр. Значит, если, скажем, обстреливать электронами алюминиевую фольгу и очень точно измерять их энергию по ту сторону фольги, то можно ожидать, что временами электроны будут из-за колебаний плазмы терять как раз энергию ℏωp. Так это и происходит. Впервые это явление наблюдалось экспериментально в 1936 г. Электроны с энергиями от нескольких сот до нескольких тысяч электронвольт, рассеиваясь от тонкой металлической фольги или проходя сквозь нее, теряли энергию порциями. Эффект оставался непонятым до 1953 г., пока Бом и Пайнс[8] не показали, что все это можно объяснить квантовым возбуждением плазмы в металле.
§ 4. Коллоидные частицы в электролите
Обратимся к другому явлению, когда местоположение зарядов определяется потенциалом, создаваемым в какой-то степени самими зарядами. Такой эффект существен для поведения коллоидов. Коллоид — это взвесь маленьких заряженных частичек в воде. Хотя эти частички и микроскопические, но по сравнению с атомом они все же очень велики. Если бы коллоидные частицы не были заряжены, они бы стремились коагулировать (слиться) в большие комки; но, будучи заряженными, они отталкиваются друг от друга и остаются во взвешенном состоянии. Если в воде растворена еще соль, то она диссоциирует (расползается) на положительные и отрицательные ионы. (Такой раствор ионов называется электролитом.) Отрицательные ионы притягиваются к коллоидным частицам (будем считать, что их заряды положительны), а положительные — отталкиваются. Нам нужно узнать, как ионы, окружающие каждую частицу коллоида, распределены в пространстве.
Чтобы мысль была яснее, рассмотрим только одномерный случай. Представим себе коллоидную частицу в виде очень большого (по сравнению с атомом!) шара; тогда мы можем малую часть ее поверхности считать плоскостью. (Вообще, пытаясь понять новое явление, лучше разобраться в нем на чрезвычайно упрощенной модели; и только потом, поняв суть проблемы, стоит браться за более точные расчеты.)
Предположим, что распределение ионов создает плотность зарядов ρ(х) и электрический потенциал φ, связанные электростатическим законом ∇2φ=-ρ/ε0, или в одномерном случае законом
(7.28)
Как бы распределились ионы в таком поле, если бы потенциал подчинялся этому уравнению? Узнать это можно при помощи принципов статистической механики. Вопрос в том, как определить φ, чтобы вытекающая из статистической механики плотность заряда тоже удовлетворяла бы условию (7.28)?
Согласно статистической механике (см. вып. 4, гл. 40), частицы, пребывая в тепловом равновесии в поле сил, распределяются так, что плотность n частиц с координатой x дается формулой
(7.29)
где U(x) — потенциальная энергия, k — постоянная Больцмана, а Т — абсолютная температура.
Предположим, что у всех ионов один и тот же электрический заряд, положительный или отрицательный. На расстоянии х от поверхности коллоидной частицы положительный ион будет обладать потенциальной энергией
Плотность положительных ионов тогда равна
а плотность отрицательных
Суммарная плотность заряда
или
(7.30)
Подставляя в (7.28), увидим, что потенциал φ должен удовлетворять уравнению
(7.31)
Это уравнение решается в общем виде [помножьте обе его части на 2(dφ/dx) и проинтегрируйте по х], но, продолжая упрощать задачу, мы ограничимся здесь только предельным случаем малых потенциалов или высоких температур Т. Малость φ отвечает разбавленному раствору. Показатель экспоненты тогда мал, и можно взять
(7.32)
Уравнение (7.31) дает
(7.33)
Заметьте, что теперь в правой части стоит знак плюс (решение не колебательное, а экспоненциальное).
Общее решение (7.33) имеет вид
(7.34)
где
(7.35)
Постоянные А и В определяются из добавочных условий. В нашем случае В должно быть нулем, иначе потенциал для больших х обратится в бесконечность. Итак,
(7.36)
где А — потенциал при x=0 на поверхности коллоидной частицы.
Потенциал убывает в e раз при удалении на D (фиг. 7.7).
Фиг. 7.7. Изменение потенциала у поверхности коллоидной частицы. D — дебаевская длина.
Число D называется дебаевской длиной; это мера толщины ионной оболочки, окружающей в электролите каждую большую заряженную частицу. Уравнение (7.36) утверждает, что оболочка становится тоньше по мере увеличения концентрации ионов (n0) или уменьшения температуры.
Постоянную А в (7.36) легко получить, если известен поверхностный заряд а на поверхности заряженной частицы. Мы знаем, что
(7.37)
Но Е это также градиент φ
(7.38)
откуда получается
(7.39)
Подставив этот результат в (7.36), мы получим (положив х=0), что потенциал коллоидной частицы равен
(7.40)
Заметьте, что этот потенциал совпадает с разностью потенциалов в конденсаторе с промежутком D и поверхностной плотностью заряда σ.
Мы сказали, что коллоидные частицы не слипаются вследствие электрического отталкивания. Но теперь мы видим, что невдалеке от поверхности частицы из-за возникающей вокруг нее ионной оболочки поле спадает. Если бы оболочка стала достаточно тонкой, у частиц появился бы шанс столкнуться друг с другом. Тогда они бы слиплись, коллоид бы осадился и выпал из жидкости. Из нашего анализа ясно, что после добавления в коллоид подходящего количества соли начнется выпадение осадка. Этот процесс называется «высаливанием коллоида».
Другой интересный пример — это влияние растворения соли на осаждение белка. Молекула белка — это длинная, сложная и гибкая цепь аминокислот. На ней там и сям имеются заряды, и временами заряд какого-то одного знака, скажем отрицательного, распределяется вдоль всей цепи. В результате взаимного отталкивания отрицательных зарядов белковая цепь распрямляется. Если в растворе имеются еще другие такие же молекулы-цепочки, то они не слипаются между собой вследствие того же отталкивания. Так возникает в жидкости взвесь молекул-цепочек. Но стоит добавить туда соли, как свойства взвеси изменятся. Уменьшится дебаевская длина, молекулы начнут сближаться и свертываться в спирали. А если соли много, то молекулы белка начнут выпадать в осадок. Существует множество других химических явлений, которые можно понять на основе анализа электрических сил.
§ 5. Электростатическое поле сетки
Напоследок мы хотим изложить еще одно интересное свойство электрических полей. Оно используется в электрических приборах, электронных лампах и для других целей. Речь идет о поведении электрического поля близ сетки, составленной из заряженных проволочек. Чтоб упростить задачу, возьмем плоскую систему параллельных проволочек бесконечной длины, промежутки между которыми одинаковы.
Если мы посмотрим на поле где-то высоко над плоскостью проволочек, перед нами предстанет однородное электрическое поле, такое, словно заряд распределен на плоскости равномерно. По мере приближения к сетке начнутся отклонения от прежней однородности. Мы хотим оценить, насколько близко от сетки появятся заметные изменения в потенциале. На фиг. 7.8 показано примерное расположение эквипотенциальных поверхностей на разных расстояниях от сетки. Чем ближе к сетке, тем сильнее колебания. Двигаясь параллельно сетке, мы заметим, что поле изменяется периодически.
Фиг. 7.8. Эквипотенциальные поверхности над однородной сеткой из заряженных проволочек.
Мы уже знаем (см. вып. 4, гл. 50), что любая периодическая величина может быть представлена в виде суммы синусных волн (теорема Фурье). Посмотрим, нельзя ли найти подходящую колебательную функцию, которая удовлетворяет нашим уравнениям поля.
Если проволочки лежат в плоскости ху параллельно оси y, то можно попробовать испытать члены вида
(7.41)
где а — расстояние между нитями, а n — число колебаний. (Мы предположили, что нити эти очень длинные, так что никаких изменений по у не заметно.) Полное решение должно состоять из суммы таких членов при n=1, 2, 3... Чтоб получился правильный потенциал, оно должно в области над сеткой (где зарядов нет) подчиняться уравнению Лапласа, т. е.
Испытывая этим уравнением функцию φ из (7.41), мы получаем
(7.42)
т.е. Fn(z) должно удовлетворять условию
(7.43)
Итак, должно быть
(7.44)
(7.45)
Мы обнаружили, что если имеется компонента Фурье n-й гармоники поля, то эта компонента должна убывать по экспоненте с высотой, причем характерным расстоянием является z0=a/2πn. Амплитуда у первой гармоники (n=1) уменьшается в е2π раз (очень резкое падение) каждый раз, когда мы удаляемся от сетки на величину одного промежутка а. Другие гармоники убывают еще быстрее. Мы видим, что уже на расстоянии в несколько а сетка кажется почти однородной, т. е. колебания поля очень малы. Конечно, всегда остается «нулевая гармоника» поля
которая и дает однородное поле при больших z. Для полного решения нужно добавить этот член к сумме членов вида (7.41) с Fn из (7.44), причем каждый член надо взять с коэффициентом Аn. Эти коэффициенты выбираются так, чтобы после дифференцирования получилось поле, согласующееся с плотностью зарядов λ на проволочках сетки.
Развитым нами методом можно объяснить, почему электростатическая защита с помощью сетки ничуть не хуже сплошных листов металла. Поле за сеткой равно нулю всюду, за исключением промежутка у самой сетки, не превышающего по размерам нескольких ее ячеек. Мы видим, что медная сетка, которая намного легче и дешевле сплошной медной обшивки, вполне пригодна для защиты чувствительного электрического оборудования от возмущающих внешних полей.
Глава 8 ЭЛЕКТРОСТАТИЧЕСКАЯ ЭНЕРГИЯ
Повторить: гл. 4 (вып. 1) «Сохранение энергии»; гл. 13 и 14 (вып. 1) «Работа и потенциальная энергия»
§ 1. Электростатическая энергия зарядов. Однородный шар
Одно из самых интересных и полезных открытий в механике —это закон сохранения энергии. Зная формулы для кинетической и потенциальной энергий механической системы, мы способны обнаруживать связь между состояниями системы в два разных момента времени, не вникая в подробности того, что происходит между этими моментами. Мы хотим определить теперь энергию электростатических систем. В электричестве сохранение энергии окажется столь же полезным для обнаружения многих любопытных фактов.
Закон, по которому меняется энергия при электростатическом взаимодействии, очень прост; на самом деле мы его уже обсуждали. Пусть имеются заряды q1 и q2, разделенные промежутком r12. У этой системы есть какая-то энергия, потому что понадобилась какая-то работа, чтобы сблизить заряды. Мы подсчитывали работу, производимую при сближении двух зарядов с большого расстояния; она равна
(8.1)
Мы знаем из принципа наложения, что если зарядов много, то общая сила, действующая на любой из зарядов, равна сумме сил, действующих со стороны всех прочих зарядов. Отсюда следует, что полная энергия системы нескольких зарядов есть сумма членов, выражающих взаимодействие каждой пары зарядов по отдельности. Если qi и qj — какие-то два из зарядов, а расстояние между ними rij (фиг. 8.1),
Фиг. 8.1. Электростатическая анергия системы частиц есть сумма электростатических энергий каждой пары.
то энергия именно этой пары равна
(8.2)
Полная электростатическая энергия U есть сумма энергий всевозможных пар зарядов:
(8.3)
Если распределение задается плотностью заряда ρ, то сумму в (8.3) нужно, конечно, заменить интегралом.
Мы расскажем здесь об энергии с двух точек зрения. Первая — применение понятия энергии к электростатическим задачам; вторая — разные способы оценки величины энергии. Порой легче бывает подсчитать выполненную в каком-то случае работу, чем оценить величину суммы в (8.3) или величину соответствующего интеграла. Для образца подсчитаем энергию, необходимую для того, чтобы собрать из зарядов однородно заряженный шар. Энергия здесь есть не что иное, как работа, которая затрачивается на собирание зарядов из бесконечности.
Представьте, что мы сооружаем шар, наслаивая последовательно друг на друга сферические слои бесконечно малой толщины. На каждой стадии процесса мы собираем небольшое количество электричества и размещаем его тонким слоем от r до r+dr. Мы продолжаем процесс этот до тех пор, пока не доберемся до заданного радиуса а (фиг. 8.2).
Фиг. 8.2. Энергию однородно заряженного шара можно рассчитать, вообразив, что его слепили, последовательно наслаивая друг на друга сферические слои.
Если Qr — это заряд шара в тот момент, когда шар доведен до радиуса r, то работа, требуемая для доставки на шар заряда dQ, равна
(8.4)
Если плотность заряда внутри шара есть ρ, то заряд Qr равен
а заряд dQ равен
Уравнение (8.4) превращается в
(8.5)
Полная энергия, требуемая на то, чтобы накопить полный шар зарядов, равна интегралу по dU от r=0 до r=а, т.е.
(8.6)
а если мы желаем выразить результат через полный заряд Q шара, то
(8.7)
Энергия пропорциональна квадрату полного заряда и обратно пропорциональна радиусу. Можно представить (8.7) и так: среднее значение (1/rij) по всем парам точек внутри шара равно 6/5а.
§ 2. Энергия конденсатора. Силы, действующие на заряженные проводники
Рассмотрим теперь энергию, требуемую на то, чтоб зарядить конденсатор. Если заряд Q был снят с одной обкладки конденсатора и перенесен на другую, то между обкладками возникает разность потенциалов, равная
(8.8)
где С — емкость конденсатора. Сколько работы затрачено на зарядку конденсатора? Поступая точно так же, как мы поступали с шаром, вообразим, что конденсатор уже заряжен переносом заряда с одной обкладки на другую маленькими порциями dQ. Работа, требуемая для переноса заряда dQ, равна
Взяв V из (8.8), напишем
Или, интегрируя от Q=0 до конечного заряда Q, получаем
(8.9)
Эту энергию можно также записать в виде
(8.10)
Вспоминая, что емкость проводящей сферы (по отношению к бесконечности) равна
мы немедленно получим из уравнения (8.9) энергию заряженной сферы
(8.11)
Это выражение, конечно, относится также и к энергии тонкого сферического слоя с полным зарядом Q; получается 5/6 энергии однородно заряженного шара [уравнение (8.7)].
Посмотрим, как применяется понятие электростатической энергии. Рассмотрим два вопроса. Какова сила, действующая между обкладками конденсатора? Какой вращательный (крутящий) момент вокруг некоторой оси испытывает заряженный проводник в присутствии другого проводника с противоположным зарядом? На такие вопросы легко ответить, пользуясь нашим выражением (8.9) для электростатической энергии конденсатора и принципом виртуальной работы (см. вып. 1, гл. 4, 13 и 14).
Применим этот метод для определения силы, действующей между двумя обкладками плоского конденсатора. Если мы представим, что промежуток между пластинами расширился на небольшую величину Δz, то тогда механическая работа, производимая извне для того, чтобы раздвинуть обкладки, была бы равна
(8.12)
где F — сила, действующая между обкладками. Эта работа обязана быть равной изменению электростатической энергии конденсатора, если только заряд конденсатора не изменился.
Согласно уравнению (8.9), энергия конденсатора первоначально была равна
Изменение в энергии (если мы не допускаем изменения величины заряда) тогда равно
(8.13)
Приравнивая (8.12) и (8.13), получаем
(8.14)
что может также быть записано в виде
(8.15)
Ясно, эта сила здесь возникает от притяжения зарядов на обкладках; мы видим, однако, что заботиться о том, как там они распределены, нам нечего; единственное, что нам нужно, — это учесть емкость С.
Легко понять, как обобщить эту идею на проводники произвольной формы и на прочие составляющие силы. Заменим в уравнении (8.14) F той составляющей, которая нас интересует, а Δz — малым смещением в соответствующем направлении. Или если у нас есть электрод, насаженный на какую-то ось, и мы хотим знать вращательный момент τ, то запишем виртуальную работу в виде
где Δθ — небольшой угловой поворот. Конечно, теперь Δ(1/C) должно быть изменением 1/С, отвечающим повороту на Δθ. Таким способом мы можем определить вращательный момент, действующий на подвижные пластины переменного конденсатора, показанного на фиг. 8.3.
Фиг. 8.3. Чему равен вращательный момент, действующий на переменный конденсатор?
Вернемся к частному случаю плоского конденсатора; мы можем взять формулу для емкости, выведенную в гл. 6:
(8.16)
где А—площадь каждой обкладки. Если промежуток увеличится на Δz, то
Из (8.14) тогда следует, что сила притяжения между двумя обкладками равна
(8.17)
Взглянем на уравнение (8.17) повнимательнее и подумаем, нельзя ли сказать, как возникает эта сила. Если заряд на одной из обкладок мы запишем в виде
то (8.17) можно будет переписать так:
Или поскольку поле между пластинами равно
то
(8.18)
Можно было сразу догадаться, что сила, действующая на одну из пластин, будет равна заряду Q этой пластины, умноженному на поле, действующее на заряд. Но что удивляет, так это множитель 1/2. Дело в том, что Е0 —это не то поле, которое действует на заряды. Если вообразить, что заряд на поверхности пластины занимает какой-то тонкий слой (фиг. 8.4), то поле будет меняться от нуля на внутренней границе слоя до Е0 в пространстве снаружи пластин. Среднее поле, действующее на поверхностные заряды, равно Е0/2. Вот отчего в (8.18) стоит множитель 1/2.
Фиг. 8.4. Поле у поверхности проводника меняется от нуля до E0=σ/ε0, когда пересечен слой поверхностного заряда. 1 — проводящая пластина; 2 — слой поверхностного заряда.
Вы должны обратить внимание на то, что, рассчитывая виртуальную работу, мы предположили, что заряд конденсатора постоянен, что конденсатор не был электрически связан с другими предметами и полный заряд не мог изменяться.
А теперь пусть мы предположили, что при виртуальных перемещениях конденсатор поддерживается при постоянной разности потенциалов. Тогда мы должны были бы взять
и вместо (8.15) мы бы имели
что приводит к силе, равной по величине той, что была получена в уравнении (8.15) (так как V=Q/C), но с противоположным знаком!
Конечно, сила, действующая между пластинами конденсатора, не меняет свой знак, когда мы отсоединяем конденсатор от источника электричества. Кроме того, мы знаем, что две пластины с разноименными электрическими зарядами должны притягиваться. Принцип виртуальной работы во втором случае был применен неправильно, мы не приняли во внимание виртуальную работу, производимую источником, заряжающим конденсатор. Это значит, что для того, чтобы удержать потенциал при постоянном значении V, когда меняется емкость, источник электричества должен снабдить конденсатор зарядом VΔC. Но этот заряд поступает при потенциале V, так что работа, выполняемая электрической системой, удерживающей заряд постоянным, равна V2ΔC. Механическая работа FΔz плюс эта электрическая работа V2ΔC вместе приводят к изменению полной энергии конденсатора на 1/2V2ΔC. Поэтому на механическую работу, как и прежде, приходится FΔz=-1/2 V2ΔC.
§ 3. Электростатическая энергия ионного кристалла
Рассмотрим теперь применение понятия электростатической энергии в атомной физике. Мы не можем запросто измерять силы, действующие между атомами, но часто нас интересует разница в энергиях двух расстановок атомов (к примеру, энергия химических изменений). Так как атомные силы в основе своей — это силы электрические, то и химическая энергия в главной своей части — это просто электростатическая энергия.
Рассмотрим, например, электростатическую энергию ионной решетки. Ионный кристалл, такой, как NaCl, состоит из положительных и отрицательных ионов, которые можно считать жесткими сферами. Они электрически притягиваются, пока не соприкоснутся; затем вступает в дело сила отталкивания, которая быстро возрастает, если мы попытаемся сблизить их теснее.
Для первоначального приближения вообразим себе совокупность жестких сфер, представляющих атомы в кристалле соли. Строение такой решетки было определено с помощью дифракции рентгеновских лучей. Эта решетка кубическая — что-то вроде трехмерной шахматной доски. Сечение ее изображено на фиг. 8.5. Промежуток между ионами 2,81 Å (или 2,81·10-8 см).
Фиг. 8.5. Поперечный разрез кристалла соли в масштабе нескольких атомов. В двух перпендикулярных к плоскости рисунка сечениях будет такое же шахматное расположение ионов Na и Сl (см. вып. 1, фиг. 1.7).
Если наше представление о системе правильно, мы должны уметь проверить его, задав следующий вопрос: сколько понадобится энергии, чтобы разбросать эти ионы, т. е. полностью разделить кристалл на ионы? Эта энергия должна быть равна теплоте испарения соли плюс энергия, требуемая для диссоциации молекул на ионы. Полная энергия разделения NaCl на ионы, как следует из опыта, равна 7,92 эв на молекулу.
Пользуясь коэффициентом перевода
и числом Авогадро (количество молекул в грамм-молекуле)
можно представить энергию испарения в виде
Излюбленная единица энергии, которой пользуются физико-химики,— килокалория, равная 4190 дж; так что 1 эв на молекулу — это все равно что 23 ккал/моль. Химик сказал бы поэтому, что энергия диссоциации NaCl равна
Можем ли мы получить эту химическую энергию теоретически, подсчитывая, сколько работы понадобится для того, чтобы распотрошить кристалл? По нашей теории она равна сумме потенциальных энергий всех пар ионов. Проще всего составить себе представление об этой энергии, выбрав какой-то один ион и подсчитав его потенциальную энергию по отношению ко всем прочим ионам. Это даст удвоенную энергию на один ион, потому что энергия принадлежит парам зарядов. Если нам нужна энергия, связанная с одним каким-то ионом, то мы должны взять полусумму. Но на самом деле нам нужна энергия на молекулу, содержащую два иона, так что вычисляемая нами сумма прямо даст нам энергию на молекулу.
Энергия иона по отношению к его ближайшему соседу равна —e2/a, где e2=q2e/4πε0, а а — промежуток между центрами ионов. (Мы рассматриваем одновалентные ионы.) Эта энергия равна —5,12 эв; мы уже видим, что ответ получается правильного порядка величины. Но нам еще предстоит подсчитать бесконечный ряд членов.
Начнем со сложения энергий всех ионов, лежащих по прямой. Считая ион, отмеченный на фиг. 8.5 значком Na, нашим выделенным ионом, сперва рассмотрим те ионы, которые лежат на одной с ним горизонтали. Там есть два ближайших к нему иона хлора с отрицательными зарядами, на расстоянии a от Na каждый. Затем идут два положительных иона на расстояниях 2а и т. д. Обозначая эту сумму энергий U1, напишем
(8.19)
Ряд сходится медленно, так что численно его оценить трудно, но известно, что он равен ln2. Значит,
(8.20)
Теперь перейдем к ближайшей линии, примыкающей сверху. Ближайший ион отрицателен и находится на расстоянии а. Затем стоят два положительных на расстояниях √2а. Следующая пара — на расстоянии √5а, следующая— на √10а и т. д. Для всей линии получается ряд
(8.21)
Таких линий четыре: выше, ниже, спереди и сзади. Затем имеются четыре линии, которые являются ближайшими по диагонали, и т. д. и т. д.
Если вы терпеливо произведете подсчеты для всех линий и затем все сложите, то увидите, что итог таков:
Это число немного больше того, что было получено в (8.20) для первой линии. Учитывая, что е2/а=-5,12 эв, мы получим
Наш ответ приблизительно на 10% больше экспериментально наблюдаемой энергии. Он показывает, что наше представление о том, что вся решетка скрепляется электрическими кулоновскими силами, в основе своей правильно. Мы впервые получили специфическое свойство макроскопического вещества из наших познаний в атомной физике. Со временем мы добьемся гораздо большего. Область науки, пробующая понять поведение больших масс вещества на языке законов атомного поведения, называется физикой твердого тела.
А как же с ошибкой в наших расчетах? Почему они не до конца верны? Мы не учли отталкивание между ионами на близких расстояниях. Это ведь не совершенно жесткие сферы, так что, сблизясь, они немного сплющиваются. Но они не очень мягкие и сплющиваются самую чуточку. Все же какая-то энергия уходит на эту деформацию, и вот, когда ионы разлетаются, эта энергия высвобождается. Энергия, которая на самом деле нужна для того, чтобы развести все ионы врозь, чуть меньше той, которую мы вычислили; отталкивание помогает преодолеть электростатическое притяжение.
А есть ли возможность как-то прикинуть долю этого отталкивания? Да, если мы знаем закон силы отталкивания. Мы еще не умеем пока анализировать детали механизма отталкивания, но некоторое представление о его характеристиках мы можем получить из макроскопических измерений. Измеряя сжимаемость кристалла как целого, можно получить количественное представление о законе отталкивания между ионами, а отсюда — о его вкладе в энергию. Таким путем было обнаружено, что вклад этот должен составлять 1/9,4 часть вклада от электростатического притяжения и иметь, естественно, противоположный знак. Если этот вклад мы вычтем из чисто электростатической энергии, то получим для энергии диссоциации на молекулу число 7,99 эв. Это намного ближе к наблюдаемому результату 7,92 эв, но все еще не находится в совершенном согласии. Есть еще одна вещь, которую мы не учли: мы не сделали никаких допущений о кинетической энергии колебаний кристалла. Если сделать поправку на этот эффект, то сразу возникнет очень хорошее согласие с экспериментальной величиной. Значит, наши представления правильны: главный вклад в энергию кристалла, такого, как NaCl, является электростатическим.
§ 4. Электростатическая энергия ядра
Обратимся теперь к другому примеру электростатической энергии в атомной физике — к электростатической энергии атомного ядра. Прежде чем заняться этим вопросом, мы должны рассмотреть некоторые свойства тех основных сил (называемых ядерными силами), которые скрепляют между собой протоны и нейтроны в ядре. Первое время после открытия ядер — и протонов с нейтронами, которые их составляют,— надеялись, что закон сильной, неэлектрической части силы, действующей, например, между одним протоном и другим, будет иметь какой-нибудь простой вид, подобный, скажем, закону обратных квадратов в электричестве. Если бы удалось определить этот закон сил и, кроме того, сил, действующих между протоном и нейтроном и между нейтроном и нейтроном, то тогда можно было бы теоретически описать все поведение этих частиц в ядрах. Поэтому начала разворачиваться большая программа изучения рассеяния протонов в надежде отыскать закон сил, действующих между ними; но после тридцатилетних усилий ничего простого не возникло. Накопился заметный багаж знаний о силах, действующих между протоном и протоном, но при этом обнаружилось, что эти силы сложны настолько, насколько возможно себе представить.
Под словами «сложны настолько, насколько возможно» мы понимаем, что силы зависят от всех величин, от каких они могли бы зависеть.
Во-первых, сила не простая функция расстояния между протонами. На больших расстояниях существует притяжение, на меньших — отталкивание. Зависимость от расстояния — это некоторая сложная функция, все еще не очень хорошо известная.
Во-вторых, сила зависит от ориентации спина протонов. У протонов есть спин, а два взаимодействующих протона могут вращаться либо в одном и том же, либо в противоположных направлениях. И сила, когда спины параллельны, отличается от того, что бывает, когда спины антипараллельны (фиг. 8.6, а и б). Разница велика; пренебречь ею нельзя.
Фиг. 8.6. Сила взаимодействия двух протонов зависит от всех мыслимых параметров.
В-третьих, сила заметно изменяется, смотря по тому, параллелен или нет промежуток между протонами их спинам (фиг. 8.6, в и г) или же он им перпендикулярен (фиг. 8.6, а и б).
В-четвертых, сила, как и в магнетизме, зависит (и даже значительно сильнее) от скорости протонов. И эта скоростная зависимость силы отнюдь не релятивистский эффект; она велика даже тогда, когда скорости намного меньше скорости света. Более того, эта часть силы зависит, кроме величины скорости, и от других вещей. Скажем, когда протон движется невдалеке от другого протона, сила меняется от того, совпадает ли орбитальное движение по направлению со спиновым вращением (фиг. 8.6, д), или эти два направления противоположны (фиг. 8.6, е). Это то, что называется «спин-орбитальной» частью силы.
Не в меньшей степени сложный характер имеют силы взаимодействия протона с нейтроном и нейтрона с нейтроном. До сего дня мы не знаем механизма, определяющего эти силы, не знаем никакого простого способа их понять.
Впрочем, в одном важном отношении ядерные силы все же проще, чем могли бы быть. Ядерные силы, действующие между двумя нейтронами, совпадают с силами, действующими между протоном и нейтроном, и с силами, действующими между двумя протонами! Если в некоторой системе, в которой имеются ядра, мы заменим нейтрон протоном (и наоборот), то ядерные взаимодействия не изменятся! «Фундаментальная причина» этого равенства нам не известна, но это проявление важного принципа, который может быть расширен на законы взаимодействия других сильно взаимодействующих частиц, таких, как π-мезоны и «странные» частицы.
Этот факт прекрасно иллюстрируется расположением уровней энергии в похожих ядрах. Рассмотрим такое ядро, как В11 (бор-одиннадцать), состоящее из пяти протонов и шести нейтронов. В ядре эти одиннадцать частиц взаимодействуют друг с другом, совершая какой-то замысловатый танец. Но существует такое сочетание всех возможных взаимодействий, которое обладает энергией, наинизшей из возможных; это нормальное состояние ядра, и его называют основным. Если ядро возмутить (скажем, стукнув по нему высокоэнергичным протоном или еще какой-то частицей), то оно может перейти в любое число других конфигураций, называемых возбужденными состояниями, каждое из которых будет обладать своей характеристической энергией, которая выше энергии основного состояния. В исследованиях по ядерной физике, скажем проводимых с генератором Ван-де-Граафа, энергии и другие свойства этих возбужденных состояний определяются экспериментально. Энергии пятнадцати наинизших из известных возбужденных состояний В11 показаны на одномерной схеме в левой половине фиг. 8.7. Горизонталь внизу представляет основное состояние. Первое возбужденное состояние имеет энергию на 2,14 Мэв выше, чем основное, следующее — на 4,46 Мэв выше, чем основное, и т. д. Исследователи пытаются найти объяснение этой довольно запутанной картины уровней энергии; пока, однако, нет еще полной общей теории таких ядерных уровней энергии.
Если в В11 заменить один из нейтронов протоном, получится ядро изотопа углерода С11. Энергии шестнадцати низших возбужденных состояний ядра С11 тоже были измерены; они показаны на фиг. 8.7 справа. (Штрихами проведены уровни, для которых экспериментальная информация находится под вопросом.)
Фиг. 8.7. Энергетические уровни ядер В11 и С11 (энергии в Мэв). Основное состояние С11 на 1,982 Мэв выше, чем то же состояние В11.
Глядя на фиг. 8.7, мы замечаем поразительное подобие между картинами уровней энергии обоих ядер. Первые возбужденные состояния находятся примерно на 2 Мэв выше основного. Затем имеется широкая щель шириной 2,3 Мэв, отделяющая второе возбужденное состояние от первого, затем небольшой скачок на 0,5 Мэв до третьего уровня. Потом опять большой скачок от четвертого до пятого уровня, но между пятым и шестым узкий промежуток в 0,1 Мэв. И так далее. Примерно на десятом уровне соответствие, видимо, пропадает, но его все еще можно обнаружить, если пометить уровни другими характеристиками, скажем их моментами количества движения, и тем, каким способом они теряют свой избыток энергии.
Впечатляющее подобие картины уровней энергии ядер В11 и С11 — отнюдь не просто совпадение. Оно скрывает за собой некоторый физический закон. И действительно, оно показывает, что даже в сложных условиях ядра замена нейтрона протоном мало что изменит. Это может значить лишь то, что нейтрон-нейтронные и протон-протонные силы должны быть почти одинаковыми. Только тогда мы могли бы ожидать, что ядерные конфигурации из пяти протонов и шести нейтронов совпадут с комбинацией «пять нейтронов — шесть протонов».
Заметьте, что свойства этих ядер ничего не говорят нам о нейтрон-протонных силах; число нейтрон-протонных комбинаций в обоих ядрах одинаково. Но если мы сравним два других ядра, таких, как С14 с его шестью протонами и восемью нейтронами и N14, в котором и тех, и других по семи штук, то выявим в энергетических уровнях такое же соответствие. Можно вывести заключение, что р—р-, n—n- и р—n-силы совпадают между собой во всех деталях. В законах ядерных сил возник неожиданный принцип. Хотя силы, действующие между каждой парой ядерных частиц, очень запутаны, но силы взаимодействия для любой из трех мыслимых пар одни и те же.
Однако есть и какие-то слабые отличия. Точного соответствия уровней нет; кроме того, основное состояние С11 обладает абсолютной энергией (массой), которая на 1,982 Мэв выше основного состояния В11. Все прочие уровни тоже по абсолютной величине энергии выше на такое же число. Так что силы не совсем точно равны. Но мы и так хорошо знаем, что полная величина сил не совсем одинакова; между двумя протонами действуют электрические силы, ведь каждый из них заряжен положительно, а между нейтронами таких сил нет. Может быть, различие между В11 и С11 объясняется тем фактом, что в этих двух случаях различны электрические взаимодействия протонов? А может, и остающаяся минимальная разница в уровнях вызывается электрическими эффектами? Раз уж ядерные силы так сильны по сравнению с электрическими, то электрические эффекты могли бы только слегка возмутить энергии уровней.
Чтобы проверить это представление или, лучше сказать, чтобы выяснить, к каким следствиям оно приведет, мы сперва рассмотрим разницу в энергиях основных состояний обоих ядер. Чтобы модель была совсем простой, положим, что ядра — это шары радиуса r (который нужно определить), содержащие Z протонов. Если считать ядро шаром с равномерно распределенным зарядом, то можно ожидать, что электростатическая энергия [из уравнения (8.7)] окажется равной
(8.22)
где qe — элементарный заряд протона. Из-за того, что Z равно для В11 пяти, а для С11 шести, электростатические энергии будут различаться.
Но при таком малом количестве протонов уравнение (8.22) не совсем правильно. Если мы подсчитаем электрическую энергию взаимодействия всех пар протонов, рассматриваемых как точки, примерно однородно распределенные по шару, то увидим, что величину Z2 в (8.22) придется заменить на Z(Z-1), так что энергия будет равна
(8.23)
Если известен радиус ядра r, мы можем воспользоваться выражением (8.23), чтобы определить разницу электростатических энергий ядер В11 и С11. Но проделаем обратное: из наблюдаемой разницы в энергиях вычислим радиус, считая, что вся существующая разница по происхождению — электростатическая.
В общем это не совсем верно. Разность энергий 1,982 Мэв двух основных состояний В11 и С11 включает энергии покоя, т. е. энергии mc2 всех частиц. Переходя от В11 к С11, мы замещаем нейтрон протоном, масса которого чуть поменьше. Так что часть разности энергий — это разница в массах покоя нейтрона и протона, составляющая 0,784 Мэв. Та разность, которую надо сравнивать с электростатической энергией, тем самым больше 1,982 Мэв; она равна
Подставив эту энергию в (8.23), для радиуса В11 или С11 получим
(8.24)
Имеет ли это число какой-нибудь смысл? Чтобы это проверить, сравним его с другими определениями радиусов этих ядер. Например, можно определить радиус ядра иначе, наблюдая, как рассеивает оно быстрые частицы. В ходе этих измерений выяснилось, что плотность вещества во всех ядрах примерно одинакова, т. е. их объемы пропорциональны числу содержащихся в них частиц. Если через А обозначить число протонов и нейтронов в ядре (число, очень близко пропорциональное его массе), то оказывается, что радиус ядра дается выражением
(8.25)
где
(8.26)
Из этих измерений мы получим, что радиус ядра В11 (или С11)должен быть примерно равен
Сравнив это с выражением (8.24), мы увидим, что наши предположения об электростатическом происхождении разницы в энергиях В11 и С11 не столь неверны; расхождение едва ли достигает 15% (а это не так уж скверно для первого расчета по теории ядра!).
Причина расхождения, по всей вероятности, состоит в следующем. Согласно нашему нынешнему пониманию ядер, четное количество ядерных частиц (в случае В11 пять нейтронов с пятью протонами) образует своего рода оболочку; когда к этой оболочке добавляется еще одна частица, то вместо того, чтобы поглотиться, она начинает обращаться вокруг оболочки. Если это так, то для добавочного протона нужно взять другое значение электростатической энергии. Нужно считать, что избыток энергии С11 над В11 как раз равен
т. е. равен энергии, необходимой для того, чтобы снаружи оболочки появился еще один протон. Это число составляет 5/6 величины, предсказываемой уравнением (8.23), так что новое значение радиуса будет равно 5/6 от (8.24). Оно намного лучше согласуется с прямыми измерениями.
Согласие в цифрах приводит к двум выводам. Первый: законы электричества, видимо, действуют и на столь малых расстояниях, как 10-13 см. Второй: мы убедились в замечательном совпадении — неэлектрическая часть сил взаимодействия протона с протоном, нейтрона с нейтроном и протона с нейтроном одинакова.
§ 5. Энергия в электростатическом поле
Рассмотрим теперь другие способы подсчета электростатической энергии. Все они могут быть получены из основного соотношения (8.3) суммированием (по всем парам) взаимных энергий каждой пары зарядов. Прежде всего мы хотим написать выражение для энергии распределения зарядов. Как обычно, считаем, что каждый элемент объема dV содержит в себе элемент заряда ρdV. Тогда уравнение (8.3) запишется так:
(8.27)
Обратите внимание на появление множителя 1/2. Он возник из-за того, что в двойном интеграле по dV1 и по dV2 каждая пара элементов заряда считалась дважды. (Не существует удобной записи интеграла, в которой каждая пара считалась бы только по одному разу.) Затем заметьте, что интеграл по dV2 в (8.27) — это просто потенциал в точке (1), т. е.
так что (8.27) можно записать в виде
А так как точка (2) при этом выпала, то можно написать просто
(8.28)
Это уравнение можно истолковать так. Потенциальная энергия заряда ρdV равна произведению этого заряда на потенциал в той же точке. Вся энергия поэтому равна интегралу от φρdV. Но, кроме этого, есть множитель 1/2. Он все еще необходим, потому что энергии считаются дважды. Взаимная энергия двух зарядов равна заряду одного из них на потенциал другого в этой точке. Или заряду другого на потенциал от первого во второй точке. Так что для двух точечных зарядов можно написать
или
Обратите внимание, что это же можно написать и так:
(8.29)
Интеграл в (8.28) отвечает сложению обоих слагаемых в скобках выражения (8.29). Вот зачем нужен множитель 1/2.
Интересен и такой вопрос: где размещается электростатическая энергия? Правда, можно в ответ спросить: а не все ли равно? Есть ли смысл у такого вопроса? Если имеется пара взаимодействующих зарядов, то их сочетание обладает некоторой энергией. Неужели нужно непременно уточнять, что энергия сосредоточена на этом заряде, или на том, или на обоих сразу, или между ними? Все эти вопросы лишены смысла, потому что мы знаем, что на самом деле сохраняется только полная, суммарная энергия. Представление о том, что энергия сосредоточена где-то, не так уж необходимо.
Ну а все же предположим, что в том, что энергия всегда сосредоточена в каком-то определенном месте (подобно тепловой энергии), действительно смысл есть. Тогда мы могли бы наш принцип сохранения энергии расширить, соединив его с идеей о том, что если в каком-то объеме энергия меняется, то это изменение можно учесть, наблюдая приток или отток энергии из объема. Вы ведь понимаете, что наше первоначальное утверждение о сохранении энергии по-прежнему будет превосходно выполняться, если какая-то энергия пропадет в одном месте и возникнет где-то далеко в другом, а в промежутке между этими местами ничего не случится (ничего — это значит не случится каких-либо явлений особого рода). Поэтому мы можем перейти теперь к расширению наших идей о сохранении энергии. Назовем это расширение принципом локального (местного) сохранения энергии. Такой принцип провозглашал бы, что энергия внутри любого данного объема изменяется лишь на количество, равное притоку (или убыли) энергии в объем (или из него). И действительно, такое локальное сохранение энергии вполне возможно. Если это так, то в нашем распоряжении будет куда более детальный закон, чем простое утверждение о сохранении полной энергии. И, как оказывается, в природе энергия действительно сохраняется локально, в каждом месте порознь, и можно написать формулы, показывающие, где энергия сосредоточена и как она перетекает с места на место.
Имеется и физический резон в требовании, чтобы мы были в состоянии указать, где именно заключена энергия. По теории тяготения всякая масса есть источник гравитационного притяжения. А по закону Е=mc2 мы также знаем, что масса и энергия вполне равноценны друг другу. Стало быть, всякая энергия является источником силы тяготения. И если б мы не могли узнать, где находится энергия, мы бы не могли знать, где расположена масса. Мы не могли бы сказать, где размещаются источники поля тяготения. И теория тяготения стала бы неполной.
Конечно, если мы ограничимся электростатикой, то способа узнать, где сосредоточена энергия, у нас нет. Но полная система максвелловских уравнений электродинамики снабдит нас несравненно более полной информацией (хотя и тогда, строго говоря, ответ до конца определенным не станет). Подробнее мы этот вопрос рассмотрим позже. А сейчас приведем лишь результат, касающийся частного случая электростатики. Энергия заключена в том пространстве, где имеется электрическое поле. Это, видимо, вполне разумно, потому что известно, что, ускоряясь, заряды излучают электрические поля. И когда свет или радиоволны распространяются от точки к точке, они переносят с собой свою энергию. Но в этих волнах нет зарядов. Так что энергию хотелось бы размещать там, где есть электромагнитное поле, а не там, где есть заряды, создающие это поле. Таким образом, мы описываем энергию не на языке зарядов, а на языке создаваемых ими полей. Действительно, мы можем показать, что уравнение (8.28) численно совпадает с
(8.30)
Эту формулу можно толковать, говоря, что в том месте пространства, где присутствует электрическое поле, сосредоточена и энергия; плотность ее (количество энергии в единице объема) равна
(8.31)
Эта идея иллюстрируется фиг. 8.8.
Фиг. 8.8. Каждый элемент объема dV=dxdydz в электрическом поле содержит в себе энергию (ε0/2) E2dV.
Чтобы показать, что уравнение (8.30) согласуется с нашими законами электростатики, начнем с того, что введем в уравнение (8.28) соотношение между ρ и φ, полученное в гл. 6:
Получим
(8.32)
Расписав покомпонентно подынтегральное выражение, мы увидим, что
А наш интеграл энергий тогда равен
С помощью теоремы Гаусса второй интеграл можно превратить в интеграл по поверхности:
(8.34)
Этот интеграл мы подсчитаем для того случая, когда поверхность простирается до бесконечности (так что интеграл по объему обращается в интеграл по всему пространству), а все заряды расположены на конечном расстоянии друг от друга. Проще всего это сделать, взяв поверхность сферы огромного радиуса с центром в начале координат. Мы знаем, что вдали от всех зарядов φ изменяется как 1/R, а ∇φ как 1/R2. (И даже быстрее, если суммарный заряд нуль.) Площадь же поверхности большой сферы растет только как R2, так что интеграл по поверхности убывает по мере возрастания радиуса сферы как (1/R)(1/R2)/R2=(1/R). Итак, если наше интегрирование захватит собой все пространство (R→∞), то поверхностный интеграл обратится в нуль, и мы обнаружим
(8.35)
Мы видим, что существует возможность представить энергию произвольного распределения зарядов в виде интеграла от плотности энергии, сосредоточенной в поле.
§ 6. Энергия точечного заряда
Новое соотношение (8.35) говорит нам, что даже у отдельного точечного заряда q имеется какая-то электростатическая энергия. Поле в этом случае дается выражением
так что плотность энергии на расстоянии r от заряда равна
За элемент объема можно принять сферический слой толщиной dr, по площади равный 4πr2. Полная энергия будет
(8.36)
Верхний предел r=∞ не приводит к затруднениям. Но раз заряд точечный, то мы намерены интегрировать до самого нуля (r=0), а это означает бесконечность в интеграле. Уравнение (8.35) утверждает, что в поле одного точечного заряда содержится бесконечно много энергии, хотя начали мы с представления о том, что энергия имеется только между точечными зарядами. В нашу первоначальную форму для энергии совокупности точечных зарядов (8.3) мы не включили никакой энергии взаимодействия заряда с самим собой. Что же потом случилось? А то, что, переходя в уравнении (8.27) к непрерывному распределению зарядов, мы засчитывали в общую сумму взаимодействие всякого бесконечно малого заряда со всеми прочими бесконечно малыми зарядами. Тот же учет велся и в уравнении (8.35), так что, когда мы применяем его к конечному точечному заряду, мы включаем в интеграл энергию, которая понадобилась бы, чтобы накопить этот заряд из бесконечно малых частей. И действительно, вы могли заметить, что результат, следующий из уравнения (8.36), мы могли бы получить также из выражения (8.11) для энергии заряженного шара, устремив его радиус к нулю.
Мы вынуждены прийти к заключению, что представление о том, будто энергия сосредоточена в поле, не согласуется с предположением о существовании точечных зарядов. Один путь преодоления этой трудности — это говорить, что элементарные заряды (такие, как электрон) на самом деле вовсе не точки, а небольшие зарядовые распределения. Но можно говорить и обратное: неправильность коренится в нашей теории электричества на очень малых расстояниях или в нашем представлении о сохранении энергии в каждом месте порознь. Но каждая такая точка зрения все равно встречается с затруднениями. И их никогда еще не удавалось преодолеть; существуют они и по сей день. Немного позже, когда мы познакомимся с некоторыми дополнительными представлениями, такими, как импульс электромагнитного поля, мы более подробно поговорим об этих основных трудностях в нашем понимании природы.
Глава 9 ЭЛЕКТРИЧЕСТВО В АТМОСФЕРЕ
§ 1. Градиент электрического потенциала в атмосфере
В обычный день над пустынной равниной или над морем электрический потенциал по мере подъема возрастает с каждым метром примерно на 100 в. В воздухе имеется вертикальное электрическое поле Е величиной 100 в/м. Знак поля отвечает отрицательному заряду земной поверхности. Это означает, что на улице потенциал на уровне вашего носа на 200 в выше, чем потенциал на уровне пяток! Можно, конечно, спросить: «Почему бы не поставить пару электродов на воздухе в метре друг от друга и не использовать эти 100 в для электрического освещения?» А можно и удивиться: «Если действительно между моим носом и моей пяткой имеется напряжение 200 в, то почему же меня не ударяет током, как только я выхожу на улицу?»
Сперва ответим на второй вопрос. Ваше тело — довольно хороший проводник. Когда вы стоите на земле, вы вместе с нею образуете эквипотенциальную поверхность. Обычно эквипотенциальные поверхности параллельны земле (фиг. 9.1, а), но когда на земле оказываетесь вы, то они смещаются, и поле начинает выглядеть примерно так, как показано на фиг. 9.1, б.
Фиг. 9.1. Распределение потенциала. а — над землей; б — около человека, стоящего на ровном месте.
Так что разность потенциалов между вашей макушкой и пятками почти равна нулю. С земли на вашу голову переходят заряды и изменяют поле вокруг вас. Часть из них разряжается ионами воздуха, но ионный ток очень мал, ведь воздух плохой проводник.
Как же измерить такое поле, раз оно искажается от всего, что в него попадает? Имеется несколько способов. Один способ — расположить изолированный проводник на какой-то высоте над землей и не трогать его до тех пор, пока он не приобретет потенциал воздуха. Если подождать довольно долго, то даже при очень малой проводимости воздуха заряды стекут с проводника (или натекут на него), уравняв его потенциал с потенциалом воздуха на этом уровне. Тогда мы можем опустить его к земле и измерить изменение его потенциала. Другой более быстрый способ — в качестве проводника взять ведерко воды, в котором имеется небольшая течь. Вытекая, вода уносит излишек заряда, и ведерко быстро приобретает потенциал воздуха. (Заряды, как вы знаете, растекаются по поверхности, а капли воды — это уходящие «куски поверхности».) Потенциал ведра можно измерить электрометром.
Имеется еще способ прямого измерения градиента потенциала. Раз существует электрическое поле, то должен быть и поверхностный заряд на земле (σ=ε0Е). Если мы поместим у поверхности земли плоскую металлическую пластинку А и заземлим ее, то на ней появятся отрицательные заряды (фиг. 9.2, а).
Фиг. 9.2. Заземленная металлическая пластинка обладает тем же поверхностным зарядом, что и земля (а); если пластинка прикрыта сверху заземленным проводником, на ней заряда нет (б).
Если затем прикрыть пластинку другой заземленной проводящей крышкой В, то заряды появятся уже на крышке В, а на пластинке А исчезнут. Если мы измерим заряд, перетекающий с пластинки А на землю (скажем, с помощью гальванометра в цепи заземляющего провода) в тот момент, когда А закрывают крышкой, то мы найдем плотность поверхностного заряда, бывшего на А, а значит, и электрическое поле.
Рассмотрев способы измерения электрического поля в атмосфере, продолжим теперь его описание. Измерения прежде всего показывают, что с увеличением высоты поле продолжает существовать, только становится слабее. На высоте примерно 50 км поле уже еле-еле заметно, так что большая часть изменения потенциала (интеграла от Е) приходится на малые высоты. Вся разность потенциалов между поверхностью земли и верхом атмосферы равна почти 400 000 в.
§ 2. Электрические токи в атмосфере
Помимо градиента потенциала, можно измерять и другую величину — ток в атмосфере. Плотность его мала: через каждый квадратный метр, параллельный земной поверхности, проходит около 10-6 мка. Воздух, по-видимому, не идеальный изолятор; из-за этой проводимости от неба к земле все время течет слабый ток, вызываемый описанным нами электрическим полем.
Почему атмосфера имеет проводимость? Потому что в ней среди молекул воздуха попадаются ионы, например, молекулы кислорода, порой снабженные лишним электроном, а порой лишенные одного из своих. Эти ионы не остаются одинокими; благодаря своему электрическому полю они обычно собирают близ себя другие молекулы. Каждый ион тогда становится маленьким комочком, который вместе с другими такими же комочками дрейфует в поле, медленно двигаясь вверх или вниз, создавая ток, о котором мы говорили.
Откуда же берутся ионы? Сперва думали, что ионы создает радиоактивность Земли. (Было известно, что излучение радиоактивных веществ делает воздух проводящим, ионизуя молекулы воздуха.) Частицы, выходящие из атомного ядра, скажем. β-лучи, движутся так быстро, что они вырывают электроны у атомов, оставляя за собой дорожку из ионов. Такой взгляд, конечно, предполагает, что на больших высотах ионизация должна была бы становиться меньше, потому что вся радиоактивность — все следы радия, урана, натрия и т. д.— находится в земной пыли.
Чтобы проверить эту теорию, физики поднимались на воздушных шарах и измеряли ионизацию (Гесс, в 1912 г.). Выяснилось, что все происходит как раз наоборот — ионизация на единицу объема с высотой растет! (Прибор был похож на изображенный на фиг. 9.3. Две пластины периодически заряжались до потенциала V. Вследствие проводимости воздуха они медленно разряжались; быстрота разрядки измерялась электрометром.)
Фиг. 9.3. Намерение проводимости воздуха, вызываемой движением ионов.
Этот непонятный результат был самым потрясающим открытием во всей истории атмосферного электричества. Открытие было столь важно, что потребовало выделения новой отрасли науки — физики космических лучей. А само атмосферное электричество осталось среди явлений менее удивительных. Ионизация, видимо, порождалась чем-то вне Земли; поиски этого неземного источника привели к открытию космических лучей. Мы не будем сейчас говорить о них и только скажем, что именно они поддерживают снабжение воздуха ионами. Хотя ионы постоянно уносятся, космические частицы, врываясь из мирового пространства, то и дело сотворяют новые ионы.
Чтобы быть точными, мы должны отметить, что, кроме ионов, составленных из молекул, бывают и другие сорта ионов. Мельчайшие комочки почвы, подобно чрезвычайно тонким частичкам пыли, плавают в воздухе и заряжаются. Их иногда называют «ядрами». Скажем, когда в море плещутся волны, мелкие брызги взлетают в воздух. Когда такая капелька испарится, в воздухе остается плавать маленький кристаллик NaCl. Затем эти кристаллики могут привлечь к себе заряды и стать ионами; их называют «большими ионами».
Малые ионы, т. е. те, которые создаются космическими лучами, самые подвижные. Из-за того, что они очень малы, они быстро проносятся по воздуху, со скоростью около 1 см/сек в поле 100 в/м, или 1 в/см. Большие и тяжелые ионы движутся куда медленнее. Оказывается, что если «ядер» много, то они перехватывают заряды от малых ионов. Тогда, поскольку «большие ионы» движутся в поле очень медленно, общая проводимость уменьшается. Поэтому проводимость воздуха весьма переменчива — она очень чувствительна к его «засоренности». Над сушей этого «сора» много больше, чем над морем, ветер подымает с земли пыль, да и человек тоже всячески загрязняет воздух. Нет ничего удивительного в том, что день ото дня, от момента к моменту, от одного места к другому проводимость близ земной поверхности значительно меняется. Электрическое поле в каждой точке над земной поверхностью тоже меняется, потому что ток, текущий сверху вниз, в разных местах примерно одинаков, а изменения проводимости у земной поверхности приводят к вариациям поля.
Проводимость воздуха, возникающая в результате дрейфа ионов, также быстро увеличивается с высотой. Происходит это по двум причинам. Во-первых, с высотой растет ионизация воздуха космическими лучами. Во-вторых, по мере падения плотности воздуха увеличивается свободный пробег ионов, так что до столкновения им удается дальше пройти в электрическом поле. В итоге на высоте проводимость резко подскакивает.
Сама плотность электрического тока в воздухе равна всего нескольким микромикроамперам на квадратный метр, но ведь на Земле очень много таких квадратных метров. Весь электрический ток, достигающий земной поверхности, равен примерно 1800 а. Этот ток, конечно, «положителен» — он переносит к Земле положительный заряд. Так что получается ток в 1800 а при напряжении 400 000 в. Мощность 700 Мвт!
При таком сильном токе отрицательный заряд Земли должен был бы вскоре исчезнуть. Фактически понадобилось бы только около получаса, чтобы разрядить всю Землю. Но с момента открытия в атмосфере электрического поля прошло куда больше получаса. Как же оно держится? Чем поддерживается напряжение? И между чем и чем оно? На одном электроде Земля, а что на другом? Таких вопросов множество.
Земля заряжена отрицательно, а потенциал в воздухе положителен. На достаточно большой высоте проводимость так велика, что вероятность изменений напряжения по горизонтали становится равной нулю. Воздух при том масштабе времени, о котором сейчас идет речь, фактически превращается в проводник. Это происходит на высоте около 50 км. Это еще не так высоко, как то, что называют «ионосферой», где имеется очень большое количество ионов, образуемых за счет фотоэффекта от солнечных лучей. Для наших целей можно, обсуждая свойства атмосферного электричества, считать, что на высоте примерно 50 км воздух становится достаточно проводящим и там существует практически проводящая сфера, из которой вытекают вниз токи. Положение дел изображено на фиг. 9.4. Вопрос в том, как держится там положительный заряд. Как он накачивается обратно?
Фиг. 9.4. Типичные характеристики электрических свойств чистой атмосферы.
Раз он стекает на Землю, то должен же он как-то перекачиваться обратно? Долгое время это было одной из главных загадок атмосферного электричества.
Любая информация на этот счет может дать ключ к загадке или по крайней мере хоть что-то сообщить о ней. Вот одно интересное явление: если мы измеряем ток (а он, как мы знаем, устойчивее, чем градиент потенциала), скажем над морем, и при тщательном соблюдении предосторожностей, очень аккуратно все усредняем и избавляемся от всяких ошибок, то мы обнаруживаем, что остаются все же какие-то суточные вариации. Среднее по многим измерениям над океанами обладает временной вариацией примерно такой, какая показана на фиг. 9.5.
Фиг. 9.5. Средняя суточная вариация градиента потенциала атмосферы в ясную погоду над океанами.
Ток меняется приблизительно на ±15% и достигает наибольшего значения в 7 часов вечера по лондонскому времени. Самое странное здесь то, что, где бы вы ни измеряли ток — в Атлантическом ли океане, в Тихом ли или в Ледовитом, — его часы пик бывают тогда, когда часы в Лондоне показывают 7 вечера! Повсюду во всем мире ток достигает максимума в 19.00 по лондонскому времени, а минимума — в 4.00 по тому же времени. Иными словами, ток зависит от абсолютного земного времени, а не от местного времени в точке наблюдения. В одном отношении это все же не так уж странно; это вполне сходится с нашим представлением о том, что на самом верху имеется очень большая горизонтальная проводимость, которая и исключает местные изменения разности потенциалов между Землей и верхом. Любые изменения потенциала должны быть всемирными, и так оно и есть. Итак, теперь мы знаем, что напряжение «вверху» с изменением абсолютного земного времени то подымается, то падает на 15%.
§ 3. Происхождение токов в атмосфере
Теперь нужно ответить на вопрос об источнике больших отрицательных токов, которые должны течь от «верха» к земной поверхности, чтобы поддержать ее отрицательный заряд. Где же те батареи, которые это делают? «Батарея» показана на фиг. 9.6.
Фиг. 9.6. Механизм, создающий электрическое поле атмосферы.
Это гроза или вернее молнии. Оказывается, вспышки молний не «разряжают» той разности потенциалов, о которой мы говорили (и как могло бы на первый взгляд показаться). Молнии снабжают Землю отрицательным зарядом. Если мы увидали молнию, то можно поспорить на десять против одного, что она привела на Землю большое количество отрицательных зарядов. Именно грозы заряжают Землю в среднем током в 1800 а электричества, которое затем разряжается в районах с хорошей погодой.
На Земле каждые сутки гремит около 300 гроз. Их-то и можно считать теми батареями, которые накачивают электричество в верхние слои атмосферы и сохраняют разность потенциалов. А теперь учтите географию — полуденные грозы в Бразилии, тропические — в Африке и т. д. Ученые сделали оценки того, сколько молний ежесекундно бьет в Землю; нужно ли говорить, что их оценки более или менее согласуются с измерениями разности потенциалов: общая степень грозовой деятельности достигает на всей Земле максимума в 19.00 по лондонскому времени. Однако оценки грозовой деятельности делать очень трудно; сделаны они были только после того, как стало известно, что такие вариации должны существовать. Трудность заключается в том, что в океанах, да и повсюду в мире не хватает наблюдений, их мало, чтобы точно установить число гроз. Но те ученые, которые думают, что они «все учли правильно», уверяют, что максимум деятельности приходится на 19.00 по гринвичскому среднему времени.
Чтобы понять, как работают эти батареи, попробуем разобраться в грозе поглубже. Что происходит внутри грозы? Опишем грозу так, как ее сейчас представляют. Когда мы вникаем в необыкновенное явление природы (а не в эти столь изящно нами разобранные идеальные сферы из идеальных проводников, помещенных внутри других сфер), мы открываем, что не так уж много знаем. А это все очень интересно. Гроза не оставляет человека равнодушным: она пугает его или восхищает; в общем возбуждает в нем какие-то чувства. А там, где в природе появляются чувства, обычно сразу всплывает и сложность природы и ее таинственность. Нет никакой возможности точно описать, как происходит гроза, мы пока мало об этом знаем. Но мы все же попробуем немножко рассказать о том, что происходит.
§ 4. Грозы
Прежде всего следует сказать, что обычная гроза состоит из множества «ячеек», тесно примыкающих друг к другу, но почти независимых. Поэтому достаточно проанализировать одну из них. Под «ячейкой» мы подразумеваем область (имеющую в горизонтальном направлении ограниченную протяженность), в которой происходят все основные процессы. Обычно имеется несколько ячеек, расположенных одна возле другой, а в каждой из них творится примерно одно и то же, разве что с некоторым сдвигом во времени. На фиг. 9.7 в идеализированном виде представлена ячейка в начальный период грозы. Оказывается, что в воздухе в некотором месте и при некоторых условиях (мы их вскоре опишем) существует восходящий ток, все более убыстряющийся по мере подъема. Теплый и влажный воздух снизу подымается, остывает и конденсирует влагу.
Фиг. 9.7. Грозовая ячейка в ранней стадии развития.
На рисунке крестики означают снег, а точки — дождь, но поскольку восходящий ток довольно велик, а капельки очень малы, то на этой стадии ни снег, ни дождь не выпадают. Это начальная стадия, и пока это еще не настоящая гроза, в том смысле, что внизу вообще не видно, чтобы что-нибудь происходило. По мере того как теплый воздух подымается вверх, в ячейку прибывает воздух со всех сторон (весьма важное обстоятельство, которым долго пренебрегали). Так что подымается не только тот воздух, который был внизу, но и какое-то количество другого воздуха — с разных сторон.
Отчего воздух вот так поднимается? Как вы знаете, наверху воздух прохладнее. Солнце нагревает почву, а водяной пар в верхних слоях атмосферы излучает тепло вверх; поэтому на больших высотах воздух холодный, а внизу теплый. Вы можете сказать: «Тогда все очень просто. Теплый воздух легче холодного; поэтому вся эта комбинация механически неустойчива, и теплый воздух поднимается». Конечно, если температура на разных высотах разная, то воздух действительно термодинамически неустойчив. Предоставленный самому себе надолго, весь воздух примет одинаковую температуру. Но он не предоставлен самому себе; весь день светит солнце. Так что проблема касается не только термодинамического, но и механического равновесия. Пусть мы начертили, как на фиг. 9.8, кривую зависимости температуры воздуха от высоты. В обычных условиях получается убывание по кривой типа а; по мере подъема температура падает. Как же атмосфера может быть устойчивой? Почему бы теплому воздуху просто не подняться к холодному? Ответ состоит в том, что если бы воздух начал подниматься, то давление в нем упало бы, и, рассматривая определенную порцию поднимающегося воздуха, мы бы увидели, что она адиабатически расширяется. (Тепло не уходило бы из нее и не приходило бы, потому что из-за огромных размеров не хватило бы времени для больших передач тепла.) Итак, порция воздуха при подъеме охладится. Такой адиабатический процесс привел бы к такой зависимости температура — высота, как показано кривой b на фиг. 9.8.
Фиг. 9.8. Температура атмосферы. а — статическая атмосфера; b — адиабатическое охлаждение сухого воздуха; с — адиабатическое охлаждение влажного воздуха; а — влажный воздух с какой-то примесью окружающего воздуха.
Любой воздух, поднимающийся снизу, оказался бы холоднее, чем то место, куда он направляется. Так что теплому воздуху снизу нет резона идти вверх; если бы он всплыл, то остыл бы и стал холоднее того воздуха, который уже там есть; он оказался бы тяжелее этого воздуха, и ему бы захотелось сразу обратно вниз. В хороший, ясный денек, когда влажность невелика, устанавливается какая-то быстрота падения температуры с высотой, и эта быстрота, вообще говоря, ниже «максимального устойчивого перепада», представляемого кривой b. Воздух находится в устойчивом механическом равновесии.
Но, с другой стороны, если мы возьмем воздушную ячейку, содержащую много водяных паров, то кривая ее адиабатического охлаждения будет совсем другой. При расширении и охлаждении этой ячейки водяной пар начнет конденсироваться, а при конденсации выделяется тепло. Поэтому влажный воздух остывает не так сильно, как сухой. Значит, когда воздух, влажность которого выше средней, начнет подниматься, его температура будет следовать кривой с на фиг. 9.8. Слегка охлаждаясь при подъеме, он все же окажется теплее окружающего его на этой высоте воздуха. Если имеется область теплого влажного воздуха и он почему-то начинает подниматься, то он все время будет оставаться легче и теплее окружающего воздуха и по-прежнему будет всплывать, пока не достигнет огромных высот. Вот тот механизм, который заставляет воздух в грозовой ячейке подниматься.
В течение многих лет именно так объясняли грозовую ячейку. А затем измерения показали, что температура облака на различных уровнях над Землей не так высока, как это следует из кривой с. Причина в том, что, когда «пузырь» влажного воздуха всплывает, он уносит с собой воздух из окружающей среды и охлаждается им. Кривая «температура — высота» похожа больше на кривую d, которая гораздо ближе к первоначальной кривой а, нежели к с.
После того как описанная конвекция началась, поперечный разрез грозовой ячейки выглядит уже так, как показано на фиг. 9.9.
Фиг. 9.9. Созревшая грозовая ячейка.
Это так называемая «зрелая» гроза. В ней действует очень сильная тяга вверх, достигающая на этой стадии высот в 10—15 км, а иногда и выше. Грозовой купол с происходящей в нем конденсацией громоздится надо всей облачной грядой с быстротой, достигающей обычно 60 км/час. По мере того как водяной пар поднимается и конденсируется, возникают крохотные капельки, которые быстро охлаждаются до температуры ниже нуля. Они должны замерзнуть, но делают это не сразу — они «переохлаждаются». Вода, да и другие жидкости обычно легко охлаждаются ниже своей точки замерзания, не кристаллизуясь, если только вокруг нет «ядер», которые необходимы, чтобы началась кристаллизация. Только если имеются мелкие крошки вещества, наподобие кристалликов NaCl, капельки воды превратятся в льдинки. Тогда равновесие будет приводить к испарению капель и росту кристаллов льда. Итак, в какой-то момент начинается внезапное исчезновение воды и быстрое образование льда. Кроме того, могут происходить прямые соударения водяных капелек и льдинок — столкновения, в которых переохлажденная вода, прикоснувшись к кристаллику льда, мгновенно сама кристаллизуется. Стало быть, в какой-то момент развития облака в нем происходит быстрое накопление крупных частиц льда.
И когда они станут достаточно тяжелыми, они начнут падать сквозь восходящий воздух, ибо они стали слишком грузными, чтобы тяга могла их нести. Падая, они увлекут за собой немного воздуха. Начинается противоток воздуха — вниз. И легко понять, что, как это ни странно, раз уж противоток начался, то прекратиться он не сможет. Воздух теперь полным ходом помчится вниз!
Посмотрите: кривая d на фиг. 9.8 (истинное распределение температур по высоте облака) не так крута, как кривая с (относящаяся к влажному воздуху). Значит, когда начнет падать влажный воздух, его температура будет повышаться по кривой, соответствующей кривизне линии с, т. е. при достаточно сильном падении окажется ниже температуры окружающего воздуха (как это видно из кривой е). И в момент, когда это случится, он окажется плотнее окружающего воздуха, падение станет неотвратимым.
Но вы скажете: «Уж не вечное ли это движение? Сперва говорилось, что воздух должен подниматься, а когда вы его подняли, то одинаково убедительно принимаетесь доказывать, что ему положено падать». Нет, это не вечное движение. Когда положение неустойчиво и теплый воздух вынужден подниматься, тогда, естественно, что-то должно его заместить. Не менее верно и то, что спускающийся холодный воздух был бы в состоянии энергетически заместить теплый воздух. Но поймите, что то, что спустилось вниз,— это уже не тот воздух, который был вначале. Давние рассуждения, в которых шла речь об изолированном облаке, сперва подымавшемся, а затем спускающемся, содержали в себе какую-то загадку. Нужен был дождь, чтобы обеспечить спуск, а этот способ был мало правдоподобен. Но как только вы поняли, что к восходящему потоку воздуха примешан воздух, бывший вначале на той высоте, откуда началась тяга, термодинамические соображения покажут вам, что падение холодного воздуха, первоначально плававшего на больших высотах, тоже возможно. Это и объясняет картину активной грозы, представленную схематически на фиг. 9.9.
Когда воздух доходит донизу, из нижней части тучи начинает идти дождь. Вдобавок, достигнув земной поверхности, относительно холодный воздух растекается во все стороны. Значит, перед самой грозой начинается холодный ветер, предупреждающий нас о предстоящей буре. Во время самой бури наблюдаются резкие и внезапные порывы ветра, облака клубятся и т. д. Но в основном сперва существует ток, текущий вверх, потом противоток вниз — картина, вообще говоря, очень сложная.
В то же мгновение, когда начинаются осадки, возникает и противоток. И в тот же самый момент обнаруживаются электрические явления. Но прежде чем описать молнию, мы закончим рассказом о том, что творится в грозовой ячейке через полчаса или, скажем, через час. Она выглядит так, как показано на фиг. 9.10.
Фиг. 9.10. Поздняя фаза грозовой ячейки.
Тяга вверх прекратилась — больше нет теплого воздуха, и поддерживать ее нечем. Какое-то время еще продолжаются осадки, последние капельки воды падают на землю, все становится спокойнее, хотя часть льдинок еще осталась в воздухе. На больших высотах ветры дуют в разные стороны, поэтому верх грозовой тучи обычно начинает принимать вид наковальни. Ячейке пришел конец.
§ 5. Механизм распределения зарядов
Теперь мы хотим обратиться к обсуждению самой важной для нас стороны дела — к возникновению электрических зарядов. Разного рода эксперименты, включая полеты сквозь грозовой фронт (пилоты, совершающие их — истинные храбрецы!), выяснили, что распределение зарядов в грозовой ячейке напоминает изображенное на фиг. 9.11.
Фиг. 9.11. Распределение электричества в созревшей грозовой ячейке.
Верхушка грозы заряжена положительно, а низ — отрицательно, за исключением небольшого участка положительных зарядов в нижней части тучи, причинившего немало забот исследователям. Никто не знает, почему он там появляется и насколько он важен, то ли это всего лишь вторичный эффект положительного дождя, то ли существенная часть всего механизма. Если б этого не было, все выглядело бы значительно проще. Во всяком случае преимущественно отрицательный заряд внизу и положительный наверху — это как раз такое расположение полюсов батареи, которое может зарядить Землю отрицательно. Положительные заряды находятся в 6—7 км над Землей, где температура достигает -20°C, а отрицательные — на высоте 3—4 км, и температура там от 0 до -10°C.
Заряда нижней части тучи хватает на то, чтобы создать между ней и землей разность потенциалов в 20, 30 и даже 100 млн. в — несравненно больше, чем те 0,4 млн. в перепада, которые бывают между «небом» и Землей при ясном небе. Эти огромные напряжения пробивают воздух и создают гигантский грозовой разряд. При пробое отрицательный заряд с нижней части тучи переносится зигзагами молнии на Землю.
А теперь мы в нескольких словах опишем строение молнии. Прежде всего имеется настолько большой перепад потенциалов, что воздух пробивается. Молния бьет между одной частью тучи и другой, или между одной тучей и другой, или между тучей и Землей. С каждой независимой вспышкой — с каждым ударом молнии, который вы видите, с небес низвергается 20—30 кулон электричества. Интересно, сколько же времени тратит туча на восстановление этих 20—30 кулон, уходящих с молнией? Это можно выяснить, измеряя вдали от тучи электрическое поле, вызываемое дипольным моментом тучи. При таких измерениях вы видите внезапный спад поля при ударе молнии, а затем экспоненциальный возврат к первоначальному его значению с характерной временной постоянной порядка 5 сек, немного меняющейся от случая к случаю. Значит, грозе достаточно 5 сек, чтобы восстановить весь свой заряд. Но это, конечно, не означает, что очередная молния ударит точно через 5 сек, потому что меняется и геометрия туч и другие факторы. Вспышки следуют друг за другом нерегулярно, но существенно то, что возвращение к начальным условиям всегда происходит примерно за 5 сек. Следовательно, в грозовой динамомашине течет ток примерно в 4 а. А это означает, что любая модель, придуманная для объяснения того, как грозовой вихрь генерирует электричество, должна быть очень мощной — это должна быть огромная быстродействующая махина.
Прежде чем двинуться дальше, рассмотрим кое-что, почти наверняка не имеющее никакого отношения к излагаемому предмету, но тем не менее само по себе любопытное, так как это демонстрирует влияние электрического поля на водяные капли. Мы говорим, что это может и не иметь отношения, потому что связано с опытом, который можно проделать в лаборатории со струйкой воды и который показывает довольно сильное действие электричества на капельки. В грозе же нет никаких водяных струй; там просто имеется туча сконденсированного льда и капель воды. Так что вопрос о механизмах, действующих в грозе, по всей вероятности, никак не связан со всем тем, что вы увидите в том простом опыте, который мы хотим описать. Насадите на водопроводный кран шланг с суженным концом и направьте струю воды из него под крутым углом (фиг. 9.12).
Фиг. 9.12. Струя воды с электрическим полем, созданным вблизи насадки шланга.
Вода забьет тонкой струйкой и, вероятно, начнет разбрызгиваться мелкими капельками. Если поперек струи навести электрическое поле (скажем, заряженной палочкой), то форма струи изменится. При слабом электрическом поле вы увидите, что струя разбивается на несколько больших капель, а при сильном поле струя разбрызгивается на много-много мельчайших капелек, гораздо более мелких, чем прежде[9]. У слабого электрического поля есть тенденция воспрепятствовать дроблению струи на капли, а сильное, напротив, стремится раздробить поток.
Эти эффекты, по всей видимости, можно объяснить следующим образом. Когда из шланга бьет вода и мы приложили поперек небольшое поле, то одна сторона струи может зарядиться чуть-чуть более положительно, а другая — чуть-чуть более отрицательно. И потом, когда струя дробится, капли с одной стороны струи могут стать положительно заряженными, а с другой — отрицательно заряженными. Они начнут притягиваться и захотят сливаться в более крупные, чем прежде, капли. Струя не будет сильно дробиться. Если же поле увеличить, то заряд на каждой отдельной капле станет очень большим, и сам заряд будет стремиться измельчать капли (из-за их отталкивания). Каждая капелька разделится на более мелкие (и тоже заряженные), они начнут отталкиваться, и посыплются брызги. Итак, при нарастании поля струйка дробится все мельче. Единственное, что нам хотелось бы подчеркнуть,— это что при некоторых обстоятельствах электрическое поле может сильно сказываться на каплях. Точный механизм того, что происходит в грозе, неизвестен, и совсем не обязательно связывать его с только что описанным. Мы включили это описание лишь для того, чтобы вы оценили сложность явлений, которые могут играть роль. На самом деле ни у кого из ученых нет теории, основанной на таком представлении.
Мы хотели бы привести две теории, изобретенные для объяснения разделения зарядов в грозе. Обе они основаны на представлении о том, что на падающей частице должен существовать один заряд, а в воздухе — противоположный. Тогда при движении падающей частицы (воды или льда) сквозь воздух возникает разделение электрических зарядов. Вопрос только в том, отчего начинается электризация? Одна из старейших теорий — это теория «дробления капель». Кто-то когда-то обнаружил, что если в потоке воздуха капли дробятся на части, то сами они заряжаются положительно, а воздух — отрицательно. У этой теории есть несколько недостатков, самый серьезный из которых — что знак получается не тот. Кроме того, в большей части гроз умеренного пояса, сопровождаемых молниями, осадки на больших высотах бывают не в виде воды, а в виде льда.
Из только что сказанного следует, что если б мы могли представить себе способ сделать так, чтобы верх и низ капли были наэлектризованы по-разному, и если б мы усмотрели какой-то резон для капель разбиваться в быстром потоке воздуха на неравные части — большую впереди, а меньшую позади (ну, скажем, из-за движения сквозь воздух или из-за чего-то подобного), то и у нас появилась бы своя теория (отличная от всех известных!). Тогда из-за сопротивления воздуха крупные капли при падении отставали бы от мелких и вышло бы разделение зарядов. Как видите, можно измышлять любые возможности.
Одна из самых остроумных теорий, во многом более удовлетворительная, чем теория дробящихся капель, принадлежит Вильсону. Описывая ее, мы, как и сам Вильсон, будем говорить о каплях, хотя все это относится в равной мере и ко льду. Пусть у нас имеется водяная капелька, падающая в электрическом поле напряженностью 100 в/м к отрицательно заряженной земле. У капли появится наведенный дипольный момент — положительный заряд внизу, отрицательный наверху (фиг. 9.13).
Фиг. 9.13. Теория Ч. Вильсона о разделении зарядов в грозовой туче.
Кроме этого, в воздухе имеются «ядра», о которых мы уже говорили,— большие неторопливо движущиеся ионы. (Быстрые ионы не окажут здесь заметного влияния.) Предположим, что на своем пути вниз капля приблизилась к большому иону. Если он сам положителен, то положительный заряд низа капли оттолкнет его, и он отойдет в сторону. Так что, собственно, капля даже не соприкоснется с ним. Если же ион приблизится к капле сверху, он может притянуться к ней. Но капля падает сквозь воздух, и воздух проносится мимо нее вверх, унося с собой ионы (если только они движутся достаточно медленно). Так что положительные ионы не успевают коснуться верхушки капли. Все это относится, как видите, только к крупным, малоподвижным ионам. Положительные ионы такого сорта не смогут соприкасаться ни с нижней, ни с верхней поверхностью летящей капельки. Но когда крупные, медленные, отрицательные ионы входят в соприкосновение с каплей, она их притягивает к себе и захватывает. На капле накапливается отрицательный заряд (знак заряда определяется исходной разностью потенциалов всей Земли и получается как раз тот, какой нам нужен). Отрицательный заряд будет перенесен каплями в нижнюю часть тучи, а положительные ионы, брошенные по дороге, будут сдуты к ее верхушке различными восходящими потоками. Теория выглядит довольно мило и, во всяком случае, дает правильные знаки. К тому же она не зависит от того, град ли у нас или капли дождя. Мы увидим, когда будем изучать поляризацию диэлектриков, что со льдинками должно происходить то же самое. У них тоже в электрическом поле будут появляться на концах положительные и отрицательные заряды.
Однако и эта теория оставляет какие-то неясности. Во-первых, суммарный заряд грозы очень велик. Довольно быстро весь запас больших ионов израсходуется. Вильсон и другие вынуждены были предположить, что существуют добавочные источники больших ионов. Как только начинается разделение зарядов, развиваются очень сильные электрические поля, и в этих полях могут быть места, где воздух ионизуется. Если там имеется сильно заряженная точка или любой небольшой объект наподобие капли, то они могут сконцентрировать вокруг себя поле, достаточно большое для того, чтобы возник «кистевой разряд». Когда имеется достаточно сильное поле, скажем положительное, то электроны будут попадать в это поле и успевать набирать между столкновениями большую скорость. Она будет такой высокой, что, попадая в атомы, электроны будут срывать атомные электроны с их оболочки, оставляя позади себя положительные ионы. Эти новые электроны тоже наберут скорость и, столкнувшись, породят еще больше новых электронов. Произойдет своего рода цепная реакция, или лавина, вызывающая быстрое накопление ионов. Положительные заряды останутся невдалеке от своих прежних мест, так что чистый эффект состоит в распределении положительных зарядов в области вокруг исходной точки. При этом, конечно, сильное поле исчезнет и процесс замрет. Таков характер кистевого разряда. Не исключено, что поля в грозовой туче могут достичь такой величины, что сколько-то там кистевых разрядов действительно возникнет; могут также быть и другие механизмы ионизации, включаемые, едва начнется гроза. Но никто точно не знает, как они действуют. Так что по-настоящему до конца происхождение молнии не понято. Мы знаем только, что молнии бывают от грозы (и знаем, конечно, что гром бывает от молнии — от тепловой энергии, высвобождаемой при вспышке молнии).
Но по крайней мере мы можем хоть отчасти понять происхождение атмосферного электричества. Из-за того, что во время грозы существуют воздушные течения, ионы и капли воды на льдинках — положительные и отрицательные заряды — разделяются. Положительные заряды уносятся вверх, к облачному куполу (см. фиг. 9.11), а отрицательные при ударах молнии скатываются на Землю. Положительные так и остаются на верхушке облака, входят в высокие слои хорошо проводящего воздуха и расходятся над всей Землей. В районах, где держится ясная погода положительные заряды в этом слое медленно переводятся к земной поверхности ионами в воздухе — ионами, образованными то ли космическими лучами, то ли всплесками волн и деятельностью человека. Атмосфера — это беспрерывно действующая электрическая машина!
§ 6. Молния
Первое свидетельство о том, что происходит при вспышке молнии, было получено в фотоснимках, сделанных камерой, которую держали руками и перемещали при закрытом затворе, нацеливаясь туда, где ожидалась вспышка молнии. Первые полученные таким способом фотографии явственно показали, что обычно удары молнии — это повторные разряды по одному и тому же пути. Позже была изобретена камера «Бойс», в которой две линзы смонтированы на быстро вращающемся диске под углом 180° друг к другу. Изображение, даваемое каждой линзой, движется поперек пленки, картина развертывается во времени. Если, скажем, удар повторился, то на снимке появятся бок о бок два изображения. Сравнивая изображения от обеих линз, можно выяснить различные детали временной последовательности вспышек. На фиг. 9.14 показан снимок, сделанный такой камерой.
Фиг. 9.14. Снимок вспышки молнии, сделанный камерой «Бойс».
Расскажем о молнии подробнее, хотя мы и не понимаем точно, как она действует. Мы хотим дать качественное описание того, на что это похоже, но мы не будем входить в детали того, почему происходит то, что, по-видимому, происходит. Опишем обычный случай тучи с отрицательным дном, висящей над равниной. Ее потенциал намного более отрицателен, чем земная поверхность под нею, так что отрицательные электроны будут ускоряться по направлению к Земле. А происходит здесь вот что. Все начинается со светящегося комка, называемого «ступенчатым лидером». Он не такой яркий, как сама вспышка молнии. На снимках можно видеть вначале небольшое светлое пятнышко, выходящее из тучи и очень быстро катящееся вниз со скоростью 1/6 скорости света! Но оно проходит всего около 50 м и останавливается. Следует пауза около 50 мксек, а затем происходит следующий шаг. И за ним снова пауза, а после новый шаг и т. д. Так, шаг за шагом, пятно движется к Земле, по пути, похожему на то, что изображено на фиг. 9.15.
Фиг. 9.15. Образование ступенчатого лидера.
В лидере имеются отрицательные заряды из тучи; весь столб полон отрицательного электричества. Кроме того, воздух начинает ионизоваться быстро движущимися зарядами, образующими лидер, так что воздух вдоль отмеченного пути становится проводящим. В момент, когда лидер коснется грунта, получается проводящая «проволока», которая тянется до самой тучи и полна отрицательного электричества. Теперь, наконец, отрицательный заряд может запросто удрать из тучи. Первыми замечают это электроны, находящиеся в самом низу лидера; они соскакивают наземь, оставив позади себя положительный заряд, который притягивает новые отрицательные заряды из высших частей лидера; они тоже вываливаются наземь и т. д. В конце концов весь отрицательный заряд этой части тучи быстро и энергично сбежит по этому каналу вниз. Так что молния, которую вы видите, бьет от земли вверх (фиг. 9.16).
Фиг. 9.16. Обратная молния мчится по следу, проложенному лидером.
И, действительно, этот основной разряд — самая яркая часть разряда — называется обратной вспышкой. Она и вызывает яркое свечение и выделение тепла, которое, приводя к быстрому расширению воздуха, производит громовой удар.
Ток в пике молнии достигает 10 000 а и уносит около 20 кулон электричества.
Но мы еще не кончили. Спустя небольшой промежуток времени, может быть, в несколько сотых секунды, когда обратная молния уже исчезла, вниз пикирует новый лидер. Но на этот раз уже без пауз, без остановок. Теперь его именуют «темным лидером», и весь путь сверху донизу он проходит одним броском. Он мчится на всех парах в точности по прежнему следу, потому что вдоль следа хватает осколков атомов для того, чтобы этот путь оказался самым легким из всех путей. Новый лидер снова полон отрицательного электричества. И в мгновение, когда он касается почвы,— трах! — появляется обратная молния, катящаяся по тому же пути. И вы видите, как молния бьет еще раз, и еще раз, и еще. Порой бывает только один-два удара, временами пять или десять (однажды видели 42 разряда по одному и тому же каналу), но всегда быстро следующих один за другим.
Временами все еще более усложняется. Скажем, после одной из остановок лидер может начать ветвиться, образовав две ступеньки — обе идут вниз, но не совсем в одном направлении (см. фиг. 9.15). Что затем случится, зависит от того, коснется ли одна из ветвей земли намного раньше другой. Если да, то яркая обратная молния (вспышка отрицательных зарядов, разгружаемых наземь) прокладывает себе путь вверх вдоль ветви, которая коснулась земли, а когда на своем пути вверх достигает и проскакивает начало другой ветви, то кажется, что яркая молния бьет вниз по этой другой ветви. Почему? Потому что отрицательное электричество ссыпается на землю, и это вызывает вспышку молнии. Этот заряд начинает двигаться в начале вторичной ветви, последовательно опорожняя ее дальнейшие участки, так что кажется, что яркая молния прокладывает себе путь вниз по этой ветви в то же самое время, как она движется вверх. Если, однако, одна из этих добавочных ветвей лидера достигнет почвы почти вместе с самим лидером, то порой может случиться, что темный лидер повторной вспышки изберет себе путь по второй ветви. Тогда вы увидите первую главную вспышку в одном месте, а вторую — в другом. Это — вариант первоначальных представлений.
Кроме того, наше описание чересчур упрощает явления у самой земной поверхности. Когда ступенчатый лидер оказывается примерно в 100 м от почвы, то оттуда поднимается ему навстречу разряд. По-видимому, поле становится таким сильным, что может начаться разряд кистевого типа. Если, к примеру, в этом месте есть какой-то вытянутый предмет (дом с острием на крыше), то при приближении лидера поля так нарастают, что начинается разряд с этого острия, который достигает лидера. Молния стремится бить как раз в такие острия.
То, что молния бьет в высокие предметы, по-видимому, было известно давным-давно. Известно высказывание Артабана, советника Ксеркса. Артабан дает своему господину совет относительно предполагавшегося похода на греков, имевшего целью бросить весь известный тогда мир к ногам персов. Он говорит: «Взгляни, как Бог молниями своими всегда поражает крупных животных и не позволяет им становиться дерзкими, а существа меньших размеров не раздражают Его. И как молнии Его падают всегда на самые большие дома и самые высокие деревья». И затем он объясняет причину: «Так, очевидно, Он любит унижать все, что возносит себя».
Как вы думаете — сейчас, когда у вас есть правильный взгляд на молнию, поражающую высокие деревья, смогли ли бы вы давать королям советы по военным вопросам с большей мудростью, чем делал это Артабан 2300 лет назад? Скажите им, чтоб они не возносили себя! У вас только это выйдет не столь поэтично.
Глава 10 ДИЭЛЕКТРИКИ
§ 1. Диэлектрическая проницаемость
Сейчас мы разберем еще одно характерное свойство материи, возникающее под влиянием электрического поля. В одной из предыдущих глав мы рассмотрели поведение проводников, в которых заряды под влиянием электрического поля свободно текут в такие участки, что поле внутри проводника обращается в нуль. Теперь мы будем говорить об изоляторах, т. е. таких материалах, которые не проводят электричество. Сначала можно было бы подумать, что в них вообще ничего не происходит. Но Фарадей с помощью простого электроскопа и конденсатора, состоящего из двух параллельных пластин, обнаружил, что это не так. Его опыт показал, что если между пластинами поместить изолятор, то емкость такого конденсатора увеличится. Когда изолятор целиком заполняет пространство между пластинами, емкость возрастает в ϰ раз, причем ϰ зависит только от свойств изолирующего материала. Изолирующие материалы называют также диэлектриками; тогда множитель ϰ характеризует свойства диэлектрика и называется диэлектрической проницаемостью. Диэлектрическая проницаемость вакуума, конечно, равна единице.
Наша задача теперь состоит в том, чтобы объяснить, почему вообще возникает электрический эффект, раз изоляторы фактически являются изоляторами и не проводят электричества. Начнем с экспериментального факта, что емкость увеличивается, и попытаемся разобраться, что же там может происходить. Рассмотрим плоский конденсатор, на проводящих пластинах которого имеются заряды, скажем, на верхней пластине отрицательные, а на нижней — положительные. Пусть расстояние между пластинами равно d, а площадь каждой пластины А. Как мы показали раньше, емкость равна
(10.1)
а заряд и потенциал конденсатора связаны соотношением
(10.2)
Далее, экспериментальный факт состоит в том, что если мы положим между пластинами кусок изолирующего материала, например стекла или плексигласа, то емкость возрастет. Это, разумеется, означает, что при том же заряде потенциал стал меньше. Но разность потенциалов есть интеграл от электрического поля, взятый поперек конденсатора; отсюда мы должны заключить, что электрическое поле внутри конденсатора стало меньше, хотя заряды пластин и не изменились.
Но как может это быть? Нам известна теорема Гаусса, которая утверждает, что полный поток электрического поля прямо связан с находящимся внутри объема электрическим зарядом. Рассмотрим входящую в теорему Гаусса поверхность S, изображенную пунктиром на фиг. 10.1.
Фиг. 10.1. Плоский конденсатор с диэлектриком. Показаны линии поля E.
Поскольку электрическое поле в присутствии диэлектрика уменьшается, мы заключаем, что полный заряд внутри поверхности должен теперь быть меньше, чем до внесения изолятора. Остается сделать единственный вывод, что на поверхности диэлектрика должны находиться положительные заряды. Раз поле уменьшилось, но все же не обратилось в нуль, значит, этот положительный заряд меньше отрицательного заряда в проводнике. Итак, явление это можно объяснить, если мы поймем, почему на одной поверхности диэлектрика, помещенного в электрическое поле, индуцируется положительный заряд, а на другой — отрицательный.
Все было бы понятно, если бы речь шла о проводнике. Пусть у нас был бы, например, конденсатор, расстояние между пластинами которого равно d, и мы вставили бы между этими пластинами незаряженный проводник толщиной b (фиг. 10.2).
Фиг. 10.2. Если поместить пластинку проводника внутрь плоского конденсатора, наведенные заряды обратят поле в проводнике в нуль.
Электрическое поле индуцирует положительный заряд на верхней поверхности и отрицательный заряд на нижней поверхности, так что в результате поле внутри проводника погашается. Во всех остальных местах поле такое же, какое было без проводника, поэтому оно равно поверхностной плотности зарядов, деленной на ε0 на расстояние, по которому мы должны интегрировать, чтобы получить напряжение (разность потенциалов), стало меньше.
Напряжение равно
Окончательное выражение для емкости похоже на (10.1), где d нужно заменить разностью (d-b):
(10.3)
Емкость увеличилась в некоторое число раз, зависящее от b/d, доли объема, занятого проводником.
Отсюда мы получаем модель того, что происходит в диэлектриках: внутри материала имеется множество мелких проводящих слоев. Беда такой модели состоит в том, что в ней должна иметься выделенная ось — перпендикуляр ко всем слоям, а у большинства диэлектриков такой оси нет. Эту трудность, однако, можно устранить, предположив, что все изолирующие материалы содержат маленькие проводящие шарики, отделенные один от другого изолятором (фиг. 10.3).
Фиг. 10.3. Модель диэлектрика; маленькие проводящие шарики, вставленные внутрь идеального изолятора.
Появление диэлектрической проницаемости тогда объясняется действием зарядов, индуцируемых в каждом шарике. В этом и состоит одна из самых первых физических моделей диэлектриков, предложенная для объяснения явления, которое наблюдал Фарадей. Точнее, предполагалось, что каждый атом материала есть идеальный проводник, изолированный от остальных атомов. Диэлектрическая проницаемость ϰ тогда должна была определяться долей того объема, который занимают проводящие шарики. Теперь, однако, пользуются другой моделью.
§ 2. Вектор поляризации Р
Продолжив наш анализ, мы обнаружим, что идея о проводящих и непроводящих участках не так уж существенна. Любой из маленьких шариков действует как диполь, момент которого создается внешним полем. Для понимания диэлектриков существенной является идея о том, что в материале возбуждается множество маленьких диполей. Почему они возбуждаются — то ли потому, что в материале есть проводящие шарики, то ли по каким-либо другим причинам — абсолютно несущественно.
Почему поле должно индуцировать дипольный момент у атома, хотя атом не является проводящим шариком? Мы обсудим этот вопрос гораздо подробнее в следующей главе, которая будет посвящена внутреннему механизму диэлектрических материалов. А сейчас мы дадим лишь один пример, только чтобы проиллюстрировать возможный механизм. Атом имеет ядро с положительным зарядом, окруженное отрицательными электронами. В электрическом поле ядро притягивается в одну сторону, а электроны в другую. Орбиты или плотности вероятности электронов (или какая-либо другая картина, используемая в квантовой механике) несколько искажаются (фиг. 10.4); центр тяжести отрицательных зарядов сместится и больше не будет совпадать с положительным зарядом ядра. Мы уже обсуждали такое распределение заряда. Если взглянуть на него издалека, то подобная нейтральная конфигурация в первом приближении эквивалентна маленькому диполю.
Фиг. 10.4. Распределение электронов атома в электрическом поле сдвигается относительно ядра.
Если поле не чересчур велико, естественно считать величину индуцированного дипольного момента пропорциональной полю. Иначе говоря, небольшое поле сместит заряды чуть-чуть, а более сильное поле раздвинет их дальше — пропорционально величине поля, пока смещение не станет чересчур большим. До конца этой главы мы будем считать, что дипольный момент в точности пропорционален полю.
Предположим теперь, что в каждом атоме заряды q разделены промежутком δ, так что qδ есть дипольный момент одного атома. (Мы пишем δ, потому что d уже использовано для обозначения расстояния между пластинами.) Если в единице объема имеется N атомов, то дипольный момент в единице объема равен Nqδ. Этот дипольный момент в единице объема мы запишем в виде вектора Р. Нет необходимости подчеркивать, что он лежит в направлении всех отдельных дипольных моментов, т. е. в направлении смещения зарядов δ:
(10.4)
Вообще говоря, Р будет меняться в диэлектрике от точки к точке. Но в каждой точке Р пропорционален электрическому полю Е. Константа пропорциональности, которая определяется тем, насколько легко можно сместить электрон, зависит от сорта атомов в материале.
О том, что действительно определяет поведение этой константы и степень ее постоянства для больших полей, а также о том, что происходит внутри разных материалов, мы поговорим позже. А пока мы просто предположим, что существует какой-то механизм, благодаря которому индуцируется дипольный момент, пропорциональный электрическому полю.
§ 3. Поляризационные заряды
Посмотрим теперь, что дает эта модель для конденсатора с диэлектриком. Рассмотрим сначала лист материала, в котором на единицу объема приходится дипольный момент Р. Получится ли в результате в среднем какая-нибудь плотность зарядов? Нет, если Р постоянен.
Если положительные и отрицательные заряды, смещенные относительно друг друга, имеют одну и ту же среднюю плотность, то сам факт их смещения не приводит к появлению суммарного заряда внутри объема. С другой стороны, если бы Р в одном месте был больше, а в другом меньше, то это означало бы, что в некоторые области попало больше зарядов, чем оттуда вышло; тогда мы бы могли получить объемную плотность заряда. В случае плоского конденсатора предположим, что Р — величина постоянная, поэтому достаточно будет только посмотреть, что происходит на поверхностях. На одной поверхности отрицательные заряды (электроны) эффективно выдвинулись на расстояние δ, а на другой поверхности они сдвинулись внутрь, оставив положительные заряды снаружи на эффективном расстоянии δ. Возникает, как показано на фиг. 10.5, поверхностная плотность зарядов, которую мы будем называть поляризационным зарядом.
Фиг. 10.5. Диэлектрик в однородном поле. Положительные заряды сместились на расстояние δ относительно отрицательных.
Этот заряд можно подсчитать следующим образом. Если площадь пластинки равна А, то число электронов, которое окажется на поверхности, есть произведение А и N (числа электронов на единицу объема), а также смещения δ, которое, как мы предполагаем, направлено перпендикулярно к поверхности. Полный заряд получится умножением на заряд электрона qe. Чтобы найти поверхностную плотность поляризационных зарядов, индуцируемую на поверхности, разделим на А. Величина поверхностной плотности зарядов равна
Но она равна как раз длине Р вектора поляризации Р [формула (10.4)]:
(10.5)
Поверхностная плотность зарядов равна поляризации внутри материала. Поверхностный заряд, конечно, на одной поверхности положителен, а на другой отрицателен.
Предположим теперь, что наша пластинка служит диэлектриком в плоском конденсаторе. Пластины конденсатора также имеют поверхностный заряд (который мы обозначим σсвоб, потому что заряды в проводнике могут двигаться «свободно» куда угодно). Конечно, это тот самый заряд, который мы сообщили конденсатору при его зарядке. Следует подчеркнуть, что σпол существует только благодаря σсвоб. Если, разрядив конденсатор, удалить σсвоб, то σпол также исчезнет, но он не стечет по проволоке, которой разряжают конденсатор, а уйдет назад внутрь материала, за счет релаксации поляризации в диэлектрике.
Теперь мы можем применить теорему Гаусса к поверхности S, изображенной на фиг. 10.1. Электрическое поле Е в диэлектрике равно полной поверхностной плотности зарядов, деленной на ε0. Очевидно, что σпол и σсвоб имеют разные знаки, так что
(10.6)
Заметьте, что поле Е0 между металлической пластиной и поверхностью диэлектрика больше поля Е; оно соответствует только σсвоб. Но нас здесь интересует поле внутри диэлектрика, которое занимает почти весь объем, если диэлектрик заполняет почти весь промежуток между пластинами. Используя формулу (10.5), можно написать
(10.7)
Из этого уравнения мы не можем определить электрическое поле, пока не узнаем, чему равно Р. Здесь мы, однако, предполагаем, что Р зависит от Е и, более того, пропорционально Е. Эта пропорциональность обычно записывается в виде
(10.8)
Постоянная χ (греческое «хи») называется диэлектрической восприимчивостью диэлектрика.
Тогда выражение (10.7) приобретает вид
(10.9)
откуда мы получаем множитель 1/(1+χ), показывающий, во сколько раз уменьшилось поле.
Напряжение между пластинами есть интеграл от электрического поля. Раз поле однородно, интеграл сводится просто к произведению Е и расстояния между пластинами d. Мы получаем
Полный заряд конденсатора есть σсвоб А, так что емкость, определяемая формулой (10.2), оказывается равной
(10.10)
Мы объяснили явление, наблюдавшееся на опыте. Если заполнить плоский конденсатор диэлектриком, емкость возрастает на множитель
(10.11)
который характеризует свойства данного материала. Наше объяснение останется, конечно, неполным, пока мы не объясним (а это мы сделаем позже), как возникает атомная поляризация.
Обратимся теперь к чуть более сложному случаю — когда поляризация Р не всюду одинакова. Мы уже говорили, что если поляризация непостоянна, то вообще может возникнуть объемная плотность заряда, потому что с одной стороны в маленький элемент объема может войти больше зарядов, чем выйдет с другой. Как определить, сколько зарядов теряется или приобретается в маленьком объеме?
Подсчитаем сначала, сколько зарядов проходит через воображаемую плоскость, когда материал поляризуется. Количество заряда, проходящее через поверхность, есть просто Р, умноженное на площадь поверхности, если поляризация направлена по нормали к поверхности. Разумеется, если поляризация касательна к поверхности, то через нее не пройдет ни одного заряда.
Продолжая прежние рассуждения, легко понять, что количество заряда, прошедшее через любой элемент поверхности, пропорционально компоненте Р, перпендикулярной к поверхности. Сравним фиг. 10.6 и 10.5.
Фиг. 10.6. Количество ааряда, прошедшее через элемент воображаемой поверхности в диэлектрике, пропорционально компоненте Р, нормальной к поверхности.
Мы видим, что уравнение (10.5) в общем случае должно быть записано так:
(10.12)
Если мы имеем в виду воображаемый элемент поверхности внутри диэлектрика, то формула (10.12) дает заряд, который прошел через поверхность, но не приводит к результирующему поверхностному заряду, потому что возникают равные и противоположно направленные вклады от диэлектрика по обе стороны поверхности.
Однако смещение зарядов может привести к появлению объемной плотности зарядов. Полный заряд, выдвинутый из объема V за счет поляризации, есть интеграл от внешней нормальной составляющей Р по поверхности S, охватывающей объем (фиг. 10.7).
Фиг. 10.7. Неоднородная поляризация Р может приводить к появлению результирующего заряда внутри диэлектрика.
Такой же излишек зарядов противоположного знака остается внутри. Обозначая суммарный заряд внутри V через ΔQпол, запишем
(10.13)
Мы можем отнести ΔQпол за счет объемного распределения заряда с плотностью ρпол, так что
(10.14)
Комбинируя оба уравнения, получаем
(10.15)
Мы получили разновидность теоремы Гаусса, связывающую плотность заряда поляризованного материала с вектором поляризации Р. Мы видим, что она согласуется с результатом, полученным для поверхностного поляризационного заряда или же для диэлектрика в плоском конденсаторе. Уравнение (10.15) с гауссовой поверхностью S, изображенной на фиг. 10.1, дает в правой части интеграл по поверхности, равный РΔA, а в левой части заряд внутри объема оказывается σпол ΔA, так что мы снова получаем σ=Р.
Точно так же, как мы делали в случае закона Гаусса для электростатики, мы можем перейти в уравнении (10.15) к дифференциальной форме, пользуясь математической теоремой Гаусса:
Мы получаем
(10.16)
Если поляризация неоднородна, ее дивергенция определяет появляющуюся в материале результирующую плотность зарядов. Подчеркнем, что это совсем настоящая плотность зарядов; мы называем ее «поляризационным зарядом», только чтобы помнить, откуда она взялась.
§ 4. Уравнения электростатики для диэлектриков
Давайте теперь свяжем полученные нами результаты с тем, что мы уже узнали в электростатике. Основное уравнение имеет вид
(10.17)
где ρ — плотность всех электрических зарядов. Поскольку уследить за поляризационными зарядами непросто, удобно разбить ρ на две части. Обозначим снова через ρпол заряды, появляющиеся за счет неоднородной поляризации, а остальную часть назовем ρсвоб. Обычно ρсвоб означает заряд, сообщаемый проводникам или распределенный известным образом в пространстве. В этом случае уравнение (10.17) приобретает вид
или
(10.18)
Уравнение для ротора от Е, конечно, не меняется:
(10.19)
Подставляя Р из уравнения (10.8), получаем более простое уравнение:
(10.20)
Это и есть уравнения электростатики в присутствии диэлектриков. Они, конечно, не дают ничего нового, но имеют вид, более удобный для расчетов в тех случаях, когда ρсвоб известно, а поляризация Р пропорциональна Е.
Заметьте, что мы не вытащили «константу» диэлектрической проницаемости ϰ за знак дивергенции. Это потому, что она может не быть всюду одинаковой. Если она повсюду одинакова, то ее можно выделить в качестве множителя и уравнения станут в точности обычными уравнениями электростатики, где только ρсвоб нужно поделить на ϰ. В написанной нами форме уравнения годятся в общем случае, когда в разных местах поля расположены разные диэлектрики. В таких случаях решить уравнения иногда бывает очень трудно.
Здесь следует отметить один момент, имеющий историческое значение. На заре рождения электричества атомный механизм поляризации не был еще известен и о существовании ρпол не знали. Заряд ρсвоб считался равным всей плотности зарядов. Чтобы придать уравнениям Максвелла простой вид, вводили новый вектор D как линейную комбинацию Е и Р:
(10.21)
В результате уравнения (10.18) и (10.19) записывались в очень простом виде:
(10.22)
Можно ли их решить? Только когда задано третье уравнение, связывающее D и Е. Если справедливо уравнение (10.8), то эта связь есть
(10.23)
Последнее уравнение обычно записывается так:
(10.24)
где ε — еще одна постоянная, описывающая диэлектрические свойства материалов. Она также называется «проницаемостью». (Теперь вы понимаете, почему в наших уравнениях появилось ε0, это «проницаемость пустого пространства».)
Очевидно,
(10.25)
Сейчас мы рассматриваем эти вещи уже с другой точки зрения, а именно что в вакууме всегда имеются самые простые уравнения, и если в каждом случае учесть все заряды, какова бы ни была причина их возникновения, то они всегда справедливы. Выделяя часть зарядов либо из соображений удобства, либо потому, что мы не хотим вникать в детали процесса, мы всегда можем при желании написать уравнения в любой удобной для нас форме.
Сделаем еще одно замечание. Уравнение D=εЕ представляет собой попытку описать свойства вещества. Но вещество исключительно сложно по своей природе, и подобное уравнение на самом деле неправильно. Так, если Е становится очень большим, D перестает быть пропорциональным Е. В некоторых веществах пропорциональность нарушается уже при достаточно слабых полях. Кроме того, «константа» пропорциональности может зависеть от того, насколько быстро Е меняется со временем. Следовательно, уравнение такого типа есть нечто вроде приближенного уравнения типа закона Гука. Оно не может быть глубоким, фундаментальным уравнением. С другой стороны, наши основные уравнения для Е (10.17) и (10.19) выражают наиболее полное и глубокое понимание электростатики.
§ 5. Поля и силы в присутствии диэлектриков
Мы докажем сейчас ряд довольно общих теорем электростатики для тех случаев, когда имеются диэлектрики. Мы уже видели, что емкость плоского конденсатора при заполнении его диэлектриком увеличивается в определенное число раз. Сейчас можно показать, что это верно для емкости любой формы, если вся область вокруг двух проводников заполнена однородным линейным диэлектриком. В отсутствие диэлектрика уравнения, которые требуется решить, такие:
Когда имеется диэлектрик, первое из этих уравнений изменяется, и мы получаем
(10.26)
Далее, поскольку мы считаем ϰ всюду одинаковой, последние два уравнения можно записать в виде
(10.27)
Следовательно, для ϰЕ получаются такие же уравнения, как для Е0, и тогда они имеют решение ϰЕ=Е0. Другими словами, поле всюду в ϰ раз меньше, чем в отсутствие диэлектрика. Поскольку разность потенциалов есть линейный интеграл от поля, она уменьшится во столько же раз. А так как заряд на электродах конденсатора в обоих случаях тот же самый, то уравнение (10.2) говорит, что емкость в присутствии всюду однородного диэлектрика увеличивается в ϰ раз.
Зададимся теперь вопросом, как взаимодействуют два заряженных проводника в диэлектрике. Рассмотрим жидкий диэлектрик, повсюду однородный. Мы уже видели раньше, что один из способов найти силу — это продифференцировать энергию по соответствующему расстоянию. Если заряды на проводниках равны и противоположны по знаку, то энергия U=Q2/2C, где С — их емкость. С помощью принципа виртуальной работы любая компонента силы получается некоторым дифференцированием; например,
(10.28)
Поскольку диэлектрик увеличивает емкость в ϰ раз, все силы уменьшатся в такое же число раз.
Однако все это не так просто. Сказанное справедливо, только если диэлектрик жидкий. Любое перемещение проводников, окруженных твердым диэлектриком, изменяет условия механических напряжений в диэлектрике и его электрические свойства, а также несколько меняет механическую энергию диэлектрика. Движение проводников в жидкости не меняет свойств жидкости. Жидкость перетекает в другое место, но ее электрические свойства остаются неизменными.
Во многих старых книгах по электричеству изложение начинается с «основного» закона, по которому сила, действующая между двумя зарядами, есть
(10.29)
а эта точка зрения абсолютно неприемлема. Во-первых, это не всегда верно; это справедливо только в мире, заполненном жидкостью; во-вторых, так получается лишь для постоянного значения ϰ, что для большинства реальных материалов выполняется приближенно.
Гораздо легче начинать со всегда справедливого (для неподвижных зарядов) закона Кулона для зарядов в вакууме.
Что же происходит с зарядами в твердом теле? На это трудно ответить, потому что даже не вполне ясно, о чем идет речь. Если вы вносите заряды внутрь твердого диэлектрика, то возникают всякого рода давления и напряжения. Вы не можете считать работу виртуальной, не включив сюда также механическую энергию, необходимую для сжатия тела, а отличить однозначным образом электрические силы от механических, возникающих за счет самого материала, вообще говоря, очень трудно. К счастью, никому на самом деле не бывает нужно знать ответ на предложенный вопрос. Иногда нужно знать величину натяжений, которые могут возникнуть в твердом теле, а это можно вычислить. Но результаты здесь оказываются гораздо сложнее, чем простой ответ, полученный нами для жидкостей.
Неожиданно сложной оказывается следующая проблема в теории диэлектриков: почему заряженное тело подбирает маленькие кусочки диэлектрика? Если вы в сухой день причесываетесь, то ваша расческа потом легко будет подбирать маленькие кусочки бумаги. Если вы не вдумались в этот вопрос, то, вероятно, сочтете, что на расческе заряды одного знака, а на бумаге противоположного. Но бумага ведь была сначала электрически нейтральной. У нее нет суммарного заряда, а она все же притягивается. Правда, иногда бумажки подскакивают к расческе, а затем отлетают, сразу же отталкиваясь от нее. Причина, конечно, заключается в том, что, коснувшись расчески, бумага сняла с нее немного отрицательных зарядов, а одноименные заряды отталкиваются. Но это все еще не дает ответа на первоначальный вопрос. Прежде всего, почему бумажки вообще притягиваются к расческе?
Ответ заключается в поляризации диэлектрика, помещенного в электрическое поле. Возникают поляризационные заряды обоих знаков, притягиваемые и отталкиваемые расческой. Однако в результате получается притяжение, потому что поле поблизости от расчески сильнее, чем вдали от нее, ведь расческа не бесконечна. Ее заряд локализован. Нейтральный кусочек бумаги не притянется ни к одной из параллельных пластин конденсатора. Изменение поля составляет существенную часть механизма притяжения.
Как показано на фиг. 10.8, диэлектрик всегда стремится из области слабого поля в область, где поле сильнее.
Фиг. 10.8. На диэлектрик в неоднородном поле действует сила, направленная в сторону областей с большей напряженностью поля.
В действительности можно показать, что сила, действующая на малые объекты, пропорциональна градиенту квадрата электрического поля. Почему она зависит от квадрата поля? Потому что индуцированные поляризационные заряды пропорциональны полям, а для данных зарядов силы пропорциональны полю. Однако, как мы уже указывали, результирующая сила возникает, только если квадрат поля меняется от точки к точке. Следовательно, сила пропорциональна градиенту квадрата поля. Константа пропорциональности включает помимо всего прочего еще диэлектрическую проницаемость данного тела и зависит также от размеров и формы тела.
Есть еще одна близкая задача, в которой сила, действующая на диэлектрик, может быть найдена точно. Если мы возьмем плоский конденсатор, в котором плитка диэлектрика задвинута лишь частично (фиг. 10.9), то возникнет сила, вдвигающая диэлектрик внутрь.
Фиг. 10.9. Сила, действующая на диэлектрик в плоском конденсаторе, может быть вычислена с помощью закона сохранения энергии.
Провести детальное исследование силы очень трудно; оно связано с неоднородностями поля вблизи концов диэлектрика и пластин. Однако если мы не интересуемся деталями, а просто используем закон сохранения энергии, то силу легко вычислить. Мы можем определить силу с помощью ранее выведенной формулы. Уравнение (10.28) эквивалентно такому:
(10.30)
Нам осталось только найти, как меняется емкость в зависимости от положения плитки диэлектрика.
Пусть полная длина пластин есть L, ширина их равна W, расстояние между пластинами и толщина диэлектрика равна d, а расстояние, на которое вдвинут диэлектрик, есть х. Емкость есть отношение полного свободного заряда на пластинах к разности потенциалов между пластинами. Выше мы видели, что при данном потенциале V поверхностная плотность свободных зарядов равна ϰε0V/d. Следовательно, полный заряд пластин равен
откуда мы находим емкость
(10.31)
С помощью (10.30) получаем
(10.32)
Но пользы от этого выражения не очень много, разве только вам понадобится определить силу именно в таких условиях. Мы хотели лишь показать, что можно подчас избежать страшных осложнений при определении сил, действующих на диэлектрики, если пользоваться энергией, как это было в настоящем случае.
В нашем изложении теории диэлектриков мы имели дело только с электрическими явлениями, принимая как факт, что поляризация вещества пропорциональна электрическому полю. Почему возникает такая пропорциональность — вопрос, представляющий, пожалуй, еще больший интерес для физики. Стоит нам понять механизм возникновения диэлектрической проницаемости с атомной точки зрения, как мы сможем использовать измерения диэлектрической проницаемости в изменяющихся условиях для получения подробных сведений о строении атомов и молекул. Эти вопросы будут частично изложены в следующей главе.
Глава 11 ВНУТРЕННЕЕ УСТРОЙСТВО ДИЭЛЕКТРИКОВ
Повторить: гл. 3 (вып. 3) «Как возникает показатель преломления»; гл. 40 (вып. 4) «Принципы статистической механики »
§ 1. Молекулярные диполи
В этой главе мы поговорим о том, почему вещество бывает диэлектриком. В предыдущей главе мы указывали, что свойства электрических систем с диэлектриками можно было бы понять, предположив, что электрическое поле, действуя на диэлектрик, индуцирует в атомах дипольный момент. Именно, если электрическое поле E индуцирует средний дипольный момент в единице объема Р, то диэлектрическая проницаемость ϰ дается выражением
(11.1)
О применениях этого выражения мы уже говорили; сейчас же нам нужно обсудить механизм возникновения поляризации внутри материала под действием электрического поля. Начнем с самого простого примера — поляризации газов. Но даже в газах возникают сложности: существуют два типа газов. Молекулы некоторых газов, например кислорода, в каждой молекуле которого имеются два симметричных атома, лишены собственного дипольного момента. Зато молекулы других газов, вроде водяного пара (у которого атомы водорода и кислорода образуют несимметричную молекулу), обладают постоянным электрическим дипольным моментом. Как мы отмечали в гл. 6 и 7, в молекуле водяного пара атомы водорода в среднем имеют положительный заряд, а атом кислорода — отрицательный. Поскольку центры тяжести положительного и отрицательного зарядов не совпадают, то распределение всего заряда в молекуле обладает дипольным моментом. Такая молекула называется полярной молекулой. А у кислорода вследствие симметрии молекулы центр тяжести и положительных, и отрицательных зарядов один и тот же, так что это неполярная молекула. Она, правда, может стать диполем, если ее поместить в электрическое поле. Формы этих двух типов молекул нарисованы на фиг. 11.1.
Фиг. 11.1. Молекула кислорода с нулевым дипольным моментом (а) и молекула воды с постоянным дипольным моментом р0 (б).
§ 2. Электронная поляризация
Займемся сначала поляризацией неполярных молекул. Начнем с простейшего случая одноатомного газа (например, гелия). Когда атом такого газа находится в электрическом поле, электроны его тянутся в одну сторону, а ядро — в другую, как показано на рис. 10.4. Хотя атомы имеют очень большую жесткость по отношению к электрическим силам, которые мы можем приложить к ним на опыте, центры зарядов чуть-чуть смещаются относительно друг друга и индуцируется дипольный момент. В слабых полях величина смещения, а следовательно, и дипольного момента пропорциональна напряженности электрического поля. Смещение электронного распределения, которое приводит к этому типу индуцированного дипольного момента, называется электронной поляризацией.
Мы уже обсуждали воздействие электрического поля на атом в гл. 31 (вып. 3), когда занимались теорией показателя преломления. Подумав немного, вы сообразите, что теперь нужно сделать то же, что и тогда. Только теперь нас заботят поля, не меняющиеся со временем, тогда как показатель преломления был связан с полями, зависящими от времени.
В гл. 31 (вып. 3) мы предполагали, что центр электронного заряда атома, помещенного в осциллирующее электрическое поле, подчиняется уравнению
(11.2)
Первый член — это произведение массы электрона на его ускорение, а второй — возвращающая сила; справа стоит сила, действующая со стороны внешнего электрического поля. Если электрическое поле меняется с частотой ω, то уравнение (11.2)
допускает решение
(11.3)
имеющее резонанс при ω=ω0. Когда раньше мы нашли это решение, то интерпретировали ω0 как частоту, при которой атом поглощает свет (она лежит либо в оптической, либо в ультрафиолетовой области, в зависимости от атома). Для нашей цели, однако, достаточно случая постоянных полей, т.е. ω=0; поэтому мы можем пренебречь членом с ускорением в (11.2) и получаем смещение
(11.4)
Отсюда находим дипольный момент р одного атома
(11.5)
В таком подходе дипольный момент р действительно пропорционален электрическому полю.
Обычно пишут
(11.6)
(Снова ε0 вошло по историческим причинам.) Постоянная α называется поляризуемостью атома и имеет размерность L3. Это мера того, насколько легко индуцировать электрическим полем дипольный момент у атома. Сравнивая (11.5) и (11.6), получаем, что в нашей простой теории
(11.7)
Если в единице объема содержится N атомов, то поляризация (дипольный момент единицы объема) дается формулой
(11.8)
Объединяя (11.1) и (11.8), получаем
(11.9)
или в силу (11.7)
(11.10)
С помощью уравнения (11.9) можно предсказать, что диэлектрическая проницаемость х различных газов должна зависеть от плотности газа и от резонансной частоты ω0.
Наша формула, конечно, лишь очень грубое приближение, потому что в уравнении (11.2) мы воспользовались моделью, игнорирующей тонкости квантовой механики. Например, мы считали, что атом имеет только одну резонансную частоту, тогда как на самом деле их много. Чтобы по-настоящему вычислить поляризуемость атомов, нужно воспользоваться последовательной квантовомеханической теорией, однако и классический подход, изложенный выше, дает вполне разумную оценку.
Посмотрим, сможем ли мы получить правильный порядок величины диэлектрической проницаемости какого-нибудь вещества. Возьмем, к примеру, водород. Мы уже оценивали (вып. 4, гл. 38) энергию, необходимую для ионизации атома водорода, и получили приближенно
(11.11)
Для оценки собственной частоты ω0 можно положить эту энергию равной ℏω0— энергии атомного осциллятора с собственной частотой ω0. Получаем
Пользуясь этой величиной в уравнении (11.7), находим электронную поляризуемость
(11.12)
Величина (ℏ2/me2) есть радиус основной орбиты атома Бора (см. вып. 4, гл. 38), равный 0,528 А. При нормальном давлении и температуре (1 атм, 0°С) в газе на 1 см3 приходится 2,69·1019 атомов, и уравнение (11.9) дает
(11.13)
Измеренная на опыте диэлектрическая проницаемость равна
Видите, наша теория почти правильна. Лучшего нельзя было и ожидать, потому что измерения проводились, конечно, с обычным водородом, обладающим двухатомными молекулами, а не одиночными атомами. Не следует удивляться тому, что поляризация атомов в молекуле не совсем такая, как поляризация отдельных атомов. На самом деле молекулярный эффект не столь велик. Точное квантовомеханическое вычисление величины α для атомов водорода дает результат, превышающий (11.12) примерно на 12% (вместо 16πполучается 18π), поэтому он предсказывает для диэлектрической проницаемости значение, более близкое к наблюденному. Во всяком случае, совершенно очевидно, что наша модель диэлектрика вполне хороша.
Еще одна проверка нашей теории. Попробуем применить уравнение (11.12) к атомам с большей частотой возбуждения. Например, чтобы отобрать электрон у гелия, требуется 24,5 в, тогда как для ионизации водорода необходимы 13,5 в. Поэтому мы предположим, что частота поглощения ω0 для гелия должна быть примерно в два раза больше, чем для водорода, а α должна быть меньше в четыре раза. Мы ожидаем, что
а экспериментально получено
так что наши грубые оценки показывают, что мы на верном пути. Итак, мы поняли диэлектрическую проницаемость неполярного газа, но только качественно, потому что пока мы еще не использовали правильную атомную теорию движения атомных электронов.
§ 3. Полярные молекулы; ориентационная поляризация
Теперь рассмотрим молекулу, обладающую постоянным дипольным моментом р0, например молекулу воды. В отсутствие электрического поля отдельные диполи смотрят в разных направлениях, так что суммарный момент в единице объема равен нулю. Но если приложить электрическое поле, то сразу же происходят две вещи: во-первых, индуцируется добавочный дипольный момент из-за сил, действующих на электроны; эта часть приводит к той же самой электронной поляризуемости, которую мы нашли для неполярной молекулы. При очень точном исследовании этот эффект, конечно, нужно учитывать, но мы пока пренебрежем им. (Его всегда можно добавить в конце.) Во-вторых, электрическое поле стремится выстроить отдельные диполи, создавая результирующий момент в единице объема. Если бы в газе выстроились все диполи, поляризация была бы очень большой, но этого не происходит. При обычных температурах и напряженностях поля столкновения молекул при их тепловом движении не позволяют им как следует выстроиться. Но некоторое выстраивание все же происходит, а отсюда и небольшая поляризация (фиг. 11.2). Возникающая поляризация может быть подсчитана методами статистической механики, описанными в гл. 40 (вып. 4).
Фиг. 11.2. В газе полярных молекул отдельные моменты ориентированы случайным образом, средний момент в небольшом объеме равен нулю (а); под действием электрического поля в среднем возникает некоторое выстраивание молекул (б).
Чтобы использовать этот метод, нужно знать энергию диполя в электрическом поле. Рассмотрим диполь с моментом р0 в электрическом поле (фиг. 11.3).
Фиг. 11.3. Энергия диполя р0 в поле Е равна —р0·Е.
Энергия положительного заряда равна qφ(1), а энергия отрицательного есть —qφ(2). Отсюда получаем энергию диполя
или
(11.14)
где θ — угол между р0 и Е. Как и следовало ожидать, энергия становится меньше, когда диполи выстраиваются вдоль поля. Теперь с помощью методов статистической механики мы выясним, насколько сильно диполи выстраиваются. В гл. 40 (вып. 4) мы нашли, что в состоянии теплового равновесия относительное число молекул с потенциальной энергией U пропорционально
(11.15)
где U(х, у, z) — потенциальная энергия как функция положения. Оперируя теми же аргументами, можно сказать, что если потенциальная энергия как функция угла имеет вид (11.14), то число молекул под углом θ, приходящееся на единичный телесный угол, пропорционально ехр(—U/kT).
Полагая число молекул на единичный телесный угол, направленных под углом θ, равным n(θ), имеем
(11.16)
Для обычных температур и полей показатель экспоненты мал, и, разлагая экспоненту, можно воспользоваться приближенным выражением
(11.17)
Найдем n, проинтегрировав (11.17) по всем углам; результат должен быть равен N, т.е. числу молекул в единице объема. Среднее значение cos θ при интегрировании по всем углам есть нуль, так что интеграл равен просто n0, умноженному на полный телесный угол 4π. Получаем
(11.18)
Из (11.17) видно, что вдоль поля (cosθ=1) будет ориентировано больше молекул, чем против поля (cosθ=-1). Поэтому в любом малом объеме, содержащем много молекул, возникнет суммарный дипольный момент на единицу объема, т.е. поляризация Р. Чтобы вычислить Р, нужно знать векторную сумму всех молекулярных моментов в единице объема. Мы знаем, что результат будет направлен вдоль Е, поэтому нужно только просуммировать компоненты в этом направлении (компоненты, перпендикулярные Е, при суммировании дадут нуль):
Мы можем оценить сумму, проинтегрировав по угловому распределению. Телесный угол, отвечающий θ, есть 2πsin θdθ; отсюда
(11.19)
Подставляя вместо n(θ) его выражение из (11.17), имеем
что легко интегрируется и приводит к следующему результату:
(11.20)
Поляризация пропорциональна полю Е, поэтому диэлектрические свойства будут обычные. Кроме того, как мы и ожидаем, поляризация обратно пропорциональна температуре, потому что при более высоких температурах столкновения больше разрушают выстроенность. Эта зависимость вида 1/T называется законом Кюри. Квадрат постоянного момента р0 появляется по следующей причине: в данном электрическом поле выстраивающая сила зависит от р0, а средний момент, возникающий при выстраивании, снова пропорционален р0. Средний индуцируемый момент пропорционален р02.
Теперь посмотрим, насколько хорошо уравнение (11.20) согласуется с экспериментом. Возьмем водяной пар. Поскольку мы не знаем, чему равно р0, то не можем прямо вычислить и Р, но уравнение (11.20) предсказывает, что ϰ-1 должна меняться обратно пропорционально температуре, и это нам следует проверить.
Из (11.20) получаем
(11.21)
так что ϰ-1 должна меняться прямо пропорционально плотности N и обратно пропорционально абсолютной температуре. Диэлектрическая проницаемость была измерена при нескольких значениях давления и температуры, выбранных таким образом, чтобы число молекул в единице объема оставалось постоянным[10]. (Заметим, что, если бы все измерения выполнялись при постоянном давлении, число молекул в единице объема уменьшалось бы линейно с повышением температуры, а ϰ-1 изменялась бы как T-2, а не как T-1.) На фиг. 11.4 мы отложили измеренные значения ϰ-1 как функцию 1/T. Зависимость, предсказываемая формулой (11.21), выполняется хорошо.
Фиг. 11.4. Измеренные значения диэлектрической проницаемости водяного пара при нескольких температурах.
Есть еще одна особенность диэлектрической проницаемости полярных молекул — ее изменение в зависимости от частоты внешнего поля. Благодаря тому что молекулы имеют момент инерции, тяжелым молекулам требуется определенное время, чтобы повернуться в направлении поля. Поэтому, если использовать частоты из верхней микроволновой зоны или из еще более высокой, полярный вклад в диэлектрическую проницаемость начинает спадать, так как молекулы не успевают следовать за полем. В противоположность этому электронная поляризуемость все еще остается неизменной вплоть до оптических частот, поскольку инерция электронов меньше.
§ 4. Электрические поля в пустотах диэлектрика
Теперь мы переходим к интересному, но сложному вопросу о диэлектрической проницаемости плотных веществ. Возьмем, например, жидкий гелий, или жидкий аргон, или еще какое-нибудь неполярное вещество. Мы по-прежнему ожидаем, что у них есть электронная поляризуемость. Но в плотных средах значение Р может быть велико, поэтому в поле, действующее на отдельный атом, вклад будет давать поляризация атомов, находящихся по соседству. Возникает вопрос, чему равно электрическое поле, действующее на отдельный атом?
Вообразите, что между пластинами конденсатора находится жидкость. Если пластины заряжены, они создадут в жидкости электрическое поле. Но каждый атом имеет заряды, и полное поле Е есть сумма обоих этих вкладов. Это истинное электрическое поле в жидкости меняется очень-очень быстро от точки к точке. Оно чрезвычайно велико внутри атомов, особенно вблизи ядра, и сравнительно мало между атомами. Разность потенциалов между пластинами есть интеграл от этого полного поля. Если мы пренебрежем всеми быстрыми изменениями, то можем представить себе некое среднее электрическое поле Е, равное как раз V/d. (Именно это поле мы использовали в предыдущей главе.) Это поле мы должны себе представлять как среднее по пространству, содержащему много атомов.
Вы можете подумать, что «средний» атом в «среднем» положении почувствует именно это среднее поле. Но все не так просто, и в этом можно убедиться, представив, что в диэлектрике имеются отверстия разной формы. Предположим, что мы вырезали в поляризованном диэлектрике щель, ориентированную параллельно полю (фиг. 11.5, а). Поскольку мы знаем, что ∇×E=0, то линейный интеграл от Е вдоль кривой Γ, направленной так, как показано на фиг. 11.5, б, должен быть равен нулю. Поле внутри щели должно давать такой вклад, который в точности погасит вклад от поля вне щели. Поэтому поле E0 в центре длинной тонкой щели равно Е, т.е. среднему электрическому полю, найденному в диэлектрике.
Фиг. 11.5. Поле внутри щели, вырезанной в диэлектрике, зависит от ее формы, и ориентации.
Рассмотрим теперь другую щель, повернутую своей широкой стороной перпендикулярно Е (фиг. 11.5, в). В этом случае поле E0 в щели не совпадает с Е, потому что на стенках щели возникают поляризационные заряды. Применив закон Гаусса к поверхности S, изображенной на фиг. 11.5, г, мы находим, что поле Е0 внутри щели дается выражением
(11.22)
где Е, как и раньше,— электрическое поле в диэлектрике. (Гауссова поверхность охватывает поверхностный поляризационный заряд σпол=Р.) Мы отмечали в гл. 10, что ε0Е+Р часто обозначают через D, поэтому ε0Е0=D0 равно величине D в диэлектрике.
В ранний период истории физики, когда считалось очень важным определять каждую величину прямым экспериментом, физики были очень довольны, обнаружив, что они могут определить то, что понимают под Е и D в диэлектрике, не ползая в промежутках между атомами. Среднее поле Е численно равно полю Е0, измеренному в щели, параллельной полю. А поле D могло быть измерено с помощью Е0, найденной в щели, перпендикулярной полю. Но никто эти поля никогда не измерял (таким способом, во всяком случае), так что это одна из многих бесплодных проблем.
В большинстве жидкостей, не слишком сложных по своему строению, каждый атом в среднем так окружен другими атомами, что можно с хорошей точностью считать его находящимся в сферической полости. И тогда мы спросим: «Чему равно поле в сферической полости?» Мы замечаем, что вырезание сферической дырки в однородном поляризованном диэлектрике равносильно отбрасыванию шарика из поляризованного материала, так что мы можем ответить на этот вопрос. (Мы должны представить себе, что поляризация была «заморожена» до того, как мы вырезали дырку.) Однако в силу принципа суперпозиции поле внутри диэлектрика, до того как оттуда был вынут шарик, есть сумма полей от всех зарядов вне объема шарика плюс полей от зарядов внутри поляризованного шарика. Следовательно, если поле внутри однородного диэлектрика мы назовем Е, то можно записать
(11.23)
где Eдырка — поле в дырке, а Eшарик — поле в однородно поляризованном шарике (фиг. 11.6).
Фиг. 11.6. Поле в любой точке А диэлектрика можно представить в виде суммы поля сферической дырки и поля сферического вкладыша.
Поле однородно поляризованного шарика показано на фиг. 11.7.
Фиг. 11.7. Электрическое поле однородно поляризованного шарика.
Электрическое поле внутри шарика однородно и равно
(11.24)
С помощью (11.23) получаем
(11.25)
Поле в сферической полости больше среднего поляна величину Р/3ε0. (Сферическая дырка дает поле, находящееся на 1/3 пути от поля параллельной щели к полю перпендикулярной щели.)
§ 5. Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти
В жидкости мы ожидаем, что поле, поляризующее отдельный атом, скорее похоже на Едырка, чем просто на Е. Если взять Eдырка из (11.25) в качестве поляризующего поля, входящего в (11.6), то уравнение (11.8) приобретет вид
(11.26)
или
(11.27)
Вспоминая, что ϰ-1 как раз равна Р/ε0Е, получаем
(11.28)
что определяет диэлектрическую проницаемость жидкости ϰ через атомную поляризуемость α. Это формула Клаузиуса — Моссотти.
Если Nα очень мало, как, например, для газа (потому что там мала плотность N), то членом Nα/3 можно пренебречь по сравнению с 1, и мы получаем наш старый результат — уравнение (11.9), т.е.
(11.29)
Давайте сравним уравнение (11.28) с некоторыми экспериментальными данными. Сначала стоит обратиться к газам, для которых из измерений x можно с помощью уравнения (11.29) найти значение α. Так, для дисульфида углерода при нулевой температуре по Цельсию диэлектрическая проницаемость равна 1,0029, так что Nα=0,0029. Плотность газа легко вычислить, а плотность жидкостей можно найти в справочниках. При 20°C плотность жидкого CS2 в 381 раз выше плотности газа при 0°С. Это значит, что N в 381 раз больше в жидкости, чем в газе, а отсюда (если сделать допущение, что исходная атомная поляризуемость дисульфида углерода не меняется при его конденсации в жидкое состояние) Nα в жидкости в 381 раз больше 0,0029, или равно 1,11. Заметьте, что Nα/З составляет почти 0,4. С помощью этих чисел мы предсказываем, что величина диэлектрической проницаемости равна 2,76, что достаточно хорошо согласуется с наблюденным значением 2,64.
В табл. 11.1 мы приводим ряд экспериментальных данных по разным веществам, а также значения диэлектрической проницаемости, вычисленной, как только что было описано, по формуле (11.28).
Таблица 11.1. ВЫЧИСЛЕНИЕ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ЖИДКОСТЕЙ ИЗ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ГАЗА
Согласие между опытом и теорией для аргона и кислорода даже лучше, чем для CS2, и не столь хорошее для четыреххлористого углерода. В целом результаты показывают, что уравнение (11.28) работает с хорошей точностью.
Наш вывод уравнения (11.28) справедлив только для электронной поляризации в жидкостях. Для полярных молекул вроде Н2O он неверен. Если провести такие же вычисления для воды, то для Nα получим значение 13,2, что означает, что диэлектрическая проницаемость этой жидкости отрицательна, тогда как опытное значение ϰ равно 80. Дело здесь связано с неправильной трактовкой постоянных диполей, и Онзагер указал правильный способ решения. Мы не можем сейчас останавливаться на этом вопросе, но если он вас интересует, то подробно это обсуждается в книге Киттеля «Введение в физику твердого тела»[11].
§ 6. Твердые диэлектрики
Обратимся теперь к твердым телам. Первый интересный факт относительно твердых тел заключается в том, что у них бывает постоянная поляризация, которая существует даже и без приложения внешнего электрического поля. Примеры можно найти у веществ типа воска, который содержит длинные молекулы с постоянным дипольным моментом. Если растопить немного воску и, пока он еще не затвердел, наложить на него сильное электрическое поле, чтобы дипольные моменты частично выстроились, то они останутся в таком положении и после того, как воск затвердеет. Твердое вещество будет обладать постоянной поляризацией, которая остается и в отсутствие поля. Такое вещество называется электретом.
На поверхности электрета расположены постоянные поляризационные заряды. Электрет представляет собой электрический аналог магнита, однако пользы от него гораздо меньше, потому что свободные заряды воздуха притягиваются к его поверхности и в конце концов нейтрализуют поляризационные заряды. Электрет «разряжается» и заметного внешнего поля не создает.
Постоянная внутренняя поляризация Р встречается и у некоторых кристаллических веществ. В таких кристаллах каждая элементарная ячейка решетки обладает одним и тем же постоянным дипольным моментом (фиг. 11.8).
Фиг. 11.8. Сложная кристаллическая решетка может иметь постоянную внутреннюю поляризацию Р.
Все диполи направлены в одну сторону даже в отсутствие электрического поля. Многие сложные кристаллы обладают такой поляризацией; обычно мы этого не замечаем, потому что создаваемое ими внешнее поле, как и у электретов, разряжается.
Если, однако, внутренние дипольные моменты кристалла меняются, то внешнее поле становится заметным, потому что блуждающие заряды не успевают собраться и нейтрализовать поляризационные заряды. Если диэлектрик находится в конденсаторе, свободные заряды индуцируются на электродах. Моменты могут, например, измениться вследствие теплового расширения, если нагреть диэлектрик. Такой эффект называется пироэлектричеством. Аналогично, если менять напряжения в кристалле, скажем, сгибая его, то момент может снова немного измениться, и тогда обнаружится слабый электрический эффект, называемый пьезоэлектричеством.
Для кристаллов, не обладающих постоянным моментом, можно развить теорию диэлектрической проницаемости, куда включается электронная поляризуемость атомов. Делается это почти так же, как для жидкостей. Некоторые кристаллы имеют внутренние моменты, и вращение их также вносит вклад в ϰ. В ионных кристаллах, таких, как NaCl, возникает также ионная поляризуемость. Кристалл состоит из положительных и отрицательных ионов, расположенных в шахматном порядке, и в электрическом поле положительные ионы тянутся в одну сторону, а отрицательные — в другую; возникает результирующее смещение положительных и отрицательных зарядов, а следовательно, и объемная поляризация. Мы могли бы оценить величину ионной поляризуемости, зная жесткость кристаллов соли, но мы не будем сейчас останавливаться на этом вопросе.
§ 7. Сегнетоэлектричество; титанат бария
Мы опишем здесь особый класс кристаллов, которые, можно сказать, почти случайно обладают «встроенным» постоянным электрическим моментом. Ситуация здесь настолько критична, что, если слегка увеличить температуру выше некоторой, кристалл этого класса совсем потеряет постоянный момент. С другой стороны, если структура кристалла близка к кубической, так что электрические моменты могут располагаться в разных направлениях, можно обнаружить большие изменения полного момента при изменении приложенного электрического поля. Все моменты перевертываются в направлении поля, и мы получаем большой эффект. Вещества, обладающие такого рода постоянным моментом, называются сегнетоэлектриками[12].
Мы хотели бы объяснить механизм сегнетоэлектричества на частном примере какого-нибудь сегнетоэлектрического материала. Сегнетоэлектрические свойства могут возникать несколькими путями; однако мы разберем только один из них на примере таинственного титаната бария (BaТiO3). Это вещество обладает кристаллической решеткой, основная ячейка которого изображена на фиг. 11.9.
Фиг. 11.9. Элементарная ячейка ВаТiO3. Атомы в действительности заполняют большую часть пространства; показаны только положения их центров.
Оказывается, что выше некоторой температуры (а именно 118°С) титанат бария — обычный диэлектрик с огромной диэлектрической проницаемостью, а ниже этой температуры он неожиданно приобретает постоянный момент.
При вычислении поляризации твердых тел мы должны сначала найти локальные поля в каждой элементарной ячейке. Причем для этого нужно ввести поля самой поляризации, как это делалось в случае жидкости. Но кристалл — не однородная жидкость, так что мы не можем взять в качестве локального поля то, что мы нашли в сферической дыре. Если мы сделаем это для кристалла, то окажется, что множитель 1/3 в уравнении (11.24) слегка изменится, но ненамного. (Для простого кубического кристалла он равен в точности 1/3.) Поэтому предположим в нашем предварительном обсуждении, что этот множитель для BaTi03 действительно равен 1/3.
Далее, когда мы писали уравнение (11.28), вам, наверное, было интересно знать, что случится, если Nα станет больше 3. На первый взгляд величина ϰ должна бы стать отрицательной. Но такого наверняка не может быть. Посмотрим, что произойдет, если в каком-нибудь определенном кристалле постепенно увеличивать значение α. По мере роста α растет и поляризация, создавая большее локальное поле. Но увеличившееся локальное поле заполяризует атом еще больше, дополнительно усиливая само локальное поле. Если атомы достаточно «податливы», процесс продолжается; возникает своего рода обратная связь, приводящая к безудержному росту поляризации (если предположить, что поляризация каждого атома увеличивается пропорционально полю). Условие «разгона» возникает при Nα=3. Поляризация, конечно, не обращается в бесконечность, потому что при сильных полях пропорциональность между индуцированным моментом и электрическим полем нарушается, так что наши формулы становятся неправильными. А получается то, что в решетку, оказывается, «встроена» большая внутренняя самопроизвольная поляризация.
В случае ВаТiO3 вдобавок к электронной поляризации имеется довольно большая ионная поляризация, обусловленная, как предполагают, ионами титана, которые могут слегка сдвигаться внутри кубической решетки. Решетка сопротивляется большим смещениям, так что ион титана, переместившись на небольшое расстояние, затормаживается и останавливается. Но тогда у кристаллической решетки образуется постоянный дипольный момент.
У большинства сегнетоэлектрических кристаллов такая ситуация действительно возникает при всех достижимых температурах. Однако титанат бария представляет особый интерес: он так деликатно устроен, что при малейшем уменьшении Nα момент «высвобождается». Поскольку N с повышением температуры уменьшается (вследствие теплового расширения), то можно изменять Nα, меняя температуру. Ниже критической температуры момент сразу образуется, и тогда, накладывая внешнее поле, поляризацию легко повернуть и закрепить в нужном направлении.
Попробуем разобраться в происходящем более подробно. Назовем критической температуру Тс, при которой Nα равно в точности 3. При увеличении температуры значение N немного уменьшается вследствие расширения решетки. Поскольку расширение мало, мы можем сказать, что вблизи критической температуры
(11.30)
где β — малая константа, того же порядка величины, что и коэффициент теплового расширения, т. е. Около 10-5—10-6 град-1. Подставляя это в выражение (11.28), получаем
Поскольку мы считаем величину β(Т-Тс) малой по сравнению с единицей, можно записать приближенно
(11.31)
Это, конечно, справедливо только для Т>Tс. Мы видим, что если температура чуть выше критической, то величина ϰ огромна. Из-за того, что Nα так близко к 3, возникает громадный эффект усиления и диэлектрическая проницаемость легко достигает величины от 50 000 до 100 000. Она тоже весьма чувствительна к температуре. При увеличении температуры диэлектрическая проницаемость уменьшается обратно пропорционально температуре, но в отличие от дипольного газа, где разность ϰ-1 обратно пропорциональна абсолютной температуре, у сегнетоэлектриков она меняется обратно пропорционально разности между абсолютной и критической температурами (этот закон называется законом Кюри — Вейсса).
Что получается, когда мы понижаем температуру до критического значения? Если кристаллическая решетка состоит из элементарных ячеек вида, изображенного на фиг. 11.9, то, очевидно, можно выбрать цепочки ионов вдоль вертикальных линий. Одна из них состоит попеременно из ионов кислорода и титана. Имеются и другие цепочки, состоящие либо из ионов бария, либо из ионов кислорода, но расстояния между ионами вдоль таких линий оказываются больше. Используем простую модель, вообразив ряд ионных цепочек (фиг. 11.10, а). Вдоль цепочки, которую мы назовем главной, расстояние между ионами равно а, что составляет половину постоянной решетки; поперечное расстояние между одинаковыми цепочками равно 2а.
Фиг. 11.10. Модели сегнетоалектрика. а — антисегнетоэлектрик; б — нормальный сегнетовлектрик.
В промежутке имеются менее плотные цепочки, которые мы пока не будем рассматривать. Чтобы немного упростить наш анализ, предположим еще, что все ионы главной цепочки одинаковы. (Упрощение не очень значительное, потому что все важные эффекты еще останутся. Это просто одна из хитростей теоретической физики. Сначала решают видоизмененную задачу, потому что так в первый раз ее легче понять, а затем, разобравшись, как все происходит, вносят все усложнения.)
Попробуем теперь выяснить, что будет происходить в нашей модели. Предположим, что дипольный момент каждого иона равен р, и пусть мы хотим вычислить поле вблизи одного из ионов в цепочке. Мы должны найти сумму полей от всех остальных ионов. Сначала вычислим поле от диполей только в одной вертикальной цепочке; об остальных цепочках поговорим позже. Поле на расстоянии r от диполя в направлении вдоль его оси дается формулой
(11.32)
Для точки вблизи любого иона прочие диполи, расположенные на одинаковом расстоянии кверху и книзу от него, дают поля в одном и том же направлении, поэтому для всей цепочки получаем
(11.33)
Не представляет большого труда показать, что если бы наша модель была подобна кубическому кристаллу, т. е. если бы следующая идентичная линия проходила на расстоянии a, число 0,383 превратилось бы в 1/3 (~0,333). Другими словами, если бы соседние линии проходили на расстоянии а, они вносили бы в нашу сумму всего лишь —0,050. Однако следующая главная цепочка, которую мы рассмотрим, находится на расстоянии 2а, и, как вы помните из гл. 7, поле, создаваемое периодической структурой, спадает с расстоянием экспоненциально. Поэтому эти линии вносят в сумму гораздо меньше —0,050, и мы можем просто пренебречь всеми остальными цепочками.
Теперь нужно выяснить, какова должна быть поляризуемость α, чтобы привести в действие механизм разгона. Предположим, что индуцированный момент р каждого атома цепочки в соответствии с уравнением (11.6) пропорционален действующему на него полю. Поляризующее поле, действующее на атом, мы получаем из Eцепочка с помощью формулы (11.32). Итак, мы имеем два уравнения:
и
Имеются два решения: когда Е и р оба равны нулю и когда Е и р не равны нулю, но при условии, что
Таким образом, если α достигает величины α3/0,383, устанавливается постоянная поляризация, поддерживаемая своим собственным полем. Это критическое равенство должно достигаться для титаната бария как раз при температуре Тс. (Заметьте, что если бы поляризуемость α была больше критического значения для слабых полей, то она уменьшится при больших полях и в точке равновесия установится полученное нами равенство.)
Для ВаТiO3 промежуток α равен 2·10-8 см, поэтому мы должны ожидать значения α=21,8·10-24 см3. Мы можем сравнить эту величину с известными величинами поляризуемости отдельных атомов. Для кислорода α=30,2·10-24 см3. (Мы на верном пути!) Но для титана α=2,4·10-24см3. (Слишком мало.) В нашей модели нам, видимо, следует взять среднее. (Мы могли бы рассчитать снова цепочку для перемежающихся атомов, но результат был бы почти такой же.) Итак, αсредн=16,3·10-24 см3, что недостаточно велико для установления постоянной поляризации.
Но подождите! Мы ведь до сих пор складывали только электронные поляризуемости. А есть еще и ионная поляризация, возникающая из-за смещения иона титана. Однако потребуется ионная поляризуемость величиной 9,2·10-24 см3.
(Более точное вычисление с учетом перемежающихся атомов показывает, что на самом деле требуется даже 11,9·10-24см3.) Чтобы понять свойства ВаТiO3, мы должны предположить, что возникает именно такая ионная поляризуемость.
Почему ион титана в титанате бария имеет столь большую ионную поляризуемость, неизвестно. Более того, непонятно, почему при меньших температурах он поляризуется одинаково хорошо и в направлении диагонали куба и в направлении диагонали грани. Если мы вычислим действительные размеры шариков на фиг. 11.9 и попробуем найти, достаточно ли свободно титан держится в коробке, образованной соседними атомами кислорода (а этого хотелось бы, потому что тогда его было бы легко сдвинуть), то получится совсем противоположный ответ. Он сидит очень плотно. Атомы бария держатся намного свободнее, но если считать, что это они движутся, то ничего не получится. Так что, как видите, вопрос совсем не ясен; остаются еще загадки, которые очень хотелось бы разгадать.
Возвращаясь к нашей простой модели (см. фиг. 11.10, а), мы видим, что поле от одной цепочки будет вызывать поляризацию соседней цепочки в противоположном направлении. Это значит, что, хотя каждая цепочка будет заморожена, постоянная поляризация в единице объема будет равна нулю! (Внешние электрические проявления тут не возникли бы, но можно было бы наблюдать определенные термодинамические эффекты.) Такие системы существуют и называются они антисегнетоэлектриками. Поэтому наше объяснение фактически относилось к антисегнетоэлектрикам. Однако в действительности титанат бария устроен очень похоже на то, что изображено на фиг. 11.10, б. Все кислородо-титановые цепочки поляризованы в одном направлении, потому что между ними помещаются промежуточные цепочки атомов. Хотя атомы в этих цепочках поляризованы не очень сильно и не очень тесно расположены, они все-таки будут немного поляризованы в направлении, антипараллельном кислородо-титановым цепочкам. Небольшие поля, создаваемые у следующей кислородо-титановой цепочки, заставят ее поляризоваться параллельно первой. Поэтому ВаТiO3 на самом деле сегнетоэлектрик, и произошло это благодаря атомам, находящимся в промежутке. Вы можете спросить: «А что же получается с прямым взаимодействием между двумя цепочками О — Ti?» Вспомним, однако, что прямое взаимодействие убывает с расстоянием экспоненциально; действие цепочки из сильных диполей на расстоянии 2а может быть меньше действия цепочки слабых диполей на расстоянии а.
На этом мы закончим довольно подробное изложение наших сегодняшних познаний о диэлектрических свойствах газов, жидкостей и твердых тел.
Глава 12 ЭЛЕКТРОСТАТИЧЕСКИЕ АНАЛОГИИ
§ 1. Одинаковые уравнения — одинаковые решения
Вся информация о физическом мире, приобретенная со времени зарождения научного прогресса, поистине огромна, и кажется почти невероятным, чтобы кто-то овладел заметной частью ее. Но фактически физик вполне может постичь общие свойства физического мира, не становясь специалистом в какой-то узкой области. Тому есть три причины. Первая. Существуют великие принципы, применимые к любым явлениям, такие, как закон сохранения энергии и момента количества движения. Глубокое понимание этих принципов позволяет сразу постичь очень многие вещи. Вторая. Оказывается, что многие сложные явления, как, например, сжатие твердых тел, в основном обусловливаются электрическими и квантовомеханическими силами, так что, поняв основные законы электричества и квантовой механики, имеется возможность понять многие явления, возникающие в сложных условиях. Третья. Имеется замечательнейшее совпадение: Уравнения для самых разных физических условий часто имеют в точности одинаковый вид. Использованные символы, конечно, могут быть разными — вместо одной буквы стоит другая, но математическая форма уравнений одна и та же. Это значит, что, изучив одну область, мы сразу получаем множество прямых и точных сведений о решениях уравнений для другой области.
Мы закончили электростатику и скоро перейдем к изучению магнетизма и электродинамики. Но прежде хотелось бы показать, что, изучив электростатику, мы одновременно узнали о многих других явлениях. Мы увидим, что уравнения электростатики фигурируют и в ряде других областей физики. Путем прямого переноса решений (одинаковые математические уравнения должны, конечно, иметь одинаковые решения) можно решать задачи из других областей с той же легкостью (или с таким же трудом), как и в электростатике.
Уравнения электростатики, как мы знаем, такие:
(12.1)
(12.2)
(Мы пишем уравнения электростатики в присутствии диэлектриков, чтобы учесть общий случай.) То же физическое содержание может быть выражено в другой математической форме:
(12.3)
(12.4)
И вот суть дела заключается в том, что существует множество физических проблем, для которых математические уравнения имеют точно такой же вид. Сюда входит потенциал (φ), градиент которого, умноженный на скалярную функцию (x), имеет дивергенцию, равную другой скалярной функции (-ρ/ε0).
Все, что нам известно из электростатики, можно немедленно перенести на другой объект, и наоборот. (Принцип, конечно, работает в обе стороны: если известны какие-то характеристики другого объекта, то можно использовать эти сведения в соответствующей задаче по электростатике.) Мы рассмотрим ряд примеров из разных областей, когда имеются уравнения такого вида.
§ 2. Поток тепла; точечный источник вблизи бесконечной плоской границы
Ранее мы уже обсуждали (гл. 3, § 4) поток тепла. Вообразите кусок какого-то материала, необязательно однородного (в разных местах может быть разное вещество), в котором температура меняется от точки к точке. Как следствие этих температурных изменений возникает поток тепла, который можно обозначить вектором h. Он представляет собой количество тепловой энергии, которое проходит в единицу времени через единичную площадку, перпендикулярную потоку. Дивергенция h есть скорость ухода тепла из данного места в расчете на единицу объема:
(Мы могли, конечно, записать уравнение в интегральном виде, как мы поступали в электродинамике с законом Гаусса, тогда оно выражало бы тот факт, что поток через поверхность равен скорости изменения тепловой энергии внутри материала. Мы не будем больше переводить уравнения из дифференциальной формы в интегральную и обратно, это делается точно так же, как в электростатике.)
Скорость, с которой тепло поглощается или рождается в разных местах, конечно, зависит от условий задачи. Предположим, например, что источник тепла находится внутри материала (возможно, радиоактивный источник или сопротивление, через которое пропускают ток). Обозначим через s тепловую энергию, производимую этим источником в единице объема за 1 сек. Кроме того, могут возникнуть потери (или, наоборот, дополнительное рождение) тепловой энергии за счет перехода в другие виды внутренней энергии в данном объеме. Если и — внутренняя энергия в единице объема, то —du/dt будет тоже играть роль «источника» тепловой энергии. Итак, имеем
(12.5)
Мы не собираемся здесь обсуждать полное уравнение, величины в котором изменяются со временем, потому что мы проводим аналогию с электростатикой, где ничто не зависит от времени. Мы рассмотрим только задачи с постоянным потоком тепла, в которых постоянные источники создают состояние равновесия. В таких случаях
(12.6)
Нужно иметь, конечно, еще одно уравнение, которое описывает, как поток течет в разных местах. Во многих веществах поток тепла примерно пропорционален скорости изменения температуры с положением: чем больше разность температур, тем больше поток тепла. Мы знаем, что вектор потока тепла пропорционален градиенту температуры. Константа пропорциональности К, зависящая от свойств материала, называется коэффициентом теплопроводности
(12.7)
Если свойства материала меняются от точки к точке, то К=К (х, у, z) и есть функция положения. [Уравнение (12.7) не столь фундаментально, как (12.5), выражающее сохранение тепловой энергии, потому что оно зависит от характерных свойств вещества.] Подставляя теперь уравнение (12.7) в (12.6), получаем
(12.8)
что в точности совпадает по форме с (12.4). Задачи с постоянным потоком тепла и задачи электростатики одинаковы. Вектор потока тепла h соответствует Е, а температура Т соответствует φ. Мы уже отмечали, что точечный тепловой источник создает поле температур, меняющееся, как 1/r, и поток тепла, меняющийся, как 1/r2. Это есть не более чем простой перенос утверждений электростатики, что точечный заряд дает потенциал, меняющийся, как 1/r, и электрическое поле, меняющееся, как 1/r2. Вообще мы можем решать статистические тепловые задачи с той же степенью легкости, как и задачи электростатики.
Рассмотрим простой пример. Пусть имеется цилиндр с радиусом а при температуре T1, поддерживающейся за счет генерации тепла в цилиндре. (Это может быть, скажем, проволока, по которой течет ток, или трубка с конденсацией пара внутри цилиндра.) Цилиндр покрыт концентрической обшивкой из изолирующего материала с теплопроводностью К. Пусть внешний радиус изоляции равен b, а в наружном пространстве поддерживается температура T2 (фиг. 12. 1, а).
Фиг. 12.1. Поток тепла в случае цилиндрической симметрии (а) и соответствующая задача из электричества (б).
Нам нужно определить скорость потери тепла проволокой или паропроводом (все равно чем), проходящим по центру цилиндра. Пусть полное количество тепла, теряемого на длине трубы L, равно G, его-то мы и хотим найти.
Как надо решать такую задачу? У нас есть дифференциальные уравнения, но поскольку они такие же, как в электростатике, то математическое решение их нам уже известно. Аналогичная задача электростатики относится к проводнику радиусом а при потенциале φ1, отделенном от другого проводника радиусом b при потенциале φ2, с концентрическим слоем диэлектрика между ними (фиг. 12.1, б). Далее, поскольку поток тепла h соответствует электрическому полю Е, то наша искомая величина G соответствует потоку электрического поля от единичной длины (другими словами, электрическому заряду на единице длины, деленному на ε0). Мы решали электростатическую задачу с помощью закона Гаусса. Нашу задачу о потоке тепла будем решать таким же способом.
Из симметрии задачи мы видим, что h зависит только от расстояния до центра. Поэтому мы окружим трубку гауссовой поверхностью — цилиндром длиной L и радиусом r. С помощью закона Гаусса мы выводим, что поток тепла h, умноженный на площадь поверхности 2πrL, должен быть равен полному количеству тепла, рождаемому внутри, т. е. тому, что мы назвали G:
(12.9)
Поток тепла пропорционален градиенту температуры
или в данном случае величина h равна
Вместе с (12.9) это дает
(12.10)
Интегрируя от r=а до r=b, получаем
(12.11)
Разрешая отнсительно G, находим
(12.12)
Этот результат в точности соответствует формуле для заряда цилиндрического конденсатора:
Задачи одинаковые и имеют одинаковые решения. Зная электростатику, мы тем самым знаем, сколько тепла теряет изолированная труба.
Рассмотрим еще один пример. Пусть мы хотим узнать поток тепла в окрестности точечного источника, расположенного неглубоко под поверхностью земли или же вблизи поверхности большого металлического предмета. В качестве локализованного источника тепла может быть и атомная бомба, которая взорвалась под землей и представляет собой мощный источник тепла, или же небольшой источник радиоактивности внутри железного блока — возможностей очень много.
Рассмотрим идеализированную задачу о точечном источнике тепла, мощность которого G, на расстоянии а под поверхностью бесконечной однородной среды с коэффициентом теплопроводности К. Теплопроводностью воздуха над поверхностью среды мы пренебрежем. Мы хотим определить распределение температуры на поверхности среды. Насколько горячо будет прямо над источником и в разных местах на поверхности?
Как же решить эту задачу? Она похожа на задачу по электростатике, в которой имеются два материала с разной диэлектрической проницаемостью ϰ по обе стороны от разделяющей их границы. Здесь что-то есть! Возможно, это похоже на точечный заряд вблизи границы между диэлектриком и проводником или что-нибудь вроде этого. Посмотрим, что происходит вблизи границы. Физическое условие состоит в том, что нормальная составляющая h на поверхности равна нулю, поскольку мы предположили, что потока из блока нет. Мы должны задать вопрос: в какой электростатической задаче возникает условие, что нормальная компонента электрического поля Е (представляющая собой аналог h) равна нулю у поверхности? Нет такой!
Это один из тех случаев, к которым следует относиться с осторожностью. По физическим причинам могут быть определенные ограничения тех математических условий, которые возникают в каком-либо случае. Поэтому если мы проанализировали дифференциальное уравнение только для некоторых ограниченных примеров, то вполне можем упустить ряд решений, возникающих в других физических условиях. Например, нет материала, обладающего диэлектрической проницаемостью, равной нулю, а теплопроводность вакуума равна нулю. Поэтому нет электростатического аналога идеального теплоизолятора. Мы можем, однако, попытаться использовать те же методы. Попробуем вообразить, что произошло бы, если бы диэлектрическая проницаемость была равна нулю. (Разумеется, в реальных условиях диэлектрическая проницаемость никогда не обращается в нуль. Но может представиться случай, когда вещество имеет очень большую диэлектрическую проницаемость, так что диэлектрической проницаемостью воздуха вне среды можно пренебречь.)
Как же найти электрическое поле, у которого нет составляющей, перпендикулярной к поверхности? Иначе говоря, такое поле, которое всюду касательно к поверхности? Вы заметите, что эта задача обратна задаче о точечном заряде вблизи проводящей плоскости. Там нам нужно было поле, перпендикулярное к поверхности, потому что проводник всюду находился при одном и том же значении потенциала.
В задаче об электрическом поле мы придумали решение, вообразив за проводящей плоскостью точечный заряд. Можно воспользоваться снова этой же идеей. Попытаемся выбрать такое «изображение» источника, которое автоматически обращало бы в нуль нормальную компоненту поля вблизи поверхности. Решение показано на фиг. 12.2. Электрическое изображение источника с тем же знаком и той же величины, находящееся на расстоянии а над поверхностью, дает поле, горизонтальное повсюду у поверхности. Нормальные компоненты от обоих источников взаимно уничтожаются.
Итак, наша задача о потоке тепла решена. Температура во всем пространстве одинакова по непосредственной аналогии с потенциалом от двух одинаковых точечных зарядов. Температура Т на расстоянии r от одного точечного источника G в бесконечной среде равна
(12.13)
(Это, конечно, полностью аналогично φ=q/4πε0r.) Температура точечного источника и, кроме того, его изображения равна
(12.14)
Эта формула дает нам температуру всюду внутри блока. Несколько изотермических поверхностей приведено на фиг. 12.2.
Фиг. 12.2. Поток тепла и изотерма у точечного источника тепла, расположенного на расстоянии а под поверхностью тела с хорошей теплопроводностью. Вне тела показано мнимое изображение источника.
Показаны также линии h, которые можно получить из выражения h=-К∇Т.
В самом начале мы интересовались распределением температуры на поверхности. Для точки на поверхности находящейся на расстоянии ρ от оси, r1=r2=√(ρ2+а2), следовательно,
(12.15)
Эта функция также изображена на фиг. 12.2. Естественно, что температура прямо над источником выше, чем вдали от него. Такого рода задачи часто приходится решать геофизикам. Теперь мы видим, что это те же самые задачи, которые мы решали в электричестве.
§ 3. Натянутая мембрана
Рассмотрим теперь совсем другую область физики, в которой тем не менее мы придем снова к точно таким же уравнениям. Возьмем тонкую резиновую пленку — мембрану, натянутую на большую горизонтальную раму (наподобие кожи на барабане). Нажмем на мембрану в одном месте вверх, а в другом — вниз (фиг. 12.3). Сможем ли мы описать форму поверхности? Покажем, как можно решить эту задачу, когда отклонения мембраны не очень велики.
Фиг. 12.3. Тонкая резиновая пленка, натянутая на цилиндр (нечто вроде барабана). Какой формы будет поверхность, если пленку приподнять в точке A и опустить в точке В?
В пленке действуют силы, потому что она натянута. Если сделать в каком-нибудь месте пленки небольшой разрез, то два края разреза разойдутся (фиг. 12.4). Следовательно, в пленке имеется поверхностное натяжение, аналогичное одномерному натяжению растянутой веревки. Определим величину поверхностного натяжения τ как силу на единицу длины, которая как раз удержала бы вместе две стороны разреза (см. фиг. 12.4).
Фиг. 12.4. Поверхностное натяжение τ натянутой, резиновой пленки есть сила отнесенная к единице длины и направленная перпендикулярно линии разреза.
Предположим теперь, что мы смотрим на вертикальное поперечное сечение мембраны. Оно будет иметь вид некоторой кривой, похожей на изображенную на фиг. 12.5. Пусть и — вертикальное смещение мембраны от ее нормального положения, а х и у — координаты в горизонтальной плоскости. (Приведенное сечение параллельно оси х.)
Фиг. 12.5. Поперечное сечение изогнутой пленки.
Возьмем небольшой кусочек поверхности длиной Δx и шириной Δу. На него действуют силы вследствие поверхностного натяжения вдоль каждого края. Сила на стороне 1 (см. фиг. 12.5) будет равна τ1Δy и направлена по касательной к поверхности, т. е. под углом θ1 к горизонтали. Вдоль стороны 2 сила будет равна τ2Δy и направлена к поверхности под углом θ2. (Подобные силы будут и на двух других сторонах кусочка, но мы пока забудем о них.) Результирующая сила от сторон 1 и 2, действующая на кусочек вверх, равна
Мы ограничимся рассмотрением малых искажений мембраны, т. е. малых изгибов и наклонов: тогда мы сможем заменить sinθ на tgθ и записать как ∂u/∂x. Сила при этих условиях дается выражением
Величина в скобках может быть с тем же успехом записана (для малых Δx) как
тогда
Имеется и другой вклад в ΔF от сил на двух других сторонах; полный вклад, очевидно, равен
(12.16)
Искривления диафрагмы вызваны внешними силами. Пусть f означает направленную вверх силу на единичную площадку пленки (своего рода «давление»), возникающую от внешних сил. Если мембрана находится в равновесии (статический случай), то сила эта должна уравновешиваться только что вычисленной внутренней силой [уравнение (12.16)]. Иначе говоря,
Уравнение (12.16) тогда может быть записано в виде
(12.17)
где под знаком ∇ мы теперь подразумеваем, конечно, двухмерный оператор градиента (∂/∂x, ∂/∂y). У нас есть дифференциальное уравнение, связывающее u(х, у) с приложенными силами f(x, у) и поверхностным натяжением пленки τ(x, у), которое, вообще говоря, может меняться от места к месту. (Деформации трехмерного упругого тела тоже подчиняются таким уравнениям, но мы ограничимся двухмерным случаем.) Нас будет интересовать только случай, когда натяжение τ постоянно по всей пленке. Тогда вместо (12.17) мы можем записать
(12.18)
Снова мы получили такое же уравнение, как в электростатике! Но на сей раз оно относится к двум измерениям. Смещение u соответствует φ, а f/τ соответствует ρ/ε0. Поэтому тот труд, который мы потратили на бесконечные заряженные плоскости, или параллельные провода большой длины, или заряженные цилиндры, пригодится для натянутой мембраны.
Предположим, мы подтягиваем мембрану в каких-то точках на определенную высоту, т. е. фиксируем величину и в ряде точек. В электрическом случае это аналогично заданию определенного потенциала в соответствующих местах. Например, мы можем устроить положительный «потенциал», если подопрем мембрану предметом, который имеет такое же сечение, как и соответствующий цилиндрический проводник. Если, скажем, мы подопрем мембрану круглым стержнем, поверхность примет форму, изображенную на фиг. 12.6.
Фиг. 12.6. Поперечное сечение натянутой резиновой пленки, подпертой круглым стержнем. Функция u(х, у) та же, что и потенциал φ(х, у) от очень длинного заряженного стержня.
Высота и имеет такой же вид, как электростатический потенциал φ заряженного цилиндрического стержня. Она спадает, как ln(1/r). (Наклон поверхности, который соответствует электрическому полю Е, спадает, как 1/r.)
Натянутую резиновую пленку часто использовали для решения сложных электрических задач экспериментальным путем. Аналогия используется в обратную сторону! Для подъема мембраны на высоту, соответствующую потенциалам всего набора электродов, подставляют разные стержни и полоски. Затем измерения высоты дают электрический потенциал в электростатической задаче. Аналогия проводится даже еще дальше. Если на мембране поместить маленькие шарики, то их движение примерно схоже с движением электронов в соответствующем электрическом поле. Таким способом можно воочию проследить за движением «электронов» по их траекториям. Этот метод был использован для проектирования сложной системы многих фотоумножительных трубок (таких, например, какие используются в сцинтилляционном счетчике или для управления передними фарами в автомашине кадиллак). Метод используется и до сих пор, но его точность не очень велика. Для более точных расчетов лучше находить поле численным путем с помощью больших электронных вычислительных машин.
§ 4. Диффузия нейтронов; сферически-симметричный источник в однородной среде
Приведем еще один пример, дающий уравнение того же вида, но на сей раз относящееся к диффузии. В гл. 43 (вып. 4) мы рассмотрели диффузию ионов в однородном газе и диффузию одного газа сквозь другой. Теперь возьмем другой пример — диффузию нейтронов в материале типа графита. Мы выбрали графит (разновидность чистого углерода), потому что углерод не поглощает медленных нейтронов. Нейтроны путешествуют в нем свободно. Они проходят по прямой в среднем несколько сантиметров, прежде чем рассеются ядром и отклонятся в сторону. Так что если у нас есть большой кусок графита толщиной в несколько метров, то нейтроны, находившиеся сначала в одном месте, будут переходить в другие места. Мы опишем их усредненное поведение, т. е. их средний поток.
Пусть N(x, у, z)ΔV — число нейтронов в элементе объема ΔV в точке (х, у, z). Движение нейтронов приводит к тому, что одни покидают ΔV, а другие попадают в него. Если в одной области оказывается нейтронов больше, чем в соседней, то оттуда их будет переходить во вторую область больше, чем наоборот; в результате возникнет поток. Повторяя доказательства, приведенные в гл. 43 (вып. 4), можно описать поток вектором потока J. Его компонента Jx есть результирующее число нейтронов, проходящих в единицу времени через единичную площадку, перпендикулярную оси х. Мы получим тогда
(12.19)
где коэффициент диффузии D дается в терминах средней скорости v и средней длины свободного пробега l между столкновениями:
Векторное уравнение для J имеет вид
(12.20)
Скорость, с которой нейтроны проходят через некоторый элемент поверхности da, равна J·nda (где n, как обычно,— единичный вектор нормали). Результирующий поток из элемента объема тогда равен (пользуясь обычным гауссовым доказательством) ∇·JdV. Этот поток приводил бы к уменьшению числа нейтронов в ΔV, если нейтроны не генерируются внутри ΔV (с помощью какой-нибудь ядерной реакции). Если в объеме присутствуют источники, производящие S нейтронов в единицу времени в единице объема, то результирующий поток из ΔV будет равен [S-(∂N/∂t)]ΔV. Тогда получаем
(12.21)
Комбинируя (12.21) и (12.20), получаем уравнение диффузии нейтронов
(12.22)
В статическом случае, когда ∂N/∂t=0, мы снова имеем уравнение (12.4)! Мы можем воспользоваться нашими знаниями в электростатике для решения задач по диффузии нейтронов. Давайте же решим какую-нибудь задачу. (Пожалуй, вы недоумеваете: зачем решать новую задачу, если мы уже решили все задачи в электростатике? На этот раз мы можем решить быстрее именно потому, что электростатические задачи действительно уже решены!)
Пусть имеется блок материала, в котором нейтроны (скажем, за счет деления урана) рождаются равномерно в сферической области радиусом а (фиг. 12.7).
Фиг. 12.7. Нейтроны рождаются однородно внутри сферы радиуса а в большом графитовом блоке и диффундируют наружу. Плотность нейтронов N получена как функция r, расстояния от центра источника. Справа показана электростатическая аналогия: однородно заряженная сфера, причем N соответствует φ, а J соответствует Е.
Мы хотели бы узнать, чему равна плотность нейтронов повсюду? Насколько однородна плотность нейтронов в области, где они рождаются? Чему равно отношение нейтронной плотности в центре к нейтронной плотности на поверхности области рождения? Ответы найти легко. Плотность нейтронов в источнике S0 стоит вместо плотности зарядов ρ, поэтому наша задача такая же, как задача об однородно заряженной сфере. Найти N—все равно, что найти потенциал φ. Мы уже нашли поля внутри и вне однородно заряженной сферы; для получения потенциала мы можем их проинтегрировать. Вне сферы потенциал равен Q/4πε0r, где полный заряд Q дается отношением 4πа3ρ/3. Следовательно,
(12.23)
Для внутренних точек вклад в поле дают только заряды Q(r), находящиеся внутри сферы радиусом r; Q(r)=4πr3ρ/3, следовательно,
(12.24)
Поле растет линейно с r. Интегрируя Е, получаем φ:
На расстоянии радиуса а φвнешн должен совпадать с φвнутр, поэтому постоянная должна быть равна ρа2/2ε0. (Мы предполагаем, что потенциал φ равен нулю на больших расстояниях от источника, а это для нейтронов будет отвечать обращению N в нуль.) Следовательно,
(12.25)
Теперь мы сразу же найдем плотность нейтронов в нашей диффузионной задаче
(12.26)
и
(12.27)
На фиг. 12.7 представлена зависимость N от r.
Чему же теперь равно отношение плотности в центре к плотности на краю? В центре (r=0) оно пропорционально За2/2, а на краю (r=а) пропорционально 2а2/2; поэтому отношение плотностей равно 3/2. Однородный источник не дает однородной плотности нейтронов. Как видите, наши познания в электростатике дают хорошую затравку для изучения физики ядерных реакторов.
Диффузия играет большую роль во многих физических обстоятельствах. Движение ионов через жидкость или электронов через полупроводник подчиняется все тому же уравнению. Мы снова и снова приходим к одним и тем же уравнениям.
§ 5. Безвихревое течение жидкости; обтекание шара
Рассмотрим теперь пример, по существу, не такой уж хороший, потому что уравнения, которые мы будем использовать, на самом деле не описывают новый объект полностью, а отвечают лишь некоторым идеализированным условиям. Это задача о течении воды. Когда мы разбирали случай натянутой пленки, то наши уравнения представляли приближение, справедливое лишь для малых отклонений. При рассмотрении течения воды мы прибегнем к приближению другого рода; мы должны принять ограничения, которые, вообще говоря, к обычной воде неприменимы. Мы разберем только случай постоянного течения несжимаемой, невязкой, лишенной завихрений жидкости. Потом мы опишем течение, задав ему скорость v(r) как функцию положения r. Если движение постоянно (единственный случай, для которого имеется электростатическая аналогия), v не зависит от времени. Если ρ — плотность жидкости, то ρv — масса жидкости, проходящая в единицу времени через единичную площадку. Из закона сохранения вещества дивергенция ρv, вообще говоря, равна изменению со временем массы вещества в единице объема. Мы предположим, что процессы непрерывного рождения или уничтожения вещества отсутствуют. Сохранение вещества требует тогда, чтобы ∇·ρv=0. (В правой части должно было бы стоять, вообще говоря, —∂ρ/∂t, но поскольку наша жидкость несжимаема, то ρ меняться не может.) Так как ρ повсюду одинаково, то его можно вынести, и наше уравнение запишется просто
Чудесно! Снова получилась электростатика (без зарядов); уравнение совсем похоже на ∇·E=0. Ну не совсем! В электростатике не просто ∇·E=0. Есть два уравнения. Одно уравнение еще не дает нам всего; нужно дополнительное уравнение. Чтобы получилось совпадение с электростатикой, у нас rot от v должен был бы равняться нулю. Но для настоящих жидкостей это вообще не так. В большинстве их обычно возникают вихри. Следовательно, мы ограничиваемся случаем, когда циркуляция жидкости отсутствует. Такое течение часто называют безвихревым. Как бы то ни было, принимая наши предположения, можно представить себе течение жидкости, аналогичное электростатике. Итак, мы берем
(12.28)
и
(12.29)
Мы хотим подчеркнуть, что условия, при которых течение жидкости подчиняется этим уравнениям, встречаются весьма нечасто, но все-таки бывают. Это должны быть случаи, когда поверхностным натяжением, сжимаемостью и вязкостью можно пренебречь и когда течение можно считать безвихревым. Эти условия выполняются столь редко для обычной воды, что математик Джон фон Нейман сказал по поводу тех, кто анализирует уравнения (12.28) и (12.29), что они изучают «сухую воду»! (Мы возвратимся к задаче о течении жидкости более подробно в вып. 7, гл. 40 и 41.)
Поскольку ∇×v=0, то скорость «сухой воды» можно написать в виде градиента от некоторого потенциала
(12.30)
Каков физический смысл ψ? Особо полезного смысла нет. Скорость можно записать в виде градиента потенциала просто потому, что течение безвихревое. По аналогии с электростатикой ψ называется потенциалом скоростей, но он не связан с потенциальной энергией так, как это получается для φ. Поскольку дивергенция v равна нулю, то
(12.31)
Потенциал скоростей ψ подчиняется тому же дифференциальному уравнению, что и электростатический потенциал в пустом пространстве (ρ=0).
Давайте выберем какую-нибудь задачу о безвихревом течении и посмотрим, сможем ли мы решить ее изученными методами. Рассмотрим задачу о шаре, падающем в жидкости. Если он движется слишком медленно, то силы вязкости, которыми мы пренебрегали, будут существенны. Если он движется слишком быстро, то следом за ним будут идти маленькие вихри (турбулентность) и возникнет некоторая циркуляция воды. Но если шар движется и не чересчур быстро, и не чересчур медленно, то течение воды будет более или менее отвечать нашим предположениям, и мы сможем описать движение воды нашими простыми уравнениями.
Удобно описывать процесс в системе координат, скрепленной с шаром. В этой системе координат мы задаем вопрос: как течет вода около неподвижного шара, если на больших расстояниях течение однородно? Иначе говоря, если вдали от шара течение всюду одинаково? Течение вблизи шара будет иметь вид, показанный линиями потока на фиг. 12.8.
Фиг. 12.8. Поле скоростей безвихревого обтекания сферы жидкостью.
Эти линии, всегда параллельные v, соответствуют линиям напряженностей электрического поля. Мы хотим получить количественное описание поля скоростей, т. е. выражение для скорости в любой точке Р.
Можно найти скорость как градиент от ψ, поэтому сначала определим потенциал. Мы хотим найти потенциал, который удовлетворял бы всюду (12.31) при следующих двух условиях: 1) течение отсутствует в сферической области за поверхностью шара; 2) течение постоянно на больших расстояниях. Чтобы выполнялось первое ограничение, компонента v, перпендикулярная поверхности шара, должна обращаться в нуль. Это значит, что ∂ψ/∂r=0 при r=а. Для выполнения второго ограничения нужно иметь ∂ψ/∂z=v0 всюду, где r≫а. Строго говоря, нет ни одной электростатической задачи, которая в точности соответствовала бы нашей задаче. Она фактически соответствует сфере с нулевой диэлектрической проницаемостью, помещенной в однородное электрическое поле. Если бы мы имели решение задачи для сферы с диэлектрической проницаемостью ϰ, то, положив ϰ=0, немедленно решили бы нашу задачу.
Мы раньше не разобрали такую электростатическую задачу во всех подробностях; давайте сделаем это сейчас. (Мы могли бы сразу решить задачу о жидкости с v и ψ, но будем пользоваться Е и φ, потому что привыкли к ним.)
Задача ставится так: найти такое решение уравнения ∇2φ=0, чтобы Е=-∇φ равнялось постоянной, скажем Е0, для больших r и, кроме того, чтобы радиальная компонента Е была равна нулю при r=а. Иначе говоря,
(12.32)
Наша задача включает новый тип граничных условий — когда ∂φ/∂r постоянно, а не тот, когда потенциал φ постоянен на поверхности. Это немножко другое условие. Получить ответ сразу нелегко. Прежде всего без шара φ был бы равен —E0z. Тогда Е было бы направлено по z и имело бы всюду постоянную величину Е0. Мы уже исследовали случай диэлектрического шара, поляризация внутри которого однородна, и нашли, что поле внутри поляризованного шара однородно, а вне его оно совпадает с полем точечного диполя, расположенного в центре шара. Давайте напишем, что искомое решение есть суперпозиция однородного поля плюс поле диполя. Потенциал диполя (см. гл. 6) есть pz/4πε0r3. Итак, мы предполагаем, что
(12.33)
Поскольку поле диполя спадает, как 1/r3, то на больших расстояниях мы как раз имеем поле Е0. Наше предположение автоматически удовлетворяет сформулированному выше второму условию (стр. 249). Но что нам взять в качестве силы диполя p? Для ответа мы должны использовать другое условие [уравнение (12.32)]. Мы должны продифференцировать φ по r, но, разумеется, это нужно сделать при постоянном угле θ, поэтому удобнее выразить сначала φ через r и θ, а не через z и r. Поскольку z=rcosθ, то
(12.34)
Радиальная составляющая Е есть
(12.35)
Она должна быть равна нулю при r=а для всех θ. Это будет выполнено, если
(12.36)
Заметьте хорошенько, что если бы оба члена в уравнении (12.35) зависели бы от θ по-разному, то мы не смогли бы выбрать р так, чтобы (12.35) обращалось в нуль при r=а для всех углов. Тот факт, что это получилось, означает, что мы были мудры, написав уравнение (12.33). Конечно, когда мы догадывались, мы заглядывали вперед; мы знали, что понадобится еще один член, который бы, во-первых, удовлетворял ∇2φ=0 (любое действительное поле удовлетворяет этому), во-вторых, зависел от cosθ и, в-третьих, спадал бы к нулю при больших r. Поле диполя — единственное, которое удовлетворяет всем трем требованиям.
С помощью (12.36) наш потенциал приобретает вид
(12.37)
Решение задачи о течении жидкости может быть записано просто:
(12.38)
Отсюда прямо находится v. Больше мы не будем заниматься этим вопросом.
§ 6. Освещение; равномерное освещение плоскости
В этом параграфе мы обратимся к совсем другой физической проблеме — мы ведь хотим показать большое разнообразие возможностей. На этот раз мы проделаем кое-что, что приведет нас к интегралу того же сорта, что мы нашли в электростатике. (Если перед нами стоит математическая задача, приводящая к некоторому интегралу, а интеграл этот уже знаком нам по другой задаче, то кое-что о его свойствах нам известно.) Возьмем пример из техники освещения. Пусть на расстоянии а над плоскостью имеется какой-то источник света. Как будет освещаться поверхность? Чему равна энергия излучения, падающая на единичную площадку поверхности за единицу времени (фиг. 12.9)?
Фиг. 12.9. Освещенность In поверхности равна энергии излучения, падающей в единицу времени на единичную площадку поверхности.
Мы предполагаем, что источник сферически-симметричный, так что свет излучается одинаково во всех направлениях. Тогда количество излученной энергии, проходящее через единичную площадку, перпендикулярную потоку света, меняется обратно пропорционально квадрату расстояния. Очевидно, что интенсивность света в направлении нормали дается такой же формулой, что и электрическое поле от точечного источника. Если световые лучи падают на поверхность под углом θ к нормали, то I, энергия, падающая на единичную площадку поверхности, уменьшается в cosθ раз, потому что та же энергия падает на площадь в 1/cosθ раз большую. Если мы назовем силу нашего источника S, тогда In, освещенность поверхности, равна
(12.39)
где er — единичный вектор в направлении от источника, а n — единичная нормаль к поверхности. Освещенность In соответствует нормальной компоненте электрического поля от точечного источника с зарядом 4πε0S. Учитывая это, мы видим, что для любого распределения источников света можно найти ответ, решая соответствующую задачу электростатики. Мы вычисляем вертикальную компоненту электрического поля на плоскости от распределения зарядов точно таким же образом, как для источников света[13].
Рассмотрим такой пример. Нам необходимо для какого-то эксперимента устроить так, чтобы стол освещался равномерно. Мы располагаем длинными трубками флуоресцентных ламп, излучающих равномерно по всей своей длине. Наш стол можно осветить, разместив флуоресцентные трубки правильными рядами на потолке, который находится на высоте z над столом. Чему должно быть равно наибольшее расстояние b от трубки до трубки, если мы хотим, чтобы поверхностное освещение было равномерным с точностью до одной тысячной? Ответ: 1) найдите электрическое поле от набора равномерно заряженных проводов с промежутком между ними, равным b; 2) подсчитайте вертикальную компоненту электрического поля; 3) определите, чему должно быть равно b, чтобы волнистость поля была не больше одной тысячной.
В гл. 7 мы видели, что электрическое поле от ряда заряженных проводов может быть представлено в виде суммы членов, каждый из которых дает синусоидальное изменение поля с периодом b/n, где n — целое число. Амплитуда любого из этих членов дается уравнением (7.44):
Нам нужно взять только случай n=1, раз мы хотим получить поле в точках, не слишком близких к проводам. Чтобы получить полное решение, нам еще нужно определить коэффициенты Аn, которые мы пока не нашли (хотя они находятся прямым вычислением). Поскольку нам нужно знать только A1, то можно оценить его величину, считая ее равной средней величине поля. Экспоненциальный множитель тогда дает нам сразу относительную амплитуду изменений. Если мы хотим, чтобы этот множитель был равен 10-3, то b оказывается равным 0,91 z.
Если промежуток между лампами сделать равным 3/4 расстояния до потолка, экспоненциальный множитель тогда будет равен 1/4000, и мы имеем фактор надежности 4, так что мы можем быть вполне уверены, что освещение будет постоянным с точностью до одной тысячной. (Точное вычисление показывает, что A1 в действительности в два раза больше среднего поля, так что точный ответ будет b=0,8 z.) Немного неожиданно, что для столь равномерного освещения допустимый промежуток между трубками оказался таким большим.
§ 7. «Фундаментальное единство» природы
В этой главе мы хотели показать, что, изучая электростатику, вы одновременно учитесь ориентироваться во многих вопросах физики и что, помня об этом, можно выучить почти всю физику за несколько лет.
Но в конце, естественно, напрашивается вопрос: почему уравнения для разных явлений столь похожи? Мы могли бы сказать: «В этом проявляется фундаментальное единство природы». Но что это значит? Что могло бы означать такое заявление? Это могло бы просто означать, что уравнения для разных явлений похожи; но тогда, конечно, мы не дали никакого объяснения. «Фундаментальное единство» могло бы означать, что все сделано из одного и того же материала, а потому подчиняется одним и тем же уравнениям. Звучит как неплохое объяснение, но давайте поразмыслим. Электростатический потенциал, диффузия нейтронов, поток тепла — неужели мы действительно имеем дело с одним и тем же материалом? Можем ли мы в самом деле представить себе, что электростатический потенциал физически идентичен температуре или плотности частиц? Наверняка φ не совсем то же самое, что тепловая энергия частиц. Смещение мембраны явно не похоже на температуру. С какой же стати тогда здесь проявляется «фундаментальное единство»?
Более пристальный взгляд на физику разных вопросов показывает, что уравнения на самом деле не идентичны. Уравнение, найденное нами для диффузии нейтронов, всего лишь приближение, которое оказывается хорошим, если интересующее нас расстояние велико по сравнению с длиной свободного пробега. Если бы мы пригляделись повнимательнее, то увидели бы, как движутся отдельные нейтроны. Разумеется, движение одного нейтрона и гладкие изменения, которые мы получаем при решении дифференциального уравнения, вещи разные. Дифференциальное уравнение — это приближение, потому что мы сочли, что нейтроны гладко распределены в пространстве.
Может быть, в этом и состоит разгадка? Может быть, общее всем явлениям есть пространство, те рамки, в которые вложена физика? Пока все меняется в пространстве достаточно плавно, важными факторами, входящими в рассмотрение, будут скорости изменения величин в зависимости от положения в пространстве. Вот почему у нас всегда получается уравнение с градиентом. Производные должны появляться в виде градиента или дивергенции; законы физики не зависят от направления, поэтому они должны выражаться в виде векторов. Уравнения электростатики — это простейшие векторные уравнения, включающие только пространственные производные величин, которые можно вообще записать. Любая другая простая проблема— или упрощение сложной проблемы — должна быть похожа на электростатику. Общим для всех наших задач является то, что они связаны с пространством, и то, что мы имитируем по-настоящему сложные явления простым дифференциальным уравнением.
Отсюда возникает еще один интересный вопрос. А не справедливо ли это утверждение и для уравнений электростатики? Может быть, и они годятся только как сглаженная имитация на самом деле гораздо более сложного микромира? И реальный мир состоит из маленьких Х-онов, которые можно различить только на чрезвычайно малых расстояниях? А проводя наши измерения, мы всегда наблюдаем все в таком грубом масштабе, что не можем увидеть эти маленькие Х-оны, вот почему мы и приходим к дифференциальным уравнениям?
Наша современная наиболее полная теория электродинамики действительно обнаруживает трудности на очень малых расстояниях. Поэтому в принципе возможно, что эти уравнения представляют собой сглаженные версии чего-то. Они оказываются правильными на расстояниях вплоть до 10-14 см, но затем они начинают выглядеть неправильными. Возможно, что существует пока еще не открытый «механизм» и что детали внутреннего сложного устройства скрыты в уравнениях, имеющих гладкий вид, как это получается в «гладкой» диффузии нейтронов. Но никто еще не сумел сформулировать успешной теории, которая бы работала таким образом.
Как это ни странно, оказывается (по причинам, в которых мы еще не разобрались), что комбинация релятивизма и квантовой механики, насколько мы их знаем, по-видимому, запрещает придумывание уравнений, фундаментально отличных от уравнения (12.4) и в то же время свободных от противоречий. Заметьте: не из-за расхождений с экспериментом, а от внутренних противоречий. Таких, как, скажем, предсказание, что сумма вероятностей всех возможных исходов станет не равной единице или что энергии оказываются комплексными числами, или еще какой-нибудь чепухи. Никто еще не создал теории электричества, в которой ∇2φ=-ρ/ε0 понималось бы как сглаженное приближение к более глубокому механизму и которая не приводила бы, в конечном счете к какому-либо абсурду. Но надо сказать, что правильно также и то, что предположение о справедливости ∇2φ=-ρ/ε0 для любых как угодно малых расстояний тоже приводит к дикому абсурду (электрическая энергия электрона бесконечна) — абсурду, от которого никто еще не сумел избавиться.
Глава 13 МАГНИТОСТАТИКА
Повторить: гл. 15 (вып. 2) «Специальная теория относительности»
§ 1. Магнитное поле
Сила, действующая на электрический заряд, зависит не только от того, где он находится, но и от того, с какой скоростью он движется. Каждая точка в пространстве характеризуется двумя векторными величинами, которые определяют силу, действующую на любой заряд. Во-первых, имеется электрическая сила, дающая ту часть силы, которая не зависит от движения заряда. Мы описываем ее с помощью электрического поля Е. Во-вторых, есть еще добавочная компонента силы, называемая магнитной силой, которая зависит от скорости заряда. Эта магнитная сила имеет удивительное свойство: в любой данной точке пространства как направление, так и величина силы зависят от направления движения частицы; в каждый момент сила всегда перпендикулярна вектору скорости; кроме того, в любом месте сила всегда перпендикулярна определенному направлению в пространстве (фиг. 13.1), и, наконец, величина силы пропорциональна компоненте скорости, перпендикулярной этому выделенному направлению.
Фиг. 13.1. Зависящая от скорости компонента силы на движущийся заряд направлена перпендикулярно V и вектору В. Она пропорциональна также компоненте V, перпендикулярной В, т. е. vsinθ.
Все эти свойства можно описать, если ввести вектор магнитного поля В, который определяет выделенное направление в пространстве и одновременно служит константой пропорциональности между силой и скоростью, и записать магнитную силу в виде qv×B. Полная электромагнитная сила, действующая на заряд, может тогда быть записана так:
(13.1)
Она называется силой Лоренца.
Магнитную силу можно легко продемонстрировать, если поднести магнит вплотную к катодной трубке. Отклонение электронного луча указывает на то, что магнит возбуждает силы, действующие на электроны перпендикулярно направлению их движения (мы уже об этом говорили в вып. 1, гл. 12).
Единицей магнитного поля В, очевидно, является 1 ньютон-секунда, деленная на кулон-метр. Та же единица может быть написана как вольт-секунда на квадратный метр. Ее называют еще вебер на квадратный метр[14].
§ 2. Электрический ток; сохранение заряда
Подумаем теперь о том, почему магнитные силы действуют на провода, по которым течет электрический ток. Для этого определим, что понимается под плотностью тока. Электрический ток состоит из движущихся электронов или других зарядов, которые образуют результирующее течение, или поток. Мы можем представить поток зарядов вектором, определяющим количество зарядов, которое проходит в единицу времени через единичную площадку, перпендикулярную потоку (точь-в-точь как мы это делали, определяя поток тепла). Назовем эту величину плотностью тока и обозначим ее вектором j. Он направлен вдоль движения зарядов. Если взять маленькую площадку Δа в данном месте материала, то количество зарядов, текущее через площадку в единицу времени, равно
(13.2)
где n — единичный вектор нормали к Δа.
Плотность тока связана со средней скоростью течения зарядов. Предположим, что имеется распределение зарядов, в среднем дрейфующих со скоростью v. Когда это распределение проходит через элемент поверхности Δа, то заряд Δq, проходящий через Δа за время Δt, равен заряду, содержащемуся в параллелепипеде с основанием Δа и высотой vΔt (фиг. 13.2).
Фиг. 13.2. Если распределение зарядов с плотностью ρ движется со скоростью v, то количество заряда, проходящее в единицу времени через площадку Δа, есть ρv·nΔа.
Объем параллелепипеда есть произведение проекции Δа, перпендикулярной к v, на vΔt, а умножая его на плотность зарядов ρ, получаем Δq. Таким образом,
Заряд, проходящий в единицу времени, тогда равен ρv·nΔа, откуда получаем
(13.3)
Если распределение зарядов состоит из отдельных зарядов, скажем электронов с зарядом q, движущихся со средней скоростью v, то плотность тока равна
(13.4)
где N — число зарядов в единице объема.
Полное количество заряда, проходящее в единицу времени через какую-то поверхность S, называется электрическим током I. Он равен интегралу от нормальной составляющей потока по всем элементам поверхности (фиг. 13.3):
(13.5)
Фиг. 13.3. Ток I через поверхность S равен ∫j·nda
Ток I из замкнутой поверхности S представляет собой скорость, с которой заряды покидают объем V, окруженный поверхностью S. Один из основных законов физики говорит, что электрический заряд неуничтожаем; он никогда не теряется и не создается. Электрические заряды могут перемещаться с места на место, но никогда не возникают из ничего. Мы говорим, что заряд сохраняется. Если из замкнутой поверхности возникает результирующий ток, то количество заряда внутри должно соответственно уменьшаться (фиг. 13.4).
Фиг. 13.4. Интеграл от j·n по замкнутой поверхности равен скорости изменения полного заряда Q внутри.
Поэтому мы можем записать закон сохранения заряда в таком виде:
(13.6)
Заряд внутри можно записать как объемный интеграл от плотности заряда
(13.7)
Применяя (13.6) к малому объему ΔV, можно учесть, что интеграл слева есть ∇·jΔV. Заряд внутри равен ρΔV, поэтому сохранение заряда можно еще записать и так:
(13.8)
(опять теорема Гаусса из математики!).
§ 3. Магнитная сила, действующая на ток
Теперь мы достаточно подготовлены, чтобы определить силу, действующую на находящуюся в магнитном поле проволоку, по которой идет ток. Ток состоит из заряженных частиц, движущихся по проволоке со скоростью v. Каждый заряд чувствует поперечную силу
(фиг. 13.5, а).
Фиг. 13.5. Магнитная сила на проволоку с током равна сумме сил на отдельные движущиеся заряды
Если в единичном объеме таких зарядов имеется N, то их число в малом объеме внутри проволоки ΔV равно NΔV. Полная магнитная сила ΔF, действующая на объем ΔV, есть. сумма сил на отдельные заряды
Но Nqv ведь как раз равно j, так что
(13.9)
(фиг. 13.5, б). Сила, действующая на единицу объема, равна j×B.
Если по проволоке с поперечным сечением А равномерно по сечению течет ток, то можно в качестве элемента объема взять цилиндр с основанием А и длиной ΔL. Тогда
(13.10)
Теперь можно jA назвать вектором тока I в проволоке. (Его величина есть электрический ток в проволоке, а его направление совпадает с направлением проволоки.) Тогда
(13.11)
Сила, действующая на единицу длины проволоки, есть I×B.
Это уравнение содержит важный результат — магнитная сила, действующая на проволоку и возникающая от движения в ней зарядов, зависит только от полного тока, а не от величины заряда, переносимого каждой частицей (и даже не зависит от его знака!). Магнитная сила, действующая на проволоку вблизи магнита, легко обнаруживается по отклонению проволоки при включении тока, как было нами описано в гл. 1 (см. фиг. 1.6).
§ 4. Магнитное поле постоянного тока; закон Ампера
Мы видели, что на проволоку в магнитном поле, создаваемом, скажем, магнитом, действует сила. Из закона о том, что действие равно противодействию, можно ожидать, что, когда по проволоке протекает ток[15], возникает сила, действующая на источник магнитного поля, т. е. на магнит. Такие силы действительно существуют; в этом можно убедиться по отклонению стрелки компаса вблизи проволоки с током. Далее, мы знаем, что магниты испытывают действие сил со стороны других магнитов, а отсюда вытекает, что когда по проволоке течет ток, то он создает собственное магнитное поле. Значит, движущиеся заряды создают магнитное поле. Попытаемся понять законы, которым подчиняются такие магнитные поля. Вопрос ставится так: дан ток, какое магнитное поле он создаст? Ответ на этот вопрос был получен экспериментально тремя опытами и подтвержден блестящим теоретическим доказательством Ампера. Мы не будем останавливаться на этой интересной истории, а просто скажем, что большое число экспериментов наглядно показало справедливость уравнений Максвелла. Их мы и возьмем в качестве отправной точки. Опуская в уравнениях члены с производными по времени, мы получаем уравнения магнитостатики
(13.12)
и
(13.13)
Эти уравнения справедливы только при условии, что все плотности электрических зарядов и все токи постоянны, так что электрические и магнитные поля не меняются со временем — все поля «статические».
Можно тут заметить, что верить в существование статического магнитного поля довольно опасно, потому что вообще-то для получения магнитного поля нужны токи, а токи возникают только от движущихся зарядов. Следовательно, «магнитостатика» — только приближение.
Она связана с особым случаем динамики, когда движется большое число зарядов, которые можно приближенно описывать как постоянный поток зарядов. Только в этом случае можно говорить о плотности тока j, которая не меняется со временем. Более точно эту область следовало бы назвать изучением постоянных токов. Предполагая, что все поля постоянны, мы отбрасываем члены с ∂E/∂t и ∂B/∂t в полных уравнениях Максвелла [уравнения (2.41)] и получаем два написанных выше уравнения (13.12) и (13.13). Заметьте также, что поскольку дивергенция ротора любого вектора всегда нуль, то уравнение (13.13) требует, чтобы ∇·j=0. В силу уравнения (13.8) это верно, только если ∂ρ/∂t=0. Но такое может быть, если Е не меняется со временем, следовательно, наши предположения внутренне согласованы.
Условие, что ∇·j=0, означает, что у нас могут быть только заряды, текущие по замкнутым путям. Они могут, например, течь по проводам, образующим замкнутые петли, которые называются цепями. Цепи могут, конечно, содержать генераторы или батареи, поддерживающие ток зарядов. Но в них не должно быть конденсаторов, которые заряжаются или разряжаются. (Мы, конечно, расширим теорию, включив переменные поля, но сначала мы хотим взять более простой случай постоянных токов.)
Обратимся теперь к уравнениям (13.12) и (13.13) и посмотрим, что они означают. Первое говорит, что дивергенция В равна нулю. Сравнивая его с аналогичным уравнением электростатики, по которому ∇·Е=ρ/ε0, можно заключить, что магнитного аналога электрического заряда не существует. Не бывает магнитных зарядов, из которых могли бы исходить линии В. Если говорить о «линиях» векторного поля В, то они нигде не начинаются и нигде не оканчиваются. Но тогда откуда же они берутся? Магнитные поля «появляются» в присутствии токов; ротор, взятый от них, пропорционален плотности тока. Когда есть токи, есть и линии магнитного поля, образующие петли вокруг токов. Поскольку линии В не имеют ни конца, ни начала, они часто возвращаются в исходную точку, образуя замкнутые петли. Но могут возникнуть и более сложные случаи, когда линии не представляют собой простых петель. Однако как бы они ни шли, они никогда не исходят из точек. Никаких магнитных зарядов никто никогда не находил, поэтому ∇·В=0. Это же утверждение справедливо не только для магнитостатики, но справедливо всегда — даже для динамических полей.
Связь между полем В и токами дается уравнением (13.13). Положение здесь совсем другое, в корне отличное от электростатики, где у нас было ∇×Е=0. Это уравнение означало, что линейный интеграл от Е по любому замкнутому пути равен нулю:
Мы получили этот результат с помощью теоремы Стокса, согласно которой интеграл по любому замкнутому пути от любого векторного поля равен поверхностному интегралу от нормальной компоненты ротора этого вектора (интеграл берется по любой поверхности, натянутой на данный контур).
Фиг. 13.6. Контурный интеграл от тангенциальной составляющей В равен поверхностному интегралу от нормальной составляющей вектора (∇×b).
Применяя эту же теорему к вектору магнитного поля и используя обозначения, показанные на фиг. 13.6, получаем
(13.14)
Найдя rot В из уравнения (13.13), имеем
(13.15)
Интеграл от j по S, согласно (13.5), есть полный ток I через поверхность S. Поскольку для постоянных токов ток через S не зависит от формы S, если она ограничена кривой Γ, то обычно говорят о «токе через замкнутую петлю Γ». Мы имеем, таким образом, общий закон: циркуляция В по любой замкнутой кривой равна току I сквозь петлю, деленному на ε0с2:
(13.16)
Этот закон, называемый законом Ампера, играет такую же роль в магнитостатике, как закон Гаусса в электростатике. Один лишь закон Ампера не определяет В через токи; мы должны, вообще говоря, использовать также ∇·В=0. Но, как мы увидим в следующем параграфе, он может быть использован для нахождения поля в тех особых случаях, которые обладают некоторой простой симметрией.
§ 5. Магнитное поле прямого провода и соленоида; атомные токи
Можно показать, как пользоваться законом Ампера, определив магнитное поле вблизи провода. Зададим вопрос: чему равно поле вне длинного прямолинейного провода цилиндрического сечения? Мы сделаем одно предположение, может быть, не столь уж очевидное, но тем не менее правильное: линии поля В идут вокруг провода по окружности. Если мы сделаем такое предположение, то закон Ампера [уравнение (13.16)] говорит нам, какова величина поля. В силу симметрии задачи поле В имеет одинаковую величину во всех точках окружности, концентрической с проводом (фиг. 13.7).
Фиг. 13.7. Магнитное поле вне длинного провода с током I.
Тогда можно легко взять линейный интеграл от B·ds. Он равен просто величине В, умноженной на длину окружности. Если радиус окружности равен r, то
Полный ток через петлю есть просто ток I в проводе, поэтому
или
(13.17)
Напряженность магнитного поля спадает обратно пропорционально r, расстоянию от оси провода. При желании уравнение (13.17) можно записать в векторной форме. Вспоминая, что В направлено перпендикулярно как I, так и r, имеем
(13.18)
Мы выделили множитель 1/4πε0с2, потому что он часто появляется. Стоит запомнить, что он равен в точности 10-7 (в системе единиц СИ)[16], потому что уравнение вида (13.17) используется для определения единицы тока, ампера. На расстоянии 1 м ток в 1а создает магнитное поле, равное 2·10-7 вебер/м2.
Раз ток создает магнитное поле, то он будет действовать с некоторой силой на соседний провод, по которому также проходит ток. В гл. 1 мы описывали простой опыт, показывающий силы между двумя проводами, по которым течет ток. Если провода параллельны, то каждый из них перпендикулярен полю В другого провода; тогда провода будут отталкиваться или притягиваться друг к другу. Когда токи текут в одну сторону, провода притягиваются, когда токи противоположно направлены,— они отталкиваются.
Возьмем другой пример, который тоже можно проанализировать с помощью закона Ампера, если еще добавить кое-какие сведения о характере поля. Пусть имеется длинный провод, свернутый в тугую спираль, сечение которой показано на фиг. 13.8.
Фиг. 13.8. Магнитное поле длинного соленоида.
Такая спираль называется соленоидом. На опыте мы наблюдаем, что когда длина соленоида очень велика по сравнению с диаметром, то поле вне его очень мало по сравнению с полем внутри. Используя только этот факт и закон Ампера, можно найти величину поля внутри.
Поскольку поле остается внутри (и имеет нулевую дивергенцию), его линии должны идти параллельно оси, как показано на фиг. 13.8. Если это так, то мы можем использовать закон Ампера для прямоугольной «кривой» Γ на рисунке. Эта кривая проходит расстояние L внутри соленоида, где поле, скажем, равно В0, затем идет под прямым углом к полю и возвращается назад по внешней области, где полем можно пренебречь. Линейный интеграл от В вдоль этой кривой равен в точности B0L, и это должно равняться 1/ε0с2, умноженному на полный ток внутри Γ, т. е. на NI (где N — число витков соленоида на длине L). Мы имеем
Или же, вводя n — число витков на единицу длины соленоида (так что n=N/L), мы получаем
(13.19)
Что происходит с линиями В, когда они доходят до конца соленоида? По-видимому, они как-то расходятся и возвращаются в соленоид с другого конца (фиг. 13.9).
Фиг. 13.9. Магнитное поле вне соленоида.
В точности такое же поле наблюдается вне магнитной палочки. Ну а что же такое магнит? Наши уравнения говорят, что поле В возникает от присутствия токов. А мы знаем, что обычные железные бруски (не батареи и не генераторы) тоже создают магнитные поля. Вы могли бы ожидать, что в правой части (13.12) или (13.13) должны были бы быть другие члены, представляющие «плотность намагниченного железа» или какую-нибудь подобную величину. Но такого члена нет. Наша теория говорит, что магнитные эффекты железа возникают от каких-то внутренних токов, уже учтенных членом j.
Вещество устроено очень сложно, если рассматривать его с глубокой точки зрения; в этом мы уже убедились, когда пытались понять диэлектрики. Чтобы не прерывать нашего изложения, отложим подробное обсуждение внутреннего механизма магнитных материалов типа железа. Пока придется принять, что любой магнетизм возникает за счет токов и что в постоянном магните имеются постоянные внутренние токи. В случае железа эти токи создаются электронами, вращающимися вокруг собственных осей. Каждый электрон имеет такой спин, который соответствует крошечному циркулирующему току. Один электрон, конечно, не дает большого магнитного поля, но в обычном куске вещества содержатся миллиарды и миллиарды электронов. Обычно они вращаются любым образом, так что суммарный эффект исчезает. Удивительно то, что в немногих веществах, подобных железу, большая часть электронов крутится вокруг осей, направленных в одну сторону,— у железа два электрона из каждого атома принимают участие в этом совместном движении. В магните имеется большое число электронов, вращающихся в одном направлении, и, как мы увидим, их суммарный эффект эквивалентен току, циркулирующему по поверхности магнита. (Это очень похоже на то, что мы нашли в диэлектриках,— однородно поляризованный диэлектрик эквивалентен распределению зарядов на его поверхности.) Поэтому не случайно, что магнитная палочка эквивалентна соленоиду.
§ 6. Относительность магнитных и электрических полей
Когда мы сказали, что магнитная сила на заряд пропорциональна его скорости, вы, наверное, подумали: «Какой скорости? По отношению к какой системе отсчета?» Из определения В, данного в начале этой главы, на самом деле ясно, что этот вектор будет разным в зависимости от выбора системы отсчета, в которой мы определяем скорость зарядов. Но мы ничего не сказали о том, какая же система подходит для определения магнитного поля.
Оказывается, что годится любая инерциальная система. Мы увидим также, что магнетизм и электричество — не независимые вещи, они всегда должны быть взяты в совокупности как одно полное электромагнитное поле. Хотя в статическом случае уравнения Максвелла разделяются на две отдельные пары: одна пара для электричества и одна для магнетизма, без видимой связи между обоими полями, тем не менее в самой природе существует очень глубокая взаимосвязь между ними, возникающая из принципа относительности. Исторически принцип относительности был открыт после уравнений Максвелла. В действительности же именно изучение электричества и магнетизма привело Эйнштейна к открытию принципа относительности. Но посмотрим, что наше знание принципа относительности подскажет нам о магнитных силах, если предположить, что принцип относительности применим (а в действительности так оно и есть) к электромагнетизму.
Давайте подумаем, что произойдет с отрицательным зарядом, движущимся со скоростью v0 параллельно проволоке, по которой течет ток (фиг. 13.10).
Фиг. 13.10. Взаимодействие проволоки с током и частицы с зарядом q, рассматриваемое в двух системах координат. а — в системе S покоится проволока; б — в системе S' покоится заряд.
Постараемся разобраться в происходящем, используя две системы отсчета: одну, связанную с проволокой, как на фиг. 13.10, а, а другую — с частицей, как на фиг. 13.10, б. Мы будем называть первую систему отсчета S, а вторую S'.
В системе S на частицу явно действует магнитная сила. Сила направлена к проволоке, поэтому, если заряду ничего не мешает, его траектория загнется в сторону проволоки. Но в системе S' магнитной силы на частицу быть не может, потому что скорость частицы равна нулю. Что же, следовательно, она так и будет стоять на месте? Увидим ли мы в разных системах разные вещи? Принцип относительности утверждает, что в системе S' мы увидели бы тоже, как частица приближается к проволоке. Мы должны попытаться понять, почему такое могло бы произойти.
Вернемся к нашему атомному описанию проволоки, по которой идет ток. В обычном проводнике, вроде меди, электрические токи возникают за счет движения части отрицательных электронов (называемых электронами проводимости), тогда как положительные ядерные заряды и остальные электроны остаются закрепленными внутри материала. Пусть плотность электронов проводимости есть ρ, а их скорость в системе S есть v. Плотность неподвижных зарядов в системе S есть ρ+, что должно быть равно ρ- с обратным знаком, потому что мы берем незаряженную проволоку. Поэтому вне проволоки электрического поля нет, и сила на движущуюся частицу равна просто
Используя результат, найденный нами в уравнении (13.18) для магнитного поля на расстоянии r от оси проволоки, мы заключаем, что сила, действующая на частицу, направлена к проволоке и равна по величине
С помощью уравнений (13.4) и (13.5) ток I может быть записан как ρ+vA, где А — площадь поперечного сечения проволоки. Тогда
(13.20)
Мы могли бы продолжить рассмотрение общего случая произвольных скоростей v и v0, но ничуть не хуже будет взять частный случай, когда скорость v0 частицы совпадает со скоростью v электронов проводимости. Поэтому мы запишем v=v0, и уравнение (13.20) приобретет вид
(13.21)
Теперь обратимся к тому, что происходит в системе S', где частица покоится и проволока бежит мимо нее (влево на фиг. 13.10, б) со скоростью v. Положительные заряды, движущиеся вместе с проволокой, создадут около частицы некоторое магнитное поле В'. Но частица теперь покоится, так что магнитная сила на нее не действует! Если и возникает какая-то сила, то она должна появиться за счет электрического поля. Выходит, что движущаяся проволока создает электрическое поле. Но она может это сделать, только если она кажется заряженной; должно получаться так, чтобы нейтральная проволока с током казалась заряженной, если ее привести в движение.
Нужно в этом разобраться. Попробуем вычислить плотность зарядов в проволоке в системе S', пользуясь тем, что мы знаем о ней в системе S. На первый взгляд можно было бы подумать, что плотности одинаковы, но из гл. 15 (вып. 2) мы знаем, что при переходе от одной системы к другой длины меняются, следовательно, объемы также изменятся. Поскольку плотности зарядов зависят от объема, занимаемого зарядами, плотности будут также меняться.
Прежде чем определить плотности зарядов в системе S', нужно знать, что происходит с электрическим зарядом группы электронов, когда заряды движутся. Мы знаем, что кажущаяся масса частицы приобретает множитель 1/√(1-v2/c2). Происходит ли что-нибудь подобное с ее зарядом? Нет! Заряды никогда не меняются независимо от того, движутся ли они или нет. Иначе мы не могли бы наблюдать на опыте сохранение полного заряда.
Возьмем кусок вещества, например проводника, и пусть он вначале незаряжен. Теперь нагреем его. Поскольку масса электронов иная, чем у протонов, скорости электронов и протонов изменятся по-разному. Если бы заряд частицы зависел от скорости частицы, которая его переносит, то в нагретом куске заряды электронов и протонов не были бы скомпенсированы. Кусок материала при нагревании становился бы заряженным.
Мы видели раньше, что очень малое изменение заряда у каждого из электронов в куске привело бы к огромным электрическим полям. Ничего подобного никогда не наблюдалось.
Кроме того, можно заметить, что средняя скорость электронов в веществе зависит от его химического состава. Если бы заряд электрона менялся со скоростью, суммарный заряд в куске вещества изменялся бы в ходе химической реакции. Как и раньше, прямое вычисление показывает, что даже совсем малая зависимость заряда от скорости привела бы в простейших химических реакциях к огромным полям. Ничего похожего не наблюдалось, и мы приходим к выводу, что электрический заряд отдельной частицы не зависит от состояния движения или покоя.
Итак, заряд частицы q есть инвариантная скалярная величина, не зависящая от системы отсчета. Это означает, что в любой системе плотность зарядов у некоторого распределения электронов просто пропорциональна числу электронов в единице объема. Нам нужно только учесть тот факт, что объем может меняться из-за релятивистского сокращения расстояний.
Применим теперь эти идеи к нашей движущейся проволоке. Если взять проволоку длиной L0, в которой плотность неподвижных зарядов есть ρ0, то в ней будет содержаться полный заряд Q=ρ0L0A0. Если те же заряды движутся в другой системе со скоростью v, то они все будут находиться в куске материала меньшей длины
(13.22)
но того же сечения A0, поскольку размеры в направлении, перпендикулярном движению, не меняются (фиг. 13.11).
Фиг. 13.11. Если распределение заряженных частиц имеет плотность зарядов р0, то с точки зрения системы, движущейся с относительной скоростью v, плотность зарядов будет равна ρ=ρ0/√(1 — v2/с2).
Если через ρ обозначить плотность зарядов в системе, где они движутся, то полный заряд Q будет ρLA0. Но это должно быть также равно ρ0L0А, потому что заряд в любой системе одинаков, следовательно, ρL=ρ0L0, или с помощью (13.22)
(13.23)
Плотность зарядов движущейся совокупности зарядов меняется таким же образом, как и релятивистская масса частицы.
Применим теперь этот результат к плотности положительных зарядов ρ+ в нашей проволоке. Эти заряды покоятся в системе S. Однако в системе S', где проволока движется со скоростью v, плотность положительных зарядов становится равной
(13.24)
Отрицательные заряды в системе S' покоятся, поэтому их плотность в этой системе есть «плотность покоя» ρ0. В уравнении (13.23) ρ'0=ρ'-, потому что их плотность зарядов равна ρ-, если проволока покоится, т. е. в системе S, где скорость отрицательных зарядов равна v. Тогда для электронов проводимости мы получаем
(13.25)
или
(13.26)
Теперь мы можем понять, почему в системе S' возникают электрические поля: потому что в этой системе в проволоке имеется результирующая плотность зарядов ρ', даваемая формулой
С помощью (13.24) и (13.26) имеем
Поскольку покоящаяся проволока нейтральна, ρ-=-ρ+, получаем
(13.27)
Наша движущаяся проволока заряжена положительно и должна создавать поле Е' в точке, где находится внешняя покоящаяся частица. Мы уже решали электростатическую задачу об однородно заряженном цилиндре. Электрическое поле на расстоянии r от оси цилиндра есть
(13.28)
Сила, действующая на отрицательно заряженную частицу, направлена к проволоке. Мы имеем силу, направленную одинаково в обеих системах; электрическая сила в системе S' направлена так же, как магнитная сила в системе S. Величина силы в системе S' равна
(13.29)
Сравнивая этот результат для F' с нашим результатом для F в уравнении (13.21), мы видим, что величины сил с точки зрения двух наблюдателей почти одинаковы. Точнее,
(13.30)
поэтому для малых скоростей, которые мы рассматриваем, обе силы одинаковы. Мы можем сказать, что по меньшей мере для малых скоростей магнетизм и электричество суть просто «две разные стороны одной и той же вещи».
Но оказывается, что все обстоит даже еще лучше, чем мы сказали. Если принять во внимание тот факт, что силы также преобразуются при переходе от одной системы к другой, то окажется, что оба способа наблюдения за происходящим дают на самом деле одинаковые физические результаты при любой скорости.
Чтобы это увидеть, можно, например, задать вопрос: какой поперечный импульс приобретет частица, на которую в течение некоторого времени действовала сила? Мы знаем из вып. 2, гл. 16, что поперечный импульс частицы должен быть один и тот же как в системе S, так ив системе S'. Обозначим поперечную координату у и сравним Δрy и Δр'y. Используя релятивистски правильное уравнение движения F=dp/dt, мы ожидаем, что за время Δt наша частица приобретет поперечный импульс Δрy в системе S, даваемый выражением
(13.31)
В системе S' поперечный импульс будет равен
(13.32)
Мы должны сравнивать Δрy и Δр'y, конечно, для соответствующих интервалов времени Δt и Δt'. В гл. 15 (вып. 2) мы видели, что интервалы времени, относящиеся к движущейся частице, кажутся длиннее интервалов в системе покоя частицы. Поскольку наша частица первоначально была в покое в системе S', то мы ожидаем, что для малых Δt
(13.33)
и все получается великолепно. Согласно (13.31) и (13.32),
и если скомбинировать (13.30) и (13.33), то это отношение равно единице.
Вот и выходит, что мы получаем один и тот же результат, независимо от того, анализируем ли мы движение летящей рядом с проволокой частицы в системе покоя проволоки или в системе покоя частицы. В первом случае сила была чисто «магнитной», во втором — чисто «электрической». Оба способа наблюдения показаны на фиг. 13.12 (хотя во второй системе еще есть и магнитное поле В', оно не воздействует на неподвижную частицу).
Фиг. 13.12. В системе S плотность зарядов есть нуль, а плотность тока равна j. Есть только магнитное поле. В системе S' плотность зарядов равна р', а плотность тока j'. Магнитное поле здесь равно В' и существует электрическое поле Е'.
Если бы мы выбрали еще одну систему координат, мы бы нашли некую другую смесь полей E и В. Электрические и магнитные силы составляют части одного физического явления— электромагнитного взаимодействия частиц. Разделение этого взаимодействия на электрическую и магнитную части в большой степени зависит от системы отсчета, в которой мы описываем взаимодействие. Но полное электромагнитное описание инвариантно; электричество и магнетизм, вместе взятые, согласуются с принципом относительности, открытым Эйнштейном.
Раз электрические и магнитные поля появляются в разных соотношениях при изменении системы отсчета, мы должны проявлять осторожность в обращении с полями Е и В. Если, например, мы говорим о «линиях» Е или В, то не нужно преувеличивать реальность их существования. Линии могут исчезнуть, если мы захотим увидеть их в другой системе координат. Например, в системе S' имеются линии электрического поля, однако мы не видим их «движущимися мимо нас со скоростью v в системе S». В системе S линий электрического поля нет вообще! Поэтому бессмысленно говорить что-нибудь вроде: «Когда я двигаю магнит, он несет свое поле с собой, поэтому линии поля В тоже движутся». Нет никакого способа сделать вообще осмысленным понятие о «скорости движущихся линий поля».
Поля суть способ описания того, что происходит в некоторой точке пространства. В частности, Е и В говорят нам о силах, которые будут действовать на движущуюся частицу. Вопрос «чему равна сила, действующая на заряд со стороны движущегося магнитного поля?» не имеет сколько-нибудь точного содержания. Сила дается величинами Е и В в точке заряда, и формула (13.1) не изменится, если источник полей Е или В движется (изменятся в результате движения как раз значения Е и В). Наше математическое описание относится только к полям как функциям х, у, z и t, взятым в некоторой инерциальной системе отсчета.
Позднее мы будем говорить о «волне электрического и магнитного полей, распространяющейся в пространстве», например о световой волне. Но это все равно, что говорить о волне, бегущей по веревке. Мы при этом не имеем в виду, что какая-нибудь часть веревки движется в направлении волны, а подразумеваем, что смещение веревки появляется сначала в одном месте, а затем в другом. Аналогично для электромагнитной волны — сама волна распространяется, а величина полей изменяется.
Так что в будущем, когда мы — или кто-нибудь еще — будем говорить о «движущемся» поле, вы должны понимать, что речь идет просто о коротком и удобном способе описания изменяющегося поля в определенных условиях.
§ 7. Преобразование токов и зарядов
Вы, вероятно, были обеспокоены сделанным нами упрощением, когда мы взяли одну и ту же скорость v для частицы и электронов проводимости в проволоке. Можно было бы вернуться назад и снова проделать анализ с двумя разными скоростями, но легче просто заметить, что плотность заряда и тока являются компонентами четырехвектора (см. вып. 2, гл. 17).
Мы видели уже, что если ρ0 есть плотность зарядов в их системе покоя, то в системе, где они имеют скорость v, плотность равна
В этой системе их плотность тока есть
(13.34)
Далее, мы знаем, что энергия U и импульс частицы р, движущейся со скоростью v, даются выражениями
где m0 — ее масса покоя. Мы знаем также, что U и р образуют релятивистский четырехвектор. Поскольку ρ и j зависят от скорости v в точности, как U и р, то можно заключить, что ρ и j также компоненты релятивистского четырехвектора. Это свойство есть ключ к общему анализу поля проволоки, движущейся с любой скоростью, и мы могли бы его использовать, если бы захотели решить снова задачу со скоростью частицы v0, не равной скорости электронов проводимости.
Если нам нужно перевести ρ и j в систему координат, движущуюся со скоростью u в направлении х, то мы знаем, что они преобразуются в точности как t и (х, у, z); поэтому мы имеем (см. вып. 2, гл. 15)
(13.35)
С помощью этих уравнений можно связать заряды и токи в одной системе с зарядами и токами в другой. Взяв заряды и токи в какой-то системе, можно решить электромагнитную задачу в этой системе, пользуясь уравнениями Максвелла. Результат, который мы получим для движения частиц, будет одним и тем же, независимо от выбранной системы отсчета. Позже мы вернемся к релятивистским преобразованиям электромагнитных полей.
§ 8. Суперпозиция; правило правой руки
Мы закончим эту главу еще двумя замечаниями по вопросам магнитостатики. Первое: наши основные уравнения для магнитного поля
линейны по B и j. Это означает, что принцип суперпозиции (наложения) приложим и к магнитному полю. Поле, создаваемое двумя разными постоянными токами, есть сумма собственных полей от каждого тока, действующего по отдельности. Наше второе замечание относится к правилам правой руки, с которыми мы уже сталкивались (правило правой руки для магнитного поля, создаваемого током). Мы указывали также, что намагничивание железного магнита объясняется вращением электронов в материале. Направление магнитного поля вращающегося электрона связано с осью его вращения тем же самым правилом правой руки. Поскольку B определяется правилом определенной руки (с помощью либо векторного произведения, либо ротора), он называется аксиальным вектором. (Векторы, направление которых в пространстве не зависит от ссылок на левую или правую руку, называются полярными векторами. Например, смещение, скорость, сила и E — полярные векторы.)
Физически наблюдаемые величины в электромагнетизме, однако, не связаны с правой или левой рукой. Из гл. 52 (вып. 4) мы знаем, что электромагнитные взаимодействия симметричны по отношению к отражению. При вычислении магнитных сил между двумя наборами токов результат всегда инвариантен по отношению к перемене рук. Наши уравнения, независимо от условия правой руки, приводят к конечному результату, что параллельные токи притягиваются, а противоположные — отталкиваются. (Попробуйте вычислить силу с помощью «правила левой руки».) Притяжение или отталкивание есть полярный вектор. Так получается потому, что при описании любого полного взаимодействия мы пользуемся правилом правой руки дважды — один раз, чтобы найти В из токов, а затем, чтобы найти силу, оказываемую полем В на второй ток. Два раза пользоваться правилом правой руки — все равно что два раза пользоваться правилом левой руки. Если бы мы условились перейти к системе левой руки, все наши поля В изменили бы знак, но все силы или (что, пожалуй, нагляднее) наблюдаемые ускорения объектов не изменились бы.
Хотя физики недавно, к своему удивлению, обнаружили, что не все законы природы всегда инвариантны по отношению к зеркальным отражениям, тем не менее законы электромагнетизма обладают этой фундаментальной симметрией.
Глава 14 МАГНИТНОЕ ПОЛЕ В РАЗНЫХ СЛУЧАЯХ
§ 1. Векторный потенциал
В этой главе мы продолжим разговор о магнитостатике, т. е. о постоянных магнитных полях и постоянных токах. Магнитное поле и электрические токи связаны нашими основными уравнениями:
(14.1)
и
(14.2)
На этот раз нам нужно решить эти уравнения математически самым общим образом, а не ссылаться на какую-нибудь особую симметрию или на интуицию. В электростатике мы нашли прямой способ вычисления поля, когда известны положения всех электрических зарядов: скалярный потенциал φ дается просто интегралом по зарядам, как в уравнении (4.25) на стр. 77. Если затем нужно знать электрическое поле, то его получают дифференцированием φ. Мы покажем сейчас, что для нахождения поля В существует аналогичная процедура, если известна плотность тока j всех движущихся зарядов.
В электростатике, как мы видели (из-за того, что rot от Е везде равен нулю), всегда можно представить Е в виде градиента от скалярного поля φ. А вот rot от В не везде равен нулю, поэтому представить его в виде градиента, вообще говоря, невозможно. Однако дивергенция В везде равна нулю, а это значит, что мы можем представить В в виде ротора от другого векторного поля. Ибо, как мы видели в гл. 2, § 8, дивергенция ротора всегда равна нулю. Следовательно, мы всегда можем выразить В через поле, которое мы обозначим А:
(14.3)
Или, расписывая компоненты:
(14.4)
Запись B=∇×A гарантирует выполнение (14.1), потому что обязательно
Поле А называется векторным потенциалом.
Вспомним, что скалярный потенциал φ оказывается не полностью определенным. Если мы нашли для некоторой задачи потенциал φ, то всегда можно найти столь же хороший другой потенциал φ', добавив постоянную:
Новый потенциал φ' дает те же электрические поля, потому что градиент ∇С есть нуль; φ' и φ отвечают одной и той же картине.
Точно так же у нас может быть несколько векторных потенциалов А, приводящих к одним и тем же магнитным полям. Опять-таки, поскольку В получается из А дифференцированием, то прибавление к А константы не меняет физики дела. Но для А свобода больше. Мы можем добавить к А любое поле, которое есть градиент от некоторого скалярного поля, не меняя при этом физики. Это можно показать следующим образом. Пусть у нас есть А, которое в какой-то реальной задаче дает правильное поле В. Спрашивается, при каких условиях другой векторный потенциал А', будучи подставлен в (14.3), дает то же самое поле В. Значит, А и А' имеют одинаковый ротор
Поэтому
Но если ротор вектора есть нуль, то вектор должен быть градиентом некоторого скалярного поля, скажем ψ, так что А'-A=∇ψ. Это означает, что если А есть векторный потенциал, отвечающий данной задаче, то при любом ψ
(14.5)
также будет векторным потенциалом, в одинаковой степени удовлетворяющим данной задаче и приводящим к тому же полю В.
Обычно бывает удобно уменьшить «свободу» А, накладывая на него произвольно некоторое другое условие (почти таким же образом мы считали удобным — довольно часто — выбирать потенциал φ равным нулю на больших расстояниях). Мы можем, например, ограничить А, наложив на него такое условие, чтобы дивергенция А чему-нибудь равнялась. Мы всегда можем это сделать, не задевая В. Так получается потому, что, хотя А' и А имеют одинаковый ротор и дают одно и то же В, они вовсе не обязаны иметь одинаковую дивергенцию. В самом деле, ∇·A'=∇·A+∇2ψ, и, подбирая соответствующее ψ, можно придать ∇·A' любое значение.
Чему следует приравнять ∇·А? Выбор должен обеспечить наибольшее математическое удобство и зависит от нашей задачи. Для магнитостатики мы сделаем простой выбор
(14.6)
(Потом, когда мы перейдем к электродинамике, мы изменим наш выбор.) Итак, наше полное определение[17] А в данный момент есть ∇×A=B и ∇·А=0.
Чтобы привыкнуть к векторному потенциалу, посмотрим сначала, чему он равен для однородного магнитного поля В0. Выбирая ось z в направлении В0, мы должны иметь
(14.7)
Рассматривая эти уравнения, мы видим, что одно из возможных решений есть
Или с тем же успехом можно взять
Еще одно решение есть комбинация первых двух
(14.8)
Ясно, что для каждого поля В векторный потенциал А не единственный; существует много возможностей.
Третье решение [уравнение (14.8)] обладает рядом интересных свойств. Поскольку x-компонента пропорциональна -y, а y-компонента пропорциональна +x, то вектор A должен быть перпендикулярен вектору, проведенному от оси z, который мы обозначим r' (штрих означает, что это не вектор расстояния от начала). Кроме того, величина А пропорциональна √(x2+y2) и, следовательно, пропорциональна r'. Поэтому А (для однородного поля) может быть записано просто
(14.9)
Векторный потенциал А равен по величине Br'/2, и вращается вокруг оси z, как показано на фиг. 14.1.
Фиг. 14.1. Однородное магнитное поле В, направленное по оси z, соответствует векторному потенциалу А (А=Вr'/2), который вращается вокруг оси z. т' — расстояние до оси z.
Если, например, поле В есть поле внутри соленоида вдоль его оси, то векторный потенциал циркулирует точно таким же образом, как и токи в соленоиде.
Векторный потенциал однородного поля может быть получен и другим способом. Циркуляция А вдоль любой замкнутой петли Γ может быть выражена через поверхностный интеграл от ∇×A с помощью теоремы Стокса [уравнение (3.38), стр. 63]
(14.10)
Но интеграл справа равен потоку В сквозь петлю, поэтому
(14.11)
Итак, циркуляция А вдоль всякой петли равна потоку В сквозь петлю. Если мы возьмем круглую петлю радиуса r' в плоскости, перпендикулярной однородному полю В, то поток будет в точности равен
Если выбрать начало отсчета в центре петли, так что А можно считать направленным по касательной и функцией только от r', то циркуляция будет равна
Как и раньше, получаем
В только что разобранном примере мы вычисляем векторный потенциал из магнитного поля, обычно поступают наоборот. В сложных задачах всегда проще найти векторный потенциал, а затем уже из него найти магнитное поле. Сейчас мы покажем, как это можно сделать.
§ 2. Векторный потенциал заданных токов
Раз В определяется токами, значит, и А тоже. Мы хотим теперь выразить А через токи. Начнем с нашего основного уравнения (14.2):
откуда, конечно, следует
Это уравнение для магнитостатики; оно похоже на уравнение
(14.13)
для электростатики.
Наше уравнение (14.12) для векторного потенциала станет еще более похожим на уравнение для φ, если переписать ∇×(∇×А), используя векторное тождество [см. уравнение (2.58) стр. 44]
(14.14)
Поскольку мы выбрали ∇·А=0 (и теперь вы видите, почему), уравнение (14.12) приобретает вид
(14.15)
Это векторное уравнение, конечно, распадается на три уравнения
и каждое из этих уравнений математически идентично уравнению
(14.17)
Все, что мы узнали о нахождении потенциала для известного ρ, можно использовать для нахождения каждой компоненты А, когда известно j!
В гл. 4 мы видели, что общее решение уравнения электростатики (14.17) имеет вид
Тогда мы немедленно получаем общее решение для Аx:
(14.18)
и аналогично для Ау и Az. (Фиг. 14.2 напоминает вам о принятых нами обозначениях для r12 и dV2.)
Фиг. 14.2. Векторный потенциал А в точке 1 определяется интегралом по элементам тока jdV во всех точках 2.
Мы можем объединить все три решения в векторной форме:
(14.19)
(Вы можете при желании проверить прямым дифференцированием компонент, что этот интеграл удовлетворяет ∇·А=0, поскольку ∇·j=0, а последнее, как мы видели, должно выполняться для постоянных токов.)
Мы имеем, таким образом, общий метод вычисления магнитного поля от постоянных токов. Принцип такой: x-компонента векторного потенциала, возникающая от плотности тока j, точно такая же, как электрический потенциал φ, который был бы создан плотностью зарядов ρ, равной jx/c2, и аналогично для у- и z-компонент. (Этот принцип действует только для декартовых компонент. Например, «радиальная» компонента А не связана таким же образом с «радиальной» компонентой j.) Итак, из вектора плотности тока j можно найти А, пользуясь уравнениями (14.19), т. е. мы находим каждую компоненту А, решая три воображаемые электростатические задачи для распределений заряда ρ1=jx/с2, ρ2=jу/с2 и ρ3=jz/с2. Затем мы находим В, вычислив разные производные от А, входящие в ∇×А. Немного сложнее, чем в электростатике, но идея та же. Сейчас мы проиллюстрируем теорию, вычислив векторный потенциал в нескольких частных случаях.
§ 3. Прямой провод
В качестве первого примера снова вычислим поле прямого провода, которое мы находили в предыдущем параграфе, пользуясь уравнением (14.2) и соображениями симметрии. Возьмем длинный прямой провод радиуса а, по которому течет постоянный ток I. В отличие от заряда в проводнике в случае электростатики постоянный ток в проводе распределен равномерно по поперечному сечению провода. При таком выборе координат, как показано на фиг. 14.3, вектор плотности тока j имеет только z-компоненту.
Фиг. 14.3. Длинный цилиндрический провод с однородной плотностью тока j, направленный вдоль оси z.
По величине она равна
(14.20)
внутри провода и нулю вне его.
Поскольку jх и jy оба равны нулю, то сразу же получим
Чтобы получить Аz, можно использовать наше решение для электростатического потенциала φ от провода с однородной плотностью заряда ρ=jz/с2. Для точек вне бесконечного заряженного цилиндра электростатический потенциал равен
где r'=√(x2+y2), а λ — заряд на единицу длины πа2ρ. Следовательно, Аz должно быть равно
для точек вне длинного провода с равномерно распределенным током. Поскольку πа2jz=I, то можно также написать
(14.21)
Теперь можно найти В, пользуясь (14.4). Из шести производных от нуля отличны только две. Получаем
(14.22)
(14.23)
Мы получаем тот же результат, что и раньше: В обходит провод по окружности и по величине равен
(14.24).
§ 4. Длинный соленоид
Еще пример. Рассмотрим опять бесконечно длинный соленоид с током по окружности, равным nI на единицу длины. (Мы считаем, что имеется n витков проволоки на единицу длины, несущих каждый ток I, и пренебрегаем небольшими зазорами между витками.)
Точно так же, как мы выводили «поверхностную плотность заряда» σ, определим здесь «поверхностную плотность тока» J, равную току на единице длины по поверхности соленоида (что, конечно, есть просто среднее j, умноженное на толщину тонкой намотки). Величина J здесь равна nI.
Фиг. 14.4. Длинный соленоид с поверхностной плотностью тока J.
Этот поверхностный ток (фиг. 14.4) имеет компоненты
Мы должны теперь найти А для такого распределения токов.
Прежде всего найдем Ах в точках вне соленоида. Результат такой же, как электростатический потенциал вне цилиндра с поверхностным зарядом:
где σ0=-J/c2. Мы не решали случай такого распределения заряда, но делали нечто похожее. Это распределение заряда эквивалентно двум жестким цилиндрам, состоящим из зарядов, один из положительных, другой из отрицательных, с малым относительным смещением их осей в направлении у. Потенциал такой пары цилиндров пропорционален производной по у от потенциала одного однородно заряженного цилиндра. Мы, конечно, можем вычислить константу пропорциональности, но пока не будем возиться с этим.
Потенциал заряженного цилиндра пропорционален lnr'; потенциал пары тогда равен
Итак, мы знаем, что
(14.25)
где К — некоторая константа. Рассуждая точно так же, найдем
(14.26)
Хотя мы раньше говорили, что вне соленоида магнитного поля нет, теперь мы находим, что поле А существует и циркулирует вокруг оси z (см. фиг. 14.4). Возникает вопрос: равен ли нулю его ротор?
Очевидно, Вх и Вy равны нулю, а
Итак, магнитное поле вне очень длинного соленоида действительно равно нулю, хотя векторный потенциал нулю не равен.
Мы можем проверить наш результат, прибегнув к другим соображениям. Циркуляция векторного потенциала вокруг соленоида должна равняться потоку В внутри катушки [уравнение (14.11)]. Циркуляция равна А·2πr' или, поскольку А=К/r', она равна 2πК. Заметьте, что циркуляция не зависит от r'. Так и должно быть, если В вне соленоида отсутствует, потому что поток есть просто величина В внутри соленоида, умноженная на πа2. Он один и тот же для всех окружностей с радиусом r'>а. Раньше мы нашли, что поле внутри равно nI/ε0c2, поэтому мы можем определить константу К:
или
Итак, векторный потенциал снаружи имеет величину
(14.27)
и всегда перпендикулярен вектору r'.
Мы говорили о соленоидальной катушке из проволоки, но такое же поле мы могли бы создать, вращая длинный цилиндр с электростатическим зарядом на поверхности. Если у нас есть тонкий цилиндрический слой радиуса а с поверхностным зарядом σ, то вращение цилиндра образует поверхностный ток J=σv, где v=aω — скорость поверхностного заряда. Внутри цилиндра тогда будет магнитное поле B=σaω/ε0с2.
Теперь можно поставить интересный вопрос. Предположим, что перпендикулярно к оси цилиндра мы поместили короткий отрезок проволоки W от оси до поверхности и прикрепили ее к цилиндру так, что проволока вращается вместе с ним (фиг. 14.5).
Фиг. 14.5. Вращающийся заряженный цилиндр создает внутри себя магнитное поле. Короткая проволока, закрепленная вдоль радиуса, вращаясь вместе с цилиндром, приобретает на своих концах индуцированные заряды.
Эта проволока движется в магнитном поле, так что сила v×B приведет к тому, что концы проволоки зарядятся (они будут заряжаться до тех пор, пока поле Е зарядов не уравновесит силы v×B). Если цилиндр заряжен положительно, то конец проволоки вблизи оси будет иметь отрицательный заряд. Измеряя заряд на конце проволоки, мы могли бы определить скорость вращения системы. Мы получили бы «угловой скоростемер» (или «угловой ситометр»)!
Но вы, наверно, засомневаетесь: «А что, если я сам перейду,— скажете вы,— в систему координат вращающегося цилиндра? Там заряженный цилиндр покоится, а я знаю из электростатических уравнений, что внутри цилиндра никакого поля не будет, не будет и силы, толкающей заряды к центру. Поэтому здесь что-то не так?» Нет. Все правильно. «Относительности вращения» не существует. Вращающаяся система — не инерциальная система, и законы физики в ней другие. Мы должны пользоваться уравнениями электромагнетизма только в инерциальных системах координат.
Было бы здорово, если бы смогли измерить абсолютное вращение Земли с помощью такого заряженного цилиндра, но эффект, к несчастью, настолько мал, что его невозможно наблюдать даже с помощью самых тонких современных приборов.
§ 5. Поле маленькой петли; магнитный диполь
Воспользуемся методом векторного потенциала, чтобы найти магнитное поле маленькой петли с током. Как обычно, под словом «маленькая» мы просто подразумеваем, что нас интересуют поля только на больших расстояниях по сравнению с размером петли. Как мы увидим, любая петелька представляет собой «магнитный диполь». Это значит, что она создает магнитное поле, подобное электрическому полю от электрического диполя.
Возьмем сначала прямоугольную петлю и выберем оси координат, как показано на фиг. 14.6.
Фиг. 14.6. Прямоугольная проволочная петля с током I. Чему равно магнитное поле в точке P? (R≫a и b).
Токов в направлении z нет, поэтому Az равно нулю. Есть токи в направлении х по обеим сторонам прямоугольника, длина которых а. В каждой стороне плотность тока и ток однородны. Поэтому решение для Ах в точности подобно электростатическому потенциалу от двух заряженных палочек (фиг. 14.7).
Фиг. 14.7. Распределение jx в проволочной петле о током, изображенной на фиг. 14.6.
Поскольку палочки имеют противоположные заряды, их электрический потенциал на больших расстояниях есть как раз дипольный потенциал (см. гл. 6, § 5). В точке Р на фиг. 14.6 потенциал равен
(14.28)
где р — дипольный момент распределения зарядов. В данном случае дипольный момент равен полному заряду на одной палочке, умноженному на расстояние между ними:
(14.29)
Дипольный момент смотрит в отрицательном направлении y, поэтому косинус угла между R и р равен —y/R (где у — координата Р). Итак, мы имеем
Заменяя λ на I/с2, сразу же получаем Ах:
(14.30)
С помощью тех же рассуждений:
(14.31)
Снова Ау пропорционально х, а Ах пропорционально —y, так что векторный потенциал (на больших расстояниях) идет по кругу вокруг оси z, циркулируя таким же образом, как ток I в петле (фиг. 14.8).
Фиг. 14.8. Векторный потенциал маленькой петли с током, расположенной в начале координат (в плоскости ху). Поле магнитного диполя.
Величина А пропорциональна Iab, т. е. току, умноженному на площадь петли. Это произведение называется магнитным дипольным моментом (или часто просто «магнитным моментом») петли. Мы обозначим его через μ:
(14.32)
Векторный потенциал маленькой плоской петельки любой формы (круг, треугольник и т. п.) также дается уравнениями (14.30) и (14.31), если заменить Iab на
(14.33)
Мы предоставляем вам право это доказать.
Нашему уравнению можно придать векторную форму, если определить вектор μ как нормаль к плоскости петли с положительным направлением, определяемым по правилу правой руки (см. фиг. 14.8). Тогда можно написать
(14.34)
Нам еще нужно найти В. Пользуясь (14.33) и (14.34), а также (14.4), получаем
(14.35)
(под многоточием мы подразумеваем μ/4πε0с2),
Компоненты поля В ведут себя точно так же, как компоненты поля Е для диполя, ориентированного вдоль оси z [см. уравнения (6.14) и (6.15), а также фиг. 6.5, стр. 115]. Вот почему мы называем петлю магнитным диполем. Слово «диполь» в применении к магнитному полю немного запутывает, потому что нет отдельных магнитных «полюсов», соответствующих электрическим зарядам. Магнитное «дипольное поле» создается не двумя «зарядами», а элементарной петлей с током.
В общем-то довольно любопытно, что, начав с совсем разных законов, ∇·Е=ρ/ε0 и ∇×В=j/ε0с2, можно прийти к полю одного и того же вида. Почему так получается? Потому что дипольные поля возникают, только когда мы находимся далеко от всех токов и зарядов. Тогда в большей части пространства уравнения для Е и В одинаковы: у обоих дивергенция и ротор равны нулю. Следовательно, они дают одни и те же решения. Однако источники, конфигурацию которых мы описываем с помощью дипольных моментов, физически совершенно различны. В одном случае это циркулирующий ток, а в другом — пара зарядов, один над, а другой под плоскостью петли для соответствующего поля.
§ 6. Векторный потенциал цепи
Нас часто интересует магнитное поле, создаваемое цепью проводов, в которой диаметр провода очень мал по сравнению с размерами всей системы. В таких случаях мы можем упростить уравнения для магнитного поля.
Для тонкого провода элемент объема можно записать в виде
где S — площадь поперечного сечения провода, а ds — элемент расстояния вдоль проволоки. В самом деле, поскольку вектор ds имеет то же направление, что и j (фиг. 14.9), и мы можем предположить, что j постоянно по любому данному сечению, то можно записать векторное уравнение
(14.37)
Фиг. 14.9. Для тонкой проволоки jdV то же самое, что и Ids.
Ho jS — как раз то, что мы называем током I во всем проводе, так что наш интеграл для векторного потенциала (14.19) становится равным
(14.38)
(фиг. 14.10).
Фиг. 14.10. Магнитное поле провода может быть получено интегрированием по всей цепи.
(Мы предполагаем, что I одно и то же вдоль всего контура. Если есть несколько ответвлений с разными токами, то следует, конечно, брать соответствующий ток в каждой ветви.)
Как и раньше, можно найти поле с помощью (14.38) либо прямым интегрированием, либо решая соответствующую электростатическую задачу.
§ 7. Закон Био-Савара
В ходе изучения электростатики мы нашли, что электрическое поле известного распределения зарядов может быть получено сразу в виде интеграла [уравнение (4.16)]
Как мы видели, вычислить этот интеграл (а их на самом деле три, по одному на каждую компоненту) обычно бывает труднее, чем вычислить интеграл для потенциала и взять от него градиент.
Подобный интеграл связывает и магнитное поле с токами. Мы уже имеем интеграл для А [уравнение (14.19)]; мы можем получить интеграл и для В, если возьмем ротор от обеих частей:
А теперь мы должны быть осторожны. Оператор ротора означает взятие производных от А(1), т. е. он действует только на координаты (x1, y1, z1). Можно внести оператор ∇× под интеграл, если помнить, что он действует только на переменные со значком 1, которые появляются, конечно, только в
Мы получаем для x-компоненты В:
(14.41)
Величина в скобках есть просто x-компонента от
Такие же результаты получаются и для других компонент, и мы имеем
(14.42)
Интеграл дает В сразу через известные токи. Геометрия здесь точно такая же, какая изображена на фиг. 14.2.
Если токи текут только по тонким проводам, мы можем, как в предыдущем параграфе, немедленно взять интеграл поперек провода, заменив jdV на Ids, где ds — элемент длины провода. Тогда, пользуясь обозначениями фиг. 14.10, имеем
(14.43)
(Знак минус появляется потому, что мы изменили порядок векторного произведения.) Это уравнение для В называется законом Био — Савара в честь открывших его ученых. Он дает формулу для прямого вычисления магнитного поля, создаваемого проводами с током.
Вероятно, вы удивились: «Какой же прок от векторного потенциала, если мы можем сразу найти В в виде векторного интеграла? В конце концов А тоже определяется тремя интегралами!» Из-за векторного произведения интегралы для В обычно сложнее устроены, как это видно из уравнения (14.41). Кроме того, поскольку интегралы для А похожи на электростатические, то нам не надо их вычислять заново. Наконец, мы увидим, что в более трудных теоретических вопросах, таких, как теория относительности, в современном изложении законов механики, вроде принципа наименьшего действия, о котором будет рассказано позже, в квантовой механике, векторный потенциал играет важную роль.
Выпуск 6. Электродинамика
Глава 15 ВЕКТОРНЫЙ ПОТЕНЦИАЛ
§ 1. Силы, действующие на петлю с током; энергия диполя
В предыдущей главе мы изучали магнитное поле, создаваемое маленькой прямоугольной петлей, по которой течет ток. Мы нашли, что это поле диполя с дипольным моментом, равным
(15.1)
где I — сила тока, а A — площадь петли. Момент направлен по нормали к плоскости петли, так что можно писать и так:
где n — единичный вектор нормали к площади А.
Петли с током, или магнитные диполи, не только создают магнитные поля, но и сами подвергаются действию силы, попав в магнитное поле других токов. Рассмотрим сперва силы, действующие на прямоугольную петлю в однородном магнитном поле. Пусть ось z направлена по полю, а ось y лежит в плоскости петли, образующей с плоскостью xy угол θ (фиг. 15.1). Тогда магнитный момент петли, будучи нормальным к ее плоскости, образует с магнитным полем тоже угол θ.
Раз токи на противоположных сторонах петли текут в противоположные стороны, то и силы, действующие на них, тоже направлены врозь, а суммарная сила равна нулю (в однородном поле). Но благодаря силам, действующим на стороны, обозначенные на фиг. 15.1 цифрами 1 и 2, возникает вращательный момент, стремящийся вращать петлю вокруг оси у.
Фиг. 15.1. Прямоугольная петля с током I в однородном поле В, направленном по оси z. Действующий на нее вращательный момент равен τ=μ×B, где магнитный момент μ=Iab.
Величина этих сил F1 и F2 такова:
Их плечо равно
так что вращательный момент
или, поскольку Iab — магнитный момент петли,
Вращательный момент может быть записан и векторно:
(15.2)
То, что вращательный момент дается уравнением (15.2), мы показали пока только для довольно частного случая. Но результат, как мы увидим, верен для маленьких петель любой формы. Полезно напомнить, что и для вращательного момента, действующего на электрический диполь, мы получили соотношение подобного же рода:
Сейчас нас интересует механическая энергия нашей петли, по которой течет ток. Раз есть момент вращения, то энергия, естественно, зависит от ориентации петли. Принцип виртуальной же работы утверждает, что момент вращения — это скорость изменения энергии с углом, так что можно написать
Подставляя τ=+μBsinθ и интегрируя, мы вправе принять за энергию выражение
(15.3)
(Знак минус стоит потому, что петля стремится развернуть свой момент по полю; энергия ниже всего тогда, когда μ и В параллельны.)
По причинам, о которых мы поговорим позже, эта энергия не есть полная энергия петли с током. (Мы, к примеру, не учли энергии, идущей на поддержание тока в петле.) Поэтому мы будем называть ее Uмех, чтобы не забыть, что это лишь часть энергии. И, кроме того, постоянную интегрирования в (15.3) мы вправе принять равной нулю, все равно ведь какие-то другие виды энергии мы не учли. Так что мы перепишем уравнение так:
(15.4)
Опять получилось соответствие с электрическим диполем, где было
(15.5)
Только в (15.5) электрическая энергия — и вправду энергия, а Uмех в (15.4) — не настоящая энергия. Но все равно ее можно применять для расчета сил по принципу виртуальной работы. Надо только предполагать, что ток в петле (или по крайней мере магнитный момент μ) остается неизменным при повороте.
Для нашей прямоугольной петли можно показать, что Uмех соответствует также работе, затрачиваемой на то, чтобы внести петлю в поле. Полная сила, действующая на петлю, равна нулю лишь в однородном поле, а в неоднородном все равно останутся какие-то силы, действующие на токовую петлю. Внося петлю в поле, мы вынуждены будем пронести ее через места, где поле неоднородно, и там будет затрачена работа. Будем считать для упрощения, что петлю вносят в поле так, что ее момент направлен вдоль поля. (А в конце, уже в поле, ее можно повернуть как надо.)
Вообразите, что мы хотим двигать петлю в направлении x, т. е. в ту область, где поле сильнее, и что петля ориентирована так, как показано на фиг. 15.2. Мы отправимся оттуда, где поле равно нулю, и будем интегрировать силу по расстоянию по мере того, как петля входит в поле.
Фиг. 15.2. Петлю проносят через поле В (поперек него) в направлении x.
Рассчитаем сначала работу переноса каждой стороны по отдельности, а затем все сложим (вместо того, чтобы складывать силы до интегрирования). Силы, действующие на стороны 3 и 4, направлены поперек движения, так что на эти стороны работа не тратится. Сила, действующая на сторону 2, направлена по x и равна IbВ(x); чтобы узнать всю работу против действия магнитных сил, нужно проинтегрировать это выражение по x от некоторого значения х, где поле равно нулю, скажем, от х=-∞ до теперешнего положения х2:
(15.6)
Подобно этому, и работа против сил, действующих на сторону 1,равна
(15.7)
Чтобы вычислить каждый интеграл, надо знать, как В(х) зависит от х. Но ведь сторона 1 при движении рамки расположена все время параллельно стороне 2 на одном и том же расстоянии от нее, так что в ее интеграл входит почти вся работа, затраченная на перемещение стороны 2. Сумма (15.6) и (15.7) на самом деле равна
(15.8)
Но, попав в область, где В на обеих сторонах 1 и 2 почти одинаково, мы имеем право записать интеграл в виде
где В — поле в центре петли. Вся вложенная механическая энергия оказывается равной
(15.9)
Это согласуется с выражением для энергии (15.4), выбранным нами прежде.
Конечно, тот же вывод получился бы, если бы мы до интегрирования сложили все силы, действующие на петлю. Если бы мы обозначили через В1 поле у стороны 1 а через В2 — поле у стороны 2, то вся сила, действующая в направлении х, оказалась бы равной
Если петля «узкая», т. е. если В2 и В1 не очень различаются между собой, то можно было бы написать
Так что сила была бы равна
(15.10)
Вся работа, произведенная внешними силами над петлей, равнялась бы
а это опять -μВ. Но теперь нам становится понятно, почему получается, что сила, действующая на небольшую токовую петлю, пропорциональна производной магнитного поля, как это следовало ожидать из
(15.11)
Другой наш результат состоит в следующем. Хоть и не исключено, что не все виды энергии вошли в формулу Uмех=μ·B (ведь это просто некоторая имитация энергии), ею все же можно пользоваться, применяя принцип виртуальной работы, чтобы узнать, какие силы действуют на петли с постоянным током.
§ 2. Механическая и электрическая энергии
Теперь мы хотим пояснить, почему энергия Uмех, о которой говорилось в предыдущем параграфе, не настоящая энергия, связанная с постоянными токами, почему у нее нет прямой связи с полной энергией всей Вселенной. Правда, мы подчеркнули, что ею можно пользоваться как энергией, когда вычисляешь силы из принципа виртуальной работы, при условии, что ток в петле (и все прочие токи) не меняется. Посмотрим теперь, почему же все так выходит.
Представим, что петля на фиг. 15.2 движется в направлении +х, а ось z примем за направление В. Электроны проводимости на стороне 2 будут испытывать действие силы, толкающей их вдоль провода, в направлении у. Но в результате их движения по проводу течет электрический ток и имеется составляющая скорости vy в том же направлении, в котором действует сила. Поэтому над каждым электроном каждую секунду будет производиться работа Fyvy, где vy — компонента скорости электрона, направленная вдоль провода. Эту работу, совершаемую над электронами, мы назовем электрической. Оказывается, что когда петля движется в однородном поле, то полная электрическая работа равна нулю, потому что на одной части петли работа положительная, а на другой — равная ей отрицательная. Но при движении контура в неоднородном поле это не так — тогда остается какой-то чистый избыток одной работы над другой. Вообще-то эта работа стремится изменить поток электронов, но если он поддерживается неизменным, то энергия поглощается или высвобождается в батарейке или в другом источнике, сохраняющем ток постоянным. Вот именно эта энергия и не учитывалась, когда мы вычисляли Uмех в (15.9), потому что в наши расчеты входили только механические силы, действующие на провод.
Вы можете подумать: но сила, действующая на электроны, зависит от того, насколько быстро движется провод; быть может, если бы провод двигался достаточно медленно, этой электрической энергией можно было бы вообще пренебречь. Действительно, скорость, с какой высвобождается электрическая энергия, пропорциональна скорости провода, но все же полная выделенная энергия пропорциональна к тому же еще и времени, в течение которого проявлялась эта скорость. В итоге полная выделенная электрическая энергия пропорциональна произведению скорости на время, а это как раз и есть пройденное расстояние. Каждому пройденному в поле расстоянию отвечает заданное, и притом одно и то же, количество электрической работы.
Возьмем кусок провода единичной длины, по которому течет ток I. Провод движется перпендикулярно самому себе и магнитному полю В со скоростью vпровод. Благодаря наличию тока сами электроны обладают скоростью дрейфа vдрейф вдоль провода. Компонента магнитной силы, действующей на каждый электрон в направлении дрейфа, равна qe vпровод В. Значит, скорость, с какой производится электрическая работа, равна Fvдрейф=(qevпроводВ)vдрейф. Если на единице длины провода имеется N проводящих электронов, то вся величина электрической работы, производимой в секунду, такова:
Но Nqеvдрейф равно току I в проводе, так что
И поскольку ток поддерживается неизменным, то силы, действующие на электроны проводимости, не ускоряют их; электрическая энергия переходит не к электронам, а к тому источнику, который сохраняет силу тока постоянной.
Но заметьте, что сила, действующая на провод, равна IB; значит, IBvпровод — это механическая работа, выполняемая над проводом в единицу времени, dUмех/dt=IBvпровод. Отсюда мы заключаем, что механическая работа перемещения провода в точности равна электрической работе, производимой над источником тока, так что энергия петли остается постоянной!
Это не случайность. Это следствие закона, с которым мы уже знакомы. Полная сила, действующая на каждый из зарядов в проводе, равна
Скорость, с которой производится работа, равна
(15.12)
Если электрического поля нет, то остается только второе слагаемое, а оно всегда равно нулю. Позже мы увидим, что изменение магнитных полей создает электрические поля, так что наши рассуждения применимы лишь к проводам в постоянных магнитных полях.
Но тогда почему же принцип виртуальной работы дает правильный ответ? Потому, что пока мы не учитывали полную энергию Вселенной. Мы не включали в рассмотрение энергию тех токов, которые создают магнитное поле, с самого начала присутствующее в наших рассуждениях.
Но представим себе полную систему, наподобие изображенной на фиг. 15.3,а, где петля с током I вдвигается в магнитное поле B1, созданное током I2 в катушке. ТокI1, текущий по петле, тоже будет создавать какое-то магнитное поле В2 близ катушки. Если петля движется, то поле В2 изменяется. В следующей главе мы увидим, что изменяющееся магнитное поле создает поле Е, и это поле действительно начнет действовать на заряды в катушке. Эту энергию мы обязаны включить в наш сводный баланс энергий.
Фиг. 15.3. Вычисление энергии маленькой петли в магнитном поле.
Мы, конечно, могли бы подождать говорить об этом новом вкладе в энергию до следующей главы, но уже сейчас можно оценить его, если применить соображения принципа относительности. Приближаем петлю к неподвижной катушке и знаем, что электрическая энергия петли в точности равна и противоположна по знаку произведенной механической работе. Иначе говоря,
Теперь предположим, что мы смотрим на происходящее с другой точки зрения: будем считать, что петля покоится, а катушка приближается к ней. Тогда катушка движется в поле, созданном петлей. Те же рассуждения приведут к выражению
Механическая энергия в обоих случаях одна и та же — она определяется только силой, действующей между двумя контурами.
Сложение двух уравнений дает
Полная энергия всей системы равна, конечно, сумме двух электрических энергий и взятой один раз механической энергии. В итоге выходит
(15.13)
Полная энергия всей системы — это на самом деле Uмех со знаком минус. Если нам нужна, скажем, полная энергия магнитного диполя, то следует писать
И только тогда, когда мы потребуем, чтобы все токи оставались постоянными, можно использовать лишь одну из частей энергии Uмех (всегда равную истинной энергии со знаком минус) для вычисления механических сил. В более общих задачах надо соблюдать осторожность, чтобы не забыть ни одной из энергий. Сходное положение наблюдалось и в электростатике. Мы показали там, что энергия конденсатора равна Q2/2C. Когда мы применяем принцип виртуальной работы, чтобы найти силу, действующую между обкладками конденсатора, то изменение энергии равно Q2/2, умноженному на изменение в 1/С, т. е.
(15.14)
А теперь предположим, что нам надо было бы подсчитать работу, затрачиваемую на сближение двух проводников, но при другом условии — что напряжение между ними остается постоянным. Тогда правильную величину силы мы могли бы получить из принципа виртуальной работы, если бы поступили немного искусственным образом. Раз Q=CV, то полная энергия равна 1/2 CV2. Но если бы мы ввели условную энергию, равную —1/2CV2, то принцип виртуальной работы можно было бы применить для получения сил, полагая изменение этой условной энергии равным механической работе (это при условии, что напряжение V считается постоянным). Тогда
(15.15)
а это то же самое, что написано в уравнении (15.14). Мы получаем правильный ответ, хотя пренебрегаем работой, которую электрическая система тратит на постоянное поддержание напряжения. И здесь опять электрическая энергия ровно вдвое больше механической и имеет обратный знак.
Итак, если мы ведем расчет искусственно, пренебрегая тем фактом, что источник потенциала должен тратить работу на то, чтобы напряжение оставалось неизменным, то все равно мы приходим к правильному результату. Это в точности соответствует положению дел в магнитостатике.
§ 3. Энергия постоянных токов
Зная, что Uполн=-Uмех, используем этот факт, чтобы найти истинную энергию постоянных токов в магнитных полях. Начать можно с истинной энергии небольшой токовой петельки. Обозначая Uполн просто через U, напишем
(15.16)
Хотя эту энергию мы подсчитали только для плоской прямоугольной петли, все это верно и для плоской петельки произвольной формы.
Энергию контура произвольной формы можно найти, представив себе, что он состоит из небольших токовых петель. Скажем, имеется провод в форме петли Г (фиг. 15.4).
Фиг. 15.4. Энергию большой петли в магнитном поле можно считать суммой энергий маленьких петелек.
Натянем на эту петлю поверхность S, а на ней наметим множество петелек, каждую из которых можно считать плоской. Если заставить ток I циркулировать по каждой петельке, то в итоге выйдет то же самое, как если бы ток шел только по петле Г, ибо токи на всех внутренних линиях взаимно уничтожатся. Система небольших токов физически не будет отличима от исходного контура, и энергия должна быть той же, т. е. должна быть равна сумме энергий всех петелек.
Если площадь каждой петельки Δа, то ее энергия равна IΔаBn, где Bn — компонента В, нормальная к Δа. Полная энергия равна
В пределе, когда петли становятся бесконечно малыми, сумма превращается в интеграл, и
(15.17)
где n — единичная нормаль к da.
Если мы положим В=∇×A, то поверхностный интеграл можно будет связать с контурным (по теореме Стокса):
(15.18)
где ds — линейный элемент вдоль Г. Итак, мы получили энергию контура произвольной формы:
(15.19)
В этом выражении А обозначает, конечно, векторный потенциал, возникающий из-за токов (отличных от тока I в проводе), которые создают поле В близ провода.
Далее, любое распределение постоянных токов можно считать состоящим из нитей, идущих вдоль тех линий, по которым течет ток. Для любой пары таких контуров энергия дается выражением (15.19), где интеграл взят вокруг одного из контуров, а векторный потенциал А создан другим контуром. Полная энергия получается сложением всех таких пар. Если вместо того, чтобы следить за парами, мы полностью просуммируем по всем нитям, то каждую энергию мы засчитаем дважды (такой же эффект мы наблюдали в электростатике), и полную энергию можно будет представить в виде
(15.20)
Это соответствует полученному для электростатической энергии выражению
(15.21)
Значит, мы можем считать А, если угодно, своего рода потенциальной энергией токов в магнитостатике. К сожалению, это представление не очень полезно, потому что оно годится только для статических полей. В действительности, если поля со временем меняются, ни выражение (15.20), ни выражение (15.21) не дают правильной величины энергии.
§ 4. B или А?
В этом параграфе нам хотелось бы обсудить такой вопрос: что такое векторный потенциал — просто полезное для расчетов приспособление (так в электродинамике полезен скалярный потенциал) или же он как поле вполне «реален»? Или же «реально» лишь магнитное поле, так как только оно ответственно за силу, действующую на движущуюся частицу?
Для начала нужно сказать, что выражение «реальное поле» реального смысла не имеет. Во-первых, вы вряд ли вообще полагаете, что магнитное поле хоть в какой-то степени «реально», потому что и сама идея поля — вещь довольно отвлеченная. Вы не можете протянуть руку и пощупать это магнитное поле. Кроме того, величина магнитного поля тоже не очень определенна; выбором подходящей подвижной системы координат можно, к примеру, добиться, чтобы магнитное поле в данной точке вообще пропало.
Под «реальным» полем мы понимаем здесь вот что: реальное поле — это математическая функция, которая используется нами, чтобы избежать представления о дальнодействии. Если в точке Р имеется заряженная частица, то на нее оказывают влияние другие заряды, расположенные на каком-то удалении от Р. Один прием, которым можно описать взаимодействие,— это говорить, что прочие заряды создают какие-то «условия» (какие — не имеет значения) в окрестности Р. Если мы знаем эти условия (мы их описываем, задавая электрическое и магнитное поля), то можем полностью определить поведение частицы, нимало не заботясь после о том, что именно создало эти условия.
Иными словами, если бы эти прочие заряды каким-то образом изменились, а условия в Р, описываемые электрическим и магнитным полем в точке Р, остались бы прежними, то движение заряда тоже не изменилось бы. «Реальное» поле тогда есть совокупность чисел, заданных так, что то, что происходит в некоторой точке, зависит только от чисел в этой точке и нам больше не нужно знать, что происходит в других местах. Именно с таких позиций мы и хотим выяснить, является ли векторный потенциал «реальным» полем.
Вас может удивить тот факт, что векторный потенциал определяется не единственным образом, что его можно изменить, добавив к нему градиент любого скаляра, а силы, действующие на частицы, не изменятся. Однако это не имеет ничего общего с вопросом реальности в том смысле, о котором мы говорили. К примеру, магнитное поле как-то меняется при изменении относительного движения (равно как и Е или А). Но нас нисколько не будет заботить, что поле можно изменять таким образом. Нам это безразлично; это никак не связано с вопросом о том, действительно ли векторный потенциал—«реальное» поле, пригодное для описания магнитных эффектов, или же это просто удобный математический прием.
Мы должны еще сделать кое-какие замечания о полезности векторного потенциала А. Мы видели, что им можно пользоваться в формальной процедуре расчета магнитных полей заданных токов, в точности как φ может применяться для отыскания электрических полей. В электростатике мы видели, что φ давалось скалярным интегралом
(15.22)
Из этого φ мы получали три составляющих Е при помощи трех дифференцирований. Обычно это было легче, чем вычислять три интеграла в векторной формуле
(15.23)
Во-первых, их три, а во-вторых, каждый из них вообще-то немного посложнее, чем (15.22).
В магнитостатике преимущества не так ясны. Интеграл для А уже сам по себе векторный:
(15.24)
т. е. здесь написаны три интеграла. Кроме того, вычисляя ротор А для получения В, надо взять шесть производных и расставить их попарно. Сразу не ясно, проще ли это, чем прямое вычисление
(15.25)
В простых задачах векторным потенциалом часто бывает пользоваться труднее, и вот по какой причине. Предположим, нас интересует магнитное поле В в одной только точке, а задача обладает какой-то красивой симметрией. Скажем, нам нужно знать поле в точке на оси кольцевого тока. Вследствие симметрии интеграл в (15.25) легко возьмется и вы сразу получите В. Если бы, однако, мы начали с А, то пришлось бы вычислять В из производных А, а для этого надо было бы знать А во всех точках по соседству с той, которая нас интересует. Большая же часть их не лежит на оси симметрии, интеграл для А усложняется. В задаче с кольцом, например, пришлось бы иметь дело с эллиптическими интегралами. В подобных задачах А, разумеется, не приносит большой пользы. Во многих сложных задачах, бесспорно, легче работать с А, но в общем трудно было бы доказывать, что эти технические облегчения стоят того, чтобы начать изучать еще одно векторное поле.
Мы ввели А потому, что оно действительно имеет большое физическое значение. Оно не просто связано с энергиями токов (в чем мы убедились в последнем параграфе), оно — «реальное» физическое поле в том смысле, о котором мы говорили выше. В классической механике силу, действующую на частицу, очевидно, можно записать в виде
(15.26)
так что, как только заданы силы, движение оказывается полностью определенным. В любой области, где В=0, хотя бы А и не было равно нулю (например, вне соленоида), влияние А ни в чем не сказывается. Поэтому долгое время считалось, что А — не «реальное» поле. Оказывается, однако, что в квантовой механике существуют явления, свидетельствующие о том, что поле А на самом деле вполне «реальное» поле, в том смысле, в каком мы определили это слово. В следующем параграфе мы покажем, что все это значит.
§ 5. Векторный потенциал и квантовая механика
Когда мы от классической механики переходим к квантовой, то наши представления о важности тех или иных понятий во многом меняются. (Кое-какие из этих понятий мы уже рассматривали раньше.) В частности, постепенно сходит на нет понятие силы, а понятия энергии и импульса приобретают первостепенную важность. Вместо движения частиц, как вы помните, речь теперь идет уже об амплитудах вероятностей, которые меняются в пространстве и времени. В эти амплитуды входят длины волн, связанные с импульсами, и частоты, связываемые с энергиями. Импульсы и энергии определяют собой фазы волновых функций и по этой-то причине они важны для квантовой механики. Вместо силы речь теперь идет о том, каким образом взаимодействие меняет длину волны. Представление о силе становится уже второстепенным, если вообще о нем еще стоит говорить. Даже когда, к примеру, упоминают о ядерных силах, то на самом деле, как правило, работают все же с энергиями взаимодействия двух нуклонов, а не с силой их взаимодействия. Никому не приходит в голову дифференцировать энергию, чтобы посмотреть, какова сила. В этом параграфе мы хотим рассказать, как возникают в квантовой механике векторный и скалярный потенциалы. Оказывается, что именно из-за того, что в квантовой механике главную роль играют импульс и энергия, самый прямой путь введения в квантовое описание электромагнитных эффектов — сделать это с помощью А и φ.
Надо сперва слегка напомнить, как действует квантовая механика. Мы снова вернемся к описанному в вып. 3, гл. 37, воображаемому опыту, в котором электроны испытывали дифракцию на двух щелях. На фиг. 15.5 показано то же устройство.
Фиг. 15.5. Интерференционный опыт с электронами.
Электроны (все они обладают примерно одинаковой энергией) покидают источник и движутся к стенке с двумя узкими щелями. За стенкой находится «защитный» вал — поглотитель с подвижным детектором. Этот детектор предназначен для измерения частоты I, с которой электроны попадают в небольшой участок поглотителя на расстоянии х от оси симметрии. Частота эта пропорциональна вероятности того, что отдельный электрон, вылетевший из источника, достигнет этого участка «вала». Вероятность обладает распределением сложного вида (оно показано на рисунке), которое объясняется интерференцией двух амплитуд, по одной от каждой щели. Интерференция двух амплитуд зависит от их разности фаз. Иными словами, когда амплитуды равны С1еiф1 и С2еiф2, разность фаз δ=Ф1-Ф2 определяет интерференционную картину [см. вып. 3, гл. 29, уравнение (29.12)]. Если расстояние от щелей до экрана равно L, а разность длин путей электронов, проходящих через две щели, равна а (как показано на фигуре), то разность фаз двух волн дается отношением
(15.27)
Как обычно, мы полагаем -λ=λ/2π, где λ — длина волны, отвечающая пространственному изменению амплитуды вероятности. Для простоты рассмотрим лишь те значения х, которые много меньше L; тогда можно будет принять
и
(15.28)
Когда х равно нулю, то и δ равно нулю; волны находятся в фазе, а вероятность имеет максимум. Когда δ равно π, волны оказываются в противофазе, интерферируя деструктивно, и вероятность достигает минимума. Так электронная интенсивность получает волнообразный вид.
Теперь мы хотим сформулировать тот закон, которым в квантовой механике заменяется закон силы F=qv×B. Этот закон будет определять собой поведение квантовомеханических частиц в электромагнитном поле. Раз все происходящее определяется амплитудами, то закон должен будет объяснить, как сказывается на амплитудах влияние магнитного поля; с ускорениями же частиц мы больше никакого дела иметь не будем. Закон этот состоит в следующем: фазу, с какой амплитуда достигает детектора, двигаясь по какой-то траектории, присутствие магнитного поля меняет на величину, равную интегралу от векторного потенциала вдоль этой траектории, умноженному на отношение заряда частицы к постоянной Планка. То есть
Если бы магнитного поля не было, то наблюдалась бы какая-то определенная фаза прибытия. Если же где-то появляется магнитное поле, то фаза прибытия возрастает на величину интеграла в (15.29).
Хотя для наших теперешних рассуждений в этом нет необходимости, заметим все же, что влияние электростатического поля тоже выражается в изменении фазы, равном интегралу по времени от скалярного потенциала φ со знаком минус:
Эти два выражения справедливы лишь для статических полей, но, объединив их, мы получим правильный результат для любого, статического или динамического, электромагнитного поля. Именно этот закон и заменяет собой формулу F=q(E+v×B). Мы сейчас, однако, будем говорить только о статическом магнитном поле.
Положим, что опыт с двумя щелями проводится в магнитном поле. Мы хотим узнать, с какой фазой достигают экрана две волны, пути которых пролегают через две разные щели. Их интерференция определяет то место, где окажется максимум вероятности. Фазу волны, бегущей по траектории (1), мы назовем Ф1, а через Ф1 (В=0) обозначим фазу, когда магнитного поля нет. Тогда после включения поля фаза достигает величины
(15.30)
Аналогично, фаза для траектории (2) равна
(15.31)
Интерференция волн в детекторе зависит от разности фаз
(15.32)
Разность фаз в отсутствие поля мы обозначим δ(В=0); это та самая разность, которую мы подсчитали в уравнении (15.28). Кроме того, мы замечаем, что из двух интегралов можно сделать один, идущий вперед по пути (1), а назад — по пути (2); этот замкнутый путь будет обозначаться (1—2). Так что получается
(15.33)
Это уравнение сообщает нам, как под действием магнитного поля изменяется движение электрона; с его помощью мы можем найти новые положения максимумов и минимумов интенсивности.
Прежде чем сделать это, мы хотим, однако, поставить один интересный и важный вопрос. Вы помните, что в вектор-потенциальной функции есть некоторый произвол. Две разные вектор-потенциальные функции А и А', отличающиеся на градиент ∇ψ некоторой скалярной функции, представляют одно и то же магнитное поле (потому что ротор градиента равен нулю). Они поэтому приводят к одной и той же классической силе qv×B. Если в квантовой механике все эффекты зависят от векторного потенциала, то какая из многих возможных А-функций правильна?
Ответ состоит в том, что в квантовой механике продолжает существовать тот же произвол в А. Если в уравнении (15.33) мы заменим А на А'=А+∇ψ, то интеграл от А превратится в
Интеграл от ∇ψ вычисляется по замкнутому пути (1—2); но интеграл от касательной составляющей градиента по замкнутому пути всегда равен нулю (по теореме Стокса). Поэтому как А, так и А' приводят к одним и тем же разностям фаз и к одним и тем же квантовомеханическим эффектам интерференции. И в классической, и в квантовой теории важен только ротор A; любая функция А, у которой ротор такой, как надо, приводит к правильной теории.
Тот же вывод становится очевидным, если мы используем результаты, приведенные в гл. 14, § 1. Там мы показали, что контурный интеграл от А по замкнутому пути равен потоку В через контур, в данном случае потоку между путями (1) и (2). Уравнение (15.33) можно, если мы хотим, записать в виде
(15.34)
где под потоком В, как обычно, подразумевается поверхностный интеграл от нормальной составляющей В. Результат зависит только от В, т. е. только от ротора А.
Но раз результат можно выражать и через В и через А, то может создаться впечатление, что В удерживает свои позиции «реального» поля, а А все еще выглядит искусственным образованием. Но определение «реального» поля, которое мы вначале предложили, основывалось на идее о том, что «реальное» поле не смогло бы действовать на частицу на расстоянии. Мы же беремся привести пример, в котором В равно нулю (или по крайней мере сколь угодно малому числу) в любом месте, где частицы могут оказаться, так что невозможно представить себе, что В непосредственно действует на них.
Вы помните, что если имеется длинный соленоид, по которому течет электрический ток, то поле В существует внутри него, а снаружи поля нет, тогда как множество векторов А циркулирует снаружи соленоида (фиг. 15.6). Если мы создадим такие условия, что электроны будут проходить только вне соленоида (только там, где есть А), то, согласно уравнению (15.33), соленоид будет все же влиять на их движение.
Фиг. 15.6. Магнитное поле и векторный потенциал длинного соленоида.
По классическим же воззрениям это невозможно. По классическим представлениям сила зависит только от В. Чтобы узнать, течет ли по соленоиду ток, частица должна пройти сквозь него. А квантовая механика утверждает, что наличие магнитного поля в соленоиде можно установить, просто обойдя его, даже не приближаясь к нему вплотную!
Представьте, что мы поместили очень длинный соленоид малого диаметра прямо тут же за стенкой между двумя щелями (фиг. 15.7).
Фиг. 15.7. Магнитное поле способно влиять на движение электронов, даже когда оно существует только в области, еде вероятность обнаружить электрон пренебрежимо мала.
Диаметр соленоида должен быть намного меньше расстояния d между щелями. В этих обстоятельствах дифракция электронов на щели не приведет к заметным вероятностям того, что электроны проскользнут где-то близ соленоида. Как же все это повлияет на наш интерференционный эксперимент?
Сравним два случая: когда ток по соленоиду идет и когда тока нет. Если тока нет, то нет ни В ни А, и получается первоначальная картина электронных интенсивностей вдоль поглотителя. Если мы включим ток и создадим внутри соленоида магнитное поле В, то снаружи появится поле А. Возникнет сдвиг в разности фаз, пропорциональный циркуляции А вне соленоида, а это означает, что картина максимумов и минимумов сдвинется на другое место. Действительно, раз поток В между любыми двумя путями постоянен, то точно так же постоянна и циркуляция А. Для любой точки прибытия фаза меняется одинаково; это соответствует тому, что вся картина сдвигается по х на постоянную величину, скажем, на х0. Эту величину х0 легко подсчитать. Максимальная интенсивность возникает там, где разность фаз двух волн равна нулю. Подставляя вместо δ выражение (15.32) или (15.33), а вместо δ(B=0) выражение (15.28), получаем
(15.35)
или
(15.36)
Картина при наличии соленоида будет выглядеть так[18], как показано на фиг. 15.7. По крайней мере так предсказывает квантовая механика.
Недавно был проделан точно такой же опыт. Это чрезвычайно сложный опыт. Длина волны электронов крайне мала, поэтому прибор должен быть миниатюрным, иначе интерференции не заметишь. Щели должны лежать вплотную друг к другу, а это означает, что нужен необычайно тонкий соленоид. Оказывается, что при некоторых обстоятельствах кристаллы железа вырастают в виде очень длинных и микроскопически тонких нитей. Если эти железные нити намагнитить, они образуют маленький соленоид, у которого нет снаружи магнитного поля (оно проявляется только на концах). Так вот, был проделан опыт по интерференции электронов с железной нитью, помещенной между двумя щелями, и предсказанное смещение электронной картины подтвердилось.
А тогда поле А в нашем смысле уже «реально». Вы можете возразить: «Но ведь там есть магнитное поле». Да, есть, но вспомните нашу исходную идею — «реально» только такое поле, которое, чтобы определить собой движение частицы, должно быть задано в том месте, где она находится. Поле В в нити действует на расстоянии. Если мы не хотим, чтобы его влияние выглядело как действие на расстоянии, мы должны пользоваться векторным потенциалом.
Эта проблема имеет интересную историю. Теория, которую мы изложили, была известна с самого возникновения квантовой механики, с 1926 г. Сам факт, что векторный потенциал появляется в волновом уравнении квантовой механики (так называемом уравнении Шредингера), был очевиден с того момента, как оно было написано. В том, что он не может быть заменен магнитным полем, убеждались все, кто пытался это проделать; друг за другом все убеждались, что простого пути для этого не существует. Это ясно и из нашего примера, когда электрон движется по области, где нет никакого поля, и тем не менее подвергается воздействию. Но, поскольку в классической механике А, по-видимому, не имело непосредственного, важного значения и, далее, из-за того, что его можно было менять добавлением градиента, люди еще и еще раз повторяли, что векторный потенциал не обладает прямым физическим смыслом, что даже в квантовой механике «правами» обладают только электрические и магнитные поля. Когда оглядываешься назад, кажется странным, что никто не подумал обсудить этот опыт вплоть до 1956 г., когда Бом и Аронов впервые предложили его и сделали весь вопрос кристально ясным. Все это ведь всегда подразумевалось, но никто не обращал на это внимания. И многие были просто потрясены, когда всплыл этот вопрос. Вот по этой-то причине кое-кто и счел нужным поставить опыт и убедиться, что все это действительно так, хотя квантовая механика, в которую все мы верим вот уже сколько лет, давала вполне недвусмысленный ответ. Занятно, что подобные вещи могут тридцать лет быть на виду у всех, но из-за определенных предрассудков относительно того, что существенно, а что нет, могут всеми игнорироваться.
Сейчас мы хотим немного продолжить наш анализ. Мы продемонстрируем связь между квантовомеханической и классической формулами, чтобы показать, почему оказывается, что при макроскопическом взгляде на вещи все выглядит так, как будто частицы управляются силой, равной произведению qv на ротор А. Чтобы получить классическую механику из квантовой, нам нужно рассмотреть случаи, когда все длины волн малы по сравнению с расстояниями, на которых заметно меняются внешние условия (например, поля). Мы не будем гнаться за общностью доказательства, а только покажем все на очень простом примере. Обратимся снова к тому же опыту со щелями. Но теперь вместо того, чтобы втискивать все магнитное поле в узкий промежуток между щелями, представим себе такое магнитное поле, которое раскинулось позади щелей широкой полосой (фиг. 15.8).
Фиг. 15.8. Сдвиг интерференционной картины из-за наличия полоски магнитного поля.
Возьмем идеализированный случай, когда в узкой полосе шириной w, много меньшей L, магнитное поле однородно. (Это легко устроить, надо только подальше отнести поглотитель.) Чтобы подсчитать сдвиг по фазе, мы должны взять два интеграла от А вдоль двух траекторий (1) и (2). Как мы видели, они различаются просто на поток В между этими путями. В нашем приближении поток равен Bwd. Разность фаз для двух путей поэтому равна
(15.37)
Мы замечаем, что в принятом приближении сдвиг фаз не зависит от угла. Так что опять-таки эффект сводится к сдвигу всей картины вверх на величину Δх. Из формулы (15.28)
Подставляя δ-δ(В=0) из (15.37), получаем
(15.38)
Такой сдвиг равноценен тому, что все траектории отклоняются на небольшой угол а (см. фиг. 15.8), равный
(15.39)
По классическим воззрениям мы тоже должны были ожидать, что узкая полоска магнитного поля отклонит все траектории на какой-то маленький угол, скажем α' (фиг. 15.9,а).
Фиг. 15.9. Отклонение частицы из-за прохождения ее через магнитное поле.
Когда электроны проходят через магнитное поле, они подвергаются действию поперечной силы qv×B в течение времени w/v. Изменение их поперечного импульса просто равно ему самому, так что
(15.40)
Угловое отклонение (фиг. 15.9,б) равно отношению этого поперечного импульса к полному импульсу р. Мы получаем
(15.41)
Этот результат можно сравнить с уравнением (15.39), в котором та же величина вычислялась квантовомеханически. Но связь между классической и квантовой механикой в том и состоит, что частице с импульсом р ставится в соответствие квантовая амплитуда, изменяющаяся как волна длиной λ=ℏ/p. В соответствии с этим уравнением α и α' оказываются идентичными; и классические и квантовые выкладки приводят к одному и тому же.
Из этого анализа мы видим, как получается, что векторный потенциал, который в квантовой механике появляется в явном виде, вызывает классическую силу, зависящую только от его производных. В квантовой механике существенна только интерференция между соседними путями; в ней всегда оказывается, что эффект зависит только от того, как сильно поле А меняется от точки к точке, а значит, только от производных А, а не от него самого. Несмотря на это, векторный потенциал А (наряду с сопровождающим его скалярным потенциалом φ), по-видимому, приводит к более прямому описанию физических процессов. Чем глубже мы проникаем в квантовую теорию, тем яснее и прозрачней нам это становится. В общей теории — квантовой электродинамике — в системе уравнений, заменяющих собой уравнения Максвелла, векторные и скалярные потенциалы уже считаются фундаментальными величинами. Векторы Е и В постепенно исчезают из современной записи физических законов: их вытесняют А и φ.
§ 6. Что истинно в статике, но ложно в динамике?
Наше исследование статических полей близится к концу. В этой главе мы опасно близко подошли к такому пункту, когда уже следует подумывать о том, что случится, если поля начнут меняться со временем. Толкуя о магнитной энергии, нам едва удалось избежать этого, да и то потому, что мы прикрылись релятивистскими соображениями. Даже при этом наша трактовка проблемы энергии выглядела несколько искусственно и, пожалуй, даже таинственно, потому что мы игнорировали тот факт, что движущиеся катушки должны на самом деле создавать меняющиеся поля. Теперь самое время перейти к изучению полей, меняющихся во времени, к тому, что составляет предмет электродинамики. Мы проделаем это в следующей главе. Однако прежде следует подчеркнуть некоторые моменты.
Хотя мы и начали этот курс с того, что представили полные и точные уравнения электромагнетизма, мы сразу же принялись изучать какие-то вырезанные куски, потому что так было легче. Большим преимуществом является возможность начать с простой теории статических полей и лишь потом перейти к более сложной теории, включающей динамические поля. При этом приходится с самого начала учить меньше нового материала и остается время потренировать мозги, поразмять свои умственные мускулы, прежде чем приступить к задачам потруднее.
Но в таком процессе кроется одна опасность — пока мы не услышали весь рассказ целиком, в нас может укорениться и выдать себя за полную та неполная истина, которую мы успели усвоить; в голове все перепутается: то, что верно всегда, и то, что справедливо только временами. Поэтому в табл. 15.1 мы даем сводку важнейших формул, которых мы касались, отделяя в ней те, что верны в общем случае, от тех, которые соблюдаются только в статике, но ложны в динамике. Эта сводка содержит намеки на то, куда мы собственно с вами путь держим; изучая динамику, мы должны будем детально развить то, что пока приходилось описывать без доказательства.
Таблица 15.1. СВОДКА ВАЖНЕЙШИХ ФОРМУЛ
Пожалуй, здесь стоит сделать несколько замечаний по поводу самой таблицы. Прежде всего вы должны обратить внимание, что уравнения, с которых мы начали, это правильные уравнения, в этом месте мы вас не вводим в заблуждение. Формула для электромагнитной силы (часто именуемой силой Лоренца) F=q(E+v×B) также правильна. Ошибочен только закон Кулона; он годится только для статики. Четыре уравнения Максвелла для Е и В тоже правильны. Уравнения, принятые нами в статике, ошибочны, потому что мы выбросили из них все члены с производными по времени.
Закон Гаусса ∇·E=ρ/ε0 остается, но ротор Е в общем случае не равен нулю. Значит, Е нельзя всегда приравнивать к градиенту скаляра — электростатического потенциала. Мы увидим, что скалярный потенциал все же остается, но это уже величина, которая меняется во времени и должна употребляться для полного описания электрического поля только вместе с векторным потенциалом. Конечно, уравнения, управляющие этим новым скалярным потенциалом, также оказываются новыми.
Мы вынуждены также распроститься с представлением о том, что Е в проводниках равно нулю. Когда поля меняются, заряды в проводниках, вообще говоря, не успевают перестраиваться так, чтобы поле все время обращалось в нуль. Они приходят в движение, но никогда не достигают равновесия. Единственное общее утверждение таково: электрические поля создают токи в проводниках. Итак, в переменных полях проводники не являются эквипотенциальными поверхностями. Отсюда также следует, что представление о емкости нельзя сделать универсальным.
Раз магнитных зарядов не бывает, дивергенция В всегда равна нулю. Так что В можно всегда приравнивать ∇×A. (Выходит, что меняется не все!) Но В генерируется не только токами; ∇×B пропорционально плотности тока плюс новое слагаемое ∂E/∂t. Это означает, что А связано с токами новым уравнением. Оно связано и с φ. Если мы для собственного удобства воспользуемся свободой выбора ∇·А, то уравнения для А и φ можно будет записать так, что они приобретут простой и изящный вид. Поэтому мы выдвигаем требование, чтобы c2∇·А было равно -∂φ/∂t, и тогда дифференциальные уравнения для А или для φ оказываются такими, как в таблице.
Потенциалы А и φ все еще можно выразить в виде интегралов от токов и зарядов, но это уже не те же самые интегралы, что были в статике. Удивительнее всего, однако, то, что правильный вид интегралов похож на прежний, статический, но с одним небольшим видоизменением, имеющим ясный физический смысл. Когда мы берем интегралы, чтобы получить потенциалы в некоторой точке, скажем в точке (1) на фиг. 15.10, то мы обязаны использовать значения j и ρ в точке (2) в более раннее время t'=t-r12/c.
Фиг. 15.10. Потенциалы в точке (1) в момент t получаются суммированием вкладов от каждого элемента источника поля в текущей точке (2) при условии, что токи и заряды в этой точке берутся в более раннее время t-r12/с.
Как и следовало ожидать, влияние точки (2) на точку (7) распространяется со скоростью с. Это небольшое видоизменение позволяет отыскивать поля изменяющихся токов и зарядов, потому что, как только мы узнаем А и φ, то В получается, как и раньше, как ∇×A, а Е=-∇φ-∂A/∂t.
Наконец, вы видите из таблицы, что некоторые выводы, полученные в статике (например, вывод о том, что плотность энергии в электрическом поле равна ε0E2/2), остаются справедливыми и в электродинамике. Не надо обманывать себя и думать, что все это естественно. Правильность любой формулы, выведенной в статическом случае, должна в динамике доказываться сызнова. Например, мы знаем, что объемный интеграл от ρφ тоже дает электростатическую энергию. Но это верно только в статике.
В свое время мы детально разберем все эти вопросы; пока же полезно держать в уме эту сводку, чтобы знать, что не грех и позабыть, а что следует считать справедливым всегда.
Глава 16 ИНДУЦИРОВАННЫЕ ТОКИ
§ 1. Моторы и генераторы
Открытие тесной связи между электричеством и магнетизмом, происшедшее в 1820 г., было поистине волнующим событием — ведь до того они считались совершенно независимыми. Сначала открыли, что токи в проводах создают магнитные поля, а затем в том же году обнаружили, что на провода в магнитном поле действуют силы.
Волнение было вызвано тем, что возникающую механическую силу можно использовать в машине для выполнения какой-то работы. Сразу же после этого замечательного открытия люди начали конструировать электромоторы, заставив работать на себя силы, действующие на провода с током. Принцип устройства электромотора схематически показан на фиг. 16.1.
Фиг. 16.1. Схематическое изображение простого электромагнитного мотора.
Постоянный магнит (обычно в нем имеется несколько частей из мягкого железа) создает магнитное поле внутри двух щелей. Конец каждой щели представляет собой северный или южный полюсы, как показано на схеме. Прямоугольная рамка из медной проволоки помещается так, что одной из своих сторон она попадает в каждую щель. Когда по рамке проходит ток, то в обеих щелях он идет в противоположных направлениях, так что силы оказываются направленными противоположно и создают в рамке вращательный момент вокруг изображенной на схеме оси. Если рамка закреплена на оси так, что она может вращаться, то ее можно подсоединить к шкивам или шестеренкам и заставить производить полезную работу.
Ту же идею можно использовать и при конструировании чувствительных приборов для электрических измерений. Так что немедленно после открытия закона сил точность электрических измерений намного возросла. Прежде всего вращательный момент такого мотора может быть значительно увеличен для данного тока, если заставить его проходить по нескольким виткам, а не по одному. Кроме того, рамку можно установить так, чтобы она вращалась под действием очень малого момента, укрепив ее ось в тщательно сделанных подшипниках, либо подвешивая ее на тончайшей проволоке или кварцевой нити. Тогда даже чрезвычайно слабый ток заставит катушку повернуться, и для малых углов величина поворота будет пропорциональна току. Угол поворота можно измерить, приклеив к рамке стрелку или (для очень тонких приборов) прикрепив маленькое зеркальце к рамке и отмечая сдвиг его изображения на шкале. Такие приборы называют гальванометрами. Вольтметры и амперметры работают по тому же принципу.
Те же идеи могут быть применены в большом масштабе для создания мощных моторов, производящих механическую работу. Рамку можно заставить вращаться много, много раз, если с помощью укрепленных на оси контактов каждые пол-оборота менять направление тока в ней на противоположное. Тогда момент силы будет всегда направлен в одну и ту же сторону. Маленькие моторчики постоянного тока именно так и устроены. В моторах больших размеров постоянного или переменного тока постоянные магниты часто заменяют электромагнитами, и питаются они от источника электрической энергии.
Осознав, что электрический ток рождает магнитное поле, многие сразу же предположили, что так или иначе магниты должны тоже создавать электрические поля. Для проверки этого предположения были поставлены различные эксперименты. Например, располагали два провода параллельно друг другу и по одному из них пропускали ток, пытаясь обнаружить ток в другом проводе. Мысль заключалась в том, что магнитное поле сможет как-то протащить электроны вдоль второго провода по закону, который должен формулироваться как-то так: «одинаковое стремится двигаться одинаковым образом». Но, пропуская по одному проводу самый большой ток и используя самый чувствительный гальванометр, обнаружить ток во втором проводе не удалось. Большие магниты тоже не давали никакого эффекта в расположенных поблизости проводах. Наконец, в 1840 г. Фарадей открыл существенную особенность, которую раньше упускали из виду,— электрические эффекты возникают только тогда, когда что-нибудь изменяется. Если в одной из двух проволок ток меняется, то в другой тоже наводится ток, или же если магнит движется вблизи электрического контура, то там возникает ток. Мы говорим теперь, что токи в этих случаях индуцируются. В этом и состояло явление индукции, открытое Фарадеем. Оно преобразило довольно скучную область статических полей в увлекательную динамическую область, в которой происходит огромное число удивительных явлений. Эта глава посвящена качественному описанию некоторых из них. Как мы увидим, можно довольно быстро попасть в очень сложные ситуации, трудно поддающиеся подробному количественному анализу. Но это неважно. Наша главная задача в этой главе — сначала познакомить вас с кругом относящихся сюда явлений. Тщательный анализ мы проделаем немного позже.
Из того, что мы уже знаем, нам легко понять кое-что о магнитной индукции, то, что не было известно во времена Фарадея. Мы знаем о существовании действующей на движущийся заряд силы v×B, которая пропорциональна его скорости в магнитном поле. Пусть у нас есть проволока, которая движется вблизи магнита (фиг. 16.2), и пусть мы подсоединили концы проволоки к гальванометру. Когда проволока проходит над полюсом магнита, стрелка гальванометра сдвигается.
Фиг. 16.2. Движение провода в магнитном поле создает ток (это регистрирует, гальванометр).
Магнит создает вертикальное магнитное поле, и, когда мы двигаем проволоку поперек поля, электроны в проволоке чувствуют силу, направленную вбок, т. е. перпендикулярно полю и направлению движения. Сила толкает электроны вдоль проволоки. Но почему же при этом приходит в движение стрелка гальванометра, который расположен так далеко от этой силы? Да потому, что электроны, испытывающие магнитную силу, начинают двигаться и толкают (за счет электрического отталкивания) другие электроны, находящиеся чуть дальше по проволоке, а те в свою очередь отталкивают еще более удаленные электроны и так далее на большое расстояние. Любопытная штука.
Это так удивило Гаусса и Вебера, построившего впервые гальванометр, что они попытались определить, как далеко распространяются силы по проволоке. Они протянули проволоку поперек всего города, и один ее конец Гаусс присоединил к батарее (батареи были известны раньше генераторов), а Вебер наблюдал, как сдвигается стрелка гальванометра. И они обнаружили способ передавать сигналы на большое расстояние — это было рождение телеграфа! Разумеется, здесь нет прямого отношения к индукции, здесь речь шла о способе передачи тока по проволоке, о том, действительно ли ток продвигается за счет индукции или нет.
Предположим теперь, что в установке, изображенной на фиг. 16.2, мы проволоку оставляем в покое, а двигаем магнит. И снова наблюдаем эффект на гальванометре. Фарадей еще обнаружил, что движение магнита под проволокой (один способ) вызывает такой же эффект, как и движение проволоки над магнитом (другой способ). Но когда движется магнит, то на электроны проволоки уже больше не действует сила v×В. Это и есть то новое явление, которое открыл Фарадей. Сегодня мы можем попытаться понять его с помощью принципа относительности.
Мы уже поняли, что магнитное поле магнита возникает за счет его внутренних токов. Поэтому мы ожидаем появления такого же эффекта, если вместо магнита на фиг. 16.2 взять катушку из проволоки, по которой течет ток. Если двигать провод мимо катушки, то гальванометр обнаружит ток, равно, как и в том случае, когда катушка движется мимо провода. Но существует и еще более удивительная вещь: если менять магнитное поле катушки не за счет ее движения, а за счет изменения в ней тока, то гальванометр снова покажет наличие эффекта. Например, если расположить проволочную петлю рядом с катушкой (фиг. 16.3), причем обе они неподвижны, и выключить ток, то через гальванометр пройдет импульс тока. Если же снова включить ток в катушке, то стрелка гальванометра качнется в противоположную сторону.
Фиг. 16.3. Катушка с током возбуждает ток в другой катушке, если первая катушка перемещается или если ток в ней меняется.
Всякий раз, когда через гальванометр в установке, показанной на фиг. 16.2 или 16.3, проходит ток, в проводе в каком-то одном направлении возникает результативное давление на электроны. В разных местах электроны могут толкнуться в разные стороны, но в одном направлении напор оказывается больше, чем в другом. Учитывать нужно только давление электронов, просуммированное вдоль всей цепи. Мы называем этот результирующий напор электронов электродвижущей силой (сокращенно э. д. с.) цепи. Более точно э. д. с. определяется как тангенциальная сила, приходящаяся на один заряд, проинтегрированная по длине провода, вдоль всей цепи. Открытие Фарадея целиком состояло в том, что э. д. с. в проводе можно создать тремя способами: двигая провод, двигая магнит вблизи провода или меняя ток в соседнем проводе.
Обратимся снова к простому прибору, изображенному на фиг. 16.1, только теперь не будем пропускать ток через проволоку, чтобы придать ей вращение, а будем крутить рамку с помощью внешней силы, например рукой или с помощью водяного колеса. При вращении рамки ее провода движутся в магнитном поле, и мы обнаруживаем в цепи рамки э. д. с. Мотор превратился в генератор.
Индуцированная э. д. с. возникает в катушке генератора за счет ее движения. Величина э. д. с. дается простым правилом, открытым Фарадеем. (Сейчас мы просто сформулируем это правило, а несколько позднее разберем его подробно.) Правило такое: если магнитный поток, проходящий через петлю (этот поток есть нормальная составляющая В, проинтегрированная по площади петли), меняется со временем, то э. д. с. равна скорости изменения потока. Мы будем в дальнейшем называть это «правилом потока». Вы видите, что, когда катушка на фиг. 16.1 вращается, поток через нее изменяется. Вначале, скажем, поток идет в одну сторону, а когда катушка повернется на 180°, тот же поток идет сквозь катушку по-другому. Если непрерывно вращать катушку, поток сначала будет положительным, затем отрицательным, потом опять положительным и т. д. Скорость изменения потока должна тоже меняться. Следовательно, в катушке возникает переменная э. д. с. Если присоединить два конца катушки к внешним проводам через скользящие контакты, которые называются контактными кольцами (просто, чтобы провода не перекручивались), мы получаем генератор переменного тока.
А можно с помощью скользящих контактов устроить и так, чтобы через каждые пол-оборота соединение между концами катушки и внешними проводами становилось противоположным, так что когда э. д. с. изменит свой знак, то и соединение станет противоположным. Тогда импульсы э. д. с. будут всегда толкать ток в одном направлении вдоль внешней цепи. Мы получаем так называемый генератор постоянного тока.
Прибор, изображенный на фиг. 16.1, может быть либо мотором, либо генератором. Связь между моторами и генераторами хорошо демонстрируется с помощью двух одинаковых «моторов» постоянного тока с постоянными магнитами, катушки которых соединены двумя медными проводами. Если ручку одного из «моторов» поворачивать механически, он становится генератором и приводит в движение второй как мотор. Если же поворачивать ручку второго, то генератором уже становится он, а первый работает как мотор. Итак, здесь мы встречаемся с интересным примером нового рода эквивалентности в природе: мотор и генератор эквивалентны. Количественная эквивалентность на самом деле не совсем случайна. Она связана с законом сохранения энергии.
Другой пример устройства, которое может работать либо для создания э. д. с., либо воспринимать действие э. д. с., представляет собой приемная часть обычного телефона, т. е. «слухофон». Первоначальный телефон Белла состоял из двух таких «слухофонов», соединенных двумя длинными проводами. Основной принцип этого устройства показан на фиг. 16.4.
Фиг. 16.4. Приемное или передающее устройство телефона.
Постоянный магнит создает магнитное поле в двух сердечниках из мягкого железа и в тонком железном диске — мембране, которая приводится в движение звуковым давлением. При движении мембрана изменяет величину магнитного поля в сердечниках. Следовательно, поток через катушку проволоки, намотанной вокруг одного из сердечников, изменяется, когда звуковая волна попадает на мембрану. Тогда в катушке возникает э. д. с. Если концы катушки присоединены к цепи, в ней устанавливается ток, который представляет собой электрическое изображение звука.
Если концы катушки на фиг. 16.4 присоединить двумя проводами к другому такому же устройству, то по второй катушке потечет меняющийся ток. Этот ток создаст меняющееся магнитное поле и заставит меняться и силу притяжения железной мембраны. Она начнет дрожать и породит звуковые волны, подобные тем, которые колебали первую мембрану. С помощью маленьких кусочков железа и меди человеческий голос передается по проводам!
(Приемники в современных домашних телефонах похожи на только что описанный, а вот передатчики используются уже улучшенные, чтобы получить большую мощность. Это «микрофоны с угольной мембраной», в которых звуковое давление изменяет электрический ток от батарей.)
§ 2. Трансформаторы и индуктивности
Одна из наиболее интересных сторон открытий Фарадея заключается совсем не в том, что э. д. с. возникает в движущейся катушке, это мы можем понять с помощью магнитной силы qv×B. Главное — в том, что изменение тока в одной катушке создает э. д. с. во второй катушке. И уж совсем удивительно, что величина э. д. с., наведенной во второй катушке, дается тем же самым «правилом потока»: э. д. с. равна скорости изменения магнитного потока сквозь катушку. Возьмем, например, две катушки (фиг. 16.5), каждая из которых намотана на отдельную стопку железных пластинок (с их помощью можно создать более сильные магнитные поля).
Фиг. 16.5. Две катушки, намотанные на стопки железных пластинок, позволяют зажечь лампочку, не соединяя ее прямо с генератором.
Присоединим теперь одну из катушек — катушку а — к генератору переменного тока. Непрерывно меняющийся ток создает непрерывно меняющееся магнитное поле. Такое изменяющееся магнитное поле генерирует переменную э. д. с. во второй катушке — катушке b. Эта э. д. с., например, способна заставить гореть электрическую лампочку.
В катушке b э. д. с. меняется с частотой, конечно, равной частоте первого генератора. Но ток в катушке b может быть больше или меньше тока в катушке а. Ток в катушке b зависит от индуцированной в ней э. д. с. и от сопротивления и индуктивности остальной части ее цепи. Эта э. д. с. может быть меньше э. д. с. генератора, если, скажем, изменение потока мало. Или же э. д. с. в катушке b может оказаться много больше э. д. с. генератора, если на катушку b навить много витков, ибо в этом случае в данном магнитном поле поток через катушку будет больше. (Можно, если хотите, сказать об этом иначе — в каждом витке э. д. с. одна и та же, и поскольку полная э. д. с. равна сумме э. д. с. отдельных витков, то большое число витков в совокупности создает большую э. д. с.)
Такая комбинация двух катушек (обычно с набором железных пластинок, повышающих магнитное поле) называется трансформатором. Он может «трансформировать» одну э. д. с. (называемую еще «напряжением») в другую.
Эффекты индукции возникают и в одной отдельной катушке. Например, в установке, изображенной на фиг. 16.5, меняющийся поток проходит не только через катушку b, которая зажигает лампочку, но и через катушку а. Меняющийся ток в катушке а создает меняющееся магнитное поле внутри нее самой, и поток этого поля непрерывно изменяется, так что в катушке а получается самоиндуцированная э. д. с.
Э. д. с., действующая на ток, возникает тогда, когда его собственное магнитное поле растет, или в общем случае, если его собственное поле изменяется каким угодно образом. Этот эффект называется самоиндукцией.
Когда мы ввели «правило потока», утверждающее, что э. д. с. равна скорости изменения потока, мы не определяли направление э. д. с. Существует простое правило (называемое правилом Ленца) для определения направления э.д. с.: э. д. с. стремится препятствовать всякому изменению потока. Иначе говоря, направление наведенной э. д. с. всегда такое, что, если бы ток пошел в направлении э. д. с., он создал бы поток поля В, препятствующий изменению поля В, создающего эту э. д. с. Правилом Ленца можно пользоваться, чтобы найти направление э. д. с. в генераторе, показанном на фиг. 16.1, или в обмотке трансформатора (фиг. 16.3).
В частности, если ток в отдельной катушке (или в любом проводе) меняется, возникает «обратная» э. д. с. в цепи. Эта э. д. с. действует на заряды, текущие в катушке а на фиг. 16.5, препятствуя изменению магнитного поля, и поэтому направлена так, чтобы препятствовать изменению тока. Она стремится сохранить ток постоянным; э. д. с. противоположна току, когда ток увеличивается, и направлена по току, когда он уменьшается. При самоиндукции ток обладает «инерцией», потому что эффекты индукции стремятся сохранить поток постоянным точно так же, как механическая инерция стремится сохранить скорость тела неизменной.
Любой большой электромагнит обладает большой самоиндукцией. Пусть, например, к катушке большого электромагнита присоединена батарея (фиг. 16.6) и пусть установилось большое магнитное поле. (Ток достигает постоянной величины, определяемой напряжением батареи и сопротивлением провода катушки.)
Фиг. 16.6. Включение электромагнита в цепь. Лампочка открывает проход току в момент отключения, препятствуя возникновению слишком большой э.д.с. на контактом выключателя.
Но теперь предположим, что мы пытаемся отсоединить батарею, разомкнув выключатель. Если бы мы на самом деле разорвали цепь, ток быстро уменьшился бы до нуля и в процессе уменьшения создал бы огромную э. д. с. В большинстве случаев такой э. д. с. оказывается вполне достаточно, чтобы образовалась вольтова дуга между разомкнутыми контактами выключателя. Возникающее большое напряжение могло бы нанести вред катушке, да и вам, если бы именно вы размыкали выключатель! По этим причинам электромагниты обычно включают в цепь примерно так, как показано на фиг. 16.6. Когда переключатель разомкнут, ток не меняется быстро, а продолжает течь через лампу, оставаясь постоянным за счет э. д. с. от самоиндукции катушки.
§ 3. Силы, действующие на индуцируемые токи
Вы, вероятно, наблюдали великолепную демонстрацию правила Ленца с помощью приспособления, изображенного на фиг. 16.7. Это электромагнит точно такой же, как катушка а на фиг. 16.5.
Фиг. 16.7. Проводящее кольцо сильно отталкивается электромагнитом, когда в нем меняется ток.
На одном конце электромагнита помещается алюминиевое кольцо. Если с помощью переключателя подсоединить катушку к генератору переменного тока, то кольцо взлетает в воздух. Силу, конечно, порождают токи, индуцируемые в кольце. Тот факт, что кольцо отлетает прочь, показывает, что токи в нем препятствуют изменению поля, проходящего через кольцо. Когда у магнита северный полюс находится сверху, индуцированный ток в кольце создает внизу северный полюс. Кольцо и катушка отталкиваются точно так же, как два магнита, приложенные одинаковыми полюсами. Если в кольце сделать тонкий разрез по радиусу, сила исчезает — убедительное доказательство того, что она действительно обусловлена токами в кольце.
Если вместо кольца у края электромагнита поместить алюминиевый или медный диск, то и он отталкивается; индуцированные токи циркулируют в материале диска и снова вызывают отталкивание.
Интересный эффект, в основе похожий на предыдущий, возникает с листом идеального проводника. В «идеальном проводнике» ток совсем не встречает сопротивления. Поэтому возникшие в нем токи могут течь не переставая. Фактически малейшая э. д. с. создала бы сколь угодно большой ток, а это на самом деле означает, что в нем вообще не может быть э. д. с. Любая попытка создать магнитный поток, проходящий сквозь такой лист, вызовет токи, образующие противоположно направленные поля В — все со сколь угодно малыми э. д. с., так что никакого потока не будет.
Если к листу идеального проводника мы поднесем электромагнит, то при включении тока в магните в листе возникают токи (называемые вихревыми токами), и никакой магнитный поток не пройдет. Линии поля будут иметь вид, показанный на фиг. 16.8.
Фиг. 16.8. Электромагнит вблизи идеально проводящей плоскости.
То же самое произойдет, если к идеальному проводнику поднести постоянный магнит. Поскольку вихревые токи создают противоположные поля, магниты от проводника отталкиваются. Поэтому оказывается возможным подвесить постоянный магнит в воздухе над листом идеального проводника, изготовленного в форме тарелки (фиг. 16.9).
Фиг. 16.9. Магнитная палочка отталкивается вихревыми токами и повисает над чашей из сверхпроводника.
Магнит будет поддерживаться в воздухе за счет отталкивания индуцированных вихревых токов в идеальном проводнике. При обычных температурах идеальных проводников не существует, но некоторые материалы при достаточно низких температурах становятся идеальными проводниками. Так, при температуре ниже 3,8° К олово становится идеальным проводником; тогда оно называется сверхпроводником.
Если проводник, показанный на фиг. 16.8, не вполне идеальный, то возникнет некоторое сопротивление течению вихревых токов. Токи будут постепенно замирать, и магнит медленно опустится. В неидеальном проводнике, чтобы течь дальше, вихревым токам необходима некоторая э. д. с., а для возникновения э. д. с. поток должен непрерывно меняться. Поток магнитного поля постепенно проникает в проводник.
В обычном проводнике имеются не только силы отталкивания за счет вихревых токов, но могут быть и боковые силы. Например, если мы передвигаем магнит над проводящей поверхностью, вихревые токи создают тормозящую силу, потому что индуцированные токи препятствуют изменению потока. Такие силы пропорциональны скорости и похожи на силы вязкости.
Эти эффекты хорошо наблюдаются на приборе, изображенном на фиг. 16.10.
Фиг. 16.10. Торможение маятника указывает на силы, возникающие благодаря вихревым токам.
Квадратная медная пластинка укреплена на конце стержня, образуя маятник. Пластинка качается взад и вперед между полюсами электромагнита. Когда магнит включается, движение маятника неожиданно прекращается. Как только металлическая пластинка попадает в зазор магнита, в ней индуцируется ток, который стремится помешать изменению потока через пластинку. Если бы пластинка была идеальным проводником, токи были бы столь велики, что они снова вытолкнули бы пластинку и она отскочила бы назад. В медной же пластинке имеется некоторое сопротивление, поэтому токи сначала заставляют пластинку почти намертво застыть, когда она начинает входить в поле. Затем, по мере того как токи замирают, пластинка продолжает медленно двигаться в магнитном поле и останавливается совсем.
Схема вихревых токов в медном маятнике поясняется фиг. 16.11.
Фиг. 16.11. Вихревые токи в медном маятнике.
Сила и расположение токов весьма чувствительны к форме пластинки. Если, скажем, вместо медной пластинки взять другую, в которой имеется ряд узких щелей (фиг. 16.12), то эффекты вихревых токов сильно уменьшатся.
Фиг. 16.12. Эффекты от вихревых токов сильно снижаются, если в пластинке прорезать щели.
Маятник проходит сквозь магнитное поле лишь с небольшой тормозящей силой. Причина в том, что токи в каждой части пластинки возбуждаются меньшими по величине потоками и, следовательно, эффекты сопротивления каждой петли оказываются большими. Чем меньше токи, тем меньше и торможение. Вязкий характер силы проявится еще более наглядно, если медную пластинку поместить между полюсами магнита и затем отпустить ее. Пластинка не падает, она просто медленно опускается. Вихревые токи оказывают сильное сопротивление движению, точь-в-точь как вязкое сопротивление меда.
Если мы не будем протаскивать проводник мимо магнита, а попробуем вращать его в магнитном поле, то в нем в результате тех же эффектов возникнет тормозящий момент. И наоборот, если вращать магнит, меняя местами его полюса, вблизи проводящей плоскости или кольца, то кольцо повернется за магнитом, токи в кольце создадут момент, стремящийся повернуть кольцо вместе с магнитом.
Поле, весьма похожее на поле вращающегося магнита можно создать с помощью устройства из катушек (фиг. 16.13).
Фиг. 16.13. Создание вращающегося магнитного поля.
Мы берем железный тор (т. е. железное кольцо в виде бублика) и наматываем на него шесть катушек. Направив ток так, как показано на фиг. 16.13, а, через обмотки 1 и 4, мы получим магнитное поле в направлении, указанном стрелками. Если мы теперь переключим ток на обмотки 2 и 5, то магнитное поле будет направлено уже по-другому (фиг. 16.13, б). Продолжая так действовать, мы получаем последовательность полей, изображенных на остальных частях нашего рисунка. Если процесс проводить плавно, то получится «вращающееся» магнитное поле. Подсоединив катушки к сети трехфазного тока (а она дает именно такую последовательность токов), мы легко получим требуемую последовательность токов. «Трехфазный ток» создается генератором, использующим принцип фиг. 16.1, за тем исключением, что на оси симметрично укрепляются три рамки, т. е. каждая под углом 120° к соседней. Когда рамки вращаются как единое целое, э. д. с. максимальна в одной рамке, затем в другой и т. д. в правильной последовательности. Трехфазный ток имеет много практических преимуществ. Одно из них заключается в возможности получить вращающееся магнитное поле. Момент, действующий на проводник со стороны такого вращающегося поля, легко обнаруживается на металлическом кольце, поставленном на изолирующей подставке прямо над тором (фиг. 16.14).
Фиг. I6.14. С помощью вращающегося поля (фиг. 16.13) можно придать кольцу из проводника вращающий момент.
Вращающееся поле вызывает вращение кольца вокруг вертикальной оси. Здесь видны те же основные элементы, которые имеются в больших промышленных трехфазных индукционных моторах.
Другой тип индукционного мотора показан на фиг. 16.15.
Фиг. 16.15. Простой пример индукционного мотора с затененным полюсом.
Это устройство непригодно для практических высокоэффективных моторов, но иллюстрирует основной принцип. Электромагнит М, состоящий из пачки прокатанных железных листов, на которую навита спиральная обмотка, питается от генератора переменного тока. Магнит создает переменный поток поля B сквозь алюминиевый диск. Если имеются только эти две компоненты (см. фиг. 16.15, а), у нас еще нет мотора. В диске имеются вихревые токи, но они симметричны и момента не возникает. (Диск будет немного нагреваться за счет токов индукции.) Если теперь мы закроем только одну половину магнитного полюса алюминиевой пластинкой (фиг. 16.15, б), то диск начнет вращаться и мы получим мотор. Действие его связано с двумя эффектами вихревых токов. Во-первых, вихревые токи в алюминиевой пластинке препятствуют изменению потока сквозь нее, поэтому магнитное поле над пластинкой всегда отстает от поля над непокрытой частью полюса. Этот так называемый эффект «затененного полюса» создает поле, которое в «затененной» области меняется совсем так же, как и в «незатененной», за исключением постоянного запаздывания во времени. Эффект в целом такой, как будто имеется вдвое более узкий магнит, постоянно передвигающийся из незатененной области в затененную. Во-вторых, меняющиеся поля взаимодействуют с вихревыми токами диска, создавая в нем момент силы.
§ 4. Электротехника
Когда Фарадей впервые опубликовал свое замечательное открытие о том, что изменение магнитного потока создает э. д. с., его спросили (как спрашивают, впрочем, всякого, кто открывает какие-то новые явления): «Какая от этого польза?» Ведь все, что он обнаружил, было очень странным — в проводе возникал крошечный ток, когда он двигал провод возле магнита. Какая же может быть от этого «польза»? Фарадей ответил: «Какая может быть польза от новорожденного?»
А теперь вспомните о тех громадных практических применениях, к которым привело его открытие. Все, что мы описывали,— отнюдь не игрушки; это примеры, выбранные по большей части так, чтобы представить принцип той или иной практической машины. Например, вращающееся кольцо во вращающемся поле — индукционный мотор. Существует, конечно, известная разница между кольцом и практически используемым индукционным мотором. У кольца момент очень мал; протяните руку и вы можете остановить его. В хорошем моторе детали должны быть лучше пригнаны: магнитное поле не должно так щедро «растрачиваться» в воздухе. Во-первых, с помощью железа поле концентрируется. Мы не говорили о том, как это делает железо, но оно способно увеличить магнитное поле в десятки и тысячи раз по сравнению с полем одной медной катушки. Во-вторых, зазоры между частями железа делаются небольшими; с этой целью железо даже встраивается внутрь вращающегося кольца. Словом, все направлено на то, чтобы получить наибольшие силы и максимальную эффективность, т. е. превратить электрическую мощность в механическую, и такое «кольцо» уже нельзя будет удержать рукой.
Задача уменьшения зазоров и установление самого практичного режима работы есть дело инженерной науки. Она требует серьезного изучения проблем конструирования, хотя никаких новых принципов получения силы не существует. Но от основных принципов до практического и экономичного проектирования — долгий путь. И именно тщательная инженерно-конструкторская работа сделала возможным такую грандиозную вещь, как гидростанция Боулдер Дэм и все, что с ней связано.
Что такое Боулдер Дэм? Огромная река, перегороженная бетонной стеной. Но что это за стена! Изогнутая в виде идеально плавной кривой, тщательно рассчитанная так, чтобы как можно меньше бетона сдерживало напор реки. Стена утолщается книзу, образуя чудесную форму, которой любуются художники, но которую способны оценить только инженеры, потому что они понимают, насколько это хорошо. Они знают, что утолщение определяется тем, как растет давление воды на глубине. Но мы отвлеклись от электричества.
Затем вода реки забирается в огромную трубу. Уже само по себе это замечательное инженерное сооружение. По трубе вода передается к «водяному колесу» — огромной турбине — и заставляет колесо вращаться. (Еще одно достижение техники.) Но зачем крутят колеса? Они присоединены к невероятно запутанной мешанине из железа и меди (там все перекручено и переплетено). Все сооружение состоит из двух частей — одна крутится, а другая — стоит. Все это сложное сооружение сделано из немногих материалов, главным образом из железа и меди, а также из бумаги и шеллака, служащих изоляцией. Вращающееся чудовище. Генератор. Откуда-то из этого месива железа и меди вылезает несколько медных концов. Плотина, турбина, железо, медь — все собрано вместе для того, чтобы на этих медных полосках появилось нечто особенное — э. д. с. Затем медные полосы проходят небольшой путь и закручиваются несколько раз вокруг другого куска железа, образуя трансформатор; на этом их работа кончается.
Но вокруг этого же куска железа обвивается еще один медный кабель, который не соединяется непосредственно с полосами, пришедшими от генератора; он проходит поблизости от полос и забирает их э. д. с. Трансформатор превращает энергию, которая имела сравнительно низкое напряжение, необходимое для эффективной работы генератора, в очень высокое напряжение, которое лучше всего подходит для экономичной передачи электроэнергии по длинным кабелям.
И все должно быть исключительно эффективным — не может быть ничего лишнего, никаких потерь. Почему? Через все эти устройства протекает вся электрическая энергия, которая используется в стране. Если пропадет всего один или два процента энергии — подумайте, как много это составит. Если в трансформаторе остается только один процент энергии, то она должна куда-то деваться. Если бы, например, она выделялась в виде тепла — все устройство расплавилось бы.
Из Боулдер Дэм выходит во всех направлениях несколько дюжин медных стержней — длинных, очень длинных стержней толщиной, пожалуй, с вашу руку и длиной в сотни миль. Узкие медные дороги, несущие энергию гигантской реки. Затем эти дороги разветвляются... трансформаторов становится еще больше... иногда они подходят к большим генераторам, переводящим ток в другие формы... иногда к машинам, выполняющим важные промышленные работы... к новым трансформаторам... Затем все новые и новые разветвления и ответвления... пока, наконец, река не распределится по всему городу; она крутит моторы, создает тепло, свет, изготовляет приборы. Чудо рождения горячего огня из холодной воды на расстоянии более 600 миль — и все это благодаря особым образом собранным кусочкам железа и меди. Большие моторы для проката стали и крошечные моторчики для бормашины. Тысячи маленьких колесиков, крутящихся под действием большого колеса в Боулдер Дэм. Остановите большое колесо, и все остальные колесики замрут; огни потухнут.
Но этого мало. Те же явления, которые помогают взять грандиозную мощь реки и распределить ее по всей округе, пока в конце концов несколько капель реки закрутят бормашину, снова приходят на помощь при создании исключительно тонких приборов... для определения неуловимо слабых токов... для передачи голосов, музыки и изображений... для вычислительных машин... для автоматических машин фантастической точности.
Все это возможно потому, что тщательно продумано устройство из меди и железа — эффективно созданы магнитные поля... железные блоки диаметром в 2 метра, вращающиеся с зазором в 2 миллиметра... рассчитаны правильно пропорции меди, чтобы получить оптимальную эффективность... выдуманы странные формы, которые все служат своим целям, так же как форма плотины.
Если археолог будущего когда-нибудь раскопает Боулдер Дэм, он, вероятно, восхитится красотой ее линий. А исследователь — гражданин какой-то великой цивилизации Будущего, посмотрев на генераторы и трансформаторы, скажет: «Заметьте, как красивы формы каждой железной детали. Подумайте, сколько мысли вложено в каждый кусочек меди».
Здесь проявляется сочетание могущества техники и тщательного расчета. В генераторе осуществляется то, что нигде более в природе не встречается. Правда, силы индукции появляются и в других случаях. Несомненно, где-то вокруг Солнца и звезд действуют эффекты электромагнитной индукции. Возможно (хотя и не наверное), что магнитное поле Земли поддерживается каким-то гигантским аналогом электрического генератора, который работает на токах, циркулирующих в недрах Земли. Но нигде нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию, как это делается в генераторе,— непрерывно и очень экономично.
Вы, возможно, думаете, что конструирование электрических генераторов уже не представляет интереса, что это уже мертвая наука, ведь все они давно созданы. Почти совершенные генераторы или моторы можно взять просто с полки. Но даже если бы это было и так, нужно восхищаться чудесной законченностью решения проблемы. Однако осталось немало и нерешенных задач. И даже генераторы и моторы становятся снова проблемой. Возможно, что скоро для решения проблемы распределения электрической энергии понадобится использовать всю область низких температур и сверхпроводников. Будут созданы новые оптимальные установки с учетом радикально новых факторов. Возможно, энергетические сети будущего будут мало похожи на сегодняшние.
Итак, вы видите, что при изучении законов индукции можно заняться бесчисленным множеством приложений и проблем. Конструирование электрических машин само по себе может стать задачей всей жизни. Мы не будем слишком углубляться в этот вопрос, но мы должны осознать то, что открытие закона индукции неожиданно связало теорию с огромным числом практических применений. Область эта принадлежит инженерам и тем ученым прикладной науки, которые занимаются детальной разработкой различных приложений. Физика дает им лишь основу — основные законы, не зависящие от того, к чему они применяются. (Создание этой основы еще далеко не закончено, потому что предстоит еще подробно рассмотреть свойства железа и меди. Немного позже мы увидим, что физика может кое-что сказать и о них.)
Современная электротехника берет свое начало с открытий Фарадея. Бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить.
Глава 17 ЗАКОНЫ ИНДУКЦИИ
§ 1. Физика индукции
В предыдущей главе мы описали множество явлений, которые показали, что эффекты индукции весьма сложны и интересны. Сейчас мы хотим обсудить основные законы, управляющие этими эффектами. Мы уже определяли э. д. с. в проводящей цепи как полную силу, действующую на заряды, просуммированную по всей длине цепи. Более точно, это тангенциальная компонента силы на единичный заряд, проинтегрированная по всему проводу вдоль цепи. Следовательно, эта величина равна полной работе, совершаемой над единичным зарядом, когда он обходит один раз вокруг цепи.
Мы дали также «правило потока», которое утверждает, что э. д. с. равна скорости изменения магнитного потока сквозь такую цепь проводников. Давайте посмотрим, можем ли мы понять, почему это так. Прежде всего рассмотрим случай, когда поток меняется из-за того, что цепь движется в постоянном поле.
На фиг. 17.1 показана простая проволочная петля, размеры которой могут меняться.
Фиг. 17.1. В рамке наводится э.д.с., если поток меняется за счет изменения площади рамки при перемещении перемычки b.
Петля состоит из двух частей — неподвижной U-образной части (а) и подвижной перемычки (b), которая может скользить вдоль двух плеч U. Цепь всегда замкнута, но площадь ее может меняться. Предположим, что мы помещаем эту петлю в однородное магнитное поле так, что плоскость U оказывается перпендикулярной полю. Согласно правилу, при движении перемычки в петле должна возникать э. д. с., пропорциональная скорости изменения потока сквозь петлю. Эта э. д. с. будет порождать в петле ток. Мы предположим, что сопротивление проволоки достаточно велико, так что токи малы. Тогда магнитным полем от этого тока можно пренебречь.
Поток через петлю равен wLB, поэтому «правило потока» дало бы для э. д. с. (ее обозначим через ℰ)
где v — скорость смещения перемычки.
Нам следовало бы понимать этот результат и с другой точки зрения, отправляясь от магнитной силы v×B, действующей на заряды в движущейся перекладине. Эти заряды будут чувствовать силу, касательную к проволоке и равную vB для единичного заряда. Она постоянна вдоль длины w перемычки и равна нулю в остальных местах, поэтому интеграл равен
что в точности совпадает с результатом, полученным из скорости изменения потока.
Приведенное доказательство можно распространить на любой случай, когда магнитное поле постоянно и провода движутся. Можно в общем виде доказать, что для любой цепи, части которой движутся в постоянном магнитном поле, э. д. с. равна производной потока по времени независимо от формы цепи.
Ну а что произойдет, если петля будет неподвижна, а магнитное поле изменится? На этот вопрос мы не можем ответить с помощью тех же аргументов. Фарадей открыл (поставив опыт), что «правило потока» остается справедливым независимо от того, почему меняется поток.
Сила, действующая на электрические заряды, в общем случае дается формулой F=q(E+v×B); новых особых «сил за счет изменения магнитного поля» не существует. Любые силы, действующие на покоящиеся заряды в неподвижной проволоке, возникают за счет Е. Наблюдения Фарадея привели к открытию нового закона о связи электрического и магнитного полей: в области, где магнитное поле меняется со временем, генерируются электрические поля. Именно это электрическое поле и гонит электроны по проволоке, и, таким образом, оно-то и ответственно за появление э. д. с. в неподвижной цепи, когда магнитный поток изменяется.
Общий закон для электрического поля, связанного с изменяющимся магнитным полем, такой:
(17.1)
Мы назовем его законом Фарадея. Он был открыт Фарадеем, но впервые в дифференциальной форме записан Максвеллом в качестве одного из его уравнений. Давайте посмотрим, как из этого уравнения получается «правило потока» для цепей. Используя теорему Стокса, этот закон можно записать в интегральной форме
(17.2)
где, как обычно, Г — произвольная замкнутая кривая, а S — любая поверхность, ограниченная этой кривой. Вспомним, что здесь Г — это математическая кривая, зафиксированная в пространстве, а S — фиксированная поверхность. Тогда производную по времени можно вынести за знак интеграла:
(17.3)
Применяя это соотношение к кривой Г, которая идет вдоль неподвижной цепи проводников, мы получаем снова «правило потока». Интеграл слева — это э. д. с., а в правой части с обратным знаком стоит скорость изменения потока, проходящего внутри контура. Итак, соотношение (17.1), примененное к неподвижному контуру, эквивалентно «правилу потока».
Таким образом, «правило потока» согласно которому э. д. с. в контуре равна взятой с обратным знаком скорости, с которой меняется магнитный поток через контур, применимо, когда поток меняется за счет изменения поля или когда движется контур (или когда происходит и то, и другое). Две возможности —«контур движется» или «поле меняется» — неразличимы в формулировке правила. Тем не менее для объяснения правила в этих двух случаях мы пользовались двумя совершенно разными законами: v×B для «движущегося контура» и ∇×E=-∂B/∂t для «меняющегося поля».
Мы не знаем в физике ни одного другого такого примера, когда бы простой и точный общий закон требовал для своего настоящего понимания анализа в терминах двух разных явлений. Обычно столь красивое обобщение оказывается исходящим из единого глубокого основополагающего принципа. Но в этом случае какого-либо особо глубокого принципа не видно. Мы должны воспринимать «правило» как совместный эффект двух совершенно различных явлений.
На «правило потока» мы должны посмотреть следующим образом. Вообще говоря, сила на единичный заряд равна F/q=Е+v×B. В движущихся проводниках сила возникает за счет v. Кроме того, возникает поле Е, если где-либо меняется магнитное поле. Эти эффекты независимы, но э. д. с. вокруг проволочной петли всегда равна скорости изменения магнитного потока сквозь петлю.
§ 2. Исключения из «правила потока»
Здесь мы приведем несколько примеров, частично известных Фарадею, которые показывают, как важно ясно понимать разницу между двумя эффектами, ответственными за возникновение наведенной э. д. с. Наши примеры включают те случаи, когда «правило потока» неприменимо либо потому, что вообще никаких проводов нет, либо потому, что путь, избираемый индуцированными токами, проходит внутри объема проводника.
Вначале сделаем важное замечание: та часть э. д. с., которая возникает за счет поля Е, не связана с существованием физической проволоки (в отличие от части v×B). Поле Е может существовать в пустом пространстве, и контурный интеграл от него по любой воображаемой линии в пространстве есть скорость изменения потока В через эту линию. (Заметьте, что это совсем непохоже на поле Е, создаваемое статическими зарядами, так как в электростатике контурный интеграл от Е по замкнутой петле всегда равен нулю.)
Теперь опишем случай, когда поток через контур не меняется, а э. д. с. тем не менее существует. На фиг. 17.2 показан проводящий диск, помещенный в магнитное поле и который может вращаться на неподвижной оси.
Фиг. 17.2. При вращении диска слагаемое v×B порождает э.д.с., но поток сквозь цепь не меняется.
Один контакт приделан к оси, а другой трется о внешний край диска. Цепь замыкается через гальванометр. Когда диск вращается, «контур» (в смысле места в пространстве, где текут токи) всегда остается тем же самым. Но часть «контура» проходит в диске, в движущемся материале. Хотя поток по контуру постоянен, э. д. с. все же есть, в этом можно убедиться по отклонению гальванометра. Ясно, что здесь перед нами случай, когда за счет силы v×B в движущемся диске возникает э. д. с., которая не может быть равна изменению потока.
В качестве обратного примера мы сейчас рассмотрим несколько необычный случай, когда поток через «контур» (снова в смысле того места, где текут токи) изменяется, а э. д. с. отсутствует. Представим себе две металлические пластины со слегка изогнутыми краями (фиг. 17.3), помещенные в однородное магнитное поле, перпендикулярное их плоскости.
Фиг. 17.3. При повороте пластинок в однородном магнитном поле поток может сильно меняться, но э.д.с. не возникает.
Каждая пластина присоединена к одному из полюсов гальванометра, как показано на фигуре. Пластины образуют контакт в одной точке Р, так что цепь замкнута. Если теперь повернуть пластины на небольшой угол, точка контакта сдвинется в Р'. Если мы вообразим, что «цепь» замкнута внутри пластин по пунктирной линии, то по мере поворота пластины взад и вперед магнитный поток через этот контур изменяется на большую величину. Но поворот может произойти от незначительного движения, тогда v×B очень мало и э. д. с. практически отсутствует. В этом случае «правило потока» бессильно. Оно справедливо лишь для контуров, материал которых остается неизменным. Когда материал контура меняется, приходится обращаться снова к основным законам. Правильное физическое содержание всегда дается двумя основными законами:
§ 3. Ускорение частицы в индуцированном электрическом поле; бетатрон
Мы уже говорили, что э. д. с., созданная изменяющимся магнитным полем, может существовать даже в отсутствие проводников; т. е. магнитная индукция возможна без проводов. Мы можем представить себе э. д. с. вдоль произвольной математической кривой в пространстве. Она определяется как тангенциальная компонента Е, проинтегрированная вдоль кривой. Закон Фарадея гласит, что этот контурный интеграл равен скорости изменения магнитного потока через замкнутую кривую [соотношение (17.3)].
В качестве примера действия такого индуцированного электрического поля мы сейчас рассмотрим движение электрона в изменяющемся магнитном поле. Представим себе магнитное поле, которое всюду на плоскости направлено по вертикали (фиг. 17.4).
Фиг. 17.4. Электрон ускоряется в аксиально-симметричном магнитном поле, зависящем от времени.
Магнитное поле создается электромагнитом, но детали нас здесь интересовать не будут. В нашем примере мы предположим, что магнитное поле симметрично относительно некой оси, т. е. напряженность магнитного поля зависит только от расстояния до оси. Магнитное поле меняется также со временем. Представим теперь, что электрон в этом поле движется по круговой траектории постоянного радиуса с центром на оси поля. (Позже мы увидим, как можно создать такое движение.) Меняющееся магнитное поле создает электрическое поле Е, касательное к орбите электрона, которое будет двигать его по окружности. Вследствие симметрии это электрическое поле всюду на окружности принимает одну и ту же величину. Если орбита электрона имеет радиус r, то контурный интеграл от Е по орбите равен скорости изменения магнитного потока через окружность. Контурный интеграл от Е равен просто величине Е, умноженной на длину окружности 2πr. Магнитный поток, вообще говоря, дается интегралом. Обозначим через Bср — среднее магнитное поле внутри окружности; тогда поток равен этому среднему магнитному полю, умноженному на площадь круга. Мы получим (отвлекаясь от знака)
Поскольку мы предположили, что r—величина постоянная, то Е пропорционально производной по времени от среднего поля:
(17.4)
Электрон будет чувствовать электрическую силу qE и будет ею ускоряться. Помня, что на основании точного релятивистского уравнения движения скорость изменения импульса пропорциональна силе, имеем
(17.5)
Для принятой нами круговой орбиты электрическая сила, действующая на электрон, всегда направлена по движению, поэтому полный импульс будет расти со скоростью, даваемой равенством (17.5). Комбинируя (17.5) и (17.4), можно связать скорость изменения импульса с изменением среднего магнитного поля:
(17.6)
Интегрируя по t, получаем следующее выражение для импульса электрона:
(17.7)
где р0 — импульс, с которым электрон начинает двигаться, а ΔBcp — последующее изменение Bср. Работа бетатрона — машины, ускоряющей электроны до больших энергий, основана именно на этой идее.
Чтобы понять, как работает бетатрон, необходимо представлять себе принцип движения электрона по окружности. В гл. 11 (вып. 1) мы уже обсуждали этот принцип. Если на орбите электрона создать магнитное поле В, возникнет поперечная сила qv×B, которая при соответствующем выборе В может заставить электрон двигаться по предположенной орбите. В бетатроне эта поперечная сила вызывает движение электрона по круговой орбите постоянного радиуса. Мы можем определить, каким должно быть магнитное поле на орбите, опять с помощью релятивистского уравнения движения, но на этот раз для поперечной компоненты силы. В бетатроне (см. фиг. 17.4) поле В перпендикулярно v, поэтому поперечная сила равна qvB. Таким образом, сила равна скорости изменения поперечной компоненты импульса pt:
(17.8)
Когда частица движется по окружности, скорость изменения поперечного импульса равна величине полного импульса, умноженной на ω — угловую скорость вращения (согласно аргументам, приведенным в гл. 11, вып. 1):
(17.9)
где, поскольку движение круговое,
(17.10)
Полагая магнитную силу равной поперечному ускорению, имеем
(17.11)
где Ворб — поле при радиусе, равном r.
В приведенном в действие бетатроне импульс электрона, согласно выражению (17.7), растет пропорционально Bср, и чтобы электрон продолжал двигаться по собственной окружности, равенство (17.11) должно по-прежнему выполняться вместе с ростом импульса электрона. Величина Bорб должна расти пропорционально импульсу р. Сравнивая (17.11) с (17.7), определяющим р, мы видим, что должно выполняться следующее соотношение между Вср — средним магнитным полем внутри орбиты радиуса r и магнитным полем Вор6 на орбите:
(17.12)
Для правильной работы бетатрона нужно, чтобы среднее магнитное поле внутри орбиты росло в два раза быстрее магнитного поля на самой орбите. При этих условиях с ростом энергии частицы, увеличивающейся за счет индуцированного электрического поля, магнитное поле на орбите растет как раз со скоростью, нужной для удержания частицы на окружности.
Бетатрон используется для разгона электронов до энергий в десятки или даже в сотни миллионов электронвольт. Однако по ряду причин для ускорения электронов до энергий, много больших нескольких сот миллионов электронвольт, эта машина становится невыгодной. Одна из этих причин — трудность достижения на практике требуемой высокой величины среднего магнитного поля внутри орбиты, а вторая — несправедливость формулы (17.6) для очень больших энергий, так как в ней не учитывается потеря энергии частицей за счет излучения электромагнитной энергии (так называемое синхротронное излучение, см. гл. 34, вып. 3). По этим причинам ускорение электронов до самых больших энергий — до многих миллиардов электрон-вольт — совершается посредством машины другого рода, называемой синхротроном.
§ 4. Парадокс
Теперь мы хотели бы предложить вам некий кажущийся парадокс. Парадокс возникает тогда, когда при одном способе рассуждений получается один ответ, а при другом способе — совсем другой, так что мы остаемся в неведении, что же собственно должно быть на самом деле. Разумеется, в физике никогда не бывает настоящих парадоксов, потому что существует только один правильный ответ; по крайней мере мы верим, что природа поступает только единственным способом (и именно этот способ, конечно, правильный). Поэтому в физике парадокс — всего лишь путаница в нашем собственном понимании. Итак, вот наш парадокс.
Представим, что мы конструируем прибор (фиг. 17.5), в котором имеется тонкий круглый пластмассовый диск, укрепленный концентрически на оси с хорошими подшипниками, так что он совершенно свободно вращается.
Фиг. 17.5. Повернется ли диск, если ток I прекратится?
На диске имеется катушка из проволоки — короткий соленоид, концентричный по отношению к оси вращения. Через этот соленоид проходит постоянный ток I от маленькой батареи, также укрепленной на диске. Вблизи края диска по окружности на равном расстоянии размещены маленькие металлические шарики, изолированные друг от друга и от соленоида пластмассовым материалом диска. Каждый из этих проводящих шариков заряжен одинаковым зарядом Q. Вся картина стационарна, и диск неподвижен. Предположим, что случайно, а может и намеренно, ток в соленоиде прекратился, но, разумеется, без какого-либо вмешательства извне. Пока через соленоид шел ток, более или менее параллельно оси диска проходил магнитный поток. После того как ток прервался, поток этот должен уменьшиться до нуля. Поэтому должно возникать индуцированное электрическое поле, которое будет циркулировать по окружностям с центром на оси диска. Заряженные шарики на периферии диска будут все испытывать действие электрического поля, касательного к внешней окружности диска. Эта электрическая сила направлена для всех зарядов одинаково и, следовательно, вызовет у диска вращающий момент. Из этих соображений можно ожидать, что, когда ток в соленоиде исчезнет, диск начнет вращаться. Если нам известны момент инерции диска, ток в соленоиде и заряд шариков, то можно вычислить результирующую угловую скорость.
Но можно рассуждать и по-другому. Используя закон сохранения момента количества движения, мы могли бы сказать, что момент диска со всеми его пристройками вначале равен нулю, поэтому момент всей системы должен оставаться нулевым. Никакого вращения при остановке тока быть не должно. Какое из доказательств правильно? Повернется ли диск или нет? Мы предлагаем вам подумать над этим вопросом.
Хотелось бы предостеречь вас, что правильный ответ не зависит от всяких несущественных факторов, таких, как несимметричное положение батареи, например. В самом деле, вы можете представить себе, скажем, такой идеальный случай: соленоид сделан из сверхпроводящей проволоки, через которую проходит ток. После того как диск тщательно установлен неподвижным, температуру соленоида медленно начинают повышать. Когда температура проволоки достигнет переходного значения между сверхпроводимостью и нормальной проводимостью, ток в соленоиде обратится в нуль вследствие сопротивления проволоки. Поток, как и раньше, упадет до нуля и вокруг оси возникнет электрическое поле. Мы хотели бы также предостеречь вас, что решение не простое, но это и не обман. Когда вы разберетесь в этом, вы обнаружите важный закон электромагнетизма.
§ 5. Генератор переменного тока
В оставшейся части этой главы мы применим принципы, изложенные в § 1 для анализа ряда явлений, обсуждавшихся в гл. 16. Сначала мы рассмотрим подробно генератор переменного тока. Такой генератор в основном состоит из проволочной катушки, вращающейся в однородном магнитном поле. Тот же самый результат может быть достигнут с помощью неподвижной катушки в магнитном поле, направление которого вращается по способу, описанному в предыдущей главе. Мы рассмотрим лишь первый случай. Пусть имеется круглая катушка из проволоки, которая может вращаться вокруг оси, проходящей вдоль одного из ее диаметров. И пусть эта катушка помещена в магнитное поле, перпендикулярное оси вращения (фиг. 17.6). Представим себе, что оба конца катушки выведены на внешнюю цепь с помощью каких-нибудь скользящих контактов.
Фиг. 17.6. Катушка из проволоки, вращающаяся в однородном магнитном поле,— основная идея генератора переменного тока.
Благодаря вращению катушки магнитный поток через нее будет меняться. Поэтому в цепи катушки появится э. д. с. Пусть S — площадь катушки, а θ — угол между магнитным полем и нормалью к плоскости катушки[19]. Тогда поток через катушку равен
(17.13)
Если катушка вращается с постоянной угловой скоростью ω, то θ меняется со временем как ωt. Тогда э. д. с. ℰ в катушке равна
или
(17.14)
Если мы выведем провода из генератора на некоторое расстояние от вращающейся катушки, в место, где магнитное поле равно нулю или хотя бы не меняется со временем, то ротор от E в этой области будет равен нулю, и мы сможем определить электрический потенциал. В самом деле, если ток не уходит из генератора, то разность потенциалов V между двумя проводами будет равна э. д. с. вращающейся катушки, т. е.
Разность потенциалов в проводах меняется как sinωt. Такая меняющаяся разность потенциалов называется переменным напряжением.
Поскольку между проводами имеется электрическое поле, они должны быть электрически заряжены. Ясно, что э. д. с. генератора выталкивает лишние заряды в провода, пока их электрическое поле не становится достаточно сильным, чтобы в точности уравновесить силу индукции. Если посмотреть на генератор со стороны, то покажется, будто два провода электростатически заряжены до разности потенциалов V, а заряды как бы меняются со временем, создавая переменную разность потенциалов. Есть и еще одно отличие от того, что наблюдается в случае электростатики. Если присоединить генератор к внешней цепи, по которой может проходить ток, мы обнаружим, что э. д. с. не позволяет проводам разряжаться, а продолжает подпитывать их зарядами, когда из них уходит ток, стремясь сохранить на проводах одну и ту же разность потенциалов. Если генератор подключен к цепи, полное сопротивление которой равно R, ток в цепи будет пропорционален э. д. с. генератора и обратно пропорционален R. Поскольку э. д. с. синусоидально изменяется со временем, то и ток делает то же самое. Возникает переменный ток
Схема такой цепи приведена на фиг. 17.7.
Фиг. 17.7. Цепь с генератором переменного тока и сопротивлением.
Мы можем также заметить, что э. д. с. определяет количество энергии, поставляемое генератором. Каждый заряд в проводе получает в единицу времени энергию, равную F·v, где F — сила, действующая на заряд, а v — его скорость. Пусть теперь количество движущихся зарядов на единице длины провода равно n; тогда мощность, выделяющаяся в элементе ds провода, равна
В проводе скорость v всегда направлена вдоль ds, так что мощность можно переписать в виде
Полная мощность, выделяемая во всей цепи, есть интеграл от этого выражения по всей петле:
(17.15)
Вспомним теперь, что qnv — это ток I и что э. д. с. определяется как интеграл от F/q по всей цепи. Мы получаем
(17.16)
Когда в катушке генератора имеется ток, на нее непременно действуют механические силы. В самом деле, мы знаем, что вращающий момент, действующий на катушку, пропорционален ее магнитному моменту, напряженности магнитного поля В и синусу угла между ними. Магнитный момент есть ток катушки, умноженный на ее площадь. Поэтому вращающий момент равен
(17.17)
Скорость, с которой должна совершаться механическая работа, чтобы поддерживать вращение катушки, есть угловая скорость ω, умноженная на вращающий момент силы:
(17.18)
Сравнивая это выражение с (17.14), мы видим, что затраты механической работы в единицу времени, требуемые для вращения катушки против магнитных сил, в точности равны ℰI — электрической энергии, поставляемой э. д. с. генератора в единицу времени. Вся механическая энергия, расходуемая в генераторе, появляется в виде электрической энергии в цепи.
В качестве другого примера токов и сил, обусловленных индуцированной э. д. с., проанализируем, что же происходит в установке, показанной на фиг. 17.1. Имеются U-образная проволока и скользящая перемычка, расположенные в однородном магнитном поле, перпендикулярном плоскости параллельных проволок. Теперь предположим, что «дно» U (левая часть фиг. 17.1) сделано из проволоки с большим сопротивлением, тогда как две боковые проволоки сделаны из хорошего проводника вроде меди — в этом случае нам не надо беспокоиться об изменении сопротивления цепи при движении перекладины. Как и раньше, э. д. с. цепи равна
(17.19)
Ток в цепи пропорционален этой э. д. с. и обратно пропорционален сопротивлению цепи:
(17.20)
Благодаря этому току на перемычку будет действовать магнитная сила, пропорциональная длине перемычки, току в ней и магнитному полю:
(17.21)
Подставляя I из (17.20), получаем для силы
(17.22)
Мы видим, что сила пропорциональна скорости перемещения перемычки. Направление силы, как легко понять, противоположно скорости. Такая «пропорциональная скорости» сила, похожая на силу вязкости, получается всякий раз, когда движущиеся проводники создают индуцированные токи в магнитном поле. Вихревые токи, о которых мы говорили в предыдущей главе, приводят также к силам, действующим на проводники и пропорциональным скорости проводника, хотя такие случаи в общем дают более сложные распределения токов, которые трудно анализировать.
При конструировании механических систем часто бывает удобно располагать тормозящими силами, пропорциональными скорости. Вихревые токи дают один из наиболее удобных способов получения таких зависящих от скорости сил.
Пример применения подобных сил можно найти в обычном домашнем счетчике — ваттметре. Там имеется тонкий алюминиевый диск, вращающийся между полюсами постоянного магнита. Этот диск приводится в движение маленьким электромотором, вращающий момент которого пропорционален мощности, потребляемой в электросети квартиры. Вихревые токи в диске вызывают силу сопротивления, пропорциональную скорости. Следовательно, скорость диска устанавливается пропорциональной скорости потребления электроэнергии. С помощью счетчика, присоединенного к вращающемуся диску, подсчитывается число оборотов диска. Так определяется полная потребленная энергия, т. е. число использованных ватт-часов.
Согласно формуле (17.22), сила от индуцированных токов, т. е. всякая сила от вихревых токов, обратно пропорциональна сопротивлению. Сила тем больше, чем лучше электропроводность материала. Причина, разумеется, заключается в том, что при малом сопротивлении э. д. с. создает больший ток, а большие токи дают большие механические силы.
Из наших формул мы можем увидеть, как механическая энергия превращается в электрическую энергию. Как и раньше, электрическая энергия, выделяемая в сопротивлении цепи, есть произведение ℰI. Работа в единицу времени, совершаемая при движении перекладины, есть произведение силы, действующей на перекладину, на ее скорость. Используя для силы выражение (17.21), получаем работу в единицу времени:
Мы видим, что она действительно равна произведению ℰI, которое мы получаем из (17.19) и (17.20). Снова механическая работа появляется в виде электрической энергии.
§ 6. Взаимная индукция
Теперь нам нужно рассмотреть случай, когда проволочные катушки неподвижны, а меняются магнитные поля. Описывая образование магнитного поля токами, мы рассматривали только случай постоянных токов. Но если токи меняются медленно, магнитное поле в каждый момент будет примерно такое же, как магнитное поле постоянного тока. Мы будем считать в этом параграфе, что токи всегда меняются достаточно медленно, и можно сказать, что это утверждение справедливо.
На фиг. 17.8 показано устройство из двух катушек, с помощью которого можно продемонстрировать основные эффекты, ответственные за работу трансформатора.
Фиг. 17.8. Ток в катушке 1 создает магнитное поле, проходящее через катушку 2.
Катушка 1 состоит из проводящей проволоки, свитой в виде длинного соленоида. Вокруг этой катушки и изолированно от нее навита катушка 2, состоящая из нескольких витков проволоки. Если теперь по катушке 1 пропустить ток, то, как мы знаем, внутри нее появится магнитное поле. Это магнитное поле проходит также сквозь катушку 2. Когда ток в катушке 1 меняется, магнитный поток тоже будет меняться, и в катушке 2 появится индуцированная э.д.с. Эту индуцированную э.д.с. мы сейчас и вычислим.
В гл. 13, § 5 (вып. 5) мы видели, что магнитное поле внутри длинного соленоида однородно и равно
(17.23)
где N1 — число витков в катушке 1, I1 — ток в ней, а l — её длина. Пусть поперечное сечение катушки 1 равно S, тогда поток поля В равен его величине, умноженной на S. Если в катушке 2 имеется N2 витков, то поток проходит по катушке N2 раз. Поэтому э. д. с. в катушке 2 дается выражением
(17.24)
Единственная меняющаяся со временем величина в (17.23) есть I1. Поэтому э. д. с. дается выражением
(17.25)
Мы видим, что э. д. с. в катушке 2 пропорциональна скорости изменения тока в катушке 1. Константа пропорциональности — по существу геометрический фактор двух катушек, называется коэффициентом взаимной индукции и обозначается обычно M21. Тогда (17.25) записывается уже в виде
(17.26)
Предположим теперь, что нам нужно было бы пропустить ток через катушку 2 и нас интересует, чему равна э. д. с. в катушке 1. Мы вычислили бы магнитное поле, которое повсюду пропорционально току I2. Поток сквозь катушку I зависел бы от геометрии, но был бы пропорционален току I2. Поэтому э. д. с. в катушке 1 снова была бы пропорциональна dI2/dt. Мы можем записать
(17.27)
Вычисление M12 было бы труднее, чем те вычисления, которые мы проделали для M21. Мы не будем сейчас им заниматься, потому что дальше в этой главе мы покажем, что M12 обязательно равно M21.
Поскольку поле любой катушки пропорционально текущему в ней току, такой же результат получился бы и для любых двух катушек из проволоки. Выражения (17.26) и (17.27) приобрели бы одинаковую форму, и только постоянные M12 и M21 были бы другие. Их значения будут зависеть от формы катушек и их относительного положения.
Предположим, нам нужно найти коэффициент взаимной индукции между двумя произвольными катушками, например показанными на фиг. 17.9.
Фиг. 17.9. Любые две катушки обладают взаимной индукцией m, пропорциональной интегралу от ds1·ds2·(1/r12).
Мы знаем, что общее выражение для э. д. с. в катушке 1 можно записать так:
где В — магнитное поле, а интеграл берется по поверхности, ограниченной контуром 1. В гл. 14, § 1 (вып. 5) мы видели, что поверхностный интеграл от В можно свести к контурному интегралу от векторного потенциала. В нашем случае
где А — векторный потенциал, а ds1 — элемент цепи 1. Контурный интеграл берется вдоль контура 1, поэтому э.д.с. в этой катушке может быть записана в виде
Теперь предположим, что векторный потенциал цепи 1 возникает за счет токов в цепи 2. Тогда его можно записать как контурный интеграл по контуру цепи 2:
(17.29)
где I2 — ток в цепи 2, а r12 — расстояние от элемента цепи ds2 к точке на контуре 1, в которой мы вычисляем векторный потенциал (см. фиг. 17.9). Комбинируя (17.28) и (17.29), можно выразить э. д. с. в цепи 1 как двойной контурный интеграл:
В этом выражении все интегралы берутся по неподвижным контурам. Единственной переменной величиной является ток I2, который не зависит от переменных интегрирования. Поэтому его можно вынести за знак интеграла. Тогда э. д. с. можно записать как
где коэффициент M12 равен
(17.30)
Из этого интеграла очевидно, что M12 зависит только от геометрии цепей; он зависит от некоторого среднего расстояния между двумя цепями, причем в среднее с наибольшим весом входят параллельные отрезки проводников двух катушек. Нашу формулу можно использовать для вычисления коэффициента взаимной индукции любых двух цепей произвольной формы. Кроме того, она показывает, что интеграл для M12 тождествен с интегралом для M21. Таким образом, мы показали, что оба коэффициента одинаковы. Для системы только с двумя катушками коэффициенты M12 и M21 часто обозначают символом M без значков и называют просто коэффициентом взаимной индукции:
§ 7. Самоиндукция
При обсуждении индуцированных э. д. с. в двух катушках на фиг. 17.8 и 17.9 мы рассмотрели лишь случай, когда ток проходит либо в одной катушке, либо в другой. Если токи имеются одновременно в обеих катушках, то магнитный поток, пронизывающий каждую катушку, будет представлять сумму двух потоков, существующих и по отдельности, поскольку к магнитным полям применим принцип суперпозиции. Поэтому э. д. с. в каждой катушке будет пропорциональна не только изменению тока в другой катушке, но и изменению тока в ней самой. Таким образом, полную э. д. с. в катушке 2 следует записать в виде[20]
(17.31)
Аналогично, э. д. с. в катушке 1 будет зависеть не только от изменяющегося тока в катушке 2, но и от изменяющегося тока в ней самой:
(17.32)
Коэффициенты M22 и M11 всегда отрицательны. Обычно пишут
(17.33)
где ℒ1 и ℒ2 называют коэффициентами самоиндукции двух катушек (или индуктивностями).
Конечно, э. д. с. самоиндукции будет существовать даже для одной катушки. Любая катушка сама по себе обладает коэффициентом самоиндукции ℒ, и ее э. д. с. будет пропорциональна скорости изменения тока в катушке. Обычно считают, что э. д. с. и ток одной катушки положительны, если они направлены одинаково. При этом условии для отдельной катушки можно написать
(17.34)
Знак минус указывает на то, что э. д. с. противодействует изменению тока, ее часто называют «обратной э. д. с.».
Поскольку любая катушка обладает самоиндукцией, противодействующей изменению тока, ток в катушке обладает своего рода инерцией. Действительно, если мы хотим изменить ток в катушке, мы должны преодолеть эту инерцию, присоединяя катушку к какому-то внешнему источнику, например батарее или генератору (фиг. 17.10, а).
Фиг. 17.10. Цепь с источником напряжения и индуктивностью (а) и аналогичная ей механическая система (б).
В такой цепи ток I связан с напряжением V соотношением
(17.35)
Это соотношение имеет форму уравнения движения Ньютона для частицы в одном измерении. Поэтому мы можем исследовать его по принципу «одинаковые уравнения имеют одинаковые решения». Таким образом, если поставить в соответствие напряжение V от внешнего источника приложенной внешней силе F, а ток I в катушке скорости v частицы, то коэффициент индукции катушки ℒ будет соответствовать массе m частицы[21] (фиг. 17.10, б).
Таблица 17.1. СОПОСТАВЛЕННЫЕ ВЕЛИЧИНЫ
§ 8. Индуктивность и магнитная энергия
Продолжая аналогию предыдущего параграфа, мы отметили в таблице, что в соответствии с механическим импульсом p=mv (скорость изменения которого равна приложенной силе) должна существовать аналогичная величина, равная ℒI, скорость изменения которой V. Разумеется, мы не имеем права говорить, что ℒI — это настоящий импульс цепи; на самом деле это вовсе не так. Вся цепь может быть неподвижна и вообще не иметь импульса. Просто ℒI аналогично импульсу mv в смысле удовлетворения аналогичным уравнениям. Точно так же кинетической энергии 1/2mv2 здесь соответствует аналогичная величина 1/2ℒI2. Но здесь нас ждет сюрприз. Величина 1/2ℒI2 — действительно есть энергия и в электрическом случае. Так получается потому, что работа, совершаемая в единицу времени над индуктивностью, равна VI, а в механической системе она равна Fv — соответствующей величине. Поэтому в случае энергии величины не только соответствуют друг другу в математическом смысле, но имеют еще и одинаковое физическое значение.
Мы можем проследить это более подробно. В (17.16) мы нашли, что электрическая работа в единицу времени за счет сил индукции есть произведение э. д. с. и тока:
Подставляя вместо ℰ ее выражение через токи из (17.34), имеем
(17.36)
Интегрируя это уравнение, находим, что энергия, которая требуется от внешнего источника, чтобы преодолеть э. д. с. самоиндукции и создать ток[22] (что должно равняться накопленной энергии U), равна
(17.37)
Поэтому энергия, накопленная в индуктивности, равна 1/2ℒI2. Применяя те же рассуждения к паре катушек, изображенных на фиг. 17.8 или 17.9, мы можем показать, что полная электрическая энергия системы дается выражением
(17.38)
В самом деле, начиная с тока I=0 в обеих катушках, можно вначале включить ток I1 в катушке 1, оставляя I2=0. Совершенная работа как раз равна 1/2ℒ1I12. Но теперь, включая I2, мы совершаем не только работу 1/2ℒ2I22 против э. д. с. в цепи 2, но еще и добавочное количество работы —MI1I2, которая есть интеграл от э. д. с. M(dI2/dt) в цепи 1, умноженный на теперь уже постоянный ток I1 в этой цепи.
Пусть теперь нам нужно найти силу между любыми двумя катушками, по которым идут токи I1 и I2. Прежде всего мы могли бы использовать принцип виртуальной работы, взяв вариацию от энергии (17.38). Мы должны помнить, конечно, что при изменении относительного положения катушек единственной меняющейся величиной является коэффициент взаимной индукции M. Тогда мы могли бы записать уравнение виртуальной работы в виде
Это уравнение ошибочно, потому что, как мы видели раньше, в него включено только изменение энергии двух катушек и не включена энергия источников, которые поддерживают постоянными значения токов I1 и I2. Мы понимаем теперь, что эти источники должны поставлять энергию для компенсации индуцированных э. д. с. в катушках во время их движения. Если мы хотим правильно применить принцип виртуальной работы, то должны включить и эти энергии. Но мы видели, что можно сделать и короче — использовать принцип виртуальной работы, помня, что полная энергия — это взятая с обратным знаком энергия Uмех (то что мы называем «механической энергией»). Поэтому силу можно записать в виде
(17.39)
Тогда сила между катушками дается выражением
Воспользуемся выражением (17.38) для энергии системы из двух катушек, чтобы показать, какое интересное неравенство существует между взаимной индукцией M и коэффициентами самоиндукции ℒ1 и ℒ2 двух катушек. Ясно, что энергия двух катушек должна быть положительной. Если мы начинаем с нулевых токов в обеих катушках и увеличиваем эти токи до некоторых значений, то тем самым мы увеличиваем энергию всей системы. В противном случае токи самопроизвольно возрастут и будут отдавать энергию остальному миру — вещь невероятная! Далее, наше выражение для энергии (17.38) можно с таким же успехом записать в следующей форме:
(17.40)
Это просто алгебраическое преобразование. Эта величина должна быть всегда положительна при любых значениях I1 и I2. В частности, она должна быть положительна, когда I2 вдруг примет особое значение:
(17.41)
Но при таком значении I2 первое слагаемое в (17.40) равно нулю. Если энергия положительна, то последнее слагаемое в (17.40) должно быть больше нуля. Мы получаем требование, что
Таким образом, мы доказали общее соотношение, что величина взаимной индукции M любых двух катушек обязательно меньше или равна геометрическому среднему двух коэффициентов самоиндукции (сам M может быть положителен или отрицателен в зависимости от выбора знаков для токов I1 и I2):
(17.42)
Соотношение между M и коэффициентами самоиндукции обычно записывают в виде
(17.43)
Постоянную k называют коэффициентом связи. Если большая часть потока от одной катушки проходит через другую катушку, то коэффициент связи близок к единице; мы говорим, что катушки «сильно связаны». Если катушки значительно удалены друг от друга или же все устроено так, что взаимное проникновение их потоков очень мало, коэффициент связи становится близок к нулю, а коэффициент взаимной индукции очень мал.
Для вычисления взаимной индукции двух катушек мы дали формулу (17.30), которая представляет собой двойной контурный интеграл по обеим цепям. Мы могли бы подумать, что та же формула применима и для вывода коэффициента самоиндукции одной катушки, если оба контурных интегрирования проводить по одной и той же катушке. Однако это не так, потому что при интегрировании по двум катушкам знаменатель r12 под знаком интеграла стремится к нулю, когда два элемента длины находятся в одной точке. Коэффициент самоиндукции, получаемый из этой формулы, оказывается бесконечным. Происходит это потому, что формула наша — приближенная, и справедлива она только для поперечных сечений проводов в обеих цепях, малых по сравнению с расстоянием от одной цепи до другой. Ясно, что это приближение для отдельной катушки не годится. На самом деле оказывается, что индуктивность отдельной катушки стремится логарифмически к бесконечности, когда диаметр ее проволоки становится все меньше и меньше.
Значит, мы должны поискать другой способ вычисления коэффициента самоиндукции одной катушки. При этом надо учесть распределение токов внутри проводника, потому что его размеры — важный параметр. Но мы не будем считать полную индуктивность, а сосчитаем лишь ту ее часть, которая связана с расположением проводников, и не будем учитывать часть, связанную с распределением токов. Пожалуй, самый простой способ найти такую индуктивность — это использовать магнитную энергию. Ранее, в гл. 15, § 3, мы нашли выражение для магнитной энергии распределения стационарных токов:
(17.44)
Если известно распределение плотности тока j, то можно вычислить векторный потенциал А, а затем, оценив интеграл (17.44), получить энергию. Эта энергия равна магнитной энергии самоиндукции, 1/2ℒI2. Приравнивая их, получаем формулу для индуктивности:
(17.45)
Мы, конечно, ожидаем, что индуктивность есть число, зависящее только от геометрии цепи, а не от тока I в цепи. Формула (17.45) действительно приводит к такому результату, потому что интеграл в ней пропорционален квадрату тока — ток входит один раз от j и еще раз от векторного потенциала А. Интеграл, деленный на I2, зависит от геометрии цепи, но не от тока I.
Выражению (17.44) для энергии распределения токов можно придать совсем другую форму, иногда более удобную для вычислений. Кроме того, как мы увидим позже, именно эта форма важна, потому что она справедлива в более общем случае. В формуле (17.44) и А и j можно связать с В, поэтому можно надеяться, что энергия выразится через магнитное поле — точно так же, как нам удалось связать электростатическую энергию с электрическим полем. Начнем с подстановки ε0c2∇×B вместо j. Заменить А мы не можем с той же легкостью, потому что нельзя обратить B=∇×A, чтобы выразить А через В. Можно только записать
(17.46)
Любопытно, что при некоторых ограничениях этот интеграл можно превратить в
(17.47)
Чтобы увидеть это, выпишем подробно типичный множитель. Предположим, что мы взяли множитель (∇×B)zAz, входящий в интеграл (17.46). Выписывая полностью компоненты, получаем
(имеются, конечно, еще два интеграла того же сорта). Проинтегрируем теперь первый множитель по х, интегрируя по частям, т. е.
Теперь предположим, что наша система (имея в виду источники и поля) — конечная, так что, когда мы уходим на большие расстояния, все поля стремятся к нулю. Тогда при интегрировании по всему пространству подстановка ByAz на пределах интеграла дает нуль. У нас остается только В (∂Az/∂x); это, очевидно, есть часть от By(∇×A)y и, значит, от В·(∇×A). Если вы выпишите остальные пять множителей, то увидите, что (17.47) на самом деле эквивалентно (17.46).
А теперь мы можем заменить (∇×A) на В и получить
(17.48)
Мы выразили энергию в магнитостатическом случае только через магнитное поле. Выражение тесно связано с формулой, которую мы нашли для электростатической энергии:
(17.49)
Эти две энергетические формулы выделены потому, что иногда ими удобнее пользоваться. Обычно есть и более важная причина: оказывается, что для динамических полей (когда Е и В меняются со временем) оба выражения (17.48) и (17.49) остаются справедливыми, тогда как другие данные нами формулы для электрической и магнитной энергий перестают быть верными — они годятся лишь для статических полей.
Если нам известно магнитное поле В одной катушки, мы можем найти коэффициент самоиндукции, приравнивая выражение для энергии (17.48) и 1/2ℒI2. Посмотрим, что получится в результате для индуктивности длинного соленоида. Раньше мы видели, что магнитное поле в соленоиде однородно и В снаружи равно нулю. Величина поля внутри равна В=nI/ε0с2, где n — число витков на единицу длины намотки, а I — ток. Если радиус катушки r, а длина ее L (мы считаем, что L очень велика, чтобы можно было пренебречь краевыми эффектами, т. е. L≫r), то внутренний объем равен πr2L. Следовательно, магнитная энергия равна
что равно 1/2ℒI2. Или
(17.50)
Глава 18 УРАВНЕНИЯ МАКСВЕЛЛА
§ 1. Уравнения Максвелла
В этой главе мы вернемся к полной системе из четырех уравнений Максвелла, которые мы приняли как отправной пункт в гл. 1 (вып. 5). До сих пор мы изучали уравнения Максвелла небольшими частями, кусочками; теперь пора уже прибавить последнюю часть и соединить их все воедино. Тогда мы будем иметь полное и точное описание электромагнитных полей, которые могут изменяться со временем произвольным образом. Все сказанное в этой главе, если даже оно и будет противоречить чему-то сказанному ранее, правильно, а то, что говорилось ранее в этих случаях, неверно, потому что все высказанное ранее применялось к таким частным случаям, как, скажем, случаи постоянного тока или фиксированных зарядов. Хотя всякий раз, когда мы записывали уравнение, мы весьма старательно указывали ограничения, легко позабыть все эти оговорки и слишком хорошо заучить ошибочные уравнения. Теперь мы можем изложить всю истину, без всяких ограничений (или почти без них).
Все уравнения Максвелла записаны в табл. 18.1 как словесно, так и в математических символах. Тот факт, что слова эквивалентны уравнениям, должен быть сейчас вам уже знаком — вы должны уметь переводить одну форму в другую и обратно.
Таблица 18.1. КЛАССИЧЕСКАЯ ФИЗИКА
Первое уравнение — дивергенция Е равна плотности заряда, деленной на ε0,— правильно всегда. Закон Гаусса справедлив всегда как в динамических, так и в статических полях. Поток Е через любую замкнутую поверхность пропорционален заключенному внутри заряду. Третье уравнение — соответствующий общий закон для магнитных полей. Поскольку магнитных зарядов нет, поток В через любую замкнутую поверхность всегда равен нулю. Второе уравнение ∇×E=-∂B/∂t — это закон Фарадея, и обсуждался он в последних двух главах. Он тоже верен в общем случае. Но последнее уравнение содержит нечто новое. Раньше мы встречались только с частью его, которая годится для постоянных токов. В этом случае мы говорили, что ротор В равен j/ε0c2, но правильное общее уравнение имеет новый член, который был открыт Максвеллом.
До появления работы Максвелла известные законы электричества и магнетизма были такими же, как те, что мы изучали в гл. 3—14 (вып. 5) и гл. 15—17. В частности, уравнение для магнитного поля постоянных токов было известно только в виде
(18.1)
Максвелл начал с рассмотрения этих известных законов и выразил их в виде дифференциальных уравнений, так же как мы поступили здесь. (Хотя символ ∇ еще не был придуман, впервые, в основном благодаря Максвеллу, стала очевидной важность таких комбинаций производных, которые мы сегодня называем ротором и дивергенцией.) Максвелл тогда заметил, что в уравнении (18.1) есть нечто странное. Если взять дивергенцию от этого уравнения, то левая сторона обратится в нуль, потому что дивергенция ротора всегда равна нулю. Таким образом, это уравнение требует, чтобы дивергенция j также была равна нулю. Но если дивергенция j равна нулю, то полный ток через любую замкнутую поверхность тоже равен нулю.
Полный ток через замкнутую поверхность равен уменьшению заряда внутри этой поверхности. Он наверняка не может быть всегда равен нулю, так как мы знаем, что заряды могут перемещаться из одного места в другое. Уравнение
(18.2)
фактически есть наше определение j. Это уравнение выражает самый фундаментальный закон — сохранение электрического заряда: любой поток заряда должен поступать из какого-то запаса. Максвелл заметил эту трудность и, чтобы избежать ее, предложил добавить ∂E/∂t в правую часть уравнения (18.1); тогда он и получил уравнение IV в табл. 18.1:
Во времена Максвелла еще не привыкли мыслить в терминах абстрактных полей. Максвелл обсуждал свои идеи с помощью модели, в которой вакуум был подобен упругому телу. Он пытался также объяснить смысл своего нового уравнения с помощью механической модели. Теория Максвелла принималась очень неохотно, во-первых, из-за модели, а, во-вторых, потому, что вначале не было экспериментального подтверждения. Сейчас мы лучше понимаем, что дело в самих уравнениях, а не в модели, с помощью которой они были получены. Мы можем только задать вопрос, правильны ли эти уравнения или они ошибочны. Ответ дает эксперимент. И уравнения Максвелла были подтверждены в бессчетных экспериментах. Если мы отбросим все строительные леса, которыми пользовался Максвелл, чтобы построить уравнения, мы придем к заключению, что прекрасное здание, созданное Максвеллом, держится само по себе. Он свел воедино все законы электричества и магнетизма и создал законченную и прекрасную теорию.
Давайте покажем, что добавочный член имеет тот самый вид, который требуется, чтобы преодолеть обнаруженную Максвеллом трудность. Взяв дивергенцию его уравнения (IV в табл. 18.1), мы должны получить, что дивергенция правой части равна нулю:
(18.3)
Во втором слагаемом можно переставить порядок дифференцирования по координатам и времени, так что уравнение может быть переписано в виде
(18.4)
Но, согласно первому из уравнений Максвелла, дивергенция Е равна ρ/ε0. Подставляя это равенство в (18.4), мы придем к уравнению (18.2), которое, как мы знаем, правильно. И наоборот, если мы принимаем уравнения Максвелла (а мы принимаем их потому, что никто никогда не обнаружил эксперимента, который опроверг бы их), мы должны прийти к выводу, что заряд всегда сохраняется.
Законы физики не дают ответа на вопрос: «Что случится, если заряд внезапно возникнет в этой точке, какие будут при этом электромагнитные эффекты?». Ответ дать нельзя, потому что наши уравнения утверждают, что такого не происходит. Если бы это случилось, нам понадобились бы новые законы, но мы не можем сказать, какими бы они были. Нам не приходилось наблюдать, как ведет себя мир без сохранения заряда. Согласно нашим уравнениям, если вы внезапно поместите заряд в некоторой точке, вы должны принести его туда откуда-то еще. В таком случае мы можем говорить о том, что произошло.
Когда мы добавили новый член в уравнение для ротора Е, мы обнаружили, что им описывается целый новый класс явлений. Мы увидим также, что небольшая добавка Максвелла к уравнению для ∇×B имеет далеко идущие последствия. Мы затронем лишь некоторые из них в этой главе.
§ 2. Что дает добавка
В качестве нашего первого примера рассмотрим, что происходит со сферически симметричным радиальным распределением тока. Представим себе маленькую сферу с нанесенным на ней радиоактивным веществом. Это радиоактивное вещество испускает наружу заряженные частицы. (Мы можем представить также большой кусок желе с маленьким отверстием в центре, в которое с помощью шприца впрыскиваются какие-то заряды и из которого заряды медленно просачиваются.) В любом случае мы имели бы ток, который повсюду направлен по радиусу наружу. Будем считать, что величина его одинакова во всех направлениях.
Пусть полный заряд внутри сферы произвольного радиуса r есть Q(r). Если плотность радиального тока при таком же радиусе равна j(r), то уравнение (18.2) требует, чтобы Q уменьшалось со скоростью
(18.5)
Спросим теперь о магнитном поле, создаваемом токами в этом случае. Предположим, мы начертили какую-то петлю Г на сфере радиуса r (фиг. 18.1). Сквозь петлю проходит какой-то ток, поэтому можно ожидать, что магнитное поле циркулирует в направлении, указанном на фигуре.
Фuг 18.1. Каково магнитное поле сферически симметричного тока?
И сразу возникает затруднение. Как может поле В иметь какое-то особое направление на сфере? При другом выборе петли Г мы бы заключили, что ее направление прямо противоположно указанному. Поэтому возможна ли какая-либо циркуляция В вокруг токов?
Нас спасают уравнения Максвелла. Циркуляция В зависит не только от полного тока, проходящего сквозь петлю Г, но и от скорости изменения со временем электрического потока через нее. Должно быть так, чтобы эти две части как раз погашались. Посмотрим, получается ли это.
Электрическое поле на расстоянии r должно быть равно Q(r)/4πε0r2, пока, как мы предположили, заряд распределен симметрично. Поле радиально, и скорость его изменения тогда равна
(18.6)
Сравнивая это с (18.5), мы видим, что для любого расстояния
(18.7)
В уравнении IV (табл. 18.1) оба члена от источника погашаются и ротор В равен всегда нулю. Магнитного поля в нашем примере нет.
В качестве второго нашего примера рассмотрим магнитное поле провода, используемого для зарядки плоского конденсатора (фиг. 18.2).
Фиг. 18.2. Магнитное поле вблизи заряжаемого конденсатора.
Если заряд Q на пластинах со временем изменяется (но не слишком быстро), ток в проводах равен dQ/dt. Мы ожидаем, что этот ток создаст магнитное поле, которое окружает провод. Конечно, ток вблизи провода должен создавать обычное магнитное поле, оно не может зависеть от того, где идет ток.
Предположим, мы выбрали петлю Г1 в виде окружности с радиусом r (фиг. 18.2, а). Контурный интеграл от магнитного поля будет равен току I, деленному на ε0с2. Мы имеем
(18.8)
Все это мы получили бы для постоянного тока, но результат не изменится, если учесть добавку Максвелла, потому что для плоской поверхности S внутри окружности электрического поля нет (считая, что провод очень хороший проводник). Поверхностный интеграл от ∂E/∂t равен нулю.
Предположим, однако, что теперь мы медленно продвигаем кривую Г1 вниз. Мы будем получать всегда тот же самый результат до тех пор, пока не нарисуем кривую вровень с пластинами конденсатора. Тогда ток I будет стремиться к нулю. Исчезнет ли при этом магнитное поле? Это было бы очень странно. Давайте поглядим, что говорит уравнение Максвелла для кривой Г, которая представляет собой окружность радиуса r, плоскость которой проходит между пластинами конденсатора (фиг. 18.2, б). Контурный интеграл от В вокруг Г есть 2πrB. Он должен быть равен производной по времени потока Е, проходящего сквозь плоскую поверхность круга S2. Этот поток Е, как мы знаем из закона Гаусса, должен быть равен произведению 1/ε0 на заряд Q на одной из пластин конденсатора. Мы имеем
(18.9)
Это очень хорошо. Результат тот же, что мы нашли в (18.8). Интегрирование по меняющемуся электрическому полю дает то же магнитное поле, что и интегрирование по току в проводе. Конечно, как раз об этом и говорит уравнение Максвелла. Легко видеть, что так должно быть всегда, если применить наши рассуждения к двум поверхностям S1 и S'1, ограниченным одной и той же окружностью Г1 на фиг. 18.2, б. Сквозь S1 проходит ток I, но нет электрического потока. Сквозь S1 нет тока, но есть электрический поток, меняющийся со скоростью I/ε0. То же поле В получится, если мы применим уравнение IV (табл. 18.1) к каждой поверхности.
Из нашего обсуждения добавки, введенной Максвеллом, у вас могло сложиться впечатление, что она добавляет немного — просто подправляет уравнения в согласии с тем, что мы уже ожидали. Это верно, пока мы рассматриваем уравнение IV само по себе, ничего особенно нового не появляется. Слова само по себе, однако, весьма важны. Небольшое изменение, введенное Максвеллом в уравнение IV в сочетании с другими уравнениями, на самом деле дает много нового и важного. Но прежде чем заняться этим вопросом, поговорим подробнее в табл. 18.1.
§ 3. Все о классической физике
В табл. 18.1 сведено все, что знала фундаментальная классическая физика, т. е. та физика, которая была известна до 1905 г. В одной этой таблице есть все. С помощью этих уравнений можно понять все достижения классической физики.
Прежде всего мы имеем уравнения Максвелла, записанные как в расширенном виде, так и в короткой математической форме. Затем есть сохранение заряда, которое даже записано в скобках, потому что сохранение заряда можно вывести из имеющихся полных уравнений Максвелла. Так что в таблице имеются даже небольшие излишки. Дальше мы записали закон для силы, поскольку все имеющиеся электрические и магнитные поля ничего не говорят нам до тех пор, пока мы не знаем, как они действуют на заряды. Однако, зная Е и В, мы можем найти силу, действующую на объект с зарядом q, который движется со скоростью v. Наконец, имеющаяся сила ничего не говорит нам, пока мы не знаем, что происходит, когда сила ускоряет что-то; нам необходимо знать закон движения, который говорит, что сила равна скорости изменения импульса. (Помните? Об этом говорилось в начале курса.) Мы даже включили эффекты теории относительности, записав импульс в виде р=m0v√(1-v2/c2).
Но если мы действительно хотим законченности, нам следует добавить еще один закон — закон тяготения Ньютона, и мы поставили его в конце.
Итак, в одной небольшой таблице мы собрали все фундаментальные законы классической физики, даже хватило места выписать их словами и еще с некоторым излишком. Это великий момент. Мы покорили большую высоту. Мы на вершине К-2[23], мы почти подготовлены покорить теперь Эверест, т. е. квантовую механику.
В основном мы пытались научиться понимать эти уравнения. А теперь, когда мы собрали их воедино, мы собираемся разобраться, что означают эти уравнения, что нового скажут они о том, чего мы еще не поняли. Мы много потрудились, чтобы вскарабкаться к этой точке. Это потребовало больших усилий, а теперь мы собираемся начать приятное путешествие — спуск с горы в долину, там мы увидим все, чего мы достигли.
§ 4. Передвигающееся поле
А теперь о новых следствиях. Они возникают из сопоставления всех уравнений Максвелла. Сначала давайте посмотрим, что произошло бы в особенно простом случае. Предположим, что изменяется только одна координата у всех величин, т. е. рассмотрим задачу одного измерения.
Случай этот показан на фиг. 18.3.
Фиг. 18.3. Бесконечная заряженная плоскость неожиданно приводится в поступательное движение. Возникают магнитное и электрическое поля, распространяющиеся от плоскости с постоянной скоростью.
Перед нами заряженный лист, помещенный на плоскости yz. Сначала он неподвижен, а затем мгновенно приобретает скорость и в направлении у и движется с этой постоянной скоростью. Вас может беспокоить присутствие такого «бесконечного» ускорения, но фактически это не имеет значения; просто представьте себе, что скорость достигает значения и очень быстро. Итак, мы внезапно получаем поверхностный ток J (J — ток на единицу ширины в z-направлении). Чтобы упростить проблему, предположим, что имеется еще неподвижный лист, заряженный противоположно и наложенный на плоскость yz, так что электростатические эффекты отсутствуют. Представим себе также (хотя на фигуре мы показали лишь то, что происходит в конечной области), что лист простирается до бесконечности в направлениях ±у и ±z. Другими словами, здесь мы имеем случай, когда тока нет, а затем внезапно появляется однородный лист с током. Что же произойдет?
Мы знаем, что, когда имеется лист с током в положительном y-направлении, возникнет магнитное поле, направленное в отрицательном z-направлении при х>0 и в положительном z-направлении при х<0. Мы могли бы найти величину В, используя тот факт, что контурный интеграл от магнитного поля будет равен току на ε0с2. Мы получили бы, что В=J/2ε0с2 (поскольку ток I в полосе шириной w равен Jw, а контурный интеграл от В есть 2Вw).
Так мы определяем поле вблизи листа для малых значений х, но, поскольку мы считаем лист бесконечным, хотелось бы получить с помощью тех же рассуждений магнитное поле подальше (для больших значений х). Однако это означало бы, что в момент, когда мы включаем ток, магнитное поле внезапно изменяется повсюду от нуля до конечной величины. Но погодите! При внезапном изменении магнитного поля возникают огромные электрические эффекты. (Как бы оно ни менялось, электрические эффекты возникнут.) Так что в результате движения заряженного листа создается меняющееся магнитное поле и, следовательно, должны возникнуть электрические эффекты. Если электрические поля образовались, они должны начинаться с нуля и меняться к какому-то значению. Возникнет некая производная ∂E/∂t, которая будет вносить вклад вместе с током J в создание магнитного поля. Так разные уравнения зацепляются друг за друга, и мы должны попытаться найти решения для всех полей сразу.
Рассматривая уравнения Максвелла порознь, нелегко сразу получить решение. Поэтому сначала мы сообщим вам ответ, а затем уже проверим, действительно ли оно удовлетворяет уравнениям. Ответ: Поле В, которое мы вычислили, на самом деле создается прямо вблизи листа с током (для малых х). Так и должно быть, потому что если мы проведем крошечную петлю вокруг листа, то в ней не будет места для прохождения электрического потока. Но поле В подальше (для больших х) сначала равно нулю. Оно в течение некоторого времени остается нулевым, а затем внезапно включается. Короче говоря, мы включаем ток и немедленно вблизи него включается магнитное поле с постоянным значением В; затем включенное поле В распространяется от области источника. Через некоторое время появляется однородное магнитное поле всюду, вплоть до некоторого значения х, а за ним оно равно нулю. Вследствие симметрии оно распространяется как в положительном, так и в отрицательном x-направлении.
Поле Е делает то же самое. До момента t=0 (когда мы включаем ток) поле повсюду равно нулю. Затем, спустя время t, как Е, так и В постоянны вплоть до расстояния х=vt, а за ним равны нулю. Поля продвигаются вперед, подобно приливной волне, причем фронт их движется с постоянной скоростью, которая оказывается равной с, но пока мы будем называть ее v. Изображение зависимости величины Е или В от х (как они кажутся в момент t) показано на фиг. 18.4, а.
Фиг. 18.4. Зависимость величины В (или E) от х. а — спустя время t после начала движения заряженной плоскости; б — поля от заряженной плоскости, начавшей двигаться в момент t=T в сторону отрицательных у; в — сумма а и б.
Если снова посмотреть на фиг. 18.3 в момент t, то мы увидим, что область между x=±vt «занята» полями, но они еще не достигли области за ней. Мы снова подчеркиваем — мы предполагаем, что лист заряжен, а следовательно, поля Е и В простираются бесконечно далеко в у- и z-направлениях. (Мы не можем изобразить бесконечный лист, поэтому мы показываем лишь то, что происходит в конечной области.)
Теперь мы хотим проанализировать количественно то, что происходит. Чтобы сделать это, рассмотрим два поперечных разреза: вид сверху, если смотреть вниз вдоль оси у (фиг. 18.5), и вид сбоку, если смотреть назад вдоль оси z (фиг. 18.6).
Фиг. 18.5. То же, что на фиг. 18.3 (вид сверху).
Фиг. 18.6. То же, что на фиг. 18.3 (вид сбоку).
Начнем с вида сбоку. Мы видим заряженный лист, движущийся вверх; магнитное поле направлено внутрь страницы для +x и от страницы для -х, а электрическое поле направлено вниз всюду, вплоть до x=± vt.
Посмотрим, согласуются ли такие поля с уравнениями Максвелла. Сначала нарисуем одну из тех петель, которыми мы пользовались для вычисления контурного интеграла, скажем прямоугольник Г2 на фиг. 18.6. Заметьте, что одна сторона прямоугольника проходит в области, где есть поля, а другая — в области, до которой поля еще не дошли. Через эту петлю проходит какой-то магнитный поток. Если он изменяется, должна появиться э. д. с. вдоль петли. Если волновой фронт движется, мы будем иметь меняющийся магнитный поток, поскольку поверхность, внутри которой существует поле В, непрерывно увеличивается со скоростью v. Поток внутри Г2 равен произведению В на ту часть поверхности внутри Г2, где есть магнитное поле. Скорость изменения потока (поскольку величина В постоянна) равна величине поля, умноженной на скорость изменения поверхности. Скорость изменения поверхности найти легко. Если ширина прямоугольника Г2 равна L, то поверхность, в которой В существует, меняется как LvΔt за отрезок времени Δt (см. фиг. 18.6). Скорость изменения потока тогда равна BLv. По закону Фарадея она должна быть равна контурному интегралу от Е вокруг Г2, который есть просто EL. Мы получаем равенство
(18.10)
Таким образом, если отношение Е к В равно v, то рассматриваемые нами поля будут удовлетворять уравнению Фарадея.
Но это не единственное уравнение; у нас есть еще одно, связывающее Е и В:
(18.11)
Чтобы применить это уравнение, посмотрим на вид сверху, изображенный на фиг. 18.5. Мы уже видели, что это уравнение дает нам значение В вблизи заряженного листа. Кроме того, для любой петли, нарисованной вне листа, но позади волнового фронта, нет ни ротора В, ни j или меняющегося поля Е, так что уравнение там справедливо. А теперь посмотрим, что происходит в петле Г1, которая пересекает волновой фронт, как показано на фиг. 18.5. Здесь нет токов, поэтому уравнение (18.11) можно записать в интегральной форме так:
(18.12)
Контурный интеграл от В есть просто произведение В на L. Скорость изменения потока Е возникает только благодаря продвигающемуся волновому фронту. Область внутри Г1, где Е не равно нулю, увеличивается со скоростью vL. Правая сторона (18.12) тогда равна vLE. Уравнение это приобретает вид
(18.13)
Мы имеем решение, когда поля В и Е постоянны за фронтом, причем оба направлены под прямыми углами к направлению, в котором движется фронт, и под прямыми углами друг к другу. Уравнения Максвелла определяют отношение Е к В. Из (18.10) и (18.13) получаем
Но одну минутку! Мы нашли два разных выражения для отношения Е/В. Может ли такое поле, как мы описываем, действительно существовать? Имеется лишь одна скорость v, для которой оба уравнения могут быть справедливы, а именно v=с. Волновой фронт должен передвигаться со скоростью с. Вот пример, когда электрическое возмущение от тока распространяется с определенной конечной скоростью с.
А теперь спросим, что произойдет, если мы внезапно остановим заряженный лист, после того как он двигался в течение короткого времени Т? Увидеть, что случится, можно с помощью принципа суперпозиции. У нас был ток, равный нулю, а затем его внезапно включали. Мы знаем решение для этого случая. Теперь мы собираемся добавить другой ряд полей. Мы берем другой заряженный лист и внезапно начинаем его двигать в противоположном направлении с той же скоростью, только спустя время Т после начала движения первого листа. Полный ток от двух листов вместе сначала равен нулю, потом он включается в течение времени Т, затем выключается снова, потому что оба тока погашаются. Так мы получаем прямоугольный «импульс» тока.
Новый отрицательный ток создает такие же поля, как и положительный, но с обратными знаками и, разумеется, с запаздыванием во времени Т. Волновой фронт по-прежнему движется со скоростью с. В момент времени t он достигает расстояния x=±c(t-Т) (см. фиг. 18.4, б). Итак, мы имеем два «куска» поля, перемещающихся со скоростью с (см. фиг. 18.4, а и б). Соединенные поля будут такими, как показано на фиг. 18.4, в. Для х>сt поля равны нулю, между х=с(t-Т) и x=ct они постоянны (со значениями, которые мы нашли выше), и для x<c(t-Т) они снова равны нулю.
Короче говоря, мы получаем маленький кусочек поля толщиной сТ, который покинул заряженный лист и передвигается через все пространство сам по себе. Поля «оторвались»; они распространяются свободно в пространстве и больше не связаны каким-то образом с источником. Куколка превратилась в бабочку!
Как же эти совокупности электрического и магнитного полей могут сохранять сами себя? Ответ: За счет сочетания эффектов из закона Фарадея ∇×E=-∂В/∂t и нового члена, добавленного Максвеллом c2∇×B=∂E/∂t. Они не могут не сохранять себя. Предположим, что магнитное поле исчезло бы. Тогда появилось бы меняющееся магнитное поле, которое создавало бы электрическое поле. Если бы это электрическое поле попыталось исчезнуть, то изменяющееся электрическое поле создало бы магнитное поле снова. Следовательно, за счет непрерывного взаимодействия — перекачивания туда и обратно от одного поля к другому — они должны сохраняться вечно. Они не могут исчезнуть[24]. Они сохраняются, вовлеченные в общий танец — одно поле создает другое, а второе создает первое,— распространяясь все дальше и дальше в пространстве.
§ 5. Скорость света
У нас есть волна, которая уходит от материального источника и движется со скоростью с (это скорость света). Вернемся немного назад. Исторически не было известно, что коэффициент c в уравнениях Максвелла тот же, что и скорость распространения света. Это была просто константа в уравнениях. Мы назвали ее с c самого начала, так как знали, что в конце концов должно получиться. Мы не думаем, что было бы разумнее сначала заставить вас выучить формулы с разными константами, а затем вернуться обратно и подставить с повсюду, где оно должно стоять. С точки зрения электричества и магнетизма, однако, мы прямо начинаем с двух констант ε0 и с2, которые появляются в уравнениях электростатики и магнитостатики:
(18.14)
и
(18.15)
Если взять любое произвольное определение единицы заряда, можно экспериментально определить постоянную ε0, входящую в уравнение (18.14), скажем, измеряя силу между двумя неподвижными единичными зарядами по закону Кулона. Мы должны также определить экспериментально постоянную ε0с2, которая появляется в уравнении (18.15), что можно сделать, скажем, измерив силу между двумя единичными токами. (Единичный ток означает единичный заряд в секунду.) Отношение этих двух экспериментальных постоянных есть с2 — как раз другая «электромагнитная постоянная».
Заметим теперь, что постоянная с2 получается одна и та же независимо от того, какова выбранная наша единица заряда. Если мы выберем «заряд» в два раза больше (скажем, удвоенный заряд протона), то в нашей «единице» заряда ε0 должна уменьшиться в четыре раза. Когда мы пропускаем два таких «единичных» тока по двум проводам, в каждом проводе будет в два раза больше «зарядов» в секунду, так что силы между двумя проводами будут в четыре раза больше. Постоянная ε0с2 должна уменьшиться в четыре раза. Но отношение ε0с2/ε0 не меняется.
Следовательно, непосредственно из экспериментов с зарядами и токами мы находим число с2, которое оказывается равным квадрату скорости распространения электромагнитных возбуждений. Из статических измерений (измеряя силы между двумя единичными зарядами и между двумя единичными токами) мы находим, что с=3,00·108 м/сек. Когда Максвелл впервые проделал это вычисление со своими уравнениями, он сказал, что совокупность электрического и магнитного полей будет распространяться с этой скоростью. Он отметил также таинственное совпадение — эта скорость была равна скорости света. «Мы едва ли можем избежать заключения,— сказал Максвелл,— что свет — это поперечное волнообразное движение той же самой среды, которая вызывает электрические и магнитные явления».
Так Максвелл совершил одно из великих обобщений физики! До него был свет, было электричество и был магнетизм. Причем два последних явления были объединены экспериментальными работами Фарадея, Эрстеда и Ампера. Потом внезапно свет не стал уже больше «чем-то еще», а был электричеством и магнетизмом в новой форме, небольшими кусками электрического и магнитного полей, которые распространяются в пространстве самостоятельно.
Мы обращали ваше внимание на некоторые черты этого особого решения, которые, однако, справедливы для любой электромагнитной волны: магнитное поле перпендикулярно направлению движения фронта волны; электрическое поле также перпендикулярно направлению движения фронта волны; и два вектора Е и В перпендикулярны друг другу. Далее, величина электрического поля Е равна произведению с на величину магнитного поля В. Эти три факта — что оба поля поперечны направлению распространения, что В перпендикулярно Е и что Е=сВ — верны вообще для любой электромагнитной волны. Наш частный случай — хороший пример, он показывает все основные свойства электромагнитных волн.
§ 6. Решение уравнений Максвелла; потенциалы и волновое уравнение
Теперь стоило бы заняться немного математикой; мы запишем уравнения Максвелла в более простой форме. Вы, пожалуй, сочтете, что мы усложняем их, но если вы наберетесь терпения, то внезапно обнаружите их большую простоту. Хотя вы уже вполне привыкли к каждому из уравнений Максвелла, имеется все же много частей, которые стоит соединить воедино. Вот как раз этим мы и займемся.
Начнем с ∇·В=0 — простейшего из уравнений. Мы знаем, что оно подразумевает, что В — есть ротор чего-то. Поэтому, если вы записали
(18.16)
то считайте, что уже решили одно из уравнений Максвелла. (Между прочим, заметьте, что оно остается верно для другого вектора А', если A'=A+∇ψ, где ψ— любое скалярное поле, потому что ротор ∇ψ — нуль и В — по-прежнему то же самое. Мы говорили об этом раньше.)
Теперь разберем закон Фарадея ∇×E=-∂B/∂t, потому что он не содержит никаких токов или зарядов. Если мы запишем В как ∇×A и продифференцируем по t, то сможем переписать закон Фарадея в форме
Поскольку мы можем дифференцировать сначала либо по времени, либо по координатам, то можно написать это уравнение также в виде
(18.17)
Мы видим, что Е+∂A/∂t — это вектор, ротор которого равен нулю. Поэтому такой вектор есть градиент чего-то. Когда мы занимались электростатикой, у нас было ∇×E=0, и мы тогда решили, что Е — само градиент чего-то. Пусть это градиент от -φ (минус для технических удобств). То же самое сделаем и для E+∂A/∂t; мы полагаем
(18.18)
Мы используем то же обозначение φ, так что в электростатическом случае, когда ничто не меняется со временем и ∂A/∂t исчезает, Е будет нашим старым -∇φ. Итак, закон Фарадея можно представить в форме
(18.19)
Мы уже решили два из уравнений Максвелла и нашли, что для описания электромагнитных полей Е и В нужны четыре потенциальные функции: скалярный потенциал φ и векторный потенциал А, который, разумеется, представляет три функции.
Итак, А определяет часть Е, так же как и В. Что же произойдет, когда мы заменим А на A'=A+∇ψ? В общем, Е должно было бы измениться, если не принять особых мер. Мы можем, однако, допустить, что А изменяется так, чтобы не влиять на поля Е и В (т. е. не меняя физики), если будем всегда изменять А и φ вместе по правилам
(18.20)
Тогда ни В, ни Е, полученные из уравнения (18.19), не меняются.
Раньше мы выбирали ∇·А=0, чтобы как-то упростить уравнения статики. Теперь мы не собираемся так поступать; мы хотим сделать другой выбор. Но подождите немного, прежде чем мы скажем, какой это выбор, потому что позднее станет ясно, почему вообще делается выбор.
Сейчас мы вернемся к двум оставшимся уравнениям Максвелла, которые свяжут потенциалы и источники ρ и j. Раз мы можем определить А и φ из токов и зарядов, то можно всегда получить Е и В из уравнений (18.16) и (18.19) и мы будем иметь другую форму уравнений Максвелла.
Начнем с подстановки уравнения (18.19) в ∇·E=ρ/ε0; получаем
это можно записать еще в виде
(18.21)
Таково первое уравнение, связывающее φ и А с источниками.
Наше последнее уравнение будет самым трудным. Мы начнем с того, что перепишем четвертое уравнение Максвелла:
а затем выразим В и Е через потенциалы, используя уравнения (18.16) и (18.19):
Первый член можно переписать, используя алгебраическое тождество ∇×(∇×A)=∇ (∇·A)-∇2A; мы получаем
(18.22)
Не очень-то оно простое!
К счастью, теперь мы можем использовать нашу свободу в произвольном выборе дивергенции А. Сейчас мы собираемся сделать такой выбор, чтобы уравнения для А и для φ разделились, но имели одну и ту же форму. Мы можем сделать это, выбирая[25]
(18.23)
Когда мы поступаем так, то второе и третье слагаемые в уравнении (18.22) погашаются, и оно становится много проще:
(18.24)
И. наше уравнение (18.21) для φ принимает такую же форму:
(18.25)
Какие красивые уравнения! Они великолепны прежде всего потому, что хорошо разделились — с плотностью заряда стоит φ, а с током стоит А. Далее, хотя левая сторона выглядит немного нелепо — лапласиан вместе с (∂/∂t)2, когда мы раскроем ее, то обнаружим
(18.26)
Это уравнение имеет приятную симметрию по х, у, z, t; здесь (-1/с2) нужно, конечно, потому, что время и координаты различаются; у них разные единицы.
Уравнения Максвелла привели нас к нового типа уравнению для потенциалов φ и А, но с одной и той же математической формой для всех четырех функций φ, Ах, Ау и Аz. Раз мы научились решать эти уравнения, то можем получить В и Е из ∇×E и-∇φ-∂A/∂t. Мы приходим к другой форме электромагнитных законов, в точности эквивалентной уравнениям Максвелла; с ними во многих случаях обращаться гораздо проще.
Фактически мы уже решали уравнение, весьма похожее на (18.26). Когда мы изучали звук в гл. 47 (вып. 4), мы имели уравнение в форме
и видели, что оно описывает распространение волн в x-направлении со скоростью с. Уравнение (18.26) это соответствующее волновое уравнение для трех измерений. Поэтому в области, где больше нет зарядов и токов, решение этих уравнений не означает, что φ и А — нули. (Хотя на самом деле нулевое решение есть одно из возможных решений.) Имеются решения, представляющие некоторую совокупность φ и А, которые меняются со временем, но всегда движутся со скоростью с. Поля передвигаются вперед через свободное пространство, как в нашем примере в начале главы.
С новым членом, добавленным Максвеллом в уравнение IV, мы смогли записать полевые уравнения в терминах А и φ в форме, которая проста и сразу же позволяет выявить существование электромагнитных волн. Для многих практических целей еще будет удобно использовать первоначальные уравнения в терминах Е и В. Но они — по ту сторону горы, на которую мы уже вскарабкались. Теперь мы можем посмотреть вокруг. Все будет выглядеть иначе — нас ожидают новые, прекрасные пейзажи.
Главa 19 ПРИНЦИП НАИМЕНЬШЕГО ДЕЙСТВИЯ[26]
Когда я учился в школе, наш учитель физики, по фамилии Бадер, однажды зазвал меня к себе после урока и сказал: «У тебя вид такой, как будто тебе все страшно надоело; послушай-ка об одной интересной вещи». И он рассказал мне нечто, что мне показалось поистине захватывающим. Даже сейчас, хотя с тех пор прошла уже уйма времени, это продолжает меня увлекать. И всякий раз, когда я вспоминаю о сказанном, я вновь принимаюсь за работу. И на этот раз, готовясь к лекции, я поймал себя на том, что вновь анализирую все то же самое. И, вместо того чтобы готовиться к лекции, я взялся за решение новой задачи. Предмет, о котором я говорю,— это принцип наименьшего действия.
Вот что сказал мне тогда мой учитель Бадер: «Пусть, к примеру, у тебя имеется частица в поле тяжести; эта частица, выйдя откуда-то, свободно движется куда-то в другую точку. Ты подбросил ее, скажем, кверху, а она взлетела, а потом упала.
здесь * истинное движение * там
От исходного места к конечному она прошла за какое-то время. Попробуй теперь какое-то другое движение. Пусть для того, чтобы перейти «отсюда сюда», она двигалась уже не так, как раньше, а вот так:
здесь * воображаемое движение * там
но все равно очутилась на нужном месте в тот же самый момент времени, что и раньше».
«И вот,— продолжал учитель,— если ты подсчитаешь кинетическую энергию в каждый момент времени на пути частицы, вычтешь из нее потенциальную энергию и проинтегрируешь разность по всему тому времени, когда происходило движение, то увидишь, что число, которое получится, будет больше, чем при истинном движении частицы.
Иными словами, законы Ньютона можно сформулировать не в виде F=ma, а вот как: средняя кинетическая энергия минус средняя потенциальная энергия достигает своего самого наименьшего значения на той траектории, по которой предмет двигается в действительности от одного места к другому.
Попробую пояснить тебе это чуть понятнее.
Если взять поле тяготения и обозначить траекторию частицы x(t), где х — высота над землей (обойдемся пока одним измерением; пусть траектория пролегает только вверх и вниз, а не в стороны), то кинетическая энергия будет 1/2m(dx/dt)2, а потенциальная энергия в произвольный момент времени будет равна mgx.
Теперь я для какого-то момента движения по траектории беру разность кинетической и потенциальной энергий и интегрирую по всему времени от начала до конца. Пусть в начальный момент времени t1 движение началось на какой-то высоте, а кончилось в момент t2 на другой определенной высоте.
Тогда интеграл равен
Истинное движение совершается по некоторой кривой (как функция времени она является параболой) и приводит к какому-то определенному значению интеграла. Но можно представить себе какое-то другое движение: сперва резкий подъем, а потом какие-то причудливые колебания.
Можно подсчитать разность потенциальной и кинетической энергий на таком пути... или на любом другом. И самое поразительное — что настоящий путь это тот, по которому этот интеграл наименьший.
Давай проверим это. Для начала разберем такой случай: у свободной частицы вовсе нет потенциальной энергии. Тогда правило говорит, что при переходе от одной точки к другой за заданное время интеграл от кинетической энергии должен оказаться наименьшим. А это значит, что частица обязана двигаться равномерно. (И это правильно, мы же с тобой знаем, что скорость в таком движении постоянна.) А почему равномерно? Разберемся в этом. Если бы было иначе, то временами скорость частицы превысила бы среднюю, а временами была бы ниже ее, а средняя скорость была бы одинаковой, потому что частице надо было бы дойти «отсюда сюда» за условленное время. Например, если тебе нужно попасть из дому в школу на своей машине за определенное время, то сделать это можно по-разному: ты можешь сперва гнать, как сумасшедший, а в конце притормозить, или ехать с одинаковой скоростью, или сначала можешь даже отправиться в обратную сторону, а уж потом повернуть к школе, и т. д. Во всех случаях средняя скорость, конечно, должна быть одной и той же — частное от деления расстояния от дома до школы на время. Но и при данной средней скорости ты иногда двигался слишком быстро, а иногда чересчур медленно. А средний квадрат чего-то, что отклоняется от среднего, как известно, всегда больше квадрата среднего; значит, интеграл от кинетической энергии при колебаниях скорости движения всегда будет больше, нежели при движении с постоянной скоростью. Ты видишь, что интеграл достигнет минимума, когда скорость будет постоянной (при отсутствии сил). Правильный путь таков.
здесь * сил нет * там
Предмет же, подброшенный в поле тяжести вверх, сперва поднимается быстро, а потом все медленнее. Происходит это потому, что он обладает и потенциальной энергией, а наименьшего значения должна достигать разность между кинетической и потенциальной энергиями. Раз потенциальная энергия возрастает по мере подъема, то меньшая разность получится, если как можно быстрее достичь тех высот, где потенциальная энергия велика. Тогда, вычтя из кинетической энергии этот высокий потенциал, мы добьемся уменьшения среднего. Так что выгоднее такой путь, который идет вверх и поставляет добрый отрицательный кусок за счет потенциальной энергии.
больше +к. э. * болъше -п. э.
Но, с другой стороны, нельзя ни двигаться слишком быстро, ни подняться слишком высоко, потому что на это потребуется чересчур много кинетической энергии. Надо двигаться достаточно быстро, чтобы подняться и спуститься за определенное время, имеющееся в твоем распоряжении. Так что не следует стараться взлететь слишком высоко, а просто надо достичь какого-то разумного уровня. В итоге оказывается, что решение есть своего рода равновесие между желанием раздобыть как можно больше потенциальной энергии и желанием как можно сильней уменьшить количество кинетической энергии — это стремление добиться максимального уменьшения разности кинетической и потенциальной энергий».
Вот и все, что сказал мне мой учитель, потому что он был очень хороший учитель и знал, когда пора остановиться. Сам я, увы, не таков. Мне трудно остановиться вовремя. И поэтому вместо того, чтобы просто разжечь в вас интерес своим рассказом, я хочу запугать вас, хочу, чтобы вам стало тошно от сложности жизни,— попробую доказать то, о чем я рассказал. Математическая задача, которую мы будем решать, очень трудна и своеобразна. Имеется некоторая величина S, называемая действием. Она равна кинетической энергии минус потенциальная, проинтегрированная по времени:
Не забудьте, что и п. э. и к. э.— обе функции времени. Для любого нового мыслимого пути это действие принимает свое определенное значение. Математическая задача состоит в том, чтобы определить, для какой кривой это число меньше, чем для других.
Вы скажете: «О, это просто обычный пример на максимум и минимум. Надо подсчитать действие, продифференцировать его и найти минимум».
Но погодите. Обычно у нас бывает функция какой-то переменной и нужно найти значение переменной, при котором функция становится наименьшей или наибольшей. Скажем, имеется стержень, нагретый посредине. По нему растекается тепло и в каждой точке стержня устанавливается своя температура. Нужно найти точку, где она выше всего. Но у нас речь идет совсем об ином — каждому пути в пространстве отвечает свое число, и предполагается найти тот путь, для которого это число минимально. Это совсем другая область математики. Это не обычное исчисление, а вариационное (так его называют).
В этой области математики имеется много своих задач. Скажем, окружность обычно определяют как геометрическое место точек, расстояния которых от данной точки одинаковы, но окружность можно определить и иначе: это та из кривых данной длины, которая ограничивает собою наибольшую площадь. Любая другая кривая такого же периметра ограничивает площадь меньшую, чем окружность. Так что если поставить задачу: найти кривую данного периметра, ограничивающую наибольшую площадь, то перед нами будет задача из вариационного исчисления, а не из того исчисления, к которому вы привыкли.
Итак, мы хотим взять интеграл по пути, пройденному телом. Сделаем это так. Все дело в том, чтобы вообразить себе, что существует истинный путь и что любая другая кривая, которую мы проведем,— не настоящий путь, так что если подсчитать для нее действие, то получится число, превышающее то, которое мы получим для действия, соответствующего настоящему пути.
верный путь * неверный путь
Итак, задача: найти истинный путь. Где он пролегает? Один из способов, конечно, мог бы состоять в том, чтобы подсчитать действие для миллионов и миллионов путей и потом посмотреть, при каком пути это действие наименьшее. Вот тот путь, при котором действие минимально, и будет настоящим.
Такой способ вполне возможен. Однако можно сделать проще. Если имеется величина, обладающая минимумом (из обычных функций, скажем, температура), то одно из свойств минимума состоит в том, что при удалении от него на расстояние первого порядка малости функция отклоняется от минимального своего значения только на величину второго порядка. А в любом другом месте кривой сдвиг на малое расстояние изменяет значение функции тоже на величину первого порядка малости. Но в минимуме легкие уходы в сторону в первом приближении не приводят к изменению функции.
температура * минимум * расстояние
Это-то свойство мы и собираемся использовать для расчета настоящего пути. Если путь правильный, то кривая, чуть-чуть отличная от него, не приведет в первом приближении к изменению в величине действия. Все изменения, если это был действительно минимум, возникнут только во втором приближении.
Это легко доказать. Если при каком-то отклонении от кривой возникают изменения в первом порядке, то эти изменения в действии пропорциональны отклонению. Они, по всей вероятности, увеличат действие; иначе это не был бы минимум. Но раз изменения пропорциональны отклонению, то перемена знака отклонения уменьшит действие. Выходит, что при отклонении и одну сторону действие возрастает, а при отклонении в обратную сторону — убывает. Единственная возможность того, чтобы это действительно был минимум,— это чтобы в первом приближении никаких изменений не происходило и изменения были бы пропорциональны квадрату отклонения от настоящего пути.
Итак, мы пойдем по следующему пути: обозначим через _x(t) (с чертой внизу) истинный путь — тот, который мы хотим найти. Возьмем некоторый пробный путь x(t), отличающийся от искомого на небольшую величину, которую мы обозначим η(t).
Идея состоит в том, что если мы подсчитаем действие S на пути x(t), то разность между этим S и тем действием, которое мы вычислили для пути x(t) (для простоты оно будет обозначено _S), или разность между _S и S, должна быть в первом приближении по η нулем. Они могут отличаться во втором порядке, но в первом разность обязана быть нулем.
И это должно соблюдаться для любой η. Впрочем, не совсем для любой. Метод требует принимать во внимание только те пути, которые все начинаются и кончаются в одной и той же паре точек, т. е. всякий путь должен начинаться в определенной точке в момент t1 и кончаться в другой определенной точке в момент t2. Эти точки и моменты фиксируются. Так что наша функция η (отклонение) должна быть равна нулю на обоих концах: η(t1)=0 и η(t2)=0. При этом условии наша математическая задача становится полностью определенной.
Если бы вы не знали дифференциального исчисления, вы могли бы проделать такую же вещь для отыскания минимума обычной функции f(x). Вы бы задумались над тем, что случится, если взять f(x) и прибавить к х малую величину h, и доказывали бы, что поправка к f(x) в первом порядке по h должна в минимуме быть равна нулю. Вы бы подставили x+h вместо х и разложили бы f(x+h) с точностью до первой степени h..., словом, повторили бы все то, что мы намерены сделать с η.
Итак, идея наша заключается в том, что мы подставляем x(t)=_x(t)+η(t) в формулу для действия
где через V(x) обозначена потенциальная энергия. Производная dx/dt — это, естественно, производная от _x(t) плюс производная от η(t), так что для действия я получаю такое выражение:
Теперь это нужно расписать подетальней. Для квадратичного слагаемого я получу
Но постойте-ка! Ведь мне не нужно заботиться о порядках выше первого. Я могу убрать все слагаемые, в которых есть η2 и высшие степени, и ссыпать их в ящик под названием «второй и высшие порядки». Из этого выражения туда попадет только одна вторая степень, но из чего-то другого могут войти и высшие. Итак, часть, связанная с кинетической энергией, такова:
Дальше нам нужен потенциал V в точках _x+η. Я считаю η малой и могу разложить V(x) в ряд Тэйлора. Приближенно это будет V(_x); в следующем приближении (из-за того, что здесь стоят обычные производные) поправка равна η, умноженной на скорость изменения V по отношению к x; и т. д.:
Для экономии места я обозначил через V производную F по х. Слагаемое с η2 и все, стоящие за ним, попадают в категорию «второй и высшие порядки». И о них больше нечего беспокоиться. Объединим все, что осталось:
Если мы теперь внимательно взглянем на это, то увидим, что два первых написанных здесь члена отвечают тому действию _S, которое я написал бы для искомого истинного пути _х. Я хочу сосредоточить ваше внимание на изменении S, т. е. на разности между S и тем _S, которое получилось бы для истинного пути. Эту разность мы будем записывать как δS и назовем ее вариацией S. Отбрасывая «второй и высшие порядки», получаем для δS
Теперь задача выглядит так. Вот передо мной некоторый интеграл. Я не знаю еще, каково это _х, но я твердо знаю, что, какую η я ни возьму, этот интеграл должен быть равен нулю. «Ну что ж,— подумаете вы,— единственная возможность для этого — это чтобы множитель при η был равен нулю». Но как быть с первым слагаемым, где есть dη/dt? Вы скажете: «Если η обращается в ничто, то и ее производная такое же ничто; значит, коэффициент при dη/dt должен тоже быть нулем». Ну это не совсем верно. Это не совсем верно потому, что между отклонением η и его производной имеется связь; они не полностью независимы, потому что η(t) должно быть нулем и при t1 и при t2.
При решении всех задач вариационного исчисления всегда пользуются одним и тем же общим принципом. Вы чуть сдвигаете то, что хотите варьировать (подобно тому, как это сделали мы, добавляя η), бросаете взгляд на члены первого порядка, затем расставляете все так, чтобы получился интеграл в таком виде: «сдвиг (η), умноженный на что получится», но чтобы в нем не было никаких производных от η (никаких dη/dt). Непременно нужно так все преобразовать, чтобы осталось «нечто», умноженное на η. Сейчас вы поймете, отчего это так важно. (Существуют формулы, которые подскажут вам, как в некоторых случаях можно это проделать без каких-либо выкладок; но они не так уж общи, чтобы стоило заучивать их; лучше всего проделывать выкладки так, как это делаем мы.)
Как же я могу переделать член dη/dt, чтобы в нем появилось η? Я могу добиться этого, интегрируя по частям. Оказывается, что в вариационном исчислении весь фокус в том и состоит, чтобы расписать вариацию S и затем проинтегрировать по частям так, чтобы производные от η исчезли. Во всех задачах, в которых появляются производные, проделывается такой же фокус.
Припомните общий принцип интегрирования по частям. Если у вас есть произвольная функция f, умноженная на dη/dt и проинтегрированная по t, то вы расписываете производную от ηf:
В интересующем вас интеграле стоит как раз последнее слагаемое, так что
В нашей формуле для δS за функцию f принимается произведение m на d_x/dt; поэтому я получаю для δS выражение
В первый член должны быть подставлены пределы интегрирования t1 и t2. Тогда я получу под интегралом член от интегрирования по частям и последний член, оставшийся при преобразовании неизменным.
А теперь происходит то, что бывает всегда,— проинтегрированная часть исчезает. (А если не исчезает, то нужно переформулировать принцип, добавив условия, обеспечивающие такое исчезновение!) Мы уже говорили, что ηна концах пути должна быть равна нулю. Ведь в чем состоит наш принцип? В том, что действие минимально при условии, что варьируемая кривая начинается и кончается в избранных точках. Это значит, что η(t1)=0 и η(t2)=0. Поэтому проинтегрированный член получается равным нулю. Мы собираем воедино остальные члены и пишем
Вариация S теперь приобрела такой вид, какой мы хотели ей придать: что-то стоит в скобках (обозначим его F), и все это умножено на η(t) и проинтегрировано от t1 до t2.
У нас вышло, что интеграл от какого-то выражения, умноженного на η(t), всегда равен нулю:
Стоит какая-то функция от t; умножаю ее на η(t) и интегрирую ее от начала до конца. И какова бы ни была η, я получаю нуль. Это означает, что функция F(t) равна нулю. В общем-то это очевидно, но я на всякий случай покажу вам один из способов доказательства.
Пусть в качестве η(t) я выберу нечто, что равно нулю всюду, при всех t, кроме одного, заранее выбранного значения t. Оно остается нулем, пока я не дойду до этого t, затем оно подскакивает на мгновение и сразу же осаживает назад.
Если вы берете интеграл от этой η, умноженной на какую-то функцию F, то единственное место, в котором вы получите что-то ненулевое,— это там, где η(t) подскакивало; и у вас получится значение F в этом месте на интеграл по скачку. Сам по себе интеграл по скачку не равен нулю, но после умножения на F он должен дать нуль. Значит, функция в том месте, где был скачок, должна оказаться нулем. Но ведь скачок можно было сделать в любом месте; значит, F должна быть нулем всюду.
Мы видим, что если наш интеграл равен нулю при какой угодно η, то коэффициент при η должен обратиться в нуль. Интеграл действия достигает минимума на том пути, который будет удовлетворять такому сложному дифференциальному уравнению:
На самом деле оно не так уж сложно; вы его уже встречали прежде. Это просто F=ma. Первый член — это масса, умноженная на ускорение; второй — это производная от потенциальной энергии, т. е. сила.
Итак, мы показали (по крайней мере для консервативной системы), что принцип наименьшего действия приводит к правильному ответу; он утверждает, что путь, "обладающий минимумом действия,— это путь, удовлетворяющий закону Ньютона.
Нужно сделать еще одно замечание. Я не доказал, что это минимум. Может быть, это максимум. На самом деле это и не обязательно должен быть минимум. Здесь все так же, как в «принципе кратчайшего времени», который мы обсуждали, изучая оптику. Там тоже мы сперва говорили о «кратчайшем» времени. Однако выяснилось, что бывают положения, в которых это время не обязательно «кратчайшее». Фундаментальный принцип заключается в том, чтобы для любых отклонений первого порядка от оптического пути изменения во времени были бы равны нулю; здесь та же самая история. Под «минимумом» мы на самом деле подразумеваем, что в первом порядке малости изменения величины S при отклонениях от пути должны быть равны нулю. И это не обязательно «минимум».
Теперь я хочу перейти к некоторым обобщениям. В первую очередь всю эту историю можно было бы проделать и в трех измерениях. Вместо простого x я тогда имел бы x, у и z как функции t, и действие выглядело бы посложнее. При трехмерном движении вы должны использовать полную кинетическую энергию: (m/2), умноженное на квадрат всей скорости. Иначе говоря
Кроме того, потенциальная энергия теперь является функцией x, у и z. А что можно сказать о пути? Путь есть некоторая кривая общего вида в пространстве; ее не так легко начертить, но идея остается прежней. А как обстоит дело с η? Что ж, и η имеет три компоненты. Путь можно сдвигать и по x, и по у, и по z, или во всех трех направлениях одновременно. Так что η теперь вектор. От этого сильных усложнений не получается. Раз нулю должны быть равны лишь вариации первого порядка, то можно провести расчет последовательно с тремя сдвигами. Сперва можно сдвинуть η только в направлении x и сказать, что коэффициент должен обратиться в нуль. Получится одно уравнение. Потом мы сдвинем η в направлении у и получим второе. Затем сдвинем в направлении z и получим третье. Можно все, если угодно, проделать в другом порядке. Как бы то ни было, возникает тройка уравнений. Но ведь закон Ньютона — это тоже три уравнения в трех измерениях, по одному для каждой компоненты. Вам предоставляется самим убедиться, что это все действует и в трех измерениях (работы здесь не так много). Между прочим, можно взять какую угодно систему координат, полярную, любую, и сразу получить законы Ньютона применительно к этой системе, рассматривая, что получится, когда произойдет сдвиг η вдоль радиуса или по углу, и т. д.
Метод может быть обобщен и на произвольное число частиц. Если, скажем, у вас есть две частицы и между ними действуют какие-то силы и имеется взаимная потенциальная энергия, то вы просто складываете их кинетические энергии и вычитаете из суммы потенциальную энергию взаимодействия. А что вы варьируете? Пути обеих частиц. Тогда для двух частиц, движущихся в трех измерениях, возникает шесть уравнений. Вы можете варьировать положение частицы 1 в направлении x, в направлении у и в направлении z, и то же самое проделать с частицей 2, так что существует шесть уравнений. И так и должно быть. Три уравнения определяют ускорение частицы 1 через силу, действующую на нее, а три других — ускорение частицы 2 из-за силы, действующей на нее. Следуйте всегда тем же правилам игры, и вы получите закон Ньютона для произвольного числа частиц.
Я сказал, что мы получим закон Ньютона. Это не совсем верно, потому что в закон Ньютона входят и неконсервативные силы, например трение. Ньютон утверждал, что та равно всякой F. Принцип же наименьшего действия справедлив только для консервативных систем, таких, где все силы могут быть получены из потенциальной функции. Но ведь вы знаете, что на микроскопическом уровне, т. е. на самом глубинном физическом уровне, неконсервативных сил не существует. Неконсервативные силы (такие, как трение) появляются только от того, что мы пренебрегаем микроскопическими сложными эффектами: просто слишком много частиц приходится анализировать. Фундаментальные же законы могут быть выражены в виде принципа наименьшего действия.
Позвольте перейти к дальнейшим обобщениям. Положим, нас интересует, что будет, когда частица движется релятивистски. Пока мы не получили правильного релятивистского уравнения движения; F=ma верно только в нерелятивистских движениях. Встает вопрос: существует ли в релятивистском случае соответствующий принцип наименьшего действия? Да, существует. Формула в релятивистском случае такова:
Первая часть интеграла действия — это произведение массы покоя m0 на с2 и на интеграл от функции скорости √(1-v2/c2). Затем вместо того, чтобы вычитать потенциальную энергию, мы имеем интегралы от скалярного потенциала φ и от векторного потенциала А, умноженного на v. Конечно, здесь приняты во внимание только электромагнитные силы. Все электрические и магнитные поля выражены в терминах φ и А. Такая функция действия дает полную теорию релятивистского движения отдельной частицы в электромагнитном поле.
Конечно, вы должны понимать, что всюду, где я написал v, прежде чем делать выкладки, следует подставить dx/dt вместо vx и т. д. Кроме того, там, где я писал просто х, у, z, вы должны представить себе точки в момент t: x(t), y(t), z(t). Собственно, только после таких подстановок и замен v у вас получится формула для действия релятивистской частицы. Пусть самые умелые из вас попытаются доказать, что эта формула для действия действительно дает правильные уравнения движения теории относительности. Позвольте лишь посоветовать для начала отбросить А, т. е. обойтись пока без магнитных полей. Тогда вы должны будете получить компоненты уравнения движения dp/dt=-q∇φ, где, как вы, вероятно, помните, p=mv/√(1-v2/с2).
Включить в рассмотрение векторный потенциал А намного труднее. Вариации тогда становятся несравненно более сложными. Но в конце сила оказывается равной тому, чему следует: q(E+v×B). Но позабавьтесь с этим сами.
Мне хотелось бы подчеркнуть, что в общем случае (к примеру, в релятивистской формуле) под интегралом в действии уже не стоит разность кинетической и потенциальной энергий. Это годилось только в нерелятивистском приближении. Например, член m0c2√(1-v2/с2) — это не то, что называют кинетической энергией. Вопрос о том, каким должно быть действие для произвольного частного случая, может быть решен после некоторого числа проб и ошибок. Это задача того же типа, что и определение, каковы должны быть уравнения движения. Вы просто должны поиграть с известными вам уравнениями и посмотреть, можно ли их написать в виде принципа наименьшего действия.
Еще одно замечание по поводу терминологии. Ту функцию, которую интегрируют по времени, чтобы получить действие S, называют лагранжианом ℒ. Это функция, зависящая только от скоростей и положений частиц. Так что принцип наименьшего действия записывается также в виде
где под xi и vi подразумеваются все компоненты координат и скоростей. Если вы когда-нибудь услышите, что кто-то говорит о «лагранжиане», знайте, что речь идет о функции, применяемой для получения S. Для релятивистского движения в электромагнитном поле
Кроме того, я должен отметить, что самые дотошные и педантичные люди не называют S действием. Его именуют «первой главной функцией Гамильтона». Но читать лекцию о «принципе наименьшей первой главной функции Гамильтона» было свыше моих сил. Я назвал это «действием». Да к тому же все больше и больше людей называют это «действием». Видите ли, исторически действием было названо нечто другое, не столь полезное для науки, но я думаю, что разумнее изменить определение. Теперь и вы начнете именовать новую функцию действием, а вскоре и все вообще станут называть ее этим простым именем.
Теперь я хочу сообщить вам по поводу нашей темы кое-что, похожее на те рассуждения, которые я вел по поводу принципа кратчайшего времени. Существует разница в самом существе закона, утверждающего, что некоторый интеграл, взятый от одной точки до другой, имеет минимум,— закона, который сообщает нам что-то обо всем пути сразу, и закона, который говорит, что когда вы двигаетесь, то, значит, есть сила, приводящая к ускорению. Второй подход докладывает вам о каждом вашем шаге, он прослеживает ваш путь пядь за пядью, а первый выдает сразу какое-то общее утверждение обо всем пройденном пути. Толкуя о свете, мы говорили о связи этих двух подходов. Теперь я хочу объяснить вам, отчего должны существовать дифференциальные законы, если имеется такой принцип — принцип наименьшего действия. Причина вот в чем: рассмотрим действительно пройденный в пространстве и времени путь. Как и прежде, обойдемся одним измерением, так что можно будет начертить график зависимости x от t. Вдоль истинного пути S достигает минимума. Положим, что у нас есть этот путь и что он проходит через некоторую точку а пространства и времени и через другую соседнюю точку b.
Теперь, если весь интеграл от t1 до t2 достиг минимума, необходимо, чтобы интеграл вдоль маленького участочка от а до b тоже был минимальным. Не может быть, чтобы часть от а до b хоть чуточку превосходила минимум. Иначе вы могли бы подвигать туда-сюда кривую на этом участочке и снизить немного значение всего интеграла.
Значит, любая часть пути тоже должна давать минимум. И это справедливо для каких угодно маленьких долек пути. Поэтому тот принцип, что весь путь должен давать минимум, можно сформулировать, сказав, что бесконечно малая долька пути — это тоже такая кривая, на которой действие минимально. И если мы возьмем достаточно короткий отрезок пути — между очень близкими друг к другу точками а и b,— то уже неважно, как меняется потенциал от точки к точке вдали от этого места, потому что, проходя весь ваш коротенький отрезочек, вы почти не сходите с места. Единственное, что вам нужно учитывать,— это изменение первого порядка малости в потенциале. Ответ может зависеть только от производной потенциала, а не от потенциала в других местах. Так, утверждение о свойстве всего пути в целом становится утверждением о том, что происходит на коротком участке пути, т. е. дифференциальным утверждением. И эта дифференциальная формулировка включает производные от потенциала, т. е. силу в данной точке. Таково качественное объяснение связи между законом в целом и дифференциальным законом.
Когда мы говорили о свете, то обсуждали также вопрос: как все-таки частица находит правильный путь? С дифференциальной точки зрения это понять легко. В каждый момент частица испытывает ускорение и знает только то, что ей положено делать в это мгновение. Но все ваши инстинкты причин и следствий встают на дыбы, когда вы слышите, что частица «решает», какой ей выбрать путь, стремясь к минимуму действия. Уж не «обнюхивает» ли она соседние пути, прикидывая, к чему они приведут — к большему или к меньшему действию? Когда мы на пути света ставили экран так, чтобы фотоны не могли перепробовать все пути, мы выяснили, что они не могут решить, каким путем идти, и получили явление дифракции.
Но верно ли это и для механики? Правда ли, что частица не просто «идет верным путем», а пересматривает все другие мыслимые траектории? И что если, ставя преграды на ее пути, мы не дадим ей заглядывать вперед, то мы получим некий аналог явления дифракции? Самое чудесное во всем этом — то, что все действительно обстоит так. Именно это утверждают законы квантовой механики. Так что наш принцип наименьшего действия сформулирован не полностью. Он состоит не в том, что частица избирает путь наименьшего действия, а в том, что она «чует» все соседние пути и выбирает тот, вдоль которого действие минимально, и способ этого выбора сходен с тем, каким свет отбирает кратчайшее время. Вы помните, что способ, каким свет отбирает кратчайшее время, таков: если свет пойдет по пути, требующему другого времени, то придет он с другой фазой. А полная амплитуда в некоторой точке есть сумма вкладов амплитуд для всех путей, по которым свет может ее достичь. Все те пути, у которых фазы резко различаются, ничего после сложения не дают. Но если вам удалось найти всю последовательность путей, фазы которых почти одинаковы, то мелкие вклады сложатся, и в точке прибытия полная амплитуда получит заметное значение. Важнейшим путем становится тот, возле которого имеется множество близких путей, дающих ту же фазу.
В точности то же происходит и в квантовой механике. Законченная квантовая механика (нерелятивистская и пренебрегающая спином электрона) работает так: вероятность того, что частица, выйдя из точки 1 в момент t1, достигнет точки 2 в момент t2, равна квадрату амплитуды вероятности. Полная амплитуда может быть записана в виде суммы амплитуд для всех возможных путей — для любого пути прибытия. Для любого x(t), которое могло бы возникнуть для любой мыслимой воображаемой траектории, нужно подсчитать амплитуду. Затем их все нужно сложить. Что же мы примем за амплитуду вероятности некоторого пути? Наш интеграл действия говорит нам, какой обязана быть амплитуда отдельного пути. Амплитуда пропорциональна eiS/ℏ, где S — действие на этом пути. Это значит, что если мы представим фазу амплитуды в виде комплексного числа, то фазовый угол будет равен S/ℏ. Действие S имеет размерность энергии на время, и у постоянной Планка размерность такая же. Это постоянная, которая определяет, когда нужна квантовая механика.
И вот как все это срабатывает. Пусть для всех путей действие S будет весьма большим по сравнению с числом ℏ. Пусть какой-то путь привел к некоторой величине амплитуды. Фаза рядом проложенного пути окажется совершенно другой, потому что при огромном S даже незначительные изменения S резко меняют фазу (ведь ℏ чрезвычайно мало). Значит, рядом лежащие пути при сложении обычно гасят свои вклады. И только в одной области это не так — в той, где и путь и его сосед— оба в первом приближении обладают одной и той же фазой (или, точнее, почти одним и тем же действием, меняющимся в пределах ℏ). Только такие пути и принимаются в расчет. А в предельном случае, когда постоянная Планка ℏ стремится к нулю, правильные квантовомеханические законы можно подытожить, сказав: «Забудьте обо всех этих амплитудах вероятностей. Частица и впрямь движется по особому пути — именно по тому, по которому S в первом приближении не меняется». Такова связь между принципом наименьшего действия и квантовой механикой. То обстоятельство, что таким способом можно сформулировать квантовую механику, было открыто в 1942 г. учеником того же самого учителя, мистера Бадера, о котором я вам рассказывал. [Первоначально квантовая механика была сформулирована при помощи дифференциального уравнения для амплитуды (Шредингер), а также при помощи некоторой матричной математики (Гейзенберг).]
Теперь я хочу потолковать о других принципах минимума в физике. Есть очень много интересных принципов такого рода. Я не буду их все перечислять, а назову еще только один. Позже, когда мы доберемся до одного физического явления, для которого существует превосходный принцип минимума, я расскажу вам о нем. А сейчас я хочу показать, что необязательно описывать электростатику при помощи дифференциального уравнения для поля; можно вместо этого потребовать, чтобы некоторый интеграл обладал максимумом или минимумом. Для начала возьмем случай, когда плотность зарядов известна повсюду, а нужно найти потенциал φ в любой точке пространства. Вы уже знаете, что ответ должен быть такой:
Другой способ утверждать то же самое заключается в следующем: надо вычислить интеграл U*
это объемный интеграл. Он берется по всему пространству. При правильном распределении потенциала φ(x, у, z) это выражение достигает минимума.
Мы можем показать, что оба эти утверждения относительно электростатики эквивалентны. Предположим, что мы выбрали произвольную функцию φ. Мы хотим показать, что когда в качестве φ мы возьмем правильное значение потенциала _φ плюс малое отклонение f, то в первом порядке малости изменение в U* будет равно нулю. Так что мы пишем
здесь _φ — это то, что мы ищем; но мы проварьируем _φ, чтобы увидеть, каким он должен быть для того, чтобы вариация U* оказалась первого порядка малости. В первом члене U* нам нужно написать
Единственный член первого порядка, который будет меняться, таков:
Во втором члене U* подынтегральное выражение примет вид
изменяющаяся часть здесь равна ρf. Оставляя только меняющиеся члены, получим интеграл
Дальше, руководствуясь нашим старым общим правилом, мы должны очистить интеграл от всех производных по f. Посмотрим, что это за производные. Скалярное произведение равно
Это нужно проинтегрировать по x, у и по z. И здесь напрашивается тот же фокус: чтобы избавиться от df/dx, мы проинтегрируем по x по частям. Это приведет к добавочному дифференцированию _φ по x. Это та же основная идея, с помощью которой мы избавились от производных по t. Мы пользуемся равенством
Проинтегрированный член равен нулю, так как мы считаем f равным нулю на бесконечности. (Это отвечает обращению η в нуль при t1 и t2. Так что наш принцип более точно формулируется следующим образом: U* для правильного φ меньше, чем для любого другого ого мы получаем следующее дифференциальное φ(х, у, z), обладающего теми же значениями на бесконечности.) Затем мы проделаем то же с у и с z. Наш интеграл ΔU* обратится в
Чтобы эта вариация была равна нулю при любом произвольном f, коэффициент при f должен быть равен нулю. Значит,
Мы вернулись к нашему старому уравнению. Значит, наше «минимальное» предложение верно. Его можно обобщить, если слегка изменить выкладки. Вернемся назад и проинтегрируем по частям, не расписывая все покомпонентно. Начнем с того, что напишем следующее равенство:
Продифференцировав левую часть, я могу показать, что она в точности равна правой. Это уравнение подходит для того, чтобы провести интегрирование но частям. В нашем интеграле ΔU* мы заменяем ∇_φ·∇f на —f∇2_φ+∇·(f∇_φ) и затем интегрируем это по объему. Член с дивергенцией после интегрирования по объему заменяется интегралом по поверхности:
А поскольку мы интегрируем по всему пространству, то поверхность в этом интеграле лежит на бесконечности. Значит, f=0, и мы получаем прежний результат.
Только теперь мы начинаем понимать, как решать задачи, в которых мы не знаем, где расположены все заряды. Пусть мы имеем проводники, на которых как-то распределены заряды. Если потенциалы на всех проводниках зафиксированы, то наш принцип минимума все еще разрешается применять. Интегрирование в U* мы проведем только по области, лежащей снаружи всех проводников. Но раз мы не можем на проводниках менять _φ, то на их поверхности f=0, и поверхностный интеграл
тоже равен нулю. Остающееся объемное интегрирование нужно проделывать только в промежутках между проводниками.
И мы, конечно, снова получаем уравнение Пуассона
Мы, стало быть, показали, что наш первоначальный интеграл U* достигает минимума и тогда, когда он вычисляется в пространстве между проводниками, каждый из которых находится при фиксированном потенциале [это значит, что каждая пробная функция φ(х, у, z) должна равняться заданному потенциалу проводника, когда (х, у, z) — точки поверхности проводника]. Существует интересный частный случай, когда заряды расположены только на проводниках. Тогда
и наш принцип минимума говорит нам, что в случае, когда у каждого проводника есть свой заранее заданный потенциал, потенциалы в промежутках между ними пригоняются так, что интеграл U* оказывается как можно меньше. А что это за интеграл? Член ∇φ — это электрическое поле. Значит, интеграл — это электростатическая энергия. Правильное поле и есть то единственное, которое из всех полей, получаемых как градиент потенциала, отличается наименьшей полной энергией.
Я хотел бы воспользоваться этим результатом, чтобы решить какую-нибудь частную задачу и показать вам, что все эти вещи имеют реальное практическое значение. Предположим, что я взял два проводника в форме цилиндрического конденсатора.
У внутреннего проводника потенциал равен, скажем, V, а у внешнего— нулю. Пусть радиус внутреннего проводника будет равен а, а внешнего — b. Теперь мы можем предположить, что распределение потенциалов между ними — любое. Но если мы возьмем правильное значение φ и вычислим (ε0/2)∫(∇_φ)2dV, то должна получиться энергия системы 1/2CV2. Так что с помощью нашего принципа можно подсчитать и емкость С. Если же мы возьмем неправильное распределение потенциала и попытаемся этим методом прикинуть емкость конденсатора, то придем к чересчур большому значению емкости при фиксированном V. Любой предполагаемый потенциал φ, не точно совпадающий с истинным его значением, приведет и к неверной величине С, большей, чем нужно. Но если неверно выбранный потенциал φ является еще грубым приближением, то емкость С получится уже с хорошей точностью, потому что погрешность в С — величина второго порядка по сравнению с погрешностью в φ.
Предположим, что мне неизвестна емкость цилиндрического конденсатора. Тогда, чтобы узнать ее, я могу воспользоваться этим принципом. Я просто буду испытывать в качестве потенциала разные функции φ до тех пор, пока не добьюсь наинизшего значения С. Допустим, к примеру, что я выбрал потенциал, отвечающий постоянному полю. (Вы, конечно, знаете, что на самом деле поле здесь не постоянно; оно меняется как 1/r) Если поле постоянно, то это означает, что потенциал линейно зависит от расстояния. Чтобы напряжение на проводниках было каким нужно, функция φ должна иметь вид
Эта функция равна V при r=а, нулю при r=b, а между ними имеется постоянный наклон, равный —V/(b-а). Значит, чтобы определить интеграл U*, надо только помножить квадрат этого градиента на ε0/2 и проинтегрировать по всему объему. Проведем этот расчет для цилиндра единичной длины. Элемент объема при радиусе r равен 2πrdr. Проводя интегрирование, я нахожу, что моя первая проба дает такую емкость:
Интеграл здесь просто равен
Так я получаю формулу для емкости, которая хотя и неправильна, но является каким-то приближением:
Конечно, она отличается от правильного ответа C=2πε0/ln(b/a), но в общем-то она не так уж плоха. Давайте попробуем сравнить ее с правильным ответом для нескольких значений b/а. Вычисленные мною числа приведены в следующей таблице
Даже когда b/a=2 (а это приводит уже к довольно большим отличиям между постоянным и линейным полем), я все еще получаю довольно сносное приближение. Ответ, конечно, как и ожидалось, чуть завышен. Но если тонкую проволочку поместить внутри большого цилиндра, то все выглядит уже гораздо хуже. Тогда поле изменяется очень сильно и замена его постоянным полем ни к чему хорошему не приводит. При b/а=100 мы завышаем ответ почти вдвое. Для малых b/а положение выглядит намного лучше. В противоположном пределе, когда промежуток между проводниками не очень широк (скажем, при b/а=1,1), постоянное поле оказывается весьма хорошим приближением, оно дает значение С с точностью до десятых процента.
А теперь я расскажу вам, как усовершенствовать этот расчет. (Ответ для цилиндра вам, разумеется, известен, но тот же способ годится и для некоторых других необычных форм конденсаторов, для которых правильный ответ вам может быть и не известен.) Следующим шагом будет подыскание лучшего приближения для неизвестного нам истинного потенциала φ. Скажем, можно испытать константу плюс экспоненту φ и т. д. Но как вы узнаете, что у вас получилось лучшее приближение, если вы не знаете истинного φ? Ответ: Подсчитайте С; чем оно ниже, тем к истине ближе. Давайте проверим эту идею. Пусть потенциал будет не линейным, а, скажем, квадратичным по r, а электрическое поле не постоянным, а линейным. Самая общая квадратичная форма, которая обращается в φ=0 при r=b и в φ=V при r=а, такова:
где α — постоянное число. Эта формула чуть сложнее прежней. В нее входит и квадратичный член, и линейный. Из нее очень легко получить поле. Оно равно просто
Теперь это нужно возвести в квадрат и проинтегрировать по объему. Но погодите минутку. Что же мне принять за α? За φ я могу принять параболу, но какую? Вот что я сделаю: подсчитаю емкость при произвольном α. Я получу
Это выглядит малость запутанно, но так уж выходит после интегрирования квадрата поля. Теперь я могу выбирать себе а. Я знаю, что истина лежит ниже, чем все, что я собираюсь вычислить. Что бы я ни поставил вместо α, ответ все равно получится слишком большим. Но если я продолжу свою игру с α и постараюсь добиться наинизшего возможного значения С, то это наинизшее значение будет ближе к правде, чем любое другое значение. Следовательно, мне теперь надо подобрать α так, чтобы значение С достигло своего минимума. Обращаясь к обычному дифференциальному исчислению, я убеждаюсь, что минимум С будет тогда, когда α=-2b/(b+а). Подставляя это значение в формулу, я получаю для наименьшей емкости
Я прикинул, что дает эта формула для С при различных значениях b/а. Эти числа я назвал С (квадратичные). Привожу таблицу, в которой сравниваются С (квадратичные) с С (истинными).
Например, когда отношение радиусов равно 2:1, я получаю 1,444. Это очень хорошее приближение к правильному ответу, 1,4423. Даже при больших b/а приближение остается довольно хорошим — оно намного лучше первого приближения. Оно остается сносным (завышение только на 10%) даже при b/а=10:1. Большое расхождение наступает только при отношении 100:1. Я получаю С равным 0,346 вместо 0,267. С другой стороны, для отношения радиусов 1,5 совпадение превосходное, а при b/a=1,1 ответ получается 10,492065 вместо положенного 10,492070. Там, где следует ожидать хорошего ответа, он оказывается очень и очень хорошим.
Я привел все эти примеры, во-первых, чтобы продемонстрировать теоретическую ценность принципа минимального действия и вообще всяких принципов минимума, и, во-вторых, чтобы показать вам их практическую полезность, а вовсе не для того, чтобы подсчитать емкость, которую мы и так великолепно знаем. Для любой другой формы вы можете испробовать приближенное поле с несколькими неизвестными параметрами (наподобие α) и подогнать их под минимум. Вы получите превосходные численные результаты в задачах, которые другим способом не решаются.
Добавление, сделанное после лекции
Мне не хватило времени на лекции, чтобы сказать еще об одной вещи (всегда ведь готовишься рассказать больше, чем успеваешь). И я хочу сделать это сейчас. Я уже упоминал о том, что, готовясь к этой лекции, заинтересовался одной задачей. Мне хочется вам рассказать, что это за задача. Я заметил, что большая часть принципов минимума, о которых шла речь, в той или иной форме вытекает из принципа наименьшего действия механики и электродинамики. Но существует еще класс принципов, оттуда не вытекающих. Вот пример. Если сделать так, чтобы токи протекали через массу вещества, удовлетворяющего закону Ома, то токи распределятся в этой массе так, чтобы скорость, с какой генерируется в ней тепло, была наименьшей. Можно также сказать иначе (если температура поддерживается постоянной): что скорость выделения энергии минимальна. Этот принцип, согласно классической теории, выполняется даже в распределении скоростей электронов внутри металла, по которому течет ток. Распределение скоростей не совсем равновесно [см. гл. 40 (вып. 4), уравнение (40.6)], потому что они медленно дрейфуют в стороны. Новое распределение можно найти из того принципа, что оно при данном токе должно быть таково, что развивающаяся в секунду за счет столкновений энтропия уменьшится настолько, насколько это возможно. Впрочем, правильное описание поведения электронов должно быть квантовомеханическим. Так вот в чем состоит вопрос: должен ли этот самый принцип минимума развивающейся энтропии соблюдаться и тогда, когда положение вещей описывается квантовой механикой? Пока мне не удалось это выяснить.
Вопрос этот интересен, конечно, и сам по себе. Подобные принципы возбуждают воображение, и всегда стоит попробовать выяснить, насколько они общи. Но мне необходимо это знать и по более практической причине. Вместе с несколькими коллегами я опубликовал работу, в которой с помощью квантовой механики мы примерно рассчитали электрическое сопротивление, испытываемое электроном, пробирающимся сквозь ионный кристалл, подобный NaCl. [Статья об этом была напечатана в Physical Review, 127, 1004 (1962) и называется «Подвижность медленных электронов в полярных кристаллах».] Но если бы существовал принцип минимума, мы могли бы воспользоваться им, чтобы сделать результат намного более точным, аналогично тому как принцип минимума емкости конденсатора позволил нам добиться столь высокой точности для емкости, хотя об электрическом поле наши сведения были весьма неточными.
Глава 20 РЕШЕНИЯ УРАВНЕНИЙ МАКСВЕЛЛА В ПУСТОМ ПРОСТРАНСТВЕ
Повторить: гл. 47 (вып. 4) «Звук. Волновое уравнение»; гл. 28 (вып. 3) «Электромагнитное излучение»
§ 1. Волны в пустом пространстве; плоские волны
В гл. 18 мы достигли того, что уравнения Максвелла появились в полном виде. Все, что есть в классической теории электрических и магнитных полей, вытекает из четырех уравнений:
(20.1)
Когда мы свели все эти уравнения воедино, мы обнаружили новое знаменательное явление: поля, создаваемые движущимися зарядами, могут покинуть источник и отправиться путешествовать в пространстве. Мы рассмотрели частный случай, когда внезапно включается целая бесконечная плоскость. После того как в течение времени t шел ток, возникают однородные электрические и магнитные поля, простирающиеся от плоскости на ct. Предположим, что по плоскости yz течет ток в направлении +y с поверхностной плотностью J. Электрическое поле будет иметь только y-компоненту, а магнитное — только z-компоненту. Величина компонент поля будет равна
(20.2)
для положительных x, меньших ct. Для больших x поля равны нулю. Равные по величине поля простираются на то же расстояние от плоскости в направлении отрицательных y. На фиг. 20.1 показан график зависимости величины полей от x в момент t. С течением времени «волновой фронт» в ct распространяется вдоль х с постоянной скоростью с.
Фиг. 20.1. Зависимость электрического и магнитного полей от х через t сек после того, как была включена заряженная плоскость.
Теперь представим себе такую последовательность событий. На мгновение мы включаем ток единичной силы, а затем внезапно увеличиваем его силу втрое и поддерживаем его на этом уровне. Как же будут теперь выглядеть поля? Это можно узнать таким образом. Во-первых, надо представить ток с единичной силой, включенный при t=0 и больше не менявшийся. Тогда поля при положительных х будут иметь вид, представленный на фиг. 20.2, а. Затем надо задать себе вопрос, что произойдет, если в момент t1 включить постоянный ток силой в две единицы?
Фиг. 20.2. Электрическое поле плоскости с током. а — одна единица тока включена в момент t=0; б—две единицы тока включены в момент t=t1; в — суперпозиция а и б.
В этом случае поля станут вдвое больше, чем прежде, но отойдут по х только на промежуток c(t-t1) (фиг. 20.2, б). Складывая эти два решения (по принципу суперпозиции), мы получаем, что сумма источников — это ток силой в одну единицу с момента нуль до момента t1 и ток в три единицы в более поздние моменты. В момент t поля меняются вдоль х так, как показано на фиг. 20.2, в.
Возьмем теперь более сложную задачу. Рассмотрим ток, имевший сначала силу в одну единицу, а затем достигший силы в три единицы и выключенный. Каковы будут поля от такого тока? Решение можно получить точно так же, как и раньше, т. е. складывая решения трех разных задач. Сперва найдем поля постоянного тока единичной силы (эту задачу мы уже решали). Потом узнаем поля от тока двойной силы. И, наконец, возьмем решение для полей токов с силой в минус три единицы. Сложив все три решения, мы получим ток силой в одну единицу от t=0 до какого-то более позднего момента, скажем, до t1, затем ток силой в три единицы до момента t2, а потом ток, равный нулю, т. е. выключенный. График зависимости тока от времени показан на фиг. 20.3, а.
Фиг. 20.3. Если сила источника тока меняется так, как на рисунке (а), то в момент t электрическое поле как функция от х приобретает другой вид (б).
Складывая три решения для электрического поля, мы видим, что его изменения с расстоянием х в данный момент t подобны изображенным на фиг. 20.3, б. Поле в точности отображает собой ток. Распределение поля в пространстве есть точное отражение изменений тока со временем, но только нарисованное задом наперед. По мере того как проходит время, вся картина перемещается наружу со скоростью с, так что получается ломтик полей, который движется к положительным х и хранит в себе всю историю перемен тока. Если бы мы находились где-то на расстоянии многих километров, мы могли бы лишь по изменению электрического или магнитного поля безошибочно рассказать, как менялся ток в источнике.
Заметьте также, что даже после того, как вся деятельность в источнике прекратилась и все заряды исчезли, а токи сошли на нет, наш ломтик полей продолжает свое путешествие через пространство. Получается распределение электрических и магнитных полей, которое существует независимо от токов и зарядов. Это и есть тот новый эффект, который следует из полной системы уравнений Максвелла. Мы можем, если нужно, представить только что проделанный анализ в строго математической форме, написав, что электрическое поле в данном месте и в данное время пропорционально току в источнике, но не в то же время, а в более ранний период [t-(x/с)]. Можно написать
Вас удивит, если я скажу, что мы уже выводили это уравнение раньше (с другой точки зрения), когда говорили о теории показателя преломления. Тогда нам нужно было представить себе, какие поля создаст слой колеблющихся диполей в тонком плоском диэлектрике, если диполи приводятся в движение электрическим полем падающей электромагнитной волны. Задача наша состояла в расчете комбинированного поля начальной волны и волн, излучаемых колеблющимися диполями. Как же мы смогли тогда рассчитать поля, создаваемые движущимися зарядами, не зная уравнений Максвелла? Мы тогда приняли в качестве исходной (без вывода) формулу для полей излучения, создаваемых на больших расстояниях от ускоряемого точечного заряда. Если вы заглянете в гл. 31 (вып. 3), то увидите, что выражение (31.10) — это как раз наше выражение (20.3), которое мы только что написали. Хотя прежний наш вывод относился только к большим расстояниям от источника, теперь мы видим, что тот же результат верен и вблизи источника.
Сейчас мы хотим взглянуть в общем виде на поведение электрических и магнитных полей в пустом пространстве вдалеке от источников, т. е. от токов и зарядов. Очень близко от них (так близко, что источники за время запаздывания передачи не успевают сильно измениться) поля очень похожи на те, которые получились у нас в электростатике или магнитостатике. Но если перейти к таким большим расстояниям, что запаздывание станет заметным, то природа полей может радикально отличаться от тех решений, которые мы нашли. Когда поля значительно удаляются ото всех источников, они начинают в некотором смысле приобретать свой собственный характер. Так что мы вправе приступить к обсуждению поведения полей в области, где нет ни токов, ни зарядов.
Предположим, что нас интересует род полей, которые могут существовать в областях, где и ρ и j равны нулю. В гл. 18 мы видели, что физику уравнений Максвелла можно также выразить на языке дифференциальных уравнений для скалярного и векторного потенциалов:
(20.4)
(20.5)
Если ρ и j равны нулю, то эти уравнения упрощаются:
(20.6)
(20.7)
Стало быть, в пустом пространстве и скалярный потенциал φ, и каждая компонента векторного потенциала А удовлетворяют одному и тому же математическому уравнению. Пусть буквой ψ (пси) мы обозначили любую из четырех величин φ, Ах, Ау, Аz; тогда нам нужно изучить общие решения уравнения
(20.8)
Его называют трехмерным волновым уравнением — трехмерным потому, что функция ψ может в общем случае зависеть от х, у и z и следует учитывать изменения по каждой из этих координат. Это становится ясным, если мы выпишем явно три члена оператора Лапласа:
(20.9)
В пустом пространстве электрические и магнитные поля Е и В тоже удовлетворяют волновому уравнению. Так, поскольку B=∇×A, дифференциальное уравнение для В можно получить, взяв ротор от уравнения (20.7). Раз лапласиан — это скалярный оператор, то порядок операций вычисления лапласиана и ротора можно переставлять:
Точно так же можно переставлять и вычисление rot и ∂/∂t:
Из этого мы получаем следующее дифференциальное уравнение для В:
(20.10)
Тем самым выясняется, что компонента магнитного поля В удовлетворяет трехмерному волновому уравнению. Подобно этому, из того факта, что Е=-∇φ-dA/dt, следует, что электрическое поле Е в пустом пространстве удовлетворяет трехмерному волновому уравнению
(20.11)
Все наши электромагнитные поля подчиняются одному и тому же уравнению (20.8). Можно еще спросить: каково самое общее решение этого уравнения? Однако прежде, чем решать этот трудный вопрос, сначала посмотрим, что можно сказать в общем случае о тех решениях, в которых по у и по z ничего не меняется. (Всегда сначала беритесь за простые случаи, чтобы было видно, чего следует ожидать, а уж потом можете переходить к случаям посложней.) Предположим, что величина полей зависит только от х, так что по у и по z поля не меняются. Мы, следовательно, опять рассматриваем плоские волны и должны ожидать, что получатся те же результаты, что и в предыдущей главе. И мы действительно получим в точности те же самые ответы. Вы можете спросить: «Но зачем снова делать то же самое?» Это важно, во-первых, потому, что мы не доказали, что найденные нами волны представляют собой самое общее решение для плоских волн, и, во-вторых, потому что наши поля произошли от источника тока особого вида. Сейчас мы хотели бы выяснить такой вопрос: каков самый общий вид одномерной волны в пустом пространстве? Мы не узнаем этого, если будем рассматривать тот или иной источник особого вида, нам нужна большая общность. Кроме того, на этот раз мы будем работать не с интегральной формой уравнений, а с дифференциальной. Хотя итог одинаков, это прекрасный случай поупражняться в выкладках и убедиться в том, что не имеет значения, каким путем идти. Вы должны уметь действовать любым путем, потому что, наткнувшись на трудную задачу, вы часто обнаруживаете, что годится лишь один из многих способов расчета.
Можно было бы прямо рассмотреть решение волнового уравнения для какой-нибудь из электромагнитных величин. Вместо этого мы начнем прямо с начала, с уравнений Максвелла для пустого пространства, и вы убедитесь в их тесной связи с электромагнитными волнами. Так что мы отправляемся от уравнений (20.1), полагая, что в них токи и заряды равны нулю. Они обращаются в
(20.12)
Распишем первое уравнение покомпонентно:
(20.13)
Мы предположили, что по у и z поле не меняется, так что два последних члена равны нулю. Тогда, согласно (20.13),
(20.14)
Решением его является постоянное в пространстве Ех (компонента электрического поля в направлении х). Взглянув на уравнение IV в (20.12) и полагая, что В тоже не изменяется вдоль y и z, вы убедитесь, что Ех постоянно и во времени. Таким полем может оказаться постоянное поле от какого-то заряженного конденсатора вдали от этого конденсатора. Нас сейчас не занимают такие неинтересные статические поля; мы интересуемся лишь динамически изменчивыми полями. А для динамических полей Ех=0.
Итак, мы пришли к важному результату о том, что при распространении плоских волн в произвольном направлении электрическое поле должно располагаться поперек направления своего распространения. Конечно, у него еще остается возможность каким-то сложным образом изменяться по координате х.
Поперечное поле Е можно всегда разбить на две компоненты, скажем на у и z. Так что сначала разберем случай наличия у электрического поля только одной поперечной компоненты. Для начала возьмем электрическое поле, направленное по у, т. е. с нулевой z-компонентой. Ясно, что, решив эту задачу, мы всегда сможем разобрать и тот случай, когда электрическое поле всюду направлено по z. Общее решение можно всегда представить в виде суперпозиции двух таких полей.
Какими простыми стали теперь наши уравнения! Теперь единственная ненулевая компонента электрического поля — это Еу, и все производные (кроме производных по х) тоже равны нулю. Остатки уравнений Максвелла выглядят чрезвычайно просто.
Рассмотрим теперь второе из уравнений Максвелла [т. е. II из (20.12)]. Расписав компоненты rot E, получаем
здесь x-компонента ∇×E равна нулю, потому что равны нулю производные по у и z; y-компонента тоже равна нулю: первый член потому, что все производные по z равны нулю, а второй потому, что Ez=0. Единственная не равная нулю компонента rot E — это z-компонента, она равна ∂Eу/∂x. Полагая, что три компоненты ∇×E равны соответствующим компонентам —∂B/∂t, мы заключаем, что
(20.15)
(20.16)
Поскольку временные производные как x-компоненты магнитного поля, так и y-компоненты магнитного поля равны нулю, то обе эти компоненты суть попросту постоянные поля и отвечают найденным раньше магнитостатическим решениям. Ведь кто-то мог оставить постоянный магнит возле того места, где распространяются волны. Мы будем игнорировать эти постоянные поля и положим Вх и Вy равными нулю.
Кстати, о равенстве нулю x-компонент поля В мы должны были бы заключить и по другой причине. Поскольку дивергенция В равна нулю (по третьему уравнению Максвелла), то мы, прибегая при рассмотрении электрического поля к тем же доводам, что и выше, должны были бы прийти к выводу, что продольная компонента магнитного поля не может изменяться вдоль х. А раз мы такими однородными полями в наших волновых решениях пренебрегаем, то нам следовало бы положить Вх равным нулю. В плоских электромагнитных волнах поле В, равно как и поле Е, должно быть направлено поперек направления распространения самих волн.
Равенство (20.16) дает нам добавочное утверждение о том, что если электрическое поле имеет только y-компоненту, то магнитное поле имеет только z-компоненту. Значит, Е и В перпендикулярны друг другу. Именно это и наблюдалось в той волне особого типа, которую мы уже рассмотрели.
Теперь мы готовы использовать последнее из уравнений Максвелла для пустого пространства [т. е. IV из (20.12)]. Расписывая покомпонентно, имеем
(20.17)
Из шести производных от компонент В только ∂Bz/∂x не равна нулю. Так что три уравнения просто дают
(20.18)
Итог всей нашей деятельности состоит в том, что отличны от нуля только по одной компоненте электрического и магнитного полей и эти компоненты обязаны удовлетворять уравнениям (20.16) и (20.18). Эти два уравнения можно объединить в одно, если первое из них продифференцировать по х, а второе— по t; тогда левые стороны уравнений совпадут (с точностью до множителя с2). И мы обнаруживаем, что Еy подчиняется уравнению
(20.19)
Мы уже встречали это дифференциальное уравнение, когда изучали распространение звука. Это волновое уравнение для одномерных волн.
Заметьте, что в процессе вывода мы получили больше, чем содержится в (20.11). Уравнения Максвелла дали нам информацию и о том, что у электромагнитных волн есть только компоненты поля, расположенные под прямым углом к направлению распространения волн.
Вспомним все, что нам известно о решениях одномерного волнового уравнения. Если какая-то величина ψ удовлетворяет одномерному волновому уравнению
(20.20)
то одним из возможных решений является функция ψ(x, t), имеющая вид
(20.21)
т. е. функция одной-единственной переменной (x-ct). Функция f(x-ct) представляет собой «жесткое» образование вдоль оси х, которое движется по направлению к положительным х со скоростью с (фиг. 20.4).
Фиг. 20.4. Функция f(x-ct) представляет неизменный «контур», движущийся в направлении возрастания х со скоростью с.
Так, если максимум функции f приходится на нулевое значение аргумента, то при t=0 максимум ψ оказывается при x=0. В более поздний момент, скажем при t=10, максимум ψ окажется в точке х=10 с. Когда время движется, максимум тоже движется в сторону возрастания х со скоростью с. Порой удобнее считать, что решение одномерного волнового уравнения является функцией от (t-х/с). Однако в сущности это одно и то же, потому что любая функция от (t-х/с)— это также функция от (x-ct):
Покажем, что f(x-ct) действительно есть решение волнового уравнения. Поскольку f зависит лишь от одной переменной — переменной (x-ct), то мы будем через f' обозначать производную f по этой переменной, а через f"— вторую производную. Дифференцируя (20.21) по х, получаем
потому что производная от (x-ct) по x равна единице. Вторая производная ψ по x равна
(20.22)
А производные ψ по t дают
(20.23)
Мы убеждаемся, что ψ действительно удовлетворяет одномерному волновому уравнению.
Вы недоумеваете: «Откуда же вы взяли, что решением волнового уравнения является f(x-ct)? Мне эта проверка задним числом совсем не нравится. Нет ли прямого пути отыскать решение?» Хорошо, вот вам прямой путь: знать решение. Можно, конечно, «испечь» по всей науке прямые математические аргументы, тем более, что мы знаем, каким должно быть решение, но с таким простым, как у нас, уравнением игра не стоит свеч. Со временем вы сами дойдете до того, что, как только; увидите уравнение (20.20), тут же будете представлять себе f(x-ct)=ψ в качестве решения. (Подобно тому, как сейчас при виде интеграла от x2dx у вас сразу всплывает ответ x3/3.)
На самом деле вы должны представлять себе немножко больше. Решением является не только любая функция от (x-ct), но и функция от (х+сt). Из-за того, что в волновом уравнении с встречается только в виде с2, изменение знака с ничего не меняет. И действительно, самое общее решение одномерного волнового уравнения — это сумма двух произвольных функций, одной от аргумента (x-ct), а другой от (x+ct):
(20.24)
Первое слагаемое дает волну, движущуюся по направлению к положительным х, второе — произвольную волну, бегущую к отрицательным х. Общее решение получается наложением двух таких волн, существующих одновременно.
* * *
Следующий забавный вопрос решите сами. Возьмем функцию ψ в виде
Эта функция не имеет вида f(x-ct) или g(x+ct). Но прямой подстановкой в (20.20) легко убедиться, что она удовлетворяет волновому уравнению. Но как же мы тогда смеем говорить, что общее решение имеет вид (20.24)?
* * *
Применяя эти выводы о решении волнового уравнения к y-компоненте электрического поля Еу, мы заключаем, что Еy может меняться по х произвольным образом. Всякое поле, которое существует в самом деле, можно всегда рассматривать как сумму двух картин. Одна волна плывет через пространство в каком-то направлении со скоростью с, причем связанное с нею магнитное поле перпендикулярно к электрическому; другая волна бежит в противоположном направлении с той же скоростью. Такие волны отвечают хорошо нам известным электромагнитным волнам — свету, радиоволнам, инфракрасному излучению, ультрафиолету, рентгеновским лучам и т. д. Мы уже изучали очень подробно излучение света. Так как все, чему мы тогда научились, применимо к любым электромагнитным волнам, то теперь нет нужды рассматривать подробно поведение этих волн.
Пожалуй, стоит лишь сделать несколько замечаний о поляризации электромагнитных волн. Раньше мы решили рассмотреть частный случай электрического поля с одной только y-компонентой. Имеется, конечно, и другое решение для волн, бегущих в направлении +х или -х, т. е. решение, при котором электрическое поле обладает одной лишь z-компонентой. Так как уравнения Максвелла линейны, общее решение для одномерных волн, распространяющихся в направлении х, есть сумма волн Еy и волн Еz. Общее решение суммируется следующими формулами:
(20.25)
У подобных электромагнитных волн направление вектора Е не неизменно: оно как-то произвольно смещается по спирали в плоскости yz. Но в каждой точке магнитное поле всегда перпендикулярно к электрическому и к направлению распространения.
Если присутствуют только волны, бегущие в одном направлении (скажем, в положительном направлении х), то имеется простое правило, говорящее об относительной ориентации электрического и магнитного полей. Правило состоит в том, что векторное произведение Е×B (которое, как известно, является вектором, поперечным и к Е, и к В) указывает направление, куда бежит волна. Если Е совмещать с В правым поворотом, то вектор поворота показывает направление вектора скорости волны. (Позже мы увидим, что вектор Е×B имеет особый физический смысл: это вектор, описывающий течение энергии в электромагнитном поле.)
§ 2. Трехмерные волны
А теперь обратимся к трехмерным волнам. Мы уже знаем, что вектор Е удовлетворяет волновому уравнению. К тому же выводу легко прийти, отправляясь прямо от уравнений Максвелла. Предположим, что мы исходим из уравнения
и берем ротор от обеих частей:
(20.26)
Вы помните, что ротор от ротора любого вектора может быть записан в виде суммы двух членов, один из которых содержит дивергенцию, а другой — лапласиан:
Но в пустом пространстве дивергенция Е равна нулю, так что остается только член с лапласианом. Далее, из четвертого уравнения Максвелла в пустом пространстве [см. (20.12)] производная по времени от c2(∇×B) равна второй производной Е по t:
Тогда (20.26) обращается в
Это и есть трехмерное волновое уравнение. Расписанное во всей красе, оно выглядит так:
Как же нам найти общее решение этого уравнения? Ответ таков: все решения трехмерного волнового уравнения могут быть представлены в виде суперпозиции уже найденных нами одномерных решений. Мы получили уравнение для волн, бегущих в направлении х, предположив, что поле не зависит от у и z. Конечно, имеются и другие решения, в которых поля не зависят от x и z,— это волны, идущие в направлении у. Затем существуют решения, не зависящие от х и y; они представляют волны, движущиеся в направлении z. Или в общем случае, поскольку мы записали наши уравнения в векторной форме, трехмерное волновое уравнение может иметь решения, которые являются плоскими волнами, бегущими, вообще говоря, в любом направлении. Кроме того, раз уравнения линейны, то одновременно может распространяться сколько угодно плоских волн, бегущих в каких угодно направлениях. Таким образом, самое общее решение трехмерного волнового уравнения является суперпозицией всех видов плоских волн, бегущих во всех возможных направлениях.
Попытайтесь представить себе, как выглядят сейчас электрические и магнитные поля в нашей аудитории. Прежде всего здесь имеется постоянное магнитное поле; оно возникло от токов внутри нашей Земли, от постоянного земного магнетизма. Затем здесь имеются какие-то нерегулярные, почти статические электрические поля. Они скорей всего созданы электрическими зарядами, появляющимися из-за того, что кто-то ерзает на своем стуле или трется рукавами о стол (словом, в результате трения). Кроме того, здесь есть еще и другие магнитные поля, вызванные переменными токами в электропроводке,— поля, которые меняются с частотой в 50 гц в такт с работой генератора на городской электростанции. Но еще больший интерес представляют электрические и магнитные поля, меняющиеся быстрее. К примеру, там, где свет падает из окна, освещая стены и пол, имеются небольшие колебания электрического и магнитного полей, перемещающиеся за секунду на 300 000 км. По комнате еще распространяются инфракрасные волны, идущие от ваших горячих голов к холодной доске с формулами. Да! Мы еще позабыли об ультрафиолетовом свете, о рентгеновских лучах и о радиоволнах, которые проносятся по комнате.
Через комнату скользят электромагнитные волны, которые несут в себе джазовую музыку. Проносятся и волны, модулированные серией импульсов, представляющих картины событий, которые происходят сейчас в других местах света, или картины воображаемых явлений, происходящих при растворении воображаемого аспирина в воображаемых желудках. Чтобы убедиться в реальности этих волн, достаточно просто включить электронную аппаратуру, которая превращает эти волны в изображения и звуки.
Если мы займемся дальнейшим анализом еще более слабых колебаний, то заметим мельчайшие электромагнитные волны, пришедшие в нашу комнату с огромных расстояний. В ней существуют мельчайшие колебания электрического поля, гребни которых отстоят друг от друга примерно на фут, а источник их удален отсюда на миллионы миль. Эти волны передаются на Землю с межпланетной станции Маринер II, которая как раз проходит сейчас где-то мимо Венеры. Ее сигналы несут сводку всей той информации, которую ей удалось ухватить у планеты (информации, полученной от электромагнитных волн, дошедших от Венеры к станции).
И есть здесь еще едва заметные колебания электрических и магнитных полей от волн, возникших в миллиардах световых лет отсюда, в галактиках, находящихся в удаленнейших уголках Вселенной. В том, что это действительно так, убедились, «заполнив комнату проволокой», т. е. соорудив антенны величиной с эту комнату. Так были замечены радиоволны, дошедшие до нас из мест, находящихся за пределами досягаемости крупнейших оптических телескопов. Кстати, даже эти оптические телескопы всего лишь простые собиратели электромагнитных волн. А то, что мы называем звездами, лишь заключения — заключения, выведенные из единственной физической реальности, которую мы до сих пор от них получали, из тщательного изучения бесконечно сложных волновых движений электрических и магнитных полей, достигающих Земли.
В аудитории имеются, конечно, еще другие разные поля — от молний, вспыхивающих где-то вдалеке отсюда, от заряженных частиц в космических лучах в тот момент, когда они проносятся сквозь комнату, и еще поля и еще... Представляете, какая сложная штука все эти электрические поля в пространстве вокруг нас! И все они подчиняются трехмерному волновому уравнению.
§ 3. Научное воображение
Я просил вас представить себе электрические и магнитные поля. Что вы для этого сделали? Знаете ли вы, как это нужно сделать? И как я сам представляю себе электрическое и магнитное поля? Что я на самом деле при этом вижу? Что требуется от научного воображения? Отличается ли оно чем-то от попытки представить себе комнату, полную невидимых ангелов? Нет, это не похоже на такую попытку.
Чтобы получить представление об электромагнитном поле, требуется более высокая степень воображения. Почему? Да потому что для того, чтобы невидимые ангелы стали доступны пониманию, мне нужно только чуть-чуть изменить их свойства — я делаю их слегка видимыми, и тогда я уже могу увидеть и форму их крыльев, и их тела, и их нимбы. Как только мне удалось представить себе видимого ангела, то необходимая для дальнейшего абстракция (состоящая в том, чтобы почти невидимых ангелов представить себе совершенно невидимыми) оказывается сравнительно легким делом.
Вы можете тоже сказать: «Профессор, дайте мне, пожалуйста, приближенное описание электромагнитных волн, пусть даже слегка неточное, но такое, чтобы я смог увидеть их так, как я могу увидеть почти невидимых ангелов. И я видоизменю эту картину до нужной абстракции».
Увы, я не могу этого сделать для вас. Я просто не знаю как. У меня нет картины этого электромагнитного поля, которая была бы хоть в какой-то степени точной. Я узнал об электромагнитном поле давным-давно, 25 лет тому назад, когда я был на вашем месте, и у меня на 25 лет больше опыта размышлений об этих колеблющихся волнах. Когда я начинаю описывать магнитное поле, движущееся через пространство, то говорю о полях Е и В, делаю руками волнистые движения и вы можете подумать, что я способен их видеть. А на самом деле, что я при этом вижу? Вижу какие-то смутные, туманные, волнистые линии, на них там и сям надписано Е и В, а у других линий имеются словно какие-то стрелки, то здесь, то там на них есть стрелки, которые исчезают, едва в них вглядишься. Когда я рассказываю о полях, проносящихся сквозь пространство, в моей голове катастрофически перепутываются символы, нужные для описания объектов, и сами объекты. Я не в состоянии дать картину, хотя бы приблизительно похожую на настоящие волны. Так что, если вы сталкиваетесь с такими же затруднениями при попытках представить поле, не терзайтесь, дело обычное.
Наша наука предъявляет воображению немыслимые требования. Степень воображения, которая теперь требуется в науке, несравненно превосходит то, что требовалось для некоторых прежних идей. Нынешние идеи намного труднее вообразить себе. Правда, мы используем для этого множество средств. В ход пускаются математические уравнения и правила, рисуются различные картинки. Вот сейчас я ясно осознаю, что всегда, когда я завожу речь об электромагнитном поле в пространстве, фактически перед моим взором встает своего рода суперпозиция всех тех диаграмм на эту тему, которые я когда-либо видывал. Я не воображаю себе маленьких пучков линий поля, снующих туда и сюда; они не нравятся мне потому, что если бы я двигался с иной скоростью, то они бы исчезли. Я не всегда вижу и электрические, и магнитные поля, потому что временами мне кажется, что гораздо правильнее была бы картина, включающая векторный и скалярный потенциалы, ибо последние, пожалуй, имеют больший физический смысл, чем колебания полей.
Быть может, вы считаете, что остается единственная надежда на математическую точку зрения. Но что такое математическая точка зрения? С математической точки зрения в каждом месте пространства существует вектор электрического поля и вектор магнитного поля, т. е. с каждой точкой связаны шесть чисел. Способны ли вы вообразить шесть чисел, связанных с каждой точкой пространства? Это слишком трудно. А можете вы вообразить хотя бы одно число, связанное с каждой точкой пространства? Я лично не могу! Я способен себе представить такую вещь, как температура в каждой точке пространства. Но это, по-видимому, вообще вещь представимая: имеется теплота и холод, меняющиеся от места к месту. Но, честное слово, я не способен представить себе число в каждой точке.
Может быть, поэтому стоит поставить вопрос так: нельзя ли представить электрическое поле в виде чего-то сходного с температурой, скажем, похожего на смещения куска студня? Сначала вообразим себе, что мир наполнен тонкой студенистой массой, а поля представляют собой какие-то искривления (скажем, растяжения или повороты) этой массы. Вот тогда можно было бы себе мысленно вообразить поле. А после того, как мы «увидели», на что оно похоже, мы можем отвлечься от студня. Именно это многие и пытались делать довольно долгое время. Максвелл, Ампер, Фарадей и другие пробовали таким способом понять электромагнетизм. (Порой они называли абстрактный студень «эфиром».) Но оказалось, что попытки вообразить электромагнитное поле подобным образом на самом деле препятствуют прогрессу. К сожалению, наши способности к абстракциям, к применению приборов для обнаружения поля, к использованию математических символов для его описания и т. д. ограниченны. Однако поля в известном смысле — вещь вполне реальная, ибо, закончив возню с математическими уравнениями (все равно, с иллюстрациями или без, с чертежами или без них, пытаясь представить поле въяве или не делая таких попыток), мы все же можем создать приборы, которые поймают сигналы с космической ракеты или обнаружат в миллиарде световых лет от нас галактику, и тому подобное.
Вопрос о воображении в науке наталкивается зачастую на непонимание у людей других специальностей. Они принимаются испытывать наше воображение следующим способом. Они говорят: «Вот перед вами изображены несколько людей в некоторой ситуации. Как вы представляете, что с ними сейчас случится?» Если вы ответите: «Не могу себе представить», они могут счесть вас за человека со слабым воображением. Они проглядят при этом тот факт, что все, что допускается воображать в науке, должно согласовываться со всем прочим, что нам известно: что электрические поля и волны, о которых мы говорим, это не просто удачные мысли, которые мы вызываем в себе, если нам этого хочется, а идеи, которые обязаны согласовываться со всеми известными законами физики. Недопустимо всерьез воображать себе то, что очевидным образом противоречит известным законам природы. Так что наш род воображения — весьма трудная игра. Надо иметь достаточно воображения, чтобы думать о чем-то никогда прежде не виденном, никогда прежде не слышанном. В то же время приходится, так сказать, надевать на мысли смирительную рубашку, ограничивать их условиями, вытекающими из наших знаний о том, какому пути на самом деле следует природа. Проблема создания чего-то, что является совершенно новым и в то же время согласуется со всем, что мы видели раньше,— проблема чрезвычайно трудная.
Но раз уж зашла об этом речь, я хочу остановиться на том, в состоянии ли мы себе представить красоту, которую мы не можем видеть. Это интересный вопрос. Когда мы глядим на радугу, она нам кажется прекрасной. Каждый, увидав ее, воскликнет: «О радуга!». (Смотрите, как научно я подхожу к вопросу. Я остерегаюсь именовать что-то восхитительным, пока нет экспериментального способа определить это.) Ну, а как мы описывали бы радугу, если бы были слепыми? А ведь мы слепы, когда измеряем коэффициент отражения инфракрасных лучей от хлористого натрия или когда говорим о частоте волн, пришедших от некоторой невидимой глазу галактики. Тогда мы чертим график, рисуем диаграмму. К примеру, для радуги подобным графиком была бы зависимость интенсивности излучения от длины волны, измеренная спектрофотометром под всевозможными углами к горизонту. Вообще говоря, подобные измерения должны были бы приводить к довольно пологим кривым. И вот в один прекрасный день кто-то обнаружил бы, что при какой-то определенной погоде, под некоторыми углами к горизонту спектр интенсивности как функция длины волны начал себя вести странно — у него появился пик. Если бы угол наклона прибора чуть-чуть изменился, максимум пика перешел бы от одной длины волны к другой. И вот через некоторое время в физическом журнале для слепых появилась бы техническая статья под названием «Интенсивность излучения как функция угла при некоторых метеоусловиях». В этой статье был бы график типа, показанного на фиг. 20.5. «Автор заметил,— говорилось бы, быть может, в статье,— что под большими углами основная часть радиации приходится на длинные волны, а под меньшими максимум излучения смещается к коротким волнам». (Ну, а мы бы сказали, что под углом 40° свет преимущественно зеленый, а под углом 42° — красный.)
Фиг. 20.5. Зависимость интенсивности электромагнитных волн от длины волны под тремя углами (отсчитываемыми от направления, противоположного направлению на Солнце). Доступно наблюдению лишь в определенных метеорологических условиях.
Но находите ли вы график, приведенный на фиг. 20.5, восхитительным? В нем ведь содержится существенно больше различных деталей, чем мы в состоянии постичь, когда видим радугу: наши глаза не могут схватить доподлинную форму спектра. А вот глазам радуга все же кажется восхитительной. Хватает ли у вас воображения, чтобы в спектральных кривых увидеть всю ту красоту, которую мы видим, смотря на радугу? У меня — нет.
Но представим себе, что у меня имеется график зависимости коэффициента отражения кристаллов хлористого натрия от длины волны в инфракрасном участке спектра и от угла. Я могу вообразить себе, как это представилось бы моим глазам, обладай они способностью видеть в инфракрасном свете. Должно быть, это был бы какой-то яркий, насыщенный «зеленый цвет», на который накладывались бы отражения от поверхностей «металлически-красных» тонов. Это выглядело бы поистине великолепно, но я не знаю, способен ли я, взглянув на график коэффициента отражения NaCl, снятый на каком-то приборе, сказать, что он столь же прелестен.
Но, с другой стороны, хоть мы и не можем видеть красоту тех или иных частных измерений, мы можем утверждать, что постигаем своеобразную красоту уравнений, описывающих всеобщие физические законы. Например, в волновом уравнении (20.9) очень красива та правильность, с какой в нем расположены х, у, z и t. И эта приятная симметрия появления х, у, z, t намекает на ту величественную красоту, которая таится в четырех равнозначных координатах, в возможности того, что у пространства есть четырехмерная симметрия, в возможности проанализировать ее и развить специальную теорию относительности. Так что существует еще интеллектуальная красота, ассоциируемая с уравнениями.
§ 4. Сферические волны
Мы видели, что существуют решения волнового уравнения, отвечающие плоским волнам, и что любая электромагнитная волна может быть описана как суперпозиция многих плоских волн. В определенных случаях, однако, удобнее описывать волновое поле в другой математической форме. Я хотел бы сейчас разобрать теорию сферических волн — волн, которые соответствуют сферическим поверхностям, расходящимся из некоторого центра. Когда вы бросаете камень в пруд, то по водной глади побежит рябь в виде круговых волн — это двумерные волны. Сферические волны похожи на них, только распространяются они во всех трех измерениях.
Прежде чем начать описание сферических волн, немного займемся математикой. Пусть имеется функция, зависящая только от радиального расстояния r точки от начала координат, иными словами, сферически симметричная функция. Обозначим ее ψ(r), где под r подразумевается
т. е. расстояние от начала координат. Чтобы узнать, какие функции ψ(r) удовлетворяют волновому уравнению, нам понадобится выражение для лапласиана ψ. Значит, нам нужно найти сумму вторых производных ψ по х, по у и по z. Через ψ'(r) мы обозначим первую производную ψ по r, а через ψ"(r) — вторую. Сначала найдем производные по х. Первая производная равна
Вторая производная по х равна
Частные производные r по x можно получить из
так что вторая производная ψ по x принимает вид
(20.28)
Точно так же и
(20.29)
(20.30)
Лапласиан равен сумме этих трех производных. Вспоминая, что x2+y2+z2=r2, получаем
(20.31)
Часто бывает удобнее записывать уравнение в следующей форме:
(20.32)
Проделав дифференцирование, указанное в (20.32), вы убедитесь, что правая часть здесь та же, что и в (20.31).
Если мы хотим рассматривать сферически симметричные поля, которые могут распространяться как сферические волны, то величины, описывающие поля, должны быть функцией как r, так и t. Предположим, что нам нужно знать, какие функции ψ(r, t) являются решениями трехмерного волнового уравнения
(20.33)
Поскольку ψ(r, t) зависит от пространственных координат только через r, то в качестве лапласиана можно использовать выражение (20.32). Но для точности, поскольку ψ зависит также и от t, нужно дифференцирование по r записывать в виде частной производной. Волновое уравнение обращается в
Его и предстоит нам решать. Оно выглядит сложнее, чем в случае плоских волн. Но заметьте, что если умножить это уравнение на r, то получится
(20.34)
Это уравнение говорит нам, что функция rψ удовлетворяет одномерному волновому уравнению по переменной r. Используя часто подчеркивавшийся нами общий принцип, что у одних и тех же уравнений и решения одни и те же, мы приходим к выводу, что если rψ окажется функцией одного только (r-ct), то оно явится решением уравнения (20.34). Итак, мы обнаруживаем, что сферические волны обязаны иметь вид
Или, как мы видели раньше, можно в равной степени считать rψ имеющим форму
Деля на r, находим, что характеризующая поле величина ψ (чем бы она ни была) имеет вид
(20.35)
Такая функция представляет сферическую волну общего вида, распространяющуюся от начала координат со скоростью с. Если на минуту забыть об r в знаменателе, то амплитуда волны как функция расстояния от начала координат в каждый данный момент обладает определенной формой, которая распространяется со скоростью с. Однако r в знаменателе говорит нам, что по мере того, как волна распространяется, ее амплитуда убывает пропорционально 1/r. Иными словами, в отличие от плоской волны, амплитуда которой остается при движении все время одной и той же, амплитуда сферической волны беспрерывно спадает (фиг. 20.6).
Фиг. 20.6. Сферическая волна ψ=f(t-r/с)/r. а — зависимость ψ от r при t=tl и ma же волна в более поздний момент времени t2; б — зависимость ψ от t при r=r1 и та же самая волна на расстоянии r2.
Этот факт легко понять из простых физических соображений.
Мы знаем, что плотность энергии в волне зависит от квадрата амплитуды волны. По мере того как волна разбегается, ее энергия расплывается на все большую и большую площадь, пропорциональную квадрату радиуса волны. Если полная энергия сохраняется, плотность энергии должна убывать как 1/r2, а амплитуда — как 1/r. Поэтому формула (20.35) для сферической волны вполне «разумна».
Мы игнорировали другое возможное решение одномерного волнового уравнения
или
Это тоже сферическая волна, но бегущая внутрь, от больших r к началу координат.
Тем самым мы делаем некоторое специальное предположение. Мы утверждаем (без какого-либо доказательства), что волны, создаваемые источником, всегда бегут только от него. Поскольку мы знаем, что волны вызываются движением зарядов, мы настраиваемся на то, что волны бегут от зарядов. Было бы довольно странно представлять, что прежде чем заряды были приведены в движение, сферическая волна уже вышла из бесконечности и прибыла к зарядам как раз в тот момент, когда они начали шевелиться. Такое решение возможно, но опыт показывает, что, когда заряды ускоряются, волны распространяются от зарядов, а не к ним. Хоть уравнения Максвелла предоставляют обеим волнам равные возможности, мы привлекаем добавочный факт, основанный на опыте, что «физическим смыслом» обладает только расходящаяся волна.
Нужно, однако, заметить, что из этого добавочного предположения вытекает интересное следствие: мы теряем при этом симметрию относительно времени, которая есть у уравнений Максвелла. Как исходные уравнения для Е и В, так и вытекающие из них волновые уравнения при изменении знака t не меняются. Эти уравнения утверждают, что любому решению, которое отвечает волне, бегущей в одну сторону, отвечает столь же правильное решение для волны, бегущей в обратную сторону. И утверждая, что мы намерены брать в расчет только расходящиеся сферические волны, мы делаем тем самым важное дополнительное предположение. (Очень тщательно изучалась такая электродинамика, в которой обходятся без этого дополнительного предположения. Как это ни удивительно, но во многих обстоятельствах она не приводит к физически абсурдным результатам. Однако обсуждение этих идей теперь увлекло бы нас чересчур в сторону. Мы поговорим об этом подробнее в гл. 28.)
Нужно упомянуть еще об одном важном факте. В нашем решении для расходящейся волны (20.35) функция ψ в начале координат бесконечна. Это как-то необычно. Мы бы предпочли иметь такие волновые решения, которые гладки повсюду. Наше решение физически относится к такой ситуации, когда в начале координат располагается источник. Значит, мы нечаянно сделали одну ошибку: наша формула (20.35) не является решением свободного волнового уравнения (20.33) повсюду; уравнение (20.33) с нулем в правой части решено повсюду, кроме начала координат. Ошибка вкралась оттого, что некоторые действия при выводе уравнения при r=0 «незаконны».
Покажем, что ту же самую ошибку легко сделать и в электростатике. Допустим, что нам нужно решить уравнение электростатического потенциала в пустом пространстве ∇2φ=0. Лапласиан равен нулю, потому что мы предположили, что никаких зарядов нигде нет. Но как обстоит дело со сферически симметричным решением уравнения, т. е. с функцией φ, зависящей только от r? Используя для лапласиана формулу (20.32), получаем
Умножив это выражение на r, приходим к уже интегрировавшемуся уравнению
Проинтегрировав один раз по r, мы увидим, что первая производная rφ равна постоянной, которую мы обозначим через а:
Еще раз проинтегрировав, мы получим для rφ формулу
где b — другая постоянная интегрирования. Итак, мы обнаружили, что решение для электростатического потенциала в пустом пространстве имеет вид
Что-то здесь явно не так. Мы же знаем решение для электростатического потенциала в области, где нет электрических зарядов: потенциал всюду постоянен. Это соответствует первому слагаемому в решении. Но имеется еще и второй член, подсказывающий нам, что в потенциал дает вклад нечто, меняющееся как 1/r. Мы знаем, однако, что подобный потенциал соответствует точечному заряду в начале координат. Стало быть, хоть мы и думали, что нашли решение для потенциала в пустом пространстве, наше решение фактически дает нам также поле точечного источника в начале координат. Вы замечаете сходство между тем, что сейчас произошло, и тем, что произошло тогда, когда мы искали сферически симметричное решение волнового уравнения? Если бы в начале координат действительно не было ни зарядов, ни токов, то не возникли бы и сферически расходящиеся волны. Сферические волны должны вызываться источниками в начале координат. В следующей главе мы исследуем связь между излучаемыми электромагнитными волнами и вызывающими их токами и напряжениями.
Глава 21 РЕШЕНИЯ УРАВНЕНИЙ МАКСВЕЛЛА С ТОКАМИ И ЗАРЯДАМИ
Повторить: гл. 28 (вып. 3) «Электромагнитное излучение»; гл. 31 (вып. 3) «Как возникает показатель преломления»; гл. 34 (вып. 3) «Релятивистские явления в излучении»
§ 1. Свет и электромагнитные волны
В предыдущей главе мы видели, что среди решений уравнений Максвелла есть электромагнитные волны. Свету, радио, рентгеновским лучам и т. д. отвечают электромагнитные волны отличающиеся только длиной волны. Мы уже подробно изучали различные явления, связанные со светом. В этой главе мы хотим связать оба вопроса и показать, что уравнения Максвелла действительно могли служить основой для изучения свойств света.
Наше изучение света мы начали с того, что выписали уравнение для электрического поля, создаваемого зарядом, который мог как-то произвольно двигаться. Уравнение имело вид
[см. гл. 28 (вып. 3), выражение (28.3)][27].
Если заряд движется произвольным образом, то электрическое поле, которое существует в некоторой точке, в настоящий момент зависит только от положения и движения заряда в более ранний момент времени, отстающий на интервал, необходимый для того, чтобы свет, двигаясь со скоростью с, прошел расстояние r' от заряда до точки поля. Иными словами, если вам нужно знать электрическое поле в точке (1) в момент t, вы должны подсчитать положение (2') заряда и его движение в момент (t-r'/с) [где r' — расстояние до точки (1)] из положения заряда (2') в момент (t—r/с). Штрихи здесь напоминают вам, что r' — это так называемое «запаздывающее расстояние» от точки (2') к точке (1), а вовсе не теперешнее расстояние между точкой (2) — положением заряда в момент t — и точкой поля (1) (фиг. 21.1).
Фиг. 21.1. Поля в точке (1) в момент t зависят от того положения (2'), которое заряд q занимал в момент (t — r'/с).
Заметьте, что сейчас по-иному определяется направление единичного вектора еr. В гл. 28 и 34 (вып. 3) мы уславливались, что r (и, стало быть, еr) будет показывать на источник. Теперь же мы следуем определению, используемому в формулировке закона Кулона, по которому r направлено от заряда [в точке (2)] к точке (1) поля. Единственное отличие в том, что новое r (и еr) противоположно старому.
Мы видели также, что если скорость заряда v всегда много меньше с и если рассматриваются только точки, сильно удаленные от заряда, так что в (21.1) существенно лишь последнее слагаемое, то поля можно также записать в виде
и
Рассмотрим более детально, что дает полное уравнение (21.1). Вектор еr — это единичный вектор, направленный от «запаздывающей» точки (2') к точке (1). Тогда первое слагаемое дает то, чего следовало бы ожидать, если бы заряд в своем «запаздывающем» положении создавал кулоново поле,— это можно назвать «запаздывающим кулоновым полем». Электрическое поле обратно пропорционально квадрату расстояния и направлено от «запаздывающего» положения заряда (т. е. по вектору еr').
Но это только первое слагаемое. Остальные напоминают нам, что законы электричества не утверждают, что все поля, оставаясь, как и были, статическими, начинают просто запаздывать (а такое утверждение порой приходится слышать). К «запаздывающему кулонову полю» надо добавить два других слагаемых.
Второе говорит, что к запаздывающему кулонову полю надо сделать «поправку», равную быстроте изменения запаздывающего кулонова поля, умноженной на r'/с, т. е. на само запаздывание. Этот множитель как бы стремится скомпенсировать запаздывание в первом. Два первых слагаемых соответствуют вычислению «запаздывающего кулонова поля» и затем экстраполяции его в будущее, на время r'/с, т. е. как раз к моменту t! Экстраполяция линейна, как если бы мы предположили, что «запаздывающее кулоново поле» будет по-прежнему изменяться со скоростью, рассчитанной для заряда в точке (2'). Если поле меняется медленно, эффект запаздывания почти полностью сводится на нет поправочным слагаемым, и оба слагаемых вместе приводят к величине электрического поля, очень близкой к «мгновенному кулонову полю» заряда, находящегося в точке (2).
Наконец, в формуле (21.1) имеется еще третье слагаемое — вторая производная единичного вектора еr'. Изучая явление света, мы по существу использовали тот факт, что вдали от заряда два первых слагаемых убывают как обратный квадрат расстояния и на больших расстояниях оказываются слишком слабыми по сравнению с третьим, которое убывает как 1/r. Поэтому мы сосредоточили наше внимание на последнем слагаемом и показали, что оно (опять-таки на больших расстояниях) пропорционально компоненте ускорения заряда, поперечной к линии зрения. (Кроме того, почти всюду ранее мы рассматривали только случай, когда заряды двигались нерелятивистски. Релятивистские эффекты рассматривались только в гл. 34, вып. 3.)
Теперь нужно попробовать связать эти две вещи. У нас есть уравнения Максвелла и есть формула (21.1) для поля точечного заряда. Естественно спросить, эквивалентны ли они? Если мы сможем вывести (21.1) из уравнений Максвелла, то действительно поймем связь света с электромагнетизмом. Вывод ее и есть главная цель этой главы.
Выясняется, что полного вывода мы сделать не можем — чересчур сложные математические детали не позволят нам выйти с поля боя без потерь. Но все же мы подойдем к цели достаточно близко, так что вы легко поймете, как может быть установлена интересующая нас связь. Мы опустим лишь некоторые математические детали. Математика этой главы может показаться некоторым из вас довольно сложной, и, возможно, вам даже станет скучно следить внимательно за выводом. Но мы все же считаем, что очень важно связать то, что вы учили раньше, с тем, что вы изучаете сейчас, или по крайней мере продемонстрировать, как эта связь может быть установлена. Если вы не забыли прежние главы, то обратите внимание на то, что всякий раз, как мы принимали некоторое высказывание за исходную точку обсуждения, мы заботливо объясняли, является ли это высказывание новым «допущением», т. е. отражает ли оно основной закон природы или же его можно в конечном счете вывести из каких-то других законов. Дух этих лекций обязывает нас обсудить связь между светом и уравнениями Максвелла. Может быть, вам будет кое-где и трудно — с этим уж ничего не поделаешь: другого пути не существует.
§ 2. Сферические волны от точечного источника
В гл. 18 мы установили, что уравнения Максвелла можно решать подстановкой
(21.2)
и
(21.3)
где φ и А обязаны удовлетворять уравнениям
(21.4)
и
(21.5)
и, кроме того, условию
(21.6)
Найдем теперь решение уравнений (21.4) и (21.5). Для этого надо уметь решать уравнение
(21.7)
где величина s (которая называется источником) известна. Ясно, что для уравнения (21.4) s соответствует ρ/ε0, а ψ — это φ, а для уравнения (21.5) s соответствует jx/ε0с2, если ψ — это Ах, и т. д. Но нас интересует чисто математическая задача решения (21.7) безотносительно к тому, каков физический смысл ψ и s.
Там, где ρ и j равны нулю (это место называется «пустотой»), там потенциалы φ и А и поля Е и В удовлетворяют трехмерному волновому уравнению без источников; математическая форма этого уравнения такова:
(21.8)
В гл. 20 мы видели, что решения этого уравнения могут представлять волны разных сортов: плоские волны, бегущие в x-направлении ψ=f(t-x/с); плоские волны, бегущие вдоль у или вдоль z или в любом другом направлении; сферические волны вида
(21.9)
(Решения можно записать иначе — например в виде цилиндрических волн, разбегающихся от оси.)
Мы тогда заметили, что физически формула (21.9) относится не совсем к пустоте: в начале координат должны быть какие-то заряды, иначе расходящаяся волна не получилась бы. Иными словами, формула (21.9) есть решение уравнения (21.8) всюду, кроме непосредственной окрестности точки r=0, где (21.9) представляет собой решение полного уравнения (21.7), в правой части которого стоят источники. Давайте теперь посмотрим, что это за уравнение, т. е. какого рода источник s в уравнении (21.7) должен вызвать волну типа (21.9).
Предположим, что имеется сферическая волна (21.9) и поглядим, во что она превращается при очень малых r. Тогда запаздыванием -r/с в f(t-r/с) можно пренебречь, и поскольку функция f плавная, ψ превращается в
(21.10)
Итак, ψ в точности похоже на кулоново поле заряда, расположенного в начале координат. Мы знаем, что для небольшого сгустка заряда, ограниченного очень малой областью близ начала координат и имеющего плотность ρ,
где Q=∫ρdV. Такой потенциал φ удовлетворяет уравнению
Следуя тем же расчетам, мы должны были бы сказать, что ψ из выражения (21.10) удовлетворяет уравнению
(21.11)
где s связано с f формулой
при
Единственная разница в том, что в общем случае s, а, стало быть, и S может оказаться функцией времени.
Далее очень важно то, что если ψ удовлетворяет (21.11) при малых r, то оно удовлетворяет также и (21.7). По мере приближения к началу координат зависимость ψ от r типа 1/r приводит к тому, что пространственные производные становятся очень большими. А производные по времени остаются теми же. [Это просто производные f(t) по времени.] Так что, когда r стремится к нулю, множителем ∂2ψ/∂t2 в уравнении (21.7) по сравнению с ∇2ψ можно пренебречь, и (21.7) становится эквивалентным уравнению (21.11).
Подытоживая, можно сказать, что если функция источника s(t) из уравнения (21.7) сосредоточена в начале координат и ее общая величина равна
(21.12)
то решение уравнения (21.7) имеет вид
(21.13)
Влияние слагаемого с ∂2ψ/∂t2 в (21.7) сказывается лишь на появлении запаздывания (t-r/с) в потенциале кулонова типа.
§ 3. Общее решение уравнений Максвелла
Мы нашли решение уравнения (21.7) для «точечного» источника. Теперь встает новый вопрос: Каков вид решения для рассредоточенного источника? Ну, это решить легко; всякий источник s(x, у, z, t) можно считать состоящим из суммы многих «точечных» источников, расположенных поодиночке в каждом элементе объема dV и имеющих силу s(x, у, z, t)dV. Поскольку (21.7) линейно, суммарное поле представляет собой суперпозицию полей от всех таких элементов источника.
Используя результаты предыдущего параграфа [см. (21.13)], мы получим, что в момент t поле dψ в точке (х1, y1, z1) [или, короче, в точке (1)], создаваемое элементом источника sdV в точке (х2, у2, z2) [или, короче, в точке (2)], выражается формулой
где r12 — расстояние от (2) до (1). Сложение вкладов от всех частей источника означает, конечно, интегрирование по всей области, где s≠0, так что мы имеем
(21.14)
Иначе говоря, поле в точке (1) в момент времени t представляет собой сумму всех сферических волн, испускаемых в момент t-r12/c всеми элементами источника, расположенного в точке (2). Выражение (21.14) является решением нашего волнового уравнения для любой системы источников.
Теперь мы видим, как получать общее решение уравнений Максвелла. Если подразумевать под ψ скалярный потенциал φ, то функция источника s превращается в ρ/ε0. А можно считать, что ψ представляет одну из трех компонент векторного потенциала А; тогда s означает соответствующую компоненту j/ε0c2. Стало быть, если во всех точках известна плотность зарядов ρ(х, у, z, t) и плотность тока j(х, у, z, t), то решения уравнений (21.4) и (21.5) можно выписать немедленно:
(21.15)
(21.16)
Поля Е и В получатся дифференцированием потенциалов [используются выражения (21.2) и (21.3)]. Кстати, можно проверить явно, что φ и А, полученные из (21.15) и (21.16), действительно удовлетворяют равенству (21.6).
Мы решили уравнения Максвелла. В любых обстоятельствах, если только заданы токи и заряды, из этих интегралов можно определить потенциалы, а затем, продифференцировав их, получить поля. Тем самым с теорией Максвелла покончено. И это позволяет нам также замкнуть круг и вернуться к нашей теории света, потому что достаточно только подсчитать электрическое поле движущегося заряда, чтобы связать все это с нашей прежней теорией света. Все, что нам остается сделать,— это взять движущийся заряд, вычислить из этих интегралов его потенциал и затем из -∇φ-∂A/∂t, дифференцируя, найти Е. Мы должны получить формулу (21.1). Работы придется проделать много, но принцип ясен.
Итак, мы дошли до центра электромагнитной вселенной. У нас в руках полная теория электричества, магнетизма и света, полное описание полей, создаваемых движущимися зарядами, и многое, многое другое. Все сооружение, воздвигнутое Максвеллом, во всей его полноте, красе и мощи сейчас перед нами. Это, пожалуй, одно из величайших свершений физики. И чтобы напомнить о его важности, мы переписываем все формулы вместе и обводим их красивой рамкой.
§ 4. Поля колеблющегося диполя
Мы пока еще не провели обещанного вывода формулы (21.1) для электрического поля движущегося точечного заряда. Даже зная то, что мы уже знаем, этот вывод все равно проделать нелегко. Нам не удалось обнаружить формулы (21.1) нигде, ни в каких книжках и статьях (кроме первых выпусков этих лекций[28]). Это свидетельствует о том, что вывод ее не прост. (Поля движущегося заряда записывались неоднократно и в других видах, которые все, конечно, эквивалентны.) Мы ограничимся поэтому здесь тем, что просто покажем на нескольких примерах, что (21.15) и (21.16) приводят к тем же результатам, что и (21.1). Первым делом мы покажем, что при том единственном условии, что движение заряженной частицы является нерелятивистским, (21.1) приводит к правильной величине полей. (Уже этот частный случай покрывает 90% всего того, что было сказано о явлении света.)
Рассмотрим такую ситуацию, когда имеется сгусток зарядов, каким-то образом перемещающийся в небольшой области; требуется найти создаваемые им где-то вдалеке от этого места поля. Можно поставить вопрос и иначе: мы найдем поле на произвольном расстоянии от точечного заряда, который почти незаметно колеблется вверх и вниз. Поскольку свет обычно испускают такие нейтральные тела, как атомы, то мы будем считать, что наш колеблющийся заряд q расположен вблизи неподвижного, равного по величине, но противоположного по знаку заряда. Если расстояние между центрами зарядов равно d, то у зарядов появится дипольный момент p=qd, который мы будем считать функцией времени. Следует ожидать, что поблизости от зарядов запаздыванием поля можно будет пренебречь; электрическое поле будет в точности таким же, как и то, которое получалось раньше для электростатического диполя [но, конечно, с мгновенным дипольным моментом p(t)]. Однако при большом удалении в формуле для поля должно появиться добавочное слагаемое, которое меняется как 1/r и зависит от того, каково ускорение заряда в направлении, поперечном к лучу зрения. Посмотрим, получится ли у нас этот результат.
Начнем с вычисления векторного потенциала А при помощи (2.16). Пусть плотность зарядов в сгустке есть ρ(х, у, z) и весь он движется все время со скоростью v. Тогда плотность тока j(x, у, z) равна vρ(x, y, z). Удобно систему координат расположить так, чтобы ось z была направлена по v; тогда геометрия нашей задачи изобразится так, как показано на фиг. 21.2.
Фиг. 21.2. Потенциалы в точке (1) даются интегралами от плотности заряда ρ.
Нас интересует интеграл
(21.17)
Если размеры заряда-сгустка на самом деле намного меньше, чем r12, то r12 в знаменателе можно положить равным r (расстоянию от центра сгустка) и вынести r за знак интеграла. Кроме того, мы собираемся положить и в числителе r12=r, хотя это и не совсем верно. А неверно это потому, что на самом деле, скажем, полагается брать j в верхней части сгустка совсем не в тот момент, когда в нижней, а немного в другое время. Полагая r12=r в j(t-r12/с), мы вычисляем плотность тока для всего сгустка в одно и то же время (t-r/с). Это приближение годится лишь тогда, когда скорость v заряда много меньше с. Мы, стало быть, ведем расчет в нерелятивистском случае. После замены j на ρv интеграл (21.17) превращается в
Раз скорость всех зарядов в сгустке одна и та же, этот интеграл просто равен v/r, умноженному на общий заряд q. Но qv — это как раз ∂p/∂t (скорость изменения дипольного момента), только надо ее, конечно, определять в более раннее время (t-r/с). Запишем эту величину так: .p(t-r/с). Итак, мы получаем для векторного потенциала
Мы узнали, что ток в меняющемся диполе создает векторный потенциал в форме сферических волн, источник которых обладает силой .р/4πε0с2.
Теперь из B=∇×A можно получить магнитное поле. Поскольку .р направлен по оси z, у А есть только z-компонента; в роторе остаются только две ненулевые производные. Значит, Вх=∂Az/∂y и В=—∂Az/∂x. Поглядим сперва на Вх:
(21.19)
Чтобы продифференцировать, вспомним, что r=√(x2+y2+z2), так что
(21.20)
Но мы помним, что ∂r/∂y=y/r; значит, первое слагаемое даст
(21.21)
что убывает как 1/r2, т. е. как поле статического диполя (потому что в данном направлении у/r постоянно).
Второе слагаемое в (21.20) приводит к новому эффекту. Если провести в нем дифференцирование, то получится
(21.22)
где р" — просто вторая производная р по t. Вот это-то получающееся от дифференцирования числителя слагаемое и ответственно за излучение. Во-первых, оно описывает поле, убывающее на расстоянии как 1/r, во-вторых, зависит от ускорения заряда. Теперь вам должно быть ясно, как мы собираемся получить формулу типа (21.1'), описывающую световое излучение.
Явление это настолько интересно и важно, что стоит немного подробнее разобраться в том, откуда берется это «радиационное» слагаемое. Мы начинали с выражения (21.18), зависящего от r как 1/r и тем самым похожего на кулонов потенциал (если не обращать внимания на запаздывающий множитель в числителе). Почему же когда мы, желая получить поле, дифференцируем по пространственным координатам, то не получаем просто поля вида 1/r2 (конечно, с соответствующей временной задержкой)?
А вот почему. Представьте, что диполь приведен в колебательное движение вверх и вниз. Тогда
и
Если начертить график зависимости Аr от r в каждый данный момент, то получится кривая, показанная на фиг. 21.3.
Фиг. 21.3. Зависимость величины А от r в момент t для сферической волны от колеблющегося диполя.
Амплитуда в пиках убывает как 1/r, но, кроме того, еще имеются пространственные колебания, которые ограничены огибающей вида 1/r. Пространственные производные в формуле пропорциональны наклону кривой. Из фиг. 21.3 видно, что встречаются намного более крутые наклоны, чем наклон самой кривой 1/r. Очевидно, что при данной частоте наклоны в пиках пропорциональны амплитуде волны, меняющейся как 1/r. Тем самым объясняется степень спадания радиационного слагаемого с расстоянием.
Все это получается оттого, что временные вариации в источнике превращаются в пространственные вариации, когда волны начинают разбегаться в стороны, магнитные же поля зависят от пространственных производных потенциала.
Теперь возвратимся назад и закончим наши расчеты магнитного поля. Для Вх мы получили (21.21) и (21.22). Поэтому
(21.1')
С помощью точно таких же выкладок мы придем к
И все это можно объединить в одну красивую векторную формулу:
(21.23)
А теперь взгляните на нее. Прежде всего на больших удалениях (когда r велико) следует принимать в расчет только ..р. Направление В дается вектором ..p×r, перпендикулярным и к радиусу r, и к ускорению (фиг. 21.4).
Фиг. 21.4. Поля излучения В и Е колеблющегося диполя.
Все сходится с тем, что получилось бы из формулы (21.1').
Теперь посмотрите (к этому мы не привыкли) на то, что происходит поблизости от заряда. В гл. 14, § 7 (вып. 5) мы вывели закон Био и Савара для магнитного поля элемента тока. Мы нашли, что элемент тока jdV привносит в магнитное поле следующий вклад:
(21.24)
Вы видите, что эта формула с виду очень похожа на первое слагаемое в (21.23), если только вспомнить, что .р — это ток. Но разница все же есть. В (21.23) ток надо подсчитывать в момент (t-r/с), а в (21.24) этого нет. На самом деле, однако, (21.24) для малых r все еще годится, потому что второе слагаемое в (21.23) стремится уничтожить эффект запаздывания из первого слагаемого. Вместе оба они приводят при малых r к результату, очень близкому к (21.24).
В этом можно убедиться следующим образом. Когда r мало, (t-r/с) не очень отличается от t, и в (21.23) скобки можно разложить в ряд Тэйлора. Первый член разложения дает
n в том же порядке по r/с
Если их сложить, члены с ..р уничтожатся и слева останется незапаздывающий ток .р, т. е. .р(t) плюс члены порядка (r/с)2 и выше [например, 1/2(r/с)2...p]. Эти члены при достаточно малых r (малых настолько, что за время r/с ток .р заметно не меняется) будут очень малы.
Стало быть, (21.23) приводит к полям, очень похожим на те, которые дает теория с мгновенным действием, гораздо более похожим на них, чем на поля теории с мгновенным действием и с задержкой; эффекты задержки первого порядка компенсируются вторым членом. Статические формулы очень точны, намного более точны, чем вам могло бы показаться. Конечно, компенсация чувствуется только вблизи от заряда. Для далеких точек эти поправки уже ничего не спасают, потому что временное запаздывание приводит к очень большим эффектам и в конечном счете к важному члену 1/r — к эффекту излучения.
Перед нами все еще стоит задача расчета электрического поля и доказательства того, что оно совпадает с (21.1'). Правда, уже чувствуется, что на больших расстояниях ответ получится такой, как надо. Мы знаем, что вдали от источников, где возникает распространяющаяся волна, Е перпендикулярно к В (и к r), как на фиг. 21.4, и что с В=Е. Значит, Е пропорционально ускорению ..р, как и предсказывалось формулой (21.1').
Чтобы получить электрическое поле на всех возможных расстояниях, нужно найти электростатический потенциал. Когда мы подсчитывали интеграл токов для А, желая получить (21.18), то сделали приближение: мы пренебрегли малозаметным изменением r в члене с запаздыванием. Для электростатического потенциала этого делать нельзя, потому что тогда у нас получилось бы 1/r, умноженное на интеграл от плотности заряда, т. е. на константу. Такое приближение чересчур грубо. Надо обратиться к высшим порядкам. И вместо того, чтобы путаться в этих прямых расчетах высших приближений, можно поступить иначе — определить скалярный потенциал из равенства (21.6), используя уже найденное значение векторного потенциала. Дивергенция А в этом случае просто равна ∂A/∂z, поскольку Ах и Ay тождественно равны нулю. Дифференцируя точно так же, как это делалось выше при вычислении В, получаем
Или в векторных обозначениях
Из равенства (21.6) получается уравнение для φ:
Интегрирование по t просто убирает надо всеми р по одной точке:
(Постоянная интегрирования отвечала бы некому наложенному статическому полю, которое, конечно, может существовать, но мы считаем, что у выбранного нами колеблющегося диполя статического поля нет.) Теперь мы можем из
найти электрическое поле Е. После утомительных (хоть и прямых) выкладок [при этом нужно помнить, что p(t-r/с) и его производные по времени зависят от х, у и z через запаздывание r/с] мы получаем
(21.26)
где
(21.27)
Это выглядит довольно сложно, но интерпретируется просто. Вектор р* — это дипольный момент с запаздыванием и с «поправкой» на запаздывание, так что два члена с р* в (21.26) при малых r дают просто статическое поле диполя [см. гл. 6 (вып. 5), выражение (6.14)]. Когда r велико, то член с р преобладает над остальными, и электрическое поле пропорционально ускорению зарядов в направлении поперек r и само направлено вдоль проекции ..р на плоскость, перпендикулярную к r.
Этот результат согласуется с тем, что мы получили бы, применяя формулу (21.1'). Конечно, эта формула — более общая; она годится для любого движения, а не только для малозаметных движений, для которых запаздывание r/с в пределах всего источника можно считать постоянным [как (21.26)]. Во всяком случае, теперь мы укрепили столбами все наше прежнее изложение свойств света, за исключением лишь некоторых вопросов из гл. 34 (вып. 3), которые связаны с последней частью выражения (21.26). Мы можем теперь перейти к получению поля быстродвижущихся зарядов. Это приведет нас к релятивистским эффектам [гл. 34 (вып. 3)].
§ 5. Потенциалы движущегося заряда; общее решение Льенара и Вихерта
В предыдущем параграфе мы пошли на упрощение при вычислении интеграла для А, рассматривая только небольшие скорости. Но при этом мы шли таким путем, которым легко можно прийти и к новым выводам. Поэтому сейчас мы заново предпримем расчет потенциалов точечного заряда, движущегося уже, как ему захочется (даже с релятивистской скоростью). Как только мы получим этот результат, у нас в руках окажутся электромагнитные свойства электрических зарядов во всей их полноте. Даже формулу (21.1') можно будет тогда легко получить, взяв только нужные производные. И наш рассказ удастся, наконец, довести до конца. Итак, запаситесь терпением!
Попробуем подсчитать в точке (х1, у1, z1) скалярный потенциал φ(1), создаваемый точечным зарядом (вроде электрона), движущимся любым, каким угодно образом. Под «точечным» зарядом подразумевается очень маленький заряженный шарик, такой маленький, как только можно себе представить, с плотностью заряда ρ(х, у, z). Потенциал φ можно найти из (21.15):
(21.28)
На первый взгляд кажется (и почти все так и подумают), что ответ состоит в том, что интеграл от ρ по такому «точечному» заряду равен просто общему заряду q, т. е. что
Через r'12 здесь обозначен радиус-вектор от заряда в точке (2) к точке (1), измеренный в более раннее время (t—r12/c). Эта формула ошибочна.
Правильный ответ такой:
(21.29)
где vr' — компонента скорости заряда, параллельная r12, т. е. направленная к точке (1). Сейчас я объясню, почему это так. Чтобы легче было следить за моими доводами, я сперва проведу расчет для «точечного» заряда в форме небольшого заряженного кубика, который движется к точке (1) со скоростью v (фиг. 21.5).
Фиг. 21.5. «Точечный» заряд (рассматриваемый как небольшое распределение зарядов в форме куба), движущийся со скоростью v к точке (1).
Сторона куба будет а, это число пусть будет много меньше r12 [расстояния от центра заряда до точки (1)].
Чтобы оценить величину интеграла (21.28), мы вернемся к основному определению: запишем его в виде суммы
(21.30)
где ri — расстояние от точки (1) к i-му элементу объема ΔVi, а ρi-— плотность заряда в ΔVi в момент ti=(t-ri/с). Поскольку все ri≫а, удобно будет выбрать все ΔVi в виде тонких прямоугольных ломтиков, перпендикулярных к r12 (фиг. 21.6).
Фиг. 21.6. Элемент объема ΔVi, используемый для вычисления потенциалов.
Предположим, что мы начали с того, что взяли элементы объема ΔVi некоторой толщины w, много меньшей а.
Отдельные элементы объема будут выглядеть так, как показано на фиг. 21.7, а. Их нарисовано гораздо больше, чем нужно, чтобы закрыть весь заряд. А сам заряд не показан, и по весьма существенной причине. Где его нужно нарисовать? Ведь для каждого элемента объема ΔVi надо брать ρ в свой момент ti=(t-ri/с). Но раз заряд движется, то для каждого элемента объема ΔVi он окажется в другом месте!
Фиг. 21.7. Интегрирование ρ(t-r'/c)dV для движущегося заряда.
Начнем, скажем, с элемента объема 1 на фиг. 21.7, а, выбранного так, чтобы в момент t1=(t-r1/с) «задняя» грань заряда пришлась на ΔVi (фиг, 21.7, б). Тогда, вычисляя ρ2ΔV2, нужно взять положение заряда в несколько более позднее время t2=(t- r2/c) и заряд к этому времени сместится в положение, показанное на фиг. 21.7, в. Так же будет с ΔV3, ΔV4 и т. д. Вот теперь можно подсчитывать сумму.
Толщина каждого ΔVi равна w, а объем wa2. Поэтому каждый элемент объема, накладывающийся на распределение заряда, содержит в себе заряд wa2ρ, где ρ — плотность заряда внутри куба (мы считаем ее однородной). Когда расстояние от заряда до точки (1) велико, то можно все ri в знаменателях положить равными некоторому среднему значению, скажем, взятому с учетом запаздывания положению r' центра куба. Сумма (21.30) превращается в
где ΔVN—тот последний элемент ΔVi, который еще накладывается на распределение зарядов (см. фиг. 21.7, д). Сумма тем самым равна
Но ρa3 — просто общий заряд q, а Nw—длина b, показанная на фиг. 21.7, д. Получается
(21.31)
А чему же равно b? Это длина куба зарядов, увеличенная на расстояние, пройденное зарядом за время от t1=(t-r1/с) до tN=(t—rN/с). Это расстояние, пройденное зарядом за время
А поскольку скорость заряда равна v, то пройденное расстояние равно vΔt=vb/c. Но длина b — само это расстояние плюс a:
Отсюда
Здесь, конечно, под v подразумевается скорость в «запаздывающий» момент t'=(t-r'/с); это можно указать, записав [1—v/c]зап; тогда уравнение (21.23) для потенциала принимает вид
Это согласуется с тем, что было предположено в (21.29). Появился поправочный множитель. Он появился потому, что в то время, как наш интеграл «проносится над зарядом», сам заряд движется. Когда заряд движется к точке (1), его вклад в интеграл увеличивается в b/а раз. Поэтому правильное значение интеграла равно q/r', умноженному на b/а, т.е. на 1/[1—v/c]зап.
Если скорость заряда направлена не к точке наблюдения (1), то легко видеть, что важна только составляющая его скорости в направлении к точке (1). Если обозначить эту составляющую скорости через vr, то поправочный множитель запишется в виде 1/[1-vr/с]зап. Кроме того, проделанный нами анализ в равной степени проходит для распределения заряда любой формы (это не обязательно должен быть куб). Наконец, поскольку «размер» а заряда не вошел в окончательный итог, то тот же результат получится, если заряд стянется до любых размеров, вплоть до точки. Общий результат состоит в том, что скалярный потенциал точечного заряда, движущегося с произвольной скоростью, равен
(21.32)
Это уравнение часто пишут в эквивалентном виде:
(21.33)
где r — вектор, соединяющий заряд с той точкой (1), в которой вычисляется потенциал φ, а все величины в скобках надо вычислять в «запаздывающий» момент времени t'=(t—r'/c).
То же самое получается и тогда, когда по (21.16) вычисляют А для точечного заряда. Плотность тока равна ρv, а интеграл от ρ — тот же, что и в φ. Векторный потенциал равен
(21.34)
Потенциалы точечного заряда в этой форме были впервые получены Льенаром и Вихертом. Их так и называют: потенциалы Льенара — Вихерта.
Чтобы замкнуть круг и вернуться к формуле (21.1), теперь нужно только подсчитать Е и В из этих потенциалов (при помощи B=∇×A и Е=-∇φ-∂A/∂t). Теперь остается одна арифметика. Впрочем, арифметика эта довольно запутанна, так что мы не будем приводить здесь детали счета. Придется поверить мне на слово, что формула (21.1) эквивалентна выведенным нами потенциалам Льенара — Вихерта[29].
§ 6. Потенциалы заряда, движущегося с постоянной скоростью; формула Лоренца
Применим теперь потенциалы Льенара-Вихерта к случаю заряда, движущегося по прямой с постоянной скоростью, и вычислим поле этого заряда. Позже мы повторим этот вывод, используя уже принцип относительности. Мы знаем величину потенциалов в той системе, в которой заряд покоится. Когда заряд движется, то все получается простым релятивистским преобразованием от одной системы к другой. Но теория относительности ведет свое начало от теории электричества и магнетизма. Формулы преобразований Лоренца [см. гл. 15 (вып. 2)]— это открытия, сделанные Лоренцем при исследовании уравнений электричества и магнетизма. И для того чтобы вы понимали, откуда все пошло, я хочу показать вам, что уравнения Максвелла действительно приводят к преобразованиям Лоренца. Я начну с вычисления потенциала равномерно движущегося заряда прямо из электродинамики, из уравнений Максвелла. Мы уже показали, что уравнения Максвелла приводят к потенциалу, полученному в предыдущем параграфе. Стало быть, пользуясь этими потенциалами, мы используем тем самым теорию Максвелла.
Пусть имеется заряд, движущийся вдоль оси х со скоростью v (фиг. 21.8).
Фиг. 21.8. Определение потенциала в точке Р заряда, движущегося равномерно вдоль оси х.
Нас интересуют потенциалы в точке Р(х, у, z). Если t=0 — момент, в который заряд проходит через начало координат, то в момент t заряд окажется в точке x=vt, y=z=0. А нам нужно знать его положение с учетом запаздывания, т. е. положение в момент
(21.35)
где r' — расстояние от заряда до точки Р в этот запаздывающий момент. В это более раннее время t' заряд был в x=vt', так что
(21.36)
Чтобы найти r' или t', это уравнение надо сопоставить с (21.35). Исключим сперва r', решив (21.35) относительно r' и подставив в (21.36). Возвысив затем обе части в квадрат, получим
т. е. квадратное уравнение относительно t'. Раскрыв скобки и расположив члены по степеням t', получим
Отсюда найдем
(21.37)
Чтобы получить r', надо это t' подставить в
Теперь мы уже можем найти φ из выражения (21.33), имеющего вид
(21.38)
(ввиду того, что v постоянно).
Составляющая v в направлении r' равна v(x-vt')/r', так что v·r' просто равно v(x-vt'), а весь знаменатель равен
Подставляя (1-v2/c2)t' из (21.37), получаем
Это уравнение становится более понятным, если переписать его в виде
(21.39)
Векторный потенциал А — это такое же выражение, но с добавочным множителем v/c2:
В выражении (21.39) со всей ясностью предстает перед вами начало преобразований Лоренца. Если бы заряд находился в начале координат в своей собственной системе покоя, то его потенциал имел бы вид
А мы смотрим на него из движущейся системы координат, и нам кажется, что координаты следует преобразовать с помощью формул
Это обычное преобразование Лоренца. Лоренц вывел его тем же самым способом, каким пользовались и мы.
Но что можно сказать о добавочном множителе 1/√(1-v2/с2), который появился перед дробью в (21.39)? И кроме того, как появляется векторный потенциал А, если он в системе покоя частицы повсюду равен нулю? Мы вскоре покажем, что А и φ вместе составляют четырехвектор, подобно импульсу р и полной энергии U частицы. Добавка 1/√(1—v2/c2) в (21.39)—это тот самый множитель, который появляется всегда, когда преобразуют компоненты четырехвектора, так же как плотность заряда ρ преобразуется в ρ/√(1-v2/c2). Собственно из формул (21.4) и (21.5) почти очевидно, что А и φ суть компоненты одного четырехвектора, потому что в гл. 13 (вып. 5) уже было показано, что j и ρ — компоненты четырехвектора.
Позднее мы более подробно разберем относительность в электродинамике; здесь мы хотели только показать, как естественно уравнения Максвелла приводят к преобразованиям Лоренца. Поэтому не надо удивляться, узнав, что законы электричества и магнетизма уже вполне пригодны и для теории относительности Эйнштейна. Их не нужно даже как-то особо подгонять, как это приходилось делать с ньютоновой механикой.
Глава 22 ЦЕПИ ПЕРЕМЕННОГО ТОКА
Повторить: гл.2 (вып. 2) «Алгебра»; гл. 23 (вып. 2) «Резонанс»; гл. 25 (вып. 2) «Линейные системы и обзор»
§ 1. Импедансы
В основном наши усилия при чтении этих лекций были направлены на то, чтобы получить полные уравнения Максвелла. В предыдущих двух главах мы обсудили следствия этих уравнений. Выяснилось, что они содержат объяснение всех статических явлений, которые мы изучали раньше, и явлений электромагнитных волн и света — вопроса, подробно изучавшегося в самом начале нашего курса. Уравнения Максвелла дают и то и другое, смотря по тому, где эти поля вычисляются: поблизости от токов и зарядов или же вдали от них. Есть и промежуточная область, но о ней ничего интересного сказать нельзя; там никаких особых явлений не происходит.
Но в электромагнетизме остается еще несколько вопросов, которые стоит осветить. Надо будет обсудить вопрос связи относительности и уравнений Максвелла, т. е. выяснить, что произойдет, если на уравнения Максвелла посмотреть из движущейся системы координат. Важен еще и вопрос о сохранении энергии в электромагнитных системах. Кроме того, существует обширная область электромагнитных свойств материалов; до сих пор мы рассматривали только электромагнитные поля в пустом пространстве, если не считать изучения свойств диэлектриков. Да и при изучении света все еще оставалось несколько вопросов, которые хотелось бы рассмотреть еще раз с точки зрения уравнений поля.
В частности, надо бы еще раз вернуться к вопросу о показателе преломления (особенно у плотных веществ). Наконец, интересны явления, связанные с волнами, заключенными внутри ограниченной области пространства. Мы кратко коснулись этой проблемы, когда изучали звуковые волны. Но уравнения Максвелла тоже приводят к решениям, которые представляют волны электрических и магнитных полей, замкнутые в некотором объеме. В одной из последующих глав мы рассмотрим этот вопрос, имеющий важные технические применения. И чтобы подойти к нему, мы начнем с того, что изложим свойства электрических цепей при низких частотах. После этого мы сможем сравнить такие системы, когда к уравнениям Максвелла применимо почти статическое приближение, и системы, в которых преобладают высокочастотные эффекты.
Итак, снизойдем с величественных и труднодоступных высот последних нескольких глав и обратим свой взор на сравнительно низменную задачу — задачу об электрических цепях. Впрочем, мы убедимся в том, что даже столь мирские дела оказываются весьма запутанными, если в них вникнуть достаточно глубоко.
В гл. 23 и 25 (вып. 2) мы уже обсуждали некоторые свойства электрических цепей (контуров). Теперь мы повторим часть изложенного там материала, но более подробно. Мы по-прежнему будем иметь дело с линейными системами и с напряжениями и токами, которые меняются синусоидально; поэтому мы можем представить все напряжения и токи в виде комплексных чисел, пользуясь экспоненциальными обозначениями, введенными в гл. 22 (вып. 2). Так, меняющееся во времени напряжение V(t) будет записываться в виде
(22.1)
где ^V — комплексное число, не зависящее от t. При этом, конечно, подразумевается, что настоящее переменное по времени напряжение V(t) представляется действительной частью комплексной функции в правой части уравнения.
Подобным же образом и все другие меняющиеся во времени величины будут считаться изменяющимися синусоидально с той же частотой ω. Мы будем писать
(22.2)
и т. д.
Большей частью мы будем писать уравнения, пользуясь обозначениями V, I, ℰ, … (вместо ^V, ^I, ^ℰ...), помня при этом, что они изменяются со временем всегда так, как в (22.2).
В прежних наших рассуждениях об электрических цепях мы полагали, что такие вещи, как индуктивность, емкость и сопротивление, вам знакомы. Сейчас мы немного подробнее объясним, что понимают под этими идеализированными элементами схем. Начнем с индуктивности.
Индуктивность — это навитая в несколько рядов проволока в форме катушки, два конца которой выведены к зажимам на некотором расстоянии от катушки (фиг. 22.1).
Фиг. 22.1. Индуктивность.
Предположим, что магнитное поле, создаваемое токами в катушке, не очень распространяется на все пространство и не воздействует на другие части цепи. Обычно этого добиваются, придав катушке форму лепешки или намотав ее на подходящий железный сердечник (это сжимает магнитное поле); можно еще поместить катушку внутрь металлической коробочки: схематически это показано на фиг. 22.1. В любом случае предполагается, что во внешней области у зажимов а и b магнитным полем можно пренебречь. Кроме того, мы будем считать, что электрическое сопротивление проводов в катушке можно не учитывать. И наконец, полагают, что можно пренебречь и электрическим зарядом, возникающим на поверхности провода, когда создаются электрические поля.
С учетом всех этих приближений и возникает то, что называют «идеальной» индуктивностью. (Позже мы вернемся к этому пункту и поговорим о том, что бывает в реальных индуктивностях.) Про идеальную индуктивность говорят, что напряжение на ее зажимах равно L(dI/dt). Почему? Когда через индуктивность идет ток, то внутри катушки создается магнитное поле, пропорциональное силе тока. Если ток во времени меняется, то меняется и магнитное поле. Вообще говоря, ротор Е равен —dB/dt; можно сказать и по-другому: контурный интеграл от Е по любому замкнутому пути равен (с минусом) быстроте изменения потока В через контур. Представьте теперь себе следующий путь: начинается он на зажиме а и тянется вдоль катушки (оставаясь все время внутри провода) к зажиму b; затем возвращается от зажима b к а по воздуху в пространстве вне катушки. Контурный интеграл от Е по этому замкнутому пути можно записать в виде суммы двух частей:
(22.3)
Как мы уже выяснили раньше, внутри идеального проводника электрических полей существовать не может. (Малейшие поля вызвали бы бесконечно большие токи.) Поэтому интеграл от зажима а до b через катушку равен нулю. Весь вклад в контурный интеграл от Е приходится на путь снаружи индуктивности, от зажима b к зажиму а. А так как было предположено, что в пространстве вне «коробки» нет никаких магнитных полей, то эта часть интеграла не зависит от выбора пути. Значит, можно определить понятие потенциала обоих зажимов. Разность этих двух потенциалов и есть то, что называют напряжением V, так что
Полный интеграл по контуру — это то, что мы раньше называли э. д. с. ℰ. Он, естественно, равен скорости изменения магнитного поля в катушке. Мы уже знаем, что эта э. д. с. равна (со знаком минус) быстроте изменения тока, так что
где L — индуктивность катушки. Поскольку dI/dt=iωI, то мы имеем
(22.4)
Тот способ, которым мы описали идеальную индуктивность, иллюстрирует общий подход к другим идеальным элементам цепи — обычно их называют «сосредоточенными» элементами. Свойства элемента полностью описываются на языке токов и напряжений, возникающих на его зажимах. Прибегнув к подходящим приближениям, можно игнорировать огромную сложность тех полей, которые возникают внутри объекта. То, что происходит внутри, отделяется от того, что происходит снаружи.
Для всех элементов цепи мы намерены сейчас найти соотношения, подобные формуле (22.4). В ней напряжение пропорционально силе тока с константой пропорциональности, которая, вообще говоря, есть комплексное число. Этот комплексный коэффициент пропорциональности называется импедансом, и его привыкли обозначать через z (не следует путать с координатой z). В общем случае это функция частоты ω. Стало быть, для каждого сосредоточенного элемента мы напишем
(22.5)
Для индуктивности мы имеем
(22.6)
Рассмотрим с этой точки зрения емкость[30]. Она состоит из двух проводящих пластин (обкладок), от которых к нужным зажимам отходят два провода. Пластины могут быть любой формы и часто отделяются друг от друга каким-нибудь диэлектриком. Это схематически изображено на фиг. 22.2.
Фиг. 22.2. Емкость (или конденсатор).
Мы снова делаем несколько упрощающих предположений. Мы считаем, что пластины и провода — идеальные проводники, а изоляция между пластинами тоже идеальна, так что через нее никакие заряды с пластины на пластину перейти не могут. Затем мы предполагаем, что проводники находятся близко друг от друга, но зато значительно удалены ото всех остальных проводников, так что все линии поля, выйдя из одной пластины, непременно оканчиваются на другой. И тогда заряды на пластинах всегда равны и противоположны друг другу, причем по величине намного превосходят величину заряда на поверхности проводов. И наконец, мы считаем, что поблизости от конденсатора магнитных полей нет.
Рассмотрим теперь контурный интеграл от Е вдоль замкнутой петли, которая начинается на клемме а, проходит внутри провода до верхней обкладки конденсатора, перескакивает промежуток между пластинами, проходит с нижней обкладки на клемму b и возвращается к клемме а по пространству снаружи конденсатора. Раз магнитного поля нет, контурный интеграл от Е по этому замкнутому пути равен нулю. Интеграл можно разбить на три части:
Интеграл вдоль проводов равен нулю, потому что внутри идеальных проводников электрического поля не бывает. Интеграл от зажима b до а снаружи конденсатора равен разности потенциалов между клеммами со знаком минус. А поскольку мы считаем, что обкладки как-то изолированы от прочего мира, то общий заряд двух обкладок должен быть равен нулю; и если на верхней обкладке есть заряд Q, то на нижней имеется заряд —Q. Раньше мы уже видели, что если заряды двух проводников равны и противоположны, +Q и -Q, то разность потенциалов между ними есть Q/C, где С — емкость этих проводников. Из (22.7) следует, что разность потенциалов между зажимами а и b равна разности потенциалов между обкладками. Поэтому
Электрический ток I, втекающий в конденсатор через клемму а (и покидающий его через клемму b), равен dQ/dt — быстроте изменения электрического заряда на обкладках. Записывая dV/dt в виде iωV, можно связь между током и напряжением для конденсатора дать в следующем виде:
или
(22.8)
Тогда импеданс z конденсатора равен
(22.9)
Третий элемент, который нужно рассмотреть,— это сопротивление. Но, поскольку мы пока еще не рассматривали электрических свойств реальных веществ, мы не готовы обсуждать то, что творится внутри реального проводника. Придется просто принять как факт, что внутри реальных веществ могут существовать электрические поля, что эти поля порождают поток электрического заряда (т. е. ток) и что этот ток пропорционален интегралу электрического поля от одного конца проводника до другого. Затем надо представить себе идеальное сопротивление, сделанное так, как показано на фиг. 22.3.
Фиг. 22.3. Сопротивление.
Два провода, которые мы считаем идеальными проводниками, тянутся от клемм а и b к двум концам бруска, сделанного из материала, оказывающего сопротивление току. Следуя нашей обычной линии рассуждений, приходим к выводу, что разность потенциалов между зажимами а и b равна контурному интегралу от внешнего электрического поля, равному также контурному интегралу от электрического поля по пути, проходящему через брусок. Отсюда следует, что ток I через сопротивление пропорционален напряжению V на зажимах:
где R называется сопротивлением. Позже мы убедимся, что связь между силой тока I и напряжением V для реальных проводящих материалов только приближенно можно считать линейной. Мы убедимся также, что считать эту приближенную пропорциональность не зависящей от частоты изменений тока и напряжения можно лишь тогда, когда частота не слишком высока. И тогда для переменных токов напряжение на зажимах оказывается в фазе с током, а это значит, что сопротивление — число действительное:
(22.10)
Результаты наших рассуждений о трех сосредоточенных элементах цепи — индуктивности, емкости, сопротивлении — подытожены фиг. 22.4.
Фиг. 22.4. Идеальные сосредоточенные элементы цепи (пассивные).
На этом рисунке, как и на предыдущих, напряжение отмечено стрелкой, направленной от одной клеммы к другой. Если напряжение «положительно», т. е. если на клемме а потенциал выше, чем на клемме b, то стрелка указывает направление «падения напряжения».
Хотя мы сейчас говорим о переменных токах, конечно, можно включить сюда и особый случай цепей постоянного тока, если перейти к пределу, когда частота ω стремится к нулю. При нулевой частоте, т. е. при постоянном токе, импеданс индуктивности стремится к нулю; между клеммами наступает короткое замыкание. Импеданс же емкости при постоянном токе стремится к бесконечности; цепь между клеммами размыкается. Принимать в расчет при постоянных токах нужно только обычные сопротивления: они не зависят от частоты.
В описанных до сих пор элементах цепи ток и напряжение были пропорциональны друг другу. Если одно равно нулю, то и другое равно нулю. Обычно мы мыслим на таком языке: приложенное напряжение «ответственно» за ток или ток «создает» напряжение на клеммах. Элемент словно в некотором смысле «отвечает» на «приложенные» внешние условия. По этой причине такие элементы называются пассивными. Тем самым их можно противопоставить активным элементам, таким, как генераторы, которые мы рассмотрим в следующем параграфе и которые представляют собой источники колебаний токов или напряжений в цепи.
§ 2. Генераторы
Поговорим теперь об активном элементе цепи, источнике и токов и напряжений в ней, т. е. о генераторе.
Пусть у нас имеется катушка, наподобие катушки самоиндукции, но только витков у нее немного и на магнитное поле ее собственного тока можно внимания не обращать. Эта катушка, однако, находится в переменном магнитном поле, подобном тому, какое создается вращающимся магнитом (фиг. 22.5).
Фиг. 22.5. Генератор, состоящий из закрепленной катушки и вращающегося магнитного поля.
(Мы уже видели ранее, что такое вращающееся магнитное поле можно также создать с помощью подходящей совокупности катушек с переменными токами.) Сделаем снова несколько упрощающих допущений. Это все те же допущения, которые мы делали, говоря об индуктивности. В частности, мы предполагаем, что меняющееся магнитное поле ограничено лишь небольшой областью поблизости от катушки и за пределами генератора, в пространстве между клеммами, оно не чувствуется.
Повторяя опять в точности тот же анализ, что и для индуктивности, рассмотрим контурный интеграл от Е вдоль замкнутой петли, которая начинается на зажиме а, проходит по катушке до зажима b и возвращается к началу по пространству между зажимами. Снова заключаем, что разность потенциалов между зажимами а и b равна всему интегралу от Е вдоль петли:
Этот контурный интеграл равен э.д.с. в цепи, и поэтому разность потенциалов V между выводами генератора тоже равна скорости изменения магнитного потока сквозь катушку:
(22.11)
Предполагается далее, что у идеального генератора магнитный поток через катушку определяется внешними условиями (такими, как угловая скорость вращающегося магнитного поля) и что на него никак не влияют токи, текущие через генератор. Таким образом, генератор (по крайней мере рассматриваемый нами идеальный) — это не импеданс. Разность потенциалов на его зажимах определяется произвольно задаваемой э.д.с. ℰ(t). Такой идеальный генератор представляют символом, показанным на фиг. 22.6.
Фиг. 22.6. Обозначение идеального генератора.
Маленькая стрелка дает направление положительной э.д.с. Положительная э.д.с. в генераторе, изображенном на фиг. 22.6, создает напряжение V=ℰ с более высоким потенциалом на зажиме а.
Можно сделать генератор и по-другому. Внутри он будет устроен совершенно иначе, но снаружи, на зажимах, он ничем не будет отличаться от только что описанного. Представим катушку, которая вращается в неподвижном магнитном поле (фиг.22.7).
Фиг. 22.7. Генератор, состоящий из катушки, вращающейся в неподвижном магнитном поле.
Мы изобразили магнитную палочку, чтобы показать наличие магнитного поля, но его можно, конечно, заменить любым другим источником постоянного магнитного поля, скажем добавочной катушкой, по которой течет постоянный ток. Как показано на рисунке, вращающаяся катушка связана с внешним миром скользящими контактами, или «кольцами». Нас опять интересует разность потенциалов, которая появляется между клеммами а и b, т. е. интеграл от электрического поля между а и b по пути снаружи генератора.
Теперь в этой системе уже нет изменяющихся магнитных полей и на первый взгляд кажется удивительным, откуда на зажимах генератора берется напряжение. Действительно, ведь нигде же внутри генератора нет никаких электрических полей. Мы, как обычно, предполагаем для наших идеальных элементов, что внутри них провода сделаны из идеально проводящего материала; а, как уже неоднократно повторялось, электрическое поле внутри идеального проводника равно нулю. Но это не всегда верно. Это неверно тогда, когда проводник движется в магнитном поле. Правильное утверждение таково: общая сила, действующая на произвольный заряд внутри идеального проводника, должна быть равна нулю. Иначе в нем возник бы бесконечный ток свободных зарядов. Так что надо брать сумму электрического поля Е и векторного произведения скорости проводника v на магнитное поле В; это есть полная сила, действующая на единичный заряд, и вот она-то всегда равна нулю:
(22.12)
А наше прежнее утверждение о том, что внутри идеальных проводников электрических полей не бывает, верно лишь тогда, когда скорость проводника v равна нулю; в противном случае справедливо выражение (22.12).
Вернемся к нашему генератору, показанному на фиг. 22.7. Теперь мы видим, что контурный интеграл от электрического поля Е между зажимами а и b по проводящим путям генератора должен быть равен контурному интегралу от v×B по тому же пути;
Однако по-прежнему остается верным, что контурный интеграл от Е по замкнутой петле, включая возвращение от зажима b к а вне генератора, должен быть равен нулю, потому что меняющиеся магнитные поля отсутствуют. Так что первый интеграл в (22.13) по-прежнему равен V — напряжению на зажимах. Оказывается, что интеграл в правой части (22.13) просто равен быстроте изменения потока через катушку, а значит, по правилу потока, равен э.д.с. катушки. И опять получается, что разность потенциалов между зажимами равна э.д.с. цепи в согласии с уравнением (22.11). Так что все равно, какой у нас генератор: меняется ли в нем магнитное поле возле закрепленной катушки, вертится ли в закрепленном магнитном поле катушка,— внешние свойства генераторов одни и те же. На клеммах всегда существует напряжение V, которое не зависит от тока в цепи, а определяется только условиями внутри генератора, формируемыми по нашему произволу.
Поскольку мы пытаемся понять работу генератора, основываясь на уравнениях Максвелла, может возникнуть вопрос об обычном химическом элементе, о батарейке для карманного фонарика. Это тоже генератор, т. е. источник напряжения, хотя и применяется он только в цепях постоянного тока. Проще всего разобраться в элементе, изображенном на фиг. 22.8.
Фиг. 22.8. Химический элемент.
Представьте две металлические пластинки, погруженные в какой-то химический раствор. Пусть раствор содержит в себе положительные и отрицательные ионы. Мы предположим еще, что ионы одного сорта, скажем отрицательные, много массивнее ионов, имеющих противоположную полярность, так что их движение в растворе (диффузия) происходит намного медленнее. Наконец, положим, что тем или иным способом удалось добиться изменения концентрации раствора от места к месту, так что число ионов обеих полярностей, скажем у нижней пластинки, становится намного больше концентрации ионов у верхней пластинки. Благодаря большей подвижности положительные ионы легче проникнут в область низких концентраций, так что будет наблюдаться легкий избыток положительных зарядов, достигающих верхней пластинки. Она зарядится положительно, а нижняя будет обладать избытком отрицательного заряда. По мере того как все больше и больше зарядов диффундирует к верхней пластинке, потенциал ее будет расти, пока возникающее между пластинками электрическое поле не создаст силу, действующую на ионы, которая компенсирует их избыточную подвижность. Два электрода быстро достигают разности потенциалов, характерной для внутреннего устройства этого элемента.
Рассуждая так же, как это мы делали, когда говорили об идеальном конденсаторе, мы убедимся, что, если нет избытка диффузии ионов какого-либо знака, разность потенциалов между зажимами а и b равна просто контурному интегралу от электрического поля между электродами. Конечно, между конденсатором и таким химическим элементом есть существенная разница. Если на мгновение закоротить выводы конденсатора, он разрядится и разности потенциалов между выводами уже не будет. В случае же химического элемента ток с зажимов можно снимать непрерывно, никак не изменяя при этом э.д.с., пока, конечно, реактивы в элементе не израсходуются. Известно, что в реальном элементе разность потенциалов на зажимах убывает по мере возрастания снимаемого с него тока. Но при нашей идеализации задачи легко себе представить, что у нас есть идеальный элемент, в котором напряжение на электродах не зависит от силы тока. Тогда реальный элемент можно рассматривать как идеальный, соединенный последовательно с сопротивлением.
§ 3. Сети идеальных элементов; правила Кирхгофа
Как мы видели в предыдущем параграфе, очень просто описывать идеальные элементы схем, говоря лишь о том, что происходит вне элемента. Ток и напряжение связаны линейно. Но очень сложно описать все то, что на самом деле происходит внутри элемента, и весьма трудно при этом пользоваться языком уравнений Максвелла. Представьте, что вам нужно точно описать электрические и магнитные поля внутри радиоприемника, состоящего из сотен сопротивлений, емкостей и самоиндукций. Было бы непосильным делом проанализировать такую мешанину, пользуясь уравнениями Максвелла. Но, делая множество приближений, которые мы описали в § 2, и переводя существенные черты реальных элементов схем на язык идеализации, можно проанализировать электрическую цепь сравнительно просто. Сейчас мы покажем, как это делается. Пусть имеется цепь, которая состоит из генератора и нескольких импедансов, между собой так, как показано на фиг. 22.9.
Фиг. 22.9. Сумма падений напряжения вдоль любого замкнутого пути равна нулю.
Согласно нашим приближениям, в областях между отдельными элементами цепи магнитного поля нет. Поэтому интеграл от Е вдоль любой кривой, которая не проходит ни через один из элементов, равен нулю. Рассмотрим кривую Г, показанную штрихом на фиг. 22.9, которая обходит по цепи кругом. Контурный интеграл от Е вдоль этой кривой состоит из нескольких частей. Каждая часть — это интеграл от одного зажима элемента цепи до следующего. Мы назвали этот контурный интеграл падением напряжения на элементе цепи. Тогда весь контурный интеграл равен просто сумме падений напряжения на всех элементах цепи порознь:
А поскольку контурный интеграл равен нулю, то получается, что сумма разностей потенциалов вдоль всего замкнутого контура цепи равна нулю:
(22.14)
Этот результат следует из одного из уравнений Максвелла, утверждающего, что в области, где нет магнитных полей, криволинейный интеграл от Е по замкнутому контуру равен нулю. Теперь рассмотрим другую цепь (фиг. 22.10).
Фиг, 22.10. Сумма токов, входящих в любой узел, равна нулю.
Горизонтальная линия, соединяющая выводы а, b, с и d, нарисована для того, чтобы показать, что эти выводы все связаны между собой или что они соединяются проводами с ничтожным сопротивлением. Во всяком случае такой чертеж означает, что все выводы а, b, с, d находятся под одним потенциалом, а выводы е, f, g и h — тоже под одним. Тогда падение напряжения V на любом из четырех элементов одинаковое.
Но одна из наших идеализации состояла в том, что на выводах импедансов сосредоточиваются пренебрежимо малые количества электричества. Предположим теперь, что и электрическим зарядом, накапливаемым на соединительных проводах, тоже можно пренебречь. Тогда сохранение заряда требует, чтобы любой заряд, покинувший один из элементов цепи, немедленно входил в какой-либо другой элемент цепи. Или, что то же самое, чтобы алгебраическая сумма токов, входящих в любую из точек соединения, была равна нулю. Под точкой соединения мы понимаем любую совокупность выводов, таких, как а, b, с, d, которые соединены друг с другом. Такая совокупность соединенных между собой выводов обычно называется «узлом». Сохранение заряда, стало быть, требует, чтобы в цепи, показанной на фиг. 22.10, было
(22.15)
Сумма токов, входящих в узел, состоящий из четырех выводов е, f, g, h, тоже должна быть равна нулю:
(22.16)
Ясно, что это то же самое уравнение, что и (22.15). Оба эти уравнения не независимы. Общее правило гласит, что сумма токов, втекающих в любой узел, обязана быть равна нулю:
(22.17)
Наше прежнее заключение о том, что сумма падений напряжений вдоль замкнутого контура равна нулю, должно выполняться для каждого контура сложной цепи. Точно так же наш результат, что сумма сил токов, втекающих в узел, равна нулю, тоже должен выполняться для любого узла. Эти два уравнения известны под названием правил Кирхгофа. С их помощью можно найти силы токов и напряжения в какой угодно цепи.
Рассмотрим, например, цепь посложнее (фиг. 22.11).
Фиг. 22.11. Анализ цепи с помощью правил Кирхгофа.
Как определить токи и напряжения в ней? Прямой путь решения таков. Рассмотрим каждый из четырех вспомогательных контуров цепи. (Скажем, один контур проходит через клеммы а, b, е, d и обратно к а.) Для каждого замкнутого контура напишем уравнение первого правила Кирхгофа — сумма падений напряжения вдоль всякого контура равна нулю. Нужно помнить, что падение напряжения считается положительным, если направление обхода совпадает с направлением тока, и отрицательным, если направление обхода противоположно направлению тока; и надо еще помнить, что падение напряжения на генераторе равно отрицательному значению э.д.с. в этом направлении. Так что для контура abeda получается
Прилагая те же правила к остальным контурам, получим еще три сходных уравнения.
После этого нужно написать уравнения для токов в каждом узле цепи. Например, складывая все токи в узле b, получаем
Аналогично, в узле е уравнение для токов принимает вид
В изображенной схеме таких уравнений для токов пять. Оказывается, однако, что любое из этих уравнений можно вывести из остальных четырех, поэтому независимых уравнений только четыре. Итого в нашем распоряжении восемь независимых линейных уравнений: четыре для напряжений, четыре для токов. Из них можно получить восемь независимых токов. А если станут известны токи, то определится и вся цепь. Падение напряжения на любом элементе дается током через этот элемент, умноженным на его импеданс (а для источников напряжения они вообще известны заранее).
Мы видели, что одно из уравнений для тока зависит от остальных. Вообще-то уравнений для напряжения тоже можно написать больше, чем нужно. Хотя в схеме фиг. 22.11 и рассматривалась только четверка самых маленьких контуров, но ничего не стоило взять другие контуры и выписать для них уравнения для напряжений. Можно было взять, скажем, путь abcfeda. Или сделать обход по пути abcfehgda. Вы видите, что контуров — множество. И, анализируя сложные схемы, ничего не стоит получить слишком много уравнений. Но хоть есть правила, которые подсказывают, как надо поступать, чтобы вышло наименьшее количество уравнений, обычно и так бывает сразу понятно, как выписать нужное число простейших уравнений. Кроме того, одно-два лишних уравнения вреда не приносят. К неверному ответу они не приведут, разве только немного запутают выкладки.
В гл. 25 (вып. 2) мы показали, что, если два импеданса z1 и z2 соединены последовательно, они эквивалентны одиночному импедансу zs, равному
(22.18)
Кроме того, было показано, что, когда два импеданса соединены параллельно, они эквивалентны одиночному импедансу zp, равному
(22.19)
Если вы теперь оглянетесь назад, то увидите, что, выводя эти результаты, на самом деле вы пользовались правилами Кирхгофа. Часто можно проанализировать сложную схему, повторно применяя формулы для последовательного и параллельного импедансов. Скажем, таким способом можно проанализировать схему, показанную на фиг. 22.12.
Фиг. 22.12. Цепь, которую можно проанализировать с помощью последовательных и параллельных комбинаций.
Импедансы z4 и z5 можно заменить их параллельным эквивалентом, то же можно сделать с импедансами z6 и z7. Затем импеданс z2 можно скомбинировать с параллельным эквивалентом z6 и z7 по правилу последовательного соединения импедансов. Так постепенно можно свести всю схему к генератору, последовательно соединенному с одним импедансом Z. И тогда ток через генератор просто равен ℰ/Z. А действуя в обратном порядке, можно найти токи в каждом импедансе.
Однако бывают совсем простые схемы, которые этим методом не проанализируешь. Например, схема фиг. 22.13.
Фиг. 22,13. Цепь, которую нельзя проанализировать с помощью последовательных и параллельных комбинаций.
Чтобы проанализировать эту цепь, надо расписать уравнения для токов и напряжений по правилам Кирхгофа. Давайте проделаем это. Имеется только одно уравнение для токов:
откуда
Выкладки можно сэкономить, если этот результат сразу же подставить в уравнения для напряжений. В этой схеме таких уравнений два:
На два уравнения приходится два неизвестных тока. Решая их, получаем I1 и I2:
(22.20)
и
(22.21)
А третий ток получается как сумма первых двух.
Вот еще пример цепи, которую по правилам параллельных и последовательных импедансов рассчитывать нельзя (фиг. 22.14).
Фиг. 22.14. Мостиковая схема.
Такую схему называют «мостик». Она встречается во многих приборах, измеряющих импедансы. В таких схемах обычно интересуются таким вопросом: как должны соотноситься различные импедансы, чтобы ток через импеданс zs был равен нулю? Вам предоставляется право найти те условия, при которых это действительно так.
§ 4. Эквивалентные контуры
Положим, мы подключили генератор ℰ к цепи, в которой есть множество сложных переплетений импедансов (схематически это показано на фиг. 22.15, а).
Фиг. 22.15. Любая сеть пассивных элементов с двумя выводами эквивалентна эффективному импедансу.
Все уравнения, вытекающие из правил Кирхгофа, линейны, и поэтому, вычислив из них ток I через генераторы, мы получим величину I, пропорциональную ℰ. Можно написать
где теперь zэфф— это некоторое комплексное число, алгебраическая функция всех элементов цепи. (Если в цепи нет никаких генераторов, кроме упомянутого, то в формуле не будет добавочной части, не зависящей от ℰ.) Но получившееся уравнение — это как раз то, которое нужно было бы написать для схемы фиг. 22.15, б. И покуда нас интересует только то, что происходит слева от зажимов а и b, до тех пор обе схемы фиг. 22.15 эквивалентны. И поэтому можно сделать общее утверждение, что любую цепь пассивных элементов с двумя выводами можно заменить одним-единственным импедансом zэфф, не изменив в остальной части цепи ни токов, ни напряжений. Утверждение это, естественно, всего лишь мелкое замечание о том, что следует из правил Кирхгофа, а в конечном счете — из линейности уравнений Максвелла.
Идею эту можно обобщить на схемы, в которые входят как генераторы, так и импедансы. Представьте, что мы глядим на эту схему «с точки зрения» одного из импедансов, который мы обозначим zn (фиг. 22.16, а).
Фиг. 22.16. Любую сеть с двумя выводами можно заменить генератором, последовательно соединенным с импедансом.
Если бы решить уравнение для тока, мы бы увидели, что напряжение Vn между зажимами а и b есть линейная функция I, которую можно записать в виде
(22.22)
Здесь А и В зависят от генераторов и импедансов в цепи слева от зажимов. Например, в схеме, показанной на фиг. 22.13, мы находим V1=I1z1. Это можно переписать [используя (22.20)] в виде
(22.23)
Тогда полное решение мы получаем, комбинируя это уравнение с уравнением для импеданса z1 т. е. с V1=I1z1, или в общем случае комбинируя (22.22) с
Если мы рассмотрим теперь случай, когда zn подключается к простой цепи из последовательно соединенных генератора и импеданса (см. фиг. 22.15, б), то уравнение, соответствующее (22.22), примет вид
что совпадает с (22.22), если принять ℰэфф=A и zэфф=B. Значит, если нас интересует лишь то, что происходит направо от выводов а и b, то произвольную схему фиг. 22.16 можно всегда заменить эквивалентным сочетанием генератора, последовательно соединенного с импедансом.
§ 5. Энергия
Мы видели, что для создания в индуктивности тока I надо из внешней цепи доставить энергию U=1/2LI2. Когда ток спадает до нуля, эта энергия уводится обратно во внешнюю цепь.
В идеальной индуктивности механизма потерь энергии нет. Когда через индуктивность течет переменный ток, энергия перетекает то туда, то сюда — от индуктивности к остальной части цепи и обратно, но средняя скорость, с какой энергия передается в цепь, равна нулю. Мы говорим, что индуктивность — недиссипативный элемент, в ней не растрачивается (не «диссипирует») электрическая энергия.
Точно так же возвращается во внешнюю цепь и энергия конденсатора U=1/2СV2, когда он разряжается. Когда он стоит в цепи переменного тока, то энергия течет то в него, то из него, но полный поток энергии за каждый цикл равен нулю. Идеальный конденсатор — тоже недиссипативный элемент.
Мы знаем, что э. д. с.— это источник энергии. Когда ток I течет в направлении э.д.с., то энергия поставляется во внешнюю цепь со скоростью dU/dt=ℰI. Если электричество гонят против э.д.с. (с помощью других генераторов), то э. д. с. поглощает энергию со скоростью ℰI; поскольку I отрицательно, то и dU/dt отрицательно.
Если генератор подключен к сопротивлению R, то ток через сопротивление равен I=ℰ/R. Энергия, поставляемая генератором со скоростью ℰI, поглощается сопротивлением. Эта энергия тратится на нагрев сопротивления и для электрической энергии цепи фактически уже потеряна. Мы говорим, что электрическая энергия рассеивается, диссипирует в сопротивлении. Скорость, с какой она рассеивается, равна dU/dt=RI2.
В цепи переменного тока средняя скорость потерь энергии в сопротивлении — это среднее значение RI2 за цикл. Поскольку I=^Ieiωt (что, собственно, означает, что I меняется как cosωt), то среднее значение I2 за цикл равно |^I|2/2, потому что ток в максимуме — это |^I|, а среднее значение cos2ωt равно 1/2.
А что можно сказать о потерях энергии, когда генератор подключен к произвольному импедансу z? (Под «потерями» мы, конечно, понимаем превращение электрической энергии в тепловую.) Всякий импеданс z может быть разбит на действительную и мнимую части, т. е.
(22.24)
где R и X — числа действительные. С точки зрения эквивалентных схем можно сказать, что всякий импеданс эквивалентен сопротивлению, последовательно соединенному с чисто мнимым импедансом, называемым реактансом (фиг. 22.17).
Фиг. 22.17. Любой импеданс эквивалентен последовательному соединению чистого сопротивления и чистого реактанса.
Мы уже видели раньше, что любая цепь, содержащая только L и C, обладает импедансом, выражаемым чисто мнимым числом. А раз в любом из L и С в среднем никаких потерь не бывает, то и в чистом реактансе, в котором имеются только L и С, потерь энергии не бывает. Можно показать, что это должно быть верно для всякого реактанса.
Если генератор с э. д. с. ℰ подсоединен к импедансу z (см. фиг. 22.17), то его э. д. с. должна быть связана с током I из генератора соотношением
(22.25)
Чтобы найти, с какой средней скоростью подводится энергия, нужно усреднить произведение ℰI. Но теперь следует быть осторожным. Оперируя с такими произведениями, надо иметь дело только с действительными величинами ℰ(t) и I(t). (Действительные части комплексных функций изображают настоящие физические величины только тогда, когда уравнения линейны; сейчас же речь идет о произведении, а это, несомненно, вещь нелинейная.)
Пусть мы начали отсчитывать t так, что амплитуда ^I оказалась действительным числом, скажем I0; тогда истинное изменение I во времени дается формулой
Входящая в уравнение (22.25) э.д.с. — это действительная часть от
или
(22.26)
Два слагаемых в (22.26) представляют падение напряжений на R и X (см. фиг. 22.17). Мы видим, что падение напряжения на сопротивлении находится в фазе с током, тогда как падение напряжения на чисто реактивной части находится с током в противофазе.
Средняя скорость потерь энергии <Р>ср, текущей от генератора, есть интеграл от произведения ℰI за один цикл, деленный на период Т; иными словами,
Первый интеграл равен 1/2I02R, а второй равен нулю. Стало быть, средняя потеря энергии в импедансе z=R+iX зависит лишь от действительной части z и равна I02R/2. Это согласуется с нашим прежним выводом о потерях энергии в сопротивлении. В реактивной части потерь энергии не бывает.
§ 6. Лестничная сеть
А теперь мы рассмотрим интереснейшую цепь, которую можно выражать через параллельные и последовательные сочетания. Начнем с цепи, изображенной на фиг. 22.18, а.
Фиг. 22.18. Эффективный импеданс лестницы.
Сразу видно, что импеданс между зажимами а и b просто равен z1+z2. Возьмем теперь цепь потруднее (фиг. 22.18, б). Ее можно проанализировать с помощью правил Кирхгофа, но нетрудно обойтись и последовательными и параллельными комбинациями. Два импеданса на правом конце можно заменить одним z3=z1+z2 (см. фиг. 22.18, в). Тогда два импеданса z2 и z3 можно заменить их эквивалентным параллельным импедансом z4 (фиг. 22.18, г). И наконец, z1 и z4 эквивалентны одному импедансу z5 (фиг. 22.18, д).
А теперь можно поставить забавный вопрос: что произойдет, если к цепи, показанной на фиг. 22.18, б, бесконечно подключать все новые и новые звенья (штриховая линия на фиг. 22.19, а)?
Фиг. 22.19. Эффективный импеданс бесконечной лестницы.
Можно ли решить задачу о такой бесконечной цепи? Представьте, это совсем не трудно. Прежде всего мы замечаем, что такая бесконечная цепь не меняется, если новое звено подключить к «переднему» концу. Ведь если к бесконечной цепи добавляется одно звено, она остается все той же бесконечной цепью. Пусть мы обозначили импеданс между зажимами а и b бесконечной цепи через z0; тогда импеданс всего того, что справа от зажимов с и d, тоже равен z0. Поэтому если смотреть с переднего конца, то вся цепь представляется в виде, показанном на фиг. 22.19, б. Заменяя два параллельных импеданса z2 и z0 одним и складывая его с z1, сразу же получаем импеданс всего сочетания
Но этот импеданс тоже равен z0. Получается уравнение
Найдем из него z0:
(22.27)
Таким образом, мы нашли решение для импеданса бесконечной лестницы повторяющихся параллельных и последовательных импедансов. Импеданс z0 называется характеристическим импедансом такой бесконечной цепи.
Рассмотрим теперь частный пример, когда последовательный элемент — всегда индуктивность L, а шунтовой элемент — емкость С (фиг. 22.20, а).
Фиг. 22.20. Лестница L—C, изображенная двумя эквивалентными способами.
В этом случае импеданс бесконечной сети получается, если положить z1=iωL и z2=1/iωС. Заметьте, что первое слагаемое z1/2 в (22.27) равно просто половине импеданса первого элемента. Естественнее было бы поэтому (или по крайней мере проще) рисовать нашу бесконечную сеть так, как показано на фиг. 22.20, б. Глядя на бесконечную сеть из зажима a', мы бы увидали характеристический импеданс
(22.28)
Смотря по тому, какова частота ω, наблюдаются два интересных случая. Если ω2 меньше 4/LC, то второе слагаемое под корнем меньше первого, и импеданс z0 станет действительным числом. Если же ω2 больше 4/LС, то импеданс z0 станет чисто мнимым числом и его можно записать в виде
Раньше мы сказали, что цепь, составленная из одних только мнимых импедансов, таких, как индуктивности и емкости, будет иметь чисто мнимый импеданс. Но как же тогда выходит, что в той цепи, которую мы сейчас рассматриваем (а в ней есть только одни L и С), импеданс при частотах ниже √(4/LC) представляет собой чистое сопротивление? Для высоких частот импеданс чисто мнимый, в полном согласии с нашим прежним утверждением. Для низких же частот импеданс — чистое сопротивление и поэтому поглощает энергию. Но как может цепь, подобно сопротивлению, непрерывно поглощать энергию, если она составлена только из индуктивностей и емкостей? Ответ состоит в том, что этих емкостей и самоиндукций бесконечное множество, и получается, что, когда источник соединен с цепью, он обязан сперва снабдить энергией первую индуктивность и емкость, затем вторую, третью и т. д. В цепях подобного рода энергия непрерывно и с постоянной скоростью отсасывается из генератора и безостановочно течет в цепь. Энергия запасается в индуктивностях и емкостях вдоль цепи.
Эта идея подсказывает интересную мысль о том, что фактически происходит внутри цепи. Следует ожидать, что если к переднему концу цепи подключить источник, то действие этого источника начнет распространяться вдоль по цепи к бесконечному концу. Распространение волн вдоль линии очень похоже на излучение от антенны, которая отбирает энергию от питающего ее источника; точнее, можно ожидать, что такое распространение происходит, когда импеданс действителен, т. е. когда ω меньше √(4/LC). Но когда импеданс чисто мнимый, т. е. при ω, больших √4/LC, то такого распространения ожидать не следует.
§ 7. Фильтры
В предыдущем параграфе мы видели, что бесконечная лестничная сеть (см. фиг. 22.20) непрерывно поглощает энергию, если эта энергия подводится с частотой, которая ниже некоторого критического значения √(4/LC), называемого граничной частотой ω0. У нас возникла мысль, что этот эффект можно понять, основываясь на представлении о непрерывном переносе энергии вдоль линии. С другой стороны, на высоких частотах (при ω >ω0) непрерывного поглощения энергии не бывает; тогда следует ожидать, что токи, видимо, не смогут «проникнуть» далеко вдоль линии. Поглядим, верны ли эти представления.
Пусть передний конец лестницы соединен с каким-то генератором переменного тока, и нас интересует, как выглядит напряжение, скажем, в 754-м звене лестницы. Поскольку сеть бесконечна, при переходе от одного звена к другому происходит всегда одно и то же; так что можно просто посмотреть, что случается, когда мы переходим от n-го звена к (n+1)-му. Токи In и напряжения Vn мы определим так, как показано на фиг. 22.21,а.
Фиг. 22.21. Нахождение фактора распространения лестницы.
Напряжение Vn+1 можно получить из Vn, если вспомнить, что остаток лестницы (за n-м звеном) всегда можно заменить ее характеристическим импедансом z0; и тогда достаточно проанализировать только схему фиг. 22.21, б. Мы прежде всего замечаем, что каждое Vn, поскольку это напряжение на зажимах сопротивления z0, должно быть равно Inz0. Кроме того, разность между Vn и Vn+1 равна просто Inz1:
Получается отношение
которое можно назвать фактором распространения для одного звена лестницы; обозначим его α. Для всех звеньев
(22.29)
и напряжение за n-м звеном равно
Теперь ничего не стоит найти напряжение за 754-м звеном; оно просто равно произведению ℰ на 754-ю степень α.
Как выглядит α для лестницы L—С на фиг. 22.20, а? Взяв z0 из уравнения (22.27) и z1=iωL, получим
Если частота на входе ниже граничной частоты ω0=√(4/LС), то корень — число действительное, и модули комплексных чисел в числителе и знаменателе одинаковы. Поэтому значение α по модулю равно единице; можно написать
а это означает, что величина (модуль) напряжения в каждом звене одна и та же; меняется только фаза. Она меняется на число δ; оно на самом деле отрицательно и представляет собой «задержку» напряжения по мере того, как последнее проходит по сети. А для частот выше граничной частоты ω0 лучше вынести в числителе и знаменателе (22.31) множитель i и переписать его в виде
(22.32)
Теперь фактор распространения α — число действительное, притом меньшее единицы. Это означает, что напряжение в некотором звене всегда меньше напряжения в предыдущем звене; множитель пропорциональности равен α. При частотах выше ω0 напряжение быстро спадает по мере движения вдоль сети. Кривая модуля α как функции частоты похожа на график, приведенный на фиг. 22.22.
Фиг. 22.22. Фактор распространения одного звена лестницы.
Мы видим, что поведение α как выше, так и ниже ω0 согласуется с нашим представлением о том, что сеть передает энергию при ω<ω0 и задерживает ее при ω>ω0. Говорят, что сеть «пропускает» низкие частоты и «отбрасывает», или «отфильтровывает», высокие. Всякая сеть, устроенная так, чтобы ее характеристики менялись указанным образом, называется «фильтром». Мы проанализировали «фильтр низкого пропускания», или «низких частот».
Вас может удивить — к чему все это обсуждение бесконечных сетей, если на самом деле они невозможны? Но вся хитрость в том и заключается, что те же характеристики вы обнаружите и в конечной сети, если заключите ее импедансом, совпадающим с характеристическим импедансом z0. Практически, конечно, невозможно точно воспроизвести характеристический импеданс несколькими простыми элементами, такими, как R, L и С. Но в некоторой полосе частот нередко этого можно добиться в хорошем приближении. Этим способом можно сделать конечную фильтрующую сеть со свойствами, очень близкими к тем, которые проявляются в бесконечном фильтре. Скажем, лестница L—С будет во многом вести себя так, как было описано, если на конце ее помещено чистое сопротивление R=√L/C.
А если в нашей лестнице L—С мы поменяем местами L и С, чтобы получилась лестница, показанная на фиг. 22.23,а, то получится фильтр, который пропускает высокие частоты и отбрасывает низкие.
Фиг. 22.23. Высокочастотный фильтр (а) и его фактор распространения как функция 1/ω (б).
Пользуясь уже полученными результатами, легко понять, что происходит в этой сети. Вы уже, наверно, заметили, что всегда, когда L заменяется на С и наоборот, то и iω заменяется на 1/iω и наоборот. Значит, все, что происходило раньше с ω, теперь будет происходить с 1/ω. В частности, можно узнать, как меняется α с частотой, взяв фиг. 22.22 и повсюду вместо со написав 1/ω (фиг. 22.23,б).
У описанных фильтров высоких и низких частот есть многочисленные технические приложения. Фильтр L—С низких частот часто используется как «сглаживающий» фильтр в цепях постоянного тока. Если нам нужно получить постоянный ток от источника переменного тока, мы включаем выпрямитель, который позволяет течь току только в одну сторону. Из выпрямителя выходит пульсирующий ток, график которого выглядит как функция V(t), показанная на фиг. 22.24.
Фиг. 22.24. Напряжение на выходе всеволнового выпрямителя.
Постоянство такого тока — никудышное: он шатается вверх и вниз, а нам нужен постоянный ток, чистенький, гладенький, как от батареи аккумуляторов. Этого можно добиться, включив фильтр низких частот между выпрямителем и нагрузкой.
Из гл. 50 (вып. 4) мы уже знаем, что временная функция на фиг. 22.24 может быть представлена в виде наложения постоянного напряжения на синусную волну плюс синусную волну большей частоты плюс еще более высокочастотную синусоиду и т. д., т. е. как ряд Фурье. Если наш фильтр — линейный (т. е. если, как мы предполагали, L и С при изменении токов или напряжений не меняются), то то, что выходит из фильтра, представляет собой тоже наложение выходов от каждой компоненты на входе. Если устроить так, чтобы граничная частота ω0 нашего фильтра была значительно ниже наинизшей из частот функции V(t), то постоянный ток (у которого ω=0) прекрасно пройдет через фильтр, а амплитуда первой гармоники будет крепко срезана; ну, а амплитуды высших гармоник — тем более. Значит, на выходе можно получить какую угодно гладкость, смотря по тому, на сколько звеньев фильтра у вас хватит денег.
Высокочастотный фильтр нужен тогда, когда необходимо срезать некоторые низкие частоты. Например, в граммофонном усилителе высокочастотный фильтр можно использовать, чтобы музыка не искажалась: он задержит низкочастотное громыхание моторчика и диска.
Можно еще делать и «полосовые» фильтры, отбрасывающие частоты ниже некоторой частоты ω1 и частоты выше некоторой другой частоты ω2 (большей ω1), но зато пропускающие все частоты от ω1 до ω2. Это можно сделать просто, совместив высокочастотный и низкочастотный фильтры, но обычно делают лестничную схему, в которой импедансы z1 и z2 имеют более сложный вид — они сами суть комбинации L и С. У такого полосового фильтра постоянная распространения может выглядеть так, как на фиг. 22.25,а. Его можно использовать, скажем, чтобы отделять сигналы, которые занимают только некоторый интервал частот, например каждый из каналов телефонной связи в высокочастотном телефонном кабеле или модулированную несущую частоту при радиопередаче.
Фиг. 22.25. Полосовой фильтр (а) и простой резонансный фильтр (б).
В гл. 25 (вып. 2) мы видели, что такое фильтрование можно производить еще, используя избирательность обычной резонансной кривой (для сравнения она приведена на фиг. 22.25,б). Но резонансный фильтр для некоторых целей подходит хуже, чем полосовой. Вы помните (это было в гл. 48, вып. 4), когда несущая частота ωс модулирована «сигнальной» частотой ωs, то общий сигнал содержит не только несущую, но и две боковые частоты ωc+ωs и ωc-ωs. В резонансном фильтре эти боковые полосы всегда как-то ослабляются, и чем выше сигнальная частота, тем, как видно из рисунка, больше это ослабление. Поэтому «отклик на частоту» здесь неважный. Высшие музыкальные тоны и вовсе не проходят. Но если взять полосовой фильтр, устроенный так, что ширина ω2-ω1 по крайней мере вдвое больше наивысшей сигнальной частоты, то отклик на частоту будет для интересующих нас сигналов плоским.
Еще одно замечание о лестничном фильтре: лестница L—С на фиг. 22.20 — это также приближенное представление передающей линии (фидера). Если имеется длинный проводник, расположенный параллельно другому проводнику (скажем, провод, помещенный в коаксиальном кабеле или подвешенный над землей), то между ними существует какая-то емкость и некоторая индуктивность (из-за магнитного поля между ними). Если представить эту линию составленной из небольших участков Δl, то каждый участок похож на одно звено лестницы L—С с последовательной индуктивностью ΔL и шунтирующей емкостью ΔС. Поэтому мы вправе применять здесь наши результаты для лестничного фильтра. Перейдя к пределу при Δl→0, мы получим хорошее описание передающей линии. Заметьте, что, когда Δl становится все меньше и меньше, уменьшаются и ΔL и ΔС, но они уменьшаются в одной и той же пропорции, так что отношение ΔL/ΔC не падает. Поэтому, перейдя в уравнении (22.28) к пределу при ΔL и ΔС, стремящихся к нулю, мы увидим, что характеристический импеданс z0 — это чистое сопротивление, величина которого равна √(ΔL/ΔС). Отношение ΔL/ΔС можно записать также в виде L0/С0, где L0 и С0— индуктивность и емкость единицы длины линии; тогда
(22.33)
Заметьте еще, что, когда ΔL и ΔС стремятся к нулю, граничная частота ω0=√(4/LC) уходит в бесконечность. У идеальной передающей линии нет граничной частоты.
§ 8. Другие элементы цепи
До сих пор мы определили только идеальные импедансы цепи — индуктивность, емкость и сопротивление, а также идеальный генератор напряжения. Теперь мы хотим показать, что другие элементы, такие, как взаимоиндукция, или транзисторы, или радиолампы, можно описать, пользуясь теми же основными элементами. Пусть имеются две катушки, и пусть (это сделано нарочно или как-нибудь иначе) поток от одной из катушек пересекает другую (фиг. 22.26,а).
Фиг. 22.26. Эквивалентная схема взаимной индукции.
Тогда возникает взаимная индукция М двух катушек, так что, когда ток в одной катушке меняется, в другой генерируется напряжение. Можно ли в наших эквивалентных контурах учесть такой эффект? Можно, поступив следующим образом. Мы видели, что наведенная в каждой из двух взаимодействующих катушек э. д. с. может быть представлена в виде суммы двух частей:
(22.34)
Первое слагаемое возникает из самоиндукции катушки, а второе — из ее взаимоиндукции с другой катушкой. Перед вторым слагаемым может стоять плюс или минус, смотря по тому, как поток от одной катушки пронизывает вторую. Делая те же приближения, как и тогда, когда мы описывали идеальную индуктивность, мы можем сказать, что разность потенциалов на зажимах каждой катушки равна э. д. с. катушки. И тогда оба уравнения (22.34) совпадут с теми, которые получились бы из цепи фиг. 22.26, б, если бы э. д. с. в каждом из двух начерченных контуров зависела от тока в противоположном контуре следующим образом:
(22.35)
Значит, можно представить действие самоиндукции нормальным образом, а действие взаимной индукции заменить вспомогательным идеальным генератором напряжения. Надо, конечно, иметь еще уравнение, связывающее эту э. д. с. с током в какой-то другой части цепи; но, поскольку это уравнение линейно, мы просто добавляем к нашим уравнениям цепи еще одно линейное уравнение, и все наши прежние выводы насчет эквивалентных схем и тому подобного все равно остаются правильными.
Кроме взаимной индукции, можно еще говорить и о взаимной емкости. До сих пор, говоря о конденсаторах, мы всегда представляли, что у них только по два электрода, но во многих случаях (скажем, в радиолампах) могут быть и по нескольку электродов, расположенных вплотную друг к другу. Если на один из них поместить электрический заряд, то его электрическое поле наведет заряды на всех остальных электродах и повлияет на их потенциал. В качестве примера рассмотрим расположение четырех пластин (фиг. 22.27, а).
Фиг. 22.27. Эквивалентная схема взаимной емкости.
Представим, что эти четыре пластины соединяются с внешней цепью проводами А, В, С и D. Так вот, пока нас интересуют только электростатические эффекты, эквивалентную схему такого расположения электродов можно считать такой, как на фиг. 22.27,б. Электростатическое взаимодействие электродов (всякого со всяким) эквивалентно емкости между этой парой электродов.
И, наконец, посмотрим, как нужно представлять в цепях переменного тока такие сложные устройства, как транзисторы или радиолампы. Надо сначала подчеркнуть, что эти устройства часто действуют так, что связь между токами и напряжениями отнюдь не линейна. В этих случаях часть сделанных нами раньше утверждений, а именно те, которые зависят от линейности уравнений, естественно, перестают быть правильными. Но во многих приложениях рабочие характеристики в достаточной мере линейны — так что и транзисторы и лампы можно считать линейными устройствами. Под этим подразумевается, что переменные токи, скажем в анодной цепи радиолампы, прямо пропорциональны разности потенциалов на других электродах, например потенциала сетки и анодного потенциала. Когда же такие линейные соотношения существуют, то к устройствам можно применять представление об эквивалентных схемах.
Как и в случае взаимной индукции, это описание должно включать в себя добавочные генераторы напряжения, которые описывают влияние напряжений или токов в одной части устройства на токи или напряжения в другой его части. К примеру, анодный контур триода, как правило, можно представить сопротивлением, последовательно соединенным с идеальным генератором напряжения, у которого сила источника пропорциональна напряжению на сетке. Получится эквивалентный контур, изображенный на фиг. 22.28[31].
Фиг. 22.28. Низкочастотная эквивалентная схема вакуумного триода.
Подобным же образом контур коллектора транзистора удобно представлять в виде сопротивления, последовательно соединенного с идеальным генератором напряжения, сила источника которого пропорциональна силе тока, текущего от эмиттера к базе транзистора. Эквивалентный контур тогда похож на изображенный на фиг. 22.29.
Фиг. 22.29. Низкочастотная эквивалентная схема транзистора.
До тех пор пока уравнения, описывающие их действие, остаются линейными, мы имеем полное право пользоваться таким представлением для ламп или транзисторов. И тогда, даже если они входят в сложную сеть, все равно наше общее заключение об эквивалентном представлении любого произвольного соединения элементов остается верным.
Контур транзистора и радиолампы имеет одну замечательную способность, которой лишены контуры, включающие одни импедансы: действительная часть эффективного импеданса zэфф может стать отрицательной. Мы видели, что действительная часть z представляет потери энергии. Но важная характеристика транзисторов и радиоламп состоит в том, что они снабжают контур энергией. (Конечно, они ее не «вырабатывают»; они берут энергию у цепи постоянного тока, у источника тока, и превращают ее в энергию переменного тока.) Стало быть, появляется возможность получить контур с отрицательным сопротивлением. Такой контур имеет интересное свойство: если подключить его к импедансу с положительной действительной частью, т. е. к положительному сопротивлению, и устроить все так, чтобы сумма двух действительных частей обратилась в нуль, то в этом объединенном контуре рассеяния энергии не будет. А раз нет потерь энергии, то любое переменное напряжение, стоит его однажды включить, никогда больше не исчезнет. Это основная идея работы осциллятора или генератора сигналов, который можно использовать в качестве источника переменного тока какой угодно частоты.
Глава 23 ПОЛЫЕ РЕЗОНАТОРЫ
Повторить; гл. 2. (вып. 2) «Резонанс»; гл. 49 (вып. 4) «Собственные колебания».
§ 1. Реальные элементы цепи
Если посмотреть на любую цепь, состоящую из идеальных импедансов и генераторов, со стороны какой-нибудь пары клемм, то при данной частоте она будет эквивалентна генератору ℰ, последовательно соединенному с импедансом z. Если приложить к этим клеммам напряжение V и вычислить из уравнений силу тока, то между током и напряжением должна получиться линейная зависимость. Поскольку все уравнения линейны, то и I должно зависеть от V линейно и только линейно. А самое общее линейное выражение можно записать в виде
(23.1)
Вообще-то и z и ℰ могут как-то очень сложно зависеть от частоты ω. Однако соотношение (23.1) — это то соотношение, которое получилось бы, если бы за клеммами находился просто генератор ℰ(ω), последовательно соединенный с импедансом z(ω).
Можно поставить и обратный вопрос: имеется какое-то электромагнитное устройство с двумя полюсами (выводами) и нам известна связь между I и V, т. е. известны ℰ и z как функции частоты; можно ли всегда найти такую комбинацию идеальных элементов, которая даст эквивалентный внутренний импеданс z? Ответ на это таков: для любой разумной, т. е. физически осмысленной функции z(ω), действительно возможно построить с любой степенью точности модель с помощью контура, составленного из конечного числа идеальных элементов. Мы не собираемся изучать общую задачу, а только посмотрим, основываясь на физических соображениях, чего можно ожидать в отдельных случаях.
Известно, что ток, протекающий через реальное сопротивление, создает магнитное поле. Значит, каждое реальное сопротивление должно обладать и некоторой индуктивностью. Далее, если к сопротивлению приложена некоторая разность потенциалов, то на его концах должны возникнуть заряды, создающие нужные электрические поля. При изменении напряжения пропорционально меняется и заряд, так что у сопротивления имеется и какая-то емкость. Следует ожидать, что эквивалентная схема реального сопротивления должна иметь такой вид, как на фиг. 23.1.
Фиг. 23.1. Эквивалентная схема реального сопротивления.
Если сопротивление хорошее, то его так называемые «паразитические элементы» L и С малы, так что при тех частотах, для которых оно предназначено, ωL много меньше R, а 1/ωC — много больше R. Поэтому «паразитическими» элементами можно пренебречь. Когда же частота повышается, то не исключено, что значение этих элементов возрастет и сопротивление станет похожим на резонансный контур.
Реальная индуктивность также не совпадает с идеальной, импеданс которой равен iωL. У реальной проволочной катушки бывает какое-то сопротивление, и при низких частотах она фактически эквивалентна индуктивности, последовательно соединенной с сопротивлением (фиг. 23.2,а).
Фиг. 23.2. Эквивалентная схема реальной индуктивности на малых частотах.
Вы можете подумать, что в реальной катушке сопротивление и индуктивность объединены, что сопротивление распределено вдоль всего провода и перемешано с его индуктивностью. Может быть, надо пользоваться контуром, смахивающим скорее на фиг. 23.2,б, где последовательно расставлено несколько маленьких R и L? Однако общий импеданс такого контура просто равен ∑R+∑iωL, а это то же самое, что дает более простая диаграмма, изображенная на фиг. 23.2, а.
Когда же частота повышается, то уже нельзя представлять реальную катушку в виде индуктивности плюс сопротивление. Начинают играть роль заряды, которые возникают на проводах, чтобы создать напряжение. Дело выглядит так, как будто между витками провода нанизаны маленькие конденсаторчики (фиг. 23.3, а).
Фиг. 23.3. Эквивалентная схема реальной индуктивности на больших частотах.
Можно попробовать приближенно представить реальную катушку в виде схемы фиг. 23.3, б. На низких частотах эту схему очень хорошо имитирует более простая (фиг. 23.3, в); это опять тот же резонансный контур, который давал нам высокочастотную модель сопротивления. Однако для более высоких частот более сложный контур фиг. 23.3, б подходит лучше. Так что чем точнее вы хотите представить истинный импеданс реальной физической индуктивности, тем больше надо взять идеальных элементов для построения искусственной модели.
Посмотрим теперь повнимательнее на то, что происходит в реальной катушке. Импеданс индуктивности изменяется как ωL, значит, он на низких частотах обращается в нуль — «замыкается накоротко», и мы замечаем только сопротивление провода. Если частота начинает расти, то ωL вскоре становится больше R и катушка выглядит почти как идеальная индуктивность. А если подняться по частоте еще выше, то начнут играть роль и емкости. Их импеданс пропорционален 1/ωС; он велик на низких частотах. На достаточно низких частотах конденсатор выглядит как «разрыв в цепи», и если его с чем-нибудь запараллелить, то ток через него не пойдет. Но на высоких частотах ток предпочитает течь через емкости между витками, а не через индуктивность. Оттого-то ток в катушке прыгает с одного витка на другой, вовсе не помышляя крутить петлю за петлей там, где ему приходится преодолевать э. д. с. Хоть нам, может быть, и хотелось бы, чтобы ток шел по виткам катушки, но сам-то он выбирает путь полегче, переходя на дорогу наименьшего импеданса. Если это было бы нужно, то такой эффект можно было бы назвать «высокочастотным барьером» или чем-нибудь в этом роде. Похожие вещи происходят и в других науках. В аэродинамике, скажем, если вы захотите заставить что-то двигаться быстрее звука, а движение рассчитано на малые скорости, то у вас ничего не выйдет. Это не значит, что возник какой-то непроходимый «барьер»; просто надо изменить конструкцию. Точно так же наша катушка, которую первоначально сконструировали как «индуктивность», на очень высоких частотах работает не как индуктивность, а как что-то другое. Для больших частот надо изобретать уже новое устройство.
§ 2. Конденсатор на больших частотах
А теперь обсудим подробнее поведение конденсатора — геометрически идеального конденсатора,—когда частота становится все выше и выше. Мы проследим за изменением его свойств. (Мы предпочли рассматривать конденсатор, а не индуктивность, потому что геометрия пары обкладок много проще геометрии катушки.) Итак, вот конденсатор (фиг. 23.4, а), состоит он из двух параллельных круговых обкладок, соединенных с внешним генератором парой проводов. Если зарядить конденсатор постоянным током, то на одной из обкладок появится положительный заряд, на другой — отрицательный, а между обкладками будет однородное электрическое поле.
Фиг. 23.4. Электрическое и магнитное поля между обкладками конденсатора.
Представим теперь, что вместо постоянного тока к обкладкам приложено переменное напряжение низкой частоты. (После мы увидим, какая частота «низкая», а какая «высокая».) Конденсатор, скажем, соединен с низкочастотным генератором. Когда напряжение меняется, то с верхней обкладки положительный заряд убирается и прикладывается отрицательный. В момент, когда это происходит, электрическое поле исчезает, а потом восстанавливается, но уже в обратную сторону. Заряд медленно плещется туда-сюда, и поле поспевает за ним. В каждый момент электрическое поле однородно (фиг. 23.4, б); есть, правда, небольшие краевые эффекты, но мы намерены ими пренебречь. Величину электрического поля можно записать в виде
(23.2)
где Е0— постоянно.
Но останется ли это справедливым, когда частота возрастет? Нет, потому что при движении электрического поля вверх и вниз через произвольную петлю Г1 проходит поток электрического поля (фиг. 23.4, а). А, как вам известно, изменяющееся электрическое поле создает магнитное. Согласно одному из уравнений Максвелла, при наличии изменяющегося электрического поля (как в нашем случае) обязан существовать и криволинейный интеграл от магнитного поля. Интеграл от магнитного поля по замкнутому кругу, умноженный на с2, равен скорости изменения во времени электрического потока через поверхность внутри круга (если нет никаких токов):
(23.3)
Итак, сколько же здесь этого магнитного поля? Это узнать нетрудно. Возьмем в качестве петли Г1 круг радиуса r. Из симметрии ясно, что магнитное поле идет так, как показано на рисунке. Тогда интеграл от В равен 2πrВ. А поскольку электрическое поле однородно, то поток его равен просто Е, умноженному на πr2, на площадь круга:
(23.4)
Производная Е по времени в нашем переменном поле равна iωE0eiωt. Значит, в нашем конденсаторе магнитное поле равно
(23.5)
Иными словами, магнитное поле тоже колеблется, а его величина пропорциональна ω и r.
К какому эффекту это приведет? Когда существует магнитное поле, которое меняется, то возникнут наведенные электрические поля, и действие конденсатора станет слегка похоже на индуктивность. По мере роста частоты магнитное поле усиливается: оно пропорционально скорости изменения Е, т. е. ω. Импеданс конденсатора больше не будет просто равен 1/iωС.
Будем увеличивать частоту и посмотрим повнимательнее, что происходит. У нас есть магнитное поле, которое плещется то туда, то сюда. Но тогда и электрическое поле не может, как мы раньше предполагали, остаться однородным! Если имеется изменяющееся магнитное поле, то по закону Фарадея должен существовать и контурный интеграл от электрического поля. Так что если существует заметное магнитное поле (а так и бывает на высоких частотах), то электрическое поле не может быть на всех расстояниях от центра одинаковым. Оно должно так меняться с r, чтобы криволинейный интеграл от него мог быть равен изменяющемуся потоку магнитного поля.
Посмотрим, сможем ли мы представить себе правильное электрическое поле. Это можно сделать, подсчитав «поправку» к тому, что было на низких частотах,— к однородному полю. Обозначим поле при низких частотах через Е1, и пусть оно по-прежнему равно Е0еiωt, а правильное поле запишем в виде
где E2— поправка из-за изменения магнитного поля. При любых ω мы будем задавать поле в центре конденсатора в виде E0eiωt (тем самым определяя Е0), так что в центре поправки не будет: E2=0 при r=0.
Чтобы найти Е2, можно использовать интегральную форму закона Фарадея
Интегралы берутся просто, если вычислять их вдоль линии Г2, показанной на фиг. 23.4,б и идущей сперва по оси, затем по радиусу вдоль верхней обкладки до расстояния r, потом вертикально вниз на нижнюю обкладку и обратно к оси по радиусу. Контурный интеграл от Е1 вдоль этой кривой, конечно, равен нулю; значит, в интеграл дает вклад только Е2, и интеграл равен просто —E2(r)h, где h — зазор между обкладками. (Мы считаем Е положительным, когда оно направлено вверх.) Это равно скорости изменения потока В, который получится, если вычислить интеграл по заштрихованной площади S внутри Г2 (фиг. 23.4,б). Поток через вертикальную полосу шириной dr равен B(r)hdr, а суммарный поток
Полагая — ∂/∂t от потока равным контурному интегралу от E2, получаем
Заметьте, что h выпало: поля не зависят от величины зазора между обкладками.
Используя для В(r) формулу (23.5), получаем
Дифференцирование по времени даст нам просто еще один множитель iω:
(23.7)
Как и ожидалось, наведенное поле стремится свести на нет первоначальное электрическое поле. Исправленное поле Е=Е1+Е2 тогда равно
(23.8)
Электрическое поле в конденсаторе больше уже не однородно; оно имеет параболическую форму (штриховая линия на фиг. 23.5). Вы видите, что наш простенький конденсатор уже слегка усложняется.
Фиг. 23.5. Электрическое поле между обкладками конденсатора на высоких частотах. Краевыми аффектами пренебрегли.
Наши результаты можно использовать для того, чтобы подсчитать импеданс конденсатора на больших частотах. Зная электрическое поле, можно подсчитать заряд обкладок и узнать, как ток через конденсатор зависит от частоты ω. Но эта задача нас сейчас не интересует. Нас больше интересует другое: что станется, если частота будет продолжать повышаться, что произойдет на еще больших частотах? Но разве мы уже не кончили наш расчет? Нет, потому что раз мы исправили электрическое поле, то, значит, магнитное поле, которое мы раньше подсчитали, больше уже не годится. Приближенно магнитное поле (23.5) правильно, но только в первом приближении. Обозначим его В1, а (23.5) перепишем в виде
(23.9)
Вспомните, что это поле появилось от изменения Е1. А правильное магнитное поле будет создаваться изменением суммарного электрического поля Е1+Е2. Если магнитное поле представить в виде В=В1+В2, то второе слагаемое — это просто добавочное поле, создаваемое полем Е2. Чтобы узнать В2, надо повторить все те же рассуждения, которые приводились, когда подсчитывали В1: контурный интеграл от B2 вдоль кривой Г1 равен скорости изменения потока Е2 через Г1. Опять получится то же уравнение (23.4), но В в нем надо заменить на В2, а Е — на E2:
Поскольку Е2 с радиусом меняется, то для получения его потока надо интегрировать по круговой поверхности внутри Г1. Беря в качестве элемента площади 2πrdr, напишем этот интеграл в виде
Значит, В2(r) выразится так:
(23.10)
Подставляя сюда Е2(r) из (23.7), получаем интеграл от r3dr, который равен, очевидно, r4/4. Наша поправка к магнитному полю окажется равной
(23.11)
Но мы еще не кончили! Раз магнитное поле В вовсе не такое, как мы сперва думали, то мы, значит, неверно подсчитывали Е2. Надо найти еще поправку к Е, вызываемую добавочным магнитным полем В2. Эту добавочную поправку к электрическому полю назовем Е3. Она связана с магнитным полем В2 так же, как E2 была связана с В1. Можно опять прибегнуть к тому же самому соотношению (23.6), изменив в нем только индексы:
(23.12)
Подставляя сюда наш новый результат (23.11), получаем новую поправку к электрическому полю:
(23.13)
Если теперь наше дважды исправленное поле записать в виде Е=Е1+Е2+Е3, то мы получим
(23.14)
Изменение электрического поля с радиусом происходит уже не по параболе, как было на фиг. 23.5; на больших радиусах значение поля лежит чуть выше кривой (E1+E2).
Мы пока еще не дошли до конца. Новое электрическое поле вызовет новую поправку к магнитному полю, а заново подправленное магнитное поле вызовет необходимость дальнейшей поправки к электрическому и т. д. и т. д. Но у нас уже есть все нужные формулы. Для В3 можно использовать (23.10), изменив индексы при В и Е с 2 до 3.
Очередная поправка к электрическому полю равна
С этой степенью точности все электрическое поле дается, стало быть, формулой
(23.15)
где численные коэффициенты написаны в таком виде, что становится ясно, как продолжить ряд.
Окончательно получается, что электрическое поле между обкладками конденсатора на любой частоте дается произведением E0eiωt на бесконечный ряд, который содержит только переменную ωr/с. Можно, если мы захотим, определить специальную функцию, обозначив ее через J0(x), как бесконечный ряд в скобках формулы (23.15):
(23.16)
Тогда искомое решение есть произведение E0eiωt на эту функцию при x=ωr/c:
(23.17)
Мы обозначили нашу специальную функцию через J0 потому, что, естественно, не мы первые с вами занялись задачей колебаний в цилиндре. Функция эта появилась давным-давно, и ее уже привыкли обозначать J0. Она всегда возникает, когда вы решаете задачу о волнах, обладающих цилиндрической симметрией. Функция J0 по отношению к цилиндрическим волнам — это то же, что косинус по отношению к прямолинейным волнам. Итак, это очень важная функция. И изобретена она очень давно. Затем с нею связал свое имя математик Бессель. Индекс нуль означает, что Бессель изобрел целую кучу разных функций, а наша — самая первая из них.
Другие функции Бесселя — J1, J2 и т. д.— относятся к цилиндрическим волнам, сила которых меняется при обходе вокруг оси цилиндра.
Полностью скорректированное электрическое поле между обкладками нашего кругового конденсатора, даваемое формулой (23.17), изображено на фиг. 23.5 сплошной линией. Для не очень больших частот нашего второго приближения вполне хватает. Третье приближение было бы еще лучше — настолько хорошо, что если его начертить, то вы бы не заметили разницы между ним и сплошной линией. В следующем параграфе вы увидите, однако, что может понадобиться и весь ряд, чтобы получилось аккуратное описание поля на больших радиусах или на больших частотах.
§ 3. Резонансная полость
Посмотрим теперь, что даст наше решение для электрического поля между обкладками конденсатора, если продолжать увеличивать частоту все выше и выше. При больших ω параметр х=ωr/с тоже становится большим, и первые несколько слагаемых ряда для J0 от х быстро возрастают. Это означает, что парабола, которую мы начертили на фиг. 23.5, на больших частотах изгибается книзу круче.
В самом деле, она выглядит так, как будто поле на высокой частоте все время старается обратиться в нуль где-то при с/ω, примерно равном половине а. Давайте посмотрим, действительно ли функция J0 проходит через нуль и становится отрицательной. Сперва испытаем х=2:
Это еще не нуль; но попробуем число побольше, скажем x=2,5. Подстановка дает
В точке x=2,5 функция J0 уже перешла через нуль. Результаты при х=2 и при х=2,5 выглядят так, как будто J0 прошла через нуль на одной пятой пути от 2,5 до 2. Поэтому надо проверить число 2,4:
С точностью до двух знаков после запятой получился нуль. Если рассчитывать точнее (или, поскольку функция J0 известна, если разыскать ответ в книжке), то обнаружится, что J0 проходит через нуль при x=2,405. Мы провели расчет собственноручно, чтобы показать вам, что вы тоже способны открывать подобные вещи, а не заимствовать их из книг.
А если уж вы посмотрели про J0 в книжке, то интересно выяснить, как она идет при больших значениях х; она напоминает кривую на фиг. 23.6.
Фиг. 23.6. Функция Бесселя J0(x).
Когда х возрастает, J0(x) колеблется от положительных значений к отрицательным и обратно, постепенно уменьшая размах колебаний.
Мы получили интересный результат: если достаточно увеличить частоту, то электрические поля в центре конденсатора и у его края могут быть направлены в противоположные стороны. Например, пусть ω так велико, что x=ωr/с на внешнем краю конденсатора равно 4; тогда на фиг. 23.6 краю конденсатора отвечает абсцисса x=4. Это означает, что наш конденсатор работает при частоте ω=4с/а. И на краю обкладок электрическое поле будет довольно велико, но направлено не туда, куда можно было ожидать, а в обратную сторону. Эта ужасная вещь может произойти с конденсатором на больших частотах. При переходе к очень большим частотам электрическое поле по мере удаления от центра конденсатора много раз меняет свое направление. Кроме того, имеется еще связанное с этими электрическими полями магнитное поле. Не удивительно, что наш конденсатор при высоких частотах уже не напоминает идеальной емкости. Можно даже задуматься над тем, на что похож он сильнее: на емкость или на индуктивность. Надо к тому же подчеркнуть, что на краях конденсатора происходят и более сложные эффекты, которыми мы пренебрегли. Например, там происходит еще излучение волн за края конденсатора, так что настоящие поля куда сложнее тех, которые мы рассчитали. Впрочем, мы не будем сейчас заниматься этими эффектами.
Можно было бы, конечно, попробовать представить себе для конденсатора эквивалентную цепь, но, вероятно, будет лучше, если мы просто примем, что тот конденсатор, который мы сконструировали для низкочастотных полей, больше не годится, когда частоты слишком велики. И если мы хотим изучить, как действует такой объект на высоких частотах, нам нужно оставить те приближения к уравнениям Максвелла, которые мы делали, изучая цепи, и вернуться к полной системе уравнений, полностью описывающей поля в пространстве. Вместо того чтобы манипулировать о идеализированными элементами цепи, надо оперировать с реальными проводниками, с такими, какие они есть на самом деле, учитывая все поля в пространстве между ними. Например, если нам нужен резонансный контур на высокие частоты, то не нужно пытаться его сконструировать с помощью одной катушки и плоского конденсатора.
Мы уже упомянули, что плоский конденсатор, который мы рассматривали, похож, с одной стороны, на емкость, а с другой— на индуктивность. От электрического поля возникают заряды на поверхностях обкладок, а от магнитного — обратные э.д.с. Не может ли оказаться, что перед нами уже готовый резонансный контур? Оказывается, да. Представьте, что мы выбрали такую частоту, при которой картина электрического поля падает до нуля на каком-то расстоянии от края диска; иначе говоря, мы выбрали ωa/с большим, чем 2,405. Всюду на окружности, центр которой лежит на оси обкладок, электрическое поле обратится в нуль. Возьмем кусок жести и вырежем полоску такой ширины, чтобы она как раз поместилась между плоскими обкладками конденсатора. Затем изогнем ее в форме цилиндра такого радиуса, на котором электрическое поле равно нулю. Раз там нет электрического поля, то по вставленному в конденсатор цилиндру никаких токов не потечет, и ни электрические, ни магнитные поля не изменятся. Мы, стало быть, смогли закоротить друг на друга обкладки конденсатора, ничего не изменив в нем. И посмотрите, что получилось: вышла настоящая цилиндрическая банка с электрическим и магнитным полями внутри, причем никак не связанная с внешним миром. Поля внутри не изменятся, даже если отрезать выступающие края обкладок и провода, ведущие к конденсатору. Останется только закрытая банка с электрическим и магнитным полями внутри нее (фиг. 23.7,а).
Фиг. 23.7. Электрическое и магнитное поля в закрытой цилиндрической банке.
Электрические поля колеблются то вперед, то назад с частотой ω, которая, не забывайте, определила собою диаметр банки. Амплитуда колеблющегося поля Е меняется с расстоянием от оси банки так, как показано на фиг. 23.7,б. Кривая эта — просто первая дуга функции Бесселя нулевого порядка. В банке есть еще и круговое магнитное поле, которое колеблется во времени со сдвигом по фазе на 90° относительно электрического поля.
Магнитное поле можно тоже разложить в ряд и изобразить на графике, как это сделано на фиг. 23.7,в.
Но как же это получается, что внутри банки могут существовать электрические и магнитные поля, не соединенные с внешним миром? Оттого, что электрическое и магнитное поля сами себя поддерживают: изменение Е создает В, а изменение В создает Е,— все в согласии с уравнениями Максвелла. Магнитное поле ответственно за индуктивность, электрическое — за емкость; вместе они создают нечто, похожее на резонансный контур. Заметьте, что описанные нами условия возникают лишь тогда, когда радиус банки в точности равен 2,405 с/ω. В банке заданного радиуса колеблющиеся электрическое и магнитное поля будут поддерживать друг друга (описанным способом) лишь при этой определенной частоте. Итак, цилиндрическая банка радиуса r резонирует при частоте
(23.18)
Мы сказали, что если банка совершенно закрыта, то поля продолжают колебаться так же, как и раньше. Это не совсем так. Это было бы так, если бы стенки банки были идеальными проводниками. В реальной банке, однако, колеблющиеся токи, текущие по стенкам, могут из-за сопротивления материала терять энергию. Колебания полей постепенно замрут. Из фиг. 23.7 ясно, что там должны существовать сильные токи, связанные с электрическими и магнитными полями внутри полости. Из-за того, что вертикальное электрическое поле внезапно исчезает на верхнем и нижнем торцах банки, у него возникает там сильная дивергенция; значит, на внутренней поверхности банки должны появляться положительные и отрицательные заряды (фиг. 23.7, а). Когда электрическое поле меняет направление на обратное, должны менять знак и заряды, так что между верхним и нижним торцами банки должен течь переменный ток. Он будет течь по боковой поверхности банки, как показано на рисунке. То, что по бокам банки должны течь токи, можно понять ещё, рассмотрев то, что происходит в магнитном поле. Кривая на фиг. 23.7, в сообщает нам, что магнитное поле на краю банки внезапно обращается в нуль. Такое внезапное изменение магнитного поля может произойти лишь оттого, что по стенке течет ток. Этот ток как раз и создает переменные электрические заряды на верхней и нижней обкладках банки.
Вас может удивить наше открытие — обнаружение токов на боковых сторонах банки. А как же с нашим прежним утверждением, что ничего не изменится, если в области, где электрическое поле равно нулю, поставить эти боковые стенки? Вспомните, однако, что, когда мы впервые вставляли в конденсатор эти боковые стенки, верхняя и нижняя обкладки выступали за них, так что магнитные поля оказывались и снаружи нашей банки. И только когда мы отрезали выступающие за края банки части конденсатора, на внутренней части боковых стенок появились какие-то токи.
Хоть электрические и магнитные поля в абсолютно закрытой банке из-за потерь энергии постепенно исчезнут, можно сделать так, чтобы этого не было. Для этого надо провертеть в банке сбоку дырочку и понемножку подбавлять энергию, чтобы возмещать потери. Надо взять проволочку, просунуть ее через дырочку в банке и припаять ее к внутренней части стенки, чтобы получилась петля (фиг. 23.8).
Фиг. 23.8. Подключение резонансной полости.
Если подсоединить эту проволочку к источнику высокочастотного переменного тока, то этот ток будет снабжать энергией электрическое и магнитное поля полости и поддерживать колебания. Это произойдет, конечно, лишь в том случае, если частота источника энергии совпадет с резонансной частотой банки. Если частота у источника не та, то электрические и магнитные поля резонировать не будут и поля в банке окажутся слабенькими.
Резонансное поведение легко наблюдать, если в банке проделать другую дырку и продеть в нее другую петлю (фиг. 23.8). Изменяющееся магнитное поле, проходящее через эту вторую петлю, будет генерировать в ней э. д. с. индукции. Если теперь эту петлю соединить с внешним измерительным контуром, то токи в нем будут пропорциональными напряженности полей в полости. Представьте теперь, что входная петля нашей полости соединена с радиочастотным сигнал-генератором (фиг. 23.9).
Фиг. 23.9. Устройство для наблюдения резонанса в полости.
Сигнал-генератор состоит из источника переменного тока, частоту которого можно менять, поворачивая ручку на панели генератора. Соединим затем выходную петлю полости с «детектором» — прибором, измеряющим ток от выходной петли. Отсчеты на его шкале пропорциональны этому току. Если затем измерить ток на выходе как функцию частоты сигнал-генератора, то получится кривая, похожая на изображенную на фиг. 23.10.
Фиг. 23.10. Кривая отклика, на частоту для резонансной полости.
Ток на выходе невелик на всех частотах, кроме тех, которые близки к ω0— резонансной частоте полости. Резонансная кривая очень похожа на ту, о которой говорилось в гл. 23 (вып. 2). Однако ширина резонанса меньше, нежели обычно получается в резонансных контурах, составленных из индуктивностей и емкостей; иначе говоря, Q (добротность) полости очень высока. Зачастую встречаются даже Q порядка 100 000 и выше, особенно если внутренние стенки полости сделаны из очень хорошо проводящего материала, например из серебра.
§ 4. Собственные колебания полости
Предположим, что мы пытаемся проверить свою теорию и делаем измерения с настоящей банкой. Мы берем банку в форме цилиндра диаметром 7,5 см и высотой около 6,3 см. К ней приделываются входная и выходная петли (см. фиг. 23.8). Если рассчитать ожидаемую для этой банки резонансную частоту по формуле (23.18), то получится f0=ω0/2π=3010 Мгц. Мы берем сигнал-генератор с частотой около 3000 Мгц и начинаем слегка ее варьировать, пока не появляется резонанс; мы замечаем, что наибольший ток на выходе возникает, скажем, при частоте 3050 Мгц. Это очень близко к предсказанной резонансной частоте, но до конца не совпадает. Можно привести несколько мыслимых причин расхождения. Может быть, резонансная частота немного изменилась, потому что мы прорезали несколько дырок, чтобы вставить соединительные петли. Но это вряд ли: дырки должны были бы слегка понизить резонансную частоту, так что причина не в этом. Тогда, может быть, в калибровке частоты сигнал-генератора допущена небольшая ошибка или измерения диаметра полости недостаточно точны. Во всяком случае, согласие довольно хорошее.
Но гораздо важнее то, что произойдет, когда частота нашего сигнал-генератора уже значительно удалится от 3000 Мгц. Тогда мы получим такой результат, как на фиг. 23.11.
Фиг. 23.11. Наблюдаемые резонансные частоты цилиндрической полости.
Если начать сильнее менять частоту, то получится, что, кроме ожидавшегося резонанса близ 3000 Мгц, имеется еще другой резонанс возле 3300 Мгц и третий возле 3820 Мгц. Что означают эти добавочные резонансы? Разгадку дает фиг. 23.6. Там мы предположили, что на край банки приходится первый нуль функции Бесселя. Но ведь не исключено, что краю банки отвечает второй нуль функции Бесселя, так что в промежутке от центра банки до ее края происходит одно полное колебание электрического поля (фиг. 23.12, а).
Фиг. 23.12. Более высокочастотный тип колебаний.
Такой тип колебаний полей вполне допустим, и естественно ожидать, что банка начнет резонировать на такой частоте. Но заметьте: второй нуль функции Бесселя наблюдается при x=5,52 (фиг. 23.12,б), т. е. более чем вдвое дальше, чем первый нуль. Значит, резонансная частота колебаний этого типа превышала бы 6000 Мгц. Ее, без сомнения, можно заметить, но это не объясняет нам резонанса при 3300 Мгц.
Все дело в том, что в своем анализе поведения резонансной полости мы рассмотрели лишь одно возможное геометрическое расположение электрических и магнитных полей. Мы считали, что электрическое поле вертикально, а магнитное расположено горизонтальными кругами. Но мыслимы и другие поля. От них требуется лишь, чтобы они удовлетворяли уравнениям Максвелла и чтобы электрическое поле входило в стенки под прямым углом к ним. Мы взяли случай, когда верх и низ банки плоские, но все не очень бы изменилось, если бы верх и низ были изогнутыми. Да и вообще, откуда банке «знать», где у нее верх, где низ, а где бока? И действительно, можно доказать, что существует такой тип колебаний полей внутри банки, при котором электрическое поле идет более или менее вдоль ее диаметра (фиг. 23.13).
Фиг. 23.13. Поперечный тип колебаний цилиндрической полости.
И не так уж трудно понять, почему собственная частота колебаний этого типа не будет сильно отличаться от собственной частоты первого рассмотренного нами типа колебаний. Представьте, что вместо цилиндрической полости мы взяли бы полость в виде куба со стороной 7,5 см. Ясно, что у нее будет три разных типа колебаний, но с одной и той же частотой. Тип колебаний, при котором электрическое поле направлено примерно вертикально, будет иметь ту же частоту, что и тип колебаний, при котором электрическое поле направлено вправо и влево. Если теперь этот куб переделать в цилиндр, то частоты как-то изменятся. Но все же можно ожидать, что изменение не будет большим, если размеры полости изменятся очень мало. Значит, частота того типа колебаний, что на фиг. 23.13, не должна сильно отличаться от частоты на фиг. 23.8. Можно было бы подробно рассчитать собственную частоту того типа колебаний, который показан на фиг. 23.13, но мы этого сейчас делать не будем. Если бы вычисления были проделаны, мы обнаружили бы, что при предположенных размерах резонансная частота получается совсем близко от наблюденного резонанса при 3300 Мгц. С помощью подобных расчетов можно показать, что должен существовать еще другой тип колебаний при другой замеченной нами резонансной частоте — 3800 Мгц. Электрические и магнитные поля, характерные для этого типа колебаний, показаны на фиг. 23.14. Электрическое поле здесь больше не пытается тянуться через всю полость. Оно направлено от боков к торцам.
Фиг. 23.14. Еще один тип колебаний цилиндрической полости.
Теперь, надеюсь, вы уже поверите мне, что при дальнейшем повышении частоты следует ожидать появления все новых и новых резонансов. Существует множество различных типов колебаний; у каждого из них своя частота, отвечающая какому-то частному расположению электрических и магнитных полей. Каждое такое расположение полей называют собственным колебанием (или модой). Резонансную частоту каждого типа колебаний можно подсчитать, найдя из уравнений Максвелла электрические и магнитные поля в полости.
Как можно узнать, наблюдая резонанс при некоторой определенной частоте, что за тип колебаний при этом возбуждается? Один способ такой: надо в полость через отверстие просунуть проволочку. Если электрическое поле направлено вдоль проволочки (фиг. 23.15, а), в ней возникнут сравнительно сильные токи.
Фиг. 23.15. Небольшая проволочка, введенная в полость, если она параллельна к Е, сильней исказит резонанс, чем та, которая расположена поперек Е.
Они начнут сильно сосать энергию из полей, и резонанс будет подавлен. Если же электрическое поле будет такое, как на фиг. 23.15,б, то проволочка создаст гораздо меньший эффект. В какую сторону в этом месте направлено поле при этом типе колебаний, можно узнать, согнув проволочку так, как показано на фиг. 23.15,в. Поворачивая проволочку, вы увидите, что она сильно изменяет силу резонанса, когда ее конец параллелен Е, и мало влияет на резонанс, если он повернут поперек Е.
§ 5. Полости и резонансные контуры
Хотя описанная нами резонансная полость с виду очень непохожа на обычный, состоящий из катушки и конденсатора резонансный контур, однако обе резонансные системы тесно между собой связаны. Обе они — члены одной семьи; это всего лишь два крайних примера электромагнитных резонаторов, и между ними можно поместить немало промежуточных стадий. Начнем, скажем, с того, что подключим конденсатор в параллель с индуктивностью и образуем резонансный контур (фиг. 23.16, а).
Фиг. 23.16. Резонаторы с возрастающей резонансной частотой.
Этот контур будет резонировать на частоту ω0=√LC. Если мы захотим поднять частоту в этом контуре, то этого можно достичь, понизив индуктивность L, например уменьшив число витков в катушке. Но далеко на таком пути мы не уйдем. Мы дойдем до последнего витка и тогда останется просто кусок провода, соединяющий верх и низ конденсатора. Можно было бы продолжать повышать резонансную частоту, уменьшая емкость; однако можно и дальше уменьшать индуктивность, запараллеливая рядом несколько индуктивностей. Две одновитковые индуктивности, включенные в параллель друг у друга, приведут к половине индуктивности одного витка. Так что, даже доведя катушку до одного витка, можно продолжать повышать резонансную частоту, добавляя отдельные петли, соединяющие верхнюю обкладку конденсатора с нижней. На фиг. 23.16, б показаны обкладки конденсатора, соединенные шестью подобными «одновитковыми индуктивностями». Продолжая прибавлять новые куски провода, мы постепенно перейдем к совершенно замкнутой резонансной системе. Такая система (вернее, ее осевое сечение) показана на фиг. 23.16,в. Теперь индуктивность— это пустотелый цилиндр, припаянный к краям обкладок конденсатора. Электрические и магнитные поля будут иметь направление, показанное на рисунке. Такой предмет — это, в сущности, уже резонансная полость. Ее называют «нагруженной» полостью. Но можно ее также все еще рассматривать как L—С-контур, в котором емкостная часть — область, где находится большая часть электрического поля, а индуктивная — где помещается большая часть магнитного поля.
Если мы захотим повысить частоту резонатора на фиг. 23.16,в сильнее, то надо еще уменьшить индуктивность L. Чтобы этого добиться, следует уменьшить геометрические размеры индуктивной секции, скажем, уменьшить на чертеже высоту h. При уменьшении h резонансная частота растет. И в конце концов можно, конечно, дойти до такого положения, при котором высота h сравняется с промежутком между обкладками. Получится обычная цилиндрическая банка; наш резонансный контур превратится в полый резонатор, показанный на фиг. 23.7.
Заметьте теперь, что в первоначальном резонансном L—С-контуре (фиг. 23.16) электрические и магнитные поля были совершенно разделены. Когда мы постепенно видоизменяли резонансную систему, все повышая ее частоту, то магнитное поле теснее и теснее сближалось с электрическим, пока в полом резонаторе окончательно не перемешалось с ним.
Хотя все полые резонаторы, о которых в этой главе говорилось, были цилиндрическими, ничего волшебного в самой цилиндрической форме нет. Банка любого вида все равно будет обладать резонансными частотами, отвечающими различным допустимым типам колебаний электрических и магнитных полей. К примеру, у «полости» на фиг. 23.17 будет своя личная совокупность резонансных частот, хотя их и трудно рассчитать.
Фиг, 23.17. Еще одна резонансная полость.
Глава 24 ВОЛНОВОДЫ
§ 1. Передающая линия
В предыдущей главе мы выяснили, что случится с сосредоточенными элементами цепи, если на них подать очень высокую частоту. Мы пришли к выводу, что резонансный контур можно заменить полостью, внутри которой поля вступают друг с другом в резонанс. Но есть и другой интересный технический вопрос: как связать между собой два предмета, чтобы можно было передать электрическую энергию от одного к другому? В цепях низкой частоты эта связь осуществляется по проводам, но этот способ на высоких частотах не очень хорош, потому что энергия рассеивается во все стороны и трудно контролировать, куда она потечет. От проводов во все стороны разбегаются поля; к тому же токи и напряжения высокой частоты не очень хорошо «проводятся» проводами. В этой главе мы и хотим разобраться в том, как можно соединять между собой предметы на большой частоте. Таков по крайней мере один подход к теме нашей лекции.
Но можно к ней подойти и по-другому, можно сказать, что мы пока обсуждали поведение волн в пустом пространстве, а теперь пришло время посмотреть, что случится, если колеблющиеся поля ограничить в одном или двух измерениях. Мы обнаружим новое интересное явление: если поля ограничить в двух измерениях и дать им свободу в третьем, они распространяются в виде волн. «Волны в волноводе» и будут предметом нашей лекции.
Начнем с разработки общей теории линии передачи. Обычная линия электропередачи, которая тянется от мачты к мачте по полям и лесам, тратит часть своей мощности на излучение, но частота здесь так мала (50—60 гц), что эти потери почти незаметны. От излучения можно избавиться, поместив провод в металлическую трубу, но это непрактично, потому что при таких токах и напряжениях в сети без больших, тяжелых и дорогих труб не обойтись. Так что в ходу обычно «открытые линии».
На частотах чуть повыше (порядка нескольких килогерц) излучение уже вполне заметно. Но его можно уменьшить, пользуясь «двухжильной» линией передачи, как это делается при телефонной связи на малые расстояния. Однако при дальнейшем повышении частоты излучение вскоре становится нетерпимо сильным либо за счет потерь энергии, либо из-за того, что энергия перетекает в другие контуры, где она совсем не нужна. На частоте от нескольких килогерц до нескольких тысяч мегагерц электромагнитные сигналы и электромагнитная энергия обычно передаются по коаксиальным линиям, т. е. по проводу, помещенному внутрь цилиндрического «внешнего проводника», или «защиты». Хотя дальнейшие рассуждения годятся для линии передачи из двух параллельных проводников любого сечения, речь будет идти о коаксиальном кабеле.
Возьмем простейшую коаксиальную линию, состоящую из центрального проводника (пусть это будет тонкостенный полый цилиндр) и внешнего проводника — тоже тонкостенного цилиндра, ось которого совпадает с осью внутреннего проводника (фиг. 24.1).
Фиг. 24.1. Коаксиальная передающая линия.
Для начала представим себе, как примерно ведет себя эта линия при относительно низких частотах. Мы уже кое-что говорили о поведении при низких частотах, когда утверждали, что у двух таких проводников на каждую единицу длины приходится сколько-то там индуктивности и сколько-то емкости. И действительно, поведение любой передающей линии при низких частотах можно описать, задав ее индуктивность на единицу длины L0 и ее емкость на единицу длины С0. Тогда линию можно было бы рассматривать как предельный случай фильтра L—С (см. гл. 22, § 7). Можно создать такой фильтр, который будет имитировать линию, если последовательно соединить между собой маленькие элементы индуктивности L0Δx и зашунтировать их маленькими емкостями С0Δx (где Δx — элемент длины линии). Применяя к бесконечному фильтру наши прежние результаты, мы бы увидали, что вдоль линии должны распространяться электрические сигналы. Но поступим иначе и вместо этого изучим свойства линии, опираясь на дифференциальные уравнения.
Предположим, мы наблюдаем за происходящим в двух соседних точках передающей линии, скажем, на расстояниях х и х+Δх от начала линии. Обозначим напряжение между проводниками через V(x), а ток в верхнем проводнике I(х) (фиг. 24.2).
Фие. 24.2. Токи и напряжения в передающей линии.
Если ток в линии меняется, то индуктивность вызовет падение напряжения вдоль небольшого участка линии от х до x+Δx
Или, беря предел при Δx→0, получаем
(24.1)
Изменение тока приводит к перепаду напряжения.
Теперь еще раз взгляните на рисунок. Если напряжение в х меняется, то должны появляться заряды, которые на этом участке передаются емкости. Если взять небольшой участок линии от х до x+Δx, то заряд на нем равен q=C0ΔxV. Скорость изменения этого заряда равна C0ΔxdV/dt, но заряд меняется только тогда, когда ток I(х), входящий в элемент, отличается от выходящего тока I(х+Δх). Обозначая разность через ΔI, имеем
Если перейти к пределу при Δx→0, получается
(24.2)
Так что сохранение заряда предполагает, что градиент тока пропорционален скорости изменения напряжения во времени. Уравнения (24.1) и (24.2) — это основные уравнения линии передачи. При желании их можно видоизменить так, чтобы они учитывали сопротивление проводников или утечку зарядов через изоляцию между проводниками, но пока нам достаточно самого простого примера.
Оба уравнения передающей линии можно объединить, продифференцировав первое по t, а второе по x; и исключив V или I. Получится либо
(24.3)
либо
(24.4)
Мы снова узнаем волновое уравнение по х. В однородной передающей линии напряжение (и ток) распространяется вдоль линии как волна. Напряжение вдоль линии будет следовать закону V(x, t)=f(x-vt) или V(x, t)=g(x+vt) или их сумме. А что такое здесь v? Мы знаем, что коэффициент при ∂2/∂t2 — это просто 1/v2, так что
(24.5)
Покажите самостоятельно, что напряжение для каждой волны в линии пропорционально току этой волны и что коэффициент пропорциональности — это просто характеристический импеданс z0. Обозначив через V+ и I+ напряжение и ток для волны, бегущей в направлении +x, вы должны будете получить
(24.6)
Равным образом, для волны, бегущей в направлении -х, получится
Характеристический импеданс, как мы уже видели из наших уравнений для фильтра, дается выражением
(24.7)
и поэтому есть чистое сопротивление.
Чтобы найти скорость распространения v и характеристический импеданс z0 передающей линии, нужно знать индуктивность и емкость единицы длины линии. Для коаксиального кабеля их легко подсчитать. Поглядим, как это делается. При расчете индуктивности мы будем следовать идеям, изложенным в гл. 17, § 8, и положим 1/2 LI2 равным магнитной энергии, в свою очередь получаемой интегрированием ε0с2B2/2 по объему. Пусть по внутреннему проводнику течет ток I; тогда мы знаем, что B=I/2πε0с2r, где r — расстояние от оси. Беря в качестве элемента объема цилиндрический слой толщины dr и длины l, получаем для магнитной энергии
где а и b — радиусы внутреннего и внешнего проводников. Интегрируя, получаем
(24.8)
Приравниваем эту энергию к 1/2LI2 и находим
(24.9)
Как и следовало ожидать, L пропорционально длине l линии, поэтому L0 (индуктивность на единицу длины) равна
(24.10)
Мы уже рассчитывали заряд на цилиндрическом конденсаторе [гл. 12, § 2 (вып. 5)]. Деля теперь этот заряд на разность потенциалов, получаем
Емкость же на единицу длины С0— это С/l. Сопоставляя этот результат с (24.10), мы убеждаемся, что произведение L0C0 равно просто 1/с2, т. е. v=1/√(L0C0) равно с. Волна бежит по линии со скоростью света. Нужно подчеркнуть, что этот результат зависит от сделанных предположений: а) что в промежутке между проводниками нет ни диэлектриков, ни магнитных материалов; б) что все токи текут только по поверхности проводников (как это бывает в идеальных проводниках). Позже мы увидим, что на высоких частотах все токи распределяются на поверхности хороших проводников, словно они идеальные проводники, так что это предположение правильно.
Любопытно, что в этих двух предположениях произведение L0C0 равно 1/с2 для любой параллельной пары проводников, даже в том случае, если, скажем, внутренний шестигранный проводник тянется как-то вдоль эллиптического внешнего. Пока сечение постоянно и между проводниками нет ничего, волны распространяются со скоростью света.
Подобных общих утверждений по поводу характеристического импеданса сделать нельзя. Для коаксиальной линии он равен
(24.11)
Множитель 1/e0c имеет размерность сопротивления и равен 120π ом. Геометрический фактор ln(b/a) только логарифмически зависит от размеров, так что коаксиальная линия (и большинство других линий), как правило, обладает характеристическим импедансом порядка 50 ом или что-то около этого, до нескольких сот ом.
§ 2. Прямоугольный волновод
То, о чем мы сейчас будем говорить, на первый взгляд кажется поразительным явлением: если из коаксиального кабеля убрать внутреннюю жилу, он все равно будет проводить электромагнитную энергию. Иными словами, на достаточно высокой частоте полая труба действует ничуть не хуже, чем труба, внутри которой имеется провод. Связано это с другим таинственным явлением, о котором мы уже знаем,— на высоких частотах резонансный контур (конденсатор с катушкой) можно заменить простой банкой.
Это выглядит очень странно, если пользоваться представлением о передающей линии, как о распределенных индуктивности и емкости. Но ведь все мы знаем, что внутри пустой металлической трубы могут распространяться электромагнитные волны. Если труба прямая, через нее все видно! Значит, электромагнитные волны через трубу бесспорно проходят. Но мы знаем также, что нет возможности передавать волны низкой частоты (переменный ток или телефонные сигналы) через одну-единственную металлическую трубу. Выходит, электромагнитные волны проходят через нее только тогда, когда их длина волны достаточно мала. Поэтому мы рассмотрим предельный случай самых длинных волн (или самых низких частот), способных проходить через трубу данного размера. Эту трубу, служащую для прохождения волн, называют волноводом.
Начнем с прямоугольной трубы, ее проще всего анализировать. Сперва изложим все математически, а потом еще раз вернемся назад и рассмотрим вопрос более элементарно. Но этот более элементарный подход легко применить лишь к прямоугольным трубам. Основные же явления в любой трубе одни и те же, так что математические доводы звучат более основательно.
Поставим перед собой следующий вопрос: какого типа волны могут существовать в прямоугольной трубе? Выберем сначала удобные оси координат: ось z направим вдоль трубы, а оси х и у — вдоль стенок (фиг. 24.3).
Фиг. 24.3. Выбор осей координат для прямоугольного волновода.
Известно, что когда волны света бегут по трубе, их электрическое поле поперечно; поэтому начнем с поиска таких решений, в которых Е перпендикулярно z, скажем решений с одной только y-компонентой Еy (фиг. 24.4,а).
Фиг. 24.4. Электрическое поле в волноводе при некотором значении z.
Это электрическое поле должно как-то меняться поперек волновода; действительно, ведь оно должно обратиться в нуль на сторонах, параллельных оси у: токи и заряды в проводнике устраиваются всегда так, чтобы на его поверхности не осталось никаких касательных составляющих электрического поля. Значит, график Еy от х должен напоминать некоторую дугу (фиг. 24.4,б). Может быть, это найденная нами для полости функция Бесселя? Нет, функции Бесселя появляются только в задачах с цилиндрической симметрией. При прямоугольных сечениях волны — это обычные гармонические функции, что-нибудь вроде sinkxx.
Раз мы ищем волны, которые бегут вдоль трубы, то следует ожидать, что поле как функция z будет колебаться между положительными и отрицательными значениями (фиг. 24.5) и что эти колебания будут бежать вдоль трубы с какой-то скоростью v.
Фиг. 24.5. Зависимость поля в волноводе от z.
Если имеются колебания с определенной частотой ω, то надо испытать, может ли волна меняться по z как cos(ωt—kzz) или, в более удобной математической форме, как еi(ωt-kzz). Такая зависимость от z представляет волну, бегущую со скоростью v=ω/kz [см. гл. 29 (вып. 3)].
Значит, можно допустить, что волна в трубе имеет следующую математическую форму:
(24.12)
Давайте-ка поглядим, можно ли при таком допущении удовлетворить правильным уравнениям поля. Во-первых, электрическое поле не должно иметь составляющих, касательных к проводнику. Для этого наше поле подходит; вверху и внизу оно направлено поперек стенок, а с боков равно нулю. Впрочем, для последнего необходимо, чтобы полволны sin kxx как раз укладывалось на всей ширине волновода, т. е. чтобы было
(24.13)
Это условие определяет kx. Есть и иные возможности, например kxa=2π, 3π, ... или в общем случае
(24.14)
где n — целое. Все они представляют различные сложные расположения полей, но мы дальше будем говорить о самом простом, когда kx=π/a, а a — внутренняя ширина трубы.
Далее, дивергенция Е в пустом пространстве внутри трубы должна быть равна нулю, потому что в трубе нет зарядов. У нашего Е есть только y-компонента, но по у она не меняется, так что действительно ∇·Е=0.
Наконец, наше электрическое поле должно согласовываться с остальными уравнениями Максвелла для пустого пространства внутри трубы. Это все равно, что потребовать, чтобы оно удовлетворяло волновому уравнению
(24.15)
Нам надо проверить, подойдет ли сюда выбранная нами форма (24.12). Вторая производная Еy по х просто равна —kх2Еу. Вторая производная по у равна нулю, потому что от у ничего не зависит. Вторая производная по z есть —kz2Ey, а вторая производная по t это —ω2Еy. Тогда уравнение (24.15) утверждает, что
Если Еy не обращается всюду в нуль (этот случай нас не очень интересует), то это уравнение выполняется всегда, если
(24.16)
Число kx мы уже закрепили, так что это уравнение говорит нам, что волны предположенного нами типа возможны лишь тогда, когда kz связано с частотой ω условием (24.16), т. е. когда
(24.17)
Волны, которые мы описали, распространяются в направлении z с таким значением kz.
Волновое число kz, которое мы получили из (24.17), дает нам при данной частоте ω скорость, с которой бегут вдоль трубы узлы волны. Фазовая скорость равна
(24.18)
Вспомните теперь, что длина λ, бегущей волны дается формулой λ=2πv/ω, так что kzтакже равняется 2π/λg, где λg — длина волны осцилляции в направлении z — «длина волны в волноводе». Длина волны в волноводе, конечно, отличается от длины электромагнитных волн той же частоты, но в пустом пространстве. Если длину волны в пустом пространстве обозначить λ0 (что равно 2πс/ω), то (24.17) можно переписать в таком виде:
(24.19)
Кроме электрических полей, существуют и магнитные поля, которые тоже движутся волнообразно. Мы не будем сейчас заниматься выводом выражений для них. Ведь c2∇×B=∂E/∂t, и линии В циркулируют вокруг областей, где ∂E/∂t — наибольшее, т. е. на полпути между максимумом и минимумом Е. Петли В лежат параллельно плоскости xz и между гребнями и впадинами Е (фиг. 24.6).
Фиг. 24.6. Магнитное поле в волноводе.
§ 3. Граничная частота
Уравнение (24.16) для kz на самом деле имеет два корня — один с плюсом, другой с минусом. Ответ следует писать так:
(24.20)
Смысл этих двух знаков просто в том, что волны в волноводе могут бежать и с отрицательной фазовой скоростью (в направлении —z), и с положительной. Волны, естественно, должны иметь возможность бежать в любую сторону. И раз одновременно могут существовать оба типа волн, то решение в виде стоячих волн тоже возможно.
Наше уравнение для kz сообщает нам также, что высшие частоты приводят к большим значениям kz, т. е. к более коротким волнам, пока в пределе больших ω величина k не станет равной ω/с — тому значению, которое бывает, когда волна бежит в пустоте. Свет, который мы «видим» сквозь трубу, все еще бежит со скоростью с. Но посмотрите зато, какая странная вещь получается, когда частота убывает. Сперва волны становятся все длиннее и длиннее. Но если частота ω станет чересчур малой, то под корнем в (24.20) внезапно появится отрицательное число. Это произойдет, когда ω перевалит через πс/а или когда λ0 станет больше 2а. Иначе говоря, когда частота становится меньше некоторой критической частоты ωc=πс/а, волновое число kz (а также λg) становится мнимым и никакого решения у нас не остается. Или остается? Кто, собственно, сказал, что kz должно быть действительным? Что случится, если оно станет мнимым? Уравнения-то поля по-прежнему ведь будут удовлетворяться. Может быть, и мнимые kz тоже представляют какую-то волну?
Предположим, что ω действительно меньше ωc; тогда можно написать
(24.21)
где k' — действительное положительное число
(24.22)
Если теперь вернуться к нашей формуле (24.12) для Еy, то надо будет написать
(24.23)
что можно также представить в виде
(24.24)
Это выражение приводит к полю Е, которое во времени колеблется как eiωt, а по z меняется как e±k'z. Оно плавно убывает или возрастает с z, как всякая действительная экспонента. В нашем выводе мы не думали о том, откуда взялись волны, где их источник, но, конечно, где-то в волноводе он должен быть. И знак, который стоит при k', должен быть таков, чтобы поле убывало при удалении от источника волн.
Итак, при частотах ниже ωс=πс/а волны вдоль трубы не распространяются; осциллирующее поле проникает в трубу лишь на расстояние порядка 1/k'. По этой причине частоту ωс называют «граничной частотой» волновода. Глядя на (24.22), мы видим, что для частот чуть пониже ωc число k' мало, и поля могут проникать в трубу довольно далеко. Но если ω намного меньше ωс, коэффициент k' в экспоненте равняется π/а, и поле отмирает чрезвычайно быстро (фиг. 24.7). Поле убывает в е раз на расстоянии а/π, т. е. на трети ширины волновода. Поля проникают в волновод на очень малое расстояние от источника.
Фиг. 24.7. Изменение Еy с ростом z при ω≪ωc.
Мы хотим еще раз подчеркнуть эту характерную черту нашего анализа прохождения волн по трубе — появление мнимого волнового числа kz. Когда, решая уравнение в физике, мы получаем мнимое число, то это обычно ничего физического не означает. Для волн, однако, мнимое волновое число действительно нечто означает. Волновое уравнение по-прежнему удовлетворяется; оно только означает, что решение приводит к экспоненциально убывающему полю вместо распространяющихся волн. Итак, если в любой задаче на волны k при какой-то частоте становится мнимым, это означает, что форма волны меняется — синусоида переходит в экспоненту.
§ 4. Скорость волн в волноводе
Та скорость волн, о которой мы пока говорили,— это фазовая скорость, т. е. скорость узлов волны; она есть функция частоты. Если подставить (24.17) в (24.18), то можно написать
(24.25)
Для частот выше граничной (для которых бегущая волна существует) ωc/ω меньше единицы, vфаз — действительное число, большее скорости света. Мы уже видели в гл. 48 (вып. 4), что фазовые скорости, большие скорости света, возможны, потому что это просто движутся узлы волн, а не энергия и не информация. Чтобы узнать, как быстро движутся сигналы, надо подсчитать быстроту всплесков или модуляций, вызываемых интерференцией волн одной частоты с одной или несколькими волнами слегка иных частот [см. гл. 48 (вып. 4)]. Скорость огибающей такой группы волн мы назвали волновой скоростью; это не ω/k, а dω/dk:
(24.26)
Дифференцируя (24.17) по ω и переворачивая, чтобы получить dω/dk, получаем
(24.27)
Это меньше скорости света.
Среднее геометрическое между vфаз и vгр в точности равно с — скорости света:
(24.28)
Это любопытно, ведь сходное соотношение мы встречали и в квантовой механике. У частицы с любой скоростью (даже у релятивистской) импульс р и энергия U связаны соотношением
(24.29)
Но в квантовой механике энергия — это ℏω, а импульс —это ℏ/λ, или ℏk; значит, (24.29) можно записать так:
(24.30)
или
(24.31)
а это очень похоже на (24.17)... Интересно, не правда ли? Групповая скорость волн — это также скорость, с какой энергия передается по трубе. Если вам нужно найти поток энергии сквозь волновод, надо умножить плотность энергии на групповую скорость. Если среднее квадратичное электрическое поле равно Е0, то средняя плотность электрической энергии равна ε0Е02/2. Кроме этого, часть энергии связана с магнитным полем. Мы не будем здесь это доказывать, но в любой полости или трубе магнитная и электрическая энергии равны между собой, так что полная плотность электромагнитной энергии равна ε0Е02. А мощность dU/dt, передаваемая волноводом, поэтому равна
(24.32)
(Позже мы рассмотрим другой, более общий способ вычисления потока энергии.)
§ 5. Как наблюдать волны в волноводе
Энергию в волновод можно ввести своего рода «антенной», воспользовавшись для этого, например, вертикальной проволочкой, или «штырем». В наличии волн в волноводе можно убедиться, отведя из него часть электромагнитной энергии с помощью приемной «антенки» — тоже какого-нибудь проволочного штыря или петельки. На фиг. 24.8 показан волновод, часть стенок на рисунке выхвачена, чтобы были видны входной штырь и приемный «пробник».
Фиг. 24.8. Волновод с входным штырем и пробником.
Входной штырь можно подключить через коаксиальный кабель к генератору сигналов, а приемный пробник таким же кабелем можно соединить с детектором. Обычно удобнее вводить пробник через длинную прорезь в стенке волновода. Тогда можно им водить вдоль волновода и замерять поле в разных местах.
Если подать с сигнал-генератора частоту ω, большую, чем граничная частота ωс, то по волноводу от штыря побегут волны. Если волновод бесконечной длины, то никаких волн, кроме этих, не будет (чтобы сделать его бесконечным, надо на конце его поставить тщательно сконструированный поглотитель, который не допустит отражения от этого конца). Тогда поскольку детектор измеряет поле близ пробника, усредненное по времени, то он будет воспринимать сигнал, не зависящий от положения в волноводе; на выходе будет регистрироваться величина, пропорциональная передаваемой мощности.
Если же сделать так, чтобы от дальнего конца волновода отражалась волна (предельный случай: если закрыть его металлической пластинкой), то вдобавок к первоначальной волне появится отраженная. Эти две волны будут интерферировать и создадут в волноводе стоячую волну, похожую на стоячие волны в струне, о которых говорилось в гл. 49 (вып. 4). В этом случае, по мере того как пробник передвигается вдоль трубы, отсчеты детектора будут периодически повышаться и падать; максимум поля будет отмечать подъемы волны, а минимум — узлы. Расстояние между двумя последовательными узлами (или гребнями) равно λg/2. Это дает нам удобный способ измерять длину волны в волноводе. Если сдвигать частоту ближе к ωс, то расстояние между узлами увеличится, показывая тем самым, что длина волны в волноводе изменяется по закону (24.19).
Пусть теперь наш сигнал-генератор включен на частоту, чуть-чуть меньшую, чем ωс. Тогда показания детектора будут постепенно падать по мере того, как пробник удаляется вдоль волновода. Если еще понизить частоту, напряженность поля начнет убывать быстрее, следуя кривой фиг. 24.7 и показывая, что волны не распространяются.
§ 6. Сочленение волноводов
Важное практическое применение волноводов состоит в передаче высокочастотной мощности. Ими, например, соединяют высокочастотный осциллятор или выходной усилитель радиолокатора с антенной. Сама же антенна обычно состоит из параболического рефлектора, в фокус которого подается энергия от волновода, расширяющегося на конце в виде «рога», который излучает волны, приходящие по волноводу. Хотя высокую частоту можно передавать и по коаксиальному кабелю, волновод все же лучше — по нему можно передавать большую мощность. Во-первых, передаваемая по кабелю мощность ограничена опасностью пробоя изоляции (твердой или газообразной) между проводниками. Напряженности полей в волноводе при данной мощности обычно не столь велики, как в кабеле, так что можно передавать большие мощности, не опасаясь пробоя. Во-вторых, потери мощности в коаксиальном кабеле обычно больше, чем в волноводе. В кабель приходится ставить изоляционный материал, чтобы поддержать внутренний проводник, и в этом материале возникают потери энергии, особенно при высоких частотах. Кроме того, плотности тока во внутреннем проводе весьма высоки, а поскольку потери пропорциональны квадрату плотности тока, то чем слабее ток в стенках волновода, тем меньше потери энергии. Чтобы свести эти потери к минимуму, внутреннюю поверхность волновода часто покрывают хорошо проводящим материалом, скажем серебром.
Проблема соединения «контуров» с волноводами резко отличается от аналогичной задачи при низких частотах. Ее часто называют микроволновым «сочленением». Для этой цели было придумано много приборов. Например, две секции волновода обычно связываются при помощи фланцев (фиг. 24.9), но такое соединение может повлечь за собой серьезные потери энергии, потому что через соединение потекут поверхностные токи, а их сопротивление довольно велико.
Фиг. 24.9. Секции волновода, соединенные фланцами.
Один из способов избежать потерь — это сделать фланцы так, как показано на фиг. 24.10.
Фиг. 24.10. Сочленение двух секций волновода, дающее малые потери.
Между соседними секциями волновода оставляют небольшой зазор, а на торце одного из фланцев делается желобок. Получается небольшая полость (ср. с фиг. 23.16,в), размеры которой выбирают так, чтобы ее резонансная частота совпадала с частотой волн в волноводе. У такой резонансной полости «импеданс» очень высок, поэтому через металлическое соединение (точка а на фиг. 24.10) идет сравнительно слабый ток. Сильные токи в волноводе попросту заряжают и разряжают «емкость» щели (в точке b), где энергия рассеивается слабо.
Теперь представьте, что вам нужно закрыть волновод так, чтобы не возникло никаких отраженных волн. Значит, надо в конце поставить что-нибудь такое, что сможет имитировать бесконечность волновода. Нужно такое «конечное» устройство, которое действовало бы на волновод так, как действует на передающую линию ее характеристический импеданс — что-то, что только поглощает набегающие волны, но не отражает их. Тогда волновод будет действовать так, будто он бесконечный. Такие окончания получаются, если поставить внутрь трубы тщательно изготовленные клинья из проводящего материала. Они только поглощают энергию и почти не генерируют отраженных волн. Если вам нужно соединить между собой три элемента, скажем один источник и две антенны, то для этого годится устройство в виде «Т», как показано на фиг. 24.11.
Фиг. 24.11. Волновод «Т». На фланцы надеты пластмассовые колпачки, предохраняющие внутреннюю часть «Т» от загрязнения в неработающем состоянии.
Мощность, подводимая центральной секцией этого «Т», расщепляется и расходится по двум рукавам (здесь еще может произойти и отражение волн). Из схемы, представленной на фиг. 24.12, можно качественно увидеть, что поля на конце входной секции могут разойтись и создать электрические поля, которые дадут начало волнам, разбегающимся по рукавам. Смотря по тому, перпендикулярны ли электрические поля «верхушке» нашего «Т» или параллельны ей, поля в месте сочленения могут оказаться либо такими, как на фиг. 24.12, а, либо как на фиг. 24.12, б.
Фиг. 24.12. Электрические поля в волноводе «Т» при двух возможных ориентациях поля.
Наконец, хотелось бы описать прибор, именуемый «направленным ответвителем». Это очень полезное устройство, когда нужно узнать, что получилось после того, как вы сочленили между собой какое-то сложное расположение волноводов. Например, нужно узнать, в какую сторону бегут волны в той или иной секции трубы; скажем, необходимо представить себе, насколько сильна в ней отраженная волна. Направленный ответвитель отбирает немножко мощности у волновода, если по нему бежит волна в одну сторону, и не отбирает ничего, если она бежит в другую. Подключив выход соединителя к детектору, можно измерить «одностороннюю» мощность в волноводе. Направленный ответвитель (фиг. 24.13) — это кусок волновода АВ, к одной из сторон которого припаян другой кусок волновода CD.
Фиг. 24.13. Направленный ответвитель.
Труба CD отогнута в сторону так, чтобы поместился соединительный фланец. Прежде чем спаять трубы, через соседние их стенки насквозь просверлили пару (или несколько) отверстий, чтобы через них часть полей в главном волноводе АВ могла пройти во вторичный волновод CD. Каждое отверстие действует как антенна — генерирует волны во вторичном волноводе. Если бы отверстие было одно, то волны расходились бы в обе стороны и были бы одинаковы независимо от того, куда направлены волны в первичном волноводе. Но когда отверстий два и когда расстояние между ними равно четверти длины волны в волноводе, то они представляют собой два источника, сдвинутые по фазе на 90°. А вы помните, мы рассматривали в гл. 29 (вып. 3) интерференцию волн от двух антенн, раздвинутых на λ/4 и возбуждаемых со сдвигом 90° по фазе? Мы установили тогда, что в одном направлении волны вычитаются, а в другом складываются. То же самое происходит и здесь. Волна, генерируемая в CD, будет бежать в ту же сторону, что и АВ.
И если волна в первичном волноводе бежит от А к В, то на выходе D вторичного волновода мы тоже заметим волну. Если же волна в первичном волноводе бежит от В к А, то во вторичном волноводе волна побежит к С. А на этом конце стоит такое окончание, что эта волна в нем поглотится и на выходе ответвителя волн вообще не будет.
§ 7. Типы воли в волноводе
Выбранная нами для анализа волна — всего лишь одно из решений уравнений поля. Их на самом деле куда больше. Каждое решение представляет собой свой «тип волны» в волноводе. Скажем, в нашей волне вдоль направления х укладывалось только полсинусоиды. Ничуть не хуже решение, в котором вдоль х укладывается вся синусоида; изменение Еy с х тогда показано на фиг. 24.14.
Фиг. 24.14. Еще одна возможная зависимость Еу от х.
У этого типа волн kx вдвое больше и граничная частота много выше. Кроме того, изученная нами волна Е имеет лишь y-компоненту, но бывают и типы волн с более сложными электрическими полями. Если у электрического поля есть только х- и y-компоненты, так что оно всегда перпендикулярно к оси z, то такой тип волн называется «поперечным электрическим» (или сокращенно ТЕ) типом волн. Магнитное поле в волне такого типа всегда обладает z-компонентой. Далее, оказывается, что когда у Е есть z-компонента (вдоль направления распространения), то у магнитного поля есть только поперечные компоненты. Такие поля называются «поперечными магнитными» (сокращенно ТМ) типами волн. В прямоугольном волноводе все типы обладают более высокой граничной частотой, чем описанный нами простой TE-тип. Поэтому всегда возможно (и так обычно делают) использовать такой волновод, в котором частота немного превышает граничную частоту этого наинизшего типа колебаний, но находится ниже граничных частот всех других типов. В таком волноводе распространяется волна только одного типа. В противном случае поведение волн усложняется и его трудно контролировать.
§ 8. Другой способ рассмотрения волн в волноводе
Теперь я хочу по-другому объяснить вам, почему волновод так сильно ослабляет поля, частота которых ниже граничной частоты ωс. Я хочу, чтобы вы получили более «физическое» представление о том, почему так резко меняется поведение волновода при низких и при высоких частотах. Для прямоугольного волновода это можно сделать, анализируя поля на языке отражений (или изображений) в стенках волновода. Такой подход годится, однако, только для прямоугольных волноводов; вот почему мы начали с математического анализа, который в принципе годится для волноводов любой формы.
Для описанного нами типа колебаний вертикальные размеры (по у) не имели никакого значения, поэтому можно не обращать внимания на верх и низ волновода и представлять себе, что волновод в вертикальном направлении простирается бесконечно. Пусть он просто состоит из двух вертикальных пластин, удаленных друг от друга на расстояние а.
Давайте возьмем в качестве источника полей вертикальный провод между пластинами; по нему течет ток, который меняется с частотой ω. Если бы волновод не имел стенок, то от такого провода расходились бы цилиндрические волны.
Представим, что стенки волновода сделаны из идеального проводника. Тогда, в точности как в электростатике, условия на поверхности будут выполнены, если к полю провода мы добавим поле одного или нескольких правильно подобранных его изображений. Представление об изображениях работает в электродинамике ничуть не хуже, чем в электростатике, при условии, конечно, что мы учитываем запаздывание. Мы знаем, что это так, потому что мы много раз видели в зеркале изображение источника света. А зеркало — это и есть «идеальный» проводник для электромагнитных волн оптической частоты.
Рассечем наш волновод горизонтально, как показано на фиг. 24.15, где W1 и W2 — стенки волновода, а S0 — источник (провод).
Фиг. 24.15. Линейный источник S0 между проводящими плоскими стенками W1 и W2. Стенки можно заменить бесконечной последовательностью изображений источников.
Обозначим направление тока в проводе знаком плюс. Будь у волновода лишь одна стенка, скажем W1, ее можно было бы убрать, поместив изображение источника (с противоположной полярностью) в точке S1. Но при двух стенках появится также изображение S0 в стенке W2; обозначим его S2. Этот источник также будет обладать своим изображением в W1; обозначим его S3. Дальше, сами S1 и S3 изобразятся в W2 точками S4 и S6 и т. д. И для нашей пары плоских проводников с источником посредине поле между проводниками совпадет с полем, генерируемым бесконечной цепочкой источников на расстоянии а друг от друга. (Это на самом деле как раз то, что вы увидите, посмотрев на провод, расположенный посредине между двумя параллельными зеркалами.) Чтобы поля обращались в нуль на стенках, полярности токов в изображениях должны меняться от одного изображения к следующему. Иначе говоря, их фаза меняется на 180°. Поле волновода — это просто суперпозиция полей всей этой бесконечной совокупности линейных источников.
Известно, что вблизи от источников поле очень напоминает статические поля. В гл. 7, § 5 (вып. 5) мы рассматривали статическое поле сетки линейных источников и нашли, что оно похоже на поле заряженной пластины, если не считать членов ряда, убывающих по мере удаления от сетки экспоненциально. У нас средняя сила источников равна нулю, потому что у каждой пары соседних источников знаки противоположны. Любые поля, существующие здесь, должны с расстоянием убывать экспоненциально. Вплотную к источнику мы в основном воспринимаем поле этого ближайшего источника; на больших расстояниях уже воздействует несколько источников, и их суммарное влияние дает нуль. Мы теперь понимаем, отчего волновод ниже граничной частоты дает экспоненциально убывающее поле. При низких частотах годится статическое приближение, и оно предсказывает быстрое ослабление полей с расстоянием.
Теперь зато возникает противоположный вопрос: отчего же в таком случае волны вообще распространяются? Теперь уже это выглядит таинственно! А причина-то в том, что при высоких частотах запаздывание полей может внести в фазу добавочные изменения, которые могут привести к тому, что поля источников с противоположной фазой будут усиливать, а не гасить друг друга. В гл. 29 (вып. 3) мы уже изучали как раз для этой задачи поля, создаваемые системой антенн или оптической решеткой. Тогда мы обнаружили, что соответствующее расположение нескольких радиоантенн может привести к такой интерференционной картине, что в одном направлении сигнал будет очень сильный, а в других сигналов вообще не будет.
Вернемся к фиг. 24.15 и посмотрим на поля на большом расстоянии от линии изображений источников. Поля будут велики лишь в некоторых направлениях, зависящих от частоты, именно в тех направлениях, в каких поля всех источников попадают в фазу друг к другу и складываются. На заметном расстоянии от источников поле в этих специальных направлениях распространяется как плоские волны. Мы изобразили такую волну на фиг. 24.16, где сплошными линиями даны гребни волн, а штрихом — впадины.
Фиг. 24.16. Одна совокупность когерентных волн от вереницы линейных источников.
Направление волны должно быть таким, чтобы разность запаздываний от двух соседних источников до гребня волны отвечала полупериоду колебания. Иными словами, разность между r2 и r0 на рисунке равна половине длины волны в пустом пространстве:
Тогда угол θ дается условием
(24.33)
Имеется, конечно, и другая совокупность волн, бегущих вниз под симметричным углом по отношению к линии источников. А полное поле в волноводе (не слишком близко к источнику) является суперпозицией этих двух совокупностей волн (фиг. 24.17).
Фиг. 24.17. Поле в волноводе можно рассматривать как наложение двух верениц плоских волн.
Конечно, в действительности картина истинных полей совпадает с изображенной лишь в пространстве между стенками волновода.
В таких точках, как А и С, гребни двух волновых картин совпадут, и у поля будет максимум; в точках же наподобие В пики обеих волн направлены в отрицательную сторону, и поле обладает минимумом (наименьшим отрицательным значением). С течением времени поле в волноводе будет двигаться вдоль него. Длина волны будет равна λg — расстоянию от A до С. Она связана с θ формулой
(24.34)
Подставляя (24.33) вместо θ, получаем
(24.35)
что в точности совпадает с (24.19).
Теперь нам становится понятно, почему волны распространяются только выше граничной частоты ω0. Если длина волн в пустом пространстве больше 2а, то не существует угла, под которым может появиться волна, показанная на фиг. 24.16. Необходимая для этого конструктивная интерференция возникает внезапно, едва λ0 оказывается меньше 2а, или, что то же самое, когда ω0=πс/а.
А если частота достаточно высока, то может появиться два или больше возможных направления распространения волн. В нашем случае это произойдет при λ0 <2/3 а. Но вообще-то это может происходить и при λ0<а. Эти добавочные волны отвечают высшим типам волн, о которых мы говорили.
После нашего анализа становится также ясно, отчего фазовая скорость волн, бегущих по трубе, превышает с и зависит от ω. Когда ω меняется, меняется и угол на фиг. 24.16, под которым в пустом пространстве распространяются волны, а вместе с этим меняется и скорость вдоль трубы.
Хотя мы описали волны в волноводе в виде суперпозиции полей бесконечной совокупности линейных источников, но можно убедиться в том, что тот же результат можно было бы получить, представив себе две совокупности волн в пустом пространстве, многократно отражаемых от двух идеальных зеркал вперед и назад, и вспоминая, что подобное отражение означает перемену знака фазы. Эти совокупности отражаемых волн гасили бы друг друга под всеми углами, кроме угла θ [см. (24.33)]. Одну и ту же вещь можно рассматривать многими способами.
Глава 25 ЭЛЕКТРОДИНАМИКА В РЕЛЯТИВИСТСКИХ ОБОЗНАЧЕНИЯХ
Повторить: гл. 15 (вып. 2) «Специальная теория относительности»; гл. 16 (вып. 2) «Релятивистская энергия и импульс»; гл. 17 (вып. 2) «Пространство-время»; гл. 13 (вып. 5) «Магнитостатика»
§ 1. Четырехвекторы
В этой главе мы рассмотрим применение специальной теории относительности к электродинамике. Мы изучали теорию относительности довольно давно (гл. 15—17, вып. 2), поэтому я здесь коротко напомню основные идеи.
Экспериментально установлено, что законы физики при равномерном движении не изменяются. Если вы находитесь внутри звездолета, летящего с постоянной скоростью по прямой линии, то не можете установить самого факта движения корабля: для этого надо выглянуть наружу или по крайней мере провести какие-то наблюдения, связанные с внешним миром. Любой написанный нами истинный закон физики должен быть сформулирован так, чтобы этот факт природы был «встроен» в него.
Соотношение между пространством и временем в двух системах координат (одна из которых S' равномерно движется относительно другой S в направлении оси х со скоростью v) определяется преобразованиями Лоренца:
(25.1)
Законы физики должны быть таковы, чтобы после преобразований Лоренца они в новой форме выглядели абсолютно так же, как и раньше. Это в точности напоминает принцип независимости законов физики от ориентации нашей системы координат. В гл. 11 (вып. 1) мы видели, что способом математического описания этой инвариантности относительно вращения является запись уравнений в векторном виде.
Там мы обнаружили, что если, скажем, взять два вектора
то комбинация
при повороте системы координат не меняется. Таким образом, если с обеих сторон уравнения мы видим скалярное произведение, подобное А·В, то уравнение будет иметь в точности ту же форму в любой повернутой системе координат. Кроме того, мы открыли оператор (см. гл. 2)
который, будучи применен к скалярной функции, дает три величины, преобразующиеся в точности как вектор. С помощью этого оператора был определен градиент, а в комбинации с другими векторами — дивергенция и лапласиан. И, наконец, мы обнаружили, что, составляя суммы некоторых попарных произведений компонент двух векторов, можно получить три величины, которые ведут себя подобно новому вектору. Мы назвали это векторным произведением двух векторов. Используя затем векторное произведение с оператором ∇, мы определили ротор вектора. В дальнейшем нам часто придется ссылаться на то, что было нами сделано в векторном анализе, поэтому все важнейшие векторные операции в трехмерном пространстве, которые использовались в прошлом, мы собрали в табл. 25.1.
Таблица 25.1. ВАЖНЕЙШИЕ ВЕЛИЧИНЫ И ОПЕРАТОРЫ ТРЕХМЕРНОГО ВЕКТОРНОГО АНАЛИЗА
Пользуясь ею, можно так записать любое уравнение физики, что обе его части преобразуются при вращениях одинаковым образом. Если одна его часть — вектор, то вектором должна быть и другая часть, и обе они при вращении системы координат изменяются в точности одинаково. Аналогично, если одна часть скаляр, то скаляром должна быть и другая часть, так что ни та, ни другая не изменяется при вращении системы координат и т. д.
В теории относительности пространство и время неразделимо связаны друг с другом, поэтому то же самое придется проделать и для четырех измерений. Мы хотим, чтобы наши уравнения оставались неизменными не только при вращениях, но и при переходе в любую инерциальную систему. Это означает, что наши уравнения должны быть инвариантными относительно преобразований Лоренца (25.1). Цель настоящей главы — показать, как этого можно добиться. Но прежде чем начать, примем соглашение, которое значительно облегчит нашу работу (и к тому же поможет избежать путаницы). Заключается оно в таком выборе единиц измерения длины и времени, чтобы скорость света с оказалась равной единице. Вы можете считать, например, что в качестве единицы времени взят интервал, за который свет проходит отрезок в один метр (это составляет около 3·10-9 сек). Можно даже так и назвать эту единицу времени: «один световой метр». Использование этой единицы еще ярче оттеняет симметрию пространства и времени. Кроме того, из наших релятивистских уравнений исчезнут все с. (Если это почему-либо вас смущает, то вы можете в любом уравнении восстановить их или заменить каждое t на ct, а еще лучше вставить с повсюду, где это необходимо для правильной размерности уравнения.) Теперь, после такой подготовки, мы можем двинуться дальше.
Наша программа состоит в том, чтобы повторить в четырехмерном пространстве-времени все то, что мы делали с векторами в трех измерениях. Дело это нехитрое — мы просто будем действовать аналогично. Единственное затруднение встретится только при обозначениях (символ вектора у нас уже занят трехмерными векторами), и несколько изменятся знаки в скалярном произведении.
Прежде всего, по аналогии с векторами в трехмерном пространстве, введем четырехвектор как набор четырех величин at, ах, ау и аz, которые при переходе в движущуюся систему координат преобразуются подобно t, x, у и z. Для обозначения четырехвектора используется несколько различных способов. Мы же будем писать просто аμ, понимая под этим группу четырех величин (at, ax, ay, az); другими словами, значок μ принимает какое-либо из четырех «значений»: t, x, у и z. Иногда нам будет удобно обозначать три пространственные компоненты в виде трехмерного вектора, т. е. писать aμ=(at, а).
Мы уже сталкивались с одним таким четырехвектором, состоящим из энергии и импульса частицы (см. гл. 17, вып. 2). В наших новых обозначениях он запишется так:
(25.2)
т. е. четырехвектор pμ состоит из энергии Е и трех компонент трехмерного импульса частицы р.
Похоже, что игра действительно оказывается нехитрой: единственное, что мы должны сделать,— это найти для каждого трехмерного вектора недостающую компоненту и получить четырехвектор. Однако все же эта задача потруднее, чем кажется на первый взгляд. Возьмем, например, вектор скорости с компонентами
Что будет его временной компонентой? Инстинкт подсказывает нам, что поскольку четырехвектор подобен t, x, у, z, то временной компонентой как будто должно быть
Но это неверно. Дело в том, что время t в каждом знаменателе не инвариантно при преобразованиях Лоренца. Числитель имеет правильное поведение, а dt в знаменателе портит все дело: оно не одинаково в двух различных системах.
Оказывается, что четыре компоненты «скорости», которые нам нужно выписать, превратятся в компоненты четырехвектора, если мы попросту поделим их на √(1-v2). В правильности этого можно убедиться, взяв четырехвектор импульса
(25.3)
и поделив его на массу покоя, которая в четырехмерном пространстве является скаляром. Мы получим при этом
(25.4)
что по-прежнему должно быть четырехвектором. (Деление на скаляр не изменяет трансформационных свойств.) Так что четырехвектор скорости uμ можно определить так:
(25.5)
Это очень полезная величина; мы можем теперь написать, например,
(25.6)
Таков типичный вид, который должен иметь правильное релятивистское уравнение: каждая сторона его должна быть четырехвектором. (В правой части стоит произведение инварианта на четырехвектор, которое по-прежнему есть четырехвектор.)
§ 2. Скалярное произведение
То, что расстояние от некоторой точки до начала координат не изменяется при повороте, если хотите,— счастливая случайность. Математически это означает, что r2=x2+y2+z2 является инвариантом. Другими словами, после поворота r'2=r2 или
Возникает вопрос: существует ли подобная величина, которая инвариантна при преобразованиях Лоренца? Да, существует. Из (25.1) вы видите, что
Она была бы всем хороша, если бы только не зависела от нашего выбора оси х. Но этот недостаток легко исправить вычитанием y2 и z2. Тогда преобразование Лоренца плюс вращение оставляют ее неизменной. Таким образом, роль величины, аналогичной трехмерному r2 в четырехмерном пространстве, играет комбинация
Она является инвариантом так называемой «полной группы Лоренца», которая включает как перемещения с постоянной скоростью, так и повороты.
Далее, поскольку эта инвариантность представляет собой алгебраическое свойство, зависящее только от правил преобразования (25.1) плюс вращение, то она справедлива для любого четырехвектора. (Все они, по определению, преобразуются одинаковым образом.) Так что для любого четырехвектора aμ
Эту величину мы будем называть квадратом «длины» четырехвектора аμ. (Будьте внимательны! Иногда берут обратные знаки у всех слагаемых и квадратом длины называют число ax2+ay2+az2-at2.)
Если теперь у нас есть два вектора аμ и bμ, то их одноименные компоненты преобразуются одинаково, поэтому комбинация
также будет инвариантной (скалярной) величиной. (Фактически мы доказали это уже в гл. 17, вып. 2.) Получилась величина, совершенно аналогичная скалярному произведению векторов. Мы так и будем называть ее скалярным произведением двух четырехвекторов. Логично, казалось бы, и записывать его аμ·bμ, чтобы оно даже выглядело похожим на скалярное произведение. Но обычно, к сожалению, так не делают и пишут его без точки.
И мы тоже будем придерживаться этого порядка и записывать скалярное произведение просто aμbμ. Итак, по определению,
(25.7)
Помните, что повсюду, где вы видите два одинаковых значка (вместо μ мы иногда будем пользоваться v или другими буквами), необходимо взять четыре произведения и сложить их, не забывая при этом о знаке минус перед произведениями пространственных компонент. С учетом такого соглашения инвариантность скалярного произведения при преобразованиях Лоренца можно записать как
Поскольку последние три слагаемых в формуле (25.7) представляют просто трехмерное скалярное произведение, то часто удобнее принять такую запись:
Очевидно, что введенную выше четырехмерную длину можно записать как аμаμ:
(25.8)
Но иногда удобно эту величину записать как аμ2:
Продемонстрируем теперь плодотворность четырехмерного скалярного произведения. Антипротоны (—р) получают на больших ускорителях из реакции
Иначе говоря, высокоэнергетический протон сталкивается с покоящимся протоном (например, с помещенной в пучок водородной мишенью), и если падающий протон обладает достаточной энергией, то вдобавок к двум первоначальным протонам может родиться пара протон—антипротон[32].
Какой энергией должен обладать падающий протон, чтобы эта реакция стала энергетически возможной?
Фиг. 25.1. Реакция р+p → Зр+—р в лабораторной системе и системе ц. м. Предполагается, что энергия падающего протона как раз достаточна для протекания реакции. Протоны обозначены черными кружочками, а антипротоны —белыми.
Ответ легче всего получить, рассмотрев эту реакцию в системе центра масс (ц. м.) (фиг. 25.1). Назовем падающий протон протоном а, а его четырехимпульс обозначим через рμa. Аналогично, протон мишени назовем b, а его четырехимпульс обозначим через рμb. Если энергии падающего протона как раз достаточно для реакции, то в конечном состоянии (т. е. в состоянии после соударения) образуется система, содержащая три протона и антипротон, покоящиеся в системе ц. м. Если энергия падающего протона будет несколько выше, то частицы в конечном состоянии вылетят с некоторой кинетической энергией и будут разлетаться в стороны; если же она немного ниже, то ее будет недостаточно для образования четырех частиц.
Пусть рμс — полный четырехимпульс всей системы в конечном состоянии, тогда, согласно закону сохранения энергии и импульса,
и
а комбинируя эти два выражения, можно написать
(25.9)
Теперь еще одно важное обстоятельство: поскольку мы получили уравнение для четырехвекторов, то оно должно выполняться в любой инерциальной системе. Этим фактом можно воспользоваться для упрощения вычислений. Напишем длины каждой из частей (25.9), которые, разумеется, тоже должны быть равны друг другу, т. е.
(25.10)
Так как рμсрμс — инвариант, то можно вычислить его в какой-то одной системе координат. В системе ц. м. временная компонента рμс равна энергии покоя четырех протонов, т. е. 4М, а пространственная часть р равна нулю, так что рμс=(4М, 0). При этом мы воспользовались равенством масс протона и антипротона, обозначив их одной буквой М.
Таким образом, уравнение (25.10) принимает вид
(25.11)
Произведения рμарμа и pμbpμb, вычисляются очень быстро: «длина» четырехвектора импульса любой частицы равна просто квадрату ее массы:
Это можно доказать прямыми вычислениями или, несколько более эффектно, простым замечанием, что в системе покоя частицы рμ=(М, 0), а следовательно, рμрμ=М2. А так как это инвариант, то он равен М2 в любой системе отсчета. Подставляя результаты в уравнение (25.11), мы получаем
или
(25.12)
Теперь можно вычислить рμарμb в лабораторной системе. В этой системе четырехвектор рμа=(Еа, ра), а рμb=(М, 0), ибо он описывает покоящийся протон. Итак, рμарμb должно быть равно МЕа, а мы знаем, что скалярное произведение — это инвариант, поэтому оно должно быть равно значению, найденному нами в (25.12). В результате получается
Полная энергия падающего протона должна быть по меньшей мере равна 7М (что составляет около 6,6 Гэв, так как М=938 Мэв) или после вычитания массы покоя М получаем, что кинетическая энергия должна быть равна по меньшей мере 6М (около 5,6 Гэв). Именно с тем, чтобы иметь возможность производить антипротоны, бетатрон в Беркли проектировался на кинетическую энергию ускоренных протонов около 6.2 Гэв.
Скалярное произведение — инвариант, поэтому полезно знать его величину. Что, например, можно сказать о «длине» четырехвектора скорости uμuμ?
т. е. uμ — единичный четырехвектор.
§ 3. Четырехмерный градиент
Следующей величиной, которую нам следует обсудить, является четырехмерный аналог градиента. Напомним (см. гл. 14, вып. 1), что три оператора дифференцирования ∂/∂x, ∂/∂y, ∂/∂z преобразуются подобно трехмерному вектору и называются градиентом. Та же схема должна работать и в четырех измерениях; по простоте вы можете подумать, что четырехмерным градиентом должны быть (∂/∂t, ∂/∂x, ∂/∂y ∂/∂z), но это неверно.
Чтобы обнаружить ошибку, рассмотрим скалярную функцию, которая зависит только от х и t. Приращение φ при малом изменении t на Δt и постоянном х равно
(25.13)
С другой стороны, с точки зрения движущегося наблюдателя
Используя уравнение (25.1), мы можем выразить Δх' и Δt' через Δt. Вспоминая теперь, что величина х постоянна, так что Δx=0, мы пишем
Таким образом,
Сравнивая этот результат с (25.13), мы узнаем, что
(25.14)
Аналогичные вычисления дают
(25.15)
Теперь вы видите, что градиент получился довольно странным. Выражения для х и t через х' и t' [полученные решением уравнений (25.1)] имеют вид
Именно так должен преобразовываться четырехвектор. Но в уравнениях (25.14) и (25.15) знаки получились неправильными! Выход в том, что надо заменить неправильное определение четырехмерного оператора градиента (∂/∂t,∇) правильным:
(25.16)
Мы его обозначим ∇μ. Для такого ∇μ трудности исчезают, и он ведет себя так, как подобает настоящему четырехвектору. (Ужасно неприятно наличие минусов, но так уж устроено в мире.) Разумеется, говоря, что ∇μ «ведет себя как четырехвектор», мы подразумеваем, что четырехмерный градиент скалярной функции есть четырехвектор. Если φ — настоящее скалярное (лоренц-инвариантное) поле, то ∇μφ будет четырехвекторным полем.
Итак, все уладилось. Теперь у нас есть векторы, градиенты и скалярное произведение. Следующий на очереди — инвариант, аналогичный дивергенции в трехмерном векторном анализе. Ясно, что аналогом его должно быть выражение ∇μbμ, где bμ — векторное поле, компоненты которого являются функциями пространства и времени. Мы определим дивергенцию четырехвектора bμ=(bt, b) как скалярное произведение ∇μ на bμ:
(25.17)
где ∇·b — обычная трехмерная дивергенция вектора b. Не забывайте внимательно следить за знаками. Один знак минус связан с определением скалярного произведения [формула (25.7)], а другой возникает от пространственных компонент ∇μ [формула (25.16)]. Дивергенция, определяемая формулой (25.7), есть инвариант, и для всех систем координат, отличающихся друг от друга преобразованием Лоренца, применение ее приводит к одинаковой величине.
Остановимся теперь на физическом примере, в котором появляется четырехмерная дивергенция. Ею можно воспользоваться при решении задачи о полях вокруг движущегося проводника. Мы уже видели (гл. 13, § 7, вып. 5), что плотность электрического заряда ρ и плотность тока j образуют четырехвектор jμ=(p, j). Если незаряженный провод переносит ток jx, то в системе отсчета, движущейся относительно него со скоростью v (вдоль оси х), в проводнике наряду с током появится и заряд [который возникает согласно закону преобразований Лоренца (25.1)]:
Но это как раз то, что мы нашли в гл. 13. Теперь нужно подставить эти источники в уравнение Максвелла в движущейся системе и найти поля.
Закон сохранения заряда в четырехмерных обозначениях тоже принимает очень простой вид. Рассмотрим четырехмерную дивергенцию вектора jμ :
(25.18)
Закон сохранения заряда утверждает, что утекание тока из единицы объема должно быть равно отрицательной скорости увеличения плотности заряда. Иными словами,
Подставляя это в (25.18), получаем очень простую форму закона сохранения заряда:
(25.19)
Благодаря тому что ∇μjμ — инвариант, равенство его нулю в одной системе отсчета означает равенство нулю и во всех других. Таким образом, если заряд сохраняется в одной системе, он будет сохраняться и во всех других системах координат, движущихся относительно нее с постоянной скоростью.
В качестве последнего примера рассмотрим скалярное произведение оператора градиента ∇μ на себя. В трехмерном пространстве такое произведение дает лапласиан
Что получится для четырех измерений? Вычислить это очень просто. Следуя нашему правилу скалярного произведения, находим
Этот оператор, представляющий аналог трехмерного лапласиана, называется даламбертианом и обозначается специальным символом
(25.20)
По построению он является скалярным оператором, т. е., если подействовать им, скажем, на четырехвекторное поле, возникает новое четырехвекторное поле. [Иногда даламбертиан определяется с противоположным по отношению к (25.20) знаком, так что при чтении литературы будьте внимательны!]
Итак, для большинства величин, перечисленных нами в табл. 25.1, мы нашли их четырехмерные эквиваленты. (У нас еще нет эквивалента векторного произведения, но его нахождение мы оставим до следующей главы.) А теперь соберем в одно место все важнейшие результаты и определения и составим еще одну таблицу (табл. 25.2); она поможет вам лучше запомнить, что во что переходит.
§ 4. Электродинамика в четырехмерных обозначениях
В гл. 18, § 6, мы уже сталкивались с оператором Даламбера, хотя и не знали, что он так называется. Мы нашли там дифференциальное уравнение для потенциалов, которое в новых обозначениях выглядит так:
(25.21)
С правой стороны (25.21) стоят четыре величины ρ, jx, j, jz, поделенные на ε0 — универсальную постоянную, одинаковую во всех системах координат, если во всех системах для измерения заряда используется одна и та же единица. Таким образом, четыре величины ρ/jе0, jх/ε0, jy/ε0, jz/ε0 тоже преобразуются как четырехвектор. Их можно записать в виде jμs/е0. Оператор Даламбера не изменяется при переходе к другим системам координат, так что четыре величины φ, Ах, Ау и Az тоже должны преобразоваться как четырехвектор, т. е. должны быть компонентами четырехвектора. Короче говоря, величина
есть четырехвектор. То, что мы называли скалярным и векторным потенциалами, оказывается только разными частями от одной и той же физической величины. Они неотделимы друг от друга. А если это так, то релятивистская инвариантность мира очевидна. Вектор Аμ мы называем четырехмерным потенциалом (4-потенциалом).
В четырехмерных обозначениях (25.21) приобретает очень простой вид:
(25.22)
Физика этого уравнения та же, что и уравнений Максвелла. Но есть своя прелесть в том, что можно переписывать их в столь элегантной форме. Впрочем, эта красивая форма содержит и кое-что более значительное — из нее непосредственно видна инвариантность электродинамики относительно преобразований Лоренца.
Напомним, что уравнение (25.21) можно получить из уравнений Максвелла только тогда, когда наложено дополнительное условие градиентной инвариантности:
(25.23)
что означает просто ∇μAμ=0, т. е. условие градиентной инвариантности говорит, что дивергенция четырехмерного вектора Аμ равна нулю. Это требование носит название условия Лоренца. Такая форма его записи очень удобна, ибо она инвариантна, а поэтому уравнения Максвелла во всех системах отсчета сохраняют вид (25.22).
§ 5. Четырехмерный потенциал движущегося заряда
Теперь выпишем законы преобразования, выражающие φ и А в движущейся системе через φ и А в неподвижной, хотя неявно мы уже говорили о них. Поскольку Аμ=(φ, А) является четырехвектором, это уравнение должно выглядеть подобно (25.1), за исключением того, что t нужно заменить на φ, а x — на А. Таким образом,
(25.24)
При этом предполагается, что штрихованная система координат движется по отношению к нештрихованной со скоростью v в направлении оси х.
Рассмотрим один пример плодотворности идеи 4-потенциала. Чему равны векторный и скалярный потенциалы заряда q, движущегося со скоростью v в направлении оси х? Задача очень упрощается в системе координат, движущейся вместе с зарядом, ибо в этой системе заряд покоится. Пусть заряд находится в начале координат системы S', как это показано на фиг. 25.2.
Фиг. 25.2. Система отсчета S' движется со скоростью v (в направлении оси х) по отношению к системе S. Заряд, покоящийся в начале системы координат S', находится в системе S в точке x=vt. Потенциалы в точке Р могут быть найдены для любой системы отсчета.
Скалярный потенциал в движущейся системе задается выражением
(25.25)
причем r' — расстояние от заряда q до точки в движущейся системе, где производится измерение поля. Векторный же потенциал А', разумеется, равен нулю.
Теперь без особых хитростей можно найти потенциалы φ и А в неподвижной системе координат. Соотношениями, обратными к уравнениям (25.24), будут
(25.26)
Используя далее выражение для φ'[см. (25.25)] и равенство А'=0, получаем
Эта формула дает нам скалярный потенциал φ, который мы увидели бы в системе S, но он, к сожалению, записан через координаты штрихованной системы. Впрочем, это дело легко поправимо; с помощью (25.1) можно выразить t', х', у', z' через t, x, у, z и получить
(25.27)
Повторяя ту же процедуру для вектора А, вы можете показать, что
(25.28)
Это те же самые формулы, которые мы вывели в гл. 21, но там они были получены другим методом.
§ 6. Инвариантность уравнений электродинамики
Итак, потенциалы φ и А, оказывается, образуют в совокупности четырехвектор, который мы обозначили через Аμ, а волновое уравнение (полное уравнение, выражающее Аμ через jμ) можно записать в виде (25.22). Это уравнение вместе с сохранением заряда (25.19) составляют фундаментальный закон электромагнитного поля:
(25.29)
И вот, пожалуйста, все уравнения Максвелла просто и красиво записываются всего в одной строке. Достигли ли мы чего-нибудь, записав их в таком виде, кроме, разумеется, красоты и простоты? Прежде всего, есть ли здесь какое-нибудь отличие от того, что было раньше, когда мы выписывали их во всем разнообразии компонент? Можно ли из этих уравнений получить нечто, чего нельзя получить из волновых уравнений для потенциалов, содержащих заряды и токи? Ответ вполне определенный — конечно, нельзя. Единственное, что мы сделали — это изменили названия, т. е. использовали новые обозначения. Мы нарисовали квадратик для обозначения производных, но это по-прежнему не более и не менее как вторая производная по t минус вторая производная по х, минус вторая производная по у, минус вторая производная по z. А значок μ, говорит, что у нас есть четыре уравнения, по одному для каждого из значений μ=t, х, у или z. Какой же тогда смысл того, что уравнения можно записать в столь простой форме? С точки зрения получения чего-то нового — никакого. Хотя, возможно, простота уравнений и выражает определенную простоту природы. Сейчас я покажу вам нечто интересное, чему мы понемногу научились. Можно сказать, что все законы физики описываются одним уравнением:
(25.30)
Не правда ли, удивительно простое уравнение! Конечно, нужно еще знать, что обозначает символ ⋃. Это физическая величина, которую мы будем называть «несообразностью»[33] ситуации. У нас даже есть для нее формула. Вот как вычисляется эта несообразность: вы берете все физические законы и записываете их в особой форме. Например, вы взяли закон механики F=ma и записали его в виде F-ma=0.
Теперь вы можете величину (F-mа), которая, разумеется, в нашем мире должна быть нулем, назвать «несообразностью» механики. Затем вы берете квадрат этой несообразности, обозначаете его через ⋃1 и называете ее «механической несообразностью». Другими словами, вы берете
(25.31)
потом выписываете второй физический закон, скажем ∇·Е=ρ/ε0, и определяете
который можно назвать «гауссовой электрической несообразностью». Продолжая этот процесс, вы можете ввести ⋃3, ⋃4 и т. д. для каждого из физических законов.
Наконец, полной несообразностью мира ⋃ вы называете сумму ⋃i для каждого из различных явлений, т. е. ⋃=2∑i⋃i.
И тогда «великий закон природы» гласит:
(25.32)
Этот «закон», разумеется, утверждает лишь, что сумма квадратов всех отдельных отклонений равна нулю, однако единственный способ сделать сумму квадратов множества членов равной нулю — это приравнять нулю каждое из ее слагаемых.
Таким образом, «удивительно простой закон» (25.32) эквивалентен целому ряду уравнений, которые вы писали первоначально. Поэтому совершенно очевидно, что простые обозначения, скрывающие сложности за определением символов,— это еще не истинная простота. Это только трюк. Так и в выражении (25.32) за кажущейся простотой скрывается несколько уравнений; это снова не более чем трюк. Развернув их, вы снова получите то, что было раньше.
Однако закон электродинамики, написанный в форме уравнения (25.29), содержит нечто большее, чем простую запись; в векторном анализе, кроме простоты записи, также есть нечто большее. Тот факт, что уравнения электромагнетизма можно записать в особых обозначениях, которые специально приспособлены для четырехмерной геометрии преобразований Лоренца, иначе говоря, как векторные уравнения в четырехмерном мире, означает, что они инвариантны относительно преобразований Лоренца. Именно потому, что уравнения Максвелла инвариантны относительно этих преобразований, их можно записать в столь красивом виде.
В том, что законы электродинамики можно записать в форме элегантного уравнения (25.29), нет ничего случайного. Теория относительности была развита именно потому, что экспериментально подтвердилась неизменность предсказанных уравнением Максвелла явлений в любой инерциальной системе. Именно при изучении трансформационных свойств уравнений Максвелла Лоренц открыл свои преобразования как преобразования, оставляющие инвариантными эти уравнения.
Однако есть и другая причина записывать уравнения в таком виде. Было обнаружено, что все законы физики должны быть инвариантными относительно преобразований Лоренца (первый об этом догадался Эйнштейн). Таково содержание принципа относительности. Поэтому если вы изобрели обозначения, которые сразу же показывают, инвариантен ли выписанный нами закон, то можно гарантировать, что при попытке создать новую теорию вы будете писать только уравнения, согласующиеся с принципом относительности.
В простоте уравнений Максвелла в этих частных обозначениях никакого чуда нет. Обозначения специально были придуманы именно для них. Самая интересная с физической точки зрения вещь состоит в том, что любой физический закон (будь то распространение мезонных волн, или поведение нейтрино в β-распаде, или что-то другое) должен иметь ту же самую инвариантность относительно тех же преобразований. Так что если ваш звездолет движется с постоянной скоростью, то все законы природы вместе преобразуются так, что никаких новых явлений не возникает. Именно благодаря тому, что принцип относительности является законом природы, уравнения нашего мира в четырехмерных обозначениях должны выглядеть гораздо проще.
Глава 26 ЛОРЕНЦЕВЫ ПРЕОБРАЗОВАНИЯ ПОЛЕЙ
Повторить: гл. 20 «Решение уравнений Максвелла в пустом пространстве»
§ 1. Четырехмерный потенциал движущегося заряда
В предыдущей главе мы видели, что потенциал Aμ=(φ, А) является четырехвектором. Его временной компонентой служит скалярный потенциал φ, а тремя пространственными компонентами— векторный потенциал А. Используя преобразования Лоренца, мы нашли также потенциал частицы, движущейся прямолинейно с постоянной скоростью. (В гл. 21 то же самое было сделано несколько иным методом.) Для точечного заряда, координаты которого в момент t равны (vt, 0, 0), потенциалы в точке (х, у, z) имеют вид
(26.1)
Уравнения (26.1) дают потенциалы в точке х, у, z в момент t, возникающие от движущегося заряда, «истинное» положение которого (имеется в виду положение в момент времени t) x=vt. Заметьте, что в уравнение входят координаты (x-vt), у и z, которые являются координатами относительно переменного положения Р движущегося заряда (фиг. 26.1).
Фиг. 26.1. Определение полей в точке P от заряда q, движущегося вдоль оси x с постоянной скоростью v. (Поле в точке (x, y, z) в «настоящий момент» можно выразить как через «истинное» положение P так и через «запаздывающее» положение P' (т. е. положение в момент t'=t-r'/c).
Но, как вы знаете, истинное влияние распространяется на самом деле со скоростью с, так что поле в точке определяется на самом деле запаздывающим положением заряда Р', координата х которого равна vt' (где t'=t-r'/с — «запаздывающее» время»[34].) Нам, однако, известно, что заряд двигался с постоянной скоростью по прямой линии, поэтому естественно, что поведение в точке Р' непосредственно связано с переменным положением заряда. Фактически, если мы добавим предположение, что потенциалы зависят только от положения и скорости в запаздывающий момент, тогда уравнение (26.1) будет представлять собой полную формулу для потенциалов заряда, движущегося любым образом. Вот как все это работает. Пусть у вас имеется заряд, движущийся каким-то произвольным образом, скажем, по траектории, изображенной на фиг. 26.2, и вы пытаетесь найти потенциал в точке (х, у, z).
Фиг. 26.2. Движение заряда по произвольной траектории. Потенциалы в точке (х, у, z) в момент t определяются положением Р' и скоростью v' в запаздывающий момент t'=t-r'/с. Их удобно выражать через координаты относительно «проекционного» положения Pпр (истинным положением в момент t является точка Р).
Прежде всего вы находите запаздывающее положение Р' и скорость v' в этой точке. Вообразите затем, что заряд сохраняет свое движение с этой скоростью на весь период запаздывания (t'-t), так что он появился бы затем в воображаемом положении Рпр, которое мы будем называть «проекционным», причем двигаясь с той же скоростью v'. (На самом деле он, конечно, не делает этого; в момент t он находится в точке Р.) Тогда потенциалы в точке (х, у, z) будут как раз такими, которые дали бы уравнения (26.1) для воображаемого заряда в проекционном положении Рпр. Мы хотим здесь сказать, что, поскольку потенциалы зависят только от того, что делает заряд в запаздывающий момент, они будут одинаковы, независимо от того, продолжает ли заряд свое движение с постоянной скоростью или изменяет его после момента t', т. е. после того, как потенциалы, которые возникнут в момент t в точке (х, у, z), уже определены.
Вы понимаете, конечно, что в тот момент, когда получены формулы для потенциалов произвольно движущегося заряда, мы имеем полную электродинамику; из принципа суперпозиции мы можем получить потенциалы для любого распределения зарядов. Следовательно, все явления электродинамики можно вывести либо из уравнений Максвелла, либо из следующего ряда замечаний. (Запомните их на случай, если вы вдруг очутитесь на необитаемом острове. Исходя из них, можно восстановить все. Преобразования Лоренца вы, конечно, помните. Не забывайте их ни на необитаемом острове, ни в каком-либо другом месте.)
Во-первых, Аμ — четырехвектор. Во-вторых, кулонов потенциал любого покоящегося заряда равен q/4πε0r. В-третьих, потенциал, созданный зарядом, движущимся произвольным образом, зависит только от положения в запаздывающий момент времени. Из этих трех фактов вы можете получить все. Из того, что Аμ — четырехвектор, мы преобразованием кулонова потенциала, который известен, получим потенциал заряда, движущегося с постоянной скоростью. Затем из последнего утверждения, что потенциал зависит только от скорости в запаздывающий момент, мы, используя проекционное положение, можем их найти. Правда, это не очень-то удобный способ рассмотрения, но интересно убедиться в том, что законы физики можно сформулировать множеством самых различных способов.
Иногда кое-кто безответственно заявляет, что вся электродинамика может быть получена только из преобразований Лоренца и закона Кулона. Это, конечно, совершенно неверно. Мы прежде всего должны предположить, что у нас имеются скалярный и векторный потенциалы, которые в совокупности образуют четырехвектор. Это говорит нам, как преобразуются потенциалы. Затем, откуда нам известно, что необходимо учитывать только эффект в запаздывающий момент? Или, еще лучше, почему потенциал зависит только от положения и скорости и не зависит, например, от ускорения? Ведь поля Е и В зависят все-таки и от ускорения. Если вы попытаетесь применить те же рассуждения к ним, то будете вынуждены признать, что они зависят только от положения и скорости в запаздывающий момент. Но тогда поле ускоряющегося заряда было бы таким же, как и поле от заряда в проекционном положении, а это неверно. Поля зависят не только от положения и скорости вдоль траектории, но и от ускорения. Так что в «великом» утверждении, что все можно получить из преобразования Лоренца, содержится еще несколько неявных дополнительных предположений. (Всегда, когда вы слышите подобное эффектное утверждение, что нечто большое можно построить на основе малого числа предположений,— ищите ошибку. Обычно неявно принимается довольно много такого, что оказывается далеко не очевидным, если посмотреть внимательнее.)
§ 2. Поля точечного заряда, движущегося с постоянной скоростью
Итак, мы нашли потенциалы точечного заряда, движущегося с постоянной скоростью. Для практических целей нам нужно найти поля. Равномерно движущиеся заряды попадаются буквально на каждом шагу, скажем проходящие через камеру Вильсона космические лучи или даже медленно движущиеся электроны в проводнике. Так что давайте хотя бы посмотрим, как выглядят эти поля для любых скоростей заряда, даже для скоростей, близких к скорости света, но предположим при этом, что ускорение вообще отсутствует. Это очень интересный вопрос.
Поля мы будем находить по обычным правилам, исходя из потенциалов
Возьмем сначала Ez:
Но компонента Az равна нулю, а дифференцирование выражения (26.1) для φ дает
(26.2)
Аналогичная процедура для Еу приводит к
(26.3)
Немного больше работы с x-компонентой. Производная от φ более сложна, да и Ах не равна нулю. Давайте сначала вычислим —∂φ/∂x:
(26.4)
А затем продифференцируем Ах по t:
(26.5)
И, наконец, складывая их, получаем
(26.6)
Бросим на минуту заниматься полем Е, а сначала найдем В. Для его z-компоненты мы имеем
Но, поскольку Аy равна нулю, у нас остается только одна производная. Заметьте, однако, что Ах просто равна vφ, а производная (d/dy)vφ равна —vEy. Так что
( 26.7)
Аналогично,
или
(26.8)
Наконец, компонента Вх равна нулю, поскольку равны нулю и Ау и Аz. Таким образом, магнитное поле можно записать в виде
(26.9)
Теперь посмотрим, как выглядят наши поля. Мы попытаемся нарисовать картину поля вокруг положения заряда в настоящий момент. Конечно, влияние заряда в каком-то смысле происходит из запаздывающего положения, но, поскольку мы имеем дело со строго заданным движением, запаздывающее положение однозначно определяется положением в настоящий момент. При постоянной скорости заряда поля лучше связывать с текущими координатами, ибо компоненты поля в точке х, у, z зависят только от (х-vt), у и z, которые являются компонентами вектора перемещения rp из постоянного положения заряда в точку (х, у, z) (фиг. 26.3).
Фиг. 26.3. Электрическое поле заряда, движущегося с постоянной скоростью, направлено по радиусу от истинного положения заряда.
Рассмотрим сначала точки, для которых z=0. Поле Е в этих точках имеет только х- и y-компоненты. Из уравнений (26.3) и (26.6) видно, что отношение этих компонент как раз равно отношению х- и y-компонент вектора перемещения. Это означает, что направление Е совпадает с направлением rp, как это показано на фиг. 26.3. Тот же результат остается справедливым и для трех измерений, поскольку Ez пропорционально z. Короче говоря, электрическое поле заряда радиально и силовые линии расходятся от заряда так же, как и в стационарном случае. Конечно, вследствие наличия дополнительного фактора (1-v2) поле не будет тем же самым, что в стационарном случае. Но здесь мы можем увидеть нечто очень интересное. Дело обстоит так, как будто вы пишете закон Кулона в особой системе координат, «сжатой» вдоль оси x множителем √(1-v2). Если вы сделаете это, то силовые линии впереди и позади заряда разойдутся, а по бокам сгустятся (фиг. 26.4).
Фиг. 26.4. Электрическое поле заряда. а — неподвижного, б — летящего с постоянной скоростью v=0,9 с.
Если мы связываем обычным образом напряженность поля Е с плотностью силовых линий, то видим, что поле впереди и позади заряда ослабевает, но зато по бокам становится сильнее, т. е. как раз то, о чем говорит нам уравнение. Когда вы измеряете напряженность поля под прямыми углами к линии движения, т. е. при (x-vt)=0, расстояние от заряда будет равно y2+z2, а полная напряженность √(Ez2+Ey2) в этих точках равна
(26.10)
Она, как и в случае кулонова поля, пропорциональна квадрату расстояния, но еще усиливается постоянным множителем 1/√(1-v2), который всегда больше единицы. Таким образом, по бокам движущегося заряда электрическое поле сильнее, чем это следует из закона Кулона. Фактически увеличение по сравнению с кулоновым потенциалом равно отношению энергии частицы к ее массе покоя.
Впереди заряда (или позади него) у и z равны нулю, а поэтому
(26.11)
Снова поле обратно пропорционально расстоянию от заряда, но теперь оно зарезается множителем (1-v2), что согласуется с картиной силовых линий. Если v/c мало, то v2/c2 еще меньше, и действие (1-v2) почти незаметно, поэтому мы снова возвращаемся к закону Кулона. Но если частица движется со скоростью, близкой к скорости света, то поле перед частицей сильно уменьшается, а поле сбоку чудовищно возрастает.
Наш результат, относящийся к электрическому полю заряда, можно представить и так. Предположим, что вы на клочке бумаги нарисовали силовые линии покоящегося заряда, а затем эту картину запустили со скоростью v2. Тогда благодаря лоренцеву сокращению рисунок сожмется, т. е. частички графита на бумаге будут казаться нам расположенными в других местах. Но чудо состоит в том, что в результате на пролетающем мимо листочке вы увидите точную картину силовых линий точечного движущегося заряда. Лоренцево сокращение сблизит их по бокам, раздвинет перед зарядом и позади него как раз настолько, чтобы получить нужную плотность. Мы уже отмечали, что силовые линии — это не реальность, а лишь способ представить себе электрическое поле. Однако здесь они ведут себя как самые настоящие реальные линии. В этом частном случае, если вы и сделали ошибку, рассматривая силовые линии как нечто реальное и преобразуя их как реальные линии в пространстве, поле в результате все равно получилось бы правильным. Однако от этого силовые линии не станут более реальными. Вспомните об электрическом поле, создаваемом зарядом вместе с магнитом; когда магнит движется, он создает новое электрическое поле и разрушает всю нашу прекрасную картину. Так что простая идея сокращающейся картинки, вообще говоря, не годится. Но все же это очень удобный способ запомнить, как выглядит поле быстро движущегося заряда.
Магнитное поле [из уравнения (26.9)] равно v×E. Когда вы векторно помножите скорость на радиальное поле Е, то получите поле В, силовые линии которого представляют окружности вокруг линии движения (фиг. 26.5).
Фиг. 26.5. Магнитное поле вблизи движущегося заряда равно v×E (ср. с фиг. 26.4).
Если же теперь мы подставим обратно все с, то вы убедитесь, что результат получился тот же, что и для медленно движущихся зарядов. Хороший способ установить, куда должны войти с, — это вспомнить формулу для силы:
Вы видите, что произведение скорости на магнитное поле имеет ту же размерность, что и электрическое поле, так что в правой части (26.9) должен стоять множитель 1/с2, т. е.
(26.12)
Для медленно движущегося заряда (v≪с) поле можно считать кулоновым, и тогда
(26.13)
Эта формула в точности соответствует магнитному полю тока, которое было найдено в гл. 14 (вып. 5).
Попутно мне хотелось бы отметить кое-что весьма интересное просто для того, чтобы вы об этом подумали. (К обсуждению этого мы еще вернемся, но несколько позже.) Представьте себе два электрона, скорости которых перпендикулярны, так что пути их пересекаются, однако электроны не сталкиваются; один из них успевает проскочить перед другим. В какой-то момент их относительное положение будет таким, как изображено на фиг. 26.6, а.
Фиг. 26.6. Силы между двумя движущимися зарядами не всегда равны и противоположны. «Действие», оказывается, не равно «противодействию».
Рассмотрим теперь силы, с которыми q2 действует на q1, и наоборот. На q2 со стороны q1 действует только электрическая сила, ибо q1 на линии своего движения не создает магнитного поля. Однако на q1, кроме электрического поля, действует еще и магнитное, так что он движется и в магнитном поле, создаваемом зарядом q2. Все эти силы показаны на фиг. 26.6, б. Электрические силы, действующие на q1 и q2, равны по величине и противоположны по направлению. Однако на q1 еще действует и боковая (магнитная) сила, которой и в помине нет у q2. Равно ли здесь действие противодействию? Поломайте голову над этим вопросом.
§ 3. Релятивистское преобразование полей
В предыдущем параграфе мы вычисляли электрическое и магнитное поля, исходя из трансформационных свойств потенциалов. Но, несмотря на приведенные ранее аргументы в пользу физического смысла и реальности потенциалов, поля все же важнее. Они тоже реальны, и для многих задач было бы удобно иметь способ вычисления полей в движущейся системе, если поля в некоторой «покоящейся» системе уже известны. Мы имеем законы преобразования для φ и А, поскольку Аμ представляет собой четырехвектор. Теперь нам хотелось бы найти законы преобразования Е и В. Пусть мы знаем векторы Е и В в одной системе отсчета. Как же они выглядят в другой системе, движущейся относительно первой? Здесь-то нам и понадобятся преобразования. Конечно, мы всегда можем сделать это через потенциал, но иногда удобно уметь преобразовывать поля непосредственно. Сейчас мы увидим, как это делается.
Как можно найти закон преобразования полей? Нам известны законы преобразования φ и А, и мы знаем, как выражаются поля через φ и А, так что отсюда нетрудно найти преобразования для Е и В. (Вы можете подумать, что у каждого вектора есть нечто, дополняющее его до четырехвектора, так что, например, с вектором Е можно связать некую величину, которая сделает его четырехвектором. То же самое относится и к В. Увы, это не так. Все оказывается совершенно непохожим на то, что можно было бы ожидать.) Для начала возьмем магнитное поле В, которое, конечно, равно ∇×A. Теперь мы знаем, что х-, у- и z-компоненты векторного потенциала — это только одна часть, помимо них есть еще и t-компонента. Кроме того, мы знаем, что у аналога оператора ∇ наряду с производными по х, у и z есть также производная по t. Давайте же попытаемся найти, что получится, если мы произведем замену у на t, или z на t, или еще что-нибудь в этом духе.
Прежде всего обратите внимание на форму слагаемых, образующих компоненты В:
(26.14)
В слагаемые, образующие x-компоненту В, входят только z- и y-компоненты А. Предположим, мы назвали эту комбинацию производных и компонент «zy-штукой», или сокращенно Fzy. Мы просто имеем в виду, что
(26.15)
Подобной же «штуке» равна и компонента В, но на сей раз это будет «xz-штука», а Вz, разумеется, равна «yx-штуке». Таким образом,
(26.16)
Посмотрим теперь, что получится, если мы попытаемся смастерить «штуки» типа «t», т. е. Fxt или Ftz (ведь природа должна быть красива и симметрична по х, у, z и t). Что такое, например, Ftz? Разумеется, она равна
Но вспомните, ведь At=φ, поэтому предыдущее выражение равно
Такое выражение нам уже встречалось раньше. Это почти z-компонента поля Е. Почти, за исключением неверного знака. Впрочем, мы забыли, что в четырехмерном градиенте производная по t идет со знаком, противоположным производным по х, у и z. Так что на самом деле нам следует взять более умное обобщение, т. е. считать
(26.17)
Теперь она в точности равна — Еz. Так же можно построить Ftx и Fty и получить три выражения:
(26.18)
А что, если оба индекса внизу будут t? Или оба будут х? Тогда мы получим выражения типа
т. е. просто нуль.
Итак, у нас есть шесть таких «F-штук». Кроме них, есть еще шесть полученных перестановкой индексов, но они не дают ничего нового, ибо
и т. п. Таким образом, из шести возможных попарных комбинаций четырех значений индексов мы получили шесть различных физических объектов, которые представляют компоненты В и Е.
Чтобы записать члены F в общем виде, мы воспользуемся обобщенными индексами μ и v, каждый из которых может быть 0, 1, 2 или 3, обозначающих соответственно (как и в обычных четырехвекторах) t, x, у или z. Кроме того, все будет прекрасно согласовываться с нашими четырехмерными обозначениями, если Fμv определить как
(26.19)
помня при этом, что
а
То, что мы нашли, можно сформулировать так: в природе существуют шесть величин, которые представляют различные стороны чего-то одного. Электрическое и магнитное поля, которые в нашем обычном медленно движущемся мире (где нас не беспокоит конечность скорости света) рассматривались как совершенно отдельные векторы, в четырехмерном пространстве уже не будут ими. Они — часть некоторой новой «штуки».
Наше физическое «поле» на самом деле шестикомпонентный объект Fμv. Вот как обстоит дело в теории относительности. Полученные результаты для Fμv собраны в табл. 26.1.
Таблица 26.1. КОМПОНЕНТЫ Fμv
Вы видите, что мы сделали фактически обобщение векторного произведения. Мы начали с ротора и с того факта, что его свойства преобразования в точности такие же, как свойства преобразования двух векторов — обычного трехмерного вектора А и оператора градиента, который, как нам известно, ведет себя подобно вектору. Возвратимся на минуту к обычному векторному произведению в трехмерном пространстве, например к моменту количества движения частицы. При движении частицы в плоскости важной характеристикой оказывается комбинация (xvy—yvx), а при движении в трехмерном пространстве появляются три подобные величины, которые мы назвали моментом количества движения:
Затем (хотя сейчас вы, может быть, об этом и забыли) мы сотворили в гл. 20 (вып. 2) чудо: эти три величины превратились в компоненты вектора. Чтобы сделать это, мы приняли искусственное соглашение: правило правой руки. Нам просто повезло. И повезло потому, что момент Lij (i и j равны х, у или z) оказался антисимметричным объектом, т. е.
Из девяти возможных его величин независимы лишь три. И вот оказалось, что при изменении системы координат эти три оператора преобразуются в точности, как компоненты вектора.
То же свойство позволяет записать в виде вектора и элемент поверхности. Элемент поверхности имеет две части, скажем dx и dy, которые можно представить вектором da, ортогональным к поверхности. Но мы не можем сделать этого же для четырех измерений. Что будет нормалью к элементу dxdy? Куда она направлена — по оси z или по t?
Короче говоря, для трех измерений оказывается, что комбинацию двух векторов типа Lij, к счастью, снова можно представить в виде вектора, поскольку возникают как раз три члена, которые, выходит, преобразуются подобно компонентам вектора. Для четырех измерений это, очевидно, невозможно, поскольку независимых членов шесть, а шесть величин вы никак не представите в виде четырех.
Однако даже в трехмерном пространстве можно составить такую комбинацию векторов, которую невозможно представить в виде вектора. Предположим, мы взяли какие-то два вектора a=(ах, ay, az) и b=(bx, by, bz) и составили всевозможные различные комбинации компонент типа axbx, axby и т. д. Всего получается девять возможных величин:
Эти величины можно назвать Тij.
Если теперь перейти в повернутую систему координат (скажем, относительно оси z), то при этом компоненты а и b изменяются. В новой системе ах должно быть заменено на
а by — на
Аналогичные вещи происходят и с другими компонентами. Девять компонент изобретенной нами величины Tij., разумеется, тоже изменяются. Например, Txy=ахbу переходит в
или
Каждая компонента T'ij — это линейная комбинация компонент Tij.
Итак, мы обнаружили, что из векторов можно сделать не только векторное произведение a×b, три компоненты которого преобразуют подобно вектору. Искусственно мы из двух векторов Tij можем сделать «произведение» другого сорта. Девять его компонент преобразуются при вращении по сложным правилам, которые можно выписать. Подобный объект, требующий для своего описания вместо одного индекса два, называется тензором. Мы построили тензор «второго ранга», но так же можно поступить и с тремя векторами и получить тензор третьего ранга, а из четырех векторов — тензор четвертого ранга и т. д. Тензором первого ранга является вектор.
Суть всего этого разговора в том, что наше электромагнитное поле Fμv — тоже тензор второго ранга, так как у него два индекса. Однако это уже тензор в четырехмерном пространстве. Он преобразуется специальным образом, и через минуту мы найдем его. Это просто произведение векторных преобразований. Если у тензора Fμv вы переставите индексы, то он изменит свой знак. Это особый вид тензора, и называется он антисимметричным. Иначе говоря, электрическое и магнитное поля являются частью антисимметричного тензора второго ранга в четырехмерном пространстве.
Вот какой мы прошли длинный путь. Помните, мы начали с определения, что такое скорость? А теперь мы уже рассуждаем о «тензоре второго ранга в четырехмерном пространстве».
Теперь нам нужно найти закон преобразования Fμv. Сделать это нетрудно — мороки только много,— шевелить мозгами особенно не нужно, а вот потрудиться все же придется. Единственное, что мы должны найти,— это преобразование Лоренца величины ∇μ Av— ∇vAμ. Так как ∇μ — просто специальный случай вектора, то мы будем работать с общей антисимметричной комбинацией векторов, которую можно назвать Gμv:
(26.20)
(Для наших целей ам следует, в конце концов, заменить на ∇μ, а bμ —на потенциал Аμ.) Компоненты аμ и bμ преобразуются по формулам Лоренца:
(26.21)
Теперь преобразуем компоненты Gμv. Начнем с Gtx:
Но ведь это просто Gtx. Таким образом, мы получили простой результат
Возьмем еще одну компоненту:
Итак, получается
И, конечно, точно таким же образом
А теперь ясно, как ведут себя все остальные компоненты. Давайте составим таблицу преобразований всех шести членов; только теперь мы будем все писать для величин Fμv:
(26.22)
Разумеется, по-прежнему у нас F'μv=—F'μv, а F'μμ=0.
Итак, мы имеем преобразования электрических и магнитных полей. Единственное, что нам нужно сделать,— это заглянуть в табл. 26.1 и узнать, что означает для векторов Е и В преобразование, записанное для Fμv. Речь идет о простой подстановке. Чтобы можно было видеть, как это все выглядит в обычных символах, перепишем наши преобразования компонент поля в виде табл. 26.2.
Таблица 26.2. ЛОРЕНЦЕВЫ ПРЕОБРАЗОВАНИЯ ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ ПОЛЕЙ
Уравнения в этой таблице говорят нам, как изменяются Е и В при переходе от одной инерциальной системы к другой. Если известны Е и В в одной системе, то мы можем найти, чему они равны в другой, движущейся относительно нее со скоростью v.
Можно переписать эти уравнения в форме, более легкой для запоминания. Для этого заметьте, что поскольку скорость v направлена по оси х, то все компоненты с v представляют собой векторные произведения v×E и v×B. Так что преобразования можно записать в виде табл. 26.3.
Таблица 26.3. ДРУГАЯ ФОРМА ПРЕОБРАЗОВАНИЯ ПОЛЕЙ
Теперь легко запомнить, какая компонента куда идет. Фактически эти преобразования можно записать даже еще проще, если ввести компоненты поля, направленные по оси х, т. е. «параллельные» компоненты E║ и В║ (которые параллельны относительной скорости систем S и S') и полные поперечные или «перпендикулярные» компоненты Е┴ и В┴, т. е. векторную сумму у- и z-компонент. В результате мы получим уравнения, сведенные в табл. 26.4. (Для полноты мы восстановили все с.)
Таблица 26.4. ЕЩЕ ОДНА ФОРМА ЛОРЕНЦЕВЫХ ПРЕОБРАЗОВАНИЙ ПОЛЕЙ Е И В
Преобразования поля позволяют по-другому решить задачи, которыми мы занимались прежде, например найти поле движущегося точечного заряда. Раньше мы вычисляли поля, дифференцируя потенциалы. Но теперь то же самое можно сделать, преобразуя кулоново поле. Если у нас в системе S находится покоящийся заряд, то он создает только простое радиальное поле Е. В системе S', движущейся относительно системы S со скоростью v=-u, точечный заряд будет казаться нам летящим со скоростью и. Покажите сами, что преобразования табл. 26.3 и 26.4 дают те же самые электрические и магнитные поля, которые мы получили в § 2.
Преобразования табл. 26.2 дают нам очень интересный и простой ответ на вопрос: что мы видим, если движемся мимо любой системы фиксированных зарядов? Пусть нам хочется узнать поля в нашей системе S', если мы движемся между пластинами конденсатора вдоль него, как показано на фиг. 26.7. (Но, разумеется, все равно, если бы заряженный конденсатор двигался мимо нас.)
Фиг. 26.7. Система координат S' движется в статическом электрическом поле.
Что же мы увидим? Преобразования в этом случае облегчаются тем, что в первоначальной системе поле В отсутствует. Предположим сначала, что наше движение перпендикулярно к направлению Е, при этом мы увидим поле Е'=Е/√(1-v2/с2), которое остается полностью поперечным. Но мы еще увидим и магнитное поле В'=-v×E'/c2. (He удивляйтесь, что в этой формуле нет √(1-v2); ведь мы записали ее через Е', а не через Е; так тоже можно делать.) Итак, когда мы движемся в направлении, перпендикулярном к статическому полю, то видим измененное Е и вдобавок еще поперечное поле В. Если наше движение не перпендикулярно вектору Е, то мы разбиваем Е на Е║ и Е┴. Параллельная часть остается неизменной, E'║=E║, а что происходит с перпендикулярной компонентой, мы уже описали.
Давайте разберем противоположный случай и вообразим, что мы движемся через чисто статическое магнитное поле. На этот раз мы бы увидели электрическое поле Е', равное v×B', и магнитное поле, усиленное множителем 1/√(1-v2/с2) (предполагая, что оно поперечное). До тех пор, пока v много меньше с, изменением магнитного поля можно пренебречь, и основным эффектом будет появление электрического поля. В качестве примера этого эффекта рассмотрим некогда знаменитую проблему определения скорости самолета. Сейчас она уже больше не знаменита, поскольку для определения скорости можно использовать отражение от Земли сигналов радиолокатора. Но раньше в плохую погоду скорость самолета было очень трудно определить. Ведь вы не видите Землю и не можете сказать куда вы летите. А знать, насколько быстро вы движетесь относительно Земли, было важно. Как же это можно сделать, не видя ее? Те, кому были знакомы уравнения преобразования, считали, что нужно использовать тот факт, что самолет движется в магнитном поле Земли. Предположим, что самолет летит там, где магнитное поле нам более или менее известно. Возьмем простейший случай, когда магнитное поле вертикально. Если мы летим через него с горизонтальной скоростью v, то в соответствии с нашей формулой должны наблюдать электрическое поле v×B, т. е. перпендикулярное к направлению движения. Если поперек самолета подвесить изолированный провод, то электрическое поле на его концах будет индуцировать заряды. Ну в этом ничего нового нет. С точки зрения наблюдателя на Земле, мы просто передвигаем провод в магнитном поле, а сила q(v×B) заставляет заряд двигаться к концу провода. Уравнения преобразования говорят то же самое, но другими словами. (То, что одну и ту же вещь можно получить не одним, а несколькими способами, вовсе не означает, что один способ лучше другого. Мы овладели столькими методами и приемами, что один и тот же результат можем получать какими хотите способами!)
Итак, единственное, что мы должны сделать для определения скорости v,— это измерить напряжение между концами провода. Хотя для этой цели мы не можем воспользоваться вольтметром, ибо то же самое поле будет действовать и на провода внутри вольтметра, способы измерения таких полей все же существуют. О некоторых из них мы уже говорили в гл. 9 (вып. 5), когда рассказывали об атмосферном электричестве. Так что измерить скорость самолета, казалось бы, можно.
Однако эта важная проблема не была решена таким методом. Дело в том, что величина электрического поля, которое при этом развивается,— порядка нескольких милливольт на метр. Измерить такие поля, конечно, можно, но вся беда в том, что они ничем не отличаются от любых других электрических полей. Поля, создаваемые движением через магнитное поле, нельзя отличить от электрических полей, возникающих в воздухе по каким-то другим причинам (скажем, от электростатических зарядов в воздухе или на облаках). В гл. 9 мы говорили, что обычно над поверхностью Земли существуют электрические поля с напряженностью около 100 в/м, но они совершенно нерегулярные. Так что самолет во время полета будет наблюдать флуктуации атмосферных электрических полей, которые огромны по сравнению со слабенькими полями, возникающими из-за множителя v×B. Ввиду этих чисто практических причин измерить скорость самолета, используя его движение в магнитном поле Земли, невозможно.
§ 4. Уравнения движения в релятивистских обозначениях[35]
Полученные из уравнений Максвелла электрические и магнитные поля сами по себе не представляют особой ценности, если мы не знаем, что эти поля могут делать, на что они способны. Вы, вероятно, помните, что поля нужны для нахождения действующих на заряды сил и что именно эти силы определяют их движение. Так что связь движения зарядов с силами, разумеется, тоже есть часть электродинамики.
На отдельный заряд, находящийся в полях Е и В, действует сила
(26.23)
При небольших скоростях эта сила равна произведению массы на ускорение, но истинный закон, справедливый при любых скоростях, гласит: сила равна dp/dt. Подставляя p=m0v/√(1-v2/c2), находим релятивистское уравнение движения заряда:
(26.24)
Теперь мы хотим обсудить это уравнение с точки зрения теории относительности. Поскольку уравнения Максвелла записаны у нас в релятивистской форме, интересно посмотреть, как в релятивистской же форме выглядят уравнения движения. Посмотрим, можно ли переписать уравнения движения в четырехмерных обозначениях.
Мы знаем, что импульс есть часть четырехмерного вектора pμ с энергией m0/√(1-v2/с2) в качестве временной компоненты, так что мы надеемся заменить левую часть уравнения (26.24) на dpμ/dt. Теперь нам нужно найти только четвертую компоненту силы F. Эта компонента должна быть равна скорости изменения энергии или скорости совершения работы, т. е. F·v. Так что правую часть уравнения (26.24) желательно было бы записать в виде четырехвектора типа (F·v, Fx, Fy, Fz). Однако эти величины не составляют четырехвектора.
Производная четырехвектора по времени не будет больше четырехвектором, так как d/dt требует для измерения t некоторой специальной системы отсчета. С этой трудностью мы уже сталкивались раньше, когда пытались сделать четырехвектор из скорости v. Тогда мы попытались считать, что роль временной компоненты скорости играет cdt/dt=c. Но на самом деле величины
(26.25)
не образуют четырехвектора. После этого мы обнаружили, что их можно превратить в компоненты четырехвектора, если помножить каждую на 1/√(1-v2/с2). «Четырехмерной скоростью» uμ оказался вектор
(26.26)
Вот в чем фокус! Нужно умножать производную d/dt на 1/√(1-v2/с2), если мы хотим превратить ее компоненту в четырехвектор.
Итак, вторая гипотеза: четырехвектором должна быть величина
(26.27)
Но что такое v? Это уже скорость частицы, а не скорость системы координат! Таким образом, обобщением силы на четырехмерное пространство будет величина fμ:
(26.28)
которую мы назовем «4-силой». Она уже четырехвектор, и ее пространственными компонентами будут уже не F, а F/√(1-v2/c2).
Почему же fμ четырехвектор? Неплохо бы понять, что это за таинственный множитель 1/√(1-v2/с2). Так как мы встречаемся с ним уже второй раз, то самое время посмотреть, почему производная d/dt всегда должна входить с одним и тем же множителем. Ответ заключается вот в чем. Когда мы берем производную по времени некоторой функции х, то подсчитываем приращение Δх за малый интервал Δt переменной t. Но в другой системе отсчета интервал Δt может соответствовать изменению как t', так и х', так что при изменении только t' изменение х будет другим. Для наших дифференцирований следовало бы найти такую переменную, которая была бы мерой «интервала» в пространстве-времени и оставалась бы той же самой во всех системах отсчета. Когда в качестве этого интервала мы принимаем приращение Δх, то оно будет тем же во всех системах отсчета. Когда частица «движется» в четырехмерном пространстве, то возникают приращения как Δt, так и Δх, Δy, Δz. Можно ли из них сделать интервал? Да, они образуют компоненты приращения четырехвектора хμ=(сt, х, у, z), так что, если определить величину Δs через
(26.29)
что представляет четырехмерное скалярное произведение, то в ней мы приобретаем настоящий скаляр и можем пользоваться им для измерения четырехмерного интервала. Исходя из величины Δs или ее предела ds, мы можем определить параметр s=∫ds. Хорошим четырехмерным оператором будет и производная по s, т. е. d/ds, так как она инвариантна относительно преобразований Лоренца.
Для движущейся частицы ds легко связывается с dt. Для точечной частицы
(26.30)
а
(26.31)
Таким образом, оператор
есть инвариантный оператор. Если подействовать им на любой четырехвектор, то мы получим другой четырехвектор. Например, если мы действуем им на (ct, x, у, z), то получаем четырехвектор скорости
Теперь мы видим, почему √(1-v2/c2) поправляет дело.
Инвариантная переменная s — очень полезная физическая величина. Ее называют «собственным временем» вдоль траектории частицы, ибо в системе, в любой момент движущейся вместе с частицей, ds просто равно интервалу времени. (В этой системе Δx=Δy=Δz=0, а Δs=Δt.) Если вы представите себе часы, скорость хода которых не зависит от ускорения, то, двигаясь вместе с частицей, такие часы будут показывать время s.
Теперь можно вернуться назад и записать закон Ньютона (подправленный Эйнштейном) в изящной форме:
(26.32)
где fμ определяется формулой (26.28). Импульс же рμ может быть записан в виде
(26.33)
где координаты xμ=(ct, х, у, z) описывают теперь траекторию частицы. Наконец, четырехмерные обозначения приводят нас к очень простой форме уравнений движения:
(26.34)
напоминающей уравнения F=ma. Важно отметить, что уравнения (26.34) и F=ma — вещи разные, ибо четырехвекторная форма уравнения (26.34) содержит в себе релятивистскую механику, которая при больших скоростях отличается от механики Ньютона. Это абсолютно непохоже на случай уравнений Максвелла, где нам нужно был о переписать уравнения в релятивистской форме, совершенно не изменяя их смысла, а изменяя лишь обозначения.
Вернемся теперь к уравнению (26.24) и посмотрим, как в четырехвекторных обозначениях записывается правая часть. Три компоненты F, поделенные на √(1-v2/c2), составляют пространственные компоненты fμ, так что
(26.35)
Теперь мы должны подставить все величины в их релятивистских обозначениях. Прежде всего c/√(1-v2/c2), vy/√(1-v2/c2) и vz/√(1-v2/c2) представляют t-, у- и z-компоненты 4-скорости uμ. Компоненты же Е и В входят в электромагнитный тензор второго ранга Fμv. Отыскав в табл. 26.1 компоненты Fμv, соответствующие Ех, Вz и Вy, получим
здесь уже начинает вырисовываться что-то интересное. В каждом слагаемом есть индекс х, и это разумно, ибо мы находим х-компоненту силы. Все же остальные индексы появляются в парах tt, yy, zz — все, кроме слагаемого с хх, которое куда-то делось. Давайте просто вставим его и запишем
(26.36)
Этим мы ничего не изменили, так как благодаря антисимметрии Fμv слагаемое Fxx равно нулю. Причиной же нашего желания восстановить его является возможность сокращенной записи уравнения (26.36):
(26.37)
Это по-прежнему уравнение (26.36), если предварительно мы примем соглашение: когда какой-то индекс встречается в произведении дважды (подобно v), нужно автоматически суммировать все слагаемые с одинаковыми значениями этого индекса точно так же, как и в скалярном произведении, т. е. пользуясь тем же самым правилом знаков.
Нетрудно поверить, что уравнение (26.37) так же хорошо работает и для μ=y, и для μ=z. Но как обстоит дело с μ=t? Посмотрим для забавы, что дает формула
Теперь мы снова должны перейти к Е и В. После этого получается
(26.38)
или
Но в (26.28) ft бралось равным
А это одно и то же, что (26.38), ибо v·(v×B) равно нулю. Так что все идет как нельзя лучше.
В результате наше уравнение движения записывается в элегантном виде:
(26.39)
Как ни приятно видеть столь красиво записанное уравнение, форма эта не особенно полезна. При нахождении движения частицы обычно удобнее пользоваться первоначальным уравнением (26.24), что мы и будем делать в дальнейшем.
Глава 27 ЭНЕРГИЯ ПОЛЯ И ЕГО ИМПУЛЬС
§ 1. Локальные законы сохранения
То, что энергия вещества не всегда сохраняется, ясно как день. При излучении света объект теряет энергию. Однако потерянную энергию можно представить в какой-то другой форме, скажем, в форме энергии света. Поэтому закон сохранения энергии не полон, если не рассмотреть энергию, связанную со светом, в частности, и с электромагнитным полем вообще. Сейчас мы подправим его, а заодно и закон сохранения импульса с учетом электромагнитного поля. Мы, разумеется, не можем обсуждать их порознь, ибо, согласно теории относительности, это различные проявления одного и того же четырехвектора.
С сохранением энергии мы познакомились еще в начале нашего курса; тогда мы просто сказали, что полная энергия в мире остается постоянной. Теперь же мы хотим сделать очень важное обобщение идеи закона сохранения энергии, которое скажет нам нечто о деталях того, как это происходит. Новый закон будет говорить, что если энергия уходит из какой-то области, то это может происходить только за счет ее вытекания через границы рассматриваемой области. Это утверждение сильнее, чем просто сохранение энергии без подобных ограничений.
Чтобы легче понять смысл этого утверждения, посмотрим, как работает закон сохранения заряда. У нас есть плотность тока j и плотность заряда ρ, а сохранение заряда описывается тем, что если в каком-то месте заряд уменьшается, то оттуда должен происходить отток зарядов. Мы называем это сохранением заряда. Математически закон сохранения записывается в виде
(27.1)
Как следствие этого закона полный заряд всего мира остается постоянным. Заряды никогда не рождались и не уничтожались; в мире как целом нет никакой чистой прибыли зарядов, как нет и никаких потерь. Однако полный заряд мира можно сделать постоянным и другим способом. Пусть вблизи точки (1) находится заряд Q1, а вблизи точки (2), расположенной от нее на некотором расстоянии, никакого заряда нет (фиг. 27.1).
Фиг. 27.1. Два способа описания сохранения заряда. а) Q1+Q2 постоянно. б) dQ1/dt=∫j·nda=-dQ2/dt.
Предположим теперь, что с течением времени заряд Q1 постепенно исчезает, но что одновременно с уменьшением Q1 вблизи точки (2) появляется заряд Q2, причем так, что в любой момент сумма Q1 и Q2 остается постоянной. Другими словами, в любой промежуточный момент количество заряда, теряемое Q1, прибавляется к Q2. При этом в мире полное количество заряда сохраняется. Хотя это тоже «всемирное» сохранение заряда, мы не будем его называть «локальным» сохранением, ибо для того, чтобы заряд перебрался из точки (1) в точку (2), ему не обязательно появляться где-то в пространстве между этими точками. Локально заряд просто «теряется».
Однако такой «всемирный» закон сохранения встречает в теории относительности большие трудности. Понятие «одновременно» для точек, разделенных расстоянием, неэквивалентно для разных систем. Два события, происходящие одновременно в одной системе, не будут одновременными в системе, движущейся относительно нее. Для «всемирного» сохранения только что описанного типа требуется только одно—чтобы заряд, теряемый Q1, одновременно появлялся в Q2. В противном случае будут такие моменты, когда заряд не сохраняется. По-видимому, способа сделать закон сохранения заряда релятивистски инвариантным, не делая его «локальным», не существует. Суть в том, что требование лоренцевой инвариантности, как оказывается, удивительнейшим образом ограничивает возможные законы природы. В современной квантовой теории поля, например, теоретики часто пытаются изменить теорию, допустив то, что мы называем «нелокальным» взаимодействием, когда нечто, находящееся здесь, непосредственно влияет на нечто, находящееся там, но мы всегда наталкиваемся на трудности, связанные с принципами относительности.
«Локальные» же законы сохранения основаны на другой идее. Они утверждают, что заряд может перейти из одного места в другое только при том условии, что нечто такое происходит в пространстве между ними. Чтобы описать такой закон, нам нужна не только плотность заряда ρ, но и величина другого сорта, именно вектор j, задающий скорость потока заряда через поверхность. При этом поток связан со скоростью изменения заряда уравнением (27.1). Это более сильная формулировка закона сохранения. Она говорит, что заряд сохраняется особым образом, сохраняется «локально».
Сохранение энергии, оказывается, тоже локальный процесс. В мире существует не только плотность энергии в данной области, но и вектор, представляющий скорость потока энергии через поверхность. Например, когда источник излучает свет, мы можем найти энергию света, излучаемого им. Если мы вообразим некую математическую поверхность, окружающую источник света, то потеря энергии этого источника равна потоку энергии через окружающую его поверхность.
§ 2. Сохранение энергии и электромагнитное поле
Нам надо теперь описать сохранение энергии в электромагнитном поле количественно. Для этого нужно выяснить, сколько энергии находится в единице объема, а также какова скорость ее потока. Рассмотрим сначала энергию только электромагнитного поля. Пусть u обозначает плотность энергии поля, т. е. количество энергии в единице объема пространства, а вектор S — поток энергии поля (т. е. количество энергии, прошедшее в единицу времени через единичную поверхность, перпендикулярную к потоку). Тогда, аналогично сохранению заряда (27.1), можно написать «локальный» закон сохранения энергии поля в виде
(27.2)
Конечно, этот закон, вообще говоря, не верен; энергия поля не сохраняется. Представьте, что вы находитесь в темной комнате, а затем поворачиваете выключатель. Комната внезапно наполняется светом, т. е. в ней оказывается энергия поля, которой раньше не было. Уравнение (27.2) не составляет полного закона сохранения, ибо энергия одного только поля не сохраняется, а существует еще энергия вещества; сохраняется лишь полная энергия во всем мире. Энергия поля будет изменяться, если оно производит работу над веществом или вещество производит работу над полем.
Однако если внутри интересующего нас объема находится вещество, то мы знаем, сколько энергии оно несет в себе: энергия каждой частицы равна m0c2/√(1-v2/c2). Полная же энергия вещества равна просто сумме энергий всех частиц, а поток ее через поверхность равен просто сумме энергий, переносимой каждой частицей, пересекающей эту поверхность. Но сейчас мы будем иметь дело только с энергией электромагнитного поля: Так что мы должны написать уравнение, которое говорит, что Г полная энергия поля в данном объеме уменьшается либо в результате вытекания ее из объема, либо потому, что поле передает свою энергию веществу (или приобретает ее, что означает просто отрицательную потерю). Энергия поля в объеме V равна
а скорость ее уменьшения равна производной этого интеграла по времени со знаком минус. Поток энергии поля из объема V равен интегралу от нормальной компоненты S по поверхности Σ, ограничивающей объем V:
Таким образом,
(27.3)
Раньше мы видели, что над каждой единицей объема вещества поле в единицу времени производит работу Е·j. [Сила, действующая на частицу, равна F=q(E+v×B), а мощность равна F·v=qE·v. Если в единице объема содержится N частиц, то эта мощность в единице объема равна NqE·v, а Nqv=j.] Таким образом, величина Е·j должна быть равна энергии, теряемой полем в единице объема за единицу времени. Уравнение (27.3) при этом приобретает вид
(27.4)
Вот как выглядит наш закон сохранения энергии в поле. Его можно записать как дифференциальное уравнение, подобное (27.2); для этого второе слагаемое нужно превратить в интеграл по объему, что легко делается с помощью теоремы Гаусса. Поверхностный интеграл от нормальной компоненты S равен интегралу от дивергенции S по объему, ограниченному этой поверхностью, так что уравнение (27.3) эквивалентно следующему:
где производную по времени от первого слагаемого мы внесли под интеграл. Поскольку это уравнение верно для любого объема, то интегралы можно отбросить и получить уравнение для энергии электромагнитного поля:
(27.5)
Однако это уравнение не даст нам ничего хорошего, пока мы не узнаем, что такое u и S. Быть может, мне следовало бы просто сказать вам, как они выражаются через Е и В, поскольку это единственное, что нам, собственно, нужно. Однако мне очень хочется изложить вам все те рассуждения, которыми в 1884 г. воспользовался Пойнтинг, чтобы получить формулы для S и u, с тем, чтобы вы понимали, откуда они взялись. (Для дальнейшей работы, впрочем, вам этот вывод не потребуется.)
§ 3. Плотность энергии и поток энергии в электромагнитном поле
Идея заключается в том, что должны существовать плотность энергии u и поток S, которые зависят только от полей Е и В. [В электростатике, например, плотность энергии, как мы знаем, можно записать в виде 1/2ε0(Е·Е).] Разумеется, u и S могут зависеть от потенциалов и чего-то другого, но давайте лучше посмотрим, что мы можем написать. Попытаемся переписать величину Е·j в таком виде, чтобы она стала суммой двух слагаемых, одно из которых было бы производной по времени от некоторой величины, а второе — дивергенцией. Тогда первую величину мы бы назвали и, а вторую — S (разумеется, с надлежащими знаками). Обе величины должны быть выражены только через поля, т. е. мы хотим записать наше равенство в виде
(27.6)
причем левая часть уравнения должна выражаться только через поля. Как это сделать? Разумеется, нужно воспользоваться уравнениями Максвелла. Из уравнения для ротора В имеем
Подставляя это в (27.6), получаем выражение его только через Е и В:
(27.7)
Работа частично нами уже закончена. Последнее слагаемое есть производная по времени — это (∂/∂t)(1/2ε0Е·Е).
Итак, 1/2ε0Е·Е должно быть по крайней мере частью u. Такое же выражение получалось у нас и в электростатике. А теперь единственное, что нам остается сделать,— это превратить в дивергенцию чего-то второе слагаемое.
Заметьте, что первое слагаемое в правой части (27.7) переписывается в виде
(27.8)
вы знаете из векторной алгебры, что (a×b)·c равно а·(b×c), поэтому первое слагаемое принимает вид
(27.9)
т. е. получилась дивергенция «чего-то», к которой мы так стремились. Получилась, но только все это неверно! Я предупреждал вас, что оператор ∇ только «похож» на вектор, а на самом деле он не «настоящий» вектор. Вспомните, что в дифференциальном исчислении существует дополнительное соглашение: когда оператор производной стоит перед произведением, он действует на все стоящее правее него. В уравнении (27.7) оператор ∇ действует только на В и не затрагивает Е. Но если бы мы записали его в форме уравнения (27.9), то общепринятое соглашение говорило бы, что ∇ действует как на В, так и на Е. Так что это не одно и то же. В самом деле, если расписать ∇·(В×E) по компонентам, то можно убедиться, что оно равно E·(∇×B) плюс какие-то другие слагаемые. Это напоминает взятие производной от произведения в обычном анализе. Например,
Вместо того чтобы выписать все компоненты ∇·(B×E), мне бы хотелось показать вам один трюк, очень полезный в задачах такого рода. Он позволит вам всюду в выражениях, содержащих оператор ∇, пользоваться правилами векторной алгебры, не попадая впросак. Трюк состоит в отбрасывании (по крайней мере на время) правил дифференциального исчисления относительно того, на что действует оператор производной. Вы знаете, что порядок сомножителей важен в двух различных случаях. Во-первых, в дифференциальном исчислении: f(d/dx)g не то же самое, что g(d/dx)f; и, во-вторых, в векторной алгебре: a×b отличается от b×а. Мы можем, если захотим, на минуту отказаться от правил дифференциального исчисления. Вместо того чтобы говорить, что производная действует на все стоящее правее от нее, мы примем новое правило, избавляющее нас от порядка, в котором записаны сомножители. После этого мы можем крутить ими, как хотим, без всяких помех.
Вот наше новое правило: с помощью индекса мы будем указывать, на что же именно действует дифференциальный оператор; при этом порядок сомножителей не имеет никакого значения. Допустим, что оператор ∂/∂x мы обозначили через D. Тогда символ Df говорит, что берется производная только функции f, т. е.
Но если мы имеем выражение Dffg, то оно означает
Заметим теперь, что, согласно нашему новому правилу, fDfg означает то же самое. Одно и то же выражение можно записать любым из следующих способов:
Вы видите, что Df может стоять даже после всего. (Странно, почему такому удобному обозначению обычно не учат в книгах по математике и физике.)
Вы, пожалуй, удивитесь: а что, если я хочу написать производную от fg? Если мне нужна производная от обоих членов? Это очень легко: вы пишете Df(fg)+Dg(fg), т.e. g(∂f/∂x)+f(∂g/∂x), что в старых обозначениях как раз равно ∂(fg)/∂x.
Вы сейчас увидите, как просто теперь получить новое выражение для ∇·(В×E). Начнем с перехода к новому обозначению и напишем
(27.10)
Как только мы сделали это, уже нет больше нужды придерживаться строгого порядка. Мы всегда знаем, что ∇E действует только на Е, а ∇B действует только на В. При этих обстоятельствах оператором ∇ можно пользоваться как обычным вектором. (Разумеется, после того как все будет окончено, нам захочется вернуться к «стандартным» обозначениям, которые обычно используются.) Таким образом, теперь мы можем делать различные перестановки сомножителей. Так, средний сомножитель в уравнении (27.10) можно переписать как Е·(∇B×B). [Надеюсь, вы помните, что a·(b×c)=b·(c×a).] А последний — как В·(E×∇E). Хотя это выглядит несколько странно, но тем не менее здесь все в порядке. Если же мы теперь попытаемся вернуться к старым обозначениям, то должны будем расположить операторы ∇ так, чтобы они действовали на свои «собственные» переменные. В первом из них все в порядке, так что мы можем просто опустить индекс у ∇. Второй же требует некоторой реорганизации, чтобы оператор ∇ поставить перед Е. Этого можно добиться, переставляя сомножители в векторном произведении и меняя знак:
Теперь все стоит на своем месте и можно вернуться к обычным обозначениям. Формула (27.10) эквивалентна следующему равенству:
(27.11)
(В этом специальном случае быстрее было бы использовать компоненты, но, право же, стоило потратить время ради того, чтобы показать вам математический трюк. Может случиться, что вы больше нигде его не встретите, а он очень удобен тогда, когда в векторной алгебре нужно освободиться от правила порядка членов при дифференцировании.)
Вернемся теперь к нашему закону сохранения энергии, причем для преобразования ∇×B в (27.7) мы используем новый результат — равенство (27.11). Вот что оно дает:
(27.12)
Теперь вы видите, что мы почти у цели. Одно из наших слагаемых — настоящая производная по t, ее мы используем при образовании и, а другое (превосходная дивергенция) войдет в S. К несчастью, справа в середине осталось еще одно слагаемое, которое не является ни дивергенцией, ни производной по t. Так что пока еще не все закончено. После некоторых размышлений мы опять обращаемся к уравнениям Максвелла и, к счастью, обнаруживаем, что (∇×E) равно —∂B/∂t.
Это позволяет превратить дополнительный член в чистую производную чего-то по времени:
Вот теперь у нас получилось то, что нужно. Уравнение для энергии переписывается в виде
(27.13)
А это, если мы определим u и S как
(27.14)
и
(27.15)
в точности напоминает уравнение (27.6). (Перестановкой сомножителей в векторном произведении мы добиваемся правильного знака.)
Итак, наша программа успешно выполнена. Из выражения для плотности энергии мы видим, что она представляет сумму «электрической» и «магнитной» плотностей энергии, которые в точности равны выражениям, полученным нами в статике, когда мы находили выражение для энергии через поля. Кроме того, мы получили выражение для вектора потока энергии электромагнитного поля. Этот новый вектор S=ε0c2E×B по имени своего первооткрывателя называется «вектором Пойнтинга». Он говорит нам о скорости, с которой энергия движется в пространстве. Энергия, протекающая в секунду через малую поверхность da, равна S·nda, где n — вектор, перпендикулярный к поверхности da. (Теперь, когда у нас есть формулы для u и S, можете, если хотите, забыть все выкладки.)
§ 4. Неопределенность энергии поля
Прежде чем заняться некоторыми приложениями формул Пойнтинга [т. е. выражений (27.14) и (27.15)], я хотел бы заметить, что на самом деле мы их не «доказали». Все, что мы сделали,— это нашли только возможное u и возможное S. Но откуда же нам известно, что, покрутив формулами, мы не придем к другому выражению для u и другому выражению для S? Новое S и новое и будут отличаться от старых, но по-прежнему будут удовлетворять уравнению (27.6). Такое вполне может случиться. Однако в формулы, которые получаются при этом, всегда входят различные производные полей (причем это всегда члены второго порядка типа второй производной или квадрата первой производной). Для u и S можно фактически написать бесконечное число различных выражений, и до сих пор никто не думал над экспериментальной проверкой того, которое же из них истинное. Люди полагают, что простейшее выражение, по-видимому, и должно быть истинным, но надо сознаться, что мы так и не знаем, как же на самом деле распределена энергия в электромагнитном поле. Пойдем по тому же легчайшему пути и постулируем, что энергия поля определяется выражением (27.14). При этом вектор потока S должен задаваться уравнением (27.15).
Самое интересное то, что единого способа избавиться от неопределенности энергии поля, по-видимому, вообще нет. Иногда утверждают, что эту проблему можно разрешить, используя теорию гравитации; при этом приводятся такие доводы. В теории гравитации источником гравитационного притяжения является вся энергия. Поэтому если нам известно, какие гравитационные силы действуют на свет, то можно правильно определить плотность энергии электричества. До сих пор, однако, такими тонкими экспериментами, которые позволили бы точно определить гравитационное влияние на электромагнитное поле, никто не занимался. Впрочем, установлено, что свет при прохождении около Солнца отклоняется, поэтому мы можем говорить, что Солнце притягивает к себе свет. Во всяком случае, найденные нами выражения для электромагнитной энергии и потока всегда всеми признавались. И хотя иногда результаты, полученные с их использованием, казались странными, никто никогда не обнаружил в них чего-то невероятного, какого-то расхождения с экспериментом. Согласимся со всеми и будем считать, что, по-видимому, здесь все в порядке.
Мне хотелось бы сделать еще одно замечание о формуле для энергий. Прежде всего формула для энергии поля в единице объема очень проста — это сумма электрической и магнитной энергий, если электрическую энергию мы определим как Е2, а магнитную — как В2. Эти выражения были найдены нами как возможные выражения для энергии при рассмотрении статических задач. Кроме него, мы нашли для энергии электростатического поля и несколько других выражений, например ρφ, которое в электростатическом случае равно интегралу от Е·Е. Однако в электродинамическом случае это равенство нарушается, и нет критерия, позволяющего установить, которая из формул правильна. Но теперь мы это знаем. Аналогично, мы нашли выражение для магнитной энергии, которое верно в самом общем случае.
§ 5. Примеры потоков энергии
Наша формула для вектора потока энергии S представляет нечто новое. Теперь следует посмотреть, насколько она годится в некоторых специальных случаях, а также проверить ее на том, что мы знали раньше. Первым нашим примером будет свет. В световой волне векторы Е и В направлены под прямым углом друг к другу и направлению распространения волны (фиг. 27.2).
Фиг. 27.2. Векторы Е, В и S световой волны.
В электромагнитной волне величина В равна (1/с)Е, а поскольку они направлены под прямым углом, то величина (Е×B) равна просто Е2/с. Таким образом, для света поток энергии в секунду через единичную поверхность равен
(27.16)
В световой волне, где E=E0cosω(t-х/с), средняя скорость потока энергии через единичную площадь <S>ср, которая называется «интенсивностью» света, равна среднему значению электрического поля, помноженному на ε0с:
(27.17)
Этот результат, как ни странно, мы уже получали в гл. 31, § 5 (вып. 3), когда изучали свет. Мы получили его совсем другим путем и поэтому можем сейчас в него поверить. Когда у нас есть пучок света, то плотность энергии в пространстве задается уравнением (27.14). Воспользовавшись теперь тем, что в световой волне сВ=Е, получаем
Однако вектор Е изменяется в пространстве, поэтому средняя плотность энергии равна
(27.18)
Далее, свет распространяется со скоростью с, поэтому можно думать, что энергия, проходящая в секунду через квадратный метр, равна произведению с на количество энергии в кубическом метре, т. е.
Все в порядке. Мы снова получили выражение (27.17).
Возьмем теперь другой пример, на этот раз очень любопытный. Рассмотрим поток энергии в медленно заряжающемся конденсаторе. (Мы не хотим сейчас иметь дело со столь высокими частотами, при которых конденсатор становится похожим на резонансную полость, но нам не нужен и постоянный ток.) Возьмем обычный конденсатор с круглыми параллельными пластинами (фиг. 27.3). Между ними создается почти однородное электрическое поле, которое изменяется с течением времени. Полная электромагнитная энергия внутри конденсатора в любой момент равна произведению плотности энергии и на объем. Если радиус пластин равен а, а расстояние между ними h, то полная энергия, заключенная между пластинами, будет
(27.19)
С изменением напряженности Е эта энергия тоже меняется. Когда конденсатор заряжается, внутренний объем приобретает энергию со скоростью
(27.20)
Так что должен существовать поток энергии, направленный откуда-то со стороны внутрь объема. Вы, конечно, думаете, что он идет от проводов, заряжающих конденсатор,— а вот и нет! Поток внутрь никоим образом не может идти с этой стороны, так как Е перпендикулярно к пластинам, а поэтому Е×B должно быть параллельно им.
Вы, вероятно, помните, что при зарядке конденсатора возникает магнитное поле, которое направлено по окружности вокруг оси. Об этом говорилось в гл. 23. Воспользовавшись последним уравнением Максвелла, мы там нашли, что магнитное поле на краю конденсатора определяется выражением
или
Направление его показано на фиг. 27.3.
Фиг. 27.3. Вблизи заряженного конденсатора вектор Пойнтинга S направлен внутрь него
Таким образом, на краях конденсатора, как видно из рисунка, возникает поток энергии, пропорциональный Е×B. Так что энергия на самом деле втекает в конденсатор не со стороны проводов, а со стороны окружающего его пространства.
Давайте проверим, согласуется ли полный поток через всю поверхность между краями пластин со скоростью изменения внутренней энергии. Для этого лучше всего повторить весь путь, проделанный нами при выводе выражения (27.15). Посмотрим, к чему он приведет. Площадь поверхности равна 2πah, а абсолютная величина S=ε0c2(E×B) равна
так что полный поток энергии будет
Это совпадает с уравнением (27.20). Удивительная вещь! Оказывается, при зарядке конденсатора энергия идет туда не через провода, а через зазор между краями пластин. Вот что говорит нам эта теория!
Как это может быть? Вопрос не из легких, но вот вам один из способов рассуждения. Предположим, у нас есть заряды, расположенные над и под конденсатором вдали от него. Когда такие заряды расположены вдалеке, то конденсатор окружает хотя и слабое, но необычайно протяженное поле (фиг. 27.4).
Фиг. 27.4. Поле вне конденсатора, заряженного двумя очень удаленными зарядами.
Затем, когда заряды подходят все ближе и ближе, поле становится все сильнее и сильнее и все теснее «обнимает» конденсатор. Так что энергия поля, которая вначале была далеко, движется «по направлению» к конденсатору и в конце концов входит в пространство между пластинами.
В качестве следующего примера давайте посмотрим, что происходит с кусочком провода (с ненулевым сопротивлением), по которому течет ток. Поскольку провод обладает каким-то сопротивлением, то вдоль него действует электрическое поле, которое порождает ток, а в результате падения потенциала вдоль провода существует также параллельное его поверхности электрическое поле вне провода (фиг. 27.5).
Фиг. 27.5. Вектор Пойнтинга S вблизи провода с током.
Кроме того, наличие тока порождает также магнитное поле, направленное по окружности вокруг провода. Векторы Е и В направлены под прямым углом, а поэтому вектор Пойнтинга направлен радиально, как это показано на рисунке. Внутрь проводника со всех сторон втекает энергия. Она, разумеется, должна быть равна энергии, теряемой проводником в виде тепла.
Таким образом, наша «сумасшедшая» теория говорит, что электроны получают свою энергию, растрачиваемую ими на создание теплоты извне, от потока энергии внешнего поля внутрь провода. Интуиция нам подсказывает, что электрон пополняет свою энергию за счет «давления», которое толкает его вдоль провода, так что энергия как будто должна течь вниз (или вверх) по проводу. А вот теория утверждает, что на самом деле на электрон действует электрическое поле, создаваемое очень далекими зарядами, и электроны теряют свою энергию, расходуемую на тепло именно из этих полей. Энергия отдаленных зарядов каким-то образом растекается по большой области пространства и затем втекает внутрь провода.
Наконец, чтобы окончательно убедить вас в том, что это явно ненормальная теория, возьмем еще один пример, когда электрический заряд и магнит покоятся — сидят себе рядышком и не шевелятся. Представьте, что мы взяли точечный заряд, покоящийся вблизи центра магнитного бруска (фиг. 27.6).
Фиг. 27.6. Заряд и магнит дают вектор Пойнтинга. циркулирующий по замкнутой петле.
Все находится в покое, так что энергия тоже не изменяется со временем; Е и В постоянны. Но вектор Пойнтинга утверждает, что здесь есть поток энергии, так как Е×B не равно нулю. Если вы понаблюдаете за потоком энергии, то убедитесь, что он циркулирует вокруг этой системы. Но никакого изменения энергии не происходит; все, что втекает в любой объем, снова вытекает из него. Это напоминает круговой поток несжимаемой воды. Итак, в такой, казалось бы, статической ситуации есть поток энергии. Выглядит, прямо скажем, абсурдно!
А, может быть, это все-таки не так уж удивительно, если вспомнить, что так называемый «статический» магнит представляет на самом деле непрерывно циркулирующий ток. Внутри постоянного магнита электроны все время крутятся. Так что, может быть, циркуляция энергии не так уж удивительна.
У вас, без сомнения, начинает создаваться впечатление, что теория Пойнтинга, по крайней мере частично, опровергает вашу интуицию относительно того, где находится энергия электромагнитного поля. Вам может показаться, что необходимо заняться «починкой» своей интуиции, отработкой ее на множестве примеров. Однако в этом, по-видимому, никакой необходимости нет. Не думаю, чтобы вы оказались в большом затруднении, забыв на время, что энергия втекает внутрь провода извне, а не течет вдоль него. Не так уж важно, используя идею сохранения энергии, указать во всех деталях, какой путь избирает энергия. Циркуляция энергии вокруг магнита и заряда в большинстве случаев, по-видимому, совершенно несущественна. Хотя это и не так уж важно, однако ясно, что повседневная интуиция нас обманывает.
§ 6. Импульс поля
Теперь мне бы хотелось поговорить об импульсе поля. Поле обладает энергией; точно так же в единице объема оно обладает каким-то импульсом. Обозначим плотность импульса через g. Импульс, разумеется, может иметь различные направления, поэтому g должно быть вектором. Временно мы будем говорить об одной компоненте и для начала возьмем x-компоненту. Поскольку любая компонента импульса сохраняется, то мы можем сразу написать закон примерно такого вида:
Левая часть тривиальна. Скорость изменения импульса вещества равна просто действующей на него силе. Для частиц F=q(E+v×B), а для распределенных зарядов на единицу объема действует сила F=(ρE+j×B). Однако слагаемое «поток импульса» несколько странно. Оно не может быть дивергенцией какого-то вектора, ибо это не скаляр, а скорее x-компонента некоторого вектора. Но как бы то ни было оно должно иметь вид
поскольку x-компонента импульса должна течь в каком-либо из трех направлений. Во всяком случае, каковы бы ни были а, b и с, такая комбинация предполагается равной потоку x-компоненты импульса.
Дальше по правилам той же самой игры напишем ρЕ+j×B только через Е и В, исключив плотность заряда ρ и плотность тока j и затем жонглируя слагаемыми и произведя подстановку, получаем
Сопоставляя затем разные слагаемые, мы должны найти выражения для gx, a, b и с. В общем, здесь масса работы, но мы не собираемся заниматься ею. Вместо этого мы найдем только выражение для плотности импульса g и притом совсем другим способом.
В механике есть очень важная теорема, которая говорит: каков бы ни был поток энергии любого вида (энергия поля или какой-то другой сорт энергии), произведение ее количества, прошедшего через единицу площади в единицу времени, на 1/с2 равно импульсу в единице объема пространства. В случае электродинамики эта теорема говорит, что g равно вектору Пойнтинга, поделенному на с2:
(27.21)
Так что вектор Пойнтинга дает нам не только поток энергии, но после деления на с2 и плотность импульса. Этот же результат получился бы из анализа, который мы только что предполагали проделать, однако более заманчиво воспользоваться общей теоремой. Сейчас мы рассмотрим несколько интересных примеров и рассуждений, призванных убедить вас в справедливости этой общей теоремы.
Первый пример: возьмем множество заключенных в ящик частиц. Пусть, скажем, их будет N штук на кубический метр, и пусть они движутся вдоль ящика со скоростью v. Рассмотрим теперь воображаемую плоскость, перпендикулярную к v. Поток энергии через единицу площади этой плоскости в секунду равен Nv (т. е. числу частиц, пересекающих плоскость за секунду), умноженному на энергию каждой частицы. Энергия же каждой частицы будет m0c2/√(1-v2/c2). Так что поток энергии равен
Но импульс каждой частицы равен m0v√(1-v2/c2), откуда плотность импульса будет
что в полном согласии с теоремой как раз равно 1/с2 на поток энергии. Таким образом, для пучка частиц теорема оказывается верной.
Верна она и для света. При изучении света (см. вып. 3) мы установили, что, когда происходит поглощение света, поглотителю передается некоторое количество импульса. Действительно, в гл. 34 (вып. 3) мы видели, что импульс равен поглощенной энергии, деленной на с [уравнение (34.24)]. Пусть U0 будет энергией, падающей в секунду на единичную площадь, тогда переданный той же поверхности за то же время импульс равен U0/c. Но импульс распространяется со скоростью с, так что его плотность перед поглотителем должна быть равна U0/с2. Теорема снова справедлива.
Наконец, я приведу рассуждение Эйнштейна, которое еще раз продемонстрирует то же самое утверждение. Предположим, у нас есть вагон с какой-то большой массой М, который может без трения катиться по рельсам. В одном его конце расположено устройство, способное «выстреливать» какие-то частицы или световой импульс (совершенно безразлично, чем оно стреляет), которые ударяются о противоположный конец вагона. Следовательно, некоторое количество энергии, скажем U, находившееся первоначально на одном конце (фиг. 27.7,а), перелетает на противоположный конец (фиг. 27.7,в).
Фиг. 27.7. Порция энергии U, двигаясь со скоростью с, несет импульс, равный U/c.
Таким образом, энергия U перемещается на расстояние, равное длине вагона L. Этой энергии U соответствует масса U/с2, так что если вагон вначале стоял, то его центр масс должен передвинуться. Эйнштейну не понравилось заключение о том, что центр масс предмета можно переместить какими-то манипуляциями внутри него. Он считал, что никакие внутренние действия не могут изменить центр масс. Но если это так, то при перемещении энергии U с одного конца на другой сам вагон должен откатиться на расстояние х (фиг. 27.7,в). В самом деле, нетрудно убедиться, что полная масса вагона, умноженная на х, должна быть равна произведению перемещенной энергии U/c2 на длину L (при условии, что U/c2 много меньше М), т. е.
(27.22)
Теперь рассмотрим конкретный случай, когда энергия переносится вспышкой света. (Все рассуждения можно повторить и для частиц, но мы будем следовать за Эйнштейном, который интересовался проблемами света.) Что заставляет вагон двигаться? Эйнштейн рассуждал так: при испускании света должна быть отдача, какая-то неизвестная отдача с импульсом р. Именно она заставляет вагон откатиться назад. Скорость вагона v при такой отдаче должна быть равна импульсу отдачи, поделенному на массу М:
Вагон движется с этой скоростью до тех пор, пока свет не достигнет противоположного конца. Ударяясь, свет отдает импульс вагону и останавливает его. Если х мало, то время, в течение которого вагон движется, равно L/c, так что мы получаем
Подставляя х в (27.22), находим
Снова получилось соотношение между энергией и импульсом света. Деля это на с, находим плотность импульса g=p/c, и опять
(27.23)
Вас может удивить, так ли уж важна теорема о центре масс. Может быть, она нарушается? Возможно, но тогда вы теряете и закон сохранения момента количества движения. Предположим, что наш вагончик движется по рельсам с некоторой скоростью u, и мы «выстреливаем» какое-то количество световой энергии от потолка к полу, например из точки А в точку В (фиг. 27.8).
Фиг. 27.8. Для сохранения момента количества движения относительно точки Р порция энергии U должна нести импульс U/c.
Посмотрим теперь на момент количества движения относительно точки Р. До того как порция энергии U покинула точку А, у нее была масса m=U2/c и скорость v, так что ее момент количества движения был равен mvra. Когда же она прилетела в точку В, масса ее остается прежней, и если импульс всего вагона не изменился, то она по-прежнему должна иметь скорость v. Однако момент количества движения относительно точки Р будет уже mvrB. Таким образом, если вагону при излучении света не передается никакого импульса, т. е. если свет не переносит импульса U/c, то момент количества движения должен измениться. Оказывается, что в теории относительности сохранение момента количества движения и теорема о центре масс тесно связаны между собой. И если неверна теорема, то нарушается и закон сохранения момента количества движения. Во всяком случае, общий закон должен быть справедлив и для электродинамики, так что им можно воспользоваться для получения импульса поля.
Упомянем еще о двух примерах импульса в электромагнитном поле. В гл. 26, §2, мы говорили о нарушении закона действия и противодействия для двух заряженных частиц, движущихся перпендикулярно друг другу. Силы, действующие на эти частицы, не уравновешивают друг друга, так что действие и противодействие оказываются неравными, а полный импульс вещества поэтому должен изменяться. Он не сохраняется. Но в такой ситуации изменяется и импульс поля. Если вы рассмотрите величину импульса, задаваемую вектором Пойнтинга, то она оказывается непостоянной. Однако изменение импульса частицы в точности компенсируется импульсом поля, так что полный импульс частиц и поля все же сохраняется.
Второй наш пример — система заряда и магнита, изображенная на фиг. 27.6. К своему огорчению, мы обнаружили, что в этом примере энергия «бегает по кругу», но, как нам теперь известно, поток энергии и импульса пропорциональны друг другу, поэтому здесь мы имеем дело с циркуляцией импульса. Но циркуляция импульса означает наличие момента количества движения. Поле обладает моментом количества движения. Помните парадокс с соленоидом и зарядами на диске, описанный в гл. 17, § 4? Казалось, что при включении тока весь диск должен начать крутиться.
Остается загадка, откуда возникает этот момент количества движения? Ответ на этот вопрос такой: если у вас есть магнитное поле и какие-то заряды, то поле имеет и момент количества движения. Он возник еще при создании самого поля. Когда же поле выключается, момент количества движения отдается обратно. Так что диск в этом парадоксе начнет крутиться. Таинственный циркулирующий поток энергии, который сначала кажется чем-то непонятным, на самом деле абсолютно необходим. Ведь существует реальный поток импульса. Он необходим для выполнения закона сохранения момента количества движения в целом.
Глава 28 ЭЛЕКТРОМАГНИТНАЯ МАССА
§ 1. Энергия поля точечного заряда
Синтез теории относительности и уравнений Максвелла в основном завершает наше изучение теории электромагнетизма. Разумеется, по дороге мы перескочили через некоторые детали и оставили незатронутой довольно большую область, к которой, однако, мы еще вернемся в будущем, когда займемся взаимодействием электромагнитного поля с веществом. И все же, если еще задержаться на минуту и посмотреть на фасад этого удивительного сооружения, имевшего столь громадный успех в объяснении столь многих явлений, то можно обнаружить, что оно вот-вот завалится и рассыплется на куски. Если вы поглубже вгрызетесь почти в любую из наших физических теорий, то обнаружите, что в конце концов попадаете в какую-нибудь неприятную историю. Сейчас нам предстоит обсудить серьезную трудность — несостоятельность классической электромагнитной теории. Может показаться, что это нарушение, естественно, связано с падением всей классической теории под ударами квантовомеханических эффектов. Возьмите классическую механику. Математически это вполне самосогласованная теория, хотя она и отвергается опытом. Однако самое интересное, что классическая теория электромагнетизма неудовлетворительна сама по себе. В ней до сих пор есть трудности, которые связаны с самими идеями теории Максвелла и которые не имеют непосредственного отношения к квантовой механике. Вы можете подумать: «А зачем нам заранее беспокоиться об этих трудностях. Ведь квантовая механика все равно изменит законы электродинамики. Не лучше ли подождать и посмотреть, во что превратятся эти трудности после изменений?» Однако трудности остаются и после соединения электродинамики с квантовой механикой, так что рассмотрение их сейчас не будет напрасной тратой времени; вдобавок они очень важны с исторической точки зрения. Кроме того, если вы в силах столь глубоко проникнуть в теорию, чтобы увидеть в ней все, не исключая и трудностей, то это дает вам известное чувство завершенности.
Трудность, о которой я собираюсь говорить, связана с приложением понятий электромагнитного импульса и энергии к электрону или другой заряженной частице. Понятия простых заряженных частиц и электромагнитного поля как-то не согласуются друг с другом. Описание этой трудности мы начнем с некоторых примеров вычисления энергии и импульса. Найдем сначала энергию заряженной частицы. Представьте, что мы взяли простейшую модель электрона, когда весь его заряд q равномерно распределен по поверхности сферы радиусом а. В специальном случае точечного заряда мы можем положить его равным нулю. Теперь вычислим энергию электромагнитного поля. Если заряд неподвижен, то никакого магнитного поля вокруг нет, и энергия в единице объема будет пропорциональна квадрату напряженности электрического поля. Величина же напряженности электрического поля равна q/4πε0r2, поэтому плотность энергии
Чтобы получить полную энергию, нужно эту плотность проинтегрировать по всему пространству. Используя элемент объема 4πr2dr, найдем полную энергию, которую мы обозначим через Uэл:
Это выражение интегрируется очень просто. Нижний предел интегрирования равен а, а верхний — бесконечности, поэтому
(28.1)
Если вместо q подставить заряд электрона qe и обозначить символом e2 комбинацию qe2/4πε0, то получим
(28.2)
Все идет хорошо до тех пор, пока мы не переходим к точечному заряду, т. е. пока мы не положим а=0. Но как только мы переходим к точечному заряду, начинаются все наши беды. И все потому, что энергия поля изменяется обратно пропорционально четвертой степени расстояния, интеграл по объему становится расходящимся, а количество энергии, окружающей точечный заряд, оказывается бесконечным.
Но чем, собственно, плоха бесконечная энергия? Есть ли какая-то реальная трудность в том, что энергия никуда не может уйти от заряда и обречена навсегда оставаться около него? Досадно, конечно, что величина оказалась бесконечной, но главный вопрос в том — есть ли здесь какой-нибудь наблюдаемый физический эффект? Чтобы ответить на него, нужно обратиться не к энергии, а к чему-то другому. Нас может, скажем, заинтересовать, как изменяется энергия, когда заряд движется. Если при этом окажется бесконечным изменение, то дело совсем плохо.
§ 2. Импульс поля движущегося заряда
Возьмем равномерно движущийся электрон и предположим на минуту, что скорость его мала по сравнению со скоростью света. С таким движущимся электроном всегда связан какой-то импульс — даже если у электрона до того, как он был заряжен, не было никакой массы — это импульс электромагнитного поля. Мы покажем, что для малых скоростей он пропорционален скорости v и совпадает с ней по направлению. В точке Р, находящейся на расстоянии r от центра заряда и под углом θ к линии его движения (фиг. 28.1), электрическое поле радиально, а магнитное, как мы видели, равно v×E/c2.
Фиг. 28.1. Поля Е и В и плотность импульса g для положительного электрона. Для отрицательного электрона поля Е и В повернуты в обратную сторону, но g остается тем же.
Плотность же импульса, в соответствии с формулой (27.21), будет
Она обязательно направлена по линии движения, как это видно из рисунка, и по величине равна
Поле симметрично относительно линии движения заряда, поэтому поперечные компоненты дадут в сумме нуль, и полученный в результате импульс будет параллелен скорости v. Величину составляющей вектора g в этом направлении, равную gsinθ, нужно проинтегрировать по всему пространству. В качестве элемента объема возьмем кольцо, плоскость которого перпендикулярна v (фиг. 28.2).
Фиг. 28.2. Элемент объема 2πr2sinθdθdr, используемый при вычислении импульса поля.
Объем его равен 2πr2sinθdθdr. Полный импульс будет при этом
Поскольку Е не зависит от угла θ (для v≪c), то по углу можно немедленно проинтегрировать:
Интегрирование по θ ведется в пределах от 0 до π, так что этот интеграл дает просто множитель 4/3, т. е.
А такой интеграл (для v≪с) мы только что вычисляли, чтобы найти энергию; он равен q2/16π2ε02a, так что
или
(28.3)
Импульс поля, т. е. электромагнитный импульс, оказался пропорциональным v. В частности, тоже самое выражение получилось бы для частицы с массой, равной коэффициенту пропорциональности при v. Вот почему этот коэффициент пропорциональности мы можем назвать электромагнитной массой mэм, т. е. положить
§ 3. Электромагнитная масса
Откуда же вообще возникло понятие массы? В наших законах механики мы предполагали, что любому предмету присуще некое свойство, называемое массой. Оно означает пропорциональность импульса предмета его скорости. Теперь же мы обнаружили, что это свойство вполне понятно — заряженная частица несет импульс, который пропорционален ее скорости. Дело можно представить так, как будто масса — это просто электродинамический эффект. Ведь до сих пор причина возникновения массы оставалась нераскрытой. И вот, наконец, в электродинамике нам представилась прекрасная возможность понять то, чего мы никогда не понимали раньше. Прямо как с неба (а точнее, от Максвелла и Пойнтинга) свалилось на нас объяснение пропорциональности импульса любой заряженной частицы ее скорости через электромагнитные свойства.
Но давайте все-таки встанем на более консервативную точку зрения и будем говорить, по крайней мере временно, что имеется два сорта масс и что полный импульс предмета должен быть суммой механического и электромагнитного импульсов. Причем механический импульс равен произведению «механической» массы mмех на скорость v. В тех экспериментах, где масса частицы измеряется, например, определением импульса или «кручением на веревочке», мы находим ее полную массу. Импульс равен произведению именно полной массы (mмех+mэм) на скорость. Таким образом, наблюдаемая масса может состоять из двух (а может быть, и из большего числа, если мы учтем другие поля) частей: механической и электромагнитной. Мы знаем, что наверняка имеется электромагнитная часть; для нее у нас есть даже формула. А сейчас появилась увлекательная возможность выбросить механическую массу совсем и считать массу полностью электромагнитной.
Посмотрим, каков должен быть размер электрона, если «механическая» часть массы полностью отсутствует. Это можно выяснить, приравнивая электромагнитную массу (28.4) наблюдаемой массе электрона, т. е. mе. Получаем
(28.5)
Величина
(28.6)
называется «классическим радиусом электрона» и равна она 2,82×10-13 см, т. е. одной стотысячной диаметра атома.
Почему радиусом электрона названа величина r0, а не а? Потому что мы можем провести те же самые расчеты с другим распределением заряда. Мы можем взять его равномерно размазанным по всему объему шара или наподобие пушистого шарика. Например, для заряда, равномерно распределенного по всему объему сферы, коэффициент 2/3 заменяется коэффициентом 4/5. Вместо того чтобы спорить, какое распределение правильно, а какое нет, было решено взять в качестве «номинального» радиуса величину r0. А разные теории приписывают к ней свой коэффициент.
Давайте продолжим наше обсуждение электромагнитной теории массы. Мы провели расчет для v≪с, а что произойдет при переходе к большим скоростям? Первые попытки вычисления привели к какой-то путанице, но позднее Лоренц понял, что при больших скоростях заряженная сфера должна сжиматься в эллипсоид, а поля должны изменяться согласно полученным нами для релятивистского случая в гл. 26 формулам (26.6) и (26.7). Если вы проделаете все вычисления для р в этом случае, то получите, что для произвольной скорости v импульс умножается еще на 1/√(1-v2/c2), т. е.
(28.7)
Другими словами, электромагнитная масса возрастает с увеличением скорости обратно пропорционально √(1-v2/c2). Это открытие было сделано еще до создания теории относительности.
Тогда предлагались даже эксперименты по определению зависимости наблюдаемой массы от скорости, чтобы установить, какая часть ее электрическая по своему происхождению, а какая — механическая. В те времена считали, что электромагнитная часть массы должна зависеть от скорости, а ее механическая часть — нет.
Но пока ставились эксперименты, теоретики тоже не дремали. И вскоре была развита теория относительности, которая доказала, что любая масса, независимо от своего происхождения, должна изменяться как m0/√(1-v2/c2). Таким образом, уравнение (28.7) было началом теории, согласно которой масса зависит от скорости.
А теперь вернемся к нашим вычислениям энергии поля, которые привели к выводу выражения (28.2). Энергия U в соответствии с теорией относительности эквивалентна массе U/с2, поэтому (28.2) говорит, что поле электрона должно обладать массой
(28.8)
которая не совпадает с электромагнитной массой mэм, определенной формулой (28.4). В самом деле, если бы мы просто скомбинировали выражения (28.2) и (28.4), то должны были бы написать
Эта формула была получена еще до теории относительности, и когда Эйнштейн и другие физики начали понимать, что U всегда должно быть равно mc2, то замешательство было очень велико.
§ 4. С какой силой электрон действует сам на себя?
Разница между двумя формулами электромагнитной массы особенно обидна, потому что совсем недавно мы доказали согласованность электродинамики с принципами относительности. Кроме того, теория относительности неявно и неизбежно предполагает, что импульс должен быть равен произведению энергии на v/c2. Неприятная история! По-видимому, мы где-то допустили ошибку. Конечно, не алгебраическую ошибку в наших расчетах, а где-то проглядели что-то существенное.
При выводе наших уравнений для энергии и импульса мы предполагали справедливость законов сохранения. Мы считали, что учтены все силы, учтена любая работа и любой импульс, порождаемый другими «неэлектрическими» механизмами. Но если мы имеем дело с заряженной сферой, то, поскольку все электрические силы — это силы отталкивающие, электрон стремится разорваться. А раз в системе не учтены уравновешивающие силы, то в законах, связывающих импульс и энергию, возможны любые ошибки. Чтобы картина была самосогласованной, нужно предположить, что нечто удерживает электрон от разрыва. Заряды должны удерживаться на сфере чем-то вроде «резинок», которые препятствуют их стремлению разлететься в стороны. Пуанкаре первый заметил, что подобные «резинки» или нечто в этом роде, связывающие электрон, необходимо учитывать при вычислении энергии и импульса. По этой причине дополнительные неэлектрические силы известны под именем «напряжений Пуанкаре». Если включить их в расчет, то это сразу изменит массы, полученные в обоих случаях (характер изменения зависит от детальных предположений), и результат будет согласовываться с теорией относительности, т. е. масса, полученная из вычислений импульса, становится той же самой, что и масса, полученная из энергии. Однако теперь массы будут состоять из двух частей: электромагнитной и происходящей от «напряжений Пуанкаре». И только когда обе части складываются вместе, мы получаем согласованную теорию.
Итак, наши надежды не оправдались, мы не можем всю массу сделать чисто электромагнитной. Теория, содержащая только электродинамику, незаконна. К ней необходимо прибавить что-то еще. Как бы мы ни назвали это «что-то» — «резинками» или «напряжениями Пуанкаре» или как-то по-другому,— оно все равно должно порождать новые силы, обеспечивающие согласованность теории такого рода.
Но совершенно ясно, что, как только мы вынуждены посадить внутрь электрона посторонние силы, красота всей картины тотчас исчезает. Все становится слишком сложным. Сразу же возникает вопрос: насколько сильны эти напряжения? Что происходит с электроном? Осциллирует ли он или нет? Каковы все его внутренние свойства? И т. д. и т. п. Возможно, что какие-то внутренние свойства электрона все-таки очень сложны. И если мы начнем строить электрон, следуя этому рецепту, то придем к каким-нибудь странным свойствам наподобие собственных гармоник, которые, по-видимому, еще не наблюдались. Я сказал «по-видимому», ибо в природе мы наблюдаем множество странных вещей, которым еще не можем придать никакого смысла. Возможно, что когда-нибудь в один прекрасный день окажется, что какое-то явление, из тех, что непонятны нам сегодня μ-мезон, например), можно на самом деле объяснить как осцилляции «напряжений Пуанкаре». Сейчас это не кажется правдоподобным, но кто может гарантировать? Ведь мы еще столького не понимаем в мире элементарных частиц! Во всяком случае, сложная структура, предполагаемая этой теорией, весьма нежелательна, и попытка объяснить все массы только через электромагнетизм, по крайней мере описанным нами способом, завела в тупик.
Мне еще хотелось бы порассуждать немного о том, почему при пропорциональности импульса поля скорости мы говорили о массе. Очень просто! Ведь масса — это и есть коэффициент между импульсом и скоростью. Однако возможна и другая точка зрения. Можно говорить, что частица имеет массу, если для ускорения ее мы вынуждены прилагать какую-то силу. Посмотрим повнимательней на то, откуда берутся силы; это может помочь нашему пониманию. Откуда мы узнаем, что здесь должно проявиться действие сил? Да просто потому, что мы доказали закон сохранения импульса для полей. Если у нас есть заряженная частица и мы некоторое время «нажимаем» на нее, то у электромагнитного поля появится импульс. Каким-то образом он был передан электромагнитному полю. Следовательно, чтобы разогнать электрон, к нему нужно приложить силу, дополнительную к той, которая требуется механической инерцией, связанную с его электромагнитным взаимодействием. При этом должна возникнуть соответствующая обратная реакция со стороны «толкаемого» нами электрона. Но откуда берется эта сила? Картина примерно такова. Можно считать электрон заряженной сферой. Когда он покоится, то каждый его заряженный участок отталкивает любой другой, но все силы уравновешены попарно, так что результирующая равна нулю (фиг. 28. 3, а).
Фиг 28.3. Сила действия ускоряющегося электрона благодаря запаздыванию не равна нулю. Под dF мы подразумеваем силу, действующую на элемент поверхности da, а под d2F — силу, действующую на элемент поверхности daα со стороны заряда, расположенного на элементе поверхности daβ.
Однако при ускорении электрона силы больше не уравновешиваются, так как, чтобы электромагнитное влияние дошло от одного места до другого, нужно некоторое время. Например, сила, действующая на участок α (фиг. 28.3, б) со стороны участка β, расположенного на противоположной стороне, зависит от положения β в запаздывающий момент. И величина и направление силы определяются движением заряда. Если он ускоряется, то силы, действующие на разные части электрона, могут быть такими, как это показано на фиг. 28.3, в. Теперь при сложении всех этих сил они не сокращаются. Для постоянной скорости эти силы уравновешивались бы, хотя на первый взгляд кажется, что даже при равномерном движении запаздывание приведет к неуравновешенным силам. Тем не менее оказывается, что в тех случаях, когда электрон не ускоряется, равнодействующая сила равна нулю. Если же мы рассмотрим силы между различными частями ускоряющегося электрона, то действие и противодействие не компенсируют в точности друг друга и электрон действует сам на себя, стараясь уменьшить ускорение. Он тянет сам себя «за шиворот» назад.
Можно, хотя и не легко, вычислить эту силу самодействия, однако здесь мы не будем заниматься такими трудоемкими расчетами. Я просто скажу вам, что получается в специальном сравнительно простом случае движения в одном измерении, скажем вдоль оси х. Самодействие в этом случае можно записать в виде ряда. Первый член этого ряда зависит от ускорений ..х, следующий — пропорционален ...х и т. д.[36]
Так что в результате
(28.9)
где α и γ — числовые коэффициенты порядка единицы. Коэффициент α при слагаемом x зависит от предположенного распределения зарядов; если заряды равномерно распределены по сфере, то α=2/3. Таким образом, слагаемое, пропорциональное ускорению, изменяется обратно пропорционально радиусу электрона а, что в точности согласуется с величиной, полученной для mэм в (28.4). Если взять другое распределение, то а изменится, но в точности так же изменится и величина 2/3 в (28.4). Слагаемое с х не зависит ни от радиуса а, ни от предположенного распределения заряда; коэффициент при нем всегда равен 2/3. Следующее слагаемое пропорционально радиусу а и коэффициент γ при нем определяется распределением заряда. Обратите внимание, что если устремить радиус электрона к нулю, то последнее слагаемое (равно как и все высшие члены) обратится в нуль, второе остается постоянным, но первое — электромагнитная масса — становится бесконечным. Видно, что бесконечность возникает из-за действия одной части электрона на другую; по-видимому, мы допустили глупость — возможность «точечного» электрона действовать на самого себя.
§ 5. Попытки изменения теории Максвелла
Теперь мне бы хотелось обсудить, как можно изменить электродинамику Максвелла, но изменить так, чтобы сохранить понятие простого точечного заряда. В этом направлении было сделано немало попыток, а некоторые теории сумели даже так представить дело, что вся масса электрона оказалась полностью электромагнитной. Однако ни одной из этих теорий не суждено было выжить. И все же интересно обсудить некоторые из предложенных возможностей хотя бы для того, чтобы оценить борьбу человеческого разума.
Наша теория электромагнетизма началась с разговоров о взаимодействии одного заряда с другим. Затем мы построили теорию этих взаимодействующих зарядов и закончили наше изучение теорией поля. Мы настолько уверовали в нее, что пытались с ее помощью определить, как одна часть электрона действует на другую. Все трудности, возможно, происходят из-за того, что электрон не действует сам на себя; экстраполяция закона взаимодействия между отдельными электронами на взаимодействие электрона самого с собой, возможно, ничем не оправдана. Поэтому некоторые из предложенных теорий совсем исключают возможность самодействия электрона. Из-за этого в них уже не возникает бесконечностей. И никакой электромагнитной массы при этом у частиц нет, а ее масса снова полностью механическая. Однако в такой теории возникают новые трудности.
Нужно сразу же вам сказать, что такие теории требуют изменения и понятий электромагнитного поля. Как вы помните, мы говорили, что сила, действующая на частицу в любой точке, определяется просто двумя величинами: Е и В. Если мы отказываемся от идеи самодействия, то это утверждение становится уже несправедливым, ибо силы, действующие на электрон в некотором месте, больше не определяются полями Е и В, а только теми их частями, которые создаются другими зарядами. Так что мы всегда должны помнить о том, какие поля Е и В создает тот заряд, для которого вычисляется действующая сила, а какие — все остальные заряды. Это делает теорию гораздо более запутанной, хотя и позволяет избежать трудностей с бесконечностями.
Итак, если нам очень хочется, мы можем выбросить весь набор сил в уравнении (28.9), приговаривая при этом, что такое явление, как действие электрона на себя, отсутствует. Но вместе с водой мы выплескиваем и ребенка! Ведь второе-то слагаемое в (28.9), слагаемое с ...х, совершенно необходимо. Эта сила приводит к вполне определенному эффекту. Если вы ее выбросите — беды не миновать. Когда вы разгоняете заряд, он излучает электромагнитные волны, т. е. теряет энергию. Поэтому ускорение заряда требует большей силы, чем ускорение нейтрального объекта той же массы; в противном случае энергия не будет сохраняться. Скорость, с которой мы затрачиваем работу на ускорение заряда, должна быть равна скорости потери энергии на излучение. Мы уже говорили об этом эффекте; он был назван радиационным сопротивлением. Снова перед нами вопрос: откуда берутся те дополнительные силы, на преодоление которых затрачивается эта работа? Когда излучает большая антенна, то эти силы возникают под влиянием токов одной ее части на токи в другой. Но у отдельного ускоряющегося электрона, излучающего в пустое пространство, возможен только один источник таких сил — действие одной части электрона на другую.
В гл. 32 (вып. 3) мы обнаружили, что осциллирующий заряд излучает энергию со скоростью
(28.10)
Давайте посмотрим, какая мощность необходима для преодоления силы самодействия (28.9). Мощность, как известно, равна силе, умноженной на скорость, т. е. F.x:
(28.11)
Первый член пропорционален d.x2/dt и поэтому соответствует скорости изменения кинетической энергии 1/2mv2, связанной с электромагнитной массой. А второй соответствует излучению мощности (28.10). Однако он отличается от (28.10). Разница состоит в том, что (28.11) справедливо в общем случае, тогда как (28.10) верно только для осциллирующего заряда. Мы можем доказать, что эти два выражения для периодического движения заряда эквивалентны. Перепишем для этого второй член выражения (28.11) в виде
что будет просто алгебраическим преобразованием. Если движение электрона периодическое, то величина хх периодически возвращается к одному и тому же значению. Так что если мы возьмем среднее значение ее производной по времени, то получим нуль. Однако второй член всегда положителен (как квадрат величины), так что его производная тоже положительна. Соответствующая ему мощность как раз равна выражению (28.10).
Итак, слагаемое с ...x в выражении для силы самодействия необходимо для сохранения энергии излучающей системы и не может быть выброшено. Это было одним из триумфов теории Лоренца, доказавшего возникновение такого слагаемого в результате воздействия электрона самого на себя. Мы вынуждены поверить в идею самодействия и необходимость слагаемого с ...х. Проблема в том, как сохранить его, избавившись при этом от первого слагаемого в выражении (28.9), которое портит все дело. Этого мы не знаем. Как видите, классическая теория электрона сама себя завела в тупик.
Были предприняты и другие попытки выправить положение. Один путь был предложен Борном и Инфельдом. Состоит он в очень сложном изменении уравнений Максвелла, так что они перестают быть линейными. При этом можно сделать так, чтобы энергия и импульс оказались конечными. Но предложенные ими законы предсказывают явления, которые никогда не наблюдались. Их теория страдает еще и другим недостатком, к которому мы придем позднее и который присущ всем попыткам избежать описанную трудность.
Следующая интересная возможность была предложена Дираком. Он рассуждал так: давайте допустим, что действие электрона на себя описывается не первым слагаемым выражения (28.9), а вторым. И тогда ему пришла заманчивая идея избавиться от первого слагаемого, сохранив при этом второе. Смотрите — сказал он,— когда мы брали только запаздывающие решения уравнений Максвелла, это условие выступало как дополнительное предположение; если бы вместо запаздывающих мы взяли опережающие волны, то ответ получился бы несколько другим. Выражение для силы самодействия приобрело бы вид
(28.12)
Это выражение в точности такое же, как и (28.9), за исключением знака перед вторым и некоторыми высшими членами ряда. [Замена запаздывающих волн опережающими означает просто смену знака запаздывания, что, как нетрудно видеть, эквивалентно изменению знака t. В выражении (28.9) это приводит только к изменению знака всех нечетных производных.] Итак, Дирак предложил: давайте примем новое правило, что электрон действует на себя полуразностью создаваемых им запаздывающих и опережающих полей. Полуразность выражений (28.9) и (28.12) дает
Во всех высших членах радиус а входит в числитель в положительной степени. Поэтому, когда мы переходим к пределу точечного заряда, остается только один член — как раз тот, который нам нужен. Таким путем Дирак сохранил радиационное сопротивление и избавился от силы инерции. Электромагнитная масса исчезла, классическая теория спасена, но благополучие это достигнуто ценой насилия над самодействием электрона.
Произвол дополнительных предположений Дирака был устранен, по крайней мере до некоторой степени, Уилером и Фейнманом, которые предложили еще более странную теорию. Они предположили, что точечный заряд взаимодействует только с другими зарядами, но взаимодействие идет наполовину через запаздывающие, наполовину через опережающие волны. Самое удивительное, как оказалось, что в большинстве случаев вы не видите эффекта опережающих волн, но они дают как раз нужную силу радиационного сопротивления. Однако радиационное сопротивление возникает не как самодействие электрона, а в результате следующего интересного эффекта. Когда электрон ускоряется в момент t, то он влияет на все другие заряды в мире в поздний момент t'=t+r/c (где r — расстояние до других зарядов) из-за запаздывающих волн. Но затем эти другие заряды действуют снова на первоначальный электрон с помощью опережающих волн, которые приходят к нему в момент t", равный t' минус r/c, что как раз равно t. (Они, конечно, воздействуют и с помощью запаздывающих волн, но это просто соответствует обычным «отраженным» волнам.) Комбинация опережающих и запаздывающих волн означает, что в тот момент, когда электрон ускоряется, осциллирующий заряд испытывает воздействие силы со стороны всех зарядов, которые «приготовились» поглотить излученные им волны. Вот в какой петле запутались физики, пытаясь спасти теорию электрона!
Я расскажу вам еще об одной теории, чтобы показать, до каких вещей додумываются люди, когда они увлечены. Это несколько другая модификация законов электродинамики, которую предложил Бопп.
Вы понимаете, что, решившись изменить уравнения электромагнетизма, можно делать это в любом месте. Вы можете изменить закон сил, действующих на электрон, или можете изменить уравнения Максвелла (как это будет сделано в теории, которую я собираюсь описать) или еще что-нибудь. Одна из возможностей — изменить формулы, определяющие потенциал через заряды и токи. Возьмем формулу, которая выражает потенциалы в некоторой точке через плотности токов (или зарядов) в любой другой точке в ранний момент времени. С помощью четырехвекторных обозначений для потенциалов мы можем записать ее в виде
(28.13)
Удивительно простая идея Боппа заключается в следующем. Может быть, все зло происходит от множителя 1/r под интегралом. Предположим с самого начала, что потенциал в одной точке зависит от плотности зарядов в любой точке как некоторая функция расстояния между точками, скажем как f(r12). Тогда полный потенциал в точке 1 будет определяться интегралом по всему пространству от произведения jμ на эту функцию
Вот и все. Никаких дифференциальных уравнений, ничего больше. Есть только еще одно условие. Мы должны потребовать, чтобы результат был релятивистски инвариантным. Так что в качестве «расстояния» мы должны взять инвариантное «расстояние» между двумя точками в пространстве-времени. Квадрат этого расстояния (с точностью до знака, который несуществен) равен
(28.14)
Так что для релятивистской инвариантности теории функция должна зависеть от s12 или, что то же самое, от s122. Таким образом, в теории Боппа
(28.15)
(Интеграл, разумеется, должен браться по четырехмерному объему dt2dx2dy2dz2.)
Теперь остается только выбрать подходящую функцию F. Относительно нее мы предполагаем только одно, что она повсюду мала, за исключением области аргумента вблизи нуля, т. е. что график F ведет себя подобно кривой, изображенной на фиг. 28.4.
Фиг. 28,4. Функция F(s2), используемая в нелокальной теории Боппа.
Это узкий пик в окрестности s2=0, шириной которого грубо можно считать величину а2. Если вычисляется потенциал в точке 1, то приближенно можно утверждать, что заметный вклад дают только те точки 2, для которых s122=с2(t2-t1)2-r122 отличается от нуля на ±a2. Это можно выразить, сказав, что F важно только для
(28.16)
Если понадобится, можно проделать все математически более строго, но идея вам уже ясна.
Предположим теперь, что а очень мало по сравнению с размерами обычных объектов типа электромоторов, генераторов и тому подобное, поэтому для обычных задач г12≫а. Тогда выражение (28.16) говорит, что в интеграл (28.15) дают вклад только те токи, для которых t1-t2 очень мало:
Но поскольку а2/r122≪1, то квадратный корень приближенно равен 1 ±а2/2r122, так что
В чем здесь суть? Полученный результат говорит, что для Аμ в момент t1 важны только те времена t2, которые отличаются от него на запаздывание r12/c с пренебрежимо малой поправкой, ибо r12≫а. Другими словами, теория Боппа переходит в теорию Максвелла при удалении от зарядов в том смысле, что она приводит к эффекту запаздывания.
Мы можем приближенно увидеть, к чему нас приведет интеграл (28.15). Если, зафиксировав r12, провести интегрирование по t2 в пределах от -∞ до +∞,то s122 тоже будет изменяться от -∞ до +∞. Но основной вклад даст участок по t2 шириной Δt2=2·а2/2r12с с центром в момент t1-r12/c. Пусть функция F(s2) при s2=0 принимает значение К, тогда интегрирование по t2 дает приблизительно KjμΔt2, или
Разумеется, величину jμ следует взять в момент t2=t1-r12/c, так что (28.15) принимает вид
Если выбрать K=q2с/4πε0а2, то мы придем прямо к запаздывающему решению уравнений Максвелла для потенциалов, причем автоматически возникает зависимость 1/r! И все это получилось из простого предположения, что потенциал в одной точке пространства-времени зависит от плотности токов во всех других точках пространства-времени с весовым множителем, в качестве которого взята некая функция четырехмерного расстояния между двумя точками. Эта теория тоже дает конечную электромагнитную массу электрона, а соотношение между энергией и массой как раз такое, какое требуется в теории относительности. Ничего другого не могло и быть, ибо теория релятивистски инвариантна с самого начала.
Однако и этой теории и всем другим описанным нами теориям можно предъявить тяжкое обвинение. Все известные нам частицы подчиняются законам квантовой механики, поэтому необходима квантовомеханическая форма электродинамики. Свет ведет себя подобно фотонам. Это уже не 100-процентная теория Максвелла. Следовательно, электродинамика должна быть изменена. Мы уже говорили, что упорное старание исправить классическую теорию может оказаться напрасной тратой времени, ибо в квантовой электродинамике трудности могут исчезнуть или будут разрешены другим образом. Однако и в квантовой электродинамике трудности не исчезают. В этом кроется одна из причин, почему люди потратили столько времени, пытаясь преодолеть классические трудности и надеясь, что если они смогут преодолеть их, то после квантового обобщения уравнений Максвелла все будет в порядке. Однако и после такого обобщения трудности не исчезают.
Квантовые эффекты, правда, приводят к некоторым изменениям. Изменяется формула для масс, появляется постоянная Планка ℏ, но ответ по-прежнему выходит бесконечным, если вы не обрезаете как-то интегрирование, подобно тому как мы обрезали интеграл при r=а в классической теории. Ответ при этом зависит от характера обрезания. К сожалению, я не могу вам показать, что трудности в основном те же самые, ибо вы еще слишком мало знаете о квантовой механике, а о квантовой электродинамике — и того меньше. Поэтому вам придется поверить мне на слово, что и квантовая электродинамика Максвелла приводит к бесконечной массе точечного электрона.
Оказывается, однако, что до сих пор никому не удалось даже приблизиться к самосогласованному квантовому обобщению на основе любой из модифицированных теорий. Идее Борна и Инфельда никогда не суждено было стать квантовой теорией. Не привели к удовлетворительной квантовой теории опережающие и запаздывающие волны Дирака и Уилера — Фейнмана. Не привела к удовлетворительной квантовой теории и идея Боппа. Так что и до сего дня нам не известно решение этой проблемы. Мы не знаем, как с учетом квантовой механики построить самосогласованную теорию, которая не давала бы бесконечной собственной энергии электрона или какого-то другого точечного заряда. И в то же время нет удовлетворительной теории, которая описывала бы неточечный заряд. Так эта проблема и осталась нерешенной.
Если вы вздумаете попытать счастья и построить теорию, полностью удалив действие электрона на себя, так чтобы электромагнитная масса не имела смысла, а затем будете делать из нее квантовую теорию, то могу вас заверить — трудностей вы не избежите. Экспериментально доказано существование электромагнитной инерции и тот факт, что часть массы заряженных частиц — электромагнитная по своему происхождению.
В старых книгах часто утверждалось, что поскольку природа не подарила нам двух одинаковых частиц, из которых одна нейтральная, а другая заряженная, то мы никогда не сможем сказать, какая доля массы является электромагнитной, а какая механической. Однако оказалось, что природа все же была достаточна щедра и подарила нам именно два таких объекта, так что, сравнивая наблюдаемую массу заряженной частицы с массой нейтральной, мы можем сказать, существует ли электромагнитная масса. Возьмем, например, нейтрон и протон. Они взаимодействуют с огромной силой — ядерной силой, детали происхождения которой нам неизвестны. Однако, как мы уже говорили, ядерные силы обладают одним замечательным свойством. По отношению к этим силам нейтрон и протон в точности одинаковы. Насколько мы сейчас можем судить, ядерные силы между двумя нейтронами, нейтроном и протоном и двумя протонами совершенно одинаковы. Отличаются эти частицы только сравнительно слабыми электромагнитными силами; по отношению к ним протон и нейтрон отличаются, как день и ночь. Вот это нам как раз и нужно. Итак, мы имеем две частицы, одинаковые с точки зрения сильных взаимодействий и различных с точки зрения электрических. И они имеют небольшую разницу в массах. Разница масс между протоном и нейтроном, выраженная в единицах энергии покоя mc2, составляет 1,3 Мэв, что соответствует 2,6 электронным массам. Классическая теория предсказывает для радиуса протона величину между 1/3 и 1/2 радиуса электрона, или около 10-13 см. Конечно, на самом деле следует пользоваться квантовой теорией, но по какой-то странной случайности все константы, 2π, ℏ, и т. д., комбинируются так, что приблизительно дают тот же самый результат, что и классическая теория. Одна беда: знак оказывается неверным! Нейтрон на самом деле тяжелее протона.
Природа дала нам еще несколько других пар и троек частиц, которые, за исключением электрического заряда, во всех остальных отношениях оказываются в точности одинаковыми. Они взаимодействуют с протонами и нейтронами посредством так называемого «сильного» взаимодействия. В таких взаимодействиях все частицы данного сорта, скажем π-мезон, ведут себя во всех отношениях как одна и та же частица, за исключением их электрического заряда.
В табл. 28.1 мы приводим список таких частиц вместе с их массами. Заряженные π-мезоны имеют массу 139,6 Мэв, а нейтральный π0-мезон на 4,6 Мэв легче. Эту разность масс мы считаем электромагнитной. Она соответствовала бы частице с радиусом от 3 до 4·10-14 см. Вы видите из таблицы, что разницы масс других частиц того же масштаба.
Таблица 28.1. МАССА ЧАСТИЦ
Однако размеры этих частиц можно определить и другими методами, например по кажущемуся диаметру при высокоэнергетических соударениях. Таким образом, электромагнитная масса, по-видимому, находится в согласии с электромагнитной теорией, если мы обрезаем интеграл от энергии поля на радиусе, полученном этими другими методами. Вот почему мы верим, что разница все же обусловлена электромагнитной массой.
Вас, конечно, беспокоят разные знаки разности масс в таблице. Нетрудно понять, почему заряженная частица должна быть тяжелее нейтральной. Но что можно сказать о таких парах, как нейтрон и протон, где наблюдаемая разность масс оказывается совсем другой? Эти частицы оказываются довольно сложными, и вычисление их электромагнитной массы более хитро. Например, хотя нейтрон в целом нейтрален, у него все же есть внутреннее распределение заряда и равен нулю только суммарный заряд. Мы думаем, что нейтрон, по крайней мере в некоторые моменты времени, выглядит как протон, окруженный «облаком» отрицательного π-мезона (фиг. 28.5).
Фиг. 28.5. В некоторые моменты нейтрон может представлять собой протон, окруженный облаком отрицательного π-мезона.
И несмотря на то, что нейтрон «нейтрален», т. е. полный его заряд равен нулю, у него все же есть какая-то электромагнитная энергия (например, у него есть магнитный момент), так что без детальной теории внутренней структуры судить о знаке электромагнитной разности масс нелегко.
Мне хотелось бы подчеркнуть лишь следующие особенности:
1. Электромагнитная теория предсказывает существование электромагнитной массы, но она тут же терпит фиаско, ибо оказывается несамосогласованной. Это в равной мере относится и к квантовым модификациям.
2. Существует экспериментальное подтверждение электромагнитной массы.
3. Все разности масс по порядку величины такие же, как и масса электрона.
Итак, мы снова возвращаемся к первоначальной идее Лоренца, что масса электрона вполне может быть целиком электромагнитной, т. е. все его 0,511 Мэв обусловлены электродинамикой. Так это или нет? У нас нет теории и по сей день, поэтому мы ничего не можем сказать с уверенностью.
Мне хочется упомянуть еще об одном досадном обстоятельстве. В природе существует еще одна частица, называемая μ-мезоном, или мюоном, которая, насколько нам известно сегодня, решительно ничем не отличается от электрона, за исключением своей массы (равной 206,77 электронных масс). Она во всем ведет себя так же, как электрон: взаимодействует с нейтрино и электромагнитным полем, но на нее не действуют ядерные силы. С ней не происходит ничего такого, чего не происходит с электронами, по крайней мере ничего такого, чего нельзя было бы объяснить, как простое следствие большей массы. Поэтому, если в конце концов кому-то и удается объяснить массу электрона, для него остается загадкой, откуда же берет свою массу μ-мезон. Почему? Да потому, что все, что делает электрон, может делать и μ-мезон, так что массы их должны получиться одинаковыми. Есть люди, которые непоколебимо верят, что μ-мезон и электрон — это одна и та же частица, что в окончательной будущей теории масс формула, из которой они должны определяться, будет представлять собой квадратное уравнение с двумя корнями, один из которых даст массу μ-мезона, а другой — электрона. Есть и такие, которые полагают, что это будет трансцендентное уравнение с бесконечным числом корней; они занимаются гаданием, какими должны быть массы других частиц этого ряда и почему они не открыты до сих пор.
§ 6. Поле ядерных сил
Мне бы хотелось сделать еще несколько замечаний о неэлектромагнитной части массы ядерных частиц. Откуда берется большая доля их массы? Кроме электродинамических сил, существуют еще силы другого рода — ядерные силы, у которых есть своя собственная теория поля, хотя никому неизвестно, правильна она или нет. Эта теория также предсказывает энергию поля, которая для ядерных частиц дает массу, аналогичную электромагнитной. Ее можно называть «π-мезополевой массой». Она, по-видимому, очень велика, так как ядерные силы чрезвычайно мощны, и возможно, что именно они являются причиной массы тяжелых частиц. Однако теории мезонных полей находятся в весьма зачаточном состоянии. Даже в сравнительно хорошо развитой теории электромагнетизма мы видели, что, кроме первоначальных намеков, невозможно получить объяснение массы электрона. В мезонных же теориях мы в этом месте тоже терпим неудачу.
Однако мезонная теория очень интересно связана с электродинамикой, и поэтому стоит все же уделить некоторое время изложению ее основ. Поле в электродинамике можно описать четырехвектором потенциала, удовлетворяющим уравнению
Мы видели, что поле может быть излучено, после чего оно существует независимо от источника. Это фотоны, и они описываются дифференциальным уравнением без источника:
Некоторые физики утверждают, что поле ядерных сил тоже должно иметь свои собственные «фотоны», роль которых, по-видимому, играют π-мезоны, и что они должны описываться аналогичным дифференциальным уравнением. (До чего же бессилен человеческий разум! Мы не можем придумать чего-то действительно нового и беремся рассуждать только по аналогии с тем, что знаем.) Таким образом, возможным уравнением для мезонов будет
где φ может быть каким-то другим четырехвектором или, возможно, скаляром. Далее выяснилось, что у π-мезона никакой поляризации нет, поэтому φ должно быть скаляром. Согласно этому простому уравнению, мезонное поле должно изменяться с расстоянием от источника как 1/r2, т. е. в точности как электрическое. Однако мы знаем, что радиус действия ядерных сил гораздо меньше, чего не может обеспечить нам это простое уравнение. Есть только один способ изменить положение вещей, не разрушая релятивистской инвариантности,— добавить или вычесть из даламбертиана произведение константы на поле φ. Итак, Юкава предположил, что свободные кванты ядерных сил могут подчиняться уравнению
(28.17)
где μ2 — некоторая постоянная, т. е. какой-то скаляр. (Поскольку ☐2 является скалярным дифференциальным оператором, то инвариантность не нарушится, если мы добавим к нему другой скаляр.)
Давайте посмотрим, что дает уравнение (28.17), когда ядерные силы не изменяются с течением времени. Мы хотим найти решение уравнения
которое было бы сферически симметрично относительно некоторой точки, скажем относительно начала координат. Если φ зависит только от r, то мы знаем, что
Таким образом, получается уравнение
или
Рассматривая теперь произведение (rφ) как новую функцию, мы имеем для нее уравнение, которое встречалось нам уже много раз. Решение ее имеет вид
Ясно, что при больших r поле φ не может быть бесконечным, поэтому нужно отбросить знак плюс в показателе экспоненты, после чего решение примет вид
(28.18)
Эта функция называется потенциалом Юкавы. Для сил притяжения К должно быть отрицательным числом, величина которого подбирается так, чтобы удовлетворить экспериментально наблюдаемой величине ядерных сил.
Потенциал Юкавы благодаря экспоненциальному множителю угасает быстрее, чем 1/r. Как это видно из фиг. 28.6, для расстояний, превышающих 1/μ, потенциал, а следовательно, и ядерные силы приближаются к нулю гораздо быстрее, чем 1/r.
Фиг. 28.6. Сравнение потенциала Юкавы. е-μr/r с кулоновым потенциалом 1/r.
Поэтому «радиус действия» ядерных сил гораздо меньше «радиуса действия» электростатических. Экспериментально доказано, что ядерные силы не простираются на расстояния свыше 10-13 см, поэтому μ≈1015 м-1.
И, наконец, давайте рассмотрим волновое решение уравнения (28.17). Если мы подставим в него
то получим
Связывая теперь частоту с энергией, а волновое число с импульсом, как это делалось в конце гл. 34 (вып. 3), мы найдем соотношение
которое говорит, что масса «фотона» Юкавы равна μℏ/с. Если в качестве μ взять величину ~1015м-1, которую дает наблюдаемый радиус действия ядерных сил, то масса оказывается равной 3·10-25 г, или 170 Мэв, что приблизительно равно наблюдаемой массе π-мезона. Таким образом, по аналогии с электродинамикой мы бы сказали, что π-мезон — это «фотон» поля ядерных сил. Однако теперь мы распространили идеи электродинамики в такую область, где они на самом деле могут оказаться и неверными. Мы вышли далеко за рамки электродинамики и очутились перед проблемой ядерных сил.
Глава 29 ДВИЖЕНИЕ ЗАРЯДОВ В ЭЛЕКТРИЧЕСКОМ И МАГНИТНОМ ПОЛЯХ
Повторить: гл. 30 (вып. 3) «Дифракция».
§ 1. Движение в однородных электрическом и магнитном полях
Мы теперь перейдем к описанию в общих чертах движения зарядов в различных условиях. Наиболее интересные явления возникают тогда, когда зарядов движется много и все они взаимодействуют друг с другом. Так обстоит дело, когда электромагнитные волны проходят через кусок вещества или плазму; тогда легионы зарядов взаимодействуют друг с другом. Но это очень сложная картина. Позднее мы поговорим и о таких проблемах; пока же мы обсудим несравненно более простую задачу о движении отдельного заряда в заданном поле. При этом можно пренебречь всеми другими зарядами, за исключением, разумеется, тех зарядов и токов, которые создают предполагаемое нами поле.
Начать, по-видимому, нужно с движения частицы в однородном электрическом поле. Движение при небольших скоростях не представляет особенного интереса — это просто равномерно ускоренное движение в направлении поля. А вот когда частица, набрав достаточно энергии, превращается в релятивистскую, движение ее становится более сложным. Решение для этого случая я оставляю вам — потрудитесь и отыщите его сами.
Мы же рассмотрим движение в однородном магнитном поле, когда электрического поля нет. Эту задачу мы уже решали. Одним из решений было движение частиц по окружности. Магнитная сила qv×В всегда действует под прямым углом к направлению движения, так что производная dp/dt перпендикулярна р и равна по величине vp/R, где R — радиус окружности, т. е.
Таким образом, радиус круговой орбиты равен
(29.1)
Это одно из возможных движений. Если движущаяся частица имеет только одну составляющую в направлении поля, то она не изменяется, ибо у магнитной силы отсутствует компонента в направлении поля. Общее же движение частицы в однородном магнитном поле — это движение с постоянной скоростью в направлении В и круговое движение под прямым углом к В, т. е. движение по цилиндрической спирали (фиг. 29.1).
Фиг. 29.1. Движение частицы в однородном магнитном поле.
Радиус спирали определяется равенством (29.1) с заменой р на р┴ — компоненту импульса, перпендикулярную к направлению поля.
§ 2. Анализатор импульсов
Однородное магнитное поле часто применяется в «анализаторе», или «спектрометре импульсов» высокоэнергетических частиц. Предположим, что в точке А (фиг. 29.2, а) в однородное магнитное поле влетают заряженные частицы, причем магнитное поле перпендикулярно плоскости рисунка.
Фиг. 29.2. 180-градусный спектрометр импульсов с однородным магнитным полем. а — траектории частиц с разными импульсами; 6 — траектории частиц, влетающих под равными углами. Магнитное поле направлено перпендикулярно плоскости рисунка.
При этом каждая частица будет лететь по круговой орбите, радиус которой пропорционален ее импульсу. Если все частицы влетают в поле перпендикулярно его краю, то они покидают его на расстоянии х от точки А, пропорциональном их импульсу р. Помещенный в некоторой точке С счетчик будет регистрировать только такие частицы, импульс которых находится где-то в интервале Δр величин p=qBx/2.
Нет необходимости, разумеется, чтобы перед регистрацией частица поворачивалась на 180°, но такой «180-градусный спектрометр» обладает особым свойством: для него совсем необязательно, чтобы частицы входили под прямым углом к краю поля. На фиг. 29.2, б показаны траектории трех частиц с одинаковым импульсом, но входящих в поле под различными углами. Вы видите, что траектории у них разные, но все они покидают поле очень близко к точке С. В подобных случаях мы говорим о «фокусировке». Преимущество такого способа фокусировки в том, что она позволяет допускать в точку А частицы, летящие под большими углами, хотя обычно, как видно из рисунка, углы эти в какой-то степени ограничены. Большое угловое разрешение обычно означает регистрацию за данный промежуток времени большего числа частиц и сокращения, следовательно, времени измерения.
Изменяя магнитное поле, передвигая счетчик вдоль оси х или же покрывая с помощью многих счетчиков целую область по оси х, можно измерить «спектр» падающего пучка [«спектр» импульсов f(p) означает, что число частиц с импульсами в интервале между р и (p+dp) равно f(p)dp]. Такие измерения проводятся, например, при определении распределения по энергиям в β-распаде различных ядер.
Имеется еще много других типов импульсных спектрометров, но я расскажу вам только об одном из них, характерном особенно большим разрешением по пространственному углу. В основе его лежат винтовые орбиты в однородном поле, как это показано на фиг. 29.1. Представьте себе цилиндрическую систему координат ρ, θ, z, причем ось z выбрана по направлению магнитного поля. Если частица испускается из начала координат под углом α к направлению оси z, то она будет двигаться по спиральной линии, описываемой выражением
входящие туда параметры а, b и k нетрудно выразить через ρ, α и магнитное поле В. Если для данного импульса, но разных начальных углов отложить расстояние ρ от оси как функцию z, то мы получим кривые, подобные сплошным кривым на фиг. 29.3. (Вы помните — ведь это своего рода проекция винтовой траектории.)
Фиг. 29.3. Спектрометр с аксиальным полем.
Когда угол между осью и начальным направлением велик, максимальное значение ρ тоже будет большим, а продольная скорость при этом уменьшается, так что выходящие под различными углами траектории стремятся собраться в своего рода фокус (точка А на рисунке). Если на расстоянии А поставить узкое кольцевое отверстие, то частицы, летящие в некоторой области углов, могут пройти через отверстие и достигнуть оси, где для их регистрации мы приготовим протяженный детектор D. Частицы, вылетающие из начала координат под тем же самым углом, но с большим импульсом, летят по пути, обозначенному нами пунктирной линией, и не могут пройти через отверстие А. Итак, прибор выбирает небольшой интервал импульса. Преимущество такого спектрометра по сравнению с описанным ранее состоит в том, что отверстия А и А' можно сделать кольцевыми, так что могут быть зарегистрированы частицы в довольно большом телесном угле. Это преимущество особенно важно для слабых источников и при очень точных измерениях, когда необходимо использовать возможно большую долю испущенных источником частиц.
Но за это преимущество приходится расплачиваться, ибо метод требует большого объема однородного магнитного поля, и он практически пригоден только для частиц с небольшой энергией. Если вы помните, один из способов получения однородного поля — это намотать провод на сферу так, чтобы поверхностная плотность тока была пропорциональна синусу угла. Вы можете доказать, что то же самое справедливо и для эллипсоида вращения. Поэтому очень часто такой спектрометр изготовляют, просто наматывая эллипсоидальные витки на деревянный или алюминиевый каркас. Единственное, что при этом требуется,— это чтобы ток на любом интервале оси Δх (фиг. 29.4) был одним и тем же.
Фиг. 29.4. Внутри эллипсоидальной катушки, ток которой на любом интервале оси Δx одинаков, возникает однородное поле.
§ 3. Электростатическая линза
Фокусировка частицы имеет множество применений. Например, в телевизионной трубке электроны, вылетающие из катода, фокусируются на экране в маленькое пятнышко. Делается это для того, чтобы отобрать электроны одинаковой энергии, но летящие под различными углами, и собрать их в небольшую точку. Эта задача напоминает фокусировку света с помощью линз, поэтому устройства, которые выполняют такие функции, тоже называются линзами.
В качестве примера электронной линзы здесь приведена фиг. 29.5.
Фиг. 29.5. Электростатическая линза. Показаны силовые линии, т. е. линии вектора qE.
Это «электростатическая» линза, действие которой зависит от электрического поля между двумя соседними электродами. Работу ее можно понять, проследив за тем, что она делает со входящим слева параллельным пучком частиц. Попав в область а, электроны испытывают действие силы с боковой компонентой, которая прижимает их к оси. В области b электроны, казалось бы, должны получить равный по величине, но противоположный по знаку импульс, однако это не так. К тому времени, когда они достигнут области b, энергия их несколько увеличится, и поэтому на прохождение области b они затратят меньше времени. Силы-то те же самые, но время их действия меньше, поэтому и импульс будет меньше. А полный импульс силы при прохождении областей а и b направлен к оси, так что в результате электроны стягиваются к одной общей точке. Покидая область высокого напряжения, частицы получают добавочный толчок по направлению к оси. В области с сила направлена от оси, а в области d — к оси, но во второй области частица остается дольше, так что снова полный импульс направлен к оси. Для небольших расстояний от оси полный импульс силы на протяжении всей линзы пропорционален расстоянию от оси (понимаете почему?), и это как раз основное условие, необходимое для обеспечения фокусировки линз такого типа.
С помощью этих же рассуждений вы можете убедиться, что фокусировка будет достигнута во всех случаях, когда потенциал в середине электрода по отношению к двум другим либо положителен, либо отрицателен. Электростатические линзы такого типа обычно используются в катоднолучевых трубках и некоторых электронных микроскопах.
§ 4. Магнитная линза
Есть еще один сорт линз — их часто можно встретить в электронных микроскопах — это магнитные линзы. Схематически они изображены на фиг. 29.6.
Фиг. 29.6. Магнитная линза.
Цилиндрически симметричный электромагнит с очень острыми кольцевыми наконечниками полюсов создает в малой области очень сильное неоднородное магнитное поле. Оно фокусирует электроны, летящие вертикально через эту область. Механизм фокусировки нетрудно понять; посмотрите увеличенное изображение области вблизи наконечников полюсов на фиг. 29.7.
Фиг. 29.7. Движение электрона в магнитной линзе.
Вы видите два электрона а и b, которые покидают источник S под некоторым углом по отношению к оси. Как только электрон а достигнет начала поля, горизонтальная компонента поля отклонит его в направлении от вас. Он приобретет боковую скорость и, пролетая через сильное вертикальное поле, получит импульс в направлении к оси. Боковое же движение убирается магнитной силой, когда электрон покидает поле, так что окончательным эффектом будет импульс, направленный к оси, плюс «вращение» относительно нее. На частицу b действуют те же силы, но в противоположном направлении, поэтому она тоже отклоняется по направлению к оси. На рисунке видно, как расходящиеся электроны собираются в параллельный пучок. Действие такого устройства подобно действию линзы на находящийся в ее фокусе объект. Если бы теперь вверху поставить еще одну такую же линзу, то она бы сфокусировала электроны снова в одну точку и получилось бы изображение источника S.
§ 5. Электронный микроскоп
Вы знаете, что в электронный микроскоп можно «увидеть» предметы, которые недоступно малы для оптического микроскопа. В гл. 30 (вып. 3) мы обсуждали общие ограничения любой оптической системы, вызываемые дифракцией на отверстии линзы.
Фиг. 29.8. Разрешение микроскопа ограничивается угловым размером объектива относительно фокуса.
Если отверстие объектива видно из источника под углом 2θ (фиг. 29.8), то две соседние точки, расположенные около источника, будут неразличимы, если расстояние между ними по порядку величины меньше
где λ — длина волны света. Для лучших оптических микроскопов угол θ приближается к теоретическому пределу 90°, так что δ приблизительно равно λ, или около 5000 Å.
Тe же самые ограничения применимы и к электронному микроскопу, но только длина волн в нем, т, е. длина волны электронов с энергией 50 кв, составляет 0,05 Å. Если бы можно было использовать объектив с отверстием около 30°, то мы способны были бы различить объекты величиной в 1/5 А. Атомы в молекулах обычно расположены на расстоянии 1—2 Å, следовательно, тогда вполне можно было бы получать фотографии молекул. Биология стала бы куда проще; мы бы могли сфотографировать структуру ДНК. Как это было бы замечательно! Ведь все сегодняшние исследования в молекулярной биологии — это попытки определить структуру сложных органических молекул. Если бы мы были способны их видеть!
Но к несчастью, самая лучшая разрешающая способность электронных микроскопов приближается только к 20 Å. А все потому, что до сих пор никому не удалось построить линзу с большой светосилой. Все линзы страдают «сферической аберрацией». Это означает вот что: лучи, идущие под большим углом к оси, и лучи, идущие близко к ней, фокусируются в разных точках (фиг. 29.9).
Фиг. 29.9. Сферическая аберрация линзы.
С помощью специальной технологии изготовляются линзы для оптических микроскопов с пренебрежимо малой сферической аберрацией, но никому до сих пор не удалось получить электронную линзу, лишенную сферической аберрации. Можно показать, что для любой электростатической или магнитной линзы описанных нами типов сферическая аберрация неизбежна. Наряду с дифракцией аберрация ограничивает разрешающую способность электронных микроскопов ее современным значением.
Ограничения, о которых мы упоминали, не относятся к электрическим и магнитным полям, не имеющим осевой симметрии или не постоянным во времени. Вполне возможно, что в один прекрасный день кто-нибудь придумает новый тип электронных линз, свободных от аберрации, присущей простым электронным линзам. Тогда можно будет непосредственно фотографировать атомы. Возможно, что когда-нибудь химические соединения будут анализироваться просто визуальным наблюдением за расположением атомов, а не по цвету какого-то осадка!
§ 6. Стабилизирующие поля ускорителей
Магнитные поля используются в высокоэнергетических ускорителях еще для того, чтобы заставить частицу двигаться по нужной траектории. Такие устройства, как циклотрон и синхротрон, ускоряют частицу до высоких энергий, заставляя ее многократно проходить через сильное электрическое поле. А на своей орбите частицу удерживает магнитное поле.
Мы видели, что путь частицы в однородном магнитном поле проходит по круговой орбите. Но это справедливо только для идеального магнитного поля. А представьте себе, что поле В в большой области только приблизительно однородно: в одной части оно немного сильнее, чем в другой. Если в такое поле мы запустим частицу с импульсом р, то она полетит по примерно круговой орбите с радиусом R=p/qB. Однако в области более сильного поля радиус кривизны будет несколько меньше. При этом орбита уже не будет замкнутой окружностью, а возникнет «дрейф», подобный изображенному на фиг. 29.10.
Фиг. 29.10. Движение частицы в слабо неоднородном поле.
Если угодно, можно считать, что небольшая «ошибка» в поле приводит к толчку, который сдвигает частицу на новую траекторию. В ускорителе же частица делает миллионы оборотов, поэтому необходима своего рода «радиальная фокусировка», которая удерживала бы траектории частиц на близкой к желаемой орбите.
Другая трудность, связанная с однородным полем, состоит в том, что частицы не остаются в одной плоскости. Если они начинают движение под небольшим углом или небольшой угол создается неточностью поля, то частицы идут по спиральному пути, который в конце концов приведет их либо на полюс магнита, либо на потолок или пол вакуумной камеры. Чтобы избежать такого вертикального дрейфа, нужны какие-то устройства; магнитное поле должно обеспечивать как радиальную, так и «вертикальную» фокусировки.
Сразу же можно догадаться, что радиальную фокусировку обеспечивает созданное магнитное поле, которое увеличивается с ростом расстояния от центра проектируемого пути. Тогда, если частица выйдет на больший радиус, она окажется в более сильном поле, которое вернет ее назад на нужную орбиту. Если она перейдет на меньший радиус, то «загибание» будет меньше и она снова вернется назад на желаемый радиус. Если частица внезапно начала двигаться под углом к идеальной орбите, она начнет осциллировать относительно нее (фиг. 29.11, а) и радиальная фокусировка будет удерживать частицу вблизи кругового пути.
Фиг. 29.11. Радиальное движение частицы в магнитном поле. а — с большим положительным «наклоном»; б — с малым отрицательным «наклоном»; в — с большим отрицательным «наклоном».
Фактически радиальная фокусировка происходит даже при противоположном «наклоне». Это может происходить в тех случаях, когда радиус кривизны траектории увеличивается не быстрее, чем расстояние частицы от центра поля. Орбиты частиц будут подобны изображенным на фиг. 29.11,б. Но если градиент поля слишком велик, то частицы не вернутся на желаемый радиус, а будут по спирали выходить из поля либо внутрь, либо наружу (фиг. 29.11,в).
«Наклон» поля мы обычно характеризуем «относительным градиентом», или индексом поля n
(29.2)
Направляющее поле создает радиальную фокусировку, если относительный градиент будет больше -1.
Радиальный градиент поля приведет также к вертикальным силам, действующим на частицу. Предположим, мы имеем поле, которое вблизи центра орбиты сильнее, а снаружи слабее. Вертикальное поперечное сечение магнита под прямым углом к орбите может иметь такой вид, как показано на фиг. 29.12. (Причем протоны летят на нас из страницы.)
Фиг. 29.12. Вертикально фокусирующее поле. Вид в поперечном сечении, перпендикулярном к орбите.
Если нам нужно, чтобы поле было сильнее слева и слабее справа, то магнитные силовые линии должны быть искривлены подобно изображенным на рисунке. То, что это должно быть так, можно увидеть из закона равенства нулю циркуляции В в пустом пространстве. Если выбрать систему координат, показанную на рисунке, то
или
(29.3)
Поскольку мы предполагаем, что ∂Bz/∂x отрицательно, то равным ему и отрицательным должно быть и ∂Bх/∂z. Если «номинальной» плоскостью орбиты является плоскость симметрии, где Вх=0, то радиальная компонента Вх будет отрицательной над плоскостью и положительной под ней. При этом линии должны быть искривлены так, как это изображено на рисунке.
Такое поле должно обладать вертикально фокусирующими свойствами. Представьте себе протон, летящий более или менее параллельно центральной орбите, но выше нее. Горизонтальная компонента В будет действовать на протон с силой, направленной вниз. Если же протон находится ниже центральной орбиты, то сила изменит свое направление. Таким образом, возникает эффективная «восстанавливающая сила», направленная к центру орбиты. Из наших рассуждений получается, что при условии уменьшения вертикального поля с увеличением радиуса должна происходить вертикальная фокусировка. Однако если градиент поля положительный, то происходит «вертикальная дефокусировка». Таким образом, для вертикальной фокусировки индекс поля n должен быть меньше нуля. Выше мы нашли, что для радиальной фокусировки значение n должно быть больше -1. Комбинация этих двух условий требует для удержания частиц на стабильных орбитах, чтобы
В циклотронах обычно используется величина n, приблизительно равная нулю, а в бетатронах и синхротронах типичной величиной является n=-0,6.
§ 7. Фокусировка чередующимся градиентом
Столь малые величины n дают довольно «слабую» фокусировку. Ясно, что гораздо большую радиальную фокусировку можно было бы получить для большого положительного градиента (n≫1), но при этом вертикальные силы будут сильно дефокусирующими. Подобным же образом большой отрицательный наклон (n≪-1) давал бы большие вертикальные силы, но при этом вызывал бы сильную радиальную дефокусировку. Однако примерно 10 лет назад было установлено, что чередующееся действие областей с сильной фокусировкой и область с сильной дефокусировкой в целом приводят к фокусирующему эффекту.
Чтобы объяснить, как работает такая фокусировка, разберем сначала действие квадрупольной линзы, которая устроена по тому же принципу. Представьте себе, что к магнитному полю, изображенному на фиг. 29.12, добавлено однородное отрицательное магнитное поле, сила которого подобрана так, чтобы поле на орбите было равно нулю. Результирующее поле при малых смещениях от нейтральной точки будет напоминать изображенное на фиг. 29.13.
Фиг. 29.13. Горизонтально фокусирующая квадрупольная линза.
Такой четырехполюсный магнит называется «квадрупольной линзой». Положительная частица, которая входит (со стороны читателя) справа или слева от центра, снова втягивается в центр. Если же частица входит сверху или снизу от центра, то она выталкивается из него. Это горизонтально-фокусирующая линза. Если теперь обратить горизонтальный градиент, что может быть сделано переменой всех полюсов на противоположные, то знак всех сил изменится на обратный и мы получим вертикально-фокусирующую линзу (фиг. 29.14).
Фиг. 29.14. Вертикально-фокусирующая квадрупольная линза.
Напряженность поля у таких линз, а следовательно, и фокусирующая сила возрастают линейно с удалением от оси линзы.
Представьте себе теперь, что мы поставили подряд две такие линзы. Если частица входит с некоторым горизонтальным смещением относительно оси (фиг. 29.15, а), то она отклонится по направлению к оси первой линзы.
Фиг. 29.15. Горизонтальная и вертикальная фокусировка парой квадрупольных линз.
Когда же она подходит ко второй линзе, то оказывается ближе к оси, где выталкивающая сила меньше, поэтому меньшим будет и отклонение от оси. В результате же получится наклон к оси, т. е. в среднем их действие окажется горизонтально-фокусирующим. С другой стороны, если мы возьмем частицу, которая отклоняется от оси в вертикальном направлении, то путь ее будет таким, как показано на фиг. 29.15, б. Частица сначала отклоняется от оси, а затем входит во вторую линзу с большим смещением, испытывая действие большей силы, в результате чего отклоняется к оси. В целом эффект снова будет фокусирующим. Таким образом, действие пары квадрупольных линз, действующих независимо в горизонтальном и вертикальном направлениях, очень напоминает действие оптической линзы. Квадрупольные линзы используются для формирования пучка частиц и контроля над ним в точности так же, как оптические линзы используются для светового пучка.
Нужно подчеркнуть, что переменно-градиентная система не всегда приводит к фокусировке. Если градиент слишком велик (по сравнению с импульсом частиц или с расстоянием между линзами), то результирующее действие будет дефокусирующим. Вы поймете, как это получается, если вообразите, что пространство между двумя линзами на фиг. 29.15 увеличилось в три или четыре раза.
А теперь вернемся к синхротронному направляющему магниту. Можно считать, что он состоит из чередующейся последовательности «положительных» и «отрицательных» линз с наложенным поверх них однородным полем. Однородное поле служит для удержания частиц в среднем на горизонтальной окружности (на вертикальное движение оно не влияет), а переменные линзы действуют на любую частицу, которая норовит сбиться с пути, подталкивая ее все время к центральной орбите (в среднем).
Существует очень хороший механический аналог, который демонстрирует, как переменная «фокусирующая и дефокусирующая» сила может привести в результате к «фокусирующему» эффекту. Представьте себе механический «маятник», состоящий из твердого стержня с грузиком, подвешенным на оси, которая с помощью кривошипа, связанного с мотором, может быстро раскачиваться вверх и вниз. У такого маятника есть два положения равновесия. Кроме нормального положения, когда маятник свешивается вниз, у него есть еще положение равновесия, когда он торчит кверху,— грузик при этом находится над точкой опоры (фиг. 29.16).
Фиг. 29.16. Маятник с осциллирующей осью имеет устойчивое положение с грузиком, находящимся наверху.
Простые рассуждения показывают, что вертикальное движение стержня эквивалентно переменной фокусирующей силе. Когда стержень ускоряется вниз, грузик стремится двигаться по направлению к вертикали, как это показано на фиг. 29.17, а когда грузик ускоряется вверх,— все происходит в обратном порядке. Но несмотря на то, что сила все время изменяет свое направление, в среднем она действует к вертикали. Таким образом, маятник будет качаться туда и сюда около нейтрального положения, которое прямо противоположно нормальному.
Существует, конечно, более простой способ удержать маятник «вверх ногами» — например сбалансировать его на пальце. А вот попробуйте-ка так удержать два независимых маятника на одном пальце. Или даже один, но с закрытыми глазами. Балансирование означает внесение небольших поправок в то, что неверно. А если одновременно неверны несколько параметров, то балансирование в большинстве случаев невозможно. Однако в синхротроне по орбите одновременно движутся миллиарды частиц, каждая из которых имеет свою собственную «ошибку», и тем не менее описанный нами способ фокусировки действует сразу на все эти частицы.
Фиг. 29.17. Ускорение оси маятника вниз приводит к движению его по направлению к вертикали.
§ 8. Движение в скрещенных электрическом и магнитном полях
До сих пор мы говорили о частицах, находящихся только в электрическом или только в магнитном поле. Но есть интересные эффекты, возникающие при одновременном действии обоих полей. Пусть у нас имеется однородное магнитное поле В и направленное к нему под прямым углом электрическое поле Е. Тогда частицы, влетающие перпендикулярно полю В, будут двигаться по кривой, подобной изображенной на фиг. 29.18. (Это плоская кривая, а не спираль.)
Фиг. 29.18. Путь частицы в скрещенных электрическом и магнитном полях.
Качественно это движение понять нетрудно. Если частица (которую мы считаем положительной) движется в направлении поля Е, то она набирает скорость, и магнитное поле загибает ее меньше. А когда частица движется против поля Е, то она теряет скорость и постепенно все больше и больше загибается магнитным полем. В результате же получается «дрейф» в направлении (Е×B).
Мы можем показать, что такое движение есть по существу суперпозиция равномерного движения со скоростью vd=E/B и кругового, т. е. на фиг. 29.18 изображена просто циклоида. Представьте себе наблюдателя, который движется направо с постоянной скоростью. В его системе отсчета наше магнитное поле преобразуется в новое магнитное поле плюс электрическое поле, направленное вниз. Если его скорость подобрана так, что полное электрическое поле окажется равным нулю, то наблюдатель будет видеть электрон, движущийся по окружности. Таким образом, движение, которое мы видим, будет круговым движением плюс перенос со скоростью дрейфа vd=E/B. Движение электронов в скрещенных электрическом и магнитном полях лежит в основе магнетронов, т. е. осцилляторов, применяемых при генерации микроволнового излучения.
Есть еще немало других интересных примеров движения частиц в электрическом и магнитном полях, например орбиты электронов или протонов, захваченных в радиационных поясах в верхних слоях стратосферы, но, к сожалению, у нас не хватает времени, чтобы заниматься сейчас еще и этими вопросами.
Выпуск 7. Физика сплошных сред
Глава 30 ВНУТРЕННЯЯ ГЕОМЕТРИЯ КРИСТАЛЛОВ[37]
§ 1. Внутренняя геометрия кристаллов
Мы закончили изучение основных законов электричества и магнетизма и теперь можем заняться электромагнитными свойствами вещества. Начнем с изучения твердых тел, точнее кристаллов. Если атомы в веществе движутся не слишком активно, они сцепляются и располагаются в конфигурации с наименьшей возможной энергией. Если атомы где-то разместились так, что их расположения отвечают самой низкой энергии, то в другом месте атомы создадут такое же расположение. Поэтому в твердом веществе расположение атомов повторяется.
Иными словами, условия в кристалле таковы, что каждый атом окружен определенно расположенными другими атомами, и если посмотреть на атом такого же сорта в другом месте, где-нибудь подальше, то обнаружится, что окружение его и в новом месте точно такое же. Если вы выберете атом еще дальше, то еще раз найдете точно такие же условия. Порядок повторяется снова и снова и, конечно, во всех трех измерениях.
Представьте, что вам нужно создать рисунок на обоях или ткани или некий геометрический чертеж для плоской поверхности, в котором (как вы предполагаете) имеется элемент, повторяющийся непрерывно снова и снова, так что можно сделать эту поверхность настолько большой, насколько вам захочется. Это двумерный аналог задачи, которая решается в кристалле в трех измерениях. На фиг. 30.1,а показан общий характер рисунка обоев. Один элемент повторяется регулярно, и это может продолжаться бесконечно.
Фиг. 30.1. Повторяющийся рисунок обоев в двух намерениях.
Геометрические характеристики этого рисунка обоев, учитывающие только его свойства повторяемости и не касающиеся геометрии самого цветка или его художественных достоинств, показаны на фиг. 30.1,б. Если вы возьмете за отправную какую-то точку, то сможете найти соответствующую точку, сдвигаясь на расстояние а в направлении, указанном стрелкой 1. Вы можете попасть в соответствующую точку, также сдвинувшись на расстояние b в направлении, указанном другой стрелкой. Конечно, имеется еще много других направлений. Так, вы можете из точки α отправиться в точку β и достигнуть соответствующего положения, но такой шаг можно рассматривать как комбинацию шага в направлении 1 вслед за шагом в направлении 2. Одно из основных свойств ячейки состоит в том, что ее можно описывать двумя кратчайшими шагами к соседним эквивалентным расположениям. Под «эквивалентными» расположениями мы подразумеваем такие, что в каком бы из них вы ни находились, поглядев вокруг себя, вы увидите точно то же самое, что и в любом другом положении. Это фундаментальное свойство кристаллов. Единственное различие в том, что кристалл имеет трехмерное, а не двумерное расположение и, естественно, каждый элемент решетки представляет не цветы, а какие-то образования из атомов, например шести атомов водорода и двух атомов углерода, регулярно повторяющихся. Порядок расположения атомов в кристалле можно исследовать экспериментально с помощью дифракции рентгеновских лучей. Мы кратко упоминали об этом методе раньше и не будем добавлять здесь к сказанному чего-либо, а отметим лишь, что точное расположение атомов в пространстве установлено для большинства простых кристаллов, а также для многих довольно сложных кристаллов.
Внутреннее устройство кристалла проявляется по-разному. Во-первых, связующая сила атомов в определенных направлениях сильнее, чем в других направлениях. Это означает, что имеются определенные плоскости, по которым кристалл разбить легче, чем в других направлениях. Они называются плоскостями спайности. Если кристалл расколоть лезвием ножа, то скорее всего он расщепится именно вдоль такой плоскости. Во-вторых, внутренняя структура часто проявляется в форме кристалла.
Представьте себе, что кристалл образуется из раствора. В растворе плавают атомы, которые в конце концов пристраиваются, когда находят положение, отвечающее наименьшей энергии. (Все происходит так, как если бы обои были созданы из цветов, плавающих в разных направлениях до тех пор, пока случайно один из цветков не зацепился бы накрепко за определенную точку, за ним другой и т. д., пока постепенно не образовался узор.) Вы, вероятно, догадываетесь, что в одних направлениях кристалл будет расти быстрее, чем в других, создавая по мере роста некоторую геометрическую форму. Именно поэтому внешняя поверхность многих кристаллов носит на себе отпечаток внутреннего расположения атомов.
В качестве примера на фиг. 30.2,a показана типичная форма кристалла кварца, ячейка которого гексагональна. Если вы внимательно посмотрите на этот кристалл, то обнаружите, что его внешние грани образуют не слишком хороший шестиугольник, потому что не все стороны имеют одинаковую длину, а часто бывают даже совсем разными.
Фиг. 30.2. Природный кристалл кварца (а), крупинки соли (б) и слюды (в).
Но в одном отношении этот шестиугольник вполне правильный: углы между гранями составляют в точности 120°. Ясное дело, размер той или иной грани случайно складывается в процессе роста, но в углах проявляется геометрия внутреннего устройства. Поэтому все кристаллы кварца имеют разную форму, но в то же время углы между соответствующими гранями всегда одни и те же.
Внутреннее геометрическое устройство кристалла хлористого натрия также легко понять из его внешней формы.
На фиг. 30.2, б показана типичная форма крупинки соли. Это опять не совершенный куб, но грани действительно перпендикулярны друг другу. Более сложный кристалл — это слюда, он имеет форму, изображенную на фиг 30.2, в. Этот кристалл в высшей степени анизотропен — он очень прочен в одном направлении (на рисунке — горизонтальном) и его трудно расколоть, а в другом направлении он легко расщепляется (в вертикальном). Обычно он используется для получения очень прочных, тонких листов. Слюда и кварц — примеры природных минералов, содержащих кремний. Третий минерал, содержащий кремний, — это асбест, обладающий тем интересным свойством, что его легко растянуть в двух направлениях, а в третьем он не поддается растягиванию. Создается впечатление, что он сделан из очень прочных нитей.
§ 2. Химические связи в кристаллах
Механические свойства кристаллов несомненно зависят от рода химических связей между атомами. Поражающая неодинаковая прочность слюды по разным направлениям зависит от характера межатомной связи в этих направлениях. Вам наверняка уже рассказывали на лекциях по химии о разных типах химических связей. Прежде всего бывают ионные связи, мы уже говорили о них, когда толковали о хлористом натрии. Грубо говоря, атомы натрия теряют по одному электрону и становятся положительными ионами; атомы хлора приобретают электрон и становятся отрицательными ионами. Положительные и отрицательные ионы располагаются в трехмерном шахматном порядке и удерживаются вместе электрическими силами.
Ковалентная связь (когда электроны принадлежат одновременно двум атомам) встречается чаще и обычно более прочна. Так, в алмазе атомы углерода связаны ковалентными связями с ближайшими соседями в четырех направлениях, поэтому-то кристалл такой твердый. Ковалентная связь имеется и в кристалле кварца между кремнием и кислородом, но там связь на самом деле только частично ковалентная. Поскольку там электроны распределяются неравномерно между двумя атомами, атомы частично заряжены и кристалл до некоторой степени ионный. Природа не так проста, как мы пытаемся ее представить: существуют всевозможные градации между ковалентной и ионной связями.
Кристалл сахара обладает другим типом связи. Он состоит из больших молекул, атомы которых сильно связаны ковалентной связью, так что молекула образует прочную структуру. Но так как сильные связи вполне насыщены, то между отдельными молекулами имеется относительно слабое притяжение. В таких молекулярных кристаллах молекулы сохраняют, так сказать, свою индивидуальность, и внутреннее устройство можно изобразить так, как на фиг. 30.3.
Фиг. 30.3. Решетка молекулярного кристалла.
Поскольку молекулы не очень крепко держатся друг за друга, то кристалл легко можно расколоть. Такого рода кристаллы резко отличаются от кристаллов типа алмаза, который есть не что иное, как одна гигантская молекула, не поддающаяся разлому без того, чтобы не нарушить сильные ковалентные связи.
Другим примером молекулярного кристалла может служить парафин.
Предельным случаем молекулярного кристалла являются вещества типа твердого аргона. Там притяжение между атомами незначительно — каждый атом представляет собой вполне насыщенную одноатомную «молекулу». Но при очень низких температурах тепловое движение настолько слабо, что крошечные межатомные силы могут заставить атомы расположиться в правильном порядке, подобно картофелинам, тесно набитым в кастрюле.
Металлы образуют совсем особый класс веществ. Там связь имеет совершенно другой характер. В металле связь возникает не между соседними атомами, а является свойством всего кристалла. Валентные электроны принадлежат не одному-двум атомам, а всему кристаллу в целом. Каждый атом вкладывает свой электрон в общий запас электронов, и положительные атомные ионы как бы плавают в океане отрицательных электронов. Электронный океан, подобно клею, удерживает ионы вместе.
Поскольку в металлах нет особых связей в каком-то определенном направлении, то там связь слабо зависит от направления. Однако металлы — это еще кристаллические тела, потому что полная энергия принимает наименьшее значение, когда ионы образуют упорядоченную систему, хотя энергия наиболее выгодного расположения обычно ненамного ниже других возможных расположений. В первом приближении атомы многих металлов подобны маленьким шарикам, упакованным с максимальной плотностью.
§ 3. Рост кристаллов
Попробуйте представить себе образование кристаллов на Земле в естественных условиях. В поверхностном слое Земли все сорта атомов перемешаны между собой. Вулканическая деятельность, ветер и вода постоянно их смешивают, и они то и дело взбалтываются и перемешиваются. Но, несмотря на это, каким-то чудом атомы кремния постепенно начинают отыскивать друг друга, а потом и атомы кислорода, чтобы образовать вместе кремнезем. К одним атомам поодиночке пристраиваются другие, образуя кристалл, и смесь разделяется. А где-нибудь по соседству атомы хлора и натрия находят друг друга и строят кристалл соли.
Как же получается, что кристалл, начав строиться, позволяет присоединяться к себе только определенному сорту атомов? Так происходит потому, что вся система в целом стремится к наименьшему возможному значению энергии. Растущий кристалл примет новый атом, если благодаря ему энергия станет наименьшей. Но откуда кристалл знает, что атом кремния (или кислорода), будучи поставлен в данное место, приведет к наименьшему значению энергии? Узнаёт он это методом проб и ошибок. В жидкости все атомы находятся в непрестанном движении. Каждый атом ударяется о соседние примерно 1013 раз в секунду. Если он ударяется о подходящее место в растущем кристалле, вероятность того, что он улетит обратно, будет несколько меньше там, где меньше энергия. Продолжая так пробовать миллионы лет, с частотой 1013 проб в секунду, атомы постепенно оседают на тех местах, где находят для себя положение с наименьшей энергией. В конце концов из них вырастают большие кристаллы.
§ 4. Кристаллические решетки
Расположение атомов в кристалле — кристаллическая решетка — может принимать множество геометрических форм. Мы опишем сначала простейшие решетки, характерные для большинства металлов и инертных газов в твердом состоянии. Это кубические решетки, которые могут быть двух видов: объемноцентрированная кубическая (фиг. 30.4, а) и гранецентрированная кубическая (фиг. 30.4, б).
Фиг. 30.4. Элементарная ячейка кубического кристалла, а — объемноцентрированная; б — гранецентрированная.
Конечно, на рисунках показан только один «куб» решетки; вы должны мысленно представить, что все это повторяется в трех измерениях до бесконечности. Для простоты на рисунке показаны только «центры» атомов. В настоящих кристаллах атомы скорее похожи на соприкасающиеся друг с другом шарики. Темные и светлые шарики на приведенных рисунках могут, вообще говоря, означать либо разные, либо одинаковые сорта атомов. Так, железо имеет объемноцентрированную кубическую решетку при низких температурах и гранецентрированную кубическую решетку при более высоких температурах. Физические свойства этих двух кристаллических форм совершенно различны.
Но как возникают такие формы? Представьте, что вы должны как можно плотнее упаковать атомы — шарики. Можно было бы начать со слоя, где шарики уложены в «гексагональной плотной упаковке», как показано на фиг. 30.5, а.
Фиг. 30.5. Устройство гексагональной решетки с плотной упаковкой.
Затем можно построить второй слой наподобие первого, но сместив его в горизонтальном направлении, как показано на фиг. 30.5, б. А потом можно наложить и третий слой. Вот тут — внимание! Третий слой можно наложить двумя разными способами. Если вы начнете класть третий слой, помещая атом в точку А на фиг. 30.5, б, то каждый атом в третьем слое окажется прямо над атомом первого нижнего слоя. Если же начать класть третий слой, помещая атом в точку В, то атомы третьего слоя будут расположены как раз над центрами треугольников, образованных тремя атомами нижнего слоя. Любая другая начальная точка эквивалентна А или В, так что существует только два способа размещения третьего слоя.
Если третий слой имеет атом в точке В, кристаллическая решетка будет гранецентрированной кубической, но видно это под некоторым углом. Забавно, что, начав с шестиугольников, можно прийти к кубической структуре. Но обратите внимание, что куб, рассматриваемый под определенным углом, имеет очертания шестиугольника. Например, фиг. 30.6 может изображать либо плоский шестиугольник, либо и куб в перспективе!
Если к фиг. 30.5, б добавляется третий слой, начиная с атома в точке А, то кубической структуры не возникает и у решетки будет только гексагональная симметрия. Ясно, что обе описанные нами возможности дают одинаковую плотную упаковку.
Некоторые металлы (например, серебро и медь) выбирают первую альтернативу — решетка у них гранецентрированная кубическая. Другие же (например, бериллий и магний) предпочитают вторую возможность и образуют гексагональные кристаллы. Очевидно, появление той или иной решетки не может зависеть только от способа упаковки маленьких шариков, но должно еще определяться и другими факторами. В частности, оказывается существенной небольшая угловая зависимость межатомных сил (или в случае металлов от энергии электронного океана).
Фиг. 30.6. Что это — шестиугольник или куб?
Все эти вещи вы несомненно узнаете из курса химии.
§ 5. Симметрии в двух измерениях
Теперь мне хотелось бы обсудить некоторые свойства кристаллов с точки зрения их внутренних симметрий. Основное свойство кристалла состоит в том, что если вы сдвинетесь от одного атома на один период решетки к соответствующему атому, то попадете в точно такое же окружение. Это фундаментальное утверждение. Но если бы вы сами были атомом, то могли бы заметить другое передвижение, которое привело бы вас в точно такое же окружение, т. е. в другую возможную «симметрию». На фиг. 30.7, а показан еще один возможный узор обоев (хотя вы, наверно, такого никогда не видали).
Фиг. 30.7. Узор обоев с высокой симметрией.
Предположим, что мы сравниваем окружения в точках А и В. Вы могли бы сперва подумать, что они одинаковы. Не совсем. Точки С и D эквивалентны А, но окружение В подобно А, только если все рядом обращать как будто в зеркале.
В этом узоре имеются еще и другие виды «эквивалентных» точек. Так, точки Е и F обладают «одинаковыми» окружениями, за тем исключением, что одно повернуто на 90° по отношению к другому. Узор особенный. Вращение на 90°, проделанное сколько угодно раз вокруг такой вершины, как A, снова дает тот же узор. Кристалл с такой структурой имел бы на поверхности прямые углы, но внутри он устроен сложнее, чем простой куб.
Теперь, когда мы описали ряд частных случаев, попытаемся вывести все возможные типы симметрии, какие может иметь кристалл. Прежде всего посмотрим, что получается в плоскости. Плоская решетка может быть определена с помощью двух так называемых основных векторов, которые идут от одной точки решетки к двум ближайшим эквивалентным точкам. Два вектора 1 и 2 суть основные векторы решетки на фиг. 30.1. Два вектора а и b на фиг. 30.7, а — основные векторы для изображенного там узора. Мы могли бы, конечно, с тем же успехом заменить а на -а или b на -b. Раз а и b одинаковы по величине и перпендикулярны друг другу, то вращение на 90° переводит а в b и b в а и снова дает ту же решетку.
Итак, мы видим, что существуют решетки, обладающие «четырехсторонней» симметрией. А раньше мы описали плотную упаковку, основанную на шестиугольнике и обладающую шестисторонней симметрией. Вращение набора кружков на фиг. 30.5, а на угол 60° вокруг центра любого шарика переводит рисунок сам в себя.
Какие виды вращательной симметрии существуют еще? Может ли быть, например, вращательная симметрия пятого или восьмого порядка? Легко понять, что они невозможны. Единственная симметрия, связанная с фигурой, имеющей более четырех сторон, есть симметрия шестого порядка. Прежде всего покажем, что симметрия более чем шестого порядка невозможна. Попытаемся вообразить решетку с двумя равными основными векторами, образующими угол менее 60° (фиг. 30.8, а).
Фиг. 30.8. Симметрия вращения выше шестого порядка невозможна (а); симметрия вращения пятого порядка невозможна (б).
Мы должны предположить, что точки В и С эквивалентны А и что а и b — наиболее короткие векторы, проведенные из А до эквивалентных соседей. Но это, безусловно, неверно, потому что расстояние между В и С короче, чем от любого из них до А. Должна существовать соседняя точка D, эквивалентная А, которая ближе к А, чем к В или С. Мы должны были бы выбрать b' в качестве одного из основных векторов. Поэтому угол между основными векторами должен быть равен 60° или еще больше. Октагональная симметрия невозможна.
А как быть с пятикратной симметрией? Если мы предположим, что основные векторы а и b имеют одинаковую длину и образуют угол 2π/5=72° (фиг. 30.8, б), то должна существовать эквивалентная точка решетки в D под 72° к линии АС. Но вектор b' от Е к D тогда короче b, и b уже не основной вектор. Пятикратной симметрии быть не может. Единственные возможности, не приводящие к подобным трудностям, это θ=60, 90 или 120°. Очевидно, допустимы также нуль и 180°. Можно еще так выразить полученный нами результат: рисунок может не меняться при повороте на полный оборот (ничего не изменяется), полоборота, одну треть, одну четверть или одну шестую оборота. И этим исчерпываются все возможные вращательные симметрии на плоскости — всего их пять. Если 8=2π/n, то мы говорим об «n-кратной» симметрии, или симметрии n-го порядка. Мы говорим, что узор, для которого n равно 4 или 6, обладает более «высокой симметрией», чем узор с n, равным 1 или 2.
Вернемся к фиг. 30.7, а. Мы видим, что узор там обладает четырехкратной вращательной симметрией. На фиг. 30.7, б мы нарисовали другое расположение, которое обладает теми же свойствами симметрии, что и фиг. 30.7, а. Маленькие фигурки, похожие на запятые, — это асимметричные объекты, которые служат для определения симметрии изображения внутри каждого квадратика. Заметьте, что запятые в соседних квадратиках перевернуты попеременно, так что элементарная ячейка больше одного квадратика. Если бы запятых не было, рисунок по-прежнему обладал бы четырехкратной симметрией, но элементарная ячейка была бы меньше. Посмотрим внимательно на фиг. 30.7; мы обнаружим, что они обладают еще и другими типами симметрии. Так, отражение относительно каждой пунктирной линии R—R воспроизводит рисунок без изменений. Но это еще не все. У них есть еще один тип симметрии. Если отразить рисунок относительно линии y—y, а затем сдвинуть на один квадратик вправо (или влево), то снова получится первоначальный рисунок. Линия у—у называется линией скольжения.
Этим исчерпываются все типы симметрии в пространстве двух измерений. Есть еще одна пространственная операция симметрии, которая на плоскости эквивалентна вращению на 180°, однако в трехмерном пространстве она не сводится к этому вращению, а есть совсем другая операция. Я говорю об инверсии. Под инверсией мы подразумеваем такую операцию, когда любая точка, отвечающая вектору смещения из начала координат R (например, точка А на фиг. 30.9, б), переносится в точку -R.
Фиг. 30.9. Операция симметрии, называемая инверсией. а — рисунок меняется; б — рисунок не меняется при преобразовании R → -R; в — в трех измерениях рисунок не симметричен после операции инверсии; г — рисунок симметричен в трех измерениях.
Инверсия рисунка а на фиг. 30.9 дает новый рисунок, а инверсия рисунка б приводит к такому же рисунку. На двумерном узоре (вы можете это видеть) инверсия рисунка б в точке А эквивалентна повороту на 180° вокруг той же самой точки. Предположим, однако, что мы сделали узор на фиг. 30.9, б трехмерным, вообразив на маленьких шестерках и девятках «стрелочки», смотрящие из страницы кверху. В результате инверсии в трехмерном пространстве все стрелочки перевернутся и направятся вниз, так что узор не воспроизведется. Если мы обозначим острия и хвосты стрелок точками и крестиками, то сможем образовать трехмерный рисунок (фиг. 30.9, в), который несимметричен относительно инверсии, или же мы можем получить рисунок, который такой симметрией обладает (фиг. 30.9, г). Заметьте, что трехмерную инверсию нельзя получить никакой комбинацией вращений.
Если мы будем характеризовать «симметрию» рисунка (или решетки) разного рода операциями симметрии, которые мы только что описали, то окажется, что в двумерном случае существуют 17 различных форм узоров. Узор с наинизшей возможной симметрией мы изобразили на фиг. 30.1, а узор с одной из наивысших симметрии — на фиг. 30.7. Отыщите сами все 17 возможных форм рисунков.
Удивительно, как мало типов из этих 17 используется при изготовлении обоев и тканей! Всегда видишь одни и те же три или четыре основных типа. В чем здесь дело? Неужели так убога фантазия художников или, может быть, многие из возможных типов рисунков не будут радовать глаз?
§ 6. Симметрии в трех измерениях
До сих пор мы говорили только об узорах в двух измерениях. На самом же деле нас интересуют способы размещения атомов в трех измерениях. Прежде всего очевидно, что трехмерный кристалл имеет три основных вектора. Если же мы поинтересуемся возможными операциями симметрии в трех измерениях, то обнаружим, что существует 230 возможных типов симметрии! По некоторым соображениям, эти 230 типов можно разделить на семь классов, представленных на фиг. 30.10.
Фиг. 30.10. Семь классов кристаллической решетки.
Решетка с наименьшей симметрией называется триклинной. Ее элементарная ячейка представляет собой параллелепипед. Основные векторы все имеют разную длину и нет ни одной одинаковой пары углов между ними. И никакой вращательной или зеркальной симметрии здесь нет. Однако есть еще одна операция: при инверсии в узле элементарная ячейка может меняться, а может и не меняться. [Под инверсией в трех измерениях мы снова подразумеваем, что пространственное смещение R заменяется на -R, или, другими словами, точка с координатами (х, у, z) переходит в точку с координатами (-x,-y, -z). Поэтому симметрия триклинной решетки может быть только двух типов — с центром инверсии и без него.] Пока мы считали, что все векторы разные и расположены под произвольными углами. Если же все векторы одинаковы и углы между ними равны, то получается тригональная решетка, изображенная на рисунке. Ячейка такой решетки может иметь добавочную симметрию; она может еще и не меняться при вращении вокруг наибольшей телесной диагонали.
Если один из основных векторов, скажем с, направлен под прямым углом к двум остальным, то мы получаем моноклинную элементарную ячейку. Здесь возможна новая симметрия — вращение на 180° вокруг с. Гексагональная решетка — это частный случай, когда векторы а и b равны и угол между ними составляет 60°, так что вращение на 60, 120 или 180° вокруг вектора с приводит к той же самой решетке (для определенных внутренних типов симметрии).
Если все три основных вектора перпендикулярны друг другу, но не равны по длине, получается ромбическая ячейка. Фигура симметрична относительно вращений на 180° вокруг трех осей. Типы симметрии более высокого порядка возникают у тетрагональной ячейки, все углы которой прямые и два основных вектора равны. Наконец, имеется еще кубическая ячейка, самая симметричная из всех.
Основной смысл всего этого разговора о типах симметрии состоит в том, что внутренняя симметрия кристалла проявляется (иногда весьма тонким образом) в макроскопических физических свойствах кристалла. В гл. 31 мы увидим, например, что электрическая поляризуемость кристалла, вообще говоря, представляет собой тензор. Если описывать тензор в терминах эллипсоида поляризуемости, то мы должны доказать, что некоторые типы симметрии кристалла проявятся в этом эллипсоиде. Так, кубический кристалл симметричен по отношению к вращению на 90° вокруг любого из трех взаимно перпендикулярных направлений. Единственный эллипсоид с таким свойством, — очевидно, сфера. Кубический кристалл должен быть изотропным диэлектриком.
С другой стороны, тетрагональный кристалл обладает вращательной симметрией четвертого порядка. Две главные оси его эллипсоида должны быть равны, а третья должна быть параллельна оси кристалла. Аналогично, поскольку ромбический кристалл обладает вращательной симметрией второго порядка относительно трех перпендикулярных осей, его оси должны совпадать с осями эллипсоида поляризуемости. Точно так же одна из осей моноклинного кристалла должна быть параллельна одной из главных осей эллипсоида, хотя о других осях мы ничего сказать не можем. Триклинный кристалл не обладает вращательной симметрией, поэтому его эллипсоид может иметь любую ориентацию.
Как видите, мы можем с пользой провести время, придумывая всевозможные типы симметрии и связывая их со всевозможными физическими тензорами. Мы рассмотрели только тензор поляризуемости, здесь дело было простое, а для других тензоров, например для тензора упругости, рассуждать будет труднее. Существует раздел математики, называемый «теорией групп», который занимается такими вещами, но обычно можно сообразить все, что нужно, опираясь лишь на здравый смысл.
§ 7. Прочность металлов
Мы говорили, что металлы обычно имеют простую кубическую кристаллическую структуру; сейчас мы обсудим их механические свойства, которые зависят от этой структуры. Вообще говоря, металлы очень «мягкие», потому что один слой кристалла легко заставить скользить над другим. Вы, наверное, подумаете: «Ну, это дико — металлы ведь твердые». Нет, монокристалл металла легко деформируется.
Рассмотрим два слоя кристалла, подвергающихся действию силы сдвига (фиг. 30.11, а).
Фиг. 30.11. Сдвиг плоскостей кристалла.
Вероятно, вы сперва решите, что весь слой будет сопротивляться сдвигу, пока сила не станет достаточно велика, чтобы сдвинуть весь слой «над горбами» на одно место влево. Хотя скольжение по некоторой плоскости возможно, все происходит совсем не так. (Иначе, согласно вычислениям, получилось бы, что металл гораздо прочнее, чем он есть на самом деле.) В действительности же дело больше походит на то, что атомы перескакивают поочередно: сначала прыгает первый атом слева, затем следующий и т. д., как показано на фиг. 30.11, б. В результате пустое место между двумя атомами быстро путешествует направо и весь второй ряд сдвигается на одно межатомное расстояние. Скольжение происходит таким образом, что на перекатывание атома через горб поодиночке требуется гораздо меньше энергии, чем на поднятие всего ряда в целом. Как только сила возрастет до значения, достаточного для начала процесса, весь процесс протекает очень быстро.
Оказывается, что в реальном кристалле скольжение возникает поочередно: сначала в одной плоскости, затем заканчивается там и начинается в другом месте. Почему оно начинается и почему заканчивается — совершенно непонятно. В самом деле, очень странно, что последовательные области скольжения часто расположены довольно редко. На фиг. 30.12 представлена фотография очень маленького и тонкого кристалла меди, который был растянут.
Фиг. 30.12. Маленький кристалл меди после растяжения.
Вы можете заметить разные плоскости, в которых возникало скольжение.
Неожиданное соскальзывание отдельных кристаллических плоскостей легко заметить, если взять кусок оловянной проволоки, в которой содержатся большие кристаллы, и растягивать ее, держа близко к уху. Вы ясно различите звуки «тик-тик», когда плоскости защелкиваются в новых положениях, одна за другой.
Проблема «нехватки» атома в одном из рядов сложнее, чем может показаться при рассматривании фиг. 30.11.
Когда слоев больше, ситуация скорее походит на то, что изображено на фиг. 30.13.
Фиг. 30.13. Дислокация в кристалле.
Подобный дефект в кристалле называют дислокацией. Считается, что такие дислокации возникают при образовании кристалла или же в результате царапины или трещины на его поверхности. Раз возникнув, они довольно свободно могут проходить сквозь кристалл. Большие нарушения возникают из-за движения множества таких дислокаций.
Дислокации могут свободно передвигаться. Это значит, что для них требуется немного дополнительной энергии, если только весь остальной кристалл имеет совершенную решетку. Но они могут и «застыть», встретив какой-нибудь другой дефект в кристалле. Если для прохождения дефекта требуется много энергии, они остановятся. Это и есть тот механизм, который сообщает прочность несовершенным кристаллам металла. Кристаллы чистого железа совсем мягкие, но небольшая концентрация атомов примесей может вызвать достаточное количество дефектов, чтобы противостоять дислокациям. Как вы знаете, сталь, состоящая в основном из железа, очень тверда. Чтобы получить сталь, при плавке к железу примешивают немного углерода; при быстром охлаждении расплавленной массы углерод выделяется в виде маленьких зерен, образуя в решетке множество микроскопических нарушений. Дислокации уже не могут свободно передвигаться, и металл становится твердым.
Чистая медь очень мягкая, но ее можно «закалить» наклепом. Это делается отбиванием или сгибанием ее в одну и другую стороны. В таком случае образуется много различных дислокаций, которые взаимодействуют между собой и ограничивают подвижность друг друга. Быть может, вы видели фокус, когда берут кусочек «мягкой» меди и легко обвивают чье-нибудь запястье в виде браслета. В тот же момент медь становится закаленной и разогнуть ее становится очень трудно! «Закаленный» металл типа меди можно снова сделать мягким с помощью отжига при высокой температуре. Тепловое движение атомов «размораживает» дислокации и вновь создает отдельные большие кристаллы. О дислокациях можно рассказывать очень много. Так, до сих пор мы описывали только так называемые «дислокации скольжения» (краевые дислокации). Существует еще множество других видов, в частности винтовая дислокация, изображенная на фиг. 30.14.
Фиг. 30.14. Винтовая дислокация.
Такие дислокации часто играют важную роль в росте кристаллов.
§ 8. Дислокации и рост кристаллов
Одну из величайших загадок природы долгое время представлял процесс роста кристаллов. Мы уже описывали, как атом, многократно примериваясь, может определить, где ему лучше — в кристалле или снаружи. Но отсюда следует, что каждый атом должен найти положение с наименьшей энергией. Однако атом, попавший на новую поверхность, связан только одной-двумя связями с нижними атомами, и его энергия при этом не равна энергии того атома, который попал в угол, где он окружен атомами с трех сторон. Вообразим растущий кристалл как набор из кубиков (фиг. 30.15).
Фиг. 30.15. Схематическое представление роста кристалла.
Если мы поставим новый кубик, скажем, в положение А, он будет иметь только одного из тех шести соседей, какими он в конце концов будет окружен. А раз не хватает стольких связей, то и энергия его не будет очень низкой. Более выгодно положение В, где кристалл уже имеет половину своей доли связей. И действительно, кристаллы растут, присоединяя новые атомы к участкам типа В.
Но что произойдет, когда данный ряд завершится? Чтобы начать новый ряд, атом должен осесть, имея связь с двух сторон, а это опять же маловероятно. Даже если он осядет, что произойдет, когда весь слой будет завершен? Как мог бы начаться новый слой? Один из возможных ответов — кристалл предпочитает расти по дислокации, например по винтовой дислокации, вроде той, что показана на фиг. 30.14. По мере прибавления кубиков к этому кристаллу всегда остается место, где можно получить три связи. Следовательно, кристалл предпочитает расти с встроенной внутрь дислокацией. Иллюстрацию такого спирального роста представляет собой фотография монокристалла парафина (фиг. 30.16).
Фиг. 30.16. Кристалл парафина, выросший вокруг винтовой дислокации.
§ 9. Модель кристалла по Брэггу и Наю
Мы, разумеется, не можем увидеть, что происходит с отдельными атомами в кристалле. Как вы теперь понимаете, существует еще множество сложных явлений, которые трудно описать количественно. Лоуренс Брэгг и Дж. Най придумали модель металлического кристалла, которая удивительным образом моделирует множество явлений, возникающих, по-видимому, в реальном металле. Лучше всего прочесть эту работу самим; в ней описан и сам метод, и полученные с его помощью результаты [статья была напечатана в Proceedings of the Royal Society of London, 190, 474 (1947)][38].
Глава 31 ТЕНЗОРЫ
Повторить: гл. 11 (вып. 1) «Векторы»; гл. 20 (вып. 2) «Вращение в пространстве»
§ 1. Тензор поляризуемости
У физиков есть привычка брать простейший пример какого-то явления и называть его «физикой», а примеры посложнее отдавать на растерзание других наук, скажем прикладной математики, электротехники, химии или кристаллографии. Даже физика твердого тела для них только «полуфизика», ибо ее волнует слишком много специальных вопросов. По этой-то причине мы в наших лекциях откажемся от множества интересных вещей. Например, одно из важнейших свойств кристаллов и вообще большинства веществ — это то, что их электрическая поляризуемость различна в разных направлениях. Если вы в каком-либо направлении приложите электрическое поле, то атомные заряды слегка сдвинутся и возникнет дипольный момент; величина же этого момента зависит очень сильно от направления приложенного поля. А это, конечно, усложнение. Чтобы облегчить себе жизнь, физики начинают разговор со специального случая, когда поляризуемость во всех направлениях одинакова. А другие случаи мы предоставляем другим наукам. Поэтому для наших дальнейших рассмотрений нам совсем не понадобится то, о чем мы собираемся говорить в этой главе.
Математика тензоров особенно полезна для описания свойств веществ, которые изменяются с направлением, хотя это лишь один из примеров ее использования. Поскольку большинство из вас не собираются стать физиками, а намерены заниматься реальным миром, где зависимость от направления весьма сильная, то рано или поздно, но вам понадобится использовать тензор. Вот, чтобы у вас не было здесь пробела, я и собираюсь рассказать вам про тензоры, хотя и не очень подробно. Я хочу, чтобы ваше понимание физики было как можно более полным. Электродинамика, например, у нас вполне законченный курс; она столь же полна, как и любой курс электричества и магнетизма, даже институтский. А вот механика у нас не закончена, ибо, когда мы ее изучали, вы еще не были столь тверды в математике и мы не могли обсуждать такие разделы, как принцип наименьшего действия, лагранжианы, гамильтонианы и т. п., которые представляют наиболее элегантный способ описания механики. Однако полный свод законов механики, за исключением теории относительности, у нас все же есть. В той же степени, как электричество и магнетизм, у нас закончены многие разделы. Но вот квантовую механику мы так и не закончим; впрочем, нужно что-то оставить и на будущее! И все же, что такое тензор, вам все-таки следует знать уже сейчас.
В гл. 30 мы подчеркивали, что свойства кристаллического вещества в разных направлениях различны — мы говорим, что оно анизотропно. Изменение индуцированного дипольного момента с изменением направления приложенного электрического поля — это только один пример, но именно его мы и возьмем в качестве примера тензора. Будем считать, что для заданного направления электрического поля индуцированный дипольный момент единицы объема Р пропорционален напряженности прикладываемого поля Е. (Для многих веществ при не слишком больших Е это очень хорошее приближение.) Пусть константа пропорциональности будет α[39]. Теперь мы хотим рассмотреть вещества, у которых а зависит от направления приложенного поля, например известный вам кристалл турмалина, дающий удвоенное изображение, когда вы смотрите через него.
Предположим, мы обнаружили, что для некоторого выбранного кристалла электрическое поле Е1, направленное по оси х, дает поляризацию Р1, направленную по той же оси, а одинаковое с ним по величине электрическое поле Е2, направленное по оси у, приводит к какой-то другой поляризации Р2, тоже направленной по оси у. А что получится, если электрическое поле приложить под углом 45°? Ну, поскольку оно будет просто суперпозицией двух полей, направленных вдоль осей х и y, то поляризация Р равна сумме векторов P1 и Р2, как это показано на фиг. 31.1, а.
Фиг. 31.1. Сложение векторов поляризации в анизотропном кристалле.
Поляризация уже не параллельна направлению электрического поля. Нетрудно понять, отчего так происходит. В кристалле есть заряды, которые легко сдвинуть вверх и вниз, но которые очень туго сдвигаются в стороны. Если же сила приложена под углом 45°, то эти заряды более охотно движутся вверх, чем в сторону. В результате такой асимметрии внутренних упругих сил перемещение идет не по направлению внешней силы.
Разумеется, угол 45° ничем не выделен. То, что индуцированная поляризация не направлена по электрическому полю, справедливо и в общем случае. Перед этим нам просто «посчастливилось» выбрать такие оси х и у, для которых поляризация Р была направлена по полю Е. Если бы кристалл был повернут по отношению к осям координат, то электрическое поле Е2, направленное по оси y, вызвало бы поляризацию как по оси у, так и по оси х. Подобным же образом поляризация Р, вызванная полем, направленным вдоль оси х, тоже имела бы как х-, так и y-компоненты. Так что вместо фиг. 31.1, а мы получили бы нечто похожее на фиг. 31.1,б. Но несмотря на все это усложнение, величина поляризации Р для любого поля Е по-прежнему пропорциональна его величине.
Рассмотрим теперь общий случай произвольной ориентации кристалла по отношению к осям координат. Электрическое поле, направленное по оси х, дает поляризацию Р с компонентами по всем трем осям, поэтому мы можем написать
(31.1)
Этим я хочу сказать лишь, что электрическое поле, направленное по оси х, создает поляризацию не только в этом направлении, оно приводит к трем компонентам поляризации Рх, Рy и Pz, каждая из которых пропорциональна Ех. Коэффициенты пропорциональности мы назвали αхх, αух и αzx (первый значок говорит, о какой компоненте идет речь, а второй относится к направлению электрического поля).
Аналогично, для поля, направленного по оси у, мы можем написать
(31.2)
а для поля в z-направлении
(31.3)
Дальше мы говорим, что поляризация линейно зависит от поля; поэтому если у нас есть электрическое поле Е с компонентами х и у, то x-компонента поляризации Р будет суммой двух Рх, определенных уравнениями (31.1) и (31.2), ну а если Е имеет составляющие по всем трем направлениям х, у и z, то составляющие поляризации Р должны быть суммой соответствующих слагаемых в уравнениях (31.1), (31.2) и (31.3). Другими словами, Р записывается в виде
(31.4)
Диэлектрические свойства кристалла, таким образом, полностью описываются девятью величинами (αxx,αxy,αxz,αyz,...), которые можно записать в виде символа αij. (Индексы i и j заменяют одну из трех букв: х, у или z.) Произвольное электрическое поле Е можно разложить на составляющие Еx, Еy и Еz. Зная их, можно воспользоваться коэффициентами αij и найти Рх, Рy и Pz, которые в совокупности дают полную поляризацию Р. Набор девяти коэффициентов aij называется тензором — в данном примере тензором поляризуемости[40]. Точно так же как три величины (Ех, Еу, Еz) «образуют вектор Е», и мы говорим, что девять величин (αхх, αху,...) «образуют тензор αij».
§ 2. Преобразование компонент тензора
Вы знаете, что при замене старых осей координат новыми х', у' и z' компоненты вектора Ех', Еу', Еz' тоже оказываются другими. То же самое происходит и с компонентами Р, так что для разных систем координат коэффициенты αij оказываются различными. Однако вполне можно выяснить, как должны изменяться а при надлежащем изменении компонент Е и Р, ибо, если мы описываем то же самое электрическое поле, но в новой системе координат, мы должны получить ту же самую поляризацию Р. Для любой новой системы координат Px' будет линейной комбинацией Рх, Рy', и Рz':
и аналогично для других компонент. Если вместо Рх, Рy и Рz подставить их выражения через Е согласно (31.4), то получится
Теперь напишите, как выражается Ех, Еy и Ez через Еx', Еy' и Еz', например,
где числа а', b' и с' связаны с числами а, b и c, но не равны им. Таким образом, у вас получилось выражение Рх' через компоненты Ех', Еy' и Ez', т. е. получились новые αij. Никаких хитростей здесь нет, хотя все это достаточно запутано.
Когда мы говорили о преобразовании осей, то считали, что положение самого кристалла фиксировано в пространстве. Если же вместе с осями поворачивать и кристалл, то α не изменяются. И обратно, если по отношению к осям изменять ориентацию кристалла, то получится новый набор коэффициентов а. Но если они известны для какой-то одной ориентации кристалла, то с помощью только что описанного преобразования их можно найти и для любой другой ориентации. Иначе говоря, диэлектрические свойства кристалла полностью описываются заданием компонент тензора поляризуемости αij. в любой произвольно выбранной системе координат. Точно так же как вектор скорости v=(vx, vy, vz) можно связать с частицей, зная, что три его компоненты при замене осей координат будут изменяться некоторым определенным образом, тензор поляризуемости αij, девять компонент которого при изменении системы осей координат преобразуются вполне определенным образом, можно связать с кристаллом.
Связь между Р и Е в уравнении (31.4) можно записать в более компактном виде:
(31.5)
где под значком i понимается какая-то из трех букв х, у или z, а суммирование ведется по j=x, у и z. Для работы с тензорами было придумано много специальных обозначений, но каждое из них удобно для ограниченного класса проблем. Одно из таких общих соглашений состоит в том, что можно не писать знака суммы (∑) в уравнении (31.5), понимая при этом, что когда один и тот же индекс встречается дважды (в нашем случае j), то нужно просуммировать по всем значениям этого индекса. Однако, поскольку работать с тензорами нам придется немного, давайте не будем осложнять себе жизнь введением каких-то специальных обозначений или соглашений.
§ 3. Эллипсоид энергии
Потренируемся теперь в обращении с тензорами. Рассмотрим такой интересный вопрос: какая энергия требуется для поляризации кристалла (в дополнение к энергии электрического поля, которая, как известно, равна ε0Е2/2 на единицу объема)? Представьте на минуту атомные заряды, которые должны быть перемещены. Работа, требуемая для перемещения одного такого заряда на расстояние dx, равна qExdx, а если таких зарядов в единице объема содержится N штук, то для перемещения их требуется работа qExNdx. Но qNdx равно изменению дипольного момента единицы объема dPx. Так что работа, затраченная на единицу объема, равна
Складывая теперь работы всех трех компонент, найдем, какой должна быть работа в единице объема:
Но поскольку величина Р пропорциональна Е, то работа, затраченная на поляризацию единицы объема от 0 до Р, равна интегралу от E·dP. Обозначая ее через uP, можно написать[41]
(31.6)
Теперь можно воспользоваться уравнением (31.5) и выразить Р через E. В результате получим
(31.7)
Плотность энергии ир — величина, не зависящая от выбора осей, т. е. скаляр. Таким образом, тензор обладает тем свойством, что, будучи просуммирован по одному индексу (с вектором), он дает новый вектор, а будучи просуммирован по обоим индексам (с двумя векторами), дает скаляр.
Тензор αij на самом деле нужно называть «тензором второго ранга», ибо у него два индекса. В этом смысле вектор, у которого всего один индекс, можно назвать «тензором первого ранга», а скаляр, у которого вообще нет индексов, — «тензором нулевого ранга». Итак, выходит, что электрическое поле Е будет тензором первого ранга, а плотность энергии up — тензором нулевого ранга. Эту идею можно распространить на тензоры с тремя и более индексами и определить тензоры, ранг которых выше двух.
Индексы нашего тензора поляризуемости могут принимать три различных значения, т. е. это трехмерный тензор. Математики рассматривают также тензоры размерности четыре, пять и больше. Кстати, четырехмерный тензор нам уже встречался при релятивистском описании электромагнитного поля (см. гл. 26, вып. 6) — это Fμv.
Тензор поляризуемости αij обладает одним интересным свойством: он симметричен, т. е. αxy=αyx и т. п. для любой пары индексов. (Это свойство отражает физические качества реального кристалла, и вовсе не обязательно у любого тензора.) Вы можете самостоятельно доказать это, подсчитав изменения энергии кристалла по следующей схеме:
1) включите электрическое поле в направления оси х;
2) включите поле в направлении оси у;
3) выключите x-поле;
4) выключите y-поле.
Теперь кристалл вернулся к прежнему положению и полная работа, затраченная на поляризацию, должна быть нулем. Но для этого, как вы можете убедиться, αxy должно быть равно αyx. Однако те же рассуждения можно провести и для αxz и т. д. Таким образом, тензор поляризуемости симметричен.
Это означает также, что тензор поляризуемости можно найти простым измерением энергии, необходимой для поляризации кристалла в различных направлениях. Предположим, мы сначала взяли электрическое поле Е с компонентами х и у; тогда, согласно уравнению (31.7),
(31.8)
Если бы у нас была только одна компонента Ех, мы могли бы определить αхх, а с одной компонентой Еy можно определить αyy. Включив обе компоненты Ех и Еy, мы из-за присутствия члена (αху+αух) получим добавочную энергию, ну а поскольку αxy и αyx равны, то этот член превращается в 2αxy и может быть вычислен из добавочной энергии.
Выражение для энергии (31.8) имеет очень красивую геометрическую интерпретацию. Предположим, что нас интересует, какие поля Ех и Еy отвечают данной плотности энергии, скажем u0. Возникает чисто математическая задача решения уравнения
Это уравнение второй степени, так что, если мы отложим по осям величины Ех и Еy, решением этого уравнения будут все точки эллипса (фиг. 31.2).
Фиг. 31.2 Конец любого вектора E=(Ex, Ev), лежащего на этой кривой, дает одну и ту же анергию поляризации.
(Это должен быть именно эллипс, а не парабола и не гипербола — ведь энергия поля всегда положительна и конечна.) А само Е с компонентами Ех и Еy представляет вектор, идущий из начала координат до точки на эллипсе. Такой «энергетический эллипс» — хороший способ «увидеть» тензор поляризуемости.
Если теперь пустить в дело все три компоненты, то любой вектор Е, необходимый для создания единичной плотности энергии, задается точками, расположенными на эллипсоиде, подобно изображенному на фиг. 31.3. Форма этого эллипсоида постоянной энергии однозначно характеризует тензор поляризуемости.
Заметьте теперь, что эллипсоид имеет очень интересное свойство — его всегда можно описать простым заданием направления трех «главных осей» и диаметров эллипсоида по этим осям. Такими «главными осями» являются направления наименьшего и наибольшего диаметра и направление, перпендикулярное к ним. На фиг. 31.3 они обозначены буквами а, b и с.
Фиг. 31.3. Эллипсоид анергии для тензора поляризуемости.
По отношению к этим осям уравнение эллипсоида имеет особенно простую форму:
Итак, по отношению к главным осям у тензора поляризуемости останутся только три ненулевые компоненты αаа, αbb и αсс. Другими словами, сколь бы ни был сложен кристалл, всегда можно выбрать оси так (они не обязательно будут осями самого кристалла), что у тензора поляризуемости останется только три компоненты. Уравнение (31.4) для таких осей становится особенно простым:
(31.9)
Иначе говоря, электрическое поле, направленное по любой одной из главных осей, дает поляризацию, направленную по той же оси, но, разумеется, для различных осей коэффициенты будут разными.
Тензор часто записывается в виде таблицы из девяти коэффициентов, взятых в скобки:
(31.10)
Для главных же осей а, b и с в таблице остаются только диагональные члены, поэтому мы говорим, что тензор становится «диагональным», т. е.
(31.11)
Самое важное здесь то, что к такой форме подходящим выбором осей координат можно привести любой тензор поляризуемости (фактически любой симметричный тензор второго ранга какого угодно числа измерений).
Если все три элемента тензора поляризуемости в диагональной форме равны друг другу, т. е. если
(31.12)
то эллипсоид энергии превращается в сферу, поляризуемость во всех направлениях становится одинаковой, а материал изотропным. В тензорных обозначениях
(31.13)
где δij—единичный тензор:
(31.14)
что, разумеется, означает
(31.15)
Тензор δij часто называют также «символом Кронекера». Для забавы вы можете доказать, что тензор (31.14) после замены одной прямоугольной системы координат на другую будет иметь в точности ту же самую форму. Тензор поляризуемости типа (31.13) дает
т. е. получается наш старый результат для изотропного диэлектрика:
Форму и ориентацию эллипсоида поляризуемости иногда можно связать со свойствами симметрии кристалла. В гл. 30 мы уже говорили, что трехмерная решетка имеет 230 различных возможных внутренних симметрии и что для многих целей их удобно разбить на 7 классов в соответствии с формой элементарной ячейки. Эллипсоид поляризуемости должен отражать геометрию внутренней симметрии кристалла. Например, триклинный кристалл имеет самую низкую симметрию; у него все три оси эллипсоида разные и направления их, вообще говоря, не совпадают с направлением осей кристалла. Более симметричный моноклинный кристалл обладает той особенностью, что его свойства не меняются при повороте кристалла на 180° относительно одной оси, поэтому тензор поляризуемости при таком повороте должен остаться тем же самым. Отсюда следует, что эллипсоид поляризуемости при повороте на 180° должен переходить сам в себя. Но такое может случиться только, когда одна из осей эллипсоида совпадет с направлением оси симметрии кристалла. В других же отношениях ориентация и размеры эллипсоида могут быть какими угодно.
Оси эллипсоида ромбического кристалла должны совпадать с кристаллическими осями, так как вращение такого кристалла на 180° вокруг любой оси повторяет ту же кристаллическую решетку. Если же взять тетрагональный кристалл, то эллипсоид тоже должен повторять его симметрию, т. е. два из его диаметров должны быть равны между собой. Наконец, для кубического кристалла равными должны быть все три диаметра эллипсоида — он превращается в сферу и поляризуемость кристалла одинакова во всех направлениях.
Существует очень серьезная игра, состоящая в выяснении всех возможных свойств тензоров для всех возможных симметрии кристалла. Она мудрено называется «теоретико-групповым анализом». Однако для простых случаев тензора поляризуемости увидеть, какова должна быть эта связь, относительно легко.
§ 4. Другие тензоры; тензор инерции
В физике есть еще немало других примеров тензоров. В металле, например, или каком-либо другом проводнике зачастую оказывается, что плотность тока j приблизительно пропорциональна электрическому полю Е, причем константа пропорциональности называется проводимостью σ:
Однако для кристалла соотношение между j и Е более сложно, проводимость в различных направлениях не одинакова. Она становится тензором, поэтому мы пишем
Другим примером физического тензора является момент инерции. В гл. 18 (вып. 2) мы видели, что момент количества движения L твердого тела, вращающегося относительно фиксированной оси, пропорционален угловой скорости ω, и коэффициент пропорциональности I мы назвали моментом инерции:
Момент инерции тела произвольной формы зависит от его ориентации относительно оси вращения. Моменты инерции прямоугольного бруска, например, относительно каждой из трех ортогональных осей будут разными. Но угловая скорость ω и момент количества движения L — оба векторы. Для вращения относительно одной из осей симметрии они параллельны. Но если моменты инерции относительно каждой из трех главных осей различны, то направления ω и L, вообще говоря, не совпадают (фиг. 31.4).
Фиг. 31.4. Момент количества движения L твердого предмета, вообще говоря, не параллелен вектору угловой скорости ω.
Они связаны точно таким же образом, как Е и Р, т. е. мы должны писать:
(31.16)
Девять коэффициентов Iij называют тензором инерции. По аналогии с поляризацией кинетическая энергия для любого момента количества движения должна быть некоторой квадратичной формой компонент ωx, ωy и ωz:
(31.17)
Мы можем снова воспользоваться этим выражением для определения эллипсоида инерции. Кроме того, снова можно воспользоваться энергетическими соображениями и показать, что этот тензор симметричен, т. е. Iij=Iji.
Тензор инерции твердого тела можно написать, если известна форма тела. Нам нужно только выписать полную кинетическую энергию всех частиц тела. Частица с массой m и скоростью v обладает кинетической энергией 1/2mv2, а полная кинетическая энергия равна просто сумме
по всем частицам тела. Но скорость v каждой частицы связана с угловой скоростью ωтвердого тела. Предположим, что тело вращается относительно центра масс, который мы будем считать покоящимся. Если при этом r — положение частицы относительно центра масс, то ее скорость v задается выражением ω×r. Поэтому полная кинетическая энергия равна
(31.18)
Единственное, что нужно теперь сделать, — это переписать ω×r через компоненты ωх, ωy, ωz и координаты х, у, z, а затем сравнить результат с уравнением (31.17); приравнивая коэффициенты, найдем Iij. Проделывая всю эту алгебру, мы пишем:
Умножая это уравнение на m/2, суммируя по всем частицам и сравнивая с уравнением (31.17), мы видим, что Ixx, например, равно
Это и есть та формула для момента инерции тела относительно оси х, которую мы получали уже раньше (гл. 19, вып. 2). Ну а поскольку r2=x2+y2+z2, то эту же формулу можно написать в виде
Выписав остальные члены тензора инерции, получим
(31.19)
Если хотите, его можно записать в «тензорных обозначениях»:
(31.20)
где через ri обозначены компоненты (х, у, z) вектора положения частицы, а ∑ означает суммирование по всем частицам. Таким образом, момент инерции есть тензор второго ранга, элементы которого определяются свойствами тела и который связывает момент количества движения L с угловой скоростью ω:
(31.21)
Для любого тела независимо от его формы можно найти эллипсоид энергии, а следовательно, и три главные оси. Относительно этих осей тензор будет диагональным, так что для любого объекта всегда есть три ортогональные оси, для которых момент количества движения и угловая скорость параллельны друг другу. Они называются главными осями инерции.
§ 5. Векторное произведение
Сами того не подозревая, вы пользуетесь тензором второго ранга уже начиная с гл. 20 (вып. 2). В самом деле, мы определили там «момент силы, действующий в плоскости», например τxy, следующим образом:
Обобщая это определение на три измерения, можно написать
(31.22)
Как видите, величина τij — это тензор второго ранга. Один из способов убедиться в этом — свернуть τij с каким-то вектором, скажем с единичным вектором е, т. е. составить
Если эта величина окажется вектором, то τij должен преобразовываться как тензор — это просто наше определение тензора. Подставляя выражение для τij, получаем
Поскольку скалярные произведения, естественно, являются скалярами, то оба слагаемых в правой части — векторы, как и их разность. Так что τij — действительно тензор.
Однако τij принадлежит к особому сорту тензоров, он антисимметричен, т. е.
Поэтому у такого тензора есть только три разные и неравные нулю компоненты: τxy, τyz и τzz. В гл. 20 (вып. 2) нам удалось показать, что эти три члена почти «по счастливой случайности» преобразуются подобно трем компонентам вектора; поэтому мы могли тогда определить вектор
Я сказал «по случайности» потому, что это происходит только в трехмерном пространстве. Например, для четырех измерений антисимметричный тензор второго ранга имеет шесть различных ненулевых членов, и его, разумеется, нельзя заменить вектором, у которого компонент только четыре.
Точно так же как аксиальный вектор τ=r×F является тензором, по тем же соображениям тензором будет и любое векторное произведение двух полярных векторов. К счастью, они тоже представимы в виде вектора (точнее, псевдовектора), что немного облегчает нам всю математику.
Вообще говоря, для любых двух векторов а и b девять величин aibj образуют тензор (хотя для физических целей он не всегда может быть полезен). Таким образом, для вектора положения r величины rirj являются тензором, а поскольку δij. тоже тензор, то мы видим, что правая часть (31.20) действительно является тензором. Подобным же образом тензором будет и (31.22), так как оба члена в правой части — тензоры.
§ 6. Тензор напряжений
Встречавшиеся до сих пор симметричные тензоры возникали как коэффициенты, связывающие один вектор с другим. Сейчас я познакомлю вас с тензором, имеющим совершенно другой физический смысл, — это тензор напряжений. Предположим, что на твердое тело действуют различные внешние силы. Мы говорим, что внутри тела возникают различные «напряжения», имея при этом в виду внутренние силы между смежными частями материала. Мы уже говорили немного о подобных напряжениях в двумерном случае, когда рассматривали поверхностное натяжение напряженной диафрагмы (см. гл. 12, § 3, вып. 5). А теперь вы увидите, что внутренние силы в материале трехмерного тела записываются в виде тензора.
Рассмотрим тело из какого-то упругого материала, например брусок из желе. Если мы разрежем этот брусок, то материал на каждой стороне разреза будет, вообще говоря, претерпевать перемещение под действием внутренних сил. До того как был сделан разрез, между двумя этими частями должны были действовать силы, которые удерживали обе части в едином куске; мы можем выразить напряжение через эти силы. Представьте себе, что мы смотрим на воображаемую плоскость, перпендикулярную оси х, подобную плоскости σ на фиг. 31.5, и интересуемся силами, действующими на маленькой площадке ΔyΔz, расположенной в этой плоскости.
Фиг. 31.5. Материал, находящийся слева от плоскости σ на площади ΔyΔz, действует на материал, находящийся справа, с силой ΔF1.
Материал, находящийся слева от площадки, действует на материал с правой стороны с силой ΔF1 (фиг. 31.5, б). Есть, конечно, и обратная реакция, т.е. на материал слева от поверхности действует сила —ΔF1. Если площадка достаточно мала, то мы ожидаем, что сила ΔF1 пропорциональна площади ΔyΔz.
Вы уже знакомы с одним видом напряжений — статическим давлением жидкости. Там сила была равна давлению, умноженному на площадь, и направлена под прямым углом к элементу поверхности. Для твердого тела, а также движущейся вязкой жидкости сила не обязательно перпендикулярна поверхности: помимо давления (положительного или отрицательного), появляется еще и сдвигающая сила. (Под «сдвигающей» силой мы подразумеваем тангенциальные компоненты сил, действующих на поверхности.) Для этого нужно учитывать все три компоненты силы. Заметьте еще, что если разрез мы сделаем по плоскости с какой-то другой ориентацией, то действующие на ней силы тоже будут другими. Полное описание внутренних напряжений требует применения тензоров.
Определим тензор напряжений следующим образом. Вообразите сначала разрез, перпендикулярный оси х, и разложите силу ΔF1, действующую на разрезе, на ее компоненты: ΔFx1, ΔFy1, ΔFz1 (фиг. 31.6).
Фиг. 31.6. Сила ΔF1, действующая на элементе площади ΔyΔz, перпендикулярной оси х, разлагается на три компоненты: ΔFx1, ΔFу1 и Δfz1.
Отношение этих сил к площади ΔyΔz мы назовем Sxx, Syx и Szx. Например,
Первый индекс у относится к направлению компоненты силы, а второй х — к направлению нормали к плоскости. Если угодно, площадь ΔyΔz можно записать как Δах, имея в виду элемент площади, перпендикулярный оси х, т. е.
А теперь представьте себе разрез, перпендикулярный оси у. Пусть на маленькую площадку ΔxΔz действует сила ΔF2. Разлагая снова эту силу на три компоненты, как показано на фиг. 31.7, мы определяем три компоненты напряжения Sxy, Syy, Szy как силы, действующие на единичную площадь в этих трех направлениях.
Фиг. 31.7. Сила, действующая на элемент площади, перпендикулярной оси у, разлагается на три взаимно перпендикулярные компоненты.
Наконец, проведем воображаемый разрез, перпендикулярный оси z, и определим три компоненты Sxz, Syz и Szz. Таким образом, получается девять чисел:
(31.23)
Я хочу теперь показать, что этих девяти величин достаточно, чтобы полностью описать внутреннее напряженное состояние, и что Sij —действительно тензор. Предположим, что мы хотим знать силу, действующую на поверхность, наклоненную под некоторым произвольным углом. Можно ли найти ее, исходя из Sij? Можно, и это делается следующим образом. Вообразите маленькую призму, одна грань N которой наклонна, а другие — параллельны осям координат. Если окажется, что грань N параллельна оси z, то получается картина, изображенная на фиг. 31.8.
Фиг. 31.8. Разложение на компоненты силы Fn, действующей на грани N (с единичной нормалью n).
(Это, конечно, частный случай, но он достаточно хорошо иллюстрирует общий метод.) Дальше, напряжения, действующие на эту призмочку, должны быть такими, чтобы она находилась в равновесии (по крайней мере в пределе бесконечно малого размера), так что действующая на нее полная сила должна быть равна нулю. Силы, действующие на грани, параллельные осям координат, известны нам непосредственно из тензора Sij. А их векторная сумма должна равняться силе, действующей на грань N, так что эту силу можно выразить через Sij.
Наше допущение, что поверхностные силы, действующие на малый объем, находятся в равновесии, предполагает отсутствие объемных сил, подобных силе тяжести или псевдосилам, которые тоже могут присутствовать, если наша система координат не инерциальна. Заметьте, однако, что такие объемные силы будут пропорциональны объему призмочки и поэтому пропорциональны Δx,Δy, Δz, тогда как поверхностные силы пропорциональны ΔxΔy, ΔyΔz и т. п. Итак, если размер призмочки взять достаточно малым, то объемные силы будут пренебрежимо малы по сравнению с поверхностными.
А теперь сложим силы, действующие на нашу призмочку. Возьмемся сначала за х-компоненту, которая состоит из пяти частей, по одной от каждой грани. Но если Δz достаточно мало, то силы от треугольных граней (перпендикулярные оси z) будут равны друг другу и противоположны по направлению, поэтому о них можно забыть. На основание призмы действует x-компонента силы, равная
а x-компонента силы, действующей на вертикальную прямоугольную грань, равна
Сумма этих двух сил должна быть равна x-компоненте силы, действующей извне на грань N. Обозначим через n единичный вектор нормали к грани N, а через ΔFn — действующую на нее силу, тогда получим
Составляющая напряжения по оси х (Sxn), действующего в этой плоскости, равна силе ΔFxn, деленной на площадь, т. е. Δz√(Δx2+Δy2), или
Но, как видно из фиг. 31.8, отношение Δх/√(Δx2+Δy2) — это косинус угла θ между n и осью у и может быть записан как nу, т. е. y-компонента вектора n. Аналогично, Δy/√(Δx2+Δy2) равно sinθ=nх. Поэтому мы можем написать
Если теперь обобщить это на произвольный элемент поверхности, то мы получим
или в еще более общей форме:
(31.24)
Так что мы действительно можем выразить силу, действующую на произвольную площадь, через элементы Sij и полностью описать внутреннее напряжение.
Уравнение (31.24) говорит, что тензор Sij связывает силу Sn с единичным вектором n точно так же, как αij связывает Р с Е. Но поскольку n и Sn — векторы, то компоненты Sij при изменении осей координат должны преобразовываться как тензор. Так что Sij действительно тензор.
Можно также доказать, что Sij симметричный тензор. Для этого нужно обратить внимание на силы действующие на маленький кубик в материале. Возьмем кубик, грани которого параллельны осям координат, и посмотрим на его разрез (фиг. 31.9).
Фиг. 31.9. х- и у-компоненты сил, действующих на четыре грани маленького единичного кубика.
Если допустить что ребра куба равны единице, то х- и y-компоненты сил на гранях, перпендикулярных к осям х и у, должны быть такими, как показано на рисунке. Если взять достаточно маленький кубик, можно надеяться, что напряжение на его противоположных гранях будет отличаться ненамного, а поэтому компоненты сил должны быть равны и противоположны, как это показано на рисунке. Заметьте теперь, что на кубик не должен действовать никакой момент сил, иначе кубик начал бы вращаться. Но полный момент относительно центра равен произведению (Syx-Sxy) на единичную длину ребра куба, а поскольку полный момент равен нулю, то S должно быть равно Sxy, и тензор напряжений, таким образом, оказывается симметричным.
Благодаря этой симметрии тензора Sij его можно тоже описывать эллипсоидом с тремя главными осями. Напряжение имеет особенно простой вид на площадках, нормальных к этим осям: оно соответствует чистому сжатию или растяжению в направлении главных осей. Вдоль этих площадок нет никаких сдвиговых сил, причем такие оси, для которых отсутствуют сдвиговые силы, можно выбрать для любого напряжения. Если эллипсоид превращается в сферу, то в любом направлении действуют только нормальные силы. Это соответствует гидростатическому давлению (положительному или отрицательному). Таким образом, для гидростатического давления тензор диагонален, причем все три компоненты его равны друг другу (фактически они просто равны давлению р). В этом случае мы можем написать
(31.25)
Вообще говоря, тензор напряжений в куске твердого тела, а также его эллипсоид изменяются от точки к точке, поэтому для описания всего куска мы должны задать каждую компоненту Sij как функцию положения. Тензор напряжений, таким образом, является полем. Мы уже имели примеры скалярных полей, подобных температуре Т(х, у, z), и векторных полей, подобных Е(х, у, z), которые в каждой точке задавались тремя числами. А теперь перед нами пример тензорного поля, задаваемого в каждой точке пространства девятью числами, из которых для симметричного тензора Sij реально остается только шесть. Полное описание внутренних сил в произвольном твердом теле требует знания шести функций координат х, у и z.
§ 7. Тензоры высших рангов
Тензор напряжений Sij описывает внутренние силы в веществе. Если при этом материал упругий, то внутренние деформации удобно описывать с помощью другого тензора Tij— так называемого тензора деформаций. Для простого объекта, подобного бруску из металла, изменение длины ΔL, как вы знаете, приблизительно пропорционально силе, т. е. он подчиняется закону Гука
Для произвольных деформаций упругого твердого тела тензор деформаций Tij связан с тензором напряжений Sij системой линейных уравнений
(31.26)
Вы знаете также, что потенциальная энергия пружины (или бруска) равна
а обобщением плотности упругой энергии для твердого тела будет выражение
(31.27)
Полное описание упругих свойств кристалла должно задаваться коэффициентами γijkl. Это знакомит нас с новым зверем — тензором четвертого ранга. Поскольку каждый из индексов может принимать одно из трех значений — х, у или z, то всего оказывается 34=81 коэффициент. Но различны из них на самом деле только 21. Во-первых, поскольку тензор Sij симметричен, у него остается только шесть различных величин, и поэтому в уравнении (31.27) нужны только 36 различных коэффициентов. Затем, не изменяя энергии, мы можем переставить Sij и Skl, так что γijkl должно быть симметрично при перестановке пары индексов ij и kl. Это уменьшает число коэффициентов до 21. Итак, чтобы описать упругие свойства кристалла низшей возможной симметрии, требуется 21 упругая постоянная! Разумеется, для кристаллов с более высокой симметрией число необходимых постоянных уменьшается. Так, кубический кристалл описывается всего тремя упругими постоянными, а для изотропного вещества хватит и двух.
В справедливости последнего утверждения можно убедиться следующим образом. В случае изотропного материала компоненты γijkl не должны зависеть от поворота осей. Как это может быть? Ответ: они могут быть независимы, только когда выражаются через тензоры δij. Но существует лишь два возможных выражения, имеющих требуемую симметрию, — это δijδkl и δikδjl+δil+δjk, так что γijkl должно быть их линейной комбинацией. Таким образом, для изотропного материала
следовательно, чтобы описать упругие свойства материала, требуются две постоянные: а и b. Я предоставляю вам самим доказать, что для кубического кристалла требуются три такие постоянные.
И еще один последний пример (на этот раз пример тензора третьего ранга) дает нам пьезоэлектрический эффект. При напряженном состоянии в кристалле возникает электрическое поле, пропорциональное тензору напряжений. Общий закон пропорциональности имеет вид
где Ei — электрическое поле, а Pijk — пьезоэлектрические коэффициенты (пьезомодули), составляющие тензор. Можете ли вы сами доказать, что если у кристалла есть центр инверсии (т. е. если он инвариантен относительно замены х, у, z→-х,-y,-z), то все его пьезоэлектрические коэффициенты равны нулю.
§ 8. Четырехмерный тензор электромагнитного импульса
Все тензоры, с которыми мы сталкивались в этой главе, были связаны с трехмерным пространством; они определялись как величины, имеющие известные трансформационные свойства при пространственных поворотах. А вот в гл. 26 (вып. 6) мы имели возможность воспользоваться тензором в четырехмерном пространстве-времени: это был тензор электромагнитного поля Fμv. Компоненты такого четырехмерного тензора особым образом преобразуются при преобразованиях Лоренца. (Мы этого, правда, не делали, но могли бы рассматривать преобразования Лоренца как своего рода «вращение» в четырехмерном «пространстве», называемом пространством Минковского; тогда аналогия с тем, что мы рассматривали здесь, была бы ярче.)
В качестве последнего примера мы хотим рассмотреть другой тензор в четырех измерениях (t, x, y, z) теории относительности. Когда мы говорили о тензоре напряжений, то определяли Sij как компоненту силы, действующую на единичную площадку. Но сила равна скорости изменения импульса со временем. Поэтому вместо того, чтобы говорить «Sxy — это х-компонента силы, действующей на единичную площадку, перпендикулярную оси у», мы с равным правом могли бы сказать: «Sxy — это скорость потока x-компоненты импульса через единичную площадку, перпендикулярную оси у». Другими словами, каждый член Sij представляет поток i-й компоненты импульса через единичную площадку, перпендикулярную оси j. Так обстоит дело с чисто пространственными компонентами, но они составляют только часть «большего» тензора Sμv в четырехмерном пространстве (μ и v=t, x, у, z), содержащего еще дополнительные компоненты Stx, Syt, Stt и т. п. Попытаемся теперь выяснить физический смысл этих дополнительных компонент.
Нам известно, что пространственные компоненты представляют поток импульса. Чтобы найти ключ к распространению этого понятия на «временное направление», обратимся к «потоку» другого рода — потоку электрического заряда. Скорость потока скалярной величины, подобной заряду (через единичную площадь, перпендикулярную потоку), является пространственным вектором — вектором плотности тока j. Мы видели, что временная компонента вектора потока — это плотность текущего вещества. Например, j можно скомбинировать с плотностью заряда jt=ρ и получить четырехвектор jμ=(ρ, j), т. е. значок μ у вектора jμ принимает четыре значения: t, х, у, z. Это означает «плотность», «скорость потока в x-направлении», «скорость потока в y-направлении» и «скорость потока в z-направлении» скалярного заряда.
Теперь по аналогии с нашим утверждением о временной компоненте потока скалярной величины можно ожидать, что вместе с Sxx,Sxy и Sxz, описывающими поток x-компоненты импульса, должна быть и временная компонента Sxt, которая по идее должна бы описывать плотность того, что течет, т. е. Sxt должна быть плотностью х-компоненты импульса. Таким образом, мы можем расширить наш тензор по горизонтали, включив в него t-компоненты, и в нашем распоряжении оказываются:
Аналогичная вещь происходит и с y-компонентой; у нас есть три компоненты потока: Syx, Syy и Syz, к которым нужно добавить четвертый член:
а к трем компонентам Szx, Szy и Szz мы добавляем
В четырехмерном пространстве у импульса существует также и t-компонента, которой, как мы знаем, является энергия. Так что тензор Sij следует продолжить по вертикали с включением в него Stx, Sty и Stz, причем
(31.28)
т. е. Stx— это поток энергии в единицу времени через поверхность единичной площади, перпендикулярную оси х, и т. д. Наконец, чтобы пополнить наш тензор, нужна еще величина Stt, которая должна быть плотностью энергии. Итак, мы расширили наш трехмерный тензор напряжений до четырехмерного тензора энергии-импульса Sμv. Индекс μ может принимать четыре значения: t, х, у и z, которые означают «плотность», «поток через единичную площадь в направлении оси х», «поток через единичную площадь в направлении оси y» и «поток через единичную площадь в направлении оси z». Значок v тоже принимает четыре значения: t, х, у, z, которые говорят нам, что же именно течет: «энергия», x-компонента импульса», «y-компонента импульса» или же «z-компонента импульса».
В качестве примера рассмотрим этот тензор не в веществе, а в пустом пространстве с электромагнитным полем. Вы знаете, что поток энергии электромагнитного поля описывается вектором Пойнтинга S=ε0c2E×В. Так что х-, у- и z-компоненты вектора S с релятивистской точки зрения являются компонентами: Stx, Sty и Stz нашего тензора энергии-импульса. Симметрия тензора Sij переносится и на временные компоненты, так что четырехмерный тензор Sμv тоже симметричен:
(31.29)
Другими словами, компоненты Sxt, Syt, Szt, которые представляют плотности х-, у- и z-компонент импульса, равны также х-, у- и z-компонентам вектора Пойнтинга S, или, как мы видели раньше из других соображений, вектора потока энергии.
Оставшиеся компоненты тензора электромагнитного напряжения Sμv тоже можно выразить через электрическое и магнитное поля Е и В. Иначе говоря, для электромагнитного поля в пустом пространстве мы должны допустить существование тензора напряжений, или, выражаясь менее таинственно, потока импульса электромагнитного поля. Мы уже обсуждали это в гл. 27 (вып. 6) в связи с уравнением (27.21), но тогда мы не входили в детали.
Тем из вас, кто хочет испытать свою удаль на четырехмерных тензорах, может понравиться выражение для тензора Sμv через поля:
где суммирование по α и β проводится по всем их значениям (т. е. t, x, у и z), но, как обычно в теории относительности, для суммы ∑ и символа δ принимается специальное соглашение. В суммах слагаемые со значками х, у, z должны вычитаться, а δtt=+1, тогда как δxx.=δуу=δzz=-1 и δμv=0 для всех μ≠v (с=1). Сможете ли вы доказать, что эта формула приводит к плотности энергии Stt=(ε0/2)(E2+B2) и вектору Пойнтинга[42] ε0Е×В? Можете ли вы показать, что в электростатическом поле, когда В=0, главная ось напряжения направлена по электрическому полю и вдоль направления поля возникает натяжение (ε0/2)E2 и равное ему давление в направлении, перпендикулярном направлению поля?
Глава 32 ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ ПЛОТНОГО ВЕЩЕСТВА
Повторить: всё что в табл. 32.
§ 1. Поляризация вещества
Здесь я хочу обсудить явления преломления света, ну и, разумеется, его поглощение плотным веществом. Теорию показателя преломления мы уже рассматривали в гл. 31 (вып. 3), но тогда наши знания математики были весьма ограничены и мы остановились только на показателе преломления веществ с малой плотностью наподобие газов. Но физические принципы, приводящие к возникновению показателя преломления, мы там все же выяснили. Электрическое поле световой волны поляризует молекулы газа, создавая тем самым осциллирующие дипольные моменты, а ускорение осциллирующих зарядов приводит к излучению новых волн поля. Это новое поле, интерферируя со старым, изменяет его. Изменение поля эквивалентно тому, что происходит сдвиг фазы первоначальной волны. Из-за того что сдвиг фазы пропорционален толщине материала, эффект в целом оказывается эквивалентным изменению фазовой скорости света в материале. Прежде, когда рассматривалось это явление, мы пренебрегали усложнениями, возникающими от таких эффектов, как действие новой измененной волны на поле осциллирующего диполя. Мы предполагали, что силы, действующие на заряды атомов, определяются только падающей волной, тогда как на самом деле на осциллятор действует не только падающая волна, но и волны, излученные другими атомами. В то время нам еще было трудно учесть этот эффект, поэтому мы изучали только разреженные газы, где его можно считать несущественным.
Ну а теперь мы увидим, что эта задача с помощью дифференциальных уравнений решается совсем просто. Конечно, дифференциальные уравнения затуманивают физическую причину возникновения преломления (как результата интерференции вновь излученных волн с первоначальными), но зато они упрощают теорию плотного материала. В этой главе сойдется вместе многое из того, что мы делали уже раньше. Практически мы уже получили все, что нам потребуется, так что по-настоящему новых идей в этой главе будет сравнительно немного. Поскольку вам может понадобиться освежить в памяти то, с чем мы здесь столкнемся, то в табл. 32.1 приводится список уравнений, которые я собираюсь использовать вместе со ссылкой на те места, где их можно найти. Во многих случаях из-за нехватки времени я не смогу снова останавливаться на физических аргументах, а сразу же буду браться за уравнения.
Таблица 32.1. ЧТО БУДЕТ ИСПОЛЬЗОВАНО В ЭТОЙ ГЛАВЕ
Начну с напоминания о механизме преломления в газе. Мы предполагаем, что в единице объема газа находится N частиц и каждая из них ведет себя как гармонический осциллятор. Мы пользуемся моделью атома или молекулы, к которой электрон привязан силой, пропорциональной его перемещению (как будто он удерживается пружинкой). Отметим, что такая модель атома с классической точки зрения незаконна, однако позднее будет показано, что правильная квантовомеханическая теория дает (в простейших случаях) эквивалентный результат. В наших прежних рассмотрениях мы не учитывали «тормозящей» силы в атомном осцилляторе, а сейчас это будет сделано. Такая сила соответствует сопротивлению при движении, т. е. она пропорциональна скорости электрона. Уравнением движения при этом будет
(32.1)
где х — перемещение, параллельное направлению поля Е. (Осциллятор предполагается изотропным, т. е. восстанавливающая сила одинакова во всех направлениях. Кроме того, на время мы ограничимся линейно поляризованной волной, так что поле Е не меняет своего направления.) Если действующее на атом электрическое поле изменяется со временем синусоидально, то мы пишем.
(32.2)
С той же самой частотой будет осциллировать и перемещение, поэтому можно считать
Подставляя .х=iωх и ..х=-ω2х, можно выразить х через Е:
(32.3)
А зная перемещение, можно вычислить ускорение ..х и найти ответственную за преломление излученную волну. Именно таким способом в гл. 31 (вып. 3) мы подсчитывали показатель преломления.
Теперь же мы пойдем другим путем. Индуцированный дипольный момент атома р равен qex, или в силу уравнения (32.3)
(32.4)
Так как р пропорционально Е, то мы пишем
(32.5)
где α — атомная поляризуемость[43]:
(32.6)
Подобный же ответ для движения электронов в атоме дает и квантовая механика, но с учетом следующих особенностей. У атомов есть несколько собственных частот, каждая из которых имеет свою диссипативную постоянную γ. Кроме того, каждая гармоника имеет еще свою эффективную «силу», выражаемую в виде произведения поляризуемости при данной частоте на постоянную связи f, которая, как ожидается, по порядку величины равна единице. Обозначая каждый из трех параметров ω0, γ и f для каждой из гармоник через ω0k, γk и fk и суммируя по всем гармоникам, мы вместо (32.6) получаем
(32.7)
Если число атомов в единице объема вещества равно N, то поляризация Р будет просто Np=ε0NαE, т. е. пропорциональна Е:
(32.8)
Другими словами, когда на материал действует синусоидальное электрическое поле, оно индуцирует пропорциональный себе дипольный момент, причем константа пропорциональности α, как мы уже отмечали, зависит от частоты. При очень больших частотах α мала: реакция материала слабая. А вот при низких частотах реакция может быть очень сильной. Константа пропорциональности, кроме того, еще оказывается комплексной, т. е. поляризация не следует точно за всеми изменениями электрического поля, а в какой-то степени может быть сдвинута по фазе. Во всяком случае, электрическое поле вызывает в материале поляризацию, пропорциональную его напряженности.
§ 2. Уравнения Максвелла в диэлектрике
Наличие в веществе поляризации означает, что там возникают поляризационные заряды и токи, которые необходимо учитывать в полных уравнениях Максвелла при нахождении полей. Сейчас мы собираемся решать уравнения Максвелла для случая, когда заряды и токи не равны нулю, но неявно определяются вектором поляризации. Нашим первым шагом должно быть явное нахождение плотности зарядов ρ и плотности тока j, усредненных по тому же самому малому объему, который имелся в виду при определении вектора Р. Потом необходимые нам значения ρ и j могут быть определены из поляризации. В гл. 10 (вып. 5) мы видели, что когда поляризация Р меняется от точки к точке, то возникает плотность зарядов:
(32.9)
В то время мы имели дело со статическими полями, но эта же формула справедлива и для переменных полей. Но когда Р изменяется со временем, заряды движутся, так что появляется поляризационный ток. Каждый из осциллирующих зарядов вносит в ток свой вклад, равный произведению его заряда qe на скорость v. Когда же таких зарядов в единице объема N штук, то они создают плотность тока j:
Ну а поскольку известно, что v=dx/dt, то j=Nqedx/dt, что как раз равно dP/dt. Следовательно, при переменной поляризации возникает плотность тока
(32.10)
Наша задача стала теперь простой и понятной. Мы пишем уравнения Максвелла с плотностями заряда и тока, определяемыми поляризацией Р посредством уравнений (32.9) и (32.10). (Предполагается, что других зарядов и токов в веществе нет.) Затем мы свяжем Р с Е формулой (32.5) и будем разрешать их относительно Е и В, отыскивая при этом волновое решение.
Но прежде чем приступить к решению, мне бы хотелось сделать одно замечание исторического характера. Первоначально Максвелл писал свои уравнения в форме, отличающейся от той, в которой они используются нами. И именно потому, что уравнения писались в другой форме в течение многих лет (да и сейчас многими пишутся так), я постараюсь объяснить вам разницу. В те дни механизм диэлектрической проницаемости не был понятен с ясностью и полнотой. Не была ясна ни природа атомов, ни существование поляризации в веществе. Поэтому тогда не понимали, что ∇·P дает дополнительный вклад в плотность заряда ρ. Были известны только заряды, не связанные в атомах (такие, как заряды, текущие по проводу или возникающие при трении).
Сегодня же мы предпочитаем обозначать через ρ полную плотность зарядов, включая в нее и заряды, связанные с индивидуальными атомами. Если назвать эту часть зарядов ρпол, то можно написать
где ρдр— плотность зарядов, учтенная Максвеллом и относящаяся к другим зарядам, не связанным с определенными атомами. При этом мы бы написали
После подстановки ρпол из (32.9) получаем
или
(32.11)
В плотность тока, фигурирующую в уравнениях Максвелла для ∇×B, вообще говоря, тоже вносится вклад от связанных атомных электронных токов. Поэтому мы можем написать
причем уравнение Максвелла приобретает вид
(32.12)
Используя уравнение (32.10), получаем
(32.13)
Теперь вы видите, что если бы мы определили новый вектор D
(32.14)
то два уравнения поля приняли бы вид
(32.15)
и
(32.16)
Это и есть та форма уравнений, которую использовал Максвелл для диэлектриков. А вот и остальные два уравнения:
и
которые в точности совпадают с нашими.
Перед Максвеллом и другими учеными того времени вставала проблема магнетиков (за них мы вскоре примемся). Они ничего не знали о циркулирующих токах, ответственных за атомный магнетизм и поэтому, в плотности тока утеряли еще одну часть. Вместо уравнения (32.16) они на самом деле писали
(32.17)
где Н отличается от ε0с2В, так как последнее учитывает эффекты атомных токов. (При этом j' представляет то, что осталось от токов.) Таким образом, у Максвелла было четыре полевых вектора: Е, D, В и Н, причем в D и Н скрывалось то, на что он не обратил внимания, — процессы, происходящие внутри вещества. Уравнения, написанные в таком виде, вы встретите во многих местах.
Чтобы решить их, необходимо как-то связать D и Н с другими полями, поэтому зачастую писали
(32.18)
Однако эти связи верны лишь приближенно для некоторых веществ, и то лишь когда поля не изменяются слишком быстро со временем. (Для синусоидально изменяющихся полей зачастую можно писать уравнения таким способом, считая при этом ε и μ комплексными функциями частоты, но для произвольных изменений поля со временем это неверно.) На какие только ухищрения не пускаются ученые, чтобы решить уравнения! А мне кажется, что правильнее всего оставить уравнения записанными через фундаментальные величины, как мы понимаем их теперь, т. е. как раз то, что мы и проделали.
§ 3. Волны в диэлектрике
Теперь нам предстоит выяснить, какого сорта электромагнитные волны могут существовать в диэлектрическом веществе, где других зарядов, кроме тех, что связаны в атомах, нет. Таким образом, мы возьмем ρ=-∇·Р и j=∂P/∂t. При этом уравнения Максвелла примут такой вид:
(32.19)
Мы можем решить эти уравнения, как делали это прежде. Начнем с применения к уравнению (32.19в) операции ротора:
Используя затем векторное тождество
и подставляя выражение для ∇×B из (32.19б), получаем
Используя уравнение (32.19а) для ∇·Е, находим
(32.20)
Таким образом, вместо волнового уравнения мы теперь получили, что даламбертиан Е равен двум членам, содержащим поляризацию Р.
Однако Р зависит от Е, поэтому уравнение (32.20) все еще допускает волновые решения. Сейчас мы будем ограничиваться изотропными диэлектриками, т. е. Р всегда будет иметь то же направление, что и Е. Попробуем найти решение для волны, движущейся в направлении оси z. Электрическое поле при этом будет изменяться как еi(ωt-kz). Предположим также, что волна поляризована в направлении оси х, т. е. что электрическое поле имеет только x-компоненту. Все это записывается следующим образом:
(32.21)
Вы знаете, что любая функция от (z-vt) представляет волну, бегущую со скоростью v. Показатель экспоненты в выражении (32.21) можно переписать в виде
так что выражение (32.21) представляет волну, фазовая скорость которой равна
В гл. 31 (вып. 3) показатель преломления n определялся нами из формулы
С учетом этой формулы (32.21) приобретает вид
Таким образом, показатель n можно определить, если мы найдем ту величину k, которая необходима, чтобы выражение (32.21) удовлетворяло соответствующим уравнениям поля, и затем воспользуемся соотношением
(32.22)
В изотропном материале поляризация будет иметь только x-компоненту; кроме того, Р не изменяется с изменением координаты х, поэтому ∇·P=0 и мы сразу же избавляемся от первого члена в правой стороне уравнения (32.20). Вдобавок мы считаем наш диэлектрик «линейным», поэтому Рх будет изменяться как еiωt и ∂2Px/∂t2=-ω2Px. Лапласиан же в уравнении (32.20) превращается просто в ∂2Ex/∂z2=-k2Еx, так что в результате получаем
(32.23)
Теперь на минуту предположим, что раз Е изменяется синусоидально, то Р можно считать пропорциональной Е, как в уравнении (32.5). (Позднее мы вернемся к этому предположению и обсудим его.) Таким образом, пишем
При этом Ех выпадает из уравнения (32.23), и мы находим
(32.24)
Мы получили, что волна вида (32.21) с волновым числом k, задаваемым уравнением (32.24), будет удовлетворять уравнениям поля. Использование же выражения (32.22) для показателя n дает
(32.25)
Сравним эту формулу с тем, что получилось у нас для показателя преломления газа (гл. 31, вып. 3). Там мы нашли уравнение (31.19), которое тогда имело вид
(32.26)
Формула (32.25) после подстановки α из (32.6) дает
(32.27)
Что здесь нового? Во-первых, появился новый член iγω, возникший в результате учета поглощения энергии в осцилляторах. Во-вторых, слева вместо n теперь стоит n2 и, кроме того, отсутствует дополнительный множитель 1/2. Но заметьте, что если значение N достаточно мало, так что n близок к единице (как это имеет место в газе), то выражение (32.27) говорит, что n2 равен единице плюс некое малое число, т. е. n2=1+ε. При этом условии мы можем написать, что n=√(1+ε)≈1+ε/2, и оба выражения оказываются эквивалентными. Таким образом, наш новый метод дает для газа тот же самый, найденный нами ранее результат.
Теперь можно надеяться, что выражение (32.27) должно давать показатель преломления и для плотных материалов. Но по некоторым причинам оно нуждается в модификации. Во-первых, при выводе этого уравнения предполагалось, что поляризованное поле, действующее на каждый из атомов, — это поле Ех. Однако такое предположение неверно, поскольку в плотном материале существуют и другие поля, создаваемые соседними атомами, которые могут быть сравнимы с Ех. Аналогичную задачу мы уже рассматривали при изучении статических полей в диэлектрике (см. гл. 11, вып. 5). Вы, вероятно, помните, что мы нашли поле, действующее на отдельный атом, представив его сидящим в сферической полости в окружающем диэлектрике. Поле в такой полости (мы назвали его локальным) увеличивается по сравнению со средним полем Е на величину Р/3ε0. (Не забудьте, однако, что этот результат, строго говоря, справедлив только для изотропного материала, а также в случае кубического кристалла.)
Те же рассуждения верны и для электрического поля в волне, но до тех пор, пока длина ее много больше расстояния между атомами. При таком ограничении
(32.28)
Именно это локальное поле следует использовать вместо Е в (32.8), т. е. это выражение должно быть переписано следующим образом:
(32.29)
Подставляя теперь Елок из формулы (32.28), находим
или
(32.30)
Иными словами, Р для плотного материала все еще пропорциональна Е (для синусоидального поля). Однако константа пропорциональности будет уже ε0Nα/[1-(N/3)], а не ε0Nα, как раньше. Таким образом, нам нужно поправить формулу (32.25):
(32.31)
Более удобно переписать это в виде
(32.32)
который алгебраически эквивалентен прежнему. Это и есть известная формула Клаузиуса — Моссотти.
В плотном материале возникает и другое усложнение. Поскольку атомы расположены слишком тесно, они сильно взаимодействуют друг с другом. Поэтому внутренние гармоники осцилляции изменяются. Собственные частоты атомных осцилляций размазываются этими взаимодействиями и обычно весьма сильно подавляются ими, а коэффициент трения становится очень большим. Таким образом, все ω0 и γ твердого вещества будут другими, чем для свободных атомов. С этой оговоркой мы все-таки можем представлять α, по крайней мере приближенно, уравнением (32.7), так что
(32.33)
Наконец, последнее усложнение. Если плотный материал представляет собой смесь нескольких компонент, то каждая из них дает свой вклад в поляризацию. Полная α будет суммой вкладов различных компонент смеси [за исключением неточности приближения локального поля в упорядоченных кристаллах, т. е. выражения (32.28) — эффекты, которые мы обсуждали при разборе сегнетоэлектриков]. Обозначая через Nj число атомов каждой компоненты в единице объема, мы должны заменить формулу (32.32) следующей:
(32.34)
где каждая αj будет определяться выражением типа (32.7). Выражение (32.34) завершает нашу теорию показателя преломления. Величина 3(n2-1)/(n2+2) задается комплексной функцией частоты, каковой является средняя атомная поляризуемость α(ω). Точное вычисление α(ω) (т. е. нахождение fk, γk и ω0k) для плотного вещества — одна из труднейших задач квантовой механики. Это было сделано только для нескольких особенно простых веществ.
§ 4. Комплексный показатель преломления
Обсудим теперь следствия нашего результата (32.33). Прежде всего обратите внимание на то, что α — комплексное число, так что показатель преломления n тоже оказывается комплексным. Что это означает? Давайте возьмем и запишем n в виде вещественной и мнимой частей:
(32.35)
где nR и nI — вещественные функции ω. Мы написали inI с отрицательным знаком, так что nI для обычных оптических материалов будет положительной величиной. (Для обычных оптически неактивных материалов, которые не служат сами источниками света, как это происходит у лазеров, γ—положительное число, а это делает мнимую часть n отрицательной.) Наша плоская волна запишется теперь через n следующим образом:
Если подставить n в виде выражения (32.35), то мы получим
(32.36)
Множитель exp[iω(t-nRz/c)] представляет просто волну, бегущую со скоростью c/nR, т. е. nR будет как раз то, что мы обычно считаем показателем преломления. Но амплитуда этой волны равна
и с увеличением z она экспоненциально убывает. График напряженности электрического поля как функции от z в некоторый момент времени и для nI≈ nR/2π показан на фиг. 32.1.
Фиг. 32.1. График поля Ех в некоторый момент t при nI≈nR2/π.
Мнимая часть показателя преломления из-за потерь энергии в атомных осцилляторах приводит к ослаблению волны. Интенсивность волны пропорциональна квадрату амплитуды, так что
Часто это записывается как
где β=2ωnI/с — коэффициент поглощения. Таким образом, в уравнении (32.33) содержится не только теория показателя преломления вещества, но и теория поглощения им света.
В тех материалах, которые мы обычно считаем прозрачными, величина c/ωnI, имеющая размерность длины, оказывается гораздо больше толщины материала.
§ 5. Показатель преломления смеси
В нашей теории показателя преломления имеется еще одно предсказание, которое можно проверить экспериментально. Предположим, что мы рассматриваем смесь двух материалов. Показатель преломления смеси не будет средним двух показателей, а определяется через сумму двух поляризуемостей, как в уравнении (32.34). Если, скажем, мы интересуемся показателем преломления раствора сахара, то полная поляризуемость будет суммой поляризуемостей воды и сахара. Но каждая из них, разумеется, должна подсчитываться исходя из данных о числе молекул N данного сорта в единице объема. Другими словами, если в данном растворе содержится N1 молекул воды, поляризуемость которой α1, и N2 молекул сахарозы (C12H22O11), поляризуемость которой α2, то мы должны получить
(32.37)
Этой формулой можно воспользоваться для экспериментальной проверки нашей теории — измерения показателя для различных концентраций сахарозы в воде. Однако здесь мы должны сделать несколько допущений. Наша формула предполагает, что при растворении сахарозы никакой химической реакции не происходит и что возмущение индивидуальных осцилляторов при различных частотах отличается не слишком сильно. Поэтому наш результат, безусловно, будет только приближенным. Тем не менее давайте посмотрим, насколько он хорош.
Раствор сахара мы выбрали потому, что мы располагаем хорошими данными измерений показателя преломления[44] и, кроме того, сахар представляет собой молекулярный кристалл и переходит в раствор без ионизации и других изменений химического состояния.
Таблица 32.2. ПОКАЗАТЕЛЬ ПРЕЛОМЛЕНИЯ РАСТВОРА САХАРА И СРАВНЕНИЕ С ПРЕДСКАЗАНИЕМ УРАВНЕНИЯ (32.37)
В первых трех столбцах табл. 32.2 приведены данные из указанного справочника. В столбце А дан процент сахарозы по весу, в столбце В приведена измеренная плотность в г/см3, а в столбце С даны измерения показателя преломления света с длиной волны 589,3 ммк. В качестве показателя чистого сахара мы взяли результаты измерений для кристалла сахара. Эти кристаллы не изотропны, так что показатель преломления в разных направлениях различен. Справочник дает три величины:
Мы взяли среднее.
Попытаемся теперь подсчитать n для каждой концентрации, но мы не знаем, какие нужно взять значения α1 и α2. Проверим теорию таким способом: будем предполагать, что поляризуемость воды (α1) при всех концентрациях одна и та же, и подсчитаем поляризуемость сахарозы, используя экспериментальную величину n и разрешая (32.37) относительно α2. Если теория верна, то мы для любой концентрации должны получить одно и то же значение α2.
Прежде всего нам нужно знать числа N1 и N2; выразим их через число Авогадро N0. В качестве нашей единицы объема давайте возьмем один литр (1000 см3). Тогда отношение Ni/N0 равно весу одного литра, поделенному на грамм-молекулу. А вес литра равен произведению плотности (умноженной на 1000, чтобы получить граммы) на весовую долю либо сахарозы, либо воды. Таким путем получаем N2/N0 и N1/N0, записанные в столбцах D и Е нашей таблицы.
В столбце F мы подсчитали 3(n2-1)/(n2+2), исходя из экспериментальных значений n (столбец С). Для чистой воды 3(n2-1)/(n2+2) равно 0,617, что как раз будет N1α1. Затем мы можем заполнить остальную часть колонки G, поскольку для каждой строки отношение G/E должно быть одной и той же величиной, именно 0,617:55,5. Вычитая столбец G из столбца F, находим вклад N2α2, вносимый сахарозой, который записан в столбце Н. А затем, поделив эти данные на величину N2/N0 из столбца D, мы получаем величину N0α2, приведенную в столбце 1.
Из нашей теории мы ожидали, что все величины N0α2 должны получиться одинаковыми. Они получились хотя и не точно равными, но довольно близкими друг к другу. Отсюда можно заключить, что наши идеи правильны. Более того, мы нашли, что поляризуемость молекул сахара, по-видимому, не зависит сильно от ее окружения: их поляризуемость приблизительно одна и та же как в разбавленном растворе, так и в кристалле.
§ 6. Волны в металлах
Теорию, которая в этой главе развивалась для твердых материалов, после очень небольшой модификации вполне можно применить и к хорошим проводникам типа металлов. На некоторые из электронов в металлах не действует сила, привязывающая их к какому-то частному атому; это так называемые «свободные» электроны, ответственные за проводимость. Там есть и другие электроны, которые связаны в атомах, и изложенная выше теория непосредственно приложима именно к ним. Однако их влияние обычно «забивается» эффектами электронов проводимости. Поэтому сейчас мы рассмотрим только эффекты свободных электронов.
Если на электрон не действует никакая восстанавливающая сила, но сопротивление его движению все же остается, то уравнение движения электрона отличается от (32.1) только отсутствием члена ω02х. Так что единственное, что нам нужно сделать, — это положить ω02=0 во всей остальной части наших выводов. Но есть еще одно отличие. В диэлектриках мы должны различать среднее и локальное поля и вот почему: в изоляторе каждый из диполей занимает фиксированное положение по отношению к другим диполям. Но в металле из-за того, что электроны проводимости движутся и меняют свое место, поле, действующее на них, в среднем как раз равно среднему полю Е. Так что поправка, которую мы сделали к формуле (32.5), не годится, т. е. применение формулы (32.28) для электронов проводимости недопустимо. Следовательно, выражение для показателя преломления в металле должно выглядеть подобно выражению (32.27), в котором следует положить ω0=0, именно:
(32.38)
Это только вклад от электронов проводимости, которые, как мы думаем, играют в металлах главную роль.
Но теперь мы даже знаем, какой нам взять величину γ, ибо она связана с проводимостью металла. В гл. 43 (вып. 4) мы обсудили связь проводимости металлов с диффузией свободных электронов в кристалле. Электроны движутся по ломаному пути от одного соударения до другого, а между этими толчками они летят свободно, за исключением ускорения из-за какого-то среднего электрического поля (фиг. 32.2).
Фиг. 32.2. Движение свободного электрона.
Там же, в гл. 43 (вып. 4), мы нашли, что средняя скорость дрейфа равна просто произведению ускорения на среднее время между соударениями τ. Ускорение равно qeE/m, так что
(32.39)
В этой формуле поле Е считается постоянным, так что скорость vдрейф тоже постоянна. Поскольку в среднем ускорение отсутствует, сила торможения равна приложенной силе. Мы определили γ через силу торможения, равную γmv [см. (32.1)], или qeE, поэтому получается, что
(32.40)
Несмотря на то что мы не можем с легкостью измерять непосредственно τ, можно определять его, измеряя проводимость металла. Экспериментально обнаружено, что электрическое поле Е порождает в металлах ток с плотностью j, пропорциональной Е (для изотропного материала, конечно):
причем постоянная пропорциональности σ называется проводимостью.
В точности то же самое мы ожидаем из выражения (32.39), если положить
тогда
(32.41)
Таким образом, τ, а следовательно, и γ могут быть связаны с наблюдаемой электрической проводимостью. Используя (32.40) и (32.41), можно переписать нашу формулу (32.38) для показателя преломления в виде
(32.42)
где
(32.43)
Это и есть известная формула для показателя преломления в металлах.
§ 7. Низкочастотное и высокочастотное приближения; глубина скин-слоя и плазменная частота
Наш результат для показателя преломления в металлах —формула (32.42) — предсказывает для распространения волн с разными частотами совершенно различные характеристики. Прежде всего давайте посмотрим, что получается при низких частотах. Если величина ω достаточно мала, то (32.42) можно приближенно записать в виде
(32.44)
Возведением в квадрат[45] можно проверить, что
таким образом, для низких частот
(32.45)
Вещественная и мнимая части n имеют одну и ту же величину. С такой большой мнимой частью n волны в металлах затухают очень быстро. В соответствии с выражением (32.36) амплитуда волны, идущей в направлении оси z, уменьшается как
(32.46)
Запишем это в виде
(32.47)
где δ — это то расстояние, на котором амплитуда волны уменьшается в е=2,72 раза, т. е. приблизительно в 3 раза. Амплитуда такой волны, как функция от z, показана на фиг. 32.3.
Фиг. 32.3. Амплитуда поперечной электромагнитной волны в металле как функция расстояния.
Поскольку электромагнитные волны проникают в глубь металла только на это расстояние, величина δ называется глубиной скин-слоя и определяется выражением
(32.48)
Но что все-таки мы понимаем под «низкими» частотами? Взглянув на уравнение (32.42), мы видим, что его можно приближенно заменить уравнением (32.44), только когда ωτ много меньше единицы и когда ωε0/σ также много меньше единицы, т. е. наше низкочастотное приближение применимо при
и
(32.49)
Давайте посмотрим, какие частоты соответствуют этому приближению для такого типичного металла, как медь. Для вычисления τ воспользуемся уравнением (32.43), а для вычисления σ/ε0 — известными значениями σ и ε0. Справочник дает нам такие данные:
Если мы предположим, что на каждый атом приходится по одному свободному электрону, то число электронов в кубическом метре будет равно
Используя далее
получаем
Таким образом, для частот, меньших чем приблизительно 1012 гц, медь будет иметь описанное нами «низкочастотное» поведение. (Это будут волны с длиной, большей 0,3 мм, т. е. очень короткие радиоволны!)
Для таких волн глубина скин-слоя равна
Для микроволн с частотой 10 000 Мгц (3-сантиметровые волны)
т. е. волны проникают на очень малое расстояние.
Теперь вы видите, почему при изучении полостей (и волноводов) нам нужно беспокоиться только о полях внутри полости, а не о волнах в металле или вне полости. Кроме того, мы видим, почему серебрение или золочение полости уменьшает потери в ней. Ведь потери происходят благодаря токам, которые ощутимы только в тонком слое, равном глубине скин-слоя.
Рассмотрим теперь показатель преломления в металле типа меди при высоких частотах. Для очень высоких частот ωτ много больше единицы, и уравнение (32.42) очень хорошо аппроксимируется следующим:
(32.50)
Для высокочастотных волн показатель преломления в металлах становится чисто вещественным и меньшим единицы! Это следует также из выражения (32.38), если пренебречь диссипативным членом с γ, что может быть сделано при очень больших значениях ω. Выражение (32.38) дает при этом
(32.51)
что, разумеется, эквивалентно уравнению (32.50). Раньше нам уже встречалась величина (Nqe2/ε0m)1/2, которую мы назвали плазменной частотой (см. гл. 7, § 3, вып. 5):
Таким образом, (32.50) или (32.51) можно переписать в виде
Эта плазменная частота является своего рода «критической».
Для ω<ωр показатель преломления металла имеет мнимую часть и происходит поглощение волн, но при ω≫ωp показатель становится вещественным, а металл — прозрачным. Вы знаете, конечно, что металлы в достаточной мере прозрачны для рентгеновских лучей. Но некоторые металлы прозрачны даже для ультрафиолета. В табл. 32.3 мы приводим для некоторых металлов экспериментально наблюдаемые длины волн, при которых эти металлы начинают становиться прозрачными. Во второй колонке дана вычисленная критическая длина волны λp=2πc/ωp. Учитывая, что экспериментальная длина волны определена не очень хорошо, согласие с теорией следует признать замечательным.
Таблица 32.3. длины волн, при которых МЕТАЛЛ СТАНОВИТСЯ ПРОЗРАЧНЫМ
Вас может удивить, почему плазменная частота ωр должна иметь отношение к распространению волн в металлах. Плазменная частота появилась у нас в гл. 7 (вып. 5) как собственная частота колебаний плотности свободных электронов. (Электрическое расталкивание группы электронов и их инерция приводят к колебаниям плотности.) Продольные волны плазмы резонируют при частоте ωр. Но сейчас мы говорим о поперечных волнах, и мы уже нашли, что при частотах, меньших ωр, происходит их поглощение. (Это очень интересное и отнюдь не случайное совпадение.)
Хотя мы все время говорили о распространении волн в металлах, вы одновременно, должно быть, почувствовали универсальность явлений физики: нет никакой разницы в том, находятся ли свободные электроны в металле, в плазме, в ионосфере Земли или в атмосфере звезд. Чтобы понять распространение радиоволн в ионосфере, можно воспользоваться тем же выражением, разумеется, при надлежащих значениях величин N и τ. Теперь мы можем видеть, почему длинные радиоволны поглощаются или отражаются ионосферой, тогда как короткие свободно проходят через нее. (Поэтому для связи с искусственными спутниками Земли должны применяться короткие волны.)
Мы говорили о распространении предельных высоко- и низкочастотных волн в металлах. Для промежуточных же частот необходимо использовать «полновесное» уравнение (32.42). В общем случае показатель преломления будет иметь вещественную и мнимую части, и при распространении волн в металлах происходит их поглощение. Очень тонкие слои металла прозрачны даже для обычных оптических частот. В качестве примера приведем специальные защитные очки для рабочих, работающих около высокотемпературных печей. Эти очки изготавливаются напылением на стекло очень тонкого слоя золота; стекло это достаточно прозрачно для видимого света и на просвет выглядит как зеленое, но инфракрасные лучи сильно поглощает.
И, наконец, от читателя невозможно скрыть тот факт, что многие из этих формул в некотором отношении напоминают формулы для диэлектрической проницаемости χ, рассмотренные в гл. 10 (вып. 5). Диэлектрической проницаемостью χ измеряется реакция материала на статическое электрическое поле, т. е. когда ω=0. Если вы посмотрите повнимательнее на определение n и χ, то обнаружите, что χ есть не что иное, как предел n2 при ω→0. В самом деле, положив в уравнениях этой главы ω=0 и n2=χ, мы воспроизведем уравнения теории диэлектрической проницаемости гл. 11 (вып. 5).
Глава 33 ОТРАЖЕНИЕ ОТ ПОВЕРХНОСТИ
Повторить: гл. 33 (вып. 3) « Поляризация »
§ 1. Отражение и преломление света
Предметом обсуждения в этой главе будет преломление и отражение света и электромагнитных волн вообще от поверхности. О законах отражения и преломления света мы говорили уже в вып. 3. Вот что мы там выяснили:
1. Угол отражения равен углу падения. Причем углы определяются, как это показано на фиг. 33.1:
Фиг. 33.1. Отражение и преломление волн на поверхности. Направления распространения волн перпендикулярны их гребням.
(33.1)
2. Произведение nsinθ одинаково как для падающего луча, так и для преломленного (закон Снелла):
(33.2)
3. Интенсивность отраженного света зависит как от угла падения, так и от направления поляризации. Для вектора Е, перпендикулярного плоскости падения, коэффициент отражения R┴ равен
(33.3)
Для вектора Е, параллельного плоскости падения, коэффициент отражения R║ равен
(33.4)
4. Для перпендикулярно падающего луча (разумеется, при любой поляризации!)
(33.5)
(Мы использовали индекс i для обозначения величин в падающем луче, t — в преломленном, а r — в отраженном.)
Наши прежние рассуждения практически достаточно полны для обычной работы, но мы собираемся применить здесь другой способ. Вы хотите знать почему? Причина заключается в том, что раньше мы считали показатель преломления вещественным (т. е. что никакого поглощения в материале не происходит). Однако есть и другая причина: вам следует уметь обращаться с волнами на поверхности с точки зрения уравнений Максвелла. Ответы, конечно, получатся одинаковые, но теперь уже путем непосредственного решения волновой задачи, а не с помощью правдоподобных рассуждений.
Я хочу подчеркнуть, что амплитуда отраженной от поверхности волны не определяется такими свойствами материала, как показатель преломления. Она зависит от чисто «поверхностных свойств», которые, строго говоря, определяются тем, как обработана поверхность. Тонкий слой посторонней примеси на границе между двумя материалами с показателями n1 и n2 обычно изменяет отражение. (Имеются всяческие виды интерференции, примером которой могут служить разноцветные масляные пленки на воде. Подбором толщины можно свести амплитуду отражения данной частоты к нулю. Именно так и делаются просветленные линзы.) Формулы, которые мы получим, будут верны, только когда показатель преломления резко изменится на расстояниях, малых по сравнению с длиной волны. Длина волны света, например, составляет около 5000 Å, так что под «гладкой» поверхностью мы понимаем поверхность, на которой условия изменяются всего на протяжении нескольких атомов (или на расстоянии нескольких ангстрем). Так что для света наши формулы будут работать только на хорошо отполированной поверхности. Вообще же если показатель преломления постепенно меняется на расстоянии нескольких длин волн, то отражение будет незначительным.
§ 2. Волны в плотных материалах
Прежде всего я напомню вам об удобном способе описания синусоидальных плоских волн, которым мы пользовались в гл. 36 (вып. 3). Любая компонента поля в волне (возьмем, например, Е) может быть записана в форме
(33.6)
где Е — амплитуда поля в точке r (относительно начала координат) в момент t. Вектор k указывает направление распространения волны, а его величина |k|=k=2πλ равна волновому числу. Фазовая скорость волны vфаз=ω/k для света в материале с показателем n будет равна c/n, поэтому
(33.7)
Предположим, что вектор k направлен по оси z; тогда k·r будет просто хорошо знакомым нам kz. Для вектора k в любом другом направлении z следует заменить на rk — расстояние от начала в направлении вектора k, т. е. kz мы должны заменить на krk, что как раз равно k·r (фиг. 33.2).
Фиг. 33.2. Фаза волны в точке Р, распространяющейся в направлении k, равна (ωt-k·r).
Таким образом, запись (33.6) является удобным представлением волны, идущей в любом направлении.
Разумеется, при этом мы должны помнить, что
где kx, ky и kz — компоненты вектора k по трем осям. Мы уже отмечали однажды, что на самом деле величины (ω, kx, ky, kz) образуют четырехвектор и что его скалярное произведение на (t, x, у, z) является инвариантом. Таким образом, фаза волны есть инвариант и формулу (33.6) можно записать в виде
Однако сейчас нам такие хитрости не понадобятся.
Для синусоидального поля Е, подобного выражению (33.6), производная ∂E/∂t — это то же самое, что и iωE, а ∂Е/∂х — то же, что и ikxE, и аналогично для остальных компонент. Вы видите, чем удобна форма (33.6): когда мы работаем с дифференциальными уравнениями, то дифференцирование заменяется простым умножением. Другое полезное качество состоит в том, что операция ∇=(∂/∂x), (∂/∂у), (∂/∂z) заменяется тремя умножениями (-ikx,-iky,-ikz). Но эти три множителя преобразуются как компоненты вектора k, так что оператор ∇ заменяется умножением на -ik:
(33.8)
Правило остается справедливым для операции ∇ в любой комбинации, будь то градиент, дивергенция или ротор. Например, z-компонента ∇×Е равна
Если и Еу и Ех изменяются как e-ik·r, то мы получаем
что представляет, как вы видите, z-компоненту -ik×Е.
Таким образом, мы получили очень полезный общий закон, что в любом случае, когда вам нужно взять градиент от вектора, который изменяется, как волна в трехмерном пространстве (а они в физике играют важную роль), эту операцию вы можете проделать быстро и почти без всяких раздумий, если вспомните, что оператор ∇ эквивалентен умножению на -ik.
Например, уравнение Фарадея
превращается для волны в
Оно говорит, что
(33.9)
Это соответствует результату, найденному ранее для волн в пустом пространстве, т. е. что вектор В в волне направлен под прямым углом к вектору Е и направлению распространения волны. (В пустом пространстве ω/k=с.) Знак в уравнении (33.9) вы можете проверить, исходя из того, что k является направлением вектора Пойнтинга S=ε0c2(E×В).
Если вы примените то же самое правило к другим уравнениям Максвелла, то снова получите результаты последней главы, в частности
(33.10)
Но раз уже это известно нам, давайте не будем проделывать все сначала.
Если вы хотите поразвлечься, можете попытаться решить такую устрашающую задачу (в 1890 г. она предлагалась студентам на выпускных экзаменах): решите уравнения Максвелла для плоской волны в анизотропном кристалле, т. е. когда поляризация Р связана с электрическим полем Е через тензор поляризуемости. Конечно, в качестве ваших осей вы выберете главные оси тензора, так что связи при этом упростятся (тогда Рх=αaЕх, Ру=αbЕу, а Pz=αcEz), но направление волны и ее поляризация пусть останутся произвольными. Вы должны найти соотношение между Е и В и определить, как изменяется k с направлением распространения волны и ее поляризацией. После этого вам будет понятна оптика анизотропного кристалла. Лучше начать с более легкого случая дважды лучепреломляющего кристалла, подобного турмалину, для которого два коэффициента поляризуемости равны между собой (например, αb=αc), и попытаться понять, почему, когда мы смотрим через такой кристалл, мы видим два изображения. Если это вам удастся, тогда испытайте свои силы на более трудном случае, когда все три а различны. После этого вам уже будет ясен уровень ваших знаний — знаете ли вы столько же, сколько студент, заканчивавший университет в 1890 г. Но мы с вами в этой главе будем рассматривать только изотропные вещества.
Из опыта вам известно, что когда на границу раздела двух материалов, скажем воздуха и стекла или воды и бензина, попадает плоская волна, то возникают как отраженная, так и преломленная волны. Предположим, что, кроме этого факта, нам больше ничего неизвестно, и посмотрим, что можно из него вывести. Выберем наши оси так, чтобы плоскость yz совпадала с поверхностью раздела, а плоскость ху была перпендикулярна фронту волны (фиг. 33.3).
Фиг. 33.3. Векторы, распространения k, k' и k" для падающей, отраженной и преломленной волн.
Электрический вектор в падающей волне может быть записан в виде
(33.11)
Поскольку вектор k перпендикулярен оси z, то
(33.12)
Отраженную волну мы запишем как
(33.13)
так что ее частота равна ω', волновое число k', а амплитуда Е'0. (Мы, конечно, знаем, что частота и величина вектора k в отраженной волне те же, что и в падающей волне, но не хотим предполагать даже это. Пусть это все получится само собой из математического аппарата.) Наконец, запишем преломленную волну:
(33.14)
Вы знаете, что одно из уравнений Максвелла дает соотношение (33.9), так что для каждой из волн
(33.15)
Кроме того, если показатели преломления двух сред мы обозначим через n1 и n2, то из уравнения (33.10) получится
(33.16)
Поскольку отраженная волна находится в том же материале, то
(33.17)
в то время как для преломленной волны
(33.18)
§ 3. Граничные условия
Все что мы делали до сих пор, было описанием трех волн; теперь нам предстоит выразить параметры отраженной и преломленной волн через параметры падающей. Как это сделать? Три описанные нами волны удовлетворяют уравнениям Максвелла в однородном материале, но, кроме того, уравнения Максвелла должны удовлетворяться и на границе между двумя материалами. Так что нам нужно сейчас посмотреть — что же происходит на самой границе. Мы найдем, что уравнения Максвелла требуют, чтобы три волны определенным образом согласовывались друг с другом.
Вот один из примеров того, что мы имеем в виду. Составляющая по оси у электрического поля Е должна быть одинакова по обеим сторонам границы. Это требуется законом Фарадея:
(33.19)
в чем нетрудно убедиться. Рассмотрим для этого маленькую петлю Г, которая с обеих сторон охватывает границу (фиг. 33.4).
Фиг. 33.4. Граничное условие Ey2=Ey1, полученное из равенства Г∮Eds=0.
Согласно уравнению (33.19), криволинейный интеграл от Е по петле Г равен скорости изменения потока В через эту петлю:
Вообразите теперь, что прямоугольник очень узок, так что он замыкается в бесконечно малой области. Если при этом поле В остается конечным (нет никаких причин ему быть бесконечным!), то поток через эту область будет равен нулю. Таким образом, контурный интеграл от Е должен быть нулем. Если y-компоненты поля на двух сторонах границы равны Еy1 и Еy2, а длина прямоугольника равна l, то мы получаем
или
(33.20)
как мы и ожидали. Это условие дает нам одно соотношение между полями в трех волнах.
Процедура нахождения следствий уравнений Максвелла на границе называется «определением граничных условий». Обычно она заключается в нахождении стольких уравнений типа (33.20), сколько возможно, и выполняется она с помощью рассмотрений маленьких прямоугольников, подобных Г на фиг. 33.4, или маленьких гауссовых поверхностей, охватывающих границу с двух сторон. Хотя это совершенно правильный способ рассуждений, он создает впечатление, что в различных физических задачах с границами нужно обращаться по-разному.
Как, например, в задаче о тепловом потоке через поверхность определить температуру на обеих прилежащих к ней сторонах? Конечно, вы вправе утверждать, что тепло, притекающее к границе с одной стороны, должно быть равно теплу, утекающему от нее с другой. Обычно это возможно и, вообще говоря, очень полезно находить граничные условия из такого рода физических рассуждений. Однако могут встретиться случаи, когда при работе над какой-то проблемой вам известны лишь уравнения и вы не можете непосредственно увидеть, какие же физические аргументы можно использовать. Так что, хотя в данный момент мы заинтересованы только в электромагнитных явлениях, где можно привести физические аргументы, я хочу научить вас методу, который можно применить в любой задаче: общему методу нахождения непосредственно из дифференциальных уравнений того, что происходит на границе.
Начнем с выписывания всех уравнений Максвелла для диэлектрика, но на этот раз скрупулезно выписывая все компоненты:
(33.21)
(33.22)
(33.23)
(33.24)
Эти уравнения должны быть справедливы как в области 1 (слева от границы), так и в области 2 (справа от нее). Мы уже выписывали решения в областях 1 и 2. Они должны удовлетворяться и на самой границе, которую мы можем назвать областью 3. Хотя обычно мы считаем границу чем-то абсолютно резким, на самом деле таких границ не бывает. Физические свойства, правда, изменяются очень быстро, но все же не бесконечно быстро. Во всяком случае, мы можем считать, что между областями 1 и 2 изменение показателя преломления хотя и очень быстрое, но непрерывное. Это небольшое расстояние, на котором оно происходит, мы можем назвать областью 3. Подобный же переход в области 3 будут претерпевать и другие характеристики поля, такие, как Рх или Еy и т. п. Однако дифференциальные уравнения должны удовлетворяться; именно следуя за дифференциальными уравнениями в этой области, мы придем к необходимым «граничным условиям».
Предположим, например, что у нас есть граница между вакуумом (область 1) и стеклом (область 2). В вакууме нечему поляризоваться, так что P1=0. А поляризация в стекле пусть равна Р2. Между вакуумом и стеклом существует гладкий, но быстрый переход. Если мы проследим за какой-то компонентой Р, скажем Рх, то она может изменяться так, как это показано на фиг. 33.5, а.
Фиг. 33.5. Поля в переходной области 3 между двумя различными материалами в областях 1 и 2.
Предположим теперь, что мы взяли первое из наших уравнений — уравнение (33.21). В него входит производная от компонент Р по переменным х, у и z. Производные по у и z не очень интересны — в этих направлениях не происходит ничего замечательного. Но производная от Рх по х в области 3 из-за быстрого изменения Рх будет громадна. Производная ∂Рх/∂х, как показано на фиг. 33.5,б, имеет на границе очень резкий пик. Если вы представите, что граница сжимается до еще более тонкой области, пик вырастет еще больше. Если для интересующих нас волн граница действительно резкая, то величина ∂P/∂x в области 3 будет больше, много больше любого вклада, который может получиться из-за изменения Р в стороне от границы, так что мы пренебрегаем любыми другими изменениями, за исключением происходящих на границе.
Но как теперь можно удовлетворить уравнению (33.21), если с правой стороны у нас возвышается огромный пик? Только если существует равный ему громадный пик с другой стороны. Что-то и с левой стороны должно быть большим. Единственная возможность — это ∂Ех/∂х, поскольку изменения в направлениях у и z в тех волнах, о которых мы только что упомянули, дают лишь малый эффект. Таким образом, -ε0(∂Ех/∂х) должно быть, как это показано на фиг. 33.5,в, точной копией ∂P/∂x. Получается
Если это уравнение проинтегрировать по х по всей области 3, то мы придем к заключению, что
(33.25)
Другими словами, скачок ε0Ех при переходе от области 1 к области 2 должен быть равен скачку —Рх.
Уравнение (33.25) можно переписать в виде
(33.26)
оно гласит, что величина (ε0Ex+Рx) имеет равные значения как в области 2, так и в области 1. В таких случаях люди говорят, что величина (ε0Еx+Рх) непрерывна на границе. Таким образом, мы получили одно из наших граничных условий.
Хотя в качестве иллюстрации мы взяли случай, когда значение Р1 равно нулю, ибо в области 1 у нас был вакуум, ясно, что те же аргументы приложимы для любого материала в этих двух областях, так что уравнение (33.26) верно в общем случае. Давайте перейдем к остальным уравнениям Максвелла и посмотрим, что скажет нам каждое из них. Следующим мы возьмем уравнение (33.22,а). У него нет производной по х, так что оно ничего нам не говорит. (Вспомните, что на границе сами поля не особенно велики. Только их производные по х могут стать столь огромными, что будут доминировать в уравнении.) Взглянем теперь на уравнение (33.22,б). Смотрите! Именно здесь у нас есть производная по х! С левой стороны имеется ∂Ez/∂x. Предположим, что эта производная громадна. Но минуточку терпения! С правой стороны нет ничего, способного потягаться с ней, поэтому Еz не может иметь скачка при переходе из области 1 к области 2. [Если бы это было так, то с левой стороны уравнения (33.22,а) мы бы получили скачок, а с правой — его не было бы, и уравнение оказалось бы неверным.] Итак, мы получили новое условие:
(33.27)
После тех же самых рассуждений уравнение (33.22,в) дает
(33.28)
Последний результат в точности совпадает с полученным с помощью контурного интеграла условием (33.20).
Перейдем к уравнению (33.23). Единственное, что может дать пик, — это ∂Вх/∂х. Но справа опять нет ничего, способного противостоять ему; в результате мы заключаем, что
(33.29)
И, наконец, последнее из уравнений Максвелла! Уравнение (33.24а) ничего не дает, ибо там нет производных по х. В уравнении (33.236) — одна производная: — с2(∂Вz/∂х), но ей снова нечего противопоставить с другой стороны равенства, поэтому мы получаем
(33.30)
Совершенно аналогично второе уравнение, которое дает
(33.31)
Итак, последние три условия говорят нам, что В2=В1.
Хочу здесь подчеркнуть, что такой результат получен только потому, что по обеим сторонам границы мы взяли немагнитный материал, вернее, потому, что магнитным эффектом этих материалов мы можем пренебречь. Обычно это вполне допустимо для большинства материалов, за исключением ферромагнетиков. (Магнитные свойства материалов мы будем рассматривать в последующих главах.).
Наша программа привела нас к шести соотношениям между полями в областях 1 и 2. Все они выписаны в табл. 33.1. Их можно использовать для согласования волн в двух областях.
Таблица 33.1. граничные условия на поверхности ДИЭЛЕКТРИКА
Однако я хочу отметить, что идея, которую мы только что использовали, будет работать в любой физической ситуации, где у вас есть дифференциальные уравнения и требуется найти решение в области, пересекаемой резкой границей, по обе стороны которой некоторые из физических свойств различны. Для наших теперешних целей было бы легче получить те же самые уравнения с помощью рассуждений о потоках и циркуляциях на границе. (Проверьте, можно ли подобным путем получить те же самые результаты.) Однако теперь вы знаете метод, который будет хорош, даже когда вы попали в затруднительное положение и не видите простых физических соображений относительно того, что происходит на границе. Вы можете просто воспользоваться дифференциальными уравнениями.
§ 4. Отраженная и преломленная волны
Теперь мы готовы применить наши граничные условия к волнам, перечисленным в § 2, где мы получили:
(33.32)
(33.33)
(33.34)
(33.35)
(33.36)
(33.37)
Нами получены еще кое-какие сведения: вектор Е перпендикулярен для каждой волны вектору распространения k.
Полученный результат будет зависеть от направления вектора Е («поляризации») в падающей волне. Анализ сильно упростится, если мы рассмотрим отдельно случай, когда вектор Е параллелен «плоскости падения» (т. е. плоскости ху), и случай, когда он перпендикулярен к ней. Волна с любой другой поляризацией будет просто линейной комбинацией этих волн. Другими словами, отраженные и преломленные интенсивности для различных поляризаций будут разными и легче всего отобрать два простейших случая и отдельно рассмотреть их.
Я подробно проанализирую случай падающей волны, перпендикулярной к плоскости падения, а потом просто опишу вам, что получается в других случаях. Я немного жульничаю, рассматривая простейший пример, однако в обоих случаях принцип один и тот же. Итак, мы считаем, что вектор Еi имеет только z-компоненту, а поскольку все векторы Е смотрят в одном и том же направлении, векторный значок можно опустить.
Оба материала изотропны, поэтому вынужденные колебания зарядов в материале будут происходить в направлении оси z и у полей Е в преломленной и отраженной волнах тоже будет только одна z-компонента. Таким образом, для всех волн Ех и Еy, Рх и Рy равны нулю. Направления векторов Е и В в этих волнах показаны на фиг. 33.6.
Фиг. 33.6. Поляризации отраженной и преломленной волн, когда поле Е в падающей волне перпендикулярно к плоскости падения.
(Здесь мы изменили нашему первоначальному намерению все получить из уравнений. Этот результат также можно было бы получить из граничных условий, однако, используя физические аргументы, мы избежали больших алгебраических выкладок. Когда у вас будет свободное время, посмотрите, можно ли его действительно вывести из уравнений. Он, разумеется, согласуется с уравнениями; просто мы не доказали, что отсутствуют другие возможности.)
Теперь наши граничные условия [уравнения (33.26) — (33.31)] должны дать соотношения между компонентами Е и В в областях 1 и 2. В области 2 у нас есть только одна преломленная волна, а вот в области 1 — их две. Какую же из них нам взять? Поля в области 1 будут, разумеется, суперпозицией полей падающей и отраженной волн. (Поскольку каждое удовлетворяет уравнениям Максвелла, то им удовлетворяет и сумма.) Поэтому, когда мы используем граничные условия, нужно помнить, что
и аналогично для В.
Для поляризаций, которыми мы сейчас занимаемся, уравнения (33.26) и (33.28) не дают никакой новой информации, и только уравнение (33.27) поможет нам. Оно говорит, что на границе, т. е. при х=0:
Таким образом, мы получаем уравнение
(33.38)
которое должно выполняться для любого t и любого у. Возьмем сначала y=0. Для этого значения уравнение (33.38) превращается в
согласно которому два осциллирующих члена равны третьему. Это может произойти, только когда частоты всех осцилляции одинаковы. (Невозможно, сложив три или какое-то другое число подобных членов с различными частотами, получить для любого момента времени в результате нуль.) Итак,
(33.39)
как это и было нам всегда известно, т. е. частоты преломленной и отраженной волн те же самые, что и падающей.
Если бы мы предположили это с самого начала, то несомненно избежали бы многих трудностей, но мне хотелось показать вам, что тот же самый результат можно получить и из уравнений. А вот когда перед вами будет стоять реальная задача, лучше всего пускать в оборот сразу все, что вы знаете. Это избавит вас от лишних хлопот.
По определению абсолютная величина k задается равенством k2=n2ω2/с2, поэтому
(33.40)
А теперь обратимся к уравнению (33.38) для t=0. Используя снова те же рассуждения, что и прежде, но на сей раз основываясь на том, что уравнения должны быть справедливы при всех значениях у, мы получаем
(33.41)
Из формулы (33.40) k'2=k2, так что
Комбинируя это с (33.41), находим
или k'x=±kx. Знак плюс не имеет никакого смысла; он не дает нам никакой отраженной волны, а лишь другую падающую волну, и с самого начала мы говорили, что будем решать задачу с единственной падающей волной, так что
(33.42)
Два соотношения (33.41) и (33.42) говорят нам, что угол отражения равен углу падения, как это и ожидалось (см. фиг. 33.3). Итак, в отраженной волне
(33.43)
Для преломленной волны мы уже получали
(33.44)
Их можно решить и в результате получить
(33.45)
Предположим на мгновение, что n1 и n2 — вещественные числа (т. е. что мнимая часть показателей очень мала). Тогда все k тоже будут вещественными и из фиг. 33.3 мы видим, что
(33.46)
Но ввиду уравнения (33.44) мы получаем
(33.47)
т. е. уже известный нам закон Снелла для преломления. Если же показатель преломления не вещественный, то волновые числа оказываются комплексными и нам следует воспользоваться (33.45). [Конечно, мы могли бы определить углы θi. и θt из (33.46), и тогда закон Снелла (33.47) был бы верен и в общем случае. Однако при этом углы тоже стали бы комплексными числами и, следовательно, потеряли бы свою геометрическую интерпретацию как углы. Уж лучше описывать поведение волн соответствующими комплексными величинами kx или k"x.]
До сих пор мы не обнаружили ничего нового. Мы доставили себе только простенькое развлечение, выводя очевидные вещи из сложного математического механизма. А сейчас мы готовы найти амплитуды волн, которые нам еще не известны. Используя результаты для всех ω и k, мы можем сократить экспоненциальный множитель в (33.38) и получить
(33.48)
Но поскольку мы не знаем ни Е'0, ни Е"0, то необходимо еще одно соотношение. Нужно использовать еще одно граничное условие. Уравнения для Ех и Еy не помогут, ибо все Е имеют только одну z-компоненту. Так что мы должны воспользоваться условием на В. Попробуем взять (33.29):
Согласно условиям (33.35)—(33.37),
Вспоминая, что ω"=ω'=ω и k"y=k'y=ky, получаем
Но это снова уравнение (33.48)! Мы напрасно потратили время и получили то, что уже давно нам известно.
Можно было бы обратиться к (33.30) Bz2=Вz1, но у вектора В отсутствует z-компонента! Осталось только одно условие — (33.31) Ву2=Ву1. Для наших трех волн
(33.49)
Подставляя вместо Ei,Er и Et волновые выражения при x=0 (ибо дело происходит на границе), мы получаем следующее граничное условие:
Учитывая равенство всех ω и ky, снова приходим к условию
(33.50)
Это дает нам уравнение для величины Е, отличное от (33.48). Получившиеся два уравнения можно решить относительно E'0 и Е"0. Вспоминая, что k'x=-kx, получаем
(33.51)
(33.52)
Вместе с (33.45) или (33.46) для k"x эти формулы дают нам все, что мы хотели узнать. Следствия полученного результата мы обсудим в следующем параграфе.
Если взять поляризованную волну с вектором Е, параллельным плоскости падения, то Е, как это видно из фиг. 33.7, будет иметь как x-, так и y-компоненту.
Фиг. 33.7. Поляризации волн, когда поле Е в падающей волне параллельно плоскости падения.
Вся алгебра при этом будет менее хитрая, но более сложная. (Можно, правда, несколько уменьшить работу в этом случае, выражая все через магнитное поле, которое целиком направлено по оси z.) При этом мы найдем
(33.53)
и
(33.54)
Давайте посмотрим, будет ли наш результат согласовываться с тем, что мы получали раньше. Выражение (33.3) мы вывели в вып. 3, когда находили отношение интенсивностей отраженной и падающей волн. Однако тогда мы рассматривали только вещественный показатель преломления. Для вещественного показателя (или вещественных k) можно записать:
Подставляя это в уравнение (33.51), получаем
(33.55)
что нисколько не похоже на уравнение (33.3). Если, однако, мы воспользуемся законом Снелла и избавимся от всех n, то сходство будет восстановлено. Подставляя n2=n1(sinθi/sinθt) и умножая числитель и знаменатель на sinθt, получаем
Обратите внимание, что в числителе и знаменателе стоят просто синусы (θi-θt) и (θi+θt), поэтому
(33.56)
Поскольку амплитуды E'0 и E0 измеряются в том же самом материале, интенсивности пропорциональны квадратам электрических полей и мы получаем тот же результат, что и раньше. Подобным же образом формула (33.53) тоже аналогична формуле (33.4).
Для волн, падающих перпендикулярно, θi=0 и θt=0. Формула (33.56) выглядит как 0/0, от чего нам пользы мало. Однако мы можем вернуться назад к формуле (33.55), согласно которой
(33.57)
Этот результат, естественно, применим для «любой» поляризации, поскольку для перпендикулярного луча нет никакой особой «плоскости падения».
§ 5. Отражение от металлов
Теперь мы можем использовать наши результаты для понимания интересного явления — отражения от металлов. Почему металлы блестят? В предыдущей главе мы видели, что показатель преломления металлов для некоторых частот имеет очень большую мнимую часть. Давайте посмотрим, какова будет интенсивность отраженной волны, когда свет падает из воздуха (с показателем n=1) на материал с n=-inI. При этом условии уравнение (33.55) дает (для нормального падения)
Для интенсивности отраженной волны нам нужны квадраты абсолютных величин Е'0 и Е0:
или
(33.58)
Для материала с чисто мнимым показателем преломления получается стопроцентное отражение!
Металлы не отражают 100% света, но все же многие из них хорошо отражают видимый свет. Другими словами, мнимая часть их показателя очень велика. Однако мы видели, что большая мнимая часть показателя означает сильное поглощение. Итак, имеется общее правило: если какой-то материал оказывается очень хорошим поглотителем при какой-то частоте, то отражение волн от его поверхности очень велико и очень мало волн попадает внутрь. Этот эффект вы можете наблюдать на сильных красителях. Чистые кристаллы самых сильных красителей имеют «металлический» блеск. Вероятно, вы замечали, что на краях бутылки с фиолетовыми чернилами засохший краситель имеет золотистый металлический блеск, а засохшие красные чернила имеют иногда зеленоватый металлический оттенок. Красные чернила поглощают из проходящего света зеленые лучи, так что, если концентрация чернил очень велика, они будут давать сильное поверхностное отражение при частоте зеленого света.
Вы можете очень эффектно продемонстрировать это. Намажьте стеклянную пластинку красными чернилами и дайте им высохнуть. Если вы направите пучок белого света на обратную сторону пластинки (фиг. 33.8), то сможете наблюдать проходящий красный свет и отраженный зеленый свет.
Фиг. 33.8. Материал, который сильно поглощает свет с частотой ω, отражает его с той же частотой.
§ 6. Полное внутреннее отражение
Если свет идет из материала, подобного стеклу, с вещественным показателем преломления n, большим единицы, в воздух с показателем n2, равным единице, то, согласно закону Снелла,
Угол θt преломленной волны становится равным 90° при угле падения θi равном некоторому «критическому углу» θc, определяемому равенством
(33.59)
Что происходит при θi, большем, чем критический угол? Вы уже знаете, что здесь возникает полное внутреннее отражение. Но откуда оно все-таки берется?
Вернемся назад к уравнению (33.45), которое дает волновое число k"x для преломленной волны. Из него получилось
Но так как ky=ksinθi, а k=ωn/с, то
Если nsinθi больше единицы, то k"2х становится отрицательным, а k"x — чисто мнимым, скажем ±ik. Однако теперь вы знаете, что это значит! «Преломленная» волна при этом будет иметь вид [см. (33.34)]
т. е. с увеличением х амплитуда волны будет либо экспоненциально расти, либо падать, но сейчас, разумеется, нам нужен только отрицательный знак. При этом амплитуда волны справа от границы будет вести себя, как показано на фиг. 33.9.
Фиг. ЗЗ.9. Полное внутреннее отражение.
Обратите внимание, что kI по порядку величины равно ω/с, т. е. λ0 равна длине волны света в пустоте. Когда свет полностью отражается от внутренней поверхности стекло — воздух, то в воздухе возникают поля, но они не выходят за пределы расстояний, равных по порядку величины длине волны света.
Теперь нам ясно, как нужно отвечать на такой вопрос: если световая волна в стекле падает на поверхность под достаточно большим углом, то она полностью отражается; если же придвинуть к поверхности другой кусок стекла (так что «поверхность» фактически исчезает), то свет будет проходить. В какой точно момент происходит этот переход? Ведь наверняка должен существовать непрерывный переход от полного отражения к полному его отсутствию! Ответ, разумеется, состоит в том, что если прослойка воздуха настолько мала, что экспоненциальный «хвост» волны в воздухе имеет еще ощутимую величину во втором куске стекла, то он будет «трясти» электроны и порождать новую волну (фиг. 33.10).
Фиг. 33.10. Для очень маленькой щели внутреннее отражение не будет «полным», за щелью появляется прошедшая волна.
Некоторое количество света будет проходить через систему. (Конечно, наше решение неполно; нам следовало бы заново решить все уравнения для случая тонкого слоя воздуха между двумя областями стекла.)
Для обычного света этот эффект прохождения можно наблюдать, только если щель очень мала (порядка длины волны, т. е. 10-5 см), но для 3-сантиметровых волн он демонстрируется очень легко. Для таких волн экспоненциально затухающие поля распространяются на расстояние нескольких сантиметров.
Микроволновая аппаратура, с помощью которой демонстрируют этот эффект, изображена на фиг. 33.11.
Фиг. 33.11. Проникновение волн внутреннего отражения.
Волны из маленького передатчика 3-сантиметровых волн направляются на парафиновую призму, имеющую сечение в форме равнобедренного прямоугольного треугольника. Показатель преломления парафина для этих частот равен 1,50, поэтому критический угол будет 41,5°. Таким образом, волны полностью отражаются от поверхности, наклоненной под 45°, и принимаются детектором А (фиг.33.11, а). Если к первой призме плотно приложить вторую парафиновую призму (фиг. 33.11, б), то волны проходят прямо сквозь них и регистрируются детектором В. Если же между призмами оставить щель в несколько сантиметров (фиг.33.11, в), то мы получим как отраженную, так и проходящую волны. Поместив детектор В в нескольких сантиметрах от наклоненной под 45° поверхности призмы, можно увидеть и электрическое поле вблизи нее.
Глава 34 МАГНЕТИЗМ ВЕЩЕСТВА
Повторить: гл. 15 (вып. 6) «Векторный потенциал»
§ 1. Диамагнетизм и парамагнетизм
В этой главе я начну рассказывать о магнитных свойствах материалов. Материал, обладающий наиболее сильными магнитными свойствами, разумеется, — железо. Подобными же магнитными свойствами обладают еще такие элементы, как никель, кобальт и (при достаточно низких температурах, ниже 16° С) гадолиний и другие редкоземельные металлы, а также некоторые особые сплавы. Такой вид магнетизма называется ферромагнетизмом. Это достаточно сложное и удивительное явление, и ему мы посвятим специальную главу. Но и все обычные вещества тоже имеют некоторые магнитные свойства, хотя и не столь ярко выраженные, а много слабее — в тысячи и миллион раз меньше, чем эффекты в ферромагнитных материалах. Здесь мы собираемся описать обычный магнетизм, т. е. магнетизм неферромагнитных веществ.
Этот слабый магнетизм бывает двух сортов. Некоторые материалы притягиваются магнитным полем, другие же отталкиваются им. В отличие от электрического эффекта в веществе, который всегда приводит к притяжению диэлектриков, магнитный эффект имеет два знака. Наличие этих двух знаков легко продемонстрировать с помощью сильного электромагнита, один из полюсных наконечников которого заострен, а другой — плоский (фиг. 34.1).
Фиг. 34.1. Небольшой висмутовый цилиндр слабо отталкивается заостренным полюсом; кусочек алюминия будет притягиваться.
Магнитное поле у заостренного полюса намного сильнее, нежели у плоского. Если небольшой кусочек материала, подвешенный на длинной струне, поместить между полюсами такого магнита, то на него, вообще говоря, действует очень слабенькая сила. Действие этой силы можно обнаружить по незначительному смещению подвешенного кусочка материала при повороте магнита. Оказывается, что ферромагнитные материалы сильно притягиваются заостренным полюсом, а все остальные — очень слабо. А есть и такие, которые не притягиваются заостренным полюсом, а слабо отталкиваются.
Этот эффект легче всего наблюдать на маленьком цилиндре из висмута, который выталкивается из области сильного поля. Вещества, которые отталкиваются, подобно висмуту, называются диамагнетиками. Висмут — один из сильнейших диамагнетиков, но даже и его магнитный эффект очень слаб. Диамагнетизм всегда очень слаб. Если между полюсами подвесить кусочек алюминия, то на него все же будет действовать слабенькая сила, но направленная в сторону заостренного полюса. Вещества, подобные алюминию, называются парамагнетиками. (В таких экспериментах при включении и выключении магнита из-за вихревых токов возникают силы, которые могут дать сильный толчок. Поэтому нужно быть очень внимательным и смотреть только на чистое перемещение после того, как подвешенный предмет успокоился.)
Сейчас я коротко опишу механизм этих двух эффектов. Прежде всего атомы многих веществ не имеют постоянных магнитных моментов, или, вернее, все магнитные моменты внутри каждого атома уравновешены так, что суммарный магнитный момент атома равен нулю. Спиновые и орбитальные моменты электронов сбалансированы так, что у каждого данного атома никакого среднего магнитного момента нет. Если при этих обстоятельствах вы включаете магнитное поле, то внутри атома по индукции генерируются слабые дополнительные токи.
В соответствии с законом Ленца эти токи действуют так, чтобы сопротивляться увеличивающемуся магнитному полю. Таким образом, наведенный магнитный момент атомов направлен противоположно магнитному полю. Это и есть механизм диамагнетизма.
Однако существуют такие вещества, атомы которых все же обладают магнитным моментом, т. е. электронные спины и орбиты которых имеют ненулевой полный циркулирующий ток. Таким образом, кроме диамагнитного эффекта (а он всегда присутствует), существует еще возможность «выстраивания» индивидуальных атомных моментов в одном направлении. Магнитные моменты в этом случае стараются выстроиться по направлению магнитного поля (точно так же, как постоянные диполи в диэлектрике выстраиваются в электрическом поле) и наведенный магнетизм стремится усилить магнитное поле. Это и есть парамагнитные вещества. Парамагнетизм, вообще говоря, довольно слаб, потому что выстраивающие силы относительно малы по сравнению с силами теплового движения, которые стараются разрушить упорядочивание. Отсюда также следует, что парамагнетизм обычно чувствителен к температуре. (Исключение составляет парамагнетизм, обусловленный спинами электронов, ответственных за проводимость металлов. Но мы не будем обсуждать здесь это явление.) Для обычного парамагнетизма эффект тем сильнее, чем ниже температура. При низких температурах атомы выстраиваются в большей степени, поскольку разупорядочивание вследствие тепловых колебаний (соударений) будет меньше. Но, с другой стороны, диамагнетизм более или менее не зависит от температуры. У любого вещества с выстроенными магнитными моментами есть как диамагнитный, так и парамагнитный эффекты, причем парамагнитный эффект обычно доминирует.
В гл. 11 (вып. 5) мы описывали сегнетоэлектрические материалы, все электрические диполи которых выстраиваются в результате взаимного действия атомов друг на друга своими электрическими полями. Можно представить себе магнитный аналог сегнетоэлектричества, в котором все атомные моменты, действуя друг на друга, выстраивают сами себя. Если бы вы попытались вычислить, как это должно происходить, то обнаружили бы, что из-за того, что магнитные силы гораздо слабее электрических, тепловое движение должно расстраивать упорядочивание даже при столь низких температурах, как 10° К. Так что при комнатных температурах любое постоянное выстраивание магнитных моментов казалось бы невозможно.
Но, с другой стороны, именно это явление происходит в железе: там магнитные моменты все-таки выстраиваются. Между магнитными моментами различных атомов железа действуют эффективные силы, которые во много-много раз больше прямого магнитного взаимодействия. Это косвенный эффект, который можно объяснить только с помощью квантовой механики. Он примерно в десять тысяч раз сильнее прямого магнитного взаимодействия, и именно он выстраивает магнитные моменты в ферромагнитных материалах. Об этом особом взаимодействии мы будем говорить в дальнейшем.
Я попытался дать вам качественные объяснения диамагнетизма и парамагнетизма, однако хочу тут же внести поправку и сказать, что с точки зрения классической механики честным путем понять магнитные эффекты невозможно. Подобные магнитные эффекты — явления целиком квантовомеханические. Тем не менее привести некоторые «правдоподобные» классические рассуждения и дать вам представление о том, как здесь все происходит, все-таки небесполезно.
Попробуем встать на этот путь. Можно приводить разные физические аргументы и строить догадки о том, что происходит с веществом, однако все эти аргументы будут в той или иной степени «незаконными», так как в любом из магнитных явлений весьма существенную роль играет квантовая механика. С другой стороны, бывают такие системы, подобные плазме или скоплению множества свободных электронов, где электроны все же живут по законам классической механики. При таких обстоятельствах некоторые из теорем классического магнетизма будут очень полезны. Кроме того, классические рассуждения полезны еще и по историческим причинам: ведь пока люди еще не могли понять глубокий смысл и поведение магнитных материалов, они пользовались классическими аргументами. Так что классическая механика все же способна дать нам полезные сведения. И только если стремиться быть совсем честным, то надо отложить изучение магнетизма до тех пор, пока вы не пройдете квантовую механику.
А мне все-таки не хочется ждать так долго ради того, чтобы понять такую простую вещь, как диамагнетизм. Для целого ряда полуобъяснений происходящего можно ограничиться классической механикой, сознавая, однако, что наши доводы на самом деле нуждаются в квантовомеханическом подкреплении.
§ 2. Магнитные моменты и момент количества движения
Первая теорема, которую мы хотим доказать в классической механике, гласит: если электрон движется по круговой орбите (например, крутится вокруг ядра под действием центральных сил), то между магнитным моментом и моментом количества движения существует определенное соотношение. Обозначим через J момент количества движения, а через μ — магнитный момент электрона на орбите. Величина момента количества движения равна произведению массы электрона на скорость и на радиус (фиг. 34.2).
Фиг. 34.2. Для любой круговой орбиты магнитный момент μ равен произведению q/2m на момент количества движения J.
Он направлен перпендикулярно плоскости орбиты:
(34.1)
(Хотя эта формула и нерелятивистская, но для атома она должна быть достаточно хороша, ибо у захваченного на орбиту электрона отношение v/c в общем случае равно по порядку величины е2/ℏc=1/137, или около 1%.)
Магнитный момент той же самой орбиты равен произведению тока на площадь (см. гл. 14, § 5, вып. 5). Ток равен положительному заряду, проходящему в единицу времени через любую точку на орбите, т. е. произведению заряда q на частоту вращения. А частота равна скорости, поделенной на периметр орбиты, так что
Так как площадь равна πr2, то магнитный момент будет
(34.2)
Он тоже направлен перпендикулярно плоскости орбиты. Таким образом, J и μ имеют одинаковое направление:
(34.3)
Их отношение не зависит ни от скорости, ни от радиуса. Для любой частицы, движущейся по круговой орбите, магнитный момент равен произведению q/2m на момент количества движения. Для электрона, заряд которого отрицателен (обозначим его через -qe),
(34.4)
Вот что получается в классической физике, и совершенно удивительно, что то же самое справедливо и в квантовой механике. Это один из правильных выводов. Однако если развивать его дальше по пути классической физики, то вы натолкнетесь на такие места, где он даст неправильные ответы; разобраться же потом, какие результаты верны, а какие неверны, — целое дело. Уж лучше я сразу скажу, что в квантовой механике верно в общем случае. Прежде всего соотношение (34.4) остается верным для орбитального движения; однако это не единственное место, где мы встречаемся с магнетизмом. Электрон, кроме того, совершает еще вращение вокруг собственной оси (подобное вращению Земли вокруг ее оси), и в результате этого вращения у него возникает момент количества движения и магнитный момент. Но по чисто квантовомеханическим причинам (классическое объяснение этого совершенно отсутствует) отношение μ к J для собственного вращения (спина) электрона в два раза больше, чем для орбитального движения крутящегося электрона:
(34.5)
В любом атоме, вообще говоря, имеется несколько электронов, и его полный момент количества движения и полный магнитный момент представляют некоторую комбинацию спиновых и орбитальных моментов. И без каких-либо на то классических оснований в квантовой механике (для изолированного атома) направление магнитного момента всегда противоположно направлению момента количества движения. Отношение их не обязательно должно быть -qe/m или -qe/2m; оно расположено где-то между ними, ибо здесь «перемешиваются» вклады от спинов и орбит. Можно записать
(34.6)
где множитель g характеризует состояние атома. Для чисто орбитальных моментов он равен единице, для чисто спиновых равен 2, а для сложной системы, подобной атому, он расположен где-то между ними. Конечно, пользы от этой формулы не очень много. Она только говорит, что магнитный момент параллелен моменту количества движения, но может иметь любую величину. Тем не менее форма уравнения (34.6) все же удобна, ибо величина g, называемая «фактором Ланде», есть безразмерная постоянная порядка единицы. Одна из задач квантовой механики — предсказание фактора g для разных атомных состояний. Быть может, вам интересно знать, что происходит в ядрах атомов. Протоны и нейтроны в ядре движутся по своего рода орбитам и в то же время, подобно электронам, имеют спин. Магнитный момент снова параллелен моменту количества движения. Только теперь порядок величины отношения магнитного момента к моменту количества движения для каждой из этих частиц будет таким, как можно было ожидать для протона, движущегося по кругу; при этом массу m в уравнении (34.3) нужно взять равной массе протона.
Поэтому для ядер обычно пишут (в скобках положительная величина)
(34.7)
где mp— масса протона, а постоянная g, называемая ядерным g-фактором, — число порядка единицы, которое должно определяться отдельно для каждого сорта ядер.
Другое важное отличие в случае ядер состоит в том, что g-фактор спинового магнитного момента протона не равен 2, как у электрона. Для протона g=2·(2,79). Крайне удивительно, что спиновый магнитный момент есть и у нейтрона и отношение этого магнитного момента к моменту количества движения равно 2·(-1,93). Другими словами, нейтрон в магнитном смысле не будет в точности «нейтральным». Он напоминает маленький магнитик и имеет такой же магнитный момент, как и вращающийся отрицательный заряд.
§ 3. Прецессия атомных магнитиков
Одно из следствий пропорциональности магнитного момента моменту количества движения заключается в том, что атомные магнитики, помещенные в магнитное поле, будут прецессировать. Обсудим это сначала с точки зрения классической физики. Пусть у нас имеется магнитный момент μ, свободно висящий в однородном магнитном поле. Он испытывает действие момента силы τ, равного μ×B, пытающегося повернуть его в том же направлении, что и поле. Но атомный магнит — ведь это гироскоп, у него есть момент количества движения J. Поэтому момент силы от магнитного поля не вызовет поворота в направлении поля. Вместо этого магнит, как мы видели, когда говорили о гироскопе в гл. 20 (вып. 2), начнет прецессировать. Момент количества движения, а вместе с ним и магнитный момент прецессируют вокруг оси, параллельной магнитному полю. Скорость прецессии можно найти тем же методом, что и в гл. 20 (вып. 2).
Предположим, что за малый промежуток времени Δt момент количества движения меняется от J до J' (фиг. 34.3), оставаясь при этом всегда под одним и тем же углом θ к направлению магнитного поля В.
Фиг. 34.3. Объект в моментом количества движения J и параллельным ему магнитным моментом μ в магнитном поле В прецессирует с угловой скоростью ωp.
Обозначим через ωp угловую скорость прецессии, так что за промежуток времени Δt угол прецессии будет равен ωpΔt. Из геометрии рисунка мы видим, что изменение момента количества движения за время Δt равно
а скорость изменения момента количества движения
(34.8)
что должно равняться моменту силы
(34.9)
Угловая скорость прецессии будет равна
(34.10)
Подставляя из уравнения (34.6) отношение μ/J, мы видим, что для атомной системы
(34.11)
т. е. частота прецессии пропорциональна В. Полезно запомнить, что для атома (или электрона)
(34.12)
а для ядра
(34.13)
(Формулы для атомов и ядер различны только благодаря различным соглашениям относительно g в этих двух случаях.) Итак, в соответствии с классической теорией электронные орбиты и спины в атоме должны прецессировать в магнитном поле. Верно ли это и в квантовой механике? В сущности это верно, однако смысл «прецессии» здесь совсем иной. В квантовой механике нельзя говорить о направлении момента количества движения в том же смысле, как это делается классически; тем не менее аналогия здесь очень близкая, настолько близкая, что мы продолжаем пользоваться термином «прецессия». Мы еще обсудим это позднее, когда будем говорить о квантовомеханической точке зрения.
§ 4. Диамагнетизм
Рассмотрим теперь с классической точки зрения диамагнетизм. К этому можно подойти несколькими путями, но один из лучших такой. Предположим, что по соседству с атомом медленно включается магнитное поле. При изменении магнитного поля благодаря магнитной индукции будет генерироваться электрическое поле. По закону Фарадея контурный интеграл от Е по замкнутому контуру равен скорости изменения магнитного потока через этот контур. Предположим, что в качестве контура Г мы выбрали окружность радиусом r, центр которой совпадает с центром атома (фиг. 34.4).
Фиг. 34.4. Индуцированные электрические силы, действующие на электроны в атоме.
Среднее тангенциальное электрическое поле Е на этом контуре определяется выражением
т. е. возникает циркулирующее электрическое поле, напряженность которого равна
Индуцированное электрическое поле, действуя на атомный электрон, создает момент силы, равный -qeEr, который должен быть равен скорости изменения момента количества движения dJ/dt:
(34.14)
Интегрируя теперь по времени, начиная с нулевого поля, мы находим, что изменение момента количества движения из-за включения поля будет равно
(34.15)
Это и есть тот дополнительный момент количества движения, который сообщается электрону за время включения поля.
Такой добавочный момент количества движения приводит к добавочному магнитному моменту, который благодаря тому, что это орбитальное движение, равен просто произведению -qe/2m на момент количества движения. Наведенный диамагнитный момент
(34.16)
Знак минус (как можно убедиться непосредственно из закона Ленца) означает, что направление добавочного момента противоположно магнитному полю.
Мне бы хотелось написать выражение (34.16) несколько по-иному. Появившаяся у нас величина r2 представляет собой расстояние от оси, проходящей через атом и параллельной полю В, так что если поле В направлено по оси z, то оно равно x2+y2. Если мы рассмотрим сферически симметричные атомы (или усредним по атомам, естественные оси которых могут располагаться во всех направлениях), то среднее от z2+y2 равно 2/3 среднего квадрата истинного радиального расстояния от центра атома. Поэтому уравнение (34.16) обычно более удобно записывать в виде
(34.17)
Во всяком случае, мы нашли, что индуцированный атомный момент пропорционален магнитному полю В и противоположен ему по направлению. Это и есть диамагнетизм вещества. Именно этот магнитный эффект ответствен за малые силы, действующие на кусочек висмута в неоднородном магнитном поле.(Вы можете определить величину этой силы, воспользовавшись выражением для энергии наведенного момента в поле и результатами измерений изменения энергии при движении образца в область сильного поля или из нее.)
Но перед нами все еще стоит такая проблема: чему равен средний квадратичный радиус <r2>ср? Классическая механика не может дать нам ответа. Мы должны вернуться назад и, вооружившись квантовой механикой, начать все снова. Мы не можем знать, где именно находится электрон в атоме, а знаем лишь, что имеется вероятность его обнаружить в некотором месте. Если мы будем интерпретировать <r2>ср как среднее значение квадрата расстояния от центра для данной вероятности распределения, то диамагнитный момент, даваемый квантовой механикой, определяется тем же самым выражением (34.17). Оно, разумеется, дает нам момент одного электрона. Полный же момент будет суммой по всем электронам в атоме. Удивительно, что и классические рассуждения и квантовая механика дают тот же ответ, хотя, как мы увидим дальше, «классические» рассуждения, которые приводят к (34.17), на самом деле несостоятельны в рамках самой классической механики.
Такой же диамагнитный эффект будет наблюдаться даже у атомов с постоянным магнитным моментом. При этом система тоже будет прецессировать в магнитном поле. Во время прецессии атома в целом он набирает небольшую дополнительную угловую скорость, а подобное медленное вращение приводит к маленькому току, который дает поправку к магнитному моменту. Это тот же диамагнитный эффект, но поданный по-другому. Однако на самом деле, когда мы говорим о парамагнетизме, нам не нужно заботиться об этой добавке. Если мы сначала подсчитали диамагнитный эффект, как это было сделано здесь, нас не должен беспокоить небольшой дополнительный ток, происходящий из-за прецессии. Он уже включен нами в диамагнитный член.
§ 5. Теорема Лармора
Теперь уже из наших результатов можно сделать кое-какие заключения. Прежде всего в классической теории момент μ всегда пропорционален J, причем для каждого вида атомов со своей константой пропорциональности. В классической теории у электрона нет никакого спина и константа пропорциональности всегда равна -qe/2m, иначе говоря, мы должны в (34.6) положить g=1. Отношение μ к J не зависело от внутреннего движения электронов. Таким образом, в соответствии с классической теорией все системы электронов должны были прецессировать с одной и той же угловой скоростью. (В квантовой механике это неверно.) Этот результат связан с одной теоремой классической механики, которую мне бы хотелось сейчас доказать. Предположим, что имеется группа электронов, которые удерживаются вместе притяжением к центральной точке, подобно электронам, притягиваемым ядром. Эти электроны будут также взаимодействовать друг с другом, и движение их, вообще говоря, довольно сложно. Пусть вы нашли их движение в отсутствие магнитного поля и хотите знать, каково будет движение в слабом магнитном поле. Теорема утверждает, что движение в слабом магнитном поле всегда будет таким же, как и движение без поля с добавочным вращением относительно оси поля с угловой скоростью ωL=qeB/2m. (Это то же самое, что и ωp при g=1.) Разумеется, возможных движений может быть много. Все дело в том, что каждому движению без магнитного поля соответствует движение в поле, которое состоит из первоначального движения плюс равномерное вращение. Это и есть теорема Лармора, а частота ωL называется ларморовой частотой.
Мне бы хотелось показать вам, как можно доказать эту теорему, но детали доказательства я предоставлю вам самим.
Возьмем сначала электрон в центральном силовом поле. На него просто действует направленная к центру сила F(r). Если теперь включить однородное магнитное поле, то появится дополнительная сила qv×В, так что полная сила будет равна
(34.18)
Посмотрим теперь на те же самые электроны из системы координат, вращающейся с угловой скоростью ω относительно оси, проходящей через центр силы и параллельной полю В. Она уже не будет инерциальной системой, а посему нам нужно добавить надлежащие псевдосилы: центробежные силы и силы Кориолиса, о которых мы говорили в гл. 19 (вып. 2). Там мы обнаружили, что в системе отсчета, вращающейся с угловой скоростью ω, действуют кажущиеся тангенциальные силы, пропорциональные vr — радиальной компоненте скорости:
(34.19)
Кроме того, там действует кажущаяся радиальная сила
(34.20)
где vt — тангенциальная компонента скорости, измеряемая во вращающейся системе отсчета. (Радиальная компонента vr одна и та же как для вращающихся, так и для инерциальных систем.)
Теперь для достаточно малых угловых скоростей (т. е. когда (ωr≪vt) первым (центробежным) слагаемым в уравнении (34.20) можно пренебречь по сравнению со вторым (кориолисовым). После этого уравнения (34.19) и (34.20) можно записать вместе как
(34.21)
Если же теперь скомбинировать вращение и магнитное поле, то мы должны к силе (34.18) добавить силу (34.21). Полная сила получится такой:
(34.22)
[В последнем слагаемом по сравнению с (34.21) мы переставили сомножители в векторном произведении и изменили знак.] Взглянув теперь на полученный результат, мы видим, что если
то последние два члена сократятся, и единственной силой в движущейся системе будет сила F(r). Движение электрона будет таким же, как и в отсутствие магнитного поля, но добавится, разумеется, вращение. Мы доказали теорему Лармора для одного электрона. Поскольку при доказательстве мы предполагали ω малым, то это означает, что теорема верна только для слабых магнитных полей. Единственно, что я прошу вас рассмотреть самостоятельно, — это случай многих электронов, взаимодействующих друг с другом в том же самом центральном поле. Докажите теорему для такого случая. Таким образом, каким бы сложным ни был атом, если его поле центральное, — теорема будет верна. Но это уже конец классической механики, ибо то, что система прецессирует таким образом, неверно. Частота прецессии ωp в уравнении (34.11) только тогда равна ωL, когда g=1.
§ 6. В классической физике нет ни диамагнетизма, ни парамагнетизма
Сейчас я хочу показать вам, что в соответствии с классической механикой не получается ни диамагнетизма, ни парамагнетизма. На первый взгляд это звучит дико — ведь только что мы доказали, что там есть и диамагнетизм, и парамагнетизм, и прецессирующие орбиты и т. п., а теперь собираемся доказывать, что все это ложь. Увы, так оно и есть! Я собираюсь доказать, что если достаточно долго следовать за классической механикой, то никаких магнитных эффектов не получится: они исчезнут все до единого. Если вы начнете с классических рассуждений, но вовремя остановитесь, то получите желаемый результат. И только законные и последовательные доказательства показывают, что никаких магнитных эффектов нет.
Вот одно из следствий классической механики. Если у вас есть какая-то заключенная в ящик система, скажем электронный или протонный газ или что-то в этом роде, не способная вращаться как нечто целое, то никакого магнитного эффекта возникнуть не может. Магнитный эффект может получиться лишь при наличии изолированной системы, удерживаемой от разлетания своими собственными силами подобно звезде, которая, будучи помещена в магнитное поле, может начать вращаться. Но если ваш кусок материала удерживается в одном положении и не может начать крутиться, то никакого магнитного эффекта не будет. Более точно мы понимаем под этим следующее: мы предполагаем, что при данной температуре существует только одно состояние теплового равновесия. Тогда теорема утверждает, что если вы включите магнитное поле и выждете, пока система не придет в тепловое равновесие, то никакого наведенного магнитного эффекта не появится — ни диамагнетизма, ни парамагнетизма. Доказательство: Согласно статистической механике, вероятность того, что система имеет заданное состояние движения, пропорциональна e-U/kT, где U — энергия этого движения. Но что такое энергия движения? Для частиц в постоянном магнитном поле она равна обычной потенциальной энергии плюс mv2/2 без какой бы то ни было добавки от магнитного поля. [Вы знаете, что сила, действующая со стороны электромагнитного поля, равна q(E+v×B), а мощность F·v будет просто qE·v, т. е. никакого влияния магнитного поля нет и в помине.] Итак, энергия системы независимо от того, находится ли она в магнитном поле или нет, всегда будет суммой только кинетической и потенциальной энергий. А поскольку вероятность любого движения зависит только от энергии, т. е. от скорости и положения, то для нее безразлично, включено ли магнитное поле или нет. Следовательно, на тепловое равновесие магнитное поле не оказывает никакого влияния. Если мы возьмем сначала одну систему, заключенную в первом ящике, а затем другую — во втором ящике, но на этот раз в магнитном поле, то вероятность какого-то определенного значения скорости в некоторой точке в первом ящике будет той же самой, что и во втором. Если в первом ящике отсутствуют средние циркулирующие токи (которых не должно быть, если система находится в равновесии со стационарными стенками), то там нет никакого магнитного момента. А поскольку все движения во втором ящике такие же, как и в первом, у него тоже нет никакого магнитного момента. Следовательно, если температура поддерживается постоянной, то после включения поля и восстановления теплового равновесия никакого наведенного магнитного момента в соответствии с классической механикой быть не должно. Удовлетворительное объяснение магнитных явлений можно получить только в квантовой механике.
К сожалению, я не уверен в вашем полном понимании квантовой механики, поэтому обсуждать эти вопросы здесь вряд ли уместно. Но, с другой стороны, не всегда следует начинать изучение чего-то с выписывания правил и применения их в различных обстоятельствах. Почти каждый предмет, с которым мы имели дело в нашем курсе, начинался по-разному. Для электродинамики, например, мы на первой же странице выписали уравнения Максвелла, а уж затем выводили из них все следствия. Это один способ. Однако сейчас я не собираюсь начать новую «первую страницу» выписыванием уравнений квантовой механики и получением следствий из них. Я просто расскажу вам о некоторых результатах квантовой механики до того еще, как вы узнали, откуда они берутся. Итак, за дело.
§ 7. Момент количества движения в квантовой механике
Я уже приводил вам соотношение между магнитным моментом и моментом количества движения. Очень хорошо. Но что означает магнитный момент и момент количества движения в квантовой механике? Оказывается, что для полной уверенности в том, что они означают в квантовой механике, лучше определять вещи, подобные магнитному моменту, через другие понятия, такие, как энергия. Магнитный момент легко определить через энергию, ибо энергия магнитного момента в магнитном поле равна в классической теории—μ·В. Следовательно, в квантовой механике необходимо принять следующее определение. Если мы вычисляем энергию системы в магнитном поле и видим, что она пропорциональна напряженности (для малых полей), то коэффициент пропорциональности мы будем называть магнитным моментом в направлении поля. (Нам сейчас в нашей работе не требуется особой элегантности и мы можем продолжать думать о магнитном моменте в обычном, т. е. в каком-то отношении классическом смысле.)
Теперь мне бы хотелось обсудить понятие момента количества движения в квантовой механике, или, вернее, характеристики того, что в квантовой механике называется моментом количества движения. Видите ли, при переходе к законам нового рода нельзя предполагать, что каждое слово будет в точности означать то же, что и раньше. Подумав, вы можете сказать: «Постойте, а ведь я знаю, что такое момент количества движения. Это штука, которую измеряет момент силы». Но что такое момент силы? В квантовой механике у нас должно быть новое определение старых величин. Поэтому законно было бы назвать ее каким-то другим именем, вроде «углоквантового момента», или чем-то в этом духе, и уж это был бы момент количества движения «по-квантовомеханически». Однако если в квантовой механике мы можем найти величину, которая, когда система становится достаточно большой, идентична нашему старому понятию момента количества движения, то никакой пользы от изобретения новых слов нет. Ее тоже можно называть моментом количества движения. В этом понимании та странная вещь, которую мы собираемся описать, и есть момент количества движения. Это характеристика, в которой мы для больших систем узнаем момент количества движения классической механики.
Прежде всего возьмем систему с сохраняющимся моментом количества движения наподобие атома в пустом пространстве. Такая система (подобно Земле, вращающейся вокруг собственной оси) может крутиться вокруг любой оси, какую бы нам ни вздумалось выбрать. Для данной величины спина возможно много различных «состояний» с одной и той же энергией, причем каждое из них соответствует какому-то направлению оси момента количества движения. Таким образом, в классической механике с данным моментом количества движения связано бесконечное число возможных состояний с одной и той же энергией.
Однако в квантовой механике, как оказывается, происходит несколько странных вещей. Во-первых, число состояний, в которых может находиться такая система, ограниченно — их можно перечислить. Для маленькой системы это число довольно мало, но если система велика, конечное число становится очень и очень большим. Во-вторых, мы не можем описывать «состояния» заданием направления момента количества движения, а можем только задавать его компоненту в некотором направлении, скажем в направлении оси z. Классически объект с данным полным моментом количества движения J может в качестве z-компоненты иметь любую величину между -J и +J. Но в квантовой механике z-компонента момента количества движения может принимать только определенные дискретные значения. Любая данная система, в частности атом или ядро или что-то другое, с заданной энергией имеет характерное число j, а ее z-компонента момента количества движения может принимать только одно из значений:
Наибольшая величина z-компоненты равна произведению j на ℏ, следующая на ℏ меньше и т. д. до — jℏ. Число j называется «спином системы». (Некоторые называют его «квантовым числом полного момента количества движения», а мы будем называть его попросту «спином».)
Вас, вероятно, волнует, не будет ли все сказанное нами верно только для некоторой особой оси z? Это не так. Для системы со спином j компонента момента количества движения по любой оси может принимать только одно из значений (34.23). Хотя все это выглядит довольно невероятно, я еще раз прошу вас мне поверить. Позднее мы еще вернемся к этому пункту и обсудим его. Вам, наверно, будет приятно услышать, что z-компонента пробегает набор значений от некоторого числа до минус то же самое число, так что нам, к счастью, не приходится гадать, какое же направление оси z положительное. (Конечно, если бы я сказал, что он пробегает значения от +j до минус какое-то другое число, это было бы крайне подозрительно, ибо тогда мы были бы лишены возможности направить ось z в другую сторону.)
Но если z-компонента момента количества движения изменяется на целое число от +j до -j, то не должно ли само j тоже быть целым числом? Нет! Не совсем так, целым должно быть удвоенное j, т. е. 2j. Иначе говоря, целым должна быть лишь разность между +j и -j. Таким образом, спин j', вообще говоря, может быть либо целым, либо полуцелым в зависимости от того, будет ли 2j нечетным или четным. Возьмем, к примеру, ядро типа лития, спин которого равен j=3/2. При этом момент количества движения относительно оси z принимает в единицах ℏ одно из следующих значений:
Так что если ядро находится в пустом пространстве в отсутствие внешних полей, то у него имеются четыре возможных состояния, каждое с одной и той же энергией. Для системы со спином 2 z-компонента момента количества движения принимает в единицах ℏ только следующие значения:
Если вы подсчитаете, сколько возможно состояний для данного спина j, то их получится (2j+1). Другими словами, если вы скажете мне, какова энергия системы и ее спин j, то число состояний с этой же энергией в точности будет равно (2j+1), причем каждое из них соответствует одной из различных величин z-компоненты момента количества движения.
Мне хотелось бы прибавить еще один факт. Если вы случайно выберете некоторый атом с известным j и измерите его z-компоненту момента количества движения, то сможете получить какое-то одно из возможных значений, причем каждое из них равновероятно. Любое состояние может характеризоваться только одним из возможных значений, но каждое из них столь же хорошо, как и любое другое. Каждое из них имеет в мире один и тот же вес (мы предполагаем, что никакой предварительной «сортировки» не было).
Кстати, этот факт имеет простой классический аналог. Представьте, что тот же самый вопрос вас интересует с классической точки зрения: какова вероятность какого-то определенного значения z-компоненты момента количества движения, если из набора систем, имеющих один и тот же момент количества движения, вы наугад выбрали одну? Ответ: любое из значений от максимального до минимального равновероятно (в чем вы можете легко убедиться сами). Этот классический результат соответствует равной вероятности любой из (2j+1) возможностей в квантовой механике.
Из того, что у нас было до сих пор, можно получить другое интересное и в каком-то смысле удивительное заключение. В некоторых классических расчетах в окончательном результате появлялась величина, равная квадрату момента количества движения J, другими словами, J·J. И вот оказывается, что правильную квантовомеханическую формулу можно угадать с помощью классических вычислений и следующего простого правила: замените J2=J·J на j(j+1)ℏ2. Этим правилом часто пользуются, и обычно оно дает верный результат, однако не всегда. Чтобы показать вам, почему это правило может хорошо работать, я приведу следующее рассуждение.
Скалярное произведение J·J можно записать как
Поскольку это скаляр, то он должен оставаться одним и тем же для любой ориентации спина. Предположим, что мы случайно выбрали образец какой-либо атомной системы и произвели измерения либо величины Jx2, либо Jy2, либо Jz2 — среднее значение любой из них должно быть тем же самым. (Ни одно из направлений не имеет особого преимущества перед любым другим.) Следовательно, среднее значение J·J равно просто утроенной средней величине любой компоненты, скажем Jz2:
Но поскольку J·J при любой ориентации одно и то же, его среднее, разумеется, будет постоянной величиной
(34.24)
Если же мы теперь скажем, что то же самое уравнение будет использоваться и в квантовой механике, то можем легко найти <Jz2>ср. Нам просто нужно взять сумму (2j+1) возможных значений Jz2 и поделить ее на число всех значений:
(34.25)
Вот что получается для системы со спином 3/2:
Отсюда мы заключаем, что
На вашу долю остается доказать, что соотношение (34.25) вместе с (34.24) дает в результате
(34.26)
Хотя в рамках классической физики мы бы думали, что наибольшее возможное значение z-компоненты J равно просто абсолютной величине J, именно √(J·J), в квантовой механике максимальное значение Jz всегда немного меньше его, ибо jℏ всегда меньше √(j(j+1))ℏ. Момент количества движения никогда не направлен «полностью вдоль оси z».
§ 8. Магнитная энергия атомов
Теперь я снова хочу поговорить о магнитном моменте. Я уже говорил, что в квантовой механике магнитный момент атомной системы может быть связан с моментом количества движения соотношением (34.6):
(34.27)
где -qe—заряд, а m — масса электрона.
Атомные магнитики, будучи помещены во внешнее магнитное поле, приобретут дополнительную магнитную энергию, которая зависит от компоненты их магнитного момента в направлении поля. Мы знаем, что
(34.28)
Выбирая ось z вдоль направления поля В, получаем
(34.29)
А используя уравнение (34.27), находим
Согласно квантовой механике, величина Jz может принимать только такие значения: jℏ, (j-1)ℏ,...,-jℏ. Поэтому магнитная энергия атомной системы не произвольна, допустимы только некоторые ее значения. Например, максимальная величина энергии равна
Величину qeℏ/2m обычно называют «магнетоном Бора» и обозначают через μB:
Возможные значения магнитной энергии будут следующими:
где Jz/ℏ принимает одно из следующих значений: j, (j-1), (j-2),..., (-j+1), -j.
Другими словами, энергия атомной системы, помещенной в магнитное поле, изменяется на величину, пропорциональную полю и компоненте Jz. Мы говорим, что энергия атомной магнитной системы «расщепляется магнитным полем на 2j+1 уровня». Например, атомы со спином j=3/2, энергия которых вне магнитного поля равна U0, в магнитном поле будут иметь четыре возможных значения энергии. Эти энергии можно изобразить на диаграмме энергетических уровней наподобие фиг. 34.5.
Фиг. 34.5. Возможные магнитные энергии атомной системы со спином 3/2 в магнитном поле В.
Однако энергия каждого атома в данном поле В принимает только одно из четырех возможных значений. Именно это говорит квантовая механика о поведении атомной системы в магнитном поле.
Простейшая «атомная» система — отдельный электрон. Спин электрона равен 1/2, поэтому у него возможны два состояния: Jz=ℏ/2 и Jz=-ℏ/2. Для спинового магнитного момента отдельного покоящегося электрона (у которого отсутствует орбитальное движение) g=2, так что магнитная энергия будет ±μBB. На фиг. 34.6 показаны возможные энергии электрона в магнитном поле.
Фиг. 34.6. Два возможных энергетических состояния электрона в магнитном поле В.
Грубо говоря, спин электрона направлен либо «вверх» (по магнитному полю), либо «вниз» (против поля).
У системы с более высоким спином число состояний тоже больше. Поэтому мы можем в зависимости от величины Jz говорить о спине, направленном «вверх» или «вниз» или под некоторым «углом».
Эти результаты квантовой механики мы будем использовать при обсуждении магнитных свойств материалов в следующей главе.
Глава 35 ПАРАМАГНЕТИЗМ И МАГНИТНЫЙ РЕЗОНАНС
Повторить: гл. 1 (вып. 5) «Внутреннее устройство диэлектрика
§ 1. Квантованные магнитные состояния
В предыдущей главе мы говорили, что в квантовой механике момент количества движения системы не может иметь произвольного направления, а его компоненты вдоль данной оси могут принимать только определенные дискретные эквидистантные значения. Это поразительная, но характерная особенность квантовой механики. Вам может показаться, что еще слишком рано влезать в такие вещи, что надо подождать, пока вы хоть немного не привыкнете к ним и не будете готовы воспринимать подобные идеи. Но дело в том, что привыкнуть к ним вы никогда не сможете. Вы никогда не сможете легко их воспринимать. Это, пожалуй, самое сложное из всего, что я рассказывал вам до сих пор и, главное, нет способа описать это как-то более вразумительно и не так хитроумно и сложно по форме. Поведение вещества в малых масштабах, как я уже говорил много раз, отличается от всего того, к чему вы привыкли, и поистине весьма странно. Вы, конечно, согласитесь, что было бы неплохо попытаться поближе познакомиться с явлениями в малом масштабе, продолжая одновременно использовать классическую физику, и приобрести поначалу хоть какой-то опыт, пусть даже не понимая всего достаточно глубоко. Понимание этих вещей приходит очень медленно, если оно приходит вообще. Конечно, понемногу начинаешь чувствовать, что может и что не может произойти в данной квантовомеханической ситуации, а это, возможно, и называется «пониманием», но добиться приятного чувства «естественности» квантовомеханических правил здесь невозможно. Они-то, конечно, естественны, но с точки зрения нашего повседневного опыта на привычном уровне остаются очень уж необычными. Мне бы хотелось объяснить вам, что позиция, которую мы собираемся занять по отношению к этому правилу о дискретности значений момента количества движения, совершенно отлична от отношения ко многим другим вещам, о которых шла речь. Я даже не буду пытаться «объяснять» его, но должен хоть рассказать вам, что получается. Было бы нечестно с моей стороны, описывая магнитные свойства материалов, не указать, что классическое объяснение магнетизма, т. е. момента количества движения и магнитного момента, несостоятельно.
Одно из наиболее необычных следствий квантовой механики состоит в том, что момент количества движения вдоль любой оси всегда оказывается равным целой или полуцелой доле ℏ, причем какую бы ось вы ни взяли, это всегда будет так. Парадоксальность здесь заключается в следующем любопытном факте: если вы возьмете любую другую ось, то окажется, что компоненты относительно этой оси тоже будут взяты из того же самого набора значений. Однако оставим рассуждения до того времени, когда у вас наберется достаточно опыта и вы сможете насладиться тем, как этот кажущийся парадокс в конце концов разрешится.
Сейчас просто примите на веру, что у каждой атомной системы есть число j, называемое спином системы (оно может быть либо целым, либо полуцелым), и что компоненты момента количества движения относительно любой данной оси всегда принимают одно из значений между +jℏ и -jℏ:
(35.1)
Мы упомянули также, что магнитный момент любой простой атомной системы имеет то же самое направление, что и ее момент количества движения. Это справедливо не только для атомов или ядер, но и для элементарных частиц. Каждая элементарная частица обладает характерной для нее величиной j и своим собственным магнитным моментом. (Для некоторых частиц обе они равны нулю.) Мы понимаем под «магнитным моментом системы», что ее энергия в направленном по оси z магнитном поле для слабых полей может быть записана как — μzВ. Мы должны условиться не брать слишком больших полей, ибо они будут возмущать внутренние движения системы и энергия не будет мерой магнитного момента, который система имела до включения магнитного поля. Но если поле достаточно слабо, то оно изменяет энергию на величину
(35.2)
с тем условием, что в этом выражении мы должны сделать подстановку
(35.3)
причем Jz равно одному из значений (35.1).
Предположим, что мы взяли систему со спином j=3/2 В отсутствие магнитного поля у системы было бы четыре различных возможных состояния, соответствующих различным значениям Jz с одной и той же энергией. Но в тот момент, когда мы включаем магнитное поле, появляется дополнительная энергия взаимодействия, которая разделяет эти состояния на четыре состояния, слабо различающиеся по энергии, или, как говорят, первоначальный энергетический уровень расщепился на четыре новых уровня. Эти уровни определяются энергией, пропорциональной произведению В на ℏ и на 3/2, 1/2, -1/2 или -3/2 в зависимости от величины Jz. Расщепление энергетических уровней в атомной системе со спинами 1/2, 1 и 3/2 показаны на фиг. 35.1.
Фиг. 35.1. Атомная система со спином j в магнитном поле В имеет (2j+l) возможных значений энергии. При слабых полях сдвиг энергии пропорционален напряженности В.
(Вспомните, что для любого расположения электронов магнитный момент всегда направлен противоположно моменту количества движения.)
Обратите внимание, что «центр тяжести» энергетических уровней на фиг. 35.1 один и тот же как в присутствии магнитного поля, так и без него. Заметьте также, что все расстояния от одного уровня до следующего для данной частицы в данном магнитном поле равны между собой. Расстояние между уровнями для данного магнитного поля В мы будем записывать как ℏωp, что является просто определением ωp. Воспользовавшись (35.2) и (35.3), получим
или
(35.4)
Величина g(qe/2m) равна просто отношению магнитного момента к моменту количества движения и характеризует свойства частицы. Формула (35.4) в точности совпадает с формулой, полученной нами в гл. 34 для угловой скорости прецессии гироскопа с магнитным моментом μ и моментом количества движения J в магнитном поле.
§ 2. Опыт Штерна — Герлаха
Факт квантования момента количества движения — вещь настолько удивительная, что мы поговорим немного об ее истории. Ученый мир был буквально потрясен, когда было сделано это открытие (даже несмотря на то, что это ожидалось теоретически). Первыми экспериментально наблюдали этот факт Штерн и Герлах в 1922 г. Если хотите, опыт Штерна и Герлаха можно рассматривать как прямое подтверждение квантования момента количества движения. Штерн и Герлах поставили эксперимент по измерению магнитного момента отдельных атомов серебра. Испаряя серебро в горячей печи и пропуская пары серебра через систему маленьких отверстий, они получали пучок атомов серебра. Этот пучок направлялся между полюсными наконечниками специального магнита (фиг. 35.2).
Фиг. 35.2. Опыт Штерна и Герлаха.
Идея заключалась в следующем. Если магнитный момент атомов серебра равен μ, то в магнитном поле В, направленном по оси z, они приобретут добавочную энергию -μzB. В классической теории μz равно произведению магнитного момента на косинус угла между моментом и магнитным полем, так что дополнительная энергия в поле была бы равна
(35.5)
Разумеется, когда атомы вылетают из печи, их магнитные моменты имеют любые направления, поэтому возможны все значения угла θ. Но если магнитное поле быстро изменяется с изменением z, т. е. если есть большой градиент, магнитная энергия с изменением положения тоже меняется, а поэтому на магнитные моменты действует сила, направление которой зависит от того, будет ли косинус положительным или отрицательным. Атомы при этом должны отклоняться вверх или вниз силой, пропорциональной производной магнитной энергии; из принципа виртуальной работы
(35.6)
Чтобы получить очень быстрое изменение магнитного поля, Штерн и Герлах сделали один из полюсных наконечников своего магнита очень острым. Пучок атомов серебра направлялся прямо вдоль этого острого края, так что на атомы в таком неоднородном поле должна была действовать вертикальная сила. Атомы серебра с горизонтально направленными магнитными моментами не чувствовали бы никакой силы и проходили бы через магнит без отклонения. На атомы, магнитный момент которых направлен в точности вертикально, действовала бы максимальная сила по направлению к острому краю магнита. А атомы с магнитным моментом, направленным вниз, чувствовали бы силу, тянущую их вниз. Следовательно, покинув магнит, атомы должны были «расползтись» в соответствии с вертикальными компонентами своих магнитных моментов. В классической теории возможны любые углы, так что после осаждения пучка на стеклянной пластинке следовало ожидать «размазывания» его по вертикальной линии. Высота линии при этом должна была быть пропорциональной величине магнитного момента. Однако когда Штерн и Герлах увидели, что получается на самом деле, то полное поражение классических понятий стало явным. На стеклянной пластинке они обнаружили два отдельных пятнышка. Пучок атомов серебра распался на два пучка.
Самое удивительное, что пучок атомов, спины которых, казалось бы, должны были быть направлены совершенно случайно, расщепился на два отдельных пучка. Откуда магнитный момент может знать, что ему полагается иметь определенные компоненты вдоль направления магнитного поля? Этот вопрос и послужил началом открытия квантования момента количества движения, и я не буду сейчас даже пытаться дать вам теоретическое объяснение, а просто призову вас поверить в результаты этого эксперимента так же, как физики тех дней были вынуждены их признать. То, что энергия атома в магнитном поле может принимать только какой-то набор дискретных значений, — экспериментальный факт. Для каждого из этих значений энергия пропорциональна напряженности поля. Так что в той области, где поле изменяется, принцип виртуальной работы говорит нам, что возможные магнитные силы, действующие на атомы, могут принимать только дискретные значения: для каждого состояния силы оказываются различными и пучок атомов расщепляется на небольшое число отдельных пучков. Измеряя отклонение пучка, можно найти величину магнитного момента.
§ 3. Метод молекулярных пучков Раби
Теперь мне бы хотелось описать улучшенную аппаратуру для измерения магнитных моментов, разработанную И. Раби и его сотрудниками. В экспериментах Штерна — Герлаха отклонение атомов было очень небольшим и измерения магнитных моментов не очень точными. А техника Раби позволяет добиться фантастической точности при измерении магнитных моментов. Метод основан на том факте, что в магнитном поле первоначальная энергия атомов расщепляется на конечное число энергетических уровней. Тот факт, что энергия атома может иметь только определенные дискретные значения, на самом деле не более удивителен, чем то, что атом вообще имеет дискретные энергетические уровни; об этом мы часто говорили в начале курса. Почему бы этого не могло происходить и с атомами в магнитном поле? Так именно все и происходит. Однако когда пытаются связать расщепление с идеей ориентированных магнитных моментов, то в квантовой механике появляются некоторые странные выводы.
Когда атом имеет два уровня, отличающихся по энергии на величину ΔU, это может вызвать переход с верхнего уровня на нижний с излучением кванта света
(35.7)
где ω — частота.
То же самое может произойти и с атомами в магнитном поле. Но только разность энергий настолько мала, что частота ее соответствует не свету, а микроволнам или радиочастотам. Переход с нижнего энергетического уровня на верхний может также происходить с поглощением света или (в случае атомов в магнитном поле) микроволновой энергии. Итак, если у нас есть атом в магнитном поле, то, прикладывая дополнительное электромагнитное поле надлежащей частоты, мы можем вызвать переход из одного состояния в другое. Другими словами, если у нас есть атом в сильном магнитном поле и мы будем «щекотать» его слабым переменным электромагнитным полем, то имеется некоторая вероятность «выбить» его на другой уровень, когда частота поля близка к ω, определяемой соотношением (35.7). Для атома в магнитном поле эта частота в точности равна частоте, названной нами ωр и зависящей от магнитного поля, согласно формуле (35.4). Если атом «щекотать» с другой частотой, то вероятность перехода станет очень мала. Таким образом, вероятность перехода при частоте ωр имеет резкий резонанс. Измеряя частоту этого резонанса в известном магнитном поле В, можно измерить величину g(q/2m), а следовательно, и g-фактор, причем с огромной точностью.
Интересно, что к такому же заключению можно прийти и с классической точки зрения. В соответствии с классической картиной, когда мы помещаем гироскоп, обладающий магнитным моментом μ и моментом количества движения J, во внешнее магнитное поле, гироскоп начнет прецессировать вокруг оси, параллельной этому полю (фиг. 35.3).
Фиг. 35.3. Классическая прецессия атома с магнитным моментом μ и моментом количества движения J,
Предположим, нас интересует, как можно изменить угол классического гироскопа по отношению к магнитному полю, т. е. по отношению к оси z? Магнитное поле создает момент силы относительно горизонтальной оси. На первый взгляд кажется, что такой момент силы старается выстроить магниты в направлении поля, но он вызывает только прецессию. Если же мы хотим изменить угол гироскопа по отношению к оси z, то должны приложить момент силы относительно оси z. Если мы приложим момент силы, действующий в том же направлении, что и прецессия, угол гироскопа изменится и это приведет к уменьшению компоненты J в направлении оси z. Угол между направлением J и осью z на фиг. 35.3 должен увеличиться. Если мы попытаемся воспрепятствовать прецессии, вектор J будет двигаться по направлению к вертикали.
Но каким образом к нашему прецессирующему атому можно приложить нужный момент силы? Ответ: с помощью слабого магнитного поля, направленного в сторону. На первый взгляд вам может показаться, что направление этого магнитного поля должно крутиться вместе с прецессией магнитного момента, так чтобы поле всегда было направлено к нему под прямым углом, как это показано на фиг. 35.4, а с помощью поля В'.
Фиг. 35.4. Угол прецессии атомного магнитика можно изменить двумя путями: а — горизонтальным магнитным полем, направленным всегда под прямым углом к μ; б—осциллирующим полем.
Такое поле работает очень хорошо, однако нисколько не хуже действует и переменное горизонтальное поле. Если у нас есть горизонтальное поле В', которое всегда направлено по оси х (в положительную или отрицательную сторону) и которое осциллирует с частотой ωp, тогда через каждые полпериода действующая на магнитный момент пара сил переворачивается, так что получается суммарный эффект, который почти столь же эффективен, как и вращающееся магнитное поле. С точки зрения классической физики мы бы ожидали при этом изменения компоненты магнитного момента вдоль оси z, если у нас есть очень слабое магнитное поле, осциллирующее с частотой, в точности равной ωp. Разумеется, по классической физике μz должно изменяться непрерывно, но в квантовой механике z-компонента магнитного момента не может быть непрерывной. Она должна неожиданно «прыгать» от одного значения до другого. Я сравнивал следствия классической и квантовой механики, чтобы дать вам понятие о том, что может происходить классически, и как это связано с тем, что происходит на самом деле в квантовой механике. Обратите внимание, между прочим, что в обоих случаях ожидаемая резонансная частота одна и та же.
Еще одно дополнительное замечание. Из того, что мы говорили о квантовой механике, не видно, почему переходы не могут происходить при частоте 2ωр. Оказывается, что в классическом случае этому совершенно нет никакого аналога, но в квантовой механике такие переходы невозможны, по крайней мере в описанном нами способе вынужденных переходов. При горизонтальном осциллирующем магнитном поле вероятность того, что частота 2ωp вызовет скачок сразу на два шага, равна нулю. Все переходы, будь то переход вверх или вниз, предпочитают происходить только при частоте ωр.
Вот теперь мы готовы к описанию метода Раби. Здесь мы опишем только, как этот метод измерения магнитных моментов работает в случае частиц со спином 1/2. Схема аппаратуры показана на фиг. 35.5.
Фиг. 35.5. Схема установки Раби в опытах с молекулярными пучками.
Вы видите здесь печь, которая создает поток нейтральных атомов, летящих по прямому пути через три магнита. Магнит 1 — такой же, как и на фиг. 35.2, он создает поле с большим, скажем положительным, градиентом ∂Bz/∂z. Если атомы обладают магнитным моментом, то они будут отклоняться вниз при Jz=+ℏ/2 или вверх при Jz=-ℏ/2 (поскольку для электронов μ направлен противоположно J). Если мы будем рассматривать только те атомы, которые могут проходить через щель S1, то, как это показано на фиг. 35.5, возможны две траектории. Чтобы попасть в щель, атомы с Jz=+ℏ/2 должны лететь по кривой а, а атомы с Jz=-ℏ/2 — по кривой b. Атомы, вылетающие из печи в другом направлении, вообще не попадут в щель.
Магнит 2 создает однородное поле. В этой области на атомы никакие силы не действуют, поэтому они просто пролетают через нее и попадают в магнит 3. Этот магнит представляет собой копию магнита 1, но с перевернутым полем, так что у него ∂Bz/∂z имеет отрицательный знак. Атомы с Jz=+ℏ/2 (будем говорить «со спином, направленным вверх»), которые в магните 1 отклонялись вниз, в магните 3 будут отклоняться вверх; они продолжат свой полет по траектории а и через щель S2 попадут в детектор. Атомы с Jz=-ℏ/2 («со спином, направленным вниз») в магнитах 1 и 3 тоже будут испытывать действие противоположных сил и полетят по траектории b, которая через щель S2 тоже приведет их в детектор.
Детектор можно сделать разными способами в зависимости от измеряемых атомов. Так, для щелочных металлов, подобных натрию, детектором может служить тонкая раскаленная вольфрамовая нить, подсоединенная к чувствительному гальванометру. Атомы натрия, оседая на этой нити, испаряются в виде ионов Na+ и оставляют на ней электрон. Возникает ток, пропорциональный числу осевших в 1 сек атомов натрия.
В щели магнита 2 находится набор катушек, которые создают небольшое горизонтальное магнитное поле В'. Эти катушки питаются током, осциллирующим с переменной частотой ω, так что между полюсами магнита 2 создается сильное вертикальное магнитное поле В0 и слабое осциллирующее горизонтальное магнитное поле В'.
Предположим теперь, что частота ω осциллирующего поля подобрана равной ωp — частоте «прецессии» атомов в поле В0. Переменное поле вызовет у некоторых из пролетающих атомов переход от одного значения Jz к другому. Атомы, спины которых были первоначально направлены вверх (Jz=+ℏ/2), могут перевернуться вниз (Jz=-ℏ/2). Теперь магнитный момент этих атомов перевернут, так что в магните 3 они будут чувствовать силу, направленную вниз, и полетят по траектории а', как показано на фиг. 35.5. Теперь они уже не смогут пройти через щель S2 и попасть в детектор. Точно так же некоторые из атомов, спин которых был первоначально направлен вниз (Jz=-ℏ/2), перевернутся при прохождении через магнит 2 вверх (Jz=+ℏ/2). После этого они полетят по траектории b' и не попадут в детектор.
Если частота осциллирующего поля В' значительно отличается от ωp оно не сможет вызвать переворачивания спина и атомы по своим «невозмущенным» орбитам пройдут прямо к детектору. Итак, как видите, можно найти частоту «прецессии» атомов ωp в поле В0, подбирая частоту ω магнитного поля В', пока не получим уменьшения тока атомов, приходящих в детектор. Уменьшение тока будет происходить тогда, когда ω попадет «в резонанс» с ωp. График зависимости тока в детекторе от ω может напоминать кривую, изображенную на фиг. 35.6.
Фиг. 35.6. Количество атомов в пучке при ω=ωp уменьшается.
Зная ω, можно найти величину g для данного атома.
Такой резонансный эксперимент с атомными или, как их часто называют, «молекулярными» пучками представляет очень красивый и точный способ измерения магнитных свойств атомных объектов. Резонансную частоту ωp можно определить с очень большой точностью, по сути дела значительно точнее, нежели мы способны измерить поле В0, необходимое при нахождении g.
§ 4. Парамагнетизм
Теперь мне бы хотелось описать явление парамагнетизма вещества. Предположим, имеется вещество, в составе которого имеются атомы, обладающие постоянным магнитным моментом, например кристаллы медного купороса. В этих кристаллах содержатся ионы меди, у которых электроны на внутренних оболочках имеют суммарный момент количества движения и магнитный момент, не равные нулю. Таким образом, ионы меди будут источником постоянного магнитного момента молекул купороса. Буквально несколько слов о том, какие атомы имеют постоянный магнитный момент, а какие — нет. Любой атом, у которого число электронов нечетно, подобно натрию, например, будет иметь магнитный момент. На незаполненной оболочке натрия имеется один электрон. Этот электрон и определяет спин и магнитный момент атома. Однако обычно при образовании соединения этот дополнительный электрон на внешней оболочке спаривается с другим электроном, направление спина которого в точности противоположно, так что все моменты количества движения и магнитные моменты валентных электронов в точности компенсируют друг друга. Вот почему молекулы, вообще говоря, не обладают магнитным моментом. Конечно, если у вас есть газ атомов натрия, то там такой компенсации не происходит[46]. Точно так же если у вас есть то, что в химии называется «свободным радикалом», т. е. объект с нечетным числом валентных электронов, то связи оказываются неполностью насыщенными и появляется ненулевой момент количества движения.
У подавляющего большинства материалов полный магнитный момент появляется только тогда, когда там присутствуют атомы с незаполненной внутренней электронной оболочкой. Благодаря этому они могут иметь суммарный момент количества движения и магнитный момент. Такие атомы принадлежат к «переходным элементам» периодической таблицы Менделеева, например: хром, марганец, железо, никель, кобальт, палладий и платина — элементы как раз такого сорта. Кроме того, все редкоземельные элементы имеют незаполненную внутреннюю оболочку, а следовательно, и постоянные магнитные моменты. Правда, встречаются еще странные вещества (к числу их относятся жидкий кислород и окись азота), которые, оказывается, тоже обладают магнитным моментом, но объяснить причины этих странностей я предоставляю химикам.
Предположим теперь, что у нас есть ящик, наполненный молекулами или атомами с постоянным магнитным моментом, скажем газ, жидкость или кристалл. Нам хочется знать, что получится, если мы поместим его во внешнее магнитное поле. В отсутствие магнитного поля атомы сбиваются тепловым движением и их магнитные моменты распределяются по всем направлениям. Но когда действует магнитное поле, оно выстраивает эти маленькие магнитики, так что магнитных моментов, направленных по полю, становится больше, чем направленных против него. Материал «намагничивается».
Намагниченность М материала мы определяем как полный магнитный момент единицы объема, под которым мы понимаем векторную сумму всех атомных магнитных моментов единицы объема. Если среднее число атомов в единице объема равно N, а их средний момент равен <μ>cp, то М можно записать как произведение N на средний магнитный момент:
(35.8)
Это определение М аналогично определению электрической поляризации Р, данному в гл. 10 (вып. 5).
Классическая теория парамагнетизма, как вы уже убедились в гл. 10 (вып. 5), в точности аналогична теории диэлектрической проницаемости. Предполагается, что магнитный момент μ каждого из атомов всегда имеет одну и ту же величину, но может быть направлен в любую сторону. Магнитная энергия в поле В равна -μ·B=-μBcosθ, где θ — угол между моментом и полем. Согласно статистической физике, относительная вероятность угла равна e-энергия/kT так что угол θ° более вероятен, чем угол π. Следуя в точности по пути, проделанному нами в гл. 11, § 3 (вып. 5), мы обнаружим, что для слабых магнитных полей М направлена параллельно В и имеет величину
(35.9)
[См. выражение (11.20), вып. 5.] Эта приближенная формула верна, только когда отношение μB/kT много меньше единицы.
Мы нашли, что намагниченность, т. е. магнитный момент единицы объема, пропорциональна магнитному полю. Это явление и называется парамагнетизмом. Вы увидите, что эффект сильнее проявляется при низких температурах и слабее при высоких. При помещении вещества в магнитное поле возникающий в нем магнитный момент в случае слабых полей пропорционален величине поля. Отношение М к В (для слабых полей) называется магнитной восприимчивостью.
Рассмотрим теперь парамагнетизм с точки зрения квантовой механики. Обратимся сначала к атомам со спином 1/2. Если в отсутствие магнитного поля атомы обладают вполне определенной энергией, то в магнитном поле энергия изменится; возможны два значения энергии для разных значений Jz. Для Jz=+ℏ/2 магнитное поле изменяет энергию на величину
(35.10)
(Для атомов сдвиг энергии ΔU положителен, ибо заряд электрона отрицателен.) Для Jz=-ℏ/2 энергия изменяется на величину
(35.11)
Для сокращения записи обозначим
(35.12)
тогда
(35.13)
Совершенно ясен и смысл μ0; — μ0 равно z-компоненте магнитного момента для спина, направленного вверх, а +μ0 равно z-компоненте магнитного момента в случае спина, направленного вниз.
Статистическая механика говорит нам, что вероятность нахождения атома в каком-то состоянии пропорциональна
В отсутствие магнитного поля энергия обоих состояний одна и та же, поэтому в случае равновесия в магнитном поле вероятности пропорциональны
(35.14)
Число же атомов в единице объема со спином, направленным вверх, равно
(35.15)
а со спином, направленным вниз,
(35.16)
Постоянная а должна определяться из условия
(35.17)
т.е. равна полному числу атомов в единице объема. Таким образом, мы получаем
(35.18)
Однако нас интересует средний магнитный момент в направлении оси z. Каждый атом со спином, направленным вверх, дает в этот момент вклад, равный -μ0, а со спином, направленным вниз, +μ0, так что средний момент будет
(35.19)
Тогда М — магнитный момент единицы объема — будет равен N<μ>ср. Воспользовавшись выражениями (35.15)—(35.17), получим
(35.20)
Это и есть квантовомеханическая формула для М в случае атомов со спином j=1/2. К счастью, ее можно записать более коротко через гиперболический тангенс:
(35.21)
График зависимости М от В приведен на фиг. 35.7.
Фиг. 35.7. Изменение намагниченности парамагнетика при изменении напряженности магнитного поля В.
Когда поле В становится очень большим, гиперболический тангенс приближается к единице, а М — к своему предельному значению Nμ0. Таким образом, при сильных полях происходит насыщение. Нетрудно понять, почему так получается — ведь при достаточно больших полях все магнитные моменты выстраиваются в одном и том же направлении. Другими словами, при насыщении все атомы находятся в состоянии со спинами, направленными вниз, и каждый из них дает вклад в магнитный момент, равный μ0.
Обычно при комнатной температуре и полях, которые можно получить (порядка 10000 гс), отношение μ0B/kT равно приблизительно 0,02. Чтобы наблюдать насыщение, необходимо спуститься до очень низких температур. Для комнатной и более высоких температур обычно можно thx заменить на x и написать
(35.22)
Точно так же, как и в классической теории, намагниченность М оказывается пропорциональной полю В. Даже формула оказывается той же самой, за исключением того, что в ней, по-видимому, где-то потерян множитель 1/3. Но нам еще нужно связать μ0 в квантовомеханической формуле с величиной μ, которая появилась в классическом результате, в выражении (35.9).
В классической формуле у нас появилось μ2=μ·μ — квадрат вектора магнитного момента, или
(35.23)
В предыдущей главе я уже говорил, что очень часто правильный ответ можно получить из классических вычислений с заменой J·J на j(j+1)ℏ2. В нашем частном примере j=1/2, так что
Подставляя этот результат вместо J·J в (35.23), получаем
или, вводя величину μ0, определенную соотношением (35.12), получаем
Подставляя это вместо μ2 в классическое выражение (35.9), мы действительно воспроизведем истинный квантовомеханический результат — формулу (35.22).
Квантовая теория парамагнетизма легко распространяется на атомы с любым спином j. При этом для намагниченности в слабом поле получим
(35.24)
где
(35.25)
представляет комбинацию постоянных с размерностью магнитного момента. Моменты большинства атомов приблизительно равны этой величине. Она называется магнетоном Бора. Спиновый магнитный момент электрона почти в точности равен магнетону Бора.
§ 5. Охлаждение адиабатическим размагничиванием
Парамагнетизм имеет одно весьма интересное применение. При очень низкой температуре и в сильном магнитном поле атомные магнитики выстраиваются. При этом с помощью процесса, называемого адиабатическим размагничиванием, можно получить самые низкие температуры. Возьмем какую-то парамагнитную соль, содержащую некоторое число редкоземельных атомов (например, аммиачный нитрат празеодима), и начнем охлаждать ее жидким гелием до 1—2° К в сильном магнитном поле. Тогда показатель μВ/kT будет больше единицы, скажем 2 или 3. Большинство спинов направлено вверх, и намагниченность почти достигает насыщения. Для облегчения давайте считать, что поле настолько велико, а температура так низка, что все атомы смотрят в одном направлении. Теплоизолируйте затем соль (удалив, например, жидкий гелий и создав вакуум) и выключите магнитное поле. При этом температура соли падает.
Если бы это поле вы выключили внезапно, то раскачивание и сотрясение атомов кристаллической решетки постепенно перепутало бы все спины. Некоторые из них остались бы направленными вверх, а другие повернулись бы вниз. Если никакого поля нет (и если не учитывать взаимодействия между атомными магнитами, которое привносит только небольшую ошибку), то на переворачивание магнитиков энергии не потребуется. Поэтому случайное распределение спинов установится без какого-либо изменения температуры.
Предположим, однако, что в то время как спины переворачиваются, магнитное поле еще не вполне исчезло. Тогда для переворачивания спинов против поля требуется некоторая работа, она должна затрачиваться на преодоление поля. Этот процесс отбирает энергию у теплового движения и понижает температуру. Таким образом, если сильное магнитное поле выключается не слишком быстро, температура соли будет уменьшаться. Размагничиваясь, она охлаждается. С точки зрения квантовой механики, когда поле сильно, все атомы находятся в наинизшем состоянии, так как слишком много шансов против того, чтобы они находились в высшем состоянии. Но как только напряженность поля понижается, тепловые флуктуации со все большей и большей вероятностью будут «выталкивать» атомы на высшее состояние, и когда это происходит, атом поглощает энергию ΔU=μ0B. Таким образом, если магнитное поле выключается медленно, магнитные переходы могут отбирать энергию у тепловых колебаний кристалла, тем самым охлаждая его. Таким способом можно понизить температуру от нескольких градусов до температуры в несколько тысячных долей градуса от абсолютного нуля.
А если нам захочется охладить что-то еще сильнее? Оказывается, что здесь природа тоже была очень предусмотрительной. Я уже упоминал, что магнитные моменты есть и у атомных ядер. Наши формулы для парамагнетизма работают и в случае ядер, только надо иметь в виду, что моменты ядер приблизительно в тысячу раз меньше. (По порядку величины они равны qℏ/2mp, где mp — масса протона, так что они меньше в число раз, равное отношению масс протона и электрона.) Для таких магнитных моментов даже при температуре 2° К показатель μB/kT составляет всего несколько тысячных. Но если мы используем парамагнитное размагничивание и достигнем температуры нескольких тысячных градуса, то μB/kT становится порядка единицы; при столь низких температурах мы уже можем говорить о насыщении ядерного магнетизма. Это очень кстати, ибо теперь, воспользовавшись адиабатическим размагничиванием системы магнитных ядер, можно достичь еще более низких температур. Таким образом, в магнитном охлаждении возможны две стадии. Сначала мы используем диамагнитное размагничивание парамагнитных ионов и спускаемся до нескольких тысячных долей градуса. Затем мы применяем холодную парамагнитную соль для охлаждения некоторых материалов, обладающих сильным ядерным магнетизмом. И, наконец, когда мы выключаем магнитное поле, температура материалов доходит до миллионных долей градуса от абсолютного нуля, если, конечно, все было проделано достаточно тщательно.
§ 6. Ядерный магнитный резонанс
Я уже говорил, что атомный парамагнетизм очень слаб и что ядерный магнетизм в тысячу раз слабее его. Но все же с помощью явления, называемого «ядерным магнитным резонансом», наблюдать его относительно легко. Предположим, что мы взяли такое вещество, как вода, у которого все электронные спины в точности компенсируют друг друга, так что их полный магнитный момент равен нулю. У таких молекул все же останется очень-очень слабый магнитный момент благодаря наличию магнитного момента у ядер водорода. Предположим, что мы поместили небольшой образец воды в магнитное поле В. Поскольку спин протонов (входящих в атом водорода) равен 1/2, то у них возможны два энергетических состояния. Если вода находится в тепловом равновесии, то протонов в нижнем энергетическом состоянии, моменты которых направлены параллельно полю, будет немного больше. Поэтому каждая единица объема обладает очень маленьким магнитным моментом. А поскольку протонный момент составляет только одну тысячную долю атомного момента, то намагниченность, которая ведет себя как μ2 [см. уравнение (35.22)], будет в миллион раз слабее обычной атомной парамагнитной намагниченности. (Вот почему мы должны выбирать материал, у которого отсутствует атомный парамагнетизм.) После того как мы подставим все величины, окажется, что разность между числом протонов со спином, направленным вверх, и спином, направленным вниз, составляет всего несколько единиц на 108, так что эффект и в самом деле очень мал! Однако его можно наблюдать следующим образом.
Предположим, что мы поместили ампулу с водой внутрь небольшой катушки, которая создает слабое горизонтальное осциллирующее магнитное поле. Если это поле осциллирует с частотой ωp, то оно вызовет переходы между двумя энергетическими состояниями точно так же, как это было в опытах Раби, которые мы описывали в § 3. Когда протон «сваливается» с верхнего энергетического состояния на нижнее, он отдает энергию μzB, которая, как мы видели, равна ℏωp. Если же он переходит с нижнего состояния на верхнее, то будет отбирать энергию ℏωp у катушки. А поскольку в нижнем состоянии имеется немного больше протонов, чем в верхнем, то из катушки будет поглощаться энергия. И хотя эффект весьма мал, с помощью чувствительного электронного усилителя можно наблюдать даже столь малое поглощение энергии.
Как и в эксперименте Раби с молекулярными пучками, поглощение энергии будет заметно только тогда, когда осциллирующее поле находится в резонансе, т. е. когда
Часто удобнее искать резонанс, изменяя В и оставляя постоянной ω. Очевидно, что поглощение энергии происходит, когда
Типичная установка, применяемая при изучении ядерного магнитного резонанса, показана на фиг. 35.8.
Фиг. 35.8. Схема аппаратуры для изучения ядерного магнитного резонанса.
Между полюсами большого электромагнита помещена небольшая катушка, питаемая высокочастотным генератором. Вокруг наконечников полюсов магнитов намотаны две вспомогательные катушки, питаемые током с частотой 60 гц, так что магнитное поле немного «колеблется» вокруг своего среднего значения. Для примера скажу вам, что ток главного магнита создает поле в 5000 гс, а вспомогательные катушки изменяют его на ±1 гс. Если генератор настроен на частоту 21,2 Мгц, то протонный резонанс будет происходить всякий раз, когда поле проходит через 5000 гс [используйте соотношение (34.13) для протона с величиной g=5,58].
Схема генератора устроена так, что дает на выход дополнительный сигнал, пропорциональный изменению мощности, поглощенной из генератора, а этот сигнал подается после усиления на вертикально отклоняющие пластины осциллографа. В горизонтальном направлении луч пробегает один раз за каждый период изменения дополнительного вспомогательного поля. (Впрочем, чаще горизонтальная развертка делается пропорциональной частоте вспомогательного поля.)
До того как внутрь высокочастотной катушки мы поместим ампулу с водой, мощность, отдаваемая генератором, имеет какую-то величину. (Она не изменяется с изменением магнитного поля.) Но как только внутрь катушки мы поместим небольшую ампулу с водой, на экране осциллографа появляется сигнал (см. фиг. 35.8). Мы непосредственно видим график мощности, поглощаемой протонами!
На практике трудно установить, когда основной магнит создает поле точно 5000 гс. Ток в главном магните обычно подбирают, изменяя его постепенно до тех пор, пока на экране не появится резонансный сигнал. Оказывается, на сегодняшний день это наиболее удобный способ точного измерения напряженности магнитного поля. Разумеется, кто-то должен был когда-то точно измерить магнитное поле и частоту и определить величину g для протона. Однако сейчас, после того как это уже сделано, протонную резонансную аппаратуру типа той, что изображена на рисунке, можно использовать как «протонный резонансный магнитометр».
Несколько слов о форме сигнала. Если бы мы очень медленно изменяли магнитное поле, то можно было бы ожидать, что мы увидим нормальную резонансную кривую. Поглощение энергии достигло бы максимума, когда частота генератора была бы в точности равна ωp. Небольшое поглощение происходило бы, конечно, и при близлежащих частотах, так как не все протоны находятся в точности в одинаковом поле, а различные поля означают несколько отличные резонансные частоты.
Но так ли все это? Должны ли мы на самом деле видеть при резонансной частоте какой-то сигнал? Не следует ли ожидать, что высокочастотное поле выравнивает населенность обоих состояний, так что, за исключением первого момента, никакого сигнала не будет, когда вода помещается внутрь поля? Не совсем так, поскольку хотя мы и стараемся выравнять обе населенности, тепловое движение со своей стороны старается сохранить равновесные значения, присущие данной температуре Т. Если мы находимся точно в резонансе, то мощность, поглощенная ядрами, в точности равна мощности, теряемой на тепловое движение. Однако «тепловой контакт» между системой протонных магнитных моментов и атомным движением довольно слабый. Каждый протон относительно изолирован в центре электронного облака. Таким образом, чистая вода дает слишком слабый резонансный сигнал, чтобы его можно было заметить. Для увеличения поглощения необходимо улучшить «тепловой контакт». Это обычно делается путем добавления в воду небольшого количества окиси железа. Атомы железа — совсем как маленькие магнитики, и когда они прыгают туда и сюда в своем «тепловом танце», то создают слабенькое прыгающее магнитное поле, которое действует на протоны. Эти изменяющиеся поля «связывают» протонные магнитные моменты с атомными колебаниями и стремятся восстановить тепловое равновесие. Именно из-за этого взаимодействия протоны в состояниях с большой энергией теряют свою энергию и снова становятся способными к поглощению энергии генератора.
На практике же сигнал на выходе ядерной резонансной аппаратуры не похож на обычную резонансную кривую. Обычно это более сложный сигнал с осцилляциями, похожими на те, что изображены на фиг. 35.8. Такая форма сигнала обусловлена изменяющимися полями. Объяснять ее следовало бы с точки зрения квантовой механики, однако можно показать, что объяснение таких экспериментов при помощи представлений классической физики, как мы их использовали выше, тоже дает правильный ответ. С точки зрения классической физики мы бы сказали, что когда мы попадаем в резонанс, то синхронно начинаем раскачивать множество прецессирующих ядерных магнитиков. В результате мы их заставляем прецессировать все вместе. А вращаясь все вместе, эти маленькие магнитики создают в катушке индуцированную э.д.с. с частотой, равной ωp. Но поскольку со временем магнитное поле увеличивается, то увеличивается и частота прецессии, поэтому наведенное напряжение вскоре приобретает частоту, большую, чем частота генератора. Так как при этом наведенная э.д.с. попеременно попадает то в фазу, то в противофазу с переменным внешним полем, «поглощенная» мощность становится попеременно то положительной, то отрицательной. Таким образом, на экране мы видим запись биений между частотой протона и частотой генератора. Из-за того что частоты не всех протонов в точности одинаковы (разные протоны находятся в нескольких различных полях), а возможно, и в результате возмущений, вносимых атомами железа, находящимися в воде, свободно прецессирующие моменты скоро выбиваются из фазы и сигналы биений исчезают.
Эти явления магнитного резонанса используются во многих методах как орудие выяснения новых свойств вещества — особенно в химии и в физике. Я не говорю уже о том, что число магнитных моментов ядра говорит нам кое-что и о его структуре. В химии многое можно узнать из структуры (или формы) резонансов. Благодаря магнитным полям, создаваемым близлежащими ядрами, точная частота ядерного резонанса для данного частного атома немного сдвигается; величина этого сдвига зависит от окружения, в котором он находится. Измерение этих сдвигов помогает определить, какой атом находится рядом с каким, и проливает свет на детали структуры молекул. Столь же важен и электронный спиновый резонанс свободных радикалов. Такие радикалы, обычно крайне неустойчивые, часто появляются на промежуточных этапах ряда химических реакций. Измерение электронного спинового резонанса служит очень чувствительным индикатором при обнаружении свободных радикалов и часто дает ключ к пониманию механизма некоторых химических реакций.
Глава 36 ФЕРРОМАГНЕТИЗМ
Повторить: гл. 10 (вып. 5)«Диэлектрики»; гл. 17 (вып. 6) «Законы индукции»
§ 1. Токи намагничивания
В этой главе мы поговорим о некоторых материалах, в которых полный эффект магнитных моментов проявляется во много раз сильнее, чем в случае парамагнетизма или диамагнетизма. Это явление называется ферромагнетизмом. В парамагнитных и диамагнитных материалах при помещении их во внешнее магнитное поле возникает обычно настолько слабый наведенный индуцированный магнитный момент, что нам не приходится думать о добавочных магнитных полях, создаваемых этими магнитными моментами. Другое дело магнитные моменты ферромагнитных материалов, которые создаются приложенным магнитным полем. Они очень велики и оказывают существенное воздействие на сами поля. Эти индуцированные магнитные моменты так огромны, что они вносят главный вклад в наблюдаемые поля. Поэтому нам следует позаботиться о математической теории больших индуцированных магнитных моментов. Это, разумеется, чисто формальный вопрос. Физическая проблема состоит в том, почему магнитные моменты столь велики и как они «устроены». Но к этому вопросу мы подойдем немного позже.
Нахождение магнитных полей в ферромагнитных материалах несколько напоминает задачу о нахождении электрических полей в диэлектриках. Помните, сначала мы описывали внутренние свойства диэлектрика через векторное поле Р — дипольный момент единицы объема. Затем мы сообразили, что эффект этой поляризации эквивалентен плотности заряда ρпол, определяемой дивергенцией Р:
(36.1)
Полный же заряд в любой ситуации можно записать в виде суммы этого поляризационного заряда и всех других зарядов[47], плотность которых мы обозначим через ρдр. Тогда уравнения Максвелла, которые связывают дивергенцию Е с плотностью зарядов, примут вид:
или
Затем мы можем перебросить поляризационную часть заряда в левую сторону уравнения и получить
(36.2)
Этот новый закон говорит, что дивергенция величины (ε0Е+Р) равна плотности других зарядов.
Совместная запись Е и Р, как это сделано в уравнении (36.2), полезна, разумеется, только когда мы знаем какие-то соотношения между ними. Мы видели, что теория, связывающая наведенный электрический дипольный момент с полем, — вещь довольно сложная и ее на самом деле можно применять только в относительно простых случаях, но и то только как приближение. Я хочу напомнить вам об одном приближении.
Фиг. 36.1. Электрическое поле в полости в диэлектрике зависит от формы полости.
Чтобы найти наведенный дипольный момент атома внутри диэлектрика, необходимо знать электрическое поле, которое действует на отдельный атом. В свое время мы использовали приближение, пригодное во многих случаях; было предположено, что на атом действует поле, которое было бы в центре небольшой полости, оставшейся после удаления этого атома (считая, что дипольные моменты всех других соседних атомов при этом не изменяются). Вспомните также, что электрическое поле в полости внутри поляризованного диэлектрика зависит от формы этой полости. Эти результаты мы подытожили на фиг. 36.1. В тонкой дискообразной полости, перпендикулярной направлению поляризации, электрическое поле, как было показано с помощью закона Гаусса, имеет вид
С другой стороны, используя равенство нулю ротора, мы нашли, что электрическое поле внутри и вне иглообразной полости одно и то же:
(иглообразная полость).
Наконец, мы обнаружили, что величина электрического поля внутри сферической полости лежит между этими двумя значениями:
(36.3)
Это и было то поле, которым мы пользовались, рассуждая о том, что происходит с атомами внутри поляризованного диэлектрика.
Попробуем обсудить аналогичную задачу в случае магнетизма. Легче всего и короче просто сказать, что М — магнитный момент единицы объема (намагниченность) — в точности аналогичен Р — электрическому дипольному моменту единицы объема (поляризация) и что, следовательно, отрицательная дивергенция М эквивалентна «плотности магнитных зарядов» ρm, что бы это ни означало. Но беда в том, что в физическом мире не существует такой штуки, как «магнитный заряд». Как мы знаем, дивергенция В всегда равна нулю. Это, однако, не помешает нам провести искусственную аналогию и написать
(38.4)
но нужно понимать, что ρm — величина чисто математическая. Затем мы можем все делать полностью аналогично электростатике и использовать все старые электростатические уравнения. К этому часто прибегают. Когда-то такая аналогия считалась даже правильной. Ученые верили, что ρm представляет плотность «магнитных полюсов». Однако сейчас нам известно, что намагничивание материала происходит за счет токов, циркулирующих внутри атомов, т. е. либо вращения электронов, либо движения их в атоме. Следовательно, с физической точки зрения лучше описывать намагничивание только при помощи реальных атомных токов, а не вводить плотность каких-то мистических «магнитных зарядов». Эти токи иногда называются еще «амперовскими», ибо Ампер первый предположил, что магнетизм вещества происходит за счет циркуляции атомных токов.
Микроскопические плотности токов в намагниченном веществе, разумеется, очень сложны. Их величина зависит от местоположения в атоме: в некоторых местах они велики, в других — малы, в одной части они текут в одну сторону, а в другой — в противоположную (точно так же, как микроскопическое электрическое поле, которое внутри диэлектрика в высшей степени неоднородно). Однако во многих практических задачах нас интересуют только поля вне вещества или средние магнитные поля внутри него, причем под средним мы имеем в виду усреднение по очень многим атомам. В таких макроскопических задачах магнитное состояние вещества удобно описывать через намагниченность М — средний магнитный момент единицы объема. Я расскажу сейчас, как атомные токи в намагниченном веществе вырастают до макроскопических токов, которые связаны с М.
Разобьем плотность тока j, которая является реальным источником магнитных полей, на разные части; одна из них описывает циркулирующие токи атомных магнитиков, а остальные — другие возможные токи. Обычно удобнее делить токи на три части. В гл. 32 мы делали различие между токами, свободно текущими по проводникам, и токами, обусловленными движением связанных зарядов в диэлектрике то туда, то сюда. В гл. 32, §2, мы писали
причем величина jпол представляла токи от движения связанных зарядов в диэлектриках, а jдp — все другие токи. Пойдем дальше. Я хочу из jдр выделить часть jмar, которая описывает усредненные токи внутри намагниченных материалов, и дополнительный член, который мы будем называть jпров и который будет описывать все остальное. Он, вообще говоря, относится к токам в проводниках, но может описывать и другие токи, например токи зарядов, движущихся свободно через пустое пространство. Таким образом, полную плотность тока мы будем писать в виде
(36.5)
Разумеется, именно этот ток входит в уравнение Максвелла с ротором В:
(36.6)
Теперь мы должны связать ток jмаг с величиной вектора намагниченности М. Чтобы вы представляли, к чему мы стремимся, скажу, что должен получиться такой результат:
(36.7)
Если в магнитном материале нам всюду задан вектор намагниченности М, то плотность циркуляционного тока определяется ротором М. Посмотрим, можно ли понять, почему так происходит.
Сначала возьмем цилиндрический стержень, равномерно намагниченный параллельно его оси. Мы знаем, что физически такая равномерная намагниченность означает на самом деле однородную повсюду внутри материала плотность атомных циркулирующих токов. Попытаемся представить себе, как выглядят эти реальные токи в поперечном сечении стержня. Мы ожидаем увидеть токи, напоминающие изображенные на фиг. 36.2.
Фиг. 36.2. Схематическая диаграмма циркулирующих атомных токов в поперечном сечении железного стержня, намагниченного в направлении оси z.
Каждый атомный ток течет по кругу, образуя крохотную цепь, причем все циркулирующие токи текут в одном и том же направлении. Каким же тогда будет эффективный ток? В большей части стержня он, конечно, не дает вообще никакого эффекта, ибо рядом с каждым током есть другой ток, текущий в противоположном направлении. Если представить себе небольшую поверхность, показанную на фиг. 36.2 линией АВ, которая, однако, чуть-чуть толще отдельного атома, то полный ток через такую поверхность должен быть равен нулю. Внутри материала никакого тока нет. Однако обратите внимание, что на поверхности материала атомные токи не компенсируются соседними токами, текущими в другом направлении. Поэтому по поверхности все время в одном направлении вокруг стержня течет ток. Теперь вам понятно, почему я утверждал, что равномерно намагниченный стержень эквивалентен соленоиду с текущим по нему электрическим током.
Как же эта точка зрения согласуется с выражением (36.7)? Прежде всего намагниченность М внутри материала постоянна, так что все ее производные равны нулю. Это согласуется с нашей геометрической картиной. Однако М на поверхности на самом деле не постоянна, она постоянна вплоть до поверхности, а затем неожиданно падает до нуля. Таким образом, непосредственно на поверхности возникает громадный градиент, который в соответствии с выражением (36.7) даст огромную плотность тока. Предположим, что мы наблюдаем за тем, что происходит вблизи точки С на фиг. 36.2. Если выбрать направления осей х и у так, как это показано на фигуре, то намагниченность М будет направлена по оси z. Выписывая компоненты уравнения (36.7), мы получаем
(36.8)
Хотя производная dMz/dy в точке С равна нулю, производная dMz/dx будет большой и положительной. Выражение (36.7) говорит, что в отрицательном направлении оси у течет ток огромной плотности. Это согласуется с нашим представлением о поверхностном токе, текущем вокруг цилиндра.
Теперь мы можем найти плотность тока в более сложном случае, когда намагниченность в материале меняется от точки к точке. Качественно нетрудно понять, что если в двух соседних областях намагниченность различная, то полной компенсации циркулирующих токов не происходит, поэтому полный ток внутри материала не равен нулю. Именно этот эффект мы и хотим получить количественно.
Прежде всего вспомните, что в гл. 14, § 5 (вып. 5), мы выяснили, что циркулирующий ток I создает магнитный момент
(36.9)
где А— площадь, ограниченная контуром тока (фиг. 36.3).
Фиг. 36.3. Дипольный момент μ контура тока равен IA.
Рассмотрим маленький прямоугольный кубик внутри намагниченного материала (фиг. 36.4).
Фиг. 36.4. Небольшой намагниченный кубик эквивалентен циркулирующему поверхностному току.
Пусть кубик будет так мал, что намагниченность внутри него можно считать однородной. Если компонента намагниченности этого кубика в направлении оси z равна Мz, то полный эффект будет таким, как будто по вертикальным граням течет поверхностный ток. Величину этого тока мы можем найти из равенства (36.9). Полный магнитный момент кубика равен произведению намагниченности на объем:
откуда, вспоминая, что площадь равна ас, получаем
Другими словами, на каждой из вертикальных поверхностей величина тока на единицу длины по вертикали равна Мz.
Представьте теперь два таких маленьких кубика, расположенных рядом друг с другом (фиг. 36.5).
Фиг. 36.5. Если намагниченность двух соседних кубиков различна, то на их границе течет поверхностный ток.
Кубик 2 несколько смещен по отношению к кубику 1, поэтому его вертикальная компонента намагниченности будет немного другой, скажем Mz+ΔМz. Теперь полный ток на поверхности между этими двумя кубиками будет слагаться из двух частей. По кубику 1 в положительном направлении по оси у течет ток I1, а по кубику 2 в отрицательном направлении течет ток I2. Полный поверхностный ток в положительном направлении оси у будет равен сумме
Величину ΔМz можно записать в виде произведения производной от Mz по х на смещение кубика 2 относительно кубика 1, которое как раз равно а:
Тогда ток, текущий между двумя кубиками, будет равен
Чтобы связать ток I со средней объемной плотностью тока j, необходимо понять, что этот ток на самом деле размазан по некоторой области поперечного сечения. Если мы вообразим, что такими маленькими кубиками заполнен весь объем материала, то за такое сечение (перпендикулярное оси х) может быть выбрана боковая грань одного из кубиков[48]. Теперь вы видите, что площадь, связанная с током, как раз равна площади ab одной из фронтальных граней. В результате получаем
Наконец-то у нас начинает получаться ротор М.
Но в выражении для jy должно быть еще одно слагаемое, связанное с изменением x-компоненты намагниченности с изменением z. Этот вклад в j происходит от поверхности между двумя маленькими кубиками, поставленными друг на друга (фиг. 36.6).
Фиг. 36.6. Два кубика, расположенных один над другим, тоже могут давать вклад в jy.
Воспользовавшись только что проведенными рассуждениями, мы можем показать, что эта поверхность будет давать в величину jy вклад, равный dMx/dz. Только эти поверхности и будут давать вклад в y-компоненту тока, так что полная плотность тока в направлении оси у получается равной
Определяя токи на остальных гранях куба или используя тот факт, что направление оси z было выбрано совершенно произвольно, мы можем прийти к заключению, что вектор плотности тока действительно определяется выражением
Итак, если вы решили описывать магнитное состояние вещества через средний магнитный момент единицы объема М, то оказывается, что циркулирующие атомные токи эквивалентны средней плотности тока в веществе, определяемой выражением (36.7). Если же материал обладает вдобавок еще диэлектрическими свойствами, то в нем может возникнуть и поляризационный ток jпол=∂P/∂t. А если материал к тому же и проводник, то в нем может течь и ток проводимости jпров. Таким образом, полный ток можно записать как
(36.10)
§ 2. Поле Н
Теперь можно подставить выражение для тока (36.10) в уравнение Максвелла. Мы получаем
Слагаемое с М можно перенести в левую часть:
(36.11)
Как мы уже отмечали в гл. 32, иногда удобно записывать (Е+Р/ε0) как новое векторное поле D/ε0. Точно так же удобно (В-М/ε0с2) записывать в виде единого векторного поля. Такое поле мы обозначим через Н, т. е.
(36.12)
После этого уравнение (36.11) принимает вид
(36.13)
Выглядит оно просто, но вся его сложность теперь скрыта в буквах D и Н.
Хочу предостеречь вас. Большинство людей, которые применяют систему СИ, пользуются другим определением Н. Называя свое поле через Н' (они, конечно, не пишут штриха), они определяют его как
(36.14)
(Кроме того, величину ε0с2 они обычно записывают в виде 1/μ0, так что появляется еще одна постоянная, за которой все время нужно следить!) При таком определении уравнение (36.13) будет выглядеть еще проще:
(36.15)
Но трудность здесь заключается в том, что такое определение, во-первых, не согласуется с определением, принятым теми, кто не пользуется системой СИ, и, во-вторых, поля Н' и В измеряются в различных единицах. Я думаю, что Н удобнее измерять в тех же единицах, что и В, а не в единицах М, как Н'. Но если вы собираетесь стать инженером и проектировать трансформаторы, магниты и т. п., то будьте внимательны. Вы столкнетесь со множеством книг, где в качестве определения Н используется уравнение (36.14), а не (36.12), а в других книгах, особенно в справочниках о магнитных материалах, связь между В и Н такая же, как и у нас. Нужно быть внимательным и понимать, какое где использовано соглашение[49].
Одна из примет, указывающих нам на соглашение, — это единицы измерения. Напомним, что в системе СИ величина В, а следовательно, и наше Н измеряются в единицах вб/м2 (1 вб/м2=10 000 гс). Магнитный же момент (т. е. произведение тока на площадь) в той же системе СИ измеряется в единицах а·м2. Тогда намагниченность М имеет размерность а/м. Размерность Н' та же, что и размерность М. Нетрудно видеть, что это согласуется с уравнением (36.15), поскольку ∇ имеет размерность обратной длины.
Те, кто работает с электромагнитами, привыкли измерять поле Н (определенное как Н') в ампер-витках/метр, имея при этом в виду витки провода в обмотке. Но «виток» ведь фактически величина безразмерная, и она не должна вас смущать. Поскольку наше Н равно H'/ε0c2, то, если вы пользуетесь системой СИ, Н (в вб/м) равно произведению 4π·10-7 на Н'(в а/м). Может быть, более удобно помнить, что Н (в гс) равно 0,0126 H' (в а/м).
Здесь есть еще одна ужасная вещь. Многие люди, использующие наше определение Н, решили назвать единицы измерения Н и В по-разному! И даже несмотря на одинаковую размерность, они называют единицу В гауссом, а единицу Н — эрстедом (конечно, в честь Гаусса и Эрстеда). Таким образом, во многих книгах вы найдете графики зависимости В в гауссах от Н в эрстедах. На самом деле это одна и та же единица, равная 10-4 единиц СИ. Эту неразбериху в магнитных единицах мы увековечили в табл. 36.1.
Таблица 36.1. ЕДИНИЦЫ МАГНИТНЫХ ВЕЛИЧИН
§ 3. Кривая намагничивания
Рассмотрим теперь некоторые простые случаи, когда магнитное поле остается постоянным или изменения поля настолько медленны, что можно пренебречь dD/dt по сравнению с jпров. В этом случае поля подчиняются уравнениям
(36.16)
(36.17)
(36.18)
Предположим, что у нас есть железный тор с намотанной на него медной проволокой, как это показано на фиг. 36.7, а.
Фиг. 36.7. Железный тор, обмотанный витками изолированного провода (а), и его поперечное сечение (б). Показаны силовые линии.
Пусть по проводу течет ток I. Каково при этом магнитное поле? Оно будет сосредоточено главным образом внутри железа, причем там (см. фиг. 36.7, б) силовые линии должны быть круговыми. Вследствие постоянства потока В его дивергенция равна нулю, и уравнение (36.16) удовлетворяется автоматически. Запишем затем уравнение (36.17) в другой форме, проинтегрировав его по замкнутому контуру Г, показанному на фиг. 36.7, б. Из теоремы Стокса мы получаем
(36.19)
где интеграл от j берется по поверхности S, ограниченной контуром Г. Каждый виток обмотки пересекает эту поверхность один раз, поэтому каждый виток дает в интеграл вклад, равный I, а поскольку всего витков N штук, то интеграл будет равен NI. Из симметрии нашей задачи видно, что В одинаково на всем контуре Г, если, конечно, намагниченность, а следовательно, и поле Н тоже постоянны на контуре Г. Уравнение (36.19) при таких условиях принимает вид
где l—длина кривой Г. Таким образом,
(36.20)
Именно из-за того что в задачах подобного типа поле Н прямо пропорционально намагничивающему току, оно иногда называется намагничивающим.
Единственное, что нам теперь требуется, — это уравнение, связывающее Н с В. Однако такого уравнения просто не существует! У нас есть, конечно, уравнение (36.18), но от него мало проку, ибо в ферромагнитных материалах типа железа оно не дает прямой связи между М и В. Намагниченность М зависит от всей предыдущей истории данного образца железа, а не только от того, каково поле В в данный момент и как оно изменялось раньше.
Впрочем, еще не все потеряно. В некоторых простых случаях мы все же можем найти решение. Если взять ненамагниченное железо, скажем, отожженное при высокой температуре, то для такого простого тела, как тор, магнитная предыстория всего железа будет одной и той же. Затем из экспериментальных измерений мы можем кое-что сказать относительно М, а следовательно, и о связи между В и Н. Из уравнения (36.20) видно, что поле H внутри тора равно произведению некоторой постоянной на величину тока в обмотке I. А поле В можно измерить интегрированием по времени э.д.с. в намагничивающей обмотке, изображенной на рисунке (или в дополнительной обмотке, намотанной поверх нее). Эта э.д.с. равна скорости изменения потока В, так что интеграл от э.д.с. по времени равен произведению В на площадь поперечного сечения тора.
На фиг. 36.8 показано соотношение между В и Н, наблюдаемое в сердечнике из мягкого железа.
Фиг. 36.8. Типичная кривая намагничивания и петля гистерезиса мягкого железа.
Когда ток включается в первый раз, увеличение В с Н происходит по кривой а. Обратите внимание на различие масштабов по осям В и Н; вначале, чтобы получить большое В, необходимо относительно малое Н. Почему же в случае железа поле В намного больше, чем было бы без него? Да потому, что возникает большая намагниченность М, эквивалентная большому поверхностному току в железе, а поле определяется суммой этого тока и тока проводимости в обмотке. А почему намагниченность М оказывается такой большой, мы обсудим позднее.
При больших значениях Н кривая намагничивания «выравнивается». Мы говорим, что железо насыщается. В масштабах нашей фигуры кривая становится горизонтальной, на самом же деле намагниченность продолжает слабо расти: для больших полей В становится равным Н и намагниченность М уже не увеличивается. Кстати, если бы сердечник был сделан из немагнитного материала, то намагниченность М была бы равна нулю, а В было бы равно для всех полей Н.
Прежде всего заметим, что кривая а на фиг. 36.8, так называемая кривая намагничивания, — в высшей степени нелинейна. Впрочем, положение здесь гораздо сложнее. Если после достижения насыщения мы уменьшим ток в катушке и вернем Н снова к нулю, магнитное поле В будет падать по кривой b. Когда Н достигнет нуля, В еще не будет нулем. Даже после выключения намагничивающего тока магнитное поле в железе остается: железо становится постоянно намагниченным. Если теперь включить в катушке ток в обратном направлении, то кривая В—Н пойдет дальше по ветви b до тех пор, пока железо не намагнитится до насыщения в противоположном направлении. При дальнейшем уменьшении тока до нуля В пойдет по кривой с. Когда мы меняем ток от большой положительной до большой отрицательной величины, кривая В—Н будет идти вверх и вниз очень близко к ветвям b и c. Если же, однако, Н менять каким-то произвольным образом, то возникнут более сложные кривые, которые, вообще говоря, будут лежать между кривыми b и c. Кривая, полученная повторными изменениями полей, называется петлей гистерезиса.
Вы видите, что невозможно написать функциональное соотношение типа В=f(Н), так как В в любой момент зависит не только от Н в тот же момент, но и от всей предыстории материала. Естественно, что намагниченность и петли гистерезиса для разных веществ различны. Форма кривых критически зависит от химического состава материала, а также от деталей технологии его приготовления и последующей физической обработки. В следующей главе мы обсудим физическое объяснение некоторых из этих сложностей.
§ 4. Индуктивность с железным сердечником
Одно из наиболее важных применений магнитные материалы находят в электрических устройствах, например трансформаторах, электрических моторах и т. п. Объясняется это прежде всего тем, что с помощью железа можно контролировать поведение магнитного поля, а также при данном электрическом токе получать значительно большие поля. Например, типичное «тороидальное» индуктивное устройство во многом напоминает то, что изображено на фиг. 36.7. При большой индуктивности мы можем сделать устройство гораздо меньшего объема и затратить намного меньше меди, чем в эквивалентном устройстве с «воздушным сердечником». Поэтому при большой индуктивности мы добиваемся гораздо меньшего сопротивления обмотки, так что устройство более близко к «идеальному», особенно при низких частотах. Нетрудно качественно проследить, как работает такое устройство. Если в обмотке течет ток I, то создаваемое внутри поле Н, как это видно из уравнения (36.20), пропорционально току I. Напряжение V на выводах связано с магнитным полем В. Если пренебречь сопротивлением обмотки, то напряжение V будет пропорционально dB/dt. Индуктивность ℒ, которая равна отношению V к dI/dt (см. гл. 17, § 7, вып. 6), зависит, таким образом, от связи между В и Н в железе. Поскольку В гораздо больше Н, то это во много раз увеличивает индуктивность, как будто малый ток в катушке, который обычно дает слабое магнитное поле, заставляет выстраиваться маленькие магнитики, сидящие в железе, и создает «магнитный» ток, который в огромное число раз больше внешнего тока в обмотке. Все происходит так, как будто в катушке возникает ток, намного больший, чем на самом деле. Когда мы меняем направление тока, все маленькие магнитики переворачиваются, внутренние токи потекут в другом направлении и наведенная э.д.с. получается гораздо больше, чем без железа. Если мы хотим вычислить индуктивность, то это можно сделать, вычисляя энергию наподобие того, как описано в гл. 17, § 8. Скорость, с которой энергия отдается источником тока, равна IV. Напряжение V равно площади поперечного сечения сердечника А, умноженной на N и на dB/dt. А согласно выражению (36.20), I=(ε0c2l/N)H. Таким образом,
Интегрируя по времени, получаем
(36.21)
Заметьте, что lА равно объему тора, поэтому плотность энергии и=U/(Объем магнитного материала), как мы показали, равна
(36.22)
Здесь выявляется одно интересное обстоятельство. Когда в обмотке течет переменный ток, то В в железе «ходит» по петле гистерезиса. А поскольку В — неоднозначная функция H, то интеграл ∫HdB по замкнутому циклу равен не нулю, а площади, заключенной внутри петли гистерезиса. Таким образом, за каждый цикл источник тока отдает некоторую энергию, равную площади петли гистерезиса. Это есть потери из электромагнитного цикла; энергия уходит на нагревание железа. Такие потери называются гистерезисными. Чтобы они были поменьше, петлю гистерезиса желательно сделать как можно уже. Один из способов уменьшить площадь петли — это максимально уменьшить поле в каждом цикле. Для меньших максимальных полей мы получаем гистерезисную кривую, подобную изображенной на фиг. 36.9.
Фиг. 36.9. Петля гистерезиса, не достигающая насыщения.
Кроме того, применяются особые материалы с очень узкой петлей. Чтобы получить это свойство, специально создано так называемое трансформаторное железо, которое представляет сплав железа с небольшой примесью кремния.
Когда петля гистерезиса очень мала, соотношение В и Н приближенно можно представлять в виде линейного уравнения. Обычно пишут
(36.23)
Здесь постоянная μ вовсе не магнитный момент, с которым мы встречались раньше. Она называется магнитной проницаемостью. (Иногда ее называют также относительной проницаемостью.) Типичная проницаемость обычных сортов железа равна нескольким тысячам. Однако существуют специальные сплавы, типа так называемого «супермаллоя», проницаемость которых может быть порядка миллиона.
Если в уравнении (36.21) мы воспользуемся приближением В=μН, то энергию индуктивности, имеющей форму тора, можно записать как
(36.24)
так что плотность энергии приближенно равна
Теперь мы можем выражение для энергии (36.24) положить равным энергии индуктивности ℒI2/2 и найти ℒ. Получается
А воспользовавшись выражением (36.20) для отношения H/I, находим
(36.25)
Таким образом, индуктивность пропорциональна μ. Если вам нужна индуктивность для таких устройств, как звуковые усилители, то желательно иметь материал, у которого связь между В и Н достаточно линейна. [Вы, должно быть, помните, что в гл. 50 (вып. 4) мы говорили о генерации гармоник в нелинейных системах.] Для таких задач уравнение (36.23) будет очень хорошим приближением. С другой стороны, если нужно генерировать гармоники, то используют индуктивности, ведущие себя в высшей степени нелинейно. При этом вы должны пользоваться сложной кривой Н—В и применять при вычислениях графические или численные методы.
В обычных «трансформаторах» на одном и том же торе, или сердечнике, из магнитного материала намотаны две катушки. (В больших трансформаторах сердечник для удобства делается прямоугольным.) При этом изменение тока в «первичной» обмотке вызывает изменение поля в сердечнике, которое индуцируется э.д.с. во «вторичной» обмотке. Поскольку поток через каждый виток обеих обмоток один и тот же, то величина отношения э.д.с. в этих двух обмотках такая же, как отношение числа витков в каждой из них. Напряжение, приложенное к первичной обмотке, преобразуется во вторичной в напряжение другой величины. А поскольку для создания требуемых изменений магнитного поля необходим определенный полный ток, то алгебраическая сумма токов в двух обмотках должна оставаться постоянной и равной требуемому «намагничивающему» току. При изменении напряжения изменяется и сила тока в обмотках, т. е. вместе с преобразованием напряжения происходит и преобразование тока.
§ 5. Электромагниты
Поговорим теперь о практической стороне дела, которая немного более сложна. Предположим, что мы имеем электромагнит стандартной формы, изображенный на фиг. 36.10.
Фиг. 36.10. Электромагнит.
Он состоит из С-образного железного ярма, на которое намотано много витков провода. Чему равно магнитное поле В в зазоре?
Если ширина зазора мала по сравнению со всеми другими размерами, то в качестве первого приближения мы можем считать, что линии В образуют замкнутые кривые так же, как это происходит и в обычном торе. Они выглядят примерно так, как показано на фиг. 36.11,а.
Фиг. 36.11. Поперечное сечение электромагнита.
Они стремятся вылезть из зазора, но если он узок, то эффект этот очень мал. Предположение о постоянстве потока В через любое поперечное сечение ярма будет довольно хорошим приближением. Если поперечное сечение ярма меняется равномерно и если мы пренебрежем любыми краевыми эффектами на зазоре или на углах, то можно говорить, что по всей окружности ярма В однородно.
Поле В в зазоре будет по величине тем же самым. Это следует из уравнений (36.16). Представьте себе замкнутую поверхность S (см. фиг. 36.11,б), одна грань которой находится в зазоре, а другая — в железе. Полный поток поля В через эту поверхность должен быть равен нулю. Обозначая через В1 величину поля в зазоре, а через B2 — величину поля в железе, мы видим, что
а поскольку А1=А2, то отсюда следует, что В1=В2.
Посмотрим теперь на Н. Мы снова можем воспользоваться уравнением (36.19), взяв криволинейный интеграл по контуру Г (см. фиг. 36.11,б). Как и прежде, правая часть равна NI— произведению числа витков на ток. Однако теперь Н в железе и в воздухе будет различным. Обозначая через Н2 поле в железе, а через l2 — длину пути по окружности ярма, мы видим, что эта часть кривой дает вклад в интеграл H2l2. Если же поле в зазоре равно Н1, а ширина его l1, то вклад зазора оказывается равным H1l1. Таким образом, получаем
(36.26)
Но это еще не все. Нам известно еще, что намагниченность в воздушной щели пренебрежимо мала, так что B1=H1. А так как B1=B2, то уравнение (36.26) принимает вид
(36.27)
Остаются еще два неизвестных. Чтобы найти В2 и H2, необходимо еще одно соотношение, которое связывает В с H в железе.
Если можно приближенно считать, что B2=μH2, то уравнение разрешается алгебраически. Рассмотрим более общий случай, для которого кривая намагничивания железа имеет вид, изображенный на фиг. 36.8. Единственное, что нам нужно, — это найти совместное решение этого функционального соотношения с уравнением (36.27). Его можно найти, строя зависимость (36.27) на одном графике с кривой намагничивания, как это сделано на фиг. 36.12. Точки, где эти кривые пересекутся, и будут нашими решениями.
Для данного тока I уравнение (36.27) описывается прямой линией, обозначенной I>0 на фиг. 36.12. Эта линия пересекает ось Н (B2=0) в точке H2=NI/ε0c2l2 и имеет наклон -l2/l1 Различные величины токов приводят просто к горизонтальному сдвигу этой линии. Из фиг. 36.12 мы видим, что при данном токе существует несколько различных решений, зависящих от того, каким образом вы получили их.
Фиг. 36.12. Определение поля в электромагните.
Если вы только что построили магнит и включили ток I, то поле B2 (которое равно B1) будет иметь величину, определяемую точкой а. Если вы сначала увеличили ток до очень большой величины, а затем понизили до I, то значение поля будет определяться точкой b. А если, увеличивая ток от большого отрицательного значения, вы дошли до I, то поле определяется точкой с. Поле в зазоре зависит от того, как вы поступали в прошлом.
Если ток в магните равен нулю, то соотношение между В2 и H2 в уравнении (36.27) изображается кривой, обозначенной I=0 на фиг. 36.12. Здесь опять возможны различные решения. Если вы первоначально «насытили» железо, то в магните может сохраниться значительное остаточное поле, определяемое точкой d. Вы можете снять обмотку и получить постоянный магнит. Нетрудно понять, что для хорошего постоянного магнита необходим материал с широкой петлей гистерезиса. Такую очень широкую петлю имеют специальные сплавы, подобные Алнико V.
§ 6. Спонтанная намагниченность
Обратимся теперь к вопросу, почему в ферромагнитных материалах даже малые магнитные поля приводят к такой большой намагниченности. Намагниченность ферромагнитных материалов типа железа или никеля образуется благодаря магнитным моментам электронов одной из внутренних оболочек атома. Магнитный момент μ каждого электрона равен произведению q/2m на g-фактор и момент количества движения J. Для отдельного электрона при отсутствии чисто орбитального движения g=2, а компонента J в любом направлении, скажем, в направлении оси z, равна ±ℏ/2, так что компонента μ в направлении оси z будет
(36.28)
В атоме железа вклад в ферромагнетизм фактически дают только два электрона, так что для упрощения рассуждений мы будем говорить об атоме никеля, который является ферромагнетиком, подобно железу, но имеет на той же внутренней оболочке только один «ферромагнитный» электрон. (Все рассуждения нетрудно затем распространить и на железо.)
Все дело в том, что точно так же, как и в описанных нами парамагнитных материалах, атомные магнитики в присутствии внешнего магнитного поля В стремятся выстроиться по полю, но их сбивает тепловое движение. В предыдущей главе мы выяснили, что равновесие между силами магнитного поля, старающимися выстроить атомные магнитики, и действием теплового движения, стремящегося их сбить, приводит к тому, что средний магнитный момент единицы объема в направлении В оказывается равным
(36.29)
где под Ва мы подразумеваем поле, действующее на атом, а под kT — тепловую (больцмановскую) энергию. В теории парамагнетизма мы в качестве Ва использовали само поле В, пренебрегая при этом частью поля, действующего на каждый атом со стороны соседнего. Но в случае ферромагнетиков возникает усложнение. Мы уже не можем в качестве поля Ва, действующего на индивидуальный атом, брать среднее поле в железе. Вместо этого нам следует поступить так же, как это делалось в случае диэлектрика: нам нужно найти локальное поле, действующее на отдельный атом. При точном решении нам следовало бы сложить вклады всех полей от других атомов кристаллической решетки, действующих на рассматриваемый нами атом. Но подобно тому как мы поступали в случае диэлектрика, сделаем приближение, состоящее в том, что поле, действующее на атом, будет таким же, как и в маленькой сферической полости внутри материала (предполагая при этом, как и раньше, что моменты соседних атомов не изменяются из-за наличия полости).
Следуя рассуждениям гл. 11 (вып. 5), мы можем надеяться, что должна получиться формула
похожая на формулу (11.25). Но это будет неправильно. Однако мы все же можем использовать полученные там результаты, если тщательно сравним уравнения из гл. 11 с уравнениями ферромагнетизма, которые мы напишем сейчас. Сопоставим сначала соответствующие исходные уравнения. Для областей, в которых токи проводимости и заряды отсутствуют, мы имеем:
(36.30)
Эти два набора уравнений можно считать аналогичными, если мы чисто математически сопоставим
Это то же самое, что и
(36.31)
Другими словами, если уравнения ферромагнетизма записать как
(36.32)
то они будут похожи на уравнения электростатики.
В прошлом это чисто алгебраическое соответствие доставило нам некоторые неприятности. Многие начинали думать, что именно Н и есть магнитное поле. Но, как мы уже убедились, физически фундаментальными полями являются Е и В, а поле Н — понятие производное. Таким образом, хотя уравнения и аналогичны, физика их совершенно различна. Однако это не может заставить нас отказаться от принципа, что одинаковые уравнения имеют одинаковые решения.
Теперь можно воспользоваться нашими предыдущими результатами о полях внутри полости различной формы в диэлектриках, которые приведены на фиг. 36.1, для нахождения поля Н. Зная Н, можно определить и В. Например, поле Н внутри иглообразной полости, параллельной М (согласно результату, приведенному в § 1), будет тем же самым, что и поле Н внутри материала:
Но поскольку в нашей полости М равна нулю, то мы получаем
(36.33)
С другой стороны, для дискообразной полости, перпендикулярной М,
что в нашем случае превращается в
или в величинах В:
(36.34)
Наконец, для сферической полости аналогия с уравнением (36.3) дала бы
(36.35)
Результаты для магнитного поля, как видите, отличаются от тех, которые мы имели для электрического поля.
Конечно, их можно получить и более физически, непосредственно используя уравнения Максвелла. Например, уравнение (36.34) непосредственно следует из уравнения ∇·B=0. (Возьмите гауссову поверхность, которая наполовину находится в материале, а наполовину — вне его.) Подобным же образом вы можете получить уравнение (36.33), воспользовавшись контурным интегралом по пути, который туда идет по полости, а назад возвращается через материал. Физически поле в полости уменьшается благодаря поверхностным токам, определяемым как ∇×М. На вашу долю остается показать, что уравнение (36.35) можно получить, рассматривая эффекты поверхностных токов на границе сферической полости.
При нахождении равновесной намагниченности из уравнения (36.29) удобнее, оказывается, иметь дело с Н, поэтому мы пишем
(36.36)
В приближении сферической полости коэффициент λ следует взять равным 1/3, но, как вы увидите позже, нам придется пользоваться несколько другим его значением, а пока оставим его как подгоночный параметр. Кроме того, все поля мы возьмем в одном и том же направлении, чтобы нам не нужно было заботиться о направлении векторов. Если бы теперь мы подставили уравнение (36.36) в (36.29), то получили бы уравнение, которое связывает намагниченность М с намагничивающим полем Н:
Однако это уравнение невозможно решить точно, так что мы будем делать это графически.
Сформулируем задачу в более общей форме, записывая уравнение (36.29) в виде
(36.37)
где Мнас — намагниченность насыщения, т. е. Nμ, а x — величина μBa/kT. Зависимость М/Мнас от х показана на фиг. 36.13 (кривая а).
Фиг. 36.13. Графическое решение уравнений (36.37) и (36.38),
Воспользовавшись еще уравнением (36.36) для Ва, можно записать х как функцию от М:
(36.38)
Эта формула определяет линейную зависимость между М/Мнас и х при любой величине Н. Прямая пересекается с осью х в точке x=μH/kT, и наклон ее равен ε0с2kT/μλМнас. Для любого частного значения Н это будет прямая, подобная прямой b на фиг. 36.13. Пересечение кривых а и о дает нам решение для М/Мнас. Итак, задача решена.
Посмотрим теперь, годны ли эти решения при различных обстоятельствах. Начнем с H=0. Здесь представляются две возможности, показанные кривыми b1 и b2 на фиг. 36.14.
Фиг. 36.14. Определение намагниченности при Н=0.
Обратите внимание, что наклон прямой (36.38) пропорционален абсолютной температуре Т. Таким образом, при высоких температурах получится прямая, подобная b1 Решением будет только М/Мнас=0. Иначе говоря, когда намагничивающее поле Я равно нулю, намагниченность тоже равна нулю. При низких температурах мы получили бы линию типа b2 и стали возможны два решения для М/Мнас: одно М/Мнас=0, а другое М/Мнас порядка единицы. Оказывается, что только второе решение устойчиво, в чем можно убедиться, рассматривая малые вариации в окрестности указанных решений.
В соответствии с этим при достаточно низких температурах магнитные материалы должны намагничиваться спонтанно. Короче говоря, когда тепловое движение достаточно мало, то взаимодействие между атомными магнитиками заставляет их выстраиваться параллельно друг другу, получается постоянно намагниченный материал, аналогичный постоянно поляризованным сегнетоэлектрикам, о которых мы говорили в гл. 11 (вып. 5).
Если мы отправимся от высоких температур и начнем двигаться вниз, то при некой критической температуре, называемой температурой Кюри Тc, неожиданно проявляется ферромагнитное поведение. Эта температура соответствует на фиг. 36.14 линии b3, касательной к кривой а, наклон которой равен единице. Так что температура Кюри определяется из равенства
(36.39)
При желании уравнение (36.38) можно записать в более простом виде через Тc:
(36.40)
Что же получается для малых намагничивающих полей Н? Из фиг. 36.14 нетрудно понять, что получится, если нашу прямую линию сдвинуть немного направо. В случае низкой температуры точка пересечения немного сдвинется направо по слабо наклоненной части кривой а и изменения М будут сравнительно невелики. Однако в случае высокой температуры точка пересечения побежит по крутой части кривой а и изменения М станут относительно быстрыми. Эту часть кривой мы фактически можем приближенно заменить прямой линией а с единичным наклоном и написать
Теперь можно разрешить уравнение относительно М/Мнас:
(36.41)
Мы получаем закон, несколько напоминающий закон для парамагнетизма:
(36.42)
Отличие состоит, в частности, в том, что мы получили намагниченность как функцию Н, с учетом взаимодействия атомных магнитиков, однако главное то, что намагниченность обратно пропорциональна разности температур Т и Тс, а не просто абсолютной температуре Т. Пренебрежение взаимодействием между соседними атомами соответствует λ=0, что, согласно уравнению (36.39), означает Тс=0. Результат при этом получится в точности таким же, как и в гл. 35.
Нашу теоретическую картину можно сверить с экспериментальными данными для никеля. На опыте обнаружено, что ферромагнитные свойства никеля исчезают, когда температура поднимается выше 631° К. Это значение можно сравнить со значением Тс, вычисленным из равенства (36.39). Вспоминая, что Mнас=μN, мы получаем
Из плотности и атомного веса никеля находим
А вычисление μ из уравнения (36.28) и подстановка λ=1/3 дает
Различие с экспериментом примерно в 2600 раз! Наша теория ферромагнетизма полностью провалилась!
Можно попытаться «подправить» нашу теорию, как это сделал Вейсс, предположив, что по каким-то неизвестным причинам λ равно не 1/3, а (2600)·1/3, т. е. около 900. Оказывается, что подобная величина получается и для других ферромагнитных материалов типа железа. Вернемся к уравнению (36.36) и попробуем понять, что это может означать? Мы видим, что большая величина λ означает, что Ва (локальное поле, действующее на атом) должно быть больше, много больше, чем мы думали. Фактически, записывая Н=В-M/ε0c2, мы получили
В соответствии с нашей первоначальной идеей, когда мы принимали λ=1/3, локальная намагниченность М уменьшает эффективное поле Ва на величину — 2М/Зε0. Даже если бы наша модель сферической полости была не очень хороша, мы все равно ожидали бы некоторого уменьшения. Вместо того чтобы объяснить явление ферромагнетизма, мы вынуждены считать, что намагниченность увеличивает локальное поле в огромное число раз: в тысячу и даже больше. По-видимому, не существует какого-то разумного способа для создания действующего на атом поля такой ужасной величины, ни даже поля нужного знака! Ясно, что наша «магнитная» теория ферромагнетизма потерпела досадный провал. Мы вынуждены заключить, что в ферромагнетизме мы имеем дело с какими-то немагнитными взаимодействиями между вращающимися электронами соседних атомов. Это взаимодействие должно порождать у соседних спинов сильную тенденцию к выстраиванию в одном направлении. Мы увидим позднее, что это взаимодействие связано с квантовой механикой и принципом запрета Паули.
И, наконец, посмотрим, что происходит при низких температурах, когда Т<Tс. Мы видели, что даже при Н=0 в этом случае должна существовать спонтанная намагниченность, определяемая пересечением кривых а и b2 на фиг. 36.14. Если мы, изменяя наклон линии b2, будем находить М для различных температур, то получим теоретическую кривую, показанную на фиг. 36.15.
Фиг. 36.15. Зависимость спонтанной намагниченности никеля от температуры.
Для всех ферромагнитных материалов, атомные моменты которых обусловлены одним электроном, эта кривая должна быть одной и той же. Для других материалов подобные кривые могут отличаться лишь немного.
В пределе, когда Т стремится к абсолютному нулю, М стремится к Mнac. При увеличении температуры намагниченность уменьшается, падая до нуля при температуре Кюри. Точками на фиг. 36.15 показаны экспериментальные данные для никеля. Они довольно хорошо ложатся на теоретическую кривую. Хотя мы и не понимаем лежащего в основе механизма, но общие свойства теории, по-видимому, все же правильны.
Но в нашей попытке понять ферромагнетизм есть еще одна неприятная несогласованность, которая должна нас заботить. Мы нашли, что выше некоторой температуры материал должен вести себя как парамагнитное вещество, намагниченность которого пропорциональна Н (или В), а ниже этой температуры должна возникать спонтанная намагниченность. Но при построении кривой намагничивания для железа мы этого как раз и не обнаружили. Железо становится постоянно намагниченным только после того, как мы его «намагнитим». А в соответствии с только что высказанными идеями оно должно намагничиваться само! Что же неверно? Оказывается, что если вы рассмотрите достаточно маленький кристалл железа или никеля, то увидите, что он и впрямь полностью намагничен! А большой кусок железа состоит из массы таких маленьких областей, или «доменов», которые намагничены в различных направлениях, так что средняя намагниченность в большом масштабе оказывается равной нулю. Однако в каждом маленьком домене железо все же намагничивает само себя, причем М приблизительно равно Mнac. Как следствие этой доменной структуры свойства большого куска материала должны быть совершенно отличны от микроскопических, как это и оказывается на самом деле.
Глава 37 МАГНИТНЫЕ МАТЕРИАЛЫ[50]
§ 1. Сущность ферромагнетизма
В этой главе мы поговорим об особенностях и поведении ферромагнетиков и некоторых других необычных магнитных материалов. Но перед тем как приступить к этой теме, я сделаю маленький обзор некоторых вопросов общей теории магнитов, которые мы изучали в предыдущей главе.
Мы сначала представили себе «магнитные» токи, текущие внутри материала и порождающие магнетизм, а затем стали их описывать через объемную плотность токов jмаг=∇×M. Заметьте, что эти токи нереальные. Даже когда намагниченность вещества однородна, токи в нем на самом деле не исчезают полностью: круговые токи электрона в одном атоме и круговые токи электрона в другом атоме, перекрываясь, не дают в сумме точно нуль. Даже внутри каждого отдельного атома распределение магнетизма не очень гладкое. В атоме железа, например, намагниченность распределена более или менее по сферической поверхности не слишком близко к ядру, но и не слишком далеко от него. Таким образом, магнетизм в веществе — вещь довольно сложная в своих деталях и весьма нерегулярная. Но сейчас мы должны об этих сложностях забыть и рассматривать явление, пользуясь более грубой усредненной моделью. Только тогда становится верным утверждение о равенстве нулю среднего тока при М=0 в ограниченной внутренней области, большой по сравнению с размерами атома. Таким образом, под магнитным моментом единицы объема (намагниченностью) и под jмаг и т. п. на нашем теперешнем уровне рассмотрения мы понимаем среднее по областям, большим по сравнению с пространством, занимаемым отдельным атомом.
В предыдущей главе мы обнаружили, что ферромагнитные материалы обладают следующим интересным свойством: при температурах выше некоторой их магнитные свойства проявляются слабо и лишь ниже этой температуры они становятся сильными магнетиками. Этот факт легко продемонстрировать. Кусок никелевого провода при комнатной температуре притягивается магнитом. Но если мы его нагреем в пламени газовой горелки выше температуры Кюри, то он станет практически немагнитным и не будет притягиваться к магниту, даже если мы поднесем его совсем близко. Если же оставить его остывать возле магнита, то в тот момент, когда его температура упадет ниже критической, он внезапно снова притянется к магниту!
В общей теории магнетизма, которой мы пользуемся, предполагается, что за намагниченность ответствен спин электрона. Спин электрона равен 1/2 и сопровождается магнитным моментом, равным одному магнетону Бора: μ=μB=qeℏ/2m. Спин электрона может быть направлен либо вверх, либо вниз. Поскольку заряд электрона отрицателен, то магнитный момент его направлен вниз, когда спин направлен вверх, и направлен вверх, когда спин направлен вниз. В соответствии с нашим обычным соглашением магнитный момент электрона μ — число отрицательное. Мы нашли, что потенциальная энергия магнитного диполя в заданном приложенном поле В равна—μ·B. Энергия вращающегося электрона зависит также и от расположения соседних спинов. Если в железе момент соседнего атома направлен вверх, то момент следующего атома имеет сильную тенденцию тоже направиться вверх. Именно это делает железо, кобальт и никель такими сильными магнетиками — все моменты атомов в них стремятся быть параллельными. И вот первый вопрос, который мы должны обсудить, — почему так происходит?
Вскоре после развития квантовой механики было замечено, что существуют чрезвычайно мощные кажущиеся силы (однако не магнитные и не другие известные силы), которые стараются выстроить спины соседних электронов противоположно один другому. Эти силы тесно связаны с силами химической валентности. В квантовой механике есть так называемый принцип запрета, который говорит, что два электрона не могут занимать в точности одно и то же состояние, т. е. они не могут находиться в тех же самых условиях в смысле положения и ориентации спина. Если два электрона находятся в одном и том же месте, то единственной возможностью им различаться будет только противоположное направление их спинов. Таким образом, если между атомами имеется область пространства, где скапливаются электроны(так происходит при химической связи), и если на сидящий уже там электрон нам захочется посадить другой, то единственный способ это сделать — направить спин второго электрона противоположно спину первого. Параллельность спинов противоречит принципу запрета, если, конечно, электроны расположены в одной точке. В результате пара близких друг к другу электронов с параллельными спинами обладает гораздо большей энергией, нежели пара электронов с противоположными спинами; в целом же эффект будет таким, как будто действует сила, старающаяся развернуть спины противоположно друг другу. Иногда такие «спин-вращающие» силы называются обменными, но это название только увеличивает таинственность, так что термин этот не слишком удачен. Стремление электронов иметь противоположные спины обязано просто принципу запрета. Но фактически это объясняет отсутствие магнетизма почти у всех веществ! Спины свободных электронов на окраине атомов стремятся уравновешиваться в противоположных направлениях. Проблема заключается в том, чтобы объяснить, почему же материалы, подобные железу, ведут себя совсем не так, как ожидается.
Предполагаемый эффект выстраивания мы учитывали добавлением в выражение для энергии подходящего слагаемого, приговаривая, что если соседние электронные магнитики дают среднюю намагниченность М, то магнитный момент электрона имеет сильную тенденцию смотреть в том же самом направлении, что и средняя намагниченность соседних атомов. Таким образом, для двух возможных ориентации спинов можно написать[51]:
(37.1)
Когда стало ясно, что квантовая механика может объяснить нам огромные спин-ориентирующие силы, пусть даже с очевидно неправильным знаком, то было предложено, что ферромагнетизм возникает именно за счет этих сил, но что вследствие сложности железа и большого числа участвующих в игре электронов знак энергии электронов получается обратным. Как только это стало ясно, т. е. примерно с 1927 г., когда была понята квантовая механика, многие исследователи стали делать разные оценки, прикидки, полуподсчеты, стремясь получить теоретически величину λ. Но все равно наиболее поздние вычисления энергии взаимодействия между двумя электронными спинами в железе, предполагавшие прямое взаимодействие между двумя электронами в соседних атомах, дали неправильный знак. Сейчас, описывая это явление, говорят, что за все как-то ответственна сложность ситуации и что есть надежда, что кому-то, кто сумеет проделать вычисления для более сложного случая, удастся получить правильный ответ!
Полагают, что направленный вверх спин одного из электронов внутренней оболочки, который ответствен за магнетизм, стремится заставить спины электронов проводимости, витающих вокруг него, повернуться в противоположную сторону. Можно надеяться, что это ему вполне удастся, ибо электроны проводимости движутся в той же самой области, что и «магнитные» электроны. А поскольку они движутся то туда, то сюда, то могут передать свой приказ перевернуться «вверх ногами» спинам электронов других атомов; таким образом, «магнитный» электрон заставляет электрон проводимости направить спин в противоположную сторону, а тот в свою очередь заставляет следующий «магнитный» электрон направить свой спин противоположно его спину. Это двойное взаимодействие эквивалентно взаимодействию, стремящемуся выстроить два «магнитных» электрона в одном направлении. Иными словами, тенденция соседних спинов быть параллельными есть результат действия промежуточной среды, которая в некотором смысле стремится быть противоположной им обоим. Этот механизм не требует, чтобы все электроны проводимости были повернуты «вверх ногами». Достаточно, чтобы они лишь слегка стремились повернуться вниз, и шансы «магнитных» электронов повернуться вверх перевесят. Как полагают те исследователи, которые работали с этими вещами, это и есть тот механизм, который ответствен за ферромагнетизм. Но должен отметить, что вплоть до сегодняшнего дня никто не может вычислить величину λ материала, зная просто, что в периодической системе элементов этот материал стоит, скажем, под номером 26. Короче говоря, мы все еще не можем понять явление до конца.
Теперь же продолжим рассуждения о нашей теории, а потом вернемся снова назад и обсудим некоторые ошибки избранного нами пути. Если магнитный момент какого-то электрона направлен вверх, то его энергия частично обусловлена внешним полем, а частично связана с тенденцией спинов быть параллельными. Поскольку при параллельных спинах энергия меньше, то эффект получается таким же, как и от «внешнего эффективного поля». Но помните, что обязано это не истинным магнитным силам, а более сложному взаимодействию. Во всяком случае, в качестве выражений для энергии двух спиновых состояний «магнитного» электрона мы примем уравнения (37.1). Относительная вероятность этих двух состояний при температуре Т пропорциональна exp[-энергия/kT], что можно записать как е±х, где х=|μ|(H+λM/ε0с2)/kT. Если затем мы вычислим среднюю величину магнитного момента, то найдем (как и в предыдущей главе), что она равна
(37.2)
Теперь я могу подсчитать внутреннюю энергию материала. Отметим, что энергия электрона в точности пропорциональна магнитному моменту, так что все равно, вычислять ли средний момент или среднюю энергию. Среднее значение энергии будет при этом
Но это не совсем верно. Выражение λM/ε0c2 представляет взаимодействие всех возможных пар атомов, а мы должны помнить, что каждую пару следует учитывать только один раз. (Когда мы учитываем энергию одного электрона в поле остальных, а затем энергию второго электрона в поле остальных, то мы еще раз учитываем часть первой энергии.) Поэтому выражение взаимодействия мы должны разделить на 2 и наша формула для энергии приобретет вид
(37.3)
В предыдущей главе мы обнаружили одну очень интересную особенность: для каждого материала ниже определенной температуры существует такое решение уравнений, при котором магнитный момент не равен нулю даже в отсутствие внешнего намагничивающего поля. Если в уравнении (37.2) мы положим Н=0, то найдем
(37.4)
где Мнас=N|μ| и Tc=|μ|λMнас/kε0c2. Решив это уравнение (графически или каким-то другим способом), мы найдем, что отношение М/Мнас как функция от T/Tc представляет кривую, названную на фиг. 37.1 «квантовая теория».
Фиг. 37.1. Зависимость спонтанной намагниченности (Н=0) ферромагнитных кристаллов от температуры.
Пунктирная кривая «Кобальт, Никель» — это полученная экспериментально кривая для кристаллов этих элементов. Теория и эксперимент находятся в разумном согласии. Там же представлены результаты классической теории, в которой вычисления проводились в предположении, что атомные магнитики могут иметь всевозможные ориентации в пространстве.
Можете убедиться, что это предположение приводит к предсказаниям, которые весьма далеки от экспериментальных данных.
Даже квантовая теория недостаточно хорошо описывает наблюдаемое поведение при высоких и низких температурах. Причина этого отклонения заключена в принятом нами довольно грубом приближении: мы предполагали, что энергия атома зависит лишь от средней намагниченности соседних с ним атомов. Другими словами, каждый атом со спином, направленным вверх, находящийся по соседству с данным атомом, из-за квантовомеханического эффекта выстраивания вносит свой вклад в энергию. А сколько таких атомов? В среднем это измеряется величиной намагниченности, но это только в среднем. Может оказаться, что для какого-то одного атома спины всех его соседей направлены вверх. Тогда его энергия будет выше средней. У другого же спины некоторых соседей направлены вверх, а некоторых — вниз, а среднее может быть нулем, и тогда никакого вклада в энергию вообще не будет и т. д. Из-за того что атомы в разных местах имеют различное окружение с различным числом направленных вверх и вниз спинов, нам следовало бы воспользоваться более сложным способом усреднения. Вместо того чтобы брать один атом, подверженный среднему влиянию, нам следовало бы взять каждый атом в его реальной обстановке, подсчитать его энергию, а затем найти среднюю энергию. Но как же все-таки определить, сколько соседей атомов направлено вверх, а сколько — вниз? Это как раз и нужно вычислить, но здесь мы сталкиваемся с очень сложной задачей внутренних корреляций, — задачей, которую никому еще не удавалось решить. Эта животрепещущая и интригующая проблема в течение многих лет волновала умы физиков; по этому вопросу писалось множество статей крупнейшими учеными, но и они не могли найти полного решения.
Оказывается, что при низких температурах, когда почти все атомные магниты направлены вверх и лишь некоторые направлены вниз, задача решается довольно легко; то же самое можно сказать и о высоких температурах, значительно превышающих температуру Кюри Тс, когда почти все они направлены совершенно случайно. Часто легко вычислить небольшие отклонения от некоторой простой идеализированной теории, и довольно ясно, почему такие отклонения имеются при низких температурах. Физически понятно, что по статистическим причинам намагниченность при высоких температурах должна исчезать. Но точное поведение вблизи точки Кюри никогда во всех подробностях не было установлено. Это очень интересная задача, над которой стоит потрудиться, если когда-нибудь вам вздумается взяться за еще не решенную проблему.
§ 2. Термодинамические свойства
В предыдущей главе мы заложили основу, необходимую для вычисления термодинамических свойств ферромагнитных материалов. Они, естественно, связаны с внутренней энергией кристалла, которая обусловлена взаимодействием между различными спинами и определяется формулой (37.3). Для нахождения энергии, связанной со спонтанной намагниченностью (ниже точки Кюри), мы можем в уравнении (37.3) положить Н=0 и, заметив, что thx=М/Мнас, найти, что средняя энергия пропорциональна М2:
(37.5)
Если мы теперь построим график зависимости намагниченности от температуры, то получим кривую, которая описывается отрицательным квадратом функции (37.1) и представлена на фиг. 37.2, а. Если бы мы измеряли удельную теплоемкость такого материала, то получили бы кривую (фиг. 37.2, б), которая представляет производную кривой, изображенной на фиг. 37.2, а.
Фиг. 37.2. Энергия в единице объема и удельная теплоемкость ферромагнитного материала.
С увеличением температуры эта кривая медленно растет, но затем при Т=Тс неожиданно падает до нуля. Резкое падение вызвано изменением наклона кривой магнитной энергии, и кривая ее производной попадает прямо в точку Кюри. Таким образом, совершенно без магнитных измерений, лишь наблюдая за термодинамическими свойствами, мы бы смогли установить, что внутри железа или никеля что-то происходит. Однако как из эксперимента, так и из улучшенной теории (с учетом внутренних флуктуации) следует, что эти простые кривые неправильны и что истинная картина на самом деле более сложна. Пик этих кривых поднят выше, а падение до нуля происходит несколько медленнее. Даже если температура достаточно велика, так что спины в среднем распределены совершенно случайно, все равно попадаются области с определенным значением намагниченности, и спины в этих областях продолжают давать небольшую дополнительную энергию взаимодействия, которая медленно уменьшается с ростом температуры и увеличением беспорядка. Так что реальная кривая выглядит так, как показано на фиг. 37.2, в. Одна из целей физики сегодняшнего дня — найти точное теоретическое описание удельной теплоемкости вблизи точки перехода Кюри — захватывающая проблема, не решенная до сих пор. Естественно, что эта проблема очень тесно связана с формой кривой намагничивания в той же самой области.
Опишем теперь некоторые эксперименты, отнюдь не термодинамического характера, которые показывают, что мы все же в каком-то смысле правы в нашей интерпретации магнетизма. Когда материал при достаточно низких температурах намагничен до насыщения, то М очень близка к Мнас, т. е. почти все спины, равно как и магнитные моменты, параллельны. Это можно проверить экспериментально. Предположим, что мы подвесили магнитную палочку на тонкой струне, а затем окружили ее катушкой, так что можем менять магнитное поле, не притрагиваясь к магниту и не прикладывая к нему никакого момента сил. Это очень трудный эксперимент, ибо магнитные силы столь велики, что любая нерегулярность, любой перекос или несовершенство в железе могут дать случайный момент. Однако такой эксперимент был выполнен со всей необходимой аккуратностью и роль случайных моментов была сведена до минимума. С помощью магнитного поля катушки, которая окружает палочку, мы сразу можем перевернуть все магнитные моменты. Когда мы это проделаем, то заодно «сверху вниз» перевернутся и все моменты количества движения, связанные со спином (фиг. 37.3).
Фиг. 37.3. При перемагничивании железного бруска он приобретает некоторую угловую скорость.
Но поскольку момент количества движения должен сохраняться, то, когда все спины перевернулись, момент количества движения палочки должен измениться в противоположную сторону. Весь магнит должен начать вращаться. Это произошло на самом деле. Когда опыт был проделан, то было обнаружено слабое вращение магнита. Мы можем измерить полный момент количества движения, переданный всему магниту, который просто равен произведению N на h и на изменение момента количества движения каждого спина. Оказалось, что измеренное этим способом отношение момента количества движения к магнитному с 10%-ной точностью совпадает с нашими вычислениями. На самом деле в наших вычислениях мы исходили из того, что атомный магнетизм целиком обязан электронным спинам, однако в большинстве материалов есть еще и орбитальное движение. Орбитальное движение связано с решеткой, но она дает в магнетизм вклад не более нескольких процентов. Действительно, если взять Mнас=Nμ и для плотности железа взять значение 7,9, а для μ—момент электрона, связанный с его спином, то для магнитного поля получим насыщение около 20 000 гс. Однако опыт показывает, что на самом деле оно имеет значение вблизи 21500 гс. Ошибка в 5 или 10% возникает как раз из-за того, что мы пренебрегли вкладами орбитальных моментов. Таким образом, небольшое расхождение с гиромагнитными измерениями совершенно понятно.
§ 3. Петля гистерезиса
Из нашего теоретического анализа мы заключили, что магнитные материалы ниже некоторой температуры должны становиться спонтанно намагниченными, так что все магнитики в них должны смотреть в одном и том же направлении. Однако для обычного куска ненамагниченного железа это, как мы знаем, неверно. Почему железо не намагничивается все целиком? С помощью фиг. 37.4 я могу объяснить вам это. Допустим, что все железо было бы одним большим кристаллом такой формы, как показано на фиг. 37.4, а, и этот кристалл целиком намагнитился бы в одном направлении.
Фиг. 37.4. Образование доменов в монокристалле железа.
При этом создалось бы значительное внешнее магнитное поле, содержащее в себе огромную энергию. Мы можем уменьшить эту энергию поля, если расположим атомы так, чтобы одна часть кубика была намагничена вверх, а другая — вниз, как показано на фиг. 37.4, б. При этом, разумеется, поле вне железа будет занимать меньший объем и будет нести в себе меньше энергии.
Постойте, постойте! В слое между двумя областями рядом с электронами со спином, направленным вверх, сидят электроны со спином, направленным вниз. Но ферромагнетизм появляется только в тех материалах, для которых энергия уменьшается, когда спины параллельны, а не противоположны. Так что вдоль пунктирной линии на фиг. 37.4, б возникает некоторая добавочная энергия. Эта энергия иногда называется энергией стенки. Область, имеющая только одно направление намагниченности, называется доменом. На каждой единице площади разделяющей поверхности между двумя доменами у стенки домена, с противоположных сторон которой у нас расположены атомы, чьи магнитные моменты направлены противоположно, сосредоточена энергия. Конечно, нельзя говорить строго, что на границе моменты двух соседних атомов в точности противоположны, природа-то сделала этот переход более постепенным. Но сейчас нам не стоит интересоваться такими тонкими деталями.
Главный же вопрос теперь заключается вот в чем: выгодны такие стенки или нет? Ответ на него зависит от размеров доменов. Предположим, что мы увеличили размеры так, что все стало вдвое больше. При этом объем внешнего пространства, заполненного магнитным полем данной силы, станет в восемь раз больше, а энергия магнитного поля, которая пропорциональна объему, тоже возрастет в восемь раз. Но площадь границы между двумя доменами, на которой сосредоточена энергия стенки, возрастет только в четыре раза. Следовательно, если кусок железа достаточно велик, ему выгодно расщепиться на некое число доменов. Вот почему лишь очень маленькие кристаллы могут состоять только из одного домена. Любой большой объект, размер которого больше приблизительно одной тысячной миллиметра, будет иметь по крайней мере одну междоменную стенку, а обычный «сантиметровый» объект расщепляется, как это показано на рисунке, на множество доменов. Расщепление на домены будет происходить до тех пор, пока энергия, необходимая на установление еще одной дополнительной стенки, не сравняется с уменьшением энергии магнитного поля вне кристалла.
Природа же нашла еще один способ понижения энергии. Полю нет никакой необходимости выходить наружу[52], если, как это показано на фиг. 37.4, г, взять маленькие треугольные области с направленной в сторону намагниченностью. При таком расположении, как на фиг. 37.4, г, внешнее поле полностью отсутствует, а площадь доменных стенок лишь незначительно больше.
Но это приводит к новой проблеме. Оказывается, что если намагнитить отдельный кристалл железа, то он изменяет свою длину в направлении намагничивания; так что «идеальный» куб с намагниченностью «вверх» уже не будет безупречным кубом. Его «вертикальный» размер будет отличаться от «горизонтального».Этот эффект называется магнитострикцией. В результате таких геометрических изменений небольшой треугольный кусочек, показанный на фиг. 37.4, г, не сможет больше, так сказать, «умещаться» в отведенном ему пространстве: в одном направлении кристалл становится слишком длинным, а в другом — слишком коротким. Фактически-то он, конечно, умещается, но только немного сплющивается, что приводит к некоторым механическим напряжениям. Отсюда возникает и дополнительная энергия. Полный баланс вкладов в энергию и определяет сложный вид расположения доменов в куске ненамагниченного железа.
А что получится, если мы приложим внешнее магнитное поле? В качестве простого примера рассмотрим кристалл, домены которого показаны на фиг. 37.4, д. Если мы приложим магнитное поле, направленное вверх, то как будет происходить намагничивание кристалла? Прежде всего средняя доменная стенка может передвинуться в сторону (направо) и уменьшить энергию. Она перемещается таким образом, чтобы область направления «вверх» стала больше области направления «вниз». Элементарных магнитиков, направленных по полю, становится больше, а это приводит к понижению энергии. Таким образом, в куске железа в слабых магнитных полях с самого начала намагничивания доменная стенка начнет двигаться и «съедать» области, намагниченные противоположно полю. По мере того как поле продолжает увеличиваться, весь кристалл постепенно превращается в один большой домен, в котором внешнее поле помогает сохранять направление «вверх». В сильном магнитном поле кристаллы намагничиваются в одну сторону как раз потому, что их энергия в приложенном поле уменьшается. Внешнее магнитное поле кристаллов теперь уже не так существенно.
А что если геометрия кристалла не так проста? Что если какая-то ось кристалла и его спонтанная намагниченность направлены в одну сторону, а мы прилагаем поле, направленное в другую, скажем под углом 45°? Можно думать, что домены повернутся так, чтобы их намагниченность стала параллельной полю, а затем они, как и прежде, смогут слиться в один домен. Но сделать это для железа нелегко, ибо энергия, необходимая для намагничивания кристалла, зависит от направления намагничивающего поля относительно кристаллической оси. Намагнитить железо в направлении, параллельном кристаллической оси, относительно легко, но для того чтобы намагнитить его в каком-то другом направлении, скажем под углом 45° к направлению оси, энергии требуется больше. Следовательно, если в таком направлении приложить магнитное поле, то сначала происходит рост доменов, намагниченных в одном из избранных направлений, близких к направлению приложенного поля, пока в эту сторону не будет направлена намагниченность всех областей. Затем при гораздо больших полях общая намагниченность постепенно поворачивается к направлению поля, как это показано на фиг. 37.5.
Фиг. 37.5. Намагничивающее поле Н, направленное под некоторым углом к кристаллической оси, постепенно изменяет направление намагниченности М, не изменяя ее величины.
На фиг. 37.6 показаны полученные из опыта кривые намагничивания монокристаллов железа.
Фиг. 37.6. График компоненты М, параллельной полю Н, при различных направлениях Н (по отношению к осям кристалла).
Чтобы вы поняли их, я предварительно должен объяснить кое-какие обозначения, используемые для описания направлений в кристалле. Существует много способов расслоения кристалла на плоскости, в которых расположены атомы.
Каждый из вас, кто в прошлом работал или бывал в саду или на винограднике, знаком с этим любопытным зрелищем. Посмотрев в одну сторону, вы видите линию деревьев, а если посмотрите в другую, — вам откроется совсем другой ряд и т. д. Так и в кристалле — там есть определенные семейства плоскостей, содержащие много атомов; у таких плоскостей есть важная особенность (для простоты рассмотрим кубический кристалл). Если мы отметим, где эти плоскости пересекаются с тремя осями координат, то окажется, что обратные величины расстояний трех точек пересечения от начала относятся как целые числа. Эти три целых числа и принимаются для обозначения плоскостей. На фиг. 37.7, а, например, показана плоскость, параллельная плоскости yz. Она называется плоскостью (100), так как обратные величины отрезков, отсекаемых этой плоскостью по осям у и z, равны нулю.
Фиг. 37.7. Способы обозначения кристаллических плоскостей.
Направление, перпендикулярное этой плоскости (в кубическом кристалле), задается тем же самым набором чисел, но записывается в квадратных скобках: [100]. Основную идею в случае кубического кристалла понять очень легко, ибо символ [100] обозначает вектор, который имеет единичную компоненту в направлении оси х и нулевые в направлениях осей у и. z. Комбинация [110] обозначает направление под 45° к осям x и y, как показано на фиг. 37.7, б, а [111] — направление диагонали куба (фиг. 37.7,в).
Вернемся теперь к фиг. 37.6. На ней мы видим кривые намагничивания монокристалла в различных направлениях. Прежде всего заметьте, что для очень слабых полей, столь слабых, что в нашем масштабе их трудно изобразить, намагниченность чрезвычайно быстро возрастает до весьма больших значений. Если приложить поле в направлении [100], т. е. в одном из направлений легкого намагничивания, то кривая идет вверх до еще большего значения, затем несколько закругляется и наступает насыщение. Происходит это потому, что домены, которые уже там есть, ликвидируются очень легко. Чтобы передвинуть доменные стенки и «проглотить» все «неправильные» домены, требуется совсем слабое поле. Монокристаллы железа обладают огромной проницаемостью (в магнитном смысле), гораздо большей, чем поликристаллическое железо. Совершенный кристалл намагничивается очень легко. Почему же его кривая все же закругляется? Почему она не идет прямо до насыщения? Точно не известно. Быть может, вам когда-нибудь удастся изучить это явление. Мы понимаем, почему при больших полях она плоская. Когда весь кубик становится единым доменом, то добавочное магнитное поле не может создать большей намагниченности, она уже равна Mнас— значит, спины всех электронов направлены вверх.
Что получится, если мы попытаемся повторить то же самое для направления [110], которое лежит в плоскости ху под углом 45° к оси х? Мы включаем небольшое поле, и намагниченность за счет роста домена резко увеличивается. Если затем мы продолжаем увеличивать поле, то выясняется, что для достижения насыщения поле должно быть довольно большим, ибо вектор намагниченности нужно повернуть в сторону от направления легкого намагничивания. Если это объяснение правильно, то при экстраполяции кривой [110] точка пересечения с вертикальной осью должна будет давать значение намагниченности, составляющее 1/√2 от намагниченности насыщения. Оказывается, что так оно на самом деле и происходит. Это отношение очень-очень близко к 1/√2. Аналогично для направления [111], которое идет по диагонали куба, мы находим, как и ожидали, что при экстраполяции кривая пересекает вертикальную ось на расстоянии, составляющем 1/√2 от значения, соответствующего насыщению.
На фиг. 37.8 показано соответствующее поведение двух других ферромагнетиков: никеля и кобальта.
Фиг. 37.8. Кривые намагничивания для монокристаллов железа, никеля и кобальта.
Никель отличается от железа. Оказывается, что направлением легкого намагничивания у него будет направление [111]. Кобальт имеет гексагональную кристаллическую структуру; для этого случая система обозначений была изменена. Здесь в основании шестиугольника располагают три оси и еще одну ось, перпендикулярную к ним, так что здесь используется четыре числа. Направление [0001] — это направление гексагональной оси, а [1010]— направление, перпендикулярное к этой оси. Вы видите, что кристаллы различных металлов устроены по-разному.
Теперь мы рассмотрим такой поликристаллический материал, как обычный кусок железа. Внутри него содержится огромное множество маленьких кристалликов, кристаллические оси которых направлены во все стороны. Но это не то же самое, что домены. Вспомните, все домены были частью одного кристалла, а в куске железа, как видно из фиг. 37.9, содержится множество различных кристаллов с разной ориентацией.
Фиг. 37.9. Микроструктура ненамагниченного поликристаллического ферромагнитного материала. Каждый кристаллик имеет направление легкого намагничивания и разбивается на домены, которые обычно спонтанно намагничены в атом направлении.
В каждом из этих кристаллов, вообще говоря, содержится несколько доменов. Когда к куску поликристаллического материала мы прилагаем слабое магнитное поле, доменные барьеры в кристалликах начинают смещаться, и домены, направление намагниченности которых совпадает с направлением легкого намагничивания, растут все больше и больше. До тех пор пока поле остается очень малым, этот рост обратим; если мы выключим поле, намагниченность снова вернется к нулю. Этот участок кривой намагничивания обозначен на фиг. 37.10 буквой а.
Для больших полей в области, обозначенной буквой b, все становится гораздо более сложным. В каждом маленьком кристалле материала встречаются напряжения и дислокации, там есть примеси, грязь и дефекты. И при всех полях, за исключением лишь очень слабых, стенки доменов при своем движении наталкиваются на них. Между доменной стенкой и дислокацией (или границей зерна или примесью) возникают взаимодействия. В результате, когда стенка наталкивается на препятствие, она как бы приклеивается и держится там, пока поле не достигнет определенной величины. Затем, когда поле несколько подрастет, стенка внезапно срывается. Таким образом, движение доменной стенки оказывается отнюдь не плавным, как в идеальном кристалле: она движется скачкообразно, то и дело останавливаясь на мгновение. Если бы мы рассмотрели кривую намагничивания в микроскопическом масштабе, то увидели бы нечто подобное изображенному на вставке фиг. 37.10.
Но самое важное заключается в том, что эти прыжки намагничивания могут вызвать потерю энергии. Прежде всего, когда стенка домена проскакивает наконец через препятствие, она очень быстро движется к следующему. Быстрое движение влечет за собой и быстрое изменение магнитного поля, которое в свою очередь создает в кристалле вихревые токи. Последние растрачивают энергию на нагревание металла. Другой эффект состоит в том, что, когда домен неожиданно изменяется, часть кристаллов из-за магнитострикции изменяет свои размеры. Каждый неожиданный сдвиг доменной стенки создает небольшую звуковую волну, которая тоже уносит энергию. Благодаря таким эффектам эта часть кривой намагничивания необратима: происходит потеря энергии. В этом и заключается причина гистерезисного эффекта, ибо движение скачками вперед — одно, а движение назад — уже другое и в оба конца затрачивается энергия. Это похоже на езду по ухабистой дороге.
В конечном счете при достаточно сильных полях, когда все доменные стенки сдвинуты и намагниченность каждого кристаллика направлена по ближайшей к полю оси легкого намагничивания, остаются еще некоторые кристаллики, у которых ось легкого намагничивания далека от направления внешнего магнитного поля. Чтобы повернуть эти магнитные моменты, требуется еще дополнительное поле. Таким образом, в сильных полях именно в области, обозначенной на фиг. 37.10 буквой с, намагниченность возрастает медленно, но гладко.
Фиг. 37.10. Кривая намагничивания поликристаллического железа.
Намагниченность не сразу достигает своего насыщения, ибо в этой последней части кривой происходит доворачивание атомных магнитиков в сильном поле. Таким образом, мы видим, почему кривая намагничивания поликристаллического материала обычно имеет вид, изображенный на фиг. 37.10: сначала она немного возрастает и это возрастание обратимо, затем возрастает быстро, но уже необратимо, а потом медленно загибается. Разумеется, между этими тремя областями никакого резкого перехода нет— они плавно переходят одна в другую.
Нетрудно убедиться в том, что процесс намагничивания в средней части кривой носит скачкообразный характер, что доменные стенки при сдвиге прыгают и даже щелкают. Для этого нам нужна только катушка со многими тысячами витков провода, связанная через усилитель с громкоговорителем (фиг. 37.11).
Фиг. 37.11. Скачкообразные изменения намагниченности листков кремнистой стали сопровождаются щелчками в громкоговорителе.
Если внутрь катушки поместить несколько листков кремнистой стали (такого же сорта, как и в трансформаторах) и медленно подносить к этой пачке постоянный магнит, то скачкообразные изменения намагниченности будут создавать в катушке импульсы э. д. с., которые в громкоговорителе будут слышны как отдельные щелчки. По мере приближения магнита к железу на вас обрушится целый град щелчков, напоминающий шум, создаваемый падающими друг на друга песчинками, высыпающимися из наклоненной жестянки. Это прыгают, покачиваются и щелкают доменные стенки по мере увеличения магнитного поля. Это явление называется эффектом Баркгаузена.
По мере приближения магнита к железным листикам шум некоторое время будет все возрастать, но когда магнит окажется совсем близко, шум начинает затихать. Почему? Да потому, что все доменные стенки передвинулись уже насколько возможно и теперь любое увеличение поля просто поворачивает векторы намагниченности в каждом из доменов, а это уже вполне плавный процесс.
Если вы теперь будете плавно отодвигать магнит так, чтобы вернуться назад по нижней петле гистерезиса, то все домены будут тоже стремиться вернуться назад в положение низшей энергии и вы снова услышите град щелчков. Обратите внимание, что если вы отодвинете магнит до какого-то определенного положения, а затем начнете немного двигать магнит взад и вперед, звук будет относительно слабым. Это снова напоминает поведение наклоненной жестянки с песком: когда песчинки «осели» на свое место, небольшой наклон жестянки уже не потревожит их. Небольшое изменение магнитного поля в железе неспособно заставить доменную стенку перескочить через «горб».
§ 4. Ферромагнитные материалы
Сейчас было бы хорошо рассказать о различных сортах магнитных материалов, применяемых в технике, и о некоторых проблемах, связанных с созданием магнитных материалов для разных целей. Прежде всего о самом термине «магнитные свойства железа», который часто приходится слышать. Он, строго говоря, не имеет смысла и способен ввести в заблуждение: «железо» как строго определенный материал не существует. Свойства железа существенно зависят от количества примесей, а также от способа его приготовления. Вы понимаете, что магнитные свойства будут зависеть от того, насколько легко движутся доменные стенки, именно это свойство будет определяющим, а совсем не то, как ведут себя отдельные атомы. Так что практически ферромагнетизм не является свойством атомов железа: это свойство куска железа в определенном состоянии. Железо, например, может находиться в двух различных кристаллических формах. Обычная форма имеет объемноцентрированную кубическую решетку, но может еще иметь и гранецентрированную решетку, которая, однако, стабильна только при температурах выше 1100°С. При этих температурах, разумеется, железо уже прошло точку Кюри. Однако, сплавляя с железом хром и никель (один из возможных составов содержит 18% хрома и 8% никеля), мы можем получить то, что называется нержавеющей сталью; хотя она и состоит главным образом из железа, но сохраняет гранецентрированную решетку даже при низких температурах. Благодаря своей кристаллической структуре этот материал обладает совершенно другими магнитными свойствами. Обычно нержавеющая сталь немагнитна в сколько-нибудь заметной степени, хотя есть сорта с другим составом сплава, которые в какой-то степени магнитны. Хотя такой сплав, как любое вещество, является магнетиком, он не ферромагнетик, как обычное железо, несмотря на то, что в основном он все же состоит из железа.
Существуют специальные материалы, которые были придуманы для получения особых магнитных свойств. О некоторых из них я хочу рассказать. Если нужно сделать постоянный магнит, то требуется найти материал с необычно широкой петлей гистерезиса, чтобы при выключении тока, когда мы спустимся к нулевому намагничивающему полю, намагниченность все же осталась большой. Для таких материалов границы доменов должны быть «заморожены» на месте как можно крепче. Одним из таких материалов является замечательный сплав Алнико V (51% Fe, 8% Аl, 14% Ni, 24% Со, 3% Cu). Довольно сложный состав этого сплава говорит о том кропотливом труде, который надо было затратить, чтоб создать хороший магнит. Сколько терпения потребовалось для того, чтобы, смешивая по-разному пять компонент, проверять разные составы их до тех пор, пока не был найден идеальный сплав! Когда Алнико V затвердевает, у него появляется «вторая фаза», которая, осаждаясь, образует множество маленьких зерен и вызывает очень большие внутренние напряжения. Движение доменных стенок в этом материале очень затруднено. А чтобы получить вдобавок нужное строение, Алнико V механически «обрабатывается» так, чтобы кристаллы выстраивались в форме продолговатых зерен в направлении будущей намагниченности. При этом намагниченность, естественно, стремится смотреть в нужном направлении и противостоять эффектам анизотропии. Более того, в процессе приготовления материал даже охлаждается во внешнем магнитном поле, так что зерна растут с правильной ориентацией кристаллов. Петля гистерезиса Алнико V приведена на фиг. 37.12.
Фиг. 37.12. Петля гистерезиса сплава Алнико V.
Видите, она в 500 раз шире петли гистерезиса мягкого железа, которую я вам показывал (см. фиг. 36.8). Обратимся теперь к другим сортам материалов. Для изготовления трансформаторов и моторов необходим материал, который был бы «мягким» в магнитном отношении, т. е. такой, намагниченность которого могла бы легко изменяться, так что даже очень малое приложенное поле приводило бы к очень большой намагниченности. Для этого нужны чистые, хорошо отожженные материалы с очень малым количеством дислокаций и примесей, так чтобы доменные стенки могли легко двигаться. Анизотропию желательно сделать как можно меньше. Тогда если даже зерна материала расположены под «неправильным» углом по отношению к полю, материал все равно будет легко намагничиваться. Мы говорили, что железо предпочитает намагничиваться в направлении [100], тогда как никель предпочитает направление [111], так что если мы будем в различных пропорциях смешивать железо и никель, то можно надеяться найти такую их пропорцию, когда сплав не будет иметь никакого предпочтительного направления, т. е. направления [100] и [111] будут эквивалентны. Оказывается, что это достигается при смешивании 70% никеля и 30% железа. Вдобавок (вероятно, по счастливой случайности, а быть может, по какой-то физической взаимосвязи между анизотропией и магнитострикционными эффектами) оказалось, что константы магнитострикции железа и никеля имеют противоположные знаки. Для сплава этих двух металлов магнитострикция исчезает при содержании никеля около 80%. Так что при содержании никеля где-то между 70 и 80% у нас получаются очень «мягкие» магнитные материалы — сплавы, которые очень легко намагничиваются. Они называются пермаллоями. Пермаллои используются в высококачественных трансформаторах (при низких уровнях сигналов), но совершенно не годятся для постоянных магнитов. Приготовлять пермаллои и работать с ними нужно очень осторожно. Магнитные свойства пермаллоя в корне меняются, если его деформировать выше предела его упругости, так что этот материал никоим образом нельзя сгибать. Иначе в результате возникновения дислокаций, поверхностей скольжения и других механических деформаций проницаемость его уменьшается и границы доменов уже будут двигаться не так легко. Впрочем, былую высокую проницаемость можно восстановить отжигом при высокой температуре.
Полезно для характеристики различных магнитных материалов оперировать какими-то числами. Двумя такими характеристиками являются значения В и Н в точках пересечения петли гистерезиса с осями координат (фиг. 37.12). Эти значения называются остаточным магнитным полем Вr и коэрцитивной силой Нс. В табл. 37.1 приведены эти характеристики для некоторых материалов.
Таблица 37.1. СВОЙСТВА НЕКОТОРЫХ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ
§ 5. Необычные магнитные материалы
Здесь мне бы хотелось рассказать о некоторых более экзотических магнитных материалах. В периодической таблице есть немало элементов, имеющих незаполненные внутренние электронные оболочки, а следовательно, и атомные магнитные моменты. Так, сразу вслед за ферромагнитными элементами — железом, никелем и кобальтом — вы найдете хром и марганец. Почему же они не ферромагнитны? Ответ заключается в том, что в выражении (37.1) член с λ для этих элементов имеет противоположный знак. В решетке хрома, например, направления магнитных моментов атомов чередуются друг за другом (фиг. 37.13, б).
Фиг. 37.13. Относительная ориентация электронных спинов в различных материалах: а — ферромагнетик;, б — антиферромагнетик; в — феррит.
Так что со своей точки зрения хром все же «магнетик», но с точки зрения технических применений это не представляет интереса, так как не дает внешнего магнитного эффекта. Таким образом, хром — пример материала, в котором квантовомеханический эффект вызывает чередование направлений спинов. Такой материал называется антиферромагнетиком. Упорядочивание магнитных моментов в антиферромагнитных материалах зависит и от температуры. Ниже критической температуры все спины выстраиваются в чередующейся последовательности, но если материал нагрет выше определенной температуры, которая по-прежнему называется температурой Кюри, направления спинов внезапно становятся случайными. Этот резкий внутренний переход можно наблюдать на кривой удельной теплоемкости. Он проявляется еще в некоторых особых «магнитных» эффектах. Например, существование чередующихся спинов можно проверить по рассеянию нейтронов на кристалле хрома. Нейтрон сам по себе имеет спин (и магнитный момент), поэтому амплитуда его рассеяния различна в зависимости от того, параллелен ли его спин спину рассеивателя или противоположен. В результате нейтронная интерференционная картина для чередующихся спинов отлична от картины при случайном их распределении.
Существует еще один сорт веществ, у которых квантовомеханический эффект приводит к чередующимся спинам электронов, но которые тем не менее являются ферромагнетиками, т. е. их кристаллы имеют постоянную результирующую намагниченность. Идея, лежащая в основе объяснения свойств таких материалов, иллюстрируется схемой на фиг. 37.14.
Фиг. 37.14. Кристаллическая структура минерала шпинель (MgOAl2O3). Ионы Mg2+ занимают тетраэдрические места, и каждый из них окружен четырьмя ионами кислорода; ионы Аl3+ занимают октаэдрические места, и каждый окружен шестью ионами кислорода.
На схеме показана кристаллическая структура минерала, известного под названием шпинели (MgOAl2O3), который, как это показано, не является магнетиком. Этот минерал содержит два сорта металлических атомов — магний и алюминий. Если теперь заменить магний и алюминий магнитными элементами типа железа, т. е. вместо немагнитных атомов вставить магнитные, то получится преинтереснейший эффект. Давайте назовем один сорт атомов металла а, а другой сорт — b; необходимо рассмотреть разные комбинации сил! Существует взаимодействие а—b, которое старается направить спины атома а и атома b противоположно, ибо квантовая механика всегда требует, чтобы спины были противоположны (за исключением таинственных кристаллов железа, никеля и кобальта). Затем существует взаимодействие а—а, которое старается направить противоположно спины атомов а; кроме того, есть еще взаимодействие b—b, которое старается направить противоположно спины атомов b. Конечно, сделать все противоположным всему (а противоположно b и а противоположно а и b противоположно b) невозможно. По-видимому, благодаря удаленности атомов а и присутствию атомов кислорода (с достоверностью мы не знаем, почему) оказывается, что взаимодействие а—b сильнее взаимодействий а—а и b—b. Словом, природа в этом случае воспользовалась решением, в котором спины всех атомов b параллельны друг другу, а все атомы а тоже параллельны друг другу, но между собой эти две системы спинов противоположны. Такой распорядок благодаря более сильному взаимодействию а—b соответствует наинизшей энергии. В результате спины всех атомов а направлены вверх, а спины всех атомов b — вниз (может быть, конечно, и наоборот). Но если магнитные моменты атомов а и атомов b не равны друг другу, то создается картина, показанная на фиг. 37.13, в: материал может оказаться спонтанно намагниченным. При этом он будет ферромагнетиком, хотя и несколько слабее настоящего. Такие материалы называются ферритами. У них по очевидным причинам намагниченность насыщения не столь велика, как у железа, поэтому они полезны только при слабых магнитных полях. Но они обладают очень важным преимуществом — это изоляторы, т. е. ферриты являются ферромагнитными изоляторами. Вихревые токи, создаваемые в них высокочастотными полями, очень малы, поэтому ферриты можно использовать, скажем, в микроволновых системах. Микроволновые поля способны проникать внутрь таких непроводящих материалов, тогда как в проводниках типа железа этому препятствуют вихревые токи.
Существует еще один вид магнитных материалов, открытых совсем недавно, — это члены семейства со структурой ортосиликатов, называемых гранатами. Это тоже кристаллы, в решетке которых содержатся два сорта металлических атомов; здесь мы снова сталкиваемся с ситуацией, когда оба сорта атомов можно заменять почти по желанию. Среди множества интересующих нас составов есть один, который обладает ферромагнетизмом. В структуре граната он содержит атомы иттрия и железа и причина его ферромагнетизма весьма любопытна. Здесь снова по квантовой механике соседние спины противоположны, так что это опять замкнутая система спинов, в которой электронные спины ионов железа направлены в одну сторону, а электронные спины ионов иттрия — в противоположную. Но атомы иттрия очень сложны. В их магнитный момент большой вклад вносит орбитальное движение электронов. Вклад орбитального движения для иттрия противоположен вкладу спина, и, кроме того, он больше его. Таким образом, хотя квантовая механика, опираясь на свой принцип запрета, стремится направить спины ионов иттрия противоположно спинам ионов железа, результирующий магнитный момент иттрия в результате орбитального эффекта оказывается параллельным спинам ионов железа. И соединение работает как настоящий ферромагнетик.
Другой интересный пример ферромагнетизма дают некоторые редкоземельные элементы. Здесь мы встречаемся с еще большими странностями в расположении спинов. Эти металлы не ферромагнетики в том смысле, что все спины в них параллельны, и не антиферромагнетики в том смысле, что спины соседних атомов противоположны. В этих кристаллах все спины в одном слое параллельны и лежат в плоскости слоя. В следующем слое все спины снова параллельны друг другу, но смотрят уже в несколько ином направлении. В следующем слое они тоже направлены в другую сторону и т. д. В результате вектор локального намагничивания (в слоях) меняется по спирали: магнитные моменты последовательных слоев поворачиваются при движении вокруг линии, перпендикулярной слоям. Интересно попытаться проанализировать, что получается, когда к такой спирали прилагается поле, найти все скручивания и повороты, которые должны происходить со всеми этими атомными магнитиками. (Некоторые люди просто увлечены теориями подобных вещей!) В природе встречаются не только «плоские» спирали, но существуют еще случаи, когда направления магнитных моментов последовательных слоев образуют конус, так что у них есть не только спиральная компонента, но и однородная ферромагнитная компонента в том же направлении!
Магнитные свойства материалов на более высоком уровне, чем занимались мы с вами, очаровывают многих физиков. Прежде всего этим увлекаются люди практического склада, которые любят придумывать способы улучшать разные вещи; им нравится изобретать более совершенные и интересные магнитные материалы. Открытие таких материалов, как ферриты, или их применение немедленно привело в восторг тех, кто выискивает новые хитрые пути сделать вещи совершеннее. Но есть еще люди, которые находят очарование в той ужасной сложности, которую природа создает на основе лишь нескольких фундаментальных законов. На основе одной и той же общей идеи природа от ферромагнетизма железа и его доменов дошла до антиферромагнетизма хрома, магнетизма ферритов и гранатов, до спиральной структуры редкоземельных элементов и шагает все дальше и дальше. До чего же приятно экспериментально открывать все эти странные явления, упрятанные в подобных особых веществах! А физикам-теоретикам ферромагнетизм подарил целый ряд интереснейших еще не решенных красивых проблем. Одна из них: почему вообще существует ферромагнетизм? Другая — вывести статистику взаимодействующих спинов в идеальной решетке. Даже если пренебречь дополнительными усложнениями, эти проблемы до сих пор не поддаются полному пониманию. Причина, по которой они так интересны, — удивительная простота постановки задачи: в правильной решетке задано множество электронных спинов, взаимодействующих по такому-то и такому-то закону; что с ними в конце концов происходит? Поставить-то задачу было легко, а вот полному анализу она не поддавалась многие годы. И хотя для температур, не слишком близких к точке Кюри, она была проанализирована довольно тщательно, теория внезапного перехода в точке Кюри до сих пор еще ждет своего решения.
Наконец, задача о поведении систем атомных магнитиков: и ферромагнетизм, и парамагнетизм, и ядерный магнетизм — исключительно полезные вещи для студентов-физиков старших курсов. Внешним магнитным полем на систему спинов можно воздействовать и так и сяк, поэтому можно придумать множество фокусов с резонансами, процессами релаксации, спиновым эхом и другими эффектами. Эта задача служит прототипом многих сложных термодинамических систем, с тем преимуществом, что в парамагнитных материалах положение обычно гораздо проще и исследователи с удовольствием ставят здесь эксперименты и объясняют явления теоретически.
Мы заканчиваем наше изучение электричества и магнетизма. В гл. 1 (вып. 5) мы говорили о великом пути, пройденном со времен, когда древние греки наблюдали странное поведение янтаря и магнитного железняка. Но еще нигде в наших длинных и запутанных рассуждениях мы не объяснили, почему, когда мы натираем кусок янтаря, на нем возникает заряд, не объяснили мы и того, почему намагничен природный магнитный железняк! Вы можете возразить: «Нам просто не удалось получить правильного знака». Нет, дело обстоит гораздо хуже. Если бы мы все-таки получили правильный знак, по-прежнему остался бы вопрос: почему кусок магнитного железняка в земле оказался намагниченным? Конечно, существует магнитное поле Земли, но откуда взялось это магнитное поле Земли? Вот этого-то на самом деле никто и не знает, и приходится довольствоваться только некоторыми правдоподобными догадками. Так что, как видите, наша хваленая современная физика — сплошное надувательство: начали мы с магнитного железняка и янтаря, а закончили тем, что не понимаем достаточно хорошо ни того, ни другого. Зато в процессе изучения мы узнали огромное количество удивительных и очень полезных для практики вещей!
Глава 38 УПРУГОСТЬ
Повторить: гл. 47 (вып. 4) «Звук, волновое уравнение»
§ 1. Закон Гука
Теория упругости занимается поведением таких тел, которые обладают свойством восстанавливать свой размер и форму после снятия деформирующих сил. В какой-то степени этими упругими свойствами обладают все твердые тела. Если бы у нас было время заниматься этим предметом подольше, то нам пришлось бы рассмотреть множество вопросов: поведение напряженных материалов, законы упругости и общая теория упругости, атомный механизм, определяющий упругие свойства, и, наконец, ограничения на законы упругости, когда силы становятся настолько велики, что возникает пластическое течение и разрушение. Детальное рассмотрение всех этих вопросов потребовало бы гораздо больше времени, чем мы располагаем, поэтому кое от чего нам придется отказаться. Например, мы не будем обсуждать вопросы пластичности и ограничений на законы упругости. (Этого мы коснемся только очень кратко, когда у нас речь пойдет о дислокациях в металлах.) Мы не сможем также обсудить механизм упругости, так что наше исследование не будет обладать той полнотой, к которой мы стремились в предыдущих главах. Основная цель лекции — познакомить вас с некоторыми способами обращения с такими практическими задачами, как, например, задача об изгибании бруска.
Если вы надавите на кусок материала, то материал «поддастся» — он деформируется. При достаточно малых силах относительное перемещение различных точек материала пропорционально силе. Такое поведение называется упругим. Мы будем говорить только о таком упругом поведении. Сначала мы выпишем фундаментальный закон упругости, а затем применим его к нескольким различным ситуациям.
Предположим, что мы взяли прямоугольный брусок длиной l, шириной w и высотой h (фиг. 38.1).
Фиг. 38.1. Растяжение бруска под действием однородной нагрузки.
Если мы потянем за его конец с силой F, то его длина увеличится на Δl. Во всех случаях мы будем предполагать, что изменение длины составляет малую долю от первоначальной. На самом деле материалы, подобные стали или дереву, разрушаются еще до того, как изменение длины достигнет нескольких процентов от первоначального значения. Опыты показывают, что для большого числа материалов при достаточно малых удлинениях сила пропорциональна удлинению
(38.1)
Это соотношение известно как закон Гука.
Удлинение бруска Δl зависит и от его длины. Это можно продемонстрировать следующими рассуждениями. Если мы скрепим вместе два одинаковых бруска конец к концу, то на каждый будет действовать одна и та же сила и каждый из них удлинится на Δl. Таким образом, удлинение бруска длиной 2l будет в два раза больше удлинения бруска того же поперечного сечения, но длиной l. Чтобы получить величину, полнее характеризующую сам материал и менее зависящую от формы образца, будем оперировать отношением Δl/l (удлинение к первоначальной длине). Это отношение пропорционально силе, но не зависит от l:
(38.2)
Сила F зависит также от площади сечения бруска. Предположим, что мы поставили два бруска бок о бок. Тогда для данного удлинения Δl мы должны приложить силу F к каждому бруску, или для комбинации двух брусков требуется вдвое большая сила. При данной величине растяжения сила должна быть пропорциональна площади поперечного сечения бруска А. Чтобы получить закон, в котором коэффициент пропорциональности не зависит от размеров тела, мы для прямоугольного бруска будем писать закон Гука в виде
(38.3)
Постоянная Y определяется только свойствами природы материала; ее называют модулем Юнга. (Обычно модуль Юнга обозначается буквой Е, но эту букву мы уже использовали для электрического поля, для энергии и для э. д. с., так что теперь лучше взять другую.)
Силу, действующую на единичной площади, называют напряжением, а удлинение участка, отнесенное к его длине, т. е. относительное удлинение называют деформацией. Уравнение (38.3) можно переписать следующим образом:
(38.4)
При растяжении, подчиняющемуся закону Гука, возникает еще одно осложнение: если брусок материала растягивается в одном направлении, то под прямым углом к растяжению он сжимается. Уменьшение толщины пропорционально самой толщине w и еще отношению Δl/l. Относительное боковое сжатие одинаково как для ширины, так и для его высоты и обычно записывается в виде
(38.5)
где постоянная σ характеризует новое свойство материала и называется отношением Пуассона. Это число положительное до знаку, по величине меньше 1/2. (То, что постоянная σ в общем случае должна быть положительной, «разумно», но ниоткуда не следует, что она должна быть такой.)
Две константы Y и σ полностью определяют упругие свойства однородного изотропного (т. е. некристаллического) материала. В кристаллическом материале растяжение и сокращение в разных направлениях может быть различным, поэтому и упругих постоянных может быть гораздо больше. Временно мы ограничим наши обсуждения однородными изотропными материалами, свойства которых могут быть описаны постоянными σ и Y. Как обычно, существует множество способов описания свойств.
Некоторым, например, нравится описывать упругие свойства материалов другими постоянными. Но таких постоянных всегда берется две, и они могут быть связаны с нашими σ и Y.
Последний общий закон, который нам нужен, — это принцип суперпозиции. Поскольку оба закона (38.4) и (38.5) линейны в отношении сил и перемещений, то принцип суперпозиции будет работать. Если при одном наборе сил вы получаете некоторое дополнительное перемещение, то результирующее перемещение будет суммой перемещений, которые бы получились при независимом действии этих наборов сил.
Теперь мы имеем все необходимые общие принципы: принцип суперпозиции и уравнения (38.4) и (38.5), т. е. все, что нужно для описания упругости. Впрочем, с таким же правом можно было заявить: у нас есть законы Ньютона, и это все, что нужно для механики. Или, задавшись уравнениями Максвелла, мы имеем все необходимое для описания электричества. Оно, конечно, так; из этих принципов вы действительно можете получить почти все, ибо ваши теперешние математические возможности позволяют вам продвинуться достаточно далеко. Но мы все же рассмотрим лишь некоторые специальные приложения.
§ 2. Однородная деформация
В качестве первого примера посмотрим, что происходит с прямоугольным бруском при однородном гидростатическом сжатии. Давайте поместим брусок в резервуар с водой. При этом возникнет сила, действующая на каждую грань бруска и пропорциональная его площади (фиг. 38.2).
Фиг. 38.2. Брусок под действием равномерного гидростатического давления.
Поскольку гидростатическое давление однородно, то напряжение (сила на единичную площадь) на каждой грани бруска будет одним и тем же. Прежде всего найдем изменение длины бруска. Его можно рассматривать как сумму изменений длин, которые происходили бы в трех независимых задачах, изображенных на фиг. 38.3.
Фиг. 38.3. Гидростатическое давление равно суперпозиции трех сжатий.
Задача 1. Если мы приложим к концам бруска давление р, то деформация сжатия будет отрицательна и равна p/Y:
Задача 2. Если мы надавим на горизонтальные грани бруска, то деформация по высоте будет равна -p/Y, а соответствующая деформация в боковом направлении будет +σp/Y. Мы получаем
Задача 3. Если мы приложим к сторонам бруска давление р, то деформация давления снова будет равна p/Y, но теперь нам нужно определить деформацию длины. Для этого боковую деформацию нужно умножить на -σ. Боковая деформация равна
так что
Комбинируя результаты этих трех задач, т. е. записывая Δl как Δl1+Δl2+Δl3, получаем
(38.6)
Задача, разумеется, симметрична во всех трех направлениях, поэтому
(38.7)
Интересно также найти изменение объема при гидростатическом давлении. Поскольку V=lwh, то для малых перемещений можно записать
Воспользовавшись (38.6) и (38.7), мы имеем
(38.8)
Имеются любители называть ΔV/V объемной деформацией и писать
Объемное напряжение р (гидростатическое давление) пропорционально вызванной им объемной деформации — снова закон Гука. Коэффициент К называется объемным модулем и связан с другими постоянными выражением
(38.9)
Поскольку коэффициент К представляет некоторый практический интерес, то во многих справочниках вместо Y и σ приводятся Y и К. Но если вам нужно знать σ, то вы всегда можете получить это значение из формулы (38.9). Из этой формулы видно также, что коэффициент Пуассона σ должен быть меньше 1/2. Если бы это было не так, то объемный модуль К был бы отрицательным и материал при увеличении давления расширялся бы. Это позволило бы добывать механическую энергию из любого кубика, т. е. это означало бы, что кубик находится в неустойчивом равновесии. Если бы он начал расширяться, то расширение продолжалось бы само по себе с высвобождением энергии.
Посмотрим, что получится, если мы приложим к чему-то «косое» напряжение. Под косым, или скалывающим, напряжением мы подразумеваем такое воздействие, как показано на фиг. 38.4.
Фиг. 38.4. Однородный сдвиг.
В качестве предварительной задачи посмотрим, какова будет деформация кубика под действием сил, показанных на фиг. 38.5.
Фиг. 38.5. Действие сжимающих сил, давящих на вершину и основание, и равных им растягивающих сил с двух сторон.
Снова можно разделить эту задачу на две: вертикальное давление и горизонтальное растяжение. Обозначая через А площадь грани кубика, мы получаем для изменения горизонтальной длины
(38.10)
Изменение же высоты по вертикали равно просто тому же выражению с обратным знаком.
Предположим теперь, что мы имеем тот же самый кубик, и подвергнем его действию сдвиговых сил, показанных на фиг. 38.6, а.
Фиг. 38.6. Две пары сил сдвига (а) создают то же самое напряжение, что и сжимающие=растягивающие силы (б).
Заметим теперь, что все силы должны быть равными, ибо на тело не должен действовать никакой момент сил и оно должно находиться в равновесии. (Подобные силы должны действовать также и в случае, изображенном на фиг. 38.4, поскольку кубик находится в равновесии. Они обеспечиваются тем, что кубик «приклеен» к столу.) При таких условиях говорят, что кубик находится в состоянии чистого сдвига. Но обратите внимание, что если мы разрежем кубик плоскостями под углом 45°, скажем, вдоль диагонали А на фиг. 38.6, а, то полная сила, действующая в этой плоскости, нормальна к ней и равна √2G. Площадь, на которой действует эта сила, равна √2A; следовательно, напряжение, нормальное к этой плоскости, будет просто G/A. Точно так же если взять плоскость, наклоненную под углом 45° в другую сторону, т. е. по диагонали В, то мы увидим, что на ней действует нормальное сдавливающее напряжение, равное -G/A. Из этого ясно, что напряжение при «чистом сжатии» эквивалентно комбинации растягивающего и сжимающего напряжений, направленных под прямым углом друг к другу и под углом 45° к первоначальным граням кубика. Внутренние напряжения и деформации будут такими же, как и в большом кубике материала под действием сил, показанных на фиг. 38.6, б. Но эту задачу мы уже решили. Изменение длины диагонали задается уравнением (38.10):
(38.11)
(Одна диагональ сокращается, а другая удлиняется.)
Часто деформацию сдвига удобно описывать с помощью угла «искажения» кубика θ, показанного на фиг. 38.7.
Фиг. 38.7. Напряжение сдвига θ равно 2ΔD/D.
Из геометрии фигуры вы видите, что горизонтальный сдвиг δ верхнего края равен √2ΔD, так что
(38.12)
Напряжение сдвига g определяется как отношение тангенциальной силы, действующей на грань, к площади грани g=G/A. Воспользовавшись уравнением (38.11), мы из (38.12) получаем
Или, если написать это в форме
(38.13)
Коэффициент пропорциональности μ называется модулем сдвига (или иногда коэффициентом жесткости). Вот как он выражается через Y и σ:
(38.14)
Кстати, модуль сдвига должен быть положительным, иначе мы бы могли получить энергию от самопроизвольного сдвига кубика. Из уравнения (38.14) очевидно, что постоянная σ должна быть больше -1. Теперь мы знаем, что σ заключена между -1 и 1/2, но на практике, однако, она всегда больше нуля. В качестве последнего примера состояний подобного типа, когда напряженность постоянна по всему материалу, давайте рассмотрим задачу о бруске, который растягивается и в то же время закреплен таким образом, что боковое сокращение невозможно. (Технически немного легче сжимать брусок и сдерживать бока его от «распирания», но в сущности — это та же самая задача.) Что при этом происходит? На брусок должны действовать боковые силы, которые препятствуют изменению его толщины, — силы, которых мы не знаем непосредственно, но которые следует вычислить. Эта задача того же самого сорта, что мы решали, но только с немного другой алгеброй. Представьте себе силы, действующие на все три стороны, как это показано на фиг. 38.8.
Фиг. 38.8. Растяжение без сокращения бокового размера.
Мы вычислим изменение размеров и подберем такие поперечные силы, чтобы ширина и высота оставались постоянными. Следуя обычным рассуждениям, мы получаем для трех напряжений
(38.15)
(38.16)
(38.17)
Но поскольку по условию Δlу и Δlz равны нулю, то уравнения (38.16) и (38.17) дают два соотношения, связывающие Fy и Fz с Fx. Совместно решая их, найдем
(38.18)
а подставляя (38.18) в (38.15), получаем
(38.19)
Это соотношение вы часто можете встретить «перевернутым» и с преобразованным квадратичным полиномом по σ, т. е.
(38.20)
Когда вы удерживаете бока, модуль Юнга умножается на некоторую сложную функцию σ. Из уравнения (38.19) можно сразу же увидеть, что множитель перед Y всегда больше единицы. Растянуть брусок, когда его бока удерживаются, гораздо труднее. Это означает также, что брусок становится жестче, когда его боковые стороны закреплены, нежели когда они свободны.
§ 3. Кручение стержня; волны сдвига
Обратимся теперь к более сложному примеру, когда различные части материала напряжены по-разному. Рассмотрим скрученный стержень — скажем, приводной вал какой-то машины или подвеску из кварцевой нити, применяемую в точных приборах. Из опытов с маятником кручения вы, по-видимому, знаете, что момент сил, действующий на закручиваемый стержень, пропорционален углу, причем константа пропорциональности, очевидно, зависит от длины стержня, его радиуса и свойств материала. Но каким образом — вот в чем вопрос? Теперь мы в состоянии ответить на него: просто нужно немного разобраться в геометрии.
На фиг. 38.9, а показан цилиндрический стержень, обладающий длиной L и радиусом а, один из концов которого закручен на угол φ по отношению к другому.
Фиг. 38.9. Кручение цилиндрического стержня (а), кручение цилиндрического слоя (б) и сдвиг любого маленького кусочка в слое (в).
Если мы хотим связать деформацию с тем, что уже известно, то стержень можно представить состоящим из множества цилиндрических оболочек и выяснить, что происходит в каждой из этих оболочек. Начнем с рассмотрения тонкого короткого цилиндра радиусом r (меньшего, чем в) и толщиной Δr, как показано на фиг. 38.9, б. Если теперь посмотреть на кусочек внутри этого цилиндра, который первоначально был маленьким квадратом, то можно заметить, что он превратился в параллелограмм. Каждый элемент цилиндра сдвигается, а угол сдвига θ равен
Поэтому напряжение сдвига g в материале будет [из уравнения (38.13)]
(38.21)
Напряжение среза равно тангенциальной силе ΔF, действующей на конец квадратика, поделенной на его площадь ΔlΔr (см. фиг. 38.9, в):
Сила ΔF, действующая на конец такого квадратика, создает относительно оси стержня момент сил Δτ, равный
(38.22)
Полный момент τ равен сумме таких моментов по всему периметру цилиндра. Складывая достаточное число таких кусков так, чтобы все Δl составляли 2πr, находим, что полный момент сил для пустотелой трубы равен
(38.23)
Или, используя уравнение (38.21),
(38.24)
Мы получили, что жесткость τ/φ пустотелой трубы по отношению к кручению пропорциональна кубу радиуса r и толщине Δr и обратно пропорциональна его длине L.
Теперь представьте себе, что стержень сделан из целой серии таких концентрических труб, каждая из которых закручена на угол φ (хотя внутренние напряжения в каждой трубе различны). Полный момент равен сумме моментов, требуемых для скручивания каждой оболочки, так что для твердого стержня
где интеграл берется от 0 до а — радиуса стержня. После интегрирования получаем
(38.25)
Если закручивать стержень, то его момент оказывается пропорциональным углу и четвертой степени диаметра: стержень вдвое большего радиуса в шестнадцать раз жестче относительно кручения.
Прежде чем расстаться с кручением, рассмотрим применение теории к одной интересной задаче — волнам кручения. Возьмем длинный стержень и неожиданно закрутим один его конец; вдоль стержня, как показано на фиг. 38.10, а, пойдет волна кручения.
Фиг. 38.10. Волна кручения в стержне (а) и элемент объема стержня (б).
Это явление более интересно, нежели простое статическое скручивание. Посмотрим, можем ли мы понять, как это происходит.
Пусть z — расстояние от некоторой точки до основания стержня. Для статического закручивания момент сил на всем протяжении стержня один и тот же и пропорционален φ/L — полному углу вращения на полную длину. Но в нашей задаче важна местная деформация кручения, которая, как вы сразу поймете, равна ∂φ/∂z. Если кручение вдоль стержня неравномерное, то уравнение (38.25) следует заменить таким:
(38.26)
Посмотрим теперь, что же происходит с элементом длины Δz, который показан в увеличенном масштабе на фиг. 38.10, б. На конце 1 маленького отрезка стержня действует момент τ(z), а на конце 2— другой момент сил τ(z+Δz). Если величина Δz достаточно мала, то можно воспользоваться разложением в ряд Тэйлора и, сохранив только два члена, написать
(38.27)
Полный момент сил Δτ, действующий на маленький отрезок стержня между z и Δz, равен разности τ(z) и τ(z+Δz), или Δτ=(∂τ/∂z)Δz. Дифференцируя уравнение (38.26), получаем
(38.28)
Действие этого полного момента должно вызвать угловое ускорение отрезка стержня. Масса его равна
где ρ — плотность материала. В гл. 19 (вып. 2) мы нашли, что момент инерции кругового цилиндра равен mr2/2; обозначая момент инерции нашего отрезка через Δl, получаем
(38.29)
Закон Ньютона говорит нам, что момент силы равен произведению момента инерции на угловое ускорение, или
(38.30)
Собирая теперь все воедино, находим
или
(38.31)
Вы, должно быть, уже узнали, что это такое: это одномерное волновое уравнение. Мы получили, что волны кручения распространяются по стержню со скоростью
(38.32)
Чем плотнее стержень при одной и той же жесткости, тем медленнее движется волна, а чем он жестче, тем волна бежит быстрее. Скорость ее не зависит от диаметра стержня.
Волны кручения представляют частный случай волн сдвига. Волны сдвига в общем случае — это такие волны, при которых деформация не изменяет объема любой части материала. В волнах кручения мы сталкиваемся с особым распределением напряжений сдвига — они распределены по кругу. Но волны при любом распределении напряжений сдвига будут распространяться с одной и той же скоростью, которая определяется формулой (38.32). Сейсмологи, например, обнаружили, что такие волны сдвига распространяются и внутри Земли.
В мире упругих явлений возможен и другой сорт волн внутри твердого материала. Если вы толкнете что-нибудь, то можете возбудить «продольные» волны, так называемые волны «сжатия». Они подобны звуковым волнам в воздухе или в воде, т. е. перемещение вещества в них происходит в ту же сторону, что и распространение волны. (На поверхности упругого тела могут распространяться и другие типы волн, называемые «волнами Рэлея». Деформация в них ни продольная, ни поперечная. Однако у нас нет времени говорить о них подробно.)
Раз уж мы коснулись вопроса о волнах, то какова скорость волн чистого сжатия в большом твердом теле, подобном Земле? Я сказал в «большом», ибо скорость звука в массивном теле отлична от скорости, свойственной, скажем, тонкому стержню. Под массивным телом я подразумеваю тело, поперечные размеры которого много больше длины волны звука. Поэтому, нажимая на такой объект, можно обнаружить, что он не «раздается» в стороны — он может сжиматься только в одном направлении. К счастью, однако, мы уже разобрали специальный случай сжатия «сдавленного» упругого материала, а в гл. 47 (вып. 4) мы познакомились еще со скоростью звука в газе. Рассуждая так же, как и выше, вы можете убедиться, что скорость звука в твердом теле равна √(Y'/ρ), где Y' — «продольный модуль», т. е. давление, деленное на относительное изменение длины (для случая «сдавленного» стержня). Равно это просто отношению Δl/l к F/A, полученному нами в уравнении (38.20). Таким образом, скорость продольных волн определяется выражением
(38.33)
Поскольку значение σ заключено между 0 и 1/2, то модуль сдвига μ меньше модуля Юнга Y, а Y', кроме того, больше Y, так что
Это означает, что продольные волны распространяются быстрее, чем волны сдвига. Один из наиболее точных способов определения упругих постоянных вещества дает измерение плотности материала и скоростей двух сортов волн. Из этой информации можно получить как Y, так и σ. Кстати, именно измеряя разность во времени прихода двух сортов волн от землетрясения, сейсмологи только по сигналам, принятым одной станцией, способны установить расстояние до эпицентра.
§ 4. Изгибание балки
Разберем теперь другой практический вопрос — изгибание балки, стержня или бруска. Чему равны силы, необходимые для изгибания балки произвольного поперечного сечения? Мы определим эти силы для балки круглого сечения, но ответ будет пригоден для балки любой формы. Чтобы сберечь время, мы кое-где упростим дело, так что теория, которую мы разовьем, будет только приближенной. Наши результаты верны лишь при том условии, что радиус изгибания много больше толщины балки.
Представьте, что вы ухватились за оба конца прямой балки и согнули ее в виде кривой, похожей на ту, что изображена на фиг. 38.11.
Фиг. 38.11. Изогнутая балка.
Что же происходит внутри балки? Раз она искривлена, значит, материал на внутренней стороне сгиба сжат, а на внешней стороне растянут. Но имеется какая-то поверхность, более или менее параллельная оси балки, которая и не сжата, и не растянута. Называется она нейтральной поверхностью. По-видимому, эта поверхность проходит где-то «посредине» поперечного сечения. Можно показать (но я не буду этого здесь делать), что для небольшого изгиба простой балки нейтральная поверхность проходит через «центр тяжести» поперечного сечения. Но это справедливо только для «чистого» сгиба, т. е. когда балка не растягивается и не сжимается как целое.
При чистом сгибе тонкий поперечный отрезок балки возмущен (фиг. 38.12, а).
Фиг. 38.12. Маленький отрезок изогнутой балки (а) и поперечное сечение балки (б).
Материал под нейтральной поверхностью испытывает деформацию сжатия, которая пропорциональна расстоянию от нейтральной поверхности, а материал над ней растянут тоже пропорционально расстоянию от нейтральной поверхности. Таким образом, продольное удлинение Δl пропорционально высоте у. Константа пропорциональности равна просто длине l, деленной на радиус кривизны балки (см. фиг. 38.12):
Так что напряжение, т. е. сила, действующая на единичную площадь в некоторой маленькой полоске вблизи у, тоже пропорциональна расстоянию от нейтральной поверхности
(38.34)
Теперь рассмотрим те силы, которые привели бы к подобной деформации. Силы, действующие на маленький отрезок, изображенный на фиг. 38.12, показаны на том же рисунке. Если мы возьмем любое поперечное сечение, то действующие на нем силы направлены в одну сторону выше нейтральной поверхности и в другую — ниже ее. Получается пара сил, которая создает «изгибающий момент» M, под которым мы понимаем момент силы относительно нейтральной линии. Интегрируя произведение силы на расстояние от нейтральной поверхности, можно вычислить полный момент на одной из граней отрезка фиг. 38.12:
(38.35)
Согласно (38.34), dF=Y(y/R)dA, так что
Но интеграл от y2dA можно назвать «моментом инерции» геометрического поперечного сечения относительно горизонтальной оси, проходящей через его «центр масс»[53]; мы будем обозначать его через I, т. е.
(38.36)
(38.37)
Уравнение (38.36) дает нам соотношение между изгибающим моментом M и кривизной балки 1/R. «Жесткость» балки пропорциональна Y и моменту инерции I. Другими словами, если вы хотите какую-то балку, скажем из алюминия, сделать как можно жестче, то вы должны как можно больше вещества поместить как можно дальше от оси, относительно которой берется момент инерции. Но этого нельзя доводить до предела, ибо тогда балка не будет искривляться так, как мы предположили: она согнется или скрутится и снова станет слабее. Вот почему каркасные балки делают в форме буквы I или Н (фиг. 38.13).
Фиг. 38.13. Двутавровая балка.
В качестве примера применения нашего уравнения (38.36) для балки вычислим отклонение консольной балки под действием сосредоточенной силы W, действующей на ее свободный конец (фиг. 38.14).
Фиг. 38.14. Консольная балка с нагрузкой на конце.
(Консольная балка закреплена одним концом, который вмурован в стенку.) Какая же тогда будет форма балки? Обозначим отклонение на расстоянии х от закрепленного конца через z; мы хотим найти z(x). Будем вычислять только малые отклонения. Как вы знаете из курса математики, кривизна 1/R любой кривой z(x) задается выражением
(38.38)
Нас интересуют только малые изгибы (обычная вещь в инженерных конструкциях), поэтому квадратом производной (dz/dx)2 можно пренебречь по сравнению с единицей и считать
(38.39)
Нам нужно еще знать изгибающий момент M. Он является функцией от х, так как в любом поперечном сечении он равен моменту относительно нейтральной оси. Весом самой балки пренебрежем и будем учитывать только силу W, действующую вниз на свободный ее конец. (Если хотите, можете сами учесть ее вес.) При этом изгибающий момент на расстоянии х равен
ибо это и есть момент сил относительно точки х, с которым действует груз W, т. е. груз, который должен поддерживать балку. Получаем
или
(38.40)
Это уравнение можно проинтегрировать без всяких фокусов и получить
(38.41)
воспользовавшись предварительно нашим предположением, что z(0)=0 и что dz/dx в точке x=0 тоже равно нулю. Это и есть граничные условия. А отклонение конца будет
(38.42)
т. е. отклонение возрастает пропорционально кубу длины балки. При выводе нашей приближенной теории мы предполагали, что при изгибании поперечное сечение бруска не изменяется. Когда толщина бруска мала по сравнению с радиусом кривизны, поперечное сечение изменяется очень мало и все отлично. Однако в общем случае этим эффектом пренебречь нельзя — согните пальцами канцелярскую резинку и вы сами убедитесь в этом. Если первоначально поперечное сечение было прямоугольным, то, согнув резинку, вы увидите, как она выпирает у основания (фиг. 38.15).
Фиг. 38.15. Согнутая резинка (а) и ее поперечное сечение (б).
Это получается потому, что, согласно отношению Пуассона, при сжатии основания материал «раздается» вбок. Резинку очень легко согнуть или растянуть, но она несколько напоминает жидкость в том отношении, что изменить ее объем очень трудно. Это и сказывается при сгибании резинки. Для несжимаемых материалов отношение Пуассона было бы точно равно 1/2, для резинки же оно близко к этому числу.
§ 5. Продольный изгиб
Теперь воспользуемся нашей теорией, чтобы понять, что происходит при продольном изгибе бруска, опоры или стержня. Рассмотрим то, что изображено на фиг. 38.16.
Фиг. 38.16. Продольно изогнутая балка.
Здесь стержень, обычно прямой, удерживается в согнутом виде двумя противоположными силами, давящими на его концы. Найдем форму стержня и величину сил, действующих на концы.
Пусть отклонение стержня от прямой линии между концами будет у(х), где х — расстояние от одного конца. Изгибающий момент M в точке Р на рисунке равен силе F, умноженной на плечо, перпендикулярное направлению у:
(38.43)
Воспользовавшись выражением для момента (38.36), имеем
(38.44)
При малых отклонениях можно считать 1/R=-d2y/dx2 (отрицательный знак выбран потому, что кривизна направлена вниз). Отсюда
(38.45)
т. е. появилось дифференциальное уравнение для синуса. Таким образом, для малых отклонений кривая такого продольно изогнутого стержня представляет синусоиду. «Длина волны» λ. этой синусоиды в два раза больше расстояния L между концами. Если изгиб невелик, она просто равна удвоенной длине неизогнутого стержня. Таким образом, получается кривая
Беря вторую производную, находим
Сравнивая это с (38.45), видим, что сила равна
(38.46)
Для малого продольного изгиба сила не зависит от перемещения у!
Физически же получается вот что. Если сила F меньше определяемой уравнением (38.46), то никакого продольного изгиба не происходит. Но если она хоть немного больше этой силы, то балка внезапно и очень сильно согнется, т. е. под действием сил, превышающих критическую величину π2YI/L2 (часто называемую «силой Эйлера»), балка будет «гнуться». Если на втором этаже здания разместить такой груз, что нагрузка на поддерживающие колонны превысит силу Эйлера, то здание рухнет. Другая область, где очень важны продольно изгибающие силы, — это космические ракеты. С одной стороны, ракета должна выдерживать свой вес на стартовой площадке и вынести напряжения во время ускорения, а с другой — очень важно свести вес всей конструкции до минимума, чтобы полезная нагрузка и полезная мощность двигателей были как можно больше.
Фактически превышение силы Эйлера вовсе не означает, что после этого балка полностью разрушится. Когда отклонение становится большим, сила благодаря члену (dz/dx)2 в уравнении (38.38), которым мы пренебрегли, будет на самом деле больше вычисленной. Чтобы найти силы при большом продольном изгибании стержня, мы должны вернуться к точному уравнению (38.44), которое получалось до использования приближенной связи между R и y. Уравнение (38.44) имеет довольно простые геометрические свойства[54]. Решается оно немного сложнее, но зато гораздо интереснее. Вместо того чтобы описывать кривую через х и у, можно воспользоваться двумя новыми переменными: S — расстоянием вдоль кривой и θ— наклоном касательной к кривой (фиг. 38.17.)
Фиг. 38.17. Координаты кривой продольно изогнутой балки S и θ.
Тогда кривизна будет равна скорости изменения угла с расстоянием
Поэтому точное уравнение (38.44) можно записать в виде
После взятия производной этого уравнения по S и замены dy/dS на sinθ получим
(38.47)
[Если углы θ малы, то мы снова приходим к уравнению (38.45), стало быть здесь все в порядке].
Не знаю, можете ли вы еще удивляться, но уравнение (38.47) получилось в точности таким же, как и для колебаний маятника с большой амплитудой (разумеется, с заменой F/YI другой постоянной). Еще раньше, в гл. 9 (вып. 1), мы узнали, как находить решение такого уравнения численным методом[55]. В ответе вы получите очаровательную кривую. На фиг. 38.18 показаны три кривые для разных значений постоянной F/YI.
Фиг. 38.18. Формы продольно изогнутого стержня.
Глава 39 УПРУГИЕ МАТЕРИАЛЫ[56]
§ 1. Тензор деформации
В предыдущей главе мы говорили о возмущениях упругих тел в простых случаях. В этой главе мы посмотрим, что может происходить внутри упругого материала в общем случае. Как описать условия напряжения и деформации в большом куске желе, скрученном и сжатом каким-то очень сложным образом? Для этого необходимо описать локальную деформацию в каждой точке упругого тела, а это можно сделать, задав в ней набор шести чисел — компонент симметричного тензора. Ранее (в гл. 31) мы говорили о тензоре напряжений, теперь же нам потребуется тензор деформации.
Предположим, что мы взяли недеформированный материал и, прикладывая напряжение, наблюдаем за движением маленького пятнышка примеси, попавшей внутрь. Пятнышко, которое вначале находилось в точке Р и имело положение r=(x, у, z), передвигается в новую точку Р', т. е. в положение r'=(х', у', z'), как это показано на фиг. 39.1.
Фиг. 39.1. Пятнышко примеси в материале из точки Р недеформированного кубика после деформации перемещается в точку Р'.
Мы будем обозначать через u вектор перемещения из точки Р в точку Р', т. е.
(39.1)
Перемещение u зависит, конечно, от точки Р, из которой оно выходит так, что и есть векторная функция от r или от (х, у, z).
Сначала рассмотрим простейший случай, когда деформация по всему материалу постоянна, т. е. то, что называется однородной деформацией. Предположим, например, что мы взяли балку из какого-то материала и равномерно ее растянули. Иначе говоря, мы просто равномерно изменили ее размер в одном направлении, скажем в направлении оси х (фиг. 39.2).
Фиг. 39.2. Однородная деформация растяжения.
Перемещение ux пятнышка с координатой х пропорционально самому х.
Действительно,
Мы будем записывать ux следующим образом:
Разумеется, константа пропорциональности ехх— это то же, что наше старое отношение Δl/l. (Скоро вы увидите, почему нам потребовался двойной индекс.)
Если же деформация неоднородна, то связь между х и ux в материале будет изменяться от точки к точке. В таком общем случае мы определим ехх как своего рода локальную величину Δl/l, т. е.
(39.2)
Это число, которое теперь будет функцией х, у и z, описывает величину растяжения в направлении оси х по всему куску желе. Возможны, конечно, растяжения и в направлении осей у и z. Мы будем описывать их величинами
(39.3)
Кроме того, нам нужно описать деформации типа сдвигов. Вообразите, что в первоначально невозмущенном желе вы выделили маленький кубик. Нажав на желе, мы изменяем его форму, и наш кубик может превратиться в параллелограмм (фиг. 39.3)[57].
Фиг. 39.3. Однородная деформация сдвига.
При такой деформации перемещение в направлении х каждой частицы пропорционально ее координате у:
(39.4)
а перемещение в направлении у пропорционально х:
(39.5)
Таким образом, деформацию сдвигового типа можно описать с помощью
где
Теперь вы сочтете, что при неоднородной деформации обобщенную деформацию сдвига можно описать, определив величины еxy и еyx следующим образом:
(39.6)
Однако здесь есть некая трудность. Предположим, что перемещения uх и uy имеют вид
Они напоминают уравнения (39.4) и (39.5), за исключением того, что при uy стоит обратный знак. При таком перемещении маленький кубик из желе претерпевает простой поворот на угол θ/2 (фиг. 39.4).
Фиг. 39.4. Однородный поворот. Никаких деформаций нет.
Никакой деформации здесь вообще нет, а есть просто вращение в пространстве. При этом никакого возмущения материала не происходит, а относительное положение всех атомов совершенно не изменяется. Нужно как-то устроить так, чтобы чистое вращение не входило в наше определение деформации сдвига. Указанием может послужить то, что если ∂uy/∂х и ∂ux/∂у равны и противоположны, никакого напряжения нет; этого можно добиться, определив
Для чистого вращения оба они равны нулю, но для чистого сдвига мы получаем, как и хотели, еху=еуx.
В наиболее общем случае возмущения, который наряду со сдвигом может включать растяжение или сжатие, мы будем определять состояние деформации заданием девяти чисел:
(39.7)
Они образуют компоненты тензора деформации. Поскольку тензор этот симметричен (согласно нашему определению, еху всегда равно еух), то на самом деле различных чисел здесь только шесть. Вы помните (см. гл. 31) общее свойство всех тензоров — элементы его преобразуются при повороте подобно произведению компонент двух векторов. (Если А и В — векторы, то Сij=АiВj — тензор.) А каждое наше eij есть произведение (или сумма таких произведений) компонент вектора u=(uх, uу, uz) и оператора ∇=(∂/∂x,∂/∂y,∂/∂z), который, как мы знаем, преобразуется подобно вектору. Давайте вместо х, у и z писать x1, x2 и x3, а вместо uх, uy и uz писать u1, u2 и u3; тогда общий вид элемента тензора eij будет выглядеть так:
(39.8)
где индексы i и j могут принимать значения 1, 2 или 3.
Когда мы имеем дело с однородной деформацией, которая может включать как растяжения, так и сдвиги, то все eij — постоянные, и мы можем написать
(39.9)
(Начало координат выбрано в точке, где u равно нулю.) В этих случаях тензор деформации eij дает соотношение между двумя векторами — вектором координаты r=(x, y, z) и вектором перемещения u=(uх, uу, uz).
Если же деформация неоднородна, то любой кусочек желе может быть как-то искажен и, кроме того, могут возникнуть местные повороты. Когда все возмущения малы, мы получаем
(39.10)
где ωij, — антисимметричный тензор
(39.11)
описывающий поворот. Нам незачем беспокоиться о поворотах; займемся только деформацией, которая описывается симметричным тензором еij.
§ 2. Тензор упругости
Теперь, чтобы описать деформации, мы должны связать их с внутренними силами — с напряжениями в материале. Мы предполагаем, что закон Гука справедлив для любого кусочка материала, т. е. что напряжения всюду пропорциональны деформациям. В гл. 31 мы определили тензор напряжений Sij как i-ю компоненту силы, действующей на единичной площадке, перпендикулярной оси j. Закон Гука говорит, что каждая компонента Sij линейно связана с каждой компонентой напряжения. Но поскольку S и l содержат по девяти компонент, то всего для описания упругих свойств материала требуется 9×9=81 возможный коэффициент. Если материал однороден, то все эти коэффициенты будут постоянными. Мы обозначим их Cijkl, определив посредством уравнения
(39.12)
где каждый значок i, j, k и l может принимать значения 1, 2 или 3. Поскольку коэффициенты Сijkl связывают один тензор с другим, они тоже образуют тензор — на этот раз тензор четвертого ранга. Мы можем назвать его тензором упругости.
Предположим, что все Cijkl известны и что к телу какой-то произвольной формы мы приложили сложные силы. При этом возникнут все сорта деформаций — тело как-то исказится. Каковы будут перемещения? Вы понимаете, что это довольно сложная задача. Если вам известны деформации, то из уравнения (39.12) можно найти напряжения, и наоборот. Но напряжения и деформации, которые возникли в любой точке, зависят от того, что происходит во всей остальной части материала.
Наиболее простой способ подступиться к такой задаче — это подумать об энергии. Когда сила F пропорциональна перемещению х, скажем F=kx, то работа, затраченная на любое перемещение х, равна kx2/2. Подобным же образом энергия w, запасенная в любой единице объема деформированного материала, оказывается равной
(39.13)
Полная же работа W, затраченная на деформацию всего тела, будет интегралом от w по всему его объему:
(39.14)
Следовательно, это и есть потенциальная энергия, запасенная во внутренних напряжениях материала. Когда тело находится в равновесии, эта внутренняя энергия должна быть минимальной. Таким образом, проблема определения деформаций в теле может быть решена нахождением таких перемещений и по всему телу, при которых W минимальна. В гл. 19 (вып. 6) я говорил вам о некоторых общих идеях вариационного исчисления, применяемого при решении задач на минимизацию подобного рода. Однако сейчас мы больше не будем вдаваться в подробности этой задачи.
Сейчас нас главным образом будет интересовать то, что можно сказать относительно общих свойств тензора упругости. Прежде всего ясно, что на самом деле в Cijkl содержится не 81 различный параметр. Поскольку Sij и eij — симметричные тензоры, каждый из которых включает только шесть различных элементов, то Cijkl состоит максимум из 36 различных компонент. Обычно же их гораздо меньше.
Рассмотрим специальный случай кубического кристалла. Плотность энергии w для него получается такой:
(39.15)
т. е. всего 81 слагаемое! Но кубический кристалл обладает определенными симметриями. В частности, если кристалл повернуть на 90°, то все его физические свойства останутся теми же. Например, у него должна быть одна и та же жесткость относительно растяжения как в направлении оси у, так и в направлении оси х. Следовательно, если мы переменим наши определения осей координат х и у в уравнении (39.15), то энергия не должна измениться. Поэтому для кубического кристалла
(39.16)
Мы можем еще показать, что компоненты, наподобие Сххху, должны быть нулями. Кубический кристалл обладает тем свойством, что он симметричен при отражении относительно любой плоскости, перпендикулярной к одной из осей координат. Если мы заменим у на —y, то ничего не должно измениться. Но изменение у на -у меняет еxy на -еxy, так как перемещение в направлении +у будет теперь перемещением в направлении -у. Чтобы энергия при этом не менялась, Сххху должно переходить в -Сххху Но отраженный кристалл будет тем же, что и прежде, поэтому Сххxy должно быть таким же, как и -Сххху. Это может произойти только тогда, когда оба они равны нулю.
Но вы можете сказать: «Рассуждая таким же образом, можно сделать и Cyyyy=0!» Это неверно. Ведь здесь у нас четыре игрека. Каждый у изменяет знак, а четыре минуса дают плюс. Если у встречается два или четыре раза, то такие компоненты не должны быть равны нулю. Нулю равны только те компоненты, у которых у встречается либо один, либо три раза. Таким образом, для кубического кристалла не равны нулю только те С, у которых один и тот же значок встречается четное число раз. (Рассуждения, которые мы провели для у, имеют силу и для х и для z.) Таким образом, выживают только компоненты типа Сххуу, Схуху, Схуух и т. д. Однако мы уже показали, что если изменить все х на у и наоборот (или все z на x и т. д.), то для кубического кристалла мы должны получить то же самое число. Это означает, что остаются всего три различные ненулевые возможности:
(39.17)
Плотность же энергии для кубического кристалла выглядит так:
(39.18)
У изотропного, т. е. некристаллического, материала симметрия еще выше. Числа С должны быть теми же самыми при любом выборе осей координат. При этом, как оказывается, существует другая связь между коэффициентами С:
(39.19)
Это можно усмотреть из следующих общих рассуждений. Тензор напряжений Sij должен быть связан с eij способом, который совершенно не зависит от направления осей координат, т. е. он должен быть связан только с помощью скалярных величин. «Это очень просто», — скажете вы. «Единственный способ получить Sij из eij — умножить последнее на скалярную постоянную. Получится как раз закон Гука: Sij=(Постоянная)×еij». Однако это не совсем верно. Дополнительно здесь можно вставить единичный тензор δij, умноженный на некоторый скаляр, линейно связанный с еij. Единственный инвариант, который можно составить и который линеен по е, — это ∑eij. (Он преобразуется подобно х2+y2+z2, а значит является скаляром.) Таким образом, наиболее общей формой уравнения, связывающего Sij с eij для изотропного материала, будет
(39.20)
(Первая константа обычно записывается как 2μ; при этом коэффициент μ равен модулю сдвига, определенному нами в предыдущей главе.) Постоянные μ, и λ называются упругими постоянными Лямэ. Сравнивая уравнения (39.20) с уравнением (39.12), вы видите, что
(39.21)
Таким образом, мы доказали, что уравнение (39.19) действительно правильное. Вы видите также, что упругие свойства изотропного материала, как уже говорилось в предыдущей главе, полностью задаются двумя постоянными.
Коэффициенты С могут быть выражены через любые две из упругих постоянных, которые использовались ранее, например через модуль Юнга Y и отношение Пуассона σ. На вашу долю оставляю показать, что
(39.22)
§ 3. Движения в упругом теле
Мы подчеркивали, что в упругом теле, находящемся в равновесии, внутренние напряжения распределяются так, чтобы энергия была минимальной. Посмотрим теперь, что происходит, если внутренние силы не уравновешены. Возьмем маленький кусочек материала внутри некоторой поверхности А (фиг. 39.5).
Фиг. 39.5. Маленький элемент объема V, ограниченный поверхностью А,
Если этот кусочек находится в равновесии, то полная действующая на него сила F должна быть равна нулю. Можно считать, что эта сила состоит из двух частей, одна из которых обусловлена «внешними» силами, подобными гравитации, действующими на расстоянии на вещество нашего кусочка и приводящими к величине силы на единицу объема fвнешн. Полная же внешняя сила Fвнешн равна интегралу от fвнешн по всему объему кусочка:
(39.23)
В равновесии эти силы балансируются полной силой Fвнутр, действующей по поверхности А со стороны окружающего материала. Когда же этот кусочек не находится в равновесии, а движется, сумма внутренних и внешних сил будет равна произведению массы на ускорение. При этом мы получаем
(39.24)
где ρ—плотность материала, а ..r — его ускорение. Теперь мы можем скомбинировать уравнения (39.23) и (39.24) и написать
(39.25)
Нашу запись можно упростить, положив
(39.26)
Тогда уравнение (39.25) запишется в виде
(39.27)
Величина, названная нами Fвнутр, связана с напряжениями в материале. Тензор напряжений Sij был определен нами в гл. 31 таким образом, что x-компонента силы dF, действующей на элемент поверхности da с нормалью n, задается выражением
(39.28)
Отсюда х-компонента силы Fвнутр, действующей на наш кусочек, равна интегралу от dFx по всей поверхности. Подставляя это в x-компоненту уравнения (39.27), получаем
(39.29)
Оказалось, что поверхностный интеграл связан с интегралом по объему, а это напоминает нам нечто знакомое по главам об электричестве. Заметьте, что если не обращать внимания на первый значок х в каждом из S в левой части (39.29), то она выглядит в точности как интеграл от величины (S·n), т.е. нормальной компоненты вектора по поверхности. Она была бы равна потоку S через объем. А используя теорему Гаусса, поток можно было бы записать в виде объемного интеграла от дивергенции S. На самом деле все это справедливо независимо от того, есть ли у нас индекс х или нет. Это просто математическая теорема, которая доказывается интегрированием по частям. Другими словами, уравнение (39.29) можно превратить в
(39.30)
Теперь можно отбросить интегралы по объему и написать дифференциальное уравнение для любой компоненты f:
(39.31)
Оно говорит нам, как связана сила, действующая на единицу объема с тензором напряжения Sij.
Вот как работает эта теория внутренних движений твердого тела. Если первоначально нам известны перемещения, задаваемые, скажем, вектором u, то можно найти деформации eij. Из деформаций с помощью уравнения (39.12) можно получить напряжения. Затем с помощью уравнения (39.31) мы из напряжений можем найти плотности сил f. А зная f, мы из уравнения (39.26) получаем ускорение ..r в материале, которое подскажет нам, как изменятся перемещения. Собирая все это вместе, мы получаем ужасно сложные уравнения движения упругого твердого тела. Я просто напишу вам ответ для изотропного материала. Если вы воспользуетесь для Sij уравнением (39.20) и запишете eij в виде 1/2 (∂ui/∂xj+∂uj/∂xi), то окончательно получите векторное уравнение:
(39.32)
Вы можете очень просто убедиться в том, что уравнение должно иметь такую форму. Сила должна зависеть от второй производной — перемещения u. Но какие можно составить вторые производные u так, чтобы они были векторами? Одна из них ∇(∇·u); это самый настоящий вектор. Есть еще только одна такая комбинация — это ∇2u. Так что наиболее общей формой силы будет
что как раз дает (39.32) с другим определением постоянных. Вас может удивить, почему у нас нет третьего слагаемого ∇×∇×u, которое тоже вектор. Но вспомните, что ∇×∇×u в точности равно ∇2u-∇(∇·u), т. е. это линейная комбинация двух уже написанных слагаемых. Так что оно не добавит ничего нового. Мы еще раз доказали, что в изотропном материале есть только две упругие постоянные.
Для получения уравнения движения материала мы можем положить выражение (39.32) равным ρ∂2u/∂t2 и, пренебрегая объемными силами типа силы тяжести, написать
(39.33)
Это уравнение выглядит похожим на волновое уравнение, с которым мы познакомились в электромагнетизме, за исключением одного добавленного слагаемого, которое усложняет дело. Для материалов, упругие свойства которых всюду одинаковы, мы можем увидеть, на что похоже общее решение. Вы, наверное, помните, что любое векторное поле может быть записано в виде суммы двух векторов, у одного из которых нулю равна дивергенция, а у другого — ротор. Другими словами, можно положить
(39.34)
где
(39.35)
Подставляя вместо u в уравнении (39.33) u1+u2, получаем
(39.36)
Взяв дивергенцию этого уравнения, мы можем исключить из него u1:
Поскольку операторы ∇2 и ∇ могут быть переставлены, можно вынести оператор дивергенции и получить
(39.37)
А так как ∇×u2, по определению, равно нулю, то ротор выражения в фигурных скобках также будет нулем, так что выражение в скобках само по себе тождественно равно нулю и
(39.38)
Это векторное волновое уравнение для волн, движущихся со скоростью С2=√(λ+2μ)/ρ. Поскольку ротор u2 есть нуль, то эти волны не связаны со сдвигом, а представляют просто волны сжатия наподобие звуковых, которые мы изучали в предыдущих главах и скорость которых как раз равна найденной нами для Спрод.
Подобным же образом, беря ротор уравнения (39.36), можно показать, что u1 удовлетворяет уравнению
(39.39)
Это снова векторное волновое уравнение для волн, распространяющихся со скоростью C2=√μ/ρ. Поскольку ∇·u1 равно нулю, то перемещение u1 не приводит к изменению плотности; вектор u1 соответствует поперечным или сдвиговым волнам, которые встречались нам в предыдущей главе, а C2=Cсдвиг.
Если мы хотим знать статические напряжения в изотропном материале, то в принципе их можно найти, решая уравнение (39.32) с f, равным нулю (или равным статическим объемным силам, обусловленным силой тяжести, такой, как ρg) при определенных условиях, связанных с силами, действующими на поверхности нашего большого куска материала. Сделать это несколько сложнее, чем в соответствующих задачах электромагнетизма. Во-первых, это более трудно потому, что сами уравнения несколько сложнее, и, во-вторых, формы тех упругих тел, которыми мы обычно интересуемся, гораздо сложнее. На лекциях по электричеству мы часто интересовались решением уравнений Максвелла в областях сравнительно простой геометрической формы, таких, как цилиндр, сфера и т. д. В теории упругости, нам приходится заниматься объектами гораздо более сложной формы, например крюком подъемного крана, или коленчатым автомобильным валом, или ротором газовой турбины. Такие задачи иногда можно приближенно решить численным методом, воспользовавшись принципом минимальной энергии, о котором мы упомянули ранее. Другой способ — это воспользоваться моделями предметов и измерять внутренние напряжения экспериментально с помощью поляризованного света.
Метод этот состоит в следующем. Когда кусок упругого изотропного материала, например прозрачную пластмассу типа плексигласа, подвергают напряжению, в ней возникает двойное лучепреломление. Если пропускать через эту пластмассу поляризованный свет, то плоскость поляризации повернется на величину, связанную с напряжением. Измеряя угол плоскости поляризации, можно измерить напряжение. На фиг. 39.6 показан примерный вид этого устройства, а на фиг. 39.7 приведена фотография упругой модели сложной формы под напряжением.
Фиг. 39.6. Измерение внутренних напряжений с помощью поляризованного света.
Фиг. 39.7. Вид напряженной пластмассовой модели между двумя скрещенными поляроидами.
§ 4. Неупругое поведение
Во всем, что до сих пор говорилось, мы предполагали, что напряжение пропорционально деформации, а это вообще-то неверно. На фиг. 39.8 приведена типичная диаграмма напряжение — деформация упругого материала.
Фиг. 39.8. Типичная диаграмма напряжение — деформация для больших деформаций.
Для малых деформаций напряжение пропорционально деформации. Однако после некоторой точки зависимость напряжения от деформации начинает отклоняться от прямой линии. Для многих материалов, которые мы назовем «хрупкими», разрушение наступает, когда деформация несколько превысит ту точку, где кривая начинает загибаться. В общем же случае в диаграмме напряжение — деформация есть и другие усложнения. Например, когда вы деформируете предмет, существующие большие напряжения могут затем медленно уменьшиться со временем. Если вы достигнете высоких напряжений, однако ниже точки разрыва, а затем будете уменьшать деформацию, то напряжения будут возвращаться назад уже по другой кривой. Возникает небольшой гистерезисный эффект (наподобие того, что мы видели в связи между В и Н в магнитных материалах).
Напряжения, при которых происходит разрушение, сильно изменяются от материала к материалу. Некоторые материалы разрушаются при максимальном растягивающем напряжении. Другие же разрушаются при определенной величине напряжения сдвига. Скажем, мел гораздо слабее противостоит растяжению, чем сдвигу. Если вы потянете за концы палочки мела, то она сломается перпендикулярно направлению приложенной силы (фиг. 39.9, справа).
Фиг. 39.9. Сломанный кусочек мела: Справа — растягиванием за "концы", слева — скручиванием.
Ведь мел — это только спрессованные частички, которые легко растаскиваются в стороны, поэтому он ломается перпендикулярно приложенной силе. А в отношении сдвига этот материал гораздо крепче, так как в этом случае частицы мешают друг другу. Вспомните теперь, что когда мы скручиваем стержень, то в любом его поперечном сечении возникают сдвиги. Мы показали, кроме того, что сдвиг эквивалентен комбинации растяжения и сжатия под углом 45°. По этой причине при скручивании кусочек мела разломится по сложной поверхности, которая расположена под углом 45° к образующим. На фиг. 39.9 (слева) приведена фотография куска мела, сломанного таким способом. Мел ломается там, где напряжения максимальны.
Есть и другие материалы, которые ведут себя очень странным и сложным образом. Чем сложнее материал, тем причудливей его поведение. Если мы возьмем лист сарана[58], скомкаем его и бросим на стол, то постепенно он расправится и примет свою первоначальную плоскую форму. На первый взгляд кажется соблазнительным считать, что здесь основную роль играет именно упругость. Но простой подсчет покажет, что она слишком слаба (на несколько порядков слабее), чтобы как-то влиять на этот эффект. Оказывается, что здесь соревнуются два механизма: «нечто» внутри материала «помнит» первоначальную форму и «пытается» вернуться к старому виду, а «нечто» другое «предпочитает» новую форму и сопротивляется возврату к старой.
Я не хочу вдаваться в подробности и описывать тот механизм, который играет роль в поведении скомканного листа сарана, но получить представление о том, как такие эффекты происходят, вы можете на следующей модели. Представьте себе материал, изготовленный из длинных гибких, но крепких нитей вперемешку с пустотелыми ячейками, заполненными вязкой жидкостью. Представьте также, что между каждой ячейкой и соседними с ней имеются узкие проходы, по которым жидкость может медленно проникать из одной ячейки в другую. Если мы скомкаем лист такого материала, то длинные нити деформируются, жидкость из одной ячейки будет выжиматься и переходить в другие ячейки, которые оказались растянутыми. Когда же мы отпускаем лист, то длинные нити будут стремиться вернуться к своей первоначальной форме. Однако, чтобы сделать это, они должны заставить жидкость возвратиться на свое прежнее место, что происходит довольно медленно из-за ее вязкости. Силы, которые мы прилагаем, комкая лист, гораздо больше сил, развиваемых нитями. Скомкать лист можно очень быстро, а вот вернуться к прежнему виду он сможет гораздо медленнее. Несомненно, что здесь основную роль играет комбинация больших, жестких молекул и более мелких, но более подвижных. Этот механизм согласуется также с тем фактом, что материал быстрее принимает свою первоначальную форму, если он нагрет, и медленнее в холодном состоянии: тепло увеличивает подвижность (уменьшает вязкость) мелких молекул.
Хотя мы обсуждали, как происходит нарушение закона Гука, но, по-видимому, наиболее удивительно все же не нарушение этого закона при больших деформациях, а его универсальность. Некоторое понятие о том, почему так происходит, вы можете получить, рассматривая энергию деформации материала. Утверждение о том, что напряжение пропорционально деформации, равносильно утверждению, что энергия деформации изменяется как квадрат напряжения. Предположим, что мы скрутили стержень на малый угол θ. Если справедлив закон Гука, то энергия деформации должна быть пропорциональна квадрату θ. Предположим, что энергия является некоторой произвольной функцией угла. Мы можем записать ее в виде разложения Тэйлора около нуля:
(39.40)
Момент силы τ представляет производную U по углу, поэтому
(39.41)
Если теперь отсчитывать угол от положения равновесия, то первое слагаемое будет равно нулю. Таким образом, первое оставшееся слагаемое пропорционально θ и при достаточно малых углах оно будет превосходить слагаемое с θ2. [На самом деле, внутренне материалы в достаточной мере симметричны, так что τ(θ)=-τ(-θ); слагаемое с θ2 оказывается нулем, а отклонение от линейности происходит только из-за слагаемого с θ3. Однако нет причин, по которым это было бы верно для растяжения и сжатия.] Единственно, что мы не объяснили, — почему материалы обычно разрушаются вскоре после того, как становятся существенными члены высшего порядка.
§ 5. Вычисление упругих постоянных
Последний вопрос в теории упругости, который я разберу, — это попытка вычислить упругие постоянные материала, исходя из некоторых свойств атомов, составляющих этот материал. Мы рассмотрим простой случай ионного кубического кристалла типа хлористого натрия. Размер или форма деформированного кристалла изменяются. Такие изменения приводят к увеличению потенциальной энергии кристалла. Для вычисления изменения энергии деформации следует знать, куда идет каждый атом. Чтобы сделать полную энергию как можно меньше, атомы в решетке сложных кристаллов перегруппировываются весьма сложным образом. Это довольно сильно затрудняет вычисление энергии деформации. Но понять, что получается в случае простого кубического кристалла, все-таки можно. Возмущения внутри кристалла будут геометрически подобны возмущениям его внешних граней.
Упругие постоянные кубического кристалла можно вычислить следующим образом. Прежде всего мы предположим наличие некоего закона взаимодействия между каждой парой атомов в кристалле. Затем вычислим изменение внутренней энергии кристалла при отклонении от равновесной формы. Это даст нам соотношения между энергией и деформацией, которая квадратична по деформациям. Сравнивая энергию, полученную таким способом, с уравнением (39.13), можно идентифицировать коэффициенты при каждом слагаемом с упругими постоянными Cijkl.
В нашем примере мы будем предполагать следующий простой закон взаимодействия: между соседними атомами действуют центральные силы, имея в виду, что они действуют по линии, соединяющей два соседних атома. Мы ожидаем, что силы в ионных кристаллах должны быть именно такого типа, ибо в основе их лежит простое кулоновское взаимодействие. (При ковалентной связи силы обычно более сложны, ибо они приводят и к боковому давлению на соседние атомы; но нам все эти усложнения ни к чему.) Кроме того, мы собираемся учесть только силу взаимодействия каждого атома с ближайшим к нему и следующими поблизости соседями. Другими словами, мы будем делать приближение, в котором пренебрежем силами между далекими атомами. На фиг. 39.10,а показаны силы в плоскости ху, которые мы будем учитывать. Следует еще учесть соответствующие силы в плоскостях yz и zx.
Поскольку нас интересуют только упругие постоянные, которые описывают малые деформации, и, следовательно, в выражении для энергии нам нужны только слагаемые, квадратичные по деформациям, то можно считать, что силы между каждой парой атомов изменяются с перемещением линейно.
Фиг. 39.10. Принимаемые нами в расчет межатомные силы (а) и модель, в которой атомы связаны пружинками (б).
Поэтому для наглядности можно представлять, что каждая пара атомов соединена «линейной» пружинкой (фиг. 39.10, б). Все пружинки между атомами натрия и хлора должны иметь одну и ту же упругую постоянную, скажем k1. Пружинки между двумя атомами натрия и двумя атомами хлора могут иметь различные постоянные, но я хочу упростить наши рассуждения, и поэтому буду считать эти постоянные равными. Обозначим их через k2. (Позднее, когда мы посмотрим, как пойдут вычисления, вы сможете вернуться назад и сделать их разными.)
Предположим теперь, что кристалл возмущен однородной деформацией, описываемой тензором eij. В общем случае у него будут компоненты, содержащие х, у и z, но мы для большей наглядности рассмотрим только деформации с тремя компонентами: ехх, еxy и еyy. Если один из атомов выбрать в качестве начала координат, то перемещение любого другого атома задается уравнением типа (39.9):
(39.42)
Назовем атом с координатами х=у=0 «атомом 1», а номера его соседей показаны на фиг. 39.11.
Фиг, 39.11. Перемещение ближайших и следующих поблизости соседей атома 1. (Масштаб сильно искажен.)
Обозначая постоянную решетки через а, мы получаем х- и y-компоненты перемещения ux, uy, выписанные в табл. 39.1.
Таблица 39.1. КОМПОНЕНТЫ ПЕРЕМЕЩЕНИЯ ux, uу
Теперь можно вычислить энергию, запасенную в пружинках, которая равна произведению k2/2 на квадрат растяжения каждой пружинки. Так, энергия горизонтальной пружинки между атомами 1 и 2 будет равна
(39.43)
Заметьте, что с точностью до первого порядка y-перемещение атома 2 не изменяет длины пружинки между атомами 1 и 2. Однако, чтобы получить энергию деформации диагональной пружинки, той, что идет к атому 3, нам нужно вычислить изменение длины как из-за вертикального, так и из-за горизонтального перемещений. Для малых отклонений от начала координат куба изменение расстояния до атома 3 можно записать в виде суммы компонент uх и uv в диагональном направлении:
Воспользовавшись величинами uх и uy. можно получить выражение для энергии
(39.44)
Для полной энергии всех пружинок в плоскости ху нам нужна сумма восьми членов типа (39.43) и (39.44). Обозначая эту энергию через U0, получаем
(39.45)
Чтобы найти полную энергию всех пружинок, связанных с атомом 1, мы должны сделать некую добавку к уравнению (39.45). Хотя нам нужны только х- и y-компоненты деформации, вклад в них дает еще некоторая добавочная энергия, связанная с диагональными соседями вне плоскости ху. Эта добавочная энергия равна
(39.46)
Упругие постоянные связаны с плотностью энергии w уравнением (39.13). Энергия, которую мы вычислили, связана с одним атомом, точнее это удвоенная энергия, приходящаяся на один атом, ибо на каждый из двух атомов, соединенных пружинкой, должно приходиться по 1/2 ее энергии. Поскольку в единице объема находится 1/a3 атомов, то w и U0 связаны соотношением
Чтобы найти упругие постоянные Cijkl, нужно только возвести в квадрат суммы в скобках в уравнении (39.45), прибавить (39.46) и сравнить коэффициенты при еijеkl с соответствующими коэффициентами в уравнении (39.13). Например, собирая слагаемые с е2xx и е2yy, мы находим, что множитель при нем равен
поэтому
В остальных слагаемых нам встретится небольшое усложнение. Поскольку мы не можем отличить произведения еххеyy от еyyехх, то коэффициент при нем в выражении для энергии равен сумме двух членов в уравнении (39.13). Коэффициент при еххеyy в уравнении (39.45) равен 2k2, так что получаем
Однако из-за симметрии выражения для энергии при перестановке двух первых значений с двумя последними можно считать, что Скхуу=Суухх, поэтому
Таким же способом можно получить
Заметьте, наконец, что любой член, содержащий один раз значок х или у, равен нулю, как это было найдено ранее из соображений симметрии. Подытожим наши результаты:
(39.47)
Итак, оказалось, что мы способны связать макроскопические упругие постоянные с атомными свойствами, которые проявляются в постоянных k1 и k2. В нашем частном случае Cхуxу=Cххуу.Эти члены для кубического кристалла, как вы, вероятно, заметили из хода вычислений, оказываются всегда равными, какие бы силы мы ни принимали во внимание, но только при условии, что силы действуют вдоль линии, соединяющей каждую пару атомов, т. е. до тех пор, пока силы между атомами подобны пружинкам и не имеют боковой составляющей (которая несомненно существует при ковалентной связи).
Наши вычисления можно сравнить с экспериментальными измерениями упругих постоянных. В табл. 39.2 приведены наблюдаемые величины трех упругих коэффициентов для некоторых кубических кристаллов[59]. Вы, вероятно, обратили внимание на то, что Сxxyy, вообще говоря, не равно Сxyxy. Причина заключается в том, что в металлах, подобных натрию и калию, межатомные силы не направлены по линии, соединяющей атомы, как предполагалось в нашей модели. Алмаз тоже не подчиняется этому закону, ибо силы в алмазе — это ковалентные силы, которые обладают особым свойством направленности: «пружинки» предпочитают связывать атомы, расположенные в вершинах тетраэдра. Такие ионные кристаллы, как фтористый литий или хлористый натрий и т. д., обладают почти всеми физическими свойствами, предположенными в нашей модели; согласно данным табл. 39.2, постоянные Сxxyy и Сxyxy у них почти равны. Только хлористое серебро почему-то не хочет подчиняться условию Сххуу=Cxyxy..
Таблица 39.2. упругие постоянные КУБИЧЕСКИХ КРИСТАЛЛОВ
Глава 40 ТЕЧЕНИЕ «СУХОЙ» ВОДЫ
§ 1. Гидростатика
Кого не пленяет течение жидкости, кто не любуется течением воды! Все мы в детстве любили плескаться в ванне или возиться в грязных лужах. Став постарше, мы восхищались плавным течением реки, водопадами и водоворотами; мы любуемся ими, рядом с твердыми телами они кажутся нам почти одушевленными.
Предметом этой и следующей глав будет поведение жидкости, столь неожиданное и столь интересное. Попытки ребенка преградить путь маленькому ручейку, текущему по улице, и его удивление перед тем, как вода умудряется все же пробить себе дорогу, напоминает наши многолетние попытки понять механизм течения жидкости. Мы пытались мысленно преградить путь воды дамбой, т. е. получить законы и уравнения, которые описывают поток. Рассказу об этих попытках и посвящена настоящая глава. А в следующей главе мы опишем тот уникальный способ, с помощью которого вода прорывает дамбу и ускользает от нас, не дав нам понять ее.
Я предполагаю, что элементарные свойства воды вам уже известны. Основное свойство, которое отличает жидкость от твердого тела, заключается в том, что жидкость не способна сдерживать ни мгновение напряжения сдвига. Если к жидкости приложить напряжение сдвига, то она начинает двигаться. Густые жидкости, подобные меду, движутся менее легко, чем жидкости типа воды или воздуха. Мерой легкости, с которой жидкость течет, является ее вязкость. В этой главе мы рассмотрим такие случаи, когда эффектом вязкости можно пренебречь. А эффекты вязкости отложим до следующей главы.
Начнем с рассмотрения гидростатики, т. е. теории неподвижной жидкости. Если жидкость находится в покое, то на нее не действуют никакие сдвиговые силы (даже в вязкой жидкости). Поэтому закон гидростатики заключается в том, что напряжения внутри жидкости всегда нормальны к любой ее поверхности. Нормальная сила на единичную площадь называется давлением. Из того факта, что в неподвижной жидкости нет сдвигов, следует, что напряжение давления во всех направлениях одинаково (фиг. 40.1).
Фиг. 40.1. В неподвижной жидкости сила, действующая на единичную площадь любой поверхности, перпендикулярна этой поверхности и при любых ориентациях поверхности одна и та же.
Займитесь самостоятельно доказательством того, что если на любой плоскости в жидкости сдвиг отсутствует, то давление во всех направлениях должно быть одинаковым.
Давление в жидкости может изменяться от точки к точке. Так, в неподвижной жидкости на поверхности Земли давление будет изменяться с высотой из-за веса жидкости. Если плотность жидкости ρ считается постоянной и давление на некотором нулевом уровне обозначено через р0 (фиг. 40.2), то давление на высоте h над этой точкой будет р=р0 -ρgh, где g — сила тяжести единицы массы.
Фиг. 40.2. Давление в неподвижной жидкости.
Комбинация р+ρgh в неподвижной жидкости остается постоянной. Вы знаете это соотношение, но теперь мы получим более общий результат, где наше соотношение будет лишь частным случаем. Возьмем маленький кубик воды. Какая сила действует на него в результате оказываемого давления? Поскольку давление в любом месте во всех направлениях одинаково, то полная сила, действующая на единицу объема, может быть обусловлена только изменением давления от точки к точке. Предположим, что давление изменяется в направлении оси х, и выберем направления других осей координат параллельно ребрам кубика. Давление на грань с координатой х дает силу pΔyΔz (фиг. 40.3), а давление на грань с координатой х+Δх дает силу—[р+(∂р/∂х) Δх] ΔyΔz, так что результирующая сила равна -(∂р/∂х)ΔxΔyΔz.
Фиг. 40.3. Полная сила давления, действующая на куб, составляет -∇p на единицу объема.
Если же мы учтем остальные пары граней куба, то нетрудно убедиться, что сила давления на единичный объем равна -∇p. Если вдобавок есть еще и другие силы, наподобие силы тяжести, то давление при равновесии должно компенсироваться ими.
Разберем случай, когда такие дополнительные силы можно описать потенциальной энергией, наподобие силы тяжести. Обозначим через φ потенциальную энергию единицы массы. (Для притяжения, например, φ просто равно gz.) Сила, действующая на единичную массу, задаётся через потенциал φ выражением -∇φ, а если плотность жидкости равна ρ, то на единицу объема будет действовать сила -ρ∇φ. В состоянии равновесия эта действующая на единичный объем сила в сумме с силой давления должна давать нуль:
(40.1)
Это и есть уравнение гидростатики. В общем случае оно не имеет решения. Если плотность изменяется в пространстве каким-то произвольным образом, то нет возможности уравновесить все силы и жидкость не может находиться в состоянии статического равновесия. В ней возникнут разные конвекционные потоки. Это видно прямо из уравнения, ибо член с давлением представляет чистый градиент, тогда как второй член из-за плотности ρ не может быть им. И только когда величина ρ постоянна, потенциальный член становится чистым градиентом.
Решение уравнения в этом случае имеет вид
Другая возможность, допускающая состояние равновесия, — это когда ρ зависит только от р. Однако на этом мы расстанемся с гидростатикой, ибо она не так интересна, как движущаяся жидкость.
§ 2. Уравнение движения
Сначала обсудим движение жидкости с чисто абстрактной теоретической стороны, а затем рассмотрим некоторые частные примеры. Чтобы описать движение жидкости, мы должны задать в каждой точке ее некие свойства. Например, вода (будем называть жидкость просто «водой») в разных местах движется с различными скоростями. Следовательно, чтобы определить характер потока, мы должны в каждой точке и в любой момент времени задать три компоненты скорости. Если нам удастся найти уравнения, определяющие скорость, то мы будем знать, как в любой момент движется жидкость. Но скорость — не единственная характеристика жидкости, которая меняется от точки к точке. Только что мы изучали изменение давления от точки к точке. А есть еще и другие переменные. От точки к точке может меняться также плотность. Вдобавок жидкость может быть проводником и переносить электрический ток, плотность которого j изменяется от точки к точке как по величине, так и по направлению. От точки к точке может меняться температура, магнитное поле и т. д. Так что число полей, необходимых для полного описания ситуации, зависит от сложности задачи. Очень интересные явления возникают, когда доминирующую роль в определении поведения жидкости играют токи и магнетизм. Эта наука носит название магнитогидродинамика. В настоящее время ей уделяется очень большое внимание. Но мы не собираемся рассматривать эти весьма сложные случаи, ибо имеется немало менее сложных, но столь же интересных явлений, и даже этот более элементарный уровень будет достаточно труден.
Возьмем случай, когда нет ни магнитного поля, ни проводимости и нам, кроме того, не следует беспокоиться о температурах, ибо мы предположим, что температура в любой точке единственным образом определяется плотностью и давлением. Фактически мы уменьшим сложность нашей работы, допустив, что плотность постоянна, т. е. что жидкость существенно несжижаема. Другими словами, мы предполагаем, что изменения давлений настолько малы, что производимыми ими изменениями плотности можно пренебречь. Если бы это было не так, то в дополнение к явлениям, рассмотренным здесь, необходимо было бы учитывать и другие явления, скажем распространение звуковых или ударных волн. Распространение звуковых и ударных волн мы уже в какой-то степени изучали, так что при нашем рассмотрении гидродинамики мы изолируемся от этих явлений, допустив, что приближенно плотность ρ постоянная. Легко определить, когда такое предположение о постоянстве ρ будет хорошим. Если скорость потока гораздо меньше скорости звуковой волны, то нам не нужно заботиться об изменениях плотности. Тот факт, что вода ускользает от нас при попытке понять ее, не связан с этим приближением постоянной плотности. Усложнения, которые все-таки позволили ей остаться непонятой, мы обсудим в следующей главе.
Общую теорию жидкостей мы должны начать с уравнения состояния жидкости, связывающего давление и плотность; в нашем приближении оно имеет очень простой вид:
Это и есть первое уравнение для наших переменных. Следующее соотношение выражает сохранение вещества. Когда вещество утекает из какой-то точки, то количество его в этой точке должно уменьшаться. Если скорость жидкости равна v, то масса, которая протекает за единичное время через единицу площади поверхности, равна нормальной к поверхности компоненте ρv. Подобное соотношение у нас получалось уже в теории упругости. Из знакомства с электричеством мы знаем также, что дивергенция такой величины определяется скоростью уменьшения плотности. Также и здесь уравнение
(40.2)
выражает сохранение массы жидкости: это гидродинамическое уравнение непрерывности. В нашем приближении, т. е. в приближении несжимаемой жидкости, плотность ρ постоянна и уравнение непрерывности превращается просто в
(40.3)
Дивергенция скорости жидкости v, как и магнитного поля В, равна нулю. (Гидродинамические уравнения очень часто оказываются аналогичными уравнениям электродинамики; вот почему мы сначала изучали электродинамику. Некоторые предпочитают другой путь, считая, что сначала следует изучать гидродинамику, чтобы потом было легче понять электричество. На самом же деле электродинамика гораздо проще, чем гидродинамика.)
Следующее уравнение мы получим из закона Ньютона; оно говорит нам, как происходит изменение скорости в результате действия сил. Произведение массы элемента объема жидкости на ускорение должно быть равно силам, действующим на этот элемент. Выбирая в качестве элемента объема единичный объем и обозначая силу, действующую на единичный объем, через f, получаем
Плотность сил можно записать в виде суммы трех слагаемых. Одно из них, силу давления на единицу объема — (∇p), мы уже рассматривали. Но есть еще действующие на расстоянии «внешние» силы, подобные тяжести или электричеству. Если эти силы консервативные с потенциалом, отнесенным к единице массы, равным φ, то они приводят к плотности сил —ρ(∇φ). (Если же внешние силы не консервативные, то мы вынуждены писать внешнюю силу, приходящуюся на единицу объема, как fвнешн.) Кроме нее, на единицу объема действует еще одна «внутренняя» сила, которая возникает из-за того, что в текущей жидкости могут действовать сдвиговые силы. Они называются силами вязкости, и мы будем обозначать их через fвязк. Тогда наше уравнение движения приобретает вид
(40.4)
В этой главе мы будем предполагать, что наша вода «жидкая» в том смысле, что ее вязкость несущественна, так что слагаемое fвязк будет опускаться. Выбрасывая слагаемое с вязкостью, мы делаем приближение, которое описывает некое идеальное вещество, а не реальную воду. Об огромной разнице, возникающей в зависимости от того, оставляем ли мы слагаемое с вязкостью или нет, в свое время хорошо знал Джон фон Нейманн. Известно ему было и то, что во времена наибольшего расцвета гидродинамики, т. е. примерно до 1900 г., основные усилия были направлены на решение красивых математических задач в рамках именно этого приближения, которое ничего не имеет общего с реальными жидкостями. Поэтому теоретиков, которые занимались подобными веществами, он называл людьми, изучающими «сухую воду». Они отбрасывали важнейшее свойство жидкости. Именно потому, что в этой главе мы при наших вычислениях тоже этим свойством будем пренебрегать, я озаглавил ее «Течение «сухой» воды». А обсуждение настоящей, «мокрой» воды мы отложим до следующей главы.
Если мы отбросим fвязк, то в уравнении (40.4) все нам известно, за исключением выражения для ускорения. Может показаться, что формула для ускорения частиц жидкости должна быть очень простой, ибо очевидно, что если v — скорость частицы в некотором месте жидкости, то ускорение ее будет просто равно ∂v/∂t. Но это совсем неверно, и по довольно хитрой причине. Производная ∂v/∂t выражает изменение скорости v(х, у, z, t) в фиксированной точке пространства. А нам нужно знать, как изменяется скорость данной капельки жидкости. Представьте, что мы пометили одну капельку воды цветной краской и можем наблюдать за ней. За маленький интервал времени Δt эта капелька продвинется в другое положение. Если капелька движется по некоторому пути, изображенному на фиг. 40.4, то за промежуток Δt она из точки Р1 переместится в точку Р2.
Фиг. 40.4. Ускорение частицы жидкости.
Фактически в направлении оси х она передвинется на расстояние vxΔt, в направлении оси у — на расстояние vуΔt, а в направлении оси z — на расстояние vzΔt. Мы видим, что если v(х, у, z, t) — скорость частицы в момент t, то скорость той же самой частицы в момент t+Δt представляет величину v (х+Δx, у+Δy, z+Δz, t+Δt), причем
Из определения частных производных [вспомните уравнения гл. 2, вып. 5] мы с точностью до членов первого порядка получаем
Ускорение же Δv/Δt будет равно
Считая ∇ вектором, это можно записать символически:
(40.5)
Обратите внимание, что, даже когда ∂v/∂t=0, т. е. когда скорость в данной точке не изменяется, ускорение все же останется. Примером может служить вода, текущая с постоянной скоростью по кругу: она ускоряется даже тогда, когда скорость в данной точке не изменяется. Причина, разумеется, состоит в том, что скорость данной капельки воды, которая первоначально находилась в одной точке, моментом позднее будет иметь другое направление — это центростремительное ускорение.
Остальная часть нашей теории — чисто математическая: нахождение решения уравнения движения, полученного подстановкой ускорения (40.5) в (40.4), т. е.
(40.6)
где слагаемое с вязкостью уже выброшено. Воспользовавшись известным тождеством из векторного анализа, это уравнение можно переписать по-другому:
Если определить новое векторное поле Ω как ротор скорости v, т. е.
(40.7)
то векторное тождество можно записать так:
а наше уравнение движения (40.6) примет вид
(40.8)
Вы можете проверить эквивалентность уравнений (40.6) и (40.8), расписывая их по компонентам и сравнивая их, воспользовавшись при этом выражением (40.7).
Если Ω всюду равно нулю, то такой поток мы называем безвихревым (или потенциальным). В гл. 3, § 5 (вып. 5), мы уже определяли величину, называемую циркуляцией векторного поля. Циркуляция по любой замкнутой петле в жидкости равна криволинейному интегралу от скорости жидкости в данный момент времени вокруг этой петли:
Циркуляция на единицу площади для бесконечно малой петли по теореме Стокса будет тогда равна ∇×v. Таким образом, Ω представляет собой циркуляцию вокруг единичной площади (перпендикулярной направлению Ω). Кроме того, ясно, что если в любое место жидкости поместить маленькую соринку (именно соринку, а не бесконечно малую точку), то она будет вращаться с угловой скоростью Ω/2. Попытайтесь доказать это. Вы можете также попробовать доказать, что для ведра воды на вращающемся столике Ω равна удвоенной локальной угловой скорости воды.
Если нас интересует только поле скоростей, то из наших уравнений можно исключить давление. Взяв ротор обеих частей уравнения (40.8) и вспомнив, что ρ — величина постоянная, а ротор любого градиента равен нулю, а также использовав уравнение (40.3), находим
(40.9)
Это уравнение вместе с уравнениями
(40.10)
и
(40.11)
полностью описывают поле скоростей v. На языке математики — если в некоторый момент мы знаем Ω, то мы знаем ротор вектора скорости и, кроме того, знаем, что его дивергенция равна нулю, так что в этих физических условиях у нас есть все необходимое для определения скорости v повсюду. (Все это в точности напоминает нам знакомые условия в магнетизме, где ∇·B=0 и ∇×B=j/ε0c2.) Таким образом, данная величина Ω определяет v точно так же, как j определяет В. Затем из известного значения v уравнение (40.9) даст нам скорость изменения Ω, откуда мы можем получить новую Ω в следующий момент. Используя снова уравнение (40.10), найдем новое значение v и т. д. Теперь вы видите, как в эти уравнения входит весь механизм, необходимый для вычисления потока. Заметьте, однако, что эта процедура дает только скорости, а всю информацию о давлении мы потеряли.
Отметим особое следствие нашего уравнения. Если в какой-то момент времени t повсеместно Ω=0, то ∂Ω/∂t тоже исчезает, так что Ω всюду останется равной нулю и в момент t +Δt. Отсюда следует, что поток все время остается безвихревым. Если вначале поток не вращался, то он так никогда и не начнет вращаться. При этом уравнения, которые мы должны решать, таковы:
Они в точности напоминают уравнения электростатики или магнитостатики в пустом пространстве. Позднее мы вернемся к ним и рассмотрим некоторые частные задачи.
§ 3. Стационарный поток; теорема Бернулли
Вернемся к уравнениям движения (40.8), но ограничимся теперь приближением «стационарного» потока. Под стационарным потоком я подразумеваю поток, скорость которого в любом месте жидкости никогда не изменяется. Жидкость в любой точке постоянно заменяется новой жидкостью, движущейся в точности таким же образом. Картина скоростей всегда выглядит одинаково, т. е. v представляет статическое векторное поле. Как в магнитостатике мы рисовали силовые линии, так и здесь можно начертить линии, которые всегда касательны к скорости жидкости (фиг. 40.5).
Фиг. 40.5. Линии тока стационарного потока.
Эти линии называются «линиями тока». Для стационарного потока они действительно представляют реальные пути частиц жидкости. (В нестационарном потоке картина линий тока меняется со временем, однако в любой момент времени она не представляет пути частиц жидкости.)
Стационарность потока вовсе не означает, что ничего не происходит — частички жидкости движутся и изменяют свои скорости. Это означает только то, что ∂v/∂t=0. Если теперь мы скалярно умножим уравнение движения на v, то слагаемое v·(Ω×v) выпадет и у нас останется только
(40.12)
Согласно этому уравнению, при малых перемещениях в направлении скорости жидкости величина внутри скобок не изменяется. В стационарном потоке все перемещения направлены вдоль линий тока; поэтому уравнение (40.12) говорит, что для всех точек вдоль линии тока
(40.13)
Это и есть теорема Бернулли. Постоянная, вообще говоря, для различных линий тока может быть разной; мы знаем только, что левая часть уравнения (40.13) постоянна всюду вдоль данной линии тока. Заметьте, кстати, что если стационарный поток безвихревой, т. е. если для него Ω=0, то уравнение движения (40.8) дает нам соотношение
так что
(40.14)
Оно в точности напоминает уравнение (40.13), за исключением того, что теперь постоянная во всей жидкости одна и та же. На самом деле теорема Бернулли не означает ничего большего, чем утверждение о сохранении энергии. Подобные теоремы о сохранении дают нам массу информации о потоке без детального решения уравнений. Теорема Бернулли настолько важна и настолько проста, что мне бы хотелось показать вам, как можно ее получить другим способом, отличным от тех формальных вычислений, которые мы только что провели. Представьте себе пучок линий тока, образующих трубку тока (фиг. 40.6, а).
Фиг. 40.6. Движение жидкости в трубке.
Поскольку стенки трубки образуются линиями тока, то жидкость через них не протекает. Обозначим площадь на одном конце трубки через A1, скорость жидкости через v1, плотность через ρ1, а потенциальную энергию через φ1. Соответствующие величины на другом конце трубки мы обозначим через A2, v2, ρ2 и φ2. После короткого интервала времени Δt жидкость на одном конце передвинется на расстояние v1Δt, а жидкость на другом конце — на расстояние v2Δt (см. фиг. 40.6, б). Сохранение массы требует, чтобы масса, которая вошла через A1 была равна массе, которая вышла через А2. Изменение масс в этих двух концах должно быть одинаково:
Таким образом, мы получаем равенство
(40.15)
Оно говорит нам, что при постоянном ρ скорость изменяется обратно пропорционально площади трубки тока.
Вычислим теперь работу, произведенную давлением в жидкости. Работа, произведенная над жидкостью, входящей со стороны сечения А1, равна р1A1v1АΔt, а работа, произведенная в сечении А2, равна p2A2v2Δt. Следовательно, полная работа, произведенная над жидкостью, заключенной между A1 и А2, будет
что должно быть равно возрастанию энергии массы жидкости ΔM при прохождении от А1 до А2. Другими словами,
(40.16)
где Е1 — энергия единицы массы жидкости в сечении А1, а Е2 — энергия единицы массы в сечении А2. Энергию единицы массы жидкости можно записать в виде
где 1/2v2 — кинетическая энергия единицы массы, φ — потенциальная энергия, а U — дополнительный член, представляющий внутреннюю энергию единицы массы жидкости. Внутренняя энергия может соответствовать, например, тепловой энергии сжимаемой жидкости или химической энергии. Все эти величины могут изменяться от точки к точке. Воспользовавшись выражением для энергии в уравнении (40.16), получим
Но мы видели, что ΔМ=ρΔvΔt, и получили
(40.17)
а это как раз приводит нас к результату Бернулли, где имеется дополнительный член, представляющий внутреннюю энергию. Если жидкость несжимаемая, то внутренняя энергия с обеих сторон одна и та же и мы снова убеждаемся в справедливости уравнения (40.14) вдоль любой линии тока.
Рассмотрим теперь некоторые простые примеры, в которых интеграл Бернулли позволяет нам сразу описать поток. Предположим, что из отверстия вблизи дна резервуара вытекает вода (фиг. 40.7).
Фиг. 40.7. Вытекание жидкости из резервуара.
Рассмотрим случай, когда скорость потока vвых в отверстии гораздо больше скорости потока вблизи поверхности воды в резервуаре; другими словами, предположим, что диаметр резервуара настолько велик, что падением уровня жидкости можно пренебречь. (Мы могли бы при желании проделать и более аккуратные вычисления.) Давление на поверхность воды в резервуаре равно р0 (атмосферному давлению), т. е. такое же, как и давление на бока струи. Напишем теперь уравнение Бернулли для линии тока наподобие той, что показана на фиг. 40.7. В верхней части резервуара скорость v мы примем равной нулю; гравитационный потенциал φ здесь выберем тоже равным нулю. В отверстии же скорость равна vвых а φ=-gh, так что
или
(40.18)
Скорость получилась в точности равной скорости предмета, падающего с высоты h. В этом нет ничего удивительного —ведь в конечном счете вода на выходе получает свою кинетическую энергию из запаса потенциальной энергии воды, находящейся наверху резервуара. Однако не воображайте, что вы можете определить скорость убывания жидкости из резервуара, умножив эту скорость vвых на площадь отверстия. Скорости частиц жидкости в тот момент, когда струя вырывается из отверстия, не параллельны друг другу, а имеют компоненту, направленную к центру потока; струя сужается. Пройдя небольшое расстояние, струя перестает сжиматься, и скорости становятся параллельными. Таким образом, полный поток равен скорости, умноженной на площадь именно в том месте, где сжатие струи прекратилось. На самом деле, если у нас есть выходное отверстие просто в виде круглой дыры с острым краем, то сечение струи сокращается до 62% от площади отверстия. Уменьшение эффективной площади выходного отверстия для различных форм выходных труб разное, а его экспериментальное значение можно найти в таблице коэффициентов истечения.
Если выходная труба вдается в резервуар, как показано на фиг. 40.8, то можно весьма красиво доказать, что коэффициент истечения в точности равен 50%. Я лишь намекну вам, как проводится это доказательство.
Фиг. 40.8. Если выходная труба вставлена внутрь жидкости, то сокращение струи составляет половину площади отверстия.
Чтобы получить скорость, мы использовали закон сохранения энергии [см. уравнение (40.18)]. Можно еще рассмотреть закон сохранения импульса. Поскольку с выходящей струей должен утекать и импульс, то к поперечному сечению выходящей трубы должна быть приложена сила. Откуда же она берется? Сила эта должна происходить от давления на стенки. Но наше выходное отверстие мало и расположено далеко от стенок, поэтому скорость жидкости вблизи стенок резервуара будет очень мала. Следовательно, давление на каждую стенку, согласно (40.14), почти точно такое же, как статическое давление в покоящейся жидкости. При этом статическое давление на любую точку с одной стороны резервуара должно уравновешиваться равным давлением на противоположную стенку, за исключением точки на стороне, противоположной выходной трубе. Если теперь мы вычислим импульс, выталкиваемый со струей этим давлением, то сможем показать, что коэффициент истечения равен 1/2. Однако этот метод непригоден для отверстия, наподобие показанного на фиг. 40.7, ибо увеличение скорости около стенок вблизи области отверстия дает падение давления, которое невозможно вычислить.
Рассмотрим теперь другой пример — горизонтальную трубу с переменным поперечным сечением (фиг. 40.9), по которой от одного конца к другому течет вода.
Фиг. 40.9. Там, где скорость повышается, давление понижается.
Сохранение энергии, а именно формула Бернулли, говорит, что в суженной области, там, где скорость выше, давление ниже. Мы можем легко продемонстрировать этот эффект, измеряя давление в разных местах с различным сечением с помощью столбика воды, сообщающегося с потоком через достаточно малые отверстия, не возмущающие потока. При этом давление измеряется высотой вертикального столбика воды. И оно в узких местах действительно оказывается меньше, чем в широких. Если после сужения площадь сечения возвращается к своей прежней величине — той, что была до сокращения, то давление снова возрастает. Формула Бернулли предсказывает, что давление до сужения должно быть тем же, что и после него, однако на самом деле оно заметно меньше. Ошибка нашего предсказания кроется в том, что мы пренебрегли трением, вязкой силой, которая вызывает падение давления вдоль трубы. Однако, несмотря на это падение, давление в узком месте определенно меньше (из-за возрастания скорости), чем по обеим сторонам от него, как это предсказал Бернулли. Скорость v2 должна превышать скорость v1, чтобы через сужение могло пройти то же количество воды. Поэтому вода должна ускоряться, переходя из широкой части в узкую. Силы, которые приводят к этому ускорению, и есть перепад давления.
Этот результат можно проверить с помощью еще одного простого опыта. Представьте, что у нас есть резервуар с водой и выходной трубой, которая выбрасывает струю воды вверх (фиг. 40.10).
Фиг. 40.10. Доказательство того что v не равно √2gh,
Если бы скорость истечения была в точности равна √2gh, то выходящая вода должна была бы подняться вплоть до уровня воды в резервуаре. Однако на опыте она начинает падать несколько ниже его. Наше приближение оказывается очень грубым; вязкое трение, которое мы не учли в нашей формуле для сохранения энергии, приводит к потере энергии. Пытались ли вы когда-нибудь, дунув между двумя слипшимися листками бумаги, оторвать их друг от друга? Попытайтесь! Они сойдутся вновь. Причина, разумеется, состоит в том, что воздух между листами имеет большую скорость, нежели когда он выходит наружу. Поэтому давление между листами ниже атмосферного, и они вместо того, чтобы разлететься в разные стороны, соединятся.
§ 4. Циркуляция
В начале предыдущего параграфа мы видели, что если у нас есть безвихревая несжимаемая жидкость, то поток удовлетворяет следующим двум уравнениям:
(40.19)
Эти уравнения аналогичны уравнениям электростатики или магнитостатики в пустом пространстве. При отсутствии зарядов дивергенция электрического поля равна нулю, а ротор электростатического поля всегда равен нулю. Ротор магнитного поля равен нулю при отсутствии токов, а дивергенция магнитного поля всегда равна нулю. Следовательно, уравнения (40.19) имеют такие же решения, как и уравнения для Е в электростатике или уравнения для В в магнитостатике. Фактически в гл. 12, § 5 (вып. 5), мы уже решили задачу об обтекании сферы потоком в качестве электростатического аналога. Электростатическим аналогом является однородное электрическое поле плюс поле диполя, причем поле диполя подбирается таким, чтобы скорость потока, нормальная к поверхности сферы, была равна нулю. Задачу об обтекании цилиндра можно решить таким же способом, выбрав подходящее направление диполя относительно однородного потока. Эти решения справедливы в тех случаях, когда скорость жидкости на больших расстояниях постоянна как по величине, так и по направлению. Они изображены на фиг. 40.11,а.
Фиг. 40.11. Обтекание цилиндра идеальной жидкостью (а), циркуляция вокруг цилиндра (б) и cyпepрозuция случаев а и б (в).
Задача об обтекании цилиндра имеет и другое решение, когда условия таковы, что поток на больших расстояниях движется по окружности вокруг цилиндра. Тогда поток будет круговым повсюду (фиг. 40.11,б). У такого потока есть циркуляция вокруг цилиндра, хотя ∇×v в жидкости остается нулем. Но как циркуляция может существовать без ротора? У нас есть циркуляция вокруг цилиндра, ибо криволинейный интеграл от v по замкнутой петле, охватывающей цилиндр, не равен нулю. В то же время криволинейный интеграл от v по любому замкнутому пути, который не охватывает цилиндра, будет нулем. Аналогичные вещи встречались нам и раньше, когда мы определяли магнитное поле вокруг проводника. Ротор В был нулем вне провода, хотя криволинейный интеграл от В по пути, охватывающему провод, не исчезает. Поле скоростей в безвихревой циркуляции вокруг цилиндра в точности такое же, как и магнитное поле вокруг провода. Для кругового пути с центром, совпадающим с центром цилиндра, криволинейный интеграл от скорости равен
Для безвихревого потока интеграл не должен зависеть от r. Обозначим его через постоянную С и получим
(40.20)
где v — тангенциальная скорость, а r — расстояние от оси.
Существует очень хороший способ демонстрации циркуляции жидкости в трубе. Вы берете прозрачный цилиндрический резервуар с трубкой в центре дна. Наполняете его водой, немного раскручиваете ее палочкой и вынимаете пробку из отводной трубы. И получаете тот красивый эффект, который показан на фиг. 40.12.
Фиг. 40.12. Вода с циркуляцией вытекает из резервуара.
(Подобное явление вы наверняка много раз видели в ванне!) Хотя вначале вы и создали некоторую угловую скорость ω, она из-за вязкости вскоре затухает и поток становится безвихревым. Однако какая-то циркуляция вокруг трубки все же остается.
Из теории можно вычислить форму поверхности воды в цилиндре. По мере того как частицы движутся внутрь, они набирают скорость. Согласно уравнению (40.20), тангенциальная скорость увеличивается как 1/r — просто благодаря закону сохранения момента количества движения, как у фигуриста, прижавшего руки к телу. Радиальная скорость тоже возрастает как 1/r. Если пренебречь тангенциальным движением, то получится, что вода идет внутрь по радиусу к отверстию, а из уравнения ∇·v=0 следует, что радиальная скорость пропорциональна 1/r. Таким образом, полная скорость тоже возрастает как 1/r и вода идет по спирали Архимеда. Поверхность вода — воздух целиком находится под атмосферным давлением, так что, согласно уравнению (40.14), она должна обладать свойством
Но здесь v пропорционально 1/r, поэтому форма поверхности будет такой:
Обратите внимание на одну интересную особенность, которая наблюдается в случае несжимаемого безвихревого потока (в общем случае ее нет): если у нас есть какое-то одно решение и какое-то второе решение, то сумма их тоже будет решением. Это справедливо потому, что уравнения (40.19) — линейные. Полный же набор гидродинамических уравнений, т. е. уравнений (40.8) — (40.10), не линеен, а это уже совсем другое дело. Однако для безвихревого потока вокруг цилиндра мы можем сложить один поток (фиг. 40.11,а) и другой поток (фиг. 40.11,б) и получить новый вид потока (фиг. 40.11,в). Этот новый поток особенно интересен. Скорость потока на верхней стороне цилиндра оказывается больше, чем на нижней, так что когда на циркуляцию вокруг цилиндра налагается чистый горизонтальный поток, то возникнет действующая на цилиндр вертикальная сила; она называется подъемной силой. Разумеется, если циркуляция отсутствует, то в соответствии с нашей теорией «сухой» воды для любого тела суммарная сила обращается в нуль.
§ 5. Вихревые линии
Мы уже выписывали общие уравнения потока несжимаемой жидкости при наличии завихренности:
Физическое содержание этих уравнений было на словах описано Гельмгольцем в трех теоремах. Прежде всего представьте себе, что мы вместо линий потока нарисовали вихревые линии. Под вихревыми линиями мы подразумеваем линии поля, которые имеют направление вектора Ω, а плотность их в любой области пропорциональна величине Ω. Из уравнения (II) дивергенция Ω всегда равна нулю [вспомните гл.3,§ 7 (вып. 5): дивергенция ротора всегда нуль]. Таким образом, вихревые линии подобны линиям поля В: они нигде не кончаются и нигде не начинаются и всегда стремятся замкнуться. Формулу (III) Гельмгольц описал словами: вихревые линии движутся вместе с жидкостью. Это означает, что если бы вы пометили частички жидкости, расположенные на некоторой вихревой линии, например окрасив их чернилами, то в процессе движения жидкости и переноса этих частичек они всегда отмечали бы новое положение вихревой линии. Каким бы образом ни двигались атомы жидкости, вихревые линии движутся вместе с ними. Это один из способов описания законов. Он также содержит и метод решения любых задач. Задавшись первоначальным видом потока, скажем задав всюду v, вы можете вычислить Ω. Зная v, можно также сказать, где будут вихревые линии немного позднее: они движутся со скоростью v. А с новым значением Ω можно воспользоваться уравнениями (I) и (II) и найти новую величину v. (Точно как в задаче о нахождении поля В по данным токам.) Если нам задан вид потока в какой-то один момент, то в принципе мы можем вычислить его во все последующие моменты. Мы получаем общее решение невязкого потока.
Мне бы хотелось показать вам, как (по крайней мере частично) можно понять утверждение Гельмгольца, а следовательно, формулу (III). Фактически это просто закон сохранения момента импульса, примененный к жидкости. Представьте себе маленький жидкий цилиндр, ось которого параллельна вихревым линиям (фиг. 40.13,а).
Фиг. 40.13. Группа вихревых линий в момент t (а) и те же самые линии в более поздний момент t' (б).
Спустя некоторое время, тот же самый объем жидкости будет находиться где-то в другом месте. Вообще говоря, он будет иметь форму цилиндра с другим диаметром и находиться в другом месте. Он может еще иметь другую ориентацию (фиг. 40.13,б). Но если изменяется диаметр, то длина тоже должна измениться так, чтобы объем остался постоянным (поскольку мы считаем жидкость несжимаемой). Кроме того, поскольку вихревые линии связаны с веществом, их плотность увеличивается обратно пропорционально уменьшению площади поперечного сечения цилиндра. Произведение Ω на площадь цилиндра А будет оставаться постоянной, так что в соответствии с Гельмгольцем
(40.21)
Теперь обратите внимание, что при нулевой вязкости все силы на поверхности цилиндрического объема (или любого объема в этом веществе) перпендикулярны поверхности. Силы давления могут заставить его изменить форму, но без тангенциальных сил величина момента количества движения жидкости внутри измениться не может. Момент количества движения жидкости внутри маленького цилиндра равен произведению его момента инерции I на угловую скорость жидкости, которая пропорциональна завихренности Ω. Момент же инерции цилиндра пропорционален mr2. Поэтому из сохранения момента количества движения мы бы заключили, что
Но масса будет одной и той же (М1=М2), а площадь пропорциональна R2, так что мы снова получим просто уравнение (40.21). Утверждение Гельмгольца, которое эквивалентно формуле (III), есть просто следствие того факта, что в отсутствие вязкости момент количества движения элемента жидкости измениться не может.
Есть хороший способ продемонстрировать движущийся вихрь с помощью аппаратуры, показанной на фиг. 40.14.
Фиг. 40.14. Распространяющиеся вихревые кольца.
Это «барабан» диаметром и длиной около 60 см, состоящий из цилиндрической коробки с натянутым на ее открытое основание толстым резиновым листом. Барабан стоит на боку, а в центре его твердого дна вырезано отверстие диаметром около 8 см. Если резко ударить по резиновой диафрагме рукой, то из отверстия вылетает кольцевой вихрь. Хотя этот вихрь увидеть нельзя, можно смело утверждать, что он существует, так как он гасит пламя свечи, стоящей в 3—6 м от барабана. По запаздыванию этого эффекта вы можете сказать, что «нечто» распространяется с конечной скоростью. Лучше разглядеть то, что вылетает, можно, предварительно напустив в барабан дыму. Тогда вы увидите вихри в виде изумительно красивых колец «табачного дыма».
Кольца дыма (фиг. 40.15,а) — это просто баранка из вихревых линий.
Фиг. 40.15. Движущееся вихревое кольцо (а) и его поперечное сечение (б).
Поскольку Ω=∇×v, то эти вихревые линии описывают также циркуляцию v (фиг. 40.15,б). Для того чтобы объяснить, почему кольцо движется вперед (т. е. в направлении, составляющем с направлением Ω правый винт), можно рассуждать так: скорость циркуляции увеличивается к внутренней поверхности кольца, причем скорость внутри кольца направлена вперед. Поскольку линии Ω переносятся вместе с жидкостью, то и они движутся вперед со скоростью v. (Конечно, большая скорость на внутренней части кольца ответственна за движение вперед вихревых линий на его внешней части.)
Здесь необходимо указать на одну серьезную трудность. Как мы уже отмечали, уравнение (40.90) говорит, что если первоначально завихренность Ω была равна нулю, то она всегда останется равной нулю. Этот результат — крушение теории «сухой» воды, ибо он означает, что если в какой-то момент значение Ω равно нулю, то оно всегда будет равно нулю, и ни при каких обстоятельствах создать завихренность нельзя. Однако в нашем простом опыте с барабаном мы могли породить вихревые кольца в воздухе, который до того находился в покое. (Ясно, что пока мы не ударили по барабану, внутри него v=0 и Ω=0.) Все знают, что, загребая веслом, можно создать в воде вихри. Несомненно, для полного понимания поведения жидкости следует перейти к теории «мокрой» воды.
Другим неверным утверждением в теории «сухой» воды является предположение, которое мы делали при рассмотрении потока на границе между ним и поверхностью твердого предмета. Когда мы обсуждали обтекание потоком цилиндра (например, фиг. 40.11), то считали, что жидкость скользит по поверхности твердого тела. В нашей теории скорость на поверхности твердого тела могла иметь любое значение, зависящее от того, как началось движение, и мы не учитывали никакого «трения» между жидкостью и твердым телом. Однако то, что скорость реальной жидкости должна на поверхности твердого тела сходить на нуль, — экспериментальный факт. Следовательно, наши решения для цилиндра и с циркуляцией, и без нее неправильны, как и результат о создании вихря. О более правильных теориях я расскажу вам в следующей главе.
Глава 41 ТЕЧЕНИЕ «МОКРОЙ» ВОДЫ
§ 1. Вязкость
В предыдущей главе мы говорили о поведении воды, пренебрегая при этом эффектами вязкости. Теперь же мне хотелось бы обсудить, как вязкость влияет на течение жидкости. Рассмотрим реальное поведение жидкости. Я опишу качественно, как ведет себя жидкость в самых разных условиях, так чтобы вы получше прочувствовали эту науку. И хотя вы увидите сложные уравнения и услышите о трудных вещах, наша цель совсем не в том, чтобы изучить все тонкости. Цель этой главы скорее «общеобразовательная», просто я хочу дать вам некоторое понятие о том, как устроен мир. Однако здесь все же есть один пункт, который стоит того, чтобы его выучить: полезно знать простое определение вязкости. С него мы и начнем. Все же остальное предназначено для вашего удовольствия.
В предыдущей главе мы нашли, что законы движения жидкости содержатся в уравнении
(41.1)
В нашем приближении «сухой» воды мы отбрасывали последнее слагаемое, так что всеми эффектами вязкости мы пренебрегали. Кроме того, мы иногда делали еще дополнительное приближение, считая жидкость несжимаемой, и при этом получали дополнительное уравнение:
Это приближение часто оказывается вполне приличным, особенно когда скорость потока много меньше скорости звука. Но в реальных жидкостях мы почти никогда не можем пренебречь внутренним трением, называемым нами вязкостью; большинство интересных вещей в поведении жидкости так или иначе связано именно с этим свойством. Так, мы узнали, что циркуляция «сухой» воды никогда не изменяется: если ее не было вначале, то она никогда и не появится. Но в то же время мы повседневно сталкиваемся с циркуляцией в жидкости. Так что нашу теорию надо подправить.
Начнем с важного экспериментального факта. Когда мы занимались потоком «сухой» воды, обтекающей какой-то предмет или текущей мимо него, т. е. так называемым «потенциальным потоком», у нас не было причин запретить воде иметь составляющую скорости, тангенциальную к поверхности предмета; только нормальная компонента должна была быть равна нулю. Мы не принимали во внимание возможность возникновения сил сдвига между жидкостью и твердым телом. А вот оказывается, хотя это далеко и не очевидно, что во всех случаях, где это было проверено экспериментально, скорость жидкости на поверхности твердого тела в точности равна нулю. Вы замечали, конечно, что лопасти вентилятора собирают на себя тонкий слой пыли, и это несмотря на то, что они вращаются в воздухе. Тот же эффект можно наблюдать даже в больших аэродинамических трубах. Почему же пыль не сдувается воздухом? Несмотря на то что лопасти вентилятора быстро вращаются в воздухе, скорость воздуха относительно них, измеренная непосредственно на их поверхности, равна нулю, так что поток воздуха не возмущает даже мельчайших пылинок[60]. Мы должны модифицировать теорию так, чтобы она согласовалась с тем экспериментальным фактом, что во всех обычных жидкостях молекулы, находящиеся рядом с поверхностью, имеют нулевую скорость (относительно поверхности[61]).
Сначала мы характеризовали жидкость так, что если приложить к ней напряжение сдвига, то, сколь бы мало оно ни было, жидкость «поддается» и течет. В статическом случае никаких напряжений сдвига нет. Однако, когда равновесия еще нет, в момент, когда вы давите на жидкость, силы сдвига вполне могут быть. Вязкость как раз и описывает эти силы, возникающие в движущейся жидкости. Чтобы измерить силы сдвига в процессе движения жидкости, рассмотрим такой эксперимент. Предположим, что имеются две плоские твердые пластины, между которыми находится вода (фиг. 41.1), причем одна из пластин неподвижна, тогда как другая движется параллельно ей с малой скоростью v0.
Фиг. 41.1. Увлечение жидкости между двумя параллельными пластинками.
Если вы будете измерять силу, требуемую для поддержания движения верхней пластины, то найдете, что она пропорциональна площади пластины и отношению v0/d, где d — расстояние между пластинами. Таким образом, напряжение сдвига F/A пропорционально v0/d:
Коэффициент пропорциональности η называется коэффициентом вязкости.
Если перед нами более сложный случай, то мы всегда можем рассмотреть в воде небольшой плоский прямоугольный объем, грани которого параллельны потоку (фиг. 41.2).
Фиг. 41.2. Напряжения сдвига в вязкой жидкости.
Силы в этом объеме определяются выражением
(41.2)
Далее, ∂vx/∂y представляет скорость изменения деформаций сдвига, определенных нами в гл. 38, так что силы в жидкости пропорциональны скорости изменения деформаций сдвига.
В общем случае мы пишем
(41.3)
При равномерном вращении жидкости производная ∂vх/∂у равна ∂vy/∂x с обратным знаком, а Sxy будет равна нулю, как это и требуется, ибо в равномерно вращающейся жидкости напряжения отсутствуют. (Подобную же вещь мы проделывали в гл. 39 при определении еxy.) Разумеется, для Syz и Szx тоже есть соответствующие выражения.
В качестве примера применения этих идей рассмотрим движение жидкости между двумя коаксиальными цилиндрами. Пусть радиус внутреннего цилиндра равен а, его скорость будет vа, а радиус внешнего цилиндра пусть будет b, а скорость равна vb (фиг. 41.3).
Фиг. 41.3. Поток жидкости между двумя концентрическими цилиндрами, вращающимися с разными угловыми скоростями.
Возникает вопрос, каково распределение скоростей между цилиндрами? Чтобы ответить на него, начнем с получения формулы для вязкого сдвига в жидкости на расстоянии r от оси. Из симметрии задачи можно предположить, что поток всегда тангенциален и что его величина зависит только от r; v=v(r). Если мы понаблюдаем за соринкой в воде, расположенной на расстоянии r от оси, то ее координаты как функции времени будут
где ω=v/r. При этом х- и y-компоненты скорости равны
(41.4)
Из формулы (41.3) получаем
(41.5)
Для точек с у=0 имеем ∂ω/∂у=0, а х(∂ω/∂х) будет равно r(dω/dr). Так что в этих точках
(41.6)
(Разумно думать, что величина S должна зависеть от ∂ω/∂r, когда ω не изменяется с r, жидкость находится в состоянии равномерного вращения и напряжения в ней не возникают.)
Вычисленное нами напряжение представляет собой тангенциальный сдвиг, одинаковый повсюду вокруг цилиндра. Мы можем получить момент сил, действующий на цилиндрической поверхности радиусом r, путем умножения напряжения сдвига на плечо импульса r и площадь 2πrl:
(41.7)
Поскольку движение воды стационарно и угловое ускорение отсутствует, то полный момент, действующий на цилиндрическую поверхность воды между радиусами r и r+dr, должен быть нулем; иначе говоря, момент сил на расстоянии r должен уравновешиваться равным ему и противоположно направленным моментом сил на расстоянии r+dr, так что τ не должно зависеть от r. Другими словами, r3(dω/dr) равно некоторой постоянной, скажем А, и
(41.8)
Интегрируя, находим как ω изменяется с r:
(41.9)
Постоянные А и В должны определяться из условия, что ω=ωa в точке r=a, а ω=ωb в точке r=b. Тогда находим
(41.9)
Таким образом, ω как функция r нам известна, а стало быть, известно и v=ωr.
Если же нам нужно определить момент сил, то его можно получить из выражений (41.7) и (41.8):
или
(41.11)
Он пропорционален относительной угловой скорости двух цилиндров. Имеется стандартный прибор для измерения коэффициентов вязкости, который устроен следующим образом: один из цилиндров (скажем, внешний) посажен на ось, но удерживается в неподвижном состоянии пружинным динамометром, который измеряет действующий на него момент сил, а внутренний цилиндр вращается с постоянной угловой скоростью. Коэффициент вязкости определяется при этом из формулы (41.11).
Из определения коэффициента вязкости вы видите, что η измеряется в ньютон·сек/м2. Для воды при 20° С
Часто удобнее бывает пользоваться удельной вязкостью, которая равна η, деленной на плотность ρ. При этом величины удельных вязкостей воды и воздуха сравнимы:
(41.12)
Обычно вязкость очень сильно зависит от температуры. Например, для воды непосредственно над точкой замерзания отношение η/ρ в 1,8 больше, чем при 20° С.
§ 2. Вязкий поток
Перейдем теперь к общей теории вязкого потока, по крайней мере настолько общей, насколько это и известно человеку. Вы уже понимаете, что компоненты сдвиговых напряжений сдвига пропорциональны пространственным производным от различных компонент скорости, таких, как ∂vx/∂y или ∂vy/∂х. Однако в общем случае сжимаемой жидкости в напряжениях есть и другой член, который зависит от других производных скорости. Общее выражение имеет вид
(41.13)
где хi — какая-либо из координат х, у или z; vi — какая-либо з прямоугольных составляющих скорости. (Значок δij обозначает символ Кронекера, который равен единице при i=j и нулю при i≠j.) Ко всем диагональным элементам Sij тензора напряжений прибавляется дополнительный член η'∇·v. Если жидкость несжимаема, то ∇·v=0 и дополнительного члена не появляется, так что он действительно имеет отношение к внутренним силам при сжатии. Для описания жидкости, точно так же как и для описания однородного упругого тела, требуются две постоянные. Коэффициент η представляет «обычный» коэффициент вязкости, который мы уже учитывали. Он называется также первым коэффициентом вязкости, а новый коэффициент η' называется вторым коэффициентом вязкости.
Теперь нам предстоит найти вязкую силу fвязк, действующую на единицу объема, после чего мы сможем подставить ее в уравнение (41.1) и получить уравнение движения реальной жидкости. Сила, действующая на маленький кубический объем жидкости, представляет собой равнодействующую всех сил, действующих на все шесть граней. Взяв их по две сразу, мы получим разность, которая зависит от производных напряжений, и, следовательно, от вторых производных скоростей. Это приятный результат, ибо он приведет нас опять к векторному уравнению. Компонента вязкой силы, действующей на единицу объема в направлении оси хi, равна
(41.14)
Обычно зависимость коэффициентов вязкости от координат положения несущественна и ею можно пренебречь. Тогда вязкая сила на единицу объема содержит только вторые производные скорости. Мы видели в гл. 39, что наиболее общей формой вторых производных в векторном уравнении будет сумма Лапласиана (∇·∇)v=∇2v и градиента дивергенции (∇ (∇·v)). Выражение (41.14) представляет как раз такую сумму с коэффициентами η и (η+η'). Мы получаем
(41.15)
В случае несжимаемой жидкости ∇·v=0 и вязкая сила в единице объема будет просто равна η∇2v. Это и все, чем обычно пользуются; однако если вам понадобится вычислить поглощение звука в жидкости, то вам потребуется и второй член. Теперь мы можем закончить вывод уравнения движения реальной жидкости. Подставляя (41.15) в уравнение (41.1), получаем
Уравнение получилось, конечно, сложное, но ничего не поделаешь, такова природа.
Если мы введем Ω=∇×v, как делали это раньше, то наше уравнение можно записать в виде
(41.16)
Мы снова предполагаем, что единственными объемными силами являются консервативные силы типа сил тяжести. Чтобы понять смысл нового члена, давайте рассмотрим случай несжимаемой жидкости. Если мы возьмем ротор уравнения (41.16), то получим
(41.17)
Это напоминает (40.9) с той только разницей, что в правой части имеется еще одно слагаемое. Когда правая часть была равна нулю, то имелась теорема Гельмгольца о том, что вихри всегда движутся вместе с жидкостью. Теперь же в правой части появилось довольно сложное выражение, из которого, однако, не сразу же следуют физические выводы. Если бы мы пренебрегли членом ∇×(Ω×v), то получили бы диффузионное уравнение. Новый член означает, что вихри диффундируют в жидкости. При большом градиенте вихри расползаются в соседние области жидкости.
Именно поэтому утолщаются кольца табачного дыма. С этим же связано красивое явление, возникающее при прохождении кольца «чистого» вихря (т. е. «бездымного» кольца, созданного с помощью описанной в предыдущей главе аппаратуры) через облако дыма. Когда оно выходит из облака, к нему «прилипает» некое количество дыма и мы видим полую оболочку из дыма. Какое-то количество завихренности Ω диффундирует в окружающий дым, продолжая свое движение вперед вместе с вихрем.
§ 3. Число Рейнольдса
Посмотрим теперь, как изменяется течение жидкости из-за нового члена с вязкостью. Рассмотрим несколько подробнее две задачи. Первая — обтекание жидкостью цилиндра; эту задачу мы пытались решить в предыдущей главе, используя теорию невязкой жидкости. Оказывается, что сегодня возможно найти решение вязких уравнений только для некоторых специальных случаев. Так что кое-что из того, что я расскажу вам, основано на экспериментальных измерениях, считая, конечно, что экспериментальная модель удовлетворяла уравнению (41.17).
Математически задача состоит в следующем: мы хотим найти решение для потока несжимаемой вязкой жидкости вблизи длинного цилиндра диаметром D. Поток должен определяться уравнением (41.17) и
(41.18)
с условием, что скорость на больших расстояниях равна некоторой постоянной V (параллельной оси х), а на поверхности цилиндра равна нулю. Так что
(41.19)
при
Это полностью определяет математическую задачу.
Если вы вглядитесь в эти выражения, то увидите, что в задаче есть четыре различных параметра: η, ρ, D и V. Можно подумать, что нам придется иметь дело с целой серией решений для разных V, разных D и т. д. Вовсе нет. Все возможные различные решения соответствуют разным значениям одного параметра. Такова наиболее важная общая вещь, которую мы можем сказать о вязком потоке. А чтобы понять, почему это так, заметьте сначала, что вязкость и плотность появляются в виде отношения η/ρ, т. е. удельной вязкости. Это уменьшает число независимых параметров до трех. Предположим теперь, что все расстояния мы измеряем в единицах той единственной длины, которая появляется в задаче: диаметра цилиндра D, т. е. вместо х, у, z мы вводим новые переменные х', у', z', причем
При этом параметр D из (41.19) исчезает. Точно так же если будем измерять все скорости в единицах V, т. е. если мы положим v=v'V, то избавимся от V, а v' на больших расстояниях будет просто равно единице. Поскольку мы фиксировали наши единицы длины и скорости, то единицей времени теперь должно быть D/V, так что мы должны сделать подстановку:
(41.20)
В наших новых переменных производные в уравнении (41.18) тоже изменятся: так, ∂/∂х перейдет в (1/D)(∂/∂х') и т. д., так что уравнение (41.18) превратится в
(41.21)
А наше основное уравнение (41.17) перейдет в
Все постоянные при этом собираются в один множитель, который мы, следуя традиции, обозначим через 1/ℛ:
(41.22)
Если теперь мы просто запомним, что все наши уравнения должны выписываться для величин, измеряемых в новых единицах, то все штрихи можно опустить. Тогда уравнения для потока примут вид
(41.23)
и
с условиями,
для
(41.24)
и
для
Что все это значит? Если, например, мы решили задачу для потока с одной скоростью V1 и некоторого цилиндра диаметром D1, а затем интересуемся обтеканием цилиндра другого диаметра D2 другой жидкостью, то поток будет одним и тем же при такой скорости V2, которая отвечает тому же самому числу Рейнольдса, т. е. когда
(41.25)
В любых случаях, когда числа Рейнольдса одинаковы, поток при выборе надлежащего масштаба х', у', z' и t' будет «выглядеть» одинаково. Это очень важное утверждение, ибо оно означает, что мы можем определить поведение потока воздуха при обтекании крыла самолета, не строя самого самолета и не испытывая его. Вместо этого мы можем сделать модель и провести измерения, используя скорость, которая дает то же самое число Рейнольдса. Именно этот принцип позволяет нам применять результаты измерений над маленькой моделью самолета в аэродинамической трубе или результаты, полученные с моделью корабля, к настоящим объектам. Напомню, однако, что это можно делать только при условии, что сжимаемостью жидкости можно пренебречь. В противном случае войдет новая величина — скорость звука. При этом различные модели будут действительно соответствовать друг другу только тогда, когда отношение V к скорости звука тоже приблизительно одинаково. Отношение скорости V к скорости звука называется числом Маха. Таким образом, для скоростей, близких к скорости звука или больших, поток в двух задачах будет выглядеть одинаково, если и число Маха и число Рейнольдса в обеих ситуациях одинаковы.
§ 4. Обтекание кругового цилиндра
Вернемся теперь обратно к задаче об обтекании цилиндра медленным (почти несжимаемым) потоком. Я дам вам качественное описание потока реальной жидкости. О таком потоке нам необходимо знать множество вещей. Например, какая увлекающая сила действует на цилиндр? Сила, увлекающая цилиндр, показана на фиг. 41.4 как функция величины ℛ, которая пропорциональна скорости V, если все остальное фиксировано.
Фиг. 41.4. Коэффициент увлечения Сd кругового цилиндра как функция числа Рейнольдса.
Фактически на рисунке отложен коэффициент увлечения Сd — безразмерное число, равное отношению силы к 1/2ρV2Dl (d — диаметр, l —длина цилиндра, а ρ —плотность жидкости):
Коэффициент увлечения изменяется довольно сложным образом, как бы намекая нам на то, что в потоке происходит нечто интересное и сложное. Свойства потока полезно описывать для различных областей изменения числа Рейнольдса. Прежде всего, когда число Рейнольдса очень мало, поток вполне стационарен, скорость в любой точке потока постоянна и он плавно обтекает цилиндр. Однако распределение линий потока не похоже на их распределение в потенциальном потоке. Они описывают решение несколько другого уравнения. Когда скорость очень мала или, что эквивалентно, вязкость очень велика, так что вещество по своей консистенции напоминает мед, можно отбросить инерционные члены и описать поток уравнением
Это уравнение впервые было решено Стоксом. Он также решил задачу для сферы. Когда маленькая сфера движется при малых числах Рейнольдса, то к ней приложена сила, равная 6πηaV, где а — радиус сферы, а V — его скорость.
Это очень полезная формула: она говорит нам о скорости, с которой мельчайшие частички, которые приближенно можно считать шариками, движутся в жидкости под действием данной силы, как, например, в центрифуге, или при осаждении, или, наконец, в процессе диффузии. В области малых чисел Рейнольдса, т. е. при ℛ<1, линии v вокруг цилиндра имеют такой вид, как на фиг. 41.5.
Фиг. 41.5. Вязкий поток вблизи цилиндра (малая вязкость).
Если теперь мы увеличим скорость потока, так что число Рейнольдса станет несколько больше единицы, то увидим, что поток изменится.
Фиг. 41.6. Поток, обтекающий цилиндр, при различных числах Рейнольдса.
Как показано на фиг. 41.6, б, за сферой возникнут вихри. До сих пор неясно, существовали ли вихри и при малых числах Рейнольдса или же они возникли неожиданно при некотором определенном числе? Обычно считали, что циркуляция нарастает постепенно. Однако теперь думают, что скорее она проявляется неожиданно и возрастает с увеличением ℛ. Во всяком случае, поток в районе от ℛ=10 до ℛ=30 меняет свой характер. За цилиндром образуется пара вихрей.
Когда число Рейнольдса проходит через значения в районе 40, поток снова меняется. Характер движения претерпевает неожиданное и резкое изменение. Один из вихрей за цилиндром становится настолько длинным, что он отрывается и плывет вниз по течению вместе с жидкостью. При этом жидкость за цилиндром снова закручивается и возникает новый вихрь. Эти вихри поочередно отслаиваются то с одной, то с другой стороны, так что в какой-то момент поток выглядит приблизительно так, как показано на фиг. 41.6, в. Такой поток вихрей называется вихревой цепочкой Кармана. Она всегда появляется для чисел Рейнольдса ℛ>40. Фотография такого потока показана на фиг. 41.7.
Фиг. 41.7. Фотография цепочки вихрей в потоке за цилиндром.
Разница в режиме между двумя потоками, изображенными на фиг. 41.6, а, б или в, очень велика. На фиг. 41.6, а и б скорость постоянна, тогда как на фиг. 41.6, в скорость в любой точке изменяется со временем. Выше ℛ=40 стационарное решение отсутствует; граница перехода отмечена на фиг. 41.4 пунктирной линией. Для таких более высоких чисел поток изменяется со временем некоторым регулярным периодическим образом. Создаются вихри.
Можно представить себе физическую причину возникновения этих вихрей. Мы знаем, что на поверхности цилиндра скорость жидкости должна быть равна нулю, но при удалении от поверхности скорость быстро возрастает. Это большое местное изменение скорости жидкости и создает вихри. Когда скорость основного потока достаточно мала, у вихрей хватает времени, чтобы продиффундировать из тонкого слоя вблизи поверхности твердого тела, где они создаются, и «расплыться» на большую область. Эта физическая картина должна подготовить нас к следующему изменению природы потока, когда скорость основного потока или число ℛ увеличивается еще больше.
По мере возрастания скорости у вихря остается все меньше и меньше времени, чтобы «расплываться» на большую область жидкости. К тому моменту, когда число Рейнольдса достигнет нескольких тысяч, вихри начинают заполнять тонкую ленту (фиг. 41.6, г). В таком слое поток хаотичен и нерегулярен. Такая область называется пограничным слоем, и этот нерегулярный поток с увеличением ℛ пробивает себе путь все дальше и дальше вниз по течению. В области турбулентности скорости очень нерегулярны и «беспорядочны», вдобавок поток больше не двумерный — он крутится во всех трех измерениях. Кроме того, на турбулентное движение налагается еще регулярное переменное движение.
При дальнейшем увеличении числа Рейнольдса область турбулентности пробирается вперед, пока при потоке с ℛ, превышающим 105, не достигнет места, где линии тока огибают цилиндр. При этом поток будет похож на то, что показано на фиг. 41.6, д, и мы получаем так называемый «турбулентный след». Кроме того, происходят еще коренные изменения в силе увлечения — она, как видно из фиг. 41.4, сильно падает. При таких скоростях увлекающая сила с возрастанием скорости действительно уменьшается. По-видимому, здесь проявляется некоторое стремление к периодичности.
А что происходит при еще больших числах Рейнольдса? С дальнейшим увеличением скорости размер области турбулентности снова увеличивается и сила сопротивления возрастает. Последние эксперименты, которые дошли до области ℛ=107 или несколько больше, показывают, что в турбулентной области появляется новая периодичность, быть может, потому, что вся область колеблется вперед и назад в общем движении, а может быть, из-за нового сорта вихрей, которые появляются вместе с нерегулярным «шумовым» движением. Детали его полностью еще не ясны, и они до сих пор изучаются экспериментально.
§ 5. Предел пулевой вязкости
Мне бы хотелось подчеркнуть, что ни один из описанных нами потоков ни в каком отношении не похож на решение уравнения потенциального потока, о котором говорилось в предыдущей главе. На первый взгляд это очень удивительно. Ведь ℛ в конце концов пропорционально 1/η. Так что предел η→0 эквивалентен пределу ℛ→∞. И если мы перейдем к пределу больших ℛ в (41.23), то избавимся от правой части и получим как раз уравнения из предыдущей главы. Но все же трудно поверить, что сильно турбулентный поток с ℛ=107 хоть в какой-то степени приближается к гладкому потоку, вычисленному из уравнений «сухой» воды. Как может случиться, что при ℛ=∞ поток, описываемый уравнением (41.23), дает решение, полностью отличное от решения, полученного при η=0, с которого мы начали? Ответ очень интересен. Обратите внимание, что в правой части (41.23) стоит произведение 1/ ℛ на вторую производную. Это наиболее высокая степень производной в уравнении: слева только первые производные. Получается так, что, хотя коэффициент 1/ ℛ становится малым, Ω в пространстве вблизи поверхности претерпевает очень быстрые изменения. Эти резкие изменения компенсируют малость коэффициента, и произведение с увеличением R не стремится к нулю. Поэтому, хотя коэффициент при ∇2Ω стремится к нулю, решения не приближаются к предельному случаю.
Вас может удивить: «Что же такое мелкомасштабная турбулентность и как она может поддерживать сама себя? Как завихренность, которая создается где-то на краях цилиндра, приводит к такому шуму позади него?». Ответ снова очень интересен. Завихренность имеет тенденцию к самоусилению. Если мы на минуту забудем о диффузии завихренности, которая обусловливает потери, то законы потока говорят (как мы уже видели), что линии вихря переносятся вместе с жидкостью со скоростью v. Представьте себе некоторое количество линий Ω, которые возмущаются и скручиваются очень сложной картиной скоростей потока v. Прежде простые линии спутаются и сожмутся. Величина завихренности будет возрастать, равно как и ее нерегулярности (положительные и отрицательные), которые, вообще говоря, тоже будут увеличиваться. Таким образом, завихренность в трех измерениях по мере перемешивания жидкости будет возрастать.
Вы можете также спросить: «Когда же в конце концов справедлива теория потенциального потока?» Прежде всего она удовлетворительна вне турбулентной области, куда проникновение завихренности из-за диффузии незначительно. Изготовляя специальные обтекаемые тела, мы стараемся сделать область турбулентности как можно меньше. Поток, обтекающий крылья самолета, которые имеют специальную рассчитанную форму, — почти настоящий потенциальный поток.
§ 6. Поток Куеттэ
Можно показать, что сложный и изменчивый характер потока мимо цилиндра не исключение и что такое разнообразие возможностей получается и в общем случае. В § 1 мы нашли решение для вязкой жидкости между двумя цилиндрами и можем сравнить эти результаты с тем, что получается на самом деле. Если мы возьмем два концентрических цилиндра и заполним пространство между ними маслом с добавленной в него мелкой алюминиевой пудрой, то поток можно легко наблюдать. Если начнем медленно вращать внешний цилиндр, то ничего неожиданного не произойдет (фиг. 41.8, а).
Фиг. 41.8. Виды потока жидкости между двумя прозрачными вращающимися цилиндрами.
Можно медленно вращать и внутренний цилиндр, все равно ничего потрясающего не будет. А вот если мы начнем очень быстро вращать внутренний цилиндр — случится нечто удивительное. Жидкость разобьется на горизонтальные полосы (фиг. 41.8, б). Если с подобной же скоростью мы будем вращать внешний цилиндр, а внутренний оставим в покое, то никакого похожего эффекта не возникает. Как же получается, что не все равно, какой цилиндр вращать — внутренний или внешний. Ведь в конце концов вид потока, который мы нашли в § 1, зависел только от ωb-ωа. Ответ можно получить, взглянув на сечение цилиндра, изображенного на фиг. 41.9.
Фиг. 41.9. Вот почему поток разбивается на полосы.
Когда внутренние слои жидкости движутся быстрее, чем внешние, они стремятся двигаться наружу: центробежная сила становится больше удерживающего давления. Но весь слой целиком не может двигаться равномерно, так как на его пути стоят внешние слои. Поэтому они разбиваются на клетки и циркулируют, как показано на фиг. 41.9, б. Это напоминает конвекционные токи в комнате, где на уровне пола имеется слой теплого воздуха. Когда внутренний цилиндр находится в покое, а внешний цилиндр вращается с большой скоростью, центробежные силы создают градиент давления, который удерживает все в равновесии (фиг. 41.9, в), как теплый воздух, находящийся у потолка.
Теперь ускорим внутренний цилиндр. Сначала число полос увеличится. Затем неожиданно полосы станут волнистыми (см. фиг. 41.8,в), и волны эти начнут обтекать цилиндр. Скорость этих волн легко измерить. При больших скоростях вращения она приближается к 1/3 от скорости внутреннего цилиндра, а почему, никто не знает. Здесь есть над чем подумать. Простое число 1/3 и полное отсутствие объяснения! Вообще говоря, весь механизм образования волн тоже далеко не ясен, хотя мы имеем дело со стационарным ламинарным потоком.
Если теперь мы еще начнем вращать и внешний цилиндр, но в противоположную сторону, то картина потока начнет разбиваться. Волновые области начнут чередоваться со спокойными на вид областями, образуя спиральную картину (см. фиг. 41.8, г). Однако в этих «спокойных» областях, как можно заметить, поток на самом деле совсем не регулярен; он полностью турбулентен. Кроме того, в волновых областях начинает еще появляться нерегулярный турбулентный поток. Если цилиндры вращаются еще быстрее, то весь поток становится хаотическим турбулентным.
Этот простой эксперимент показал нам много интересных режимов потока, совершенно отличных один от другого и все же содержащихся в нашем простом уравнении при различных величинах одного-единственного параметра ℛ. С помощью наших вращающихся цилиндров мы можем наблюдать многие эффекты, проявляющиеся в потоке, проходящем мимо цилиндра: во-первых, это стационарный поток, во-вторых, целый набор потоков, которые изменяются со временем, но регулярным гладким образом, и, наконец, поток становится полностью нерегулярным. Те же самые эффекты каждый из вас видел в столбике табачного дыма, струящегося от сигареты, когда воздух спокоен. Сначала этот столбик гладкий, затем он как-то скручивается, поток дыма начинает разрушаться, и, наконец, все заканчивается беспорядочными клубами.
Основное, что вам следует вынести из всего сказанного, заключается в том, что в одном простом наборе уравнений (41.23) скрывается огромное разнообразие поведений. Все это решения одного и того же уравнения при различных значениях ℛ. У нас нет причин думать, что в этом уравнении мы потеряли какие-то слагаемые. Единственная трудность заключается в том, что нам сегодня не хватает математических знаний, чтобы проанализировать уравнение, за исключением очень малых чисел Рейнольдса, т. е. в случае очень вязкой жидкости. Написав уравнение, мы не отняли у потока жидкости ни его чарующей прелести, ни его таинственности, ни его поразительности.
Что ожидает нас в более сложных уравнениях, если даже в таком простом уравнении с одним-единственным параметром мы видим такое разнообразие возможностей! Вполне возможно, что основное уравнение, которое описывает завихрение туманностей, или образование вращений, или взрыв звезд и галактик, будет всего-навсего простым уравнением гидродинамики почти чистого водорода. Часто люди в каком-то неоправданном страхе перед физикой говорят, что невозможно написать уравнение жизни. А может быть, и можно. Очень возможно, что на самом деле мы уже располагаем достаточно хорошим приближением, когда пишем уравнение квантовой механики
Только что мы видели, как явления во всей их сложности легко и поразительно получаются из простых уравнений, которые описывают их. Не подозревая о возможностях простых уравнений, люди часто заключают, что для объяснения всей сложности мира требуется нечто данное от бога, а не просто уравнения.
Мы написали уравнения для течения воды. Но из нашего опыта у нас сложились какие-то понятия и приближения, пользуясь которыми, мы можем обсуждать разные решения — цепочку вихрей, турбулентный след, пограничный слой. Когда подобные уравнения встречаются нам в менее знакомой ситуации, где мы еще не можем экспериментировать, то мы пытаемся решать такие уравнения примитивным, извилистым и запутанным путем, стремясь определить, какие же качественные явления можно получить из него или какие новые качественные формы являются следствием этого уравнения. Наши уравнения для Солнца, например, представляющие его как водородный шар, описывают Солнце без солнечных пятен, без зернистой структуры его поверхности, без неровностей и короны. Тем не менее все это действительно находится в уравнениях, только у нас нет еще способа вытащить их оттуда.
Есть такие люди, которые будут очень расстроены, если на других планетах не будет найдено жизни. Я не принадлежу к их числу. И я никогда не смогу перестать удивляться и радоваться результатам межпланетных исследований, обнаруживающих бесконечное разнообразие и новизну явлений, порожденных одними и теми же самыми простыми принципами. Критерий науки — ее способность предсказывать. Могли бы вы предсказать бури, вулканы, океанские волны, зори и красочные закаты, если бы вы никогда не были на Земле?
Драгоценным сокровищем для нас будет все, что мы узнаем о происходящем на каждой из мертвых планет, каждого из десятка шаров, образовавшихся из того же самого облака пыли и подчиняющихся тем же самым законам физики, что и наша планета.
Грядущая великая эра пробуждения человеческого разума принесет с собой метод понимания качественного содержания уравнений. Сегодня еще мы не способны на это. Сегодня мы не можем увидеть в уравнениях потока воды такие вещи, как спиральное строение турбулентности, которую мы видим между вращающимися цилиндрами. Сегодня мы не можем сказать с уверенностью, содержит ли уравнение Шредингера и лягушек, и композиторов, и даже мораль или там ничего похожего и быть не может. Мы не можем сказать, требуется ли что-либо сверх уравнения, вроде каких-то богов, или нет. Поэтому каждый из нас может иметь на этот счет свое особое мнение.
ПРИЛОЖЕНИЕ (к главе 30)
A dynamical model of a crystal structure[62]
by sir Lawrence Bragg, F.R.S. and J. F. Nye Cavendish Laboratory, University of Cambridge
(Received 9 January 1947—Read 19 June 1947) [Plates 8 to 21]
The crystal structure of a metal is represented by an assemblage of bubbles, a millimetre or less in diameter, floating on the surface of a soap solution. The bubbles are blown from a fine pipette beneath the surface with a constant air pressure, and are remarkably uniform in size. They are held together by surface tension, either in a single layer on the surface or in a threedimensional mass. An assemblage may contain hundreds of thousands of bubbles and persists for an hour or more. The assemblages show structures which have been supposed to exist in metals, and simulate effects which have been observed, such as grain boundaries, dislocations and other types of fault, slip, recrystallization, annealing, and strains due to 'foreign' atoms.
1. The bubble model
Models of crystal structure have been described from time to time in which the atoms are represented by small floating or suspended magnets, or by circular disks floating on a water surface and held together by the forces of capillary attraction. These models have certain disadvantages; for instance, in the case of floating objects in contact, frictional forces impede their free relative movement. A more serious disadvantage is that the number of components is limited, for a large number of components is required in order to approach the state of affairs in a real crystal. The present paper describes the behaviour of a model in which the atoms are represented by small bubbles from 2.0 to 0.1 mm. in diameter floating on the surface of a soap solution. These small bubbles are sufficiently persistent for experiments lasting an hour or more, they slide past each other without friction, and they can be produced in large numbers. Some of the illustrations in this paper were taken from assemblages of bubbles numbering 100,000 or more. The model most nearly represents the behaviour of a metal structure, because the bubbles are of one type only and are held together by a general capillary attraction, which represents the binding force of the free electrons in the metal. A brief description of the model has been given in the Journal of Scientific Instruments (Bragg 1942b).
figure 1. Apparatus for producing rafts of bubbles.
2. Method of formation
The bubbles are blown from a fine orifice, beneath the surface of a soap solution. We have had the best results with a solution the formula of which was given to us by Mr. Green of the Royal Institution. 15-2 c.c. of oleic acid (pure redistilled) is well shaken in 50 c.c. of distilled water. This is mixed thoroughly with 73c.с. of 10% solution of tri-ethanolamine and the mixture made up to 200 c.c. To this is added 164 c.c. of pure glycerine. It is left to stand and the clear liquid is drawn off from below. In some experiments this was diluted in three times its volume of water to reduce viscosity. The orifice of the jet is about 5 mm. below the surface. A constant air pressure of 50 to 200cm. of water is supplied by means of two Winchester flasks. Normally the bubbles are remarkably uniform in size. Occasionally they issue in an irregular manner, but this can be corrected by a change of jet or of pressure. Unwanted bubbles can easily be destroyed by playing a small flame over the surface. Figure 1 shows the apparatus. We have found it of advantage to blacken the bottom of the vessel, because details of structure, such as grain boundaries and dislocations, then show up more clearly.
Figure 2, plate 8, shows a portion of a ' raft' or two-dimensional crystal of bubbles. Its regularity can be judged by looking at the figure in a glancing direction. The size of the bubbles varies with the aperture, but does not appear to vary to any marked degree with the pressure or the depth of the orifice beneath the surface. The main effect of increasing the pressure is to increase the rate of issue of the bubbles. As an example, a thick-walled jet of 49μ bore with a pressure of 100cm. produced bubbles of 1-2 mm. in diameter A thin-walled jet of 27μ diameter and a pressure of 180cm. produced bubbles of 0.6 mm diameter It is convenient to refer to bubbles of 2.0 to 1.0mm. diameter as 'large' bubbles, those from 0.8 to 0.6mm. diameter as 'medium' bubbles, and those from 0.3 to 0.1 mm. diameter as 'small' bubbles, since their behaviour varies with their size.
figure 3. Apparatus for producing bubbles of small size.
With this apparatus we have not found it possible to reduce the size of the jet and so produce bubbles of smaller diameter than 0.6 mm. As it was desired to experiment with very small bubbles, we had recourse to placing the soap solution in a rotating vessel and introducing a fine jet as nearly as possible parallel to a stream line. The bubbles are swept away as they form, and under steady conditions are reasonably uniform. They issue at a rate of one thousand or more per second, giving a high-pitched note. The soap solution mounts up in a steep wall around the perimeter of the vessel while it is rotating, but carries back most of the bubbles with it when rotation ceases. With this device, illustrated in figure 3, bubbles down to 0.12 mm. in diameter can be obtained. As an example, an orifice 38μ across in a thin-walled jet, with a pressure of 190cm. of water, and a speed of the fluid of I80cm./sec. past the orifice, produced bubbles of 0.14 mm. diameter. In this case a dish of diameter 9-5 cm. and speed of 6 rev./sec. was used. Figure 4, plate 8, is an enlarged picture of these 'small' bubbles and shows their degree of regularity; the pattern is not as perfect with a rotating as with a stationary vessel, the rows being seen to be slightly irregular when viewed in a glancing direction.
These two-dimensional crystals show structures which have been supposed to exist in metals, and simulate effects which have been observed, such as grain boundaries, dislocations and other types of fault, slip, recrystallization, annealing, and strains due to ' foreign' atoms.
3. Grain boundaries
Figures 5a, 56 and 5c, plates 9 and 10, show typical grain boundaries for bubbles of 1.87, 0.76 and 0.30 mm. diameter respectively. The width of the disturbed area at the boundary, where the bubbles have an irregular distribution, is in general greater the smaller the bubbles. In figure 5a, which shows portions of several adjacent grains, bubbles at a boundary between two grains adhere definitely to one crystalline arrangement or the other. In figure 5с there is a marked ' Beilby layer' between the two grains. The small bubbles, as will be seen, have a greater rigidity than the large ones, and this appears to give rise to more irregularity at the interface.
Separate grains show up distinctly when photographs of polycrystalline rafts such as figures 5a to 5c, plates 9 and 10, and figures 12a to 12e, plates 14 to 16, are viewed obliquely. With suitable lighting, the floating raft of bubbles itself when viewed obliquely resembles a polished and etched metal in a remarkable way.
It often happens that some 'impurity atoms', or bubbles which are markedly larger or smaller than the average, are found in a polycrystalline raft, and when this is so a large proportion of them are situated at the grain boundaries. It would be incorrect to say that the irregular bubbles make their way to the boundaries; it is a defect of the model that no diffusion of bubbles through the structure can take place, mutual adjustments of neighbours alone being possible. It appears that the boundaries tend to readjust themselves by the growth of one crystal at the expense of another till they pass through the irregular atoms.
4. Dislocations
When a single crystal or polycrystalline raft is compressed, extended, or otherwise deformed it exhibits a behaviour very similar to that which has been pictured for metals subjected to strain. Up to a certain limit the model is within its elastic range. Beyond that point it yields by slip along one of the three equally inclined directions of closely packed rows. Slip takes place by the bubbles in one row moving forward over those in the next row by an amount equal to the distance between neighbours. It is very interesting to watch this process taking place. The movement is not simultaneous along the whole row but begins at one end with the appearance of a 'dislocation', where there is locally one more bubble in the rows on one side of the slip line as compared with those on the other. This dislocation then runs along the slip line from one side of the crystal to the other, the final result being a slip by one 'inter-atomic' distance. Such a process has been invoked by Orowan, by Polanyi and by Taylor to explain the small forces required to produce plastic gliding in metal structures. The theory put forward by Taylor (1934) to explain the mechanism of plastic deformation of crystals considers the mutual action and equilibrium of such dislocations. The bubbles afford a very striking picture of what has been supposed to take place in the metal. Sometimes the dislocations run along quite slowly, taking a matter of seconds to cross a crystal; stationary dislocations also are to be seen in crystals which are not homogeneously strained. They appear as short black lines, and can be seen in the series of photographs, figures 12a to 12 e, plates 14 to 16. When a polycrystalline raft is compressed, these dark lines are seen to be dashing about in all directions across the crystals.
Figures 6a, 66 and 6c, plates 10 and 11, show examples of dislocations. In figure 6a, where the diameter of the bubbles is 1.9 mm., the dislocation is very local, extending over about six bubbles. In figure 66 (diameter 0.76 mm.) it extends over twelve bubbles, and in figure 6c (diameter 0.30mm.) its influence can be traced for a length of about fifty bubbles. The greater rigidity of the small bubbles leads to longer dislocations. The study of any mass of bubbles shows, however, that there is not a standard length of dislocation for each size. The length depends upon the nature of the strain in the crystal. A boundary between two crystals with corresponding axes at approximately 30° (the maximum angle which can occur) may be regarded as a series of dislocations in alternate rows, and in this case the dislocations are very short. As the angle between the neighbouring crystals decreases, the dislocations occur at wider intervals and at the same time become longer, till one finally has single dislocations in a large body of perfect structure as shown in figures 6a, 6b and 6c.
Figure 7, plate 11, shows three parallel dislocations. If we call them positive and negative (following Taylor) they are positive, negative, positive, reading from left to right. The strip between the last two has three bubbles in excess, as can be seen by looking along the rows in a horizontal direction. Figure 8, plate 12, shows a dislocation projecting from a grain boundary, an effect often observed.
Figure 9, plate 12, shows a place where two bubbles take the place of one. This may be regarded as a limiting case of positive and negative dislocations on neighbouring rows, with the compressive sides of the dislocations facing each other. The contrary case would lead to a hole in the structure, one bubble being missing at the point where the dislocations met.
ДИНАМИЧЕСКАЯ МОДЕЛЬ КРИСТАЛЛИЧЕСКОЙ СТРУКТУРЫ
Л. Брэгг и Дж. Най
Кристаллическая структура металла моделируется скоплением пузырьков диаметром 1 мм и меньше, плавающих на поверхности мыльного раствора. Пузырьки выдуваются из маленькой пипетки, расположенной ниже поверхности раствора; давление воздуха в пипетке постоянно, и размеры пузырьков чрезвычайно мало отличаются друг от друга. Пузырьки удерживаются вместе за счет поверхностного натяжения, выстраиваясь в один слой на поверхности или образуя трехмерную массу. Скопление может содержать сотни тысяч пузырьков и сохраняется в течение часа или более. Скопление образует структуры, которые, как предполагают, имеются в металлах, и имитируют эффекты, которые уже наблюдались, такие, как формирование границ между зернами, дислокаций и других типов дефектов, процессы скольжения, явления рекристаллизации и отжига, возникновение напряжений, связанных с «посторонними» атомами.
1. Пузырьковая модель
Время от времени предлагались модели кристалла, в которых атомы представлялись маленькими плавающими или подвешенными магнитами, или же кружками, плавающими на поверхности воды и притягивающимися за счет капиллярных сил.
Эти модели имеют серьезные недостатки; например, в случае плавающих и соприкасающихся объектов силы трения мешают их свободному относительному движению. Более серьезным недостатком является ограниченное число компонент, потому что приблизиться к положению дел в реальном кристалле можно только с большим числом компонент.
В настоящей работе описано поведение модели, в которой атомы представлены маленькими пузырьками диаметром от 0,1 до 2 мм, плавающими на поверхности мыльного раствора. Эти маленькие пузырьки достаточно устойчивы для экспериментов длительностью 1 час и более, они скользят друг по другу без трения и могут быть приготовлены в больших количествах. Ряд снимков для этой статьи был сделан на скоплениях, насчитывающих 100 000 пузырьков и более. Модель ближе всего соответствует поведению металлической структуры, потому что все пузырьки только одного типа и держатся вместе за счет общего капиллярного притяжения, которое изображает силу связи свободных электронов в металле. Краткое описание этой модели было дано в работе Брэгга[63].
2. Способ образования пузырьков
Пузырьки выдуваются из тонкой пипетки, расположенной под поверхностью мыльного раствора. Наилучшие результаты мы получили с помощью раствора, состав которого нам сообщил мистер Грин из Королевского института: 15,2 см3 олеиновой кислоты (двойной дистилляции) тщательно взбалтывается с 50 см3 дистиллированной воды. Все это тщательно смешивается с 73см3 10%-ного раствора триэтаноламина, и всю смесь доливают водой до 200 см3. К этому добавляют 164 см3 чистого глицерина. Смеси дают отстояться и берут чистую жидкость внизу. В некоторых экспериментах ее разбавляли в тройном количестве (по объему) воды для уменьшения вязкости. Отверстие пипетки расположено примерно на 5 мм ниже уровня раствора. Постоянное давление воздуха (составлявшее 50—200 см водяного столба) поддерживается с помощью двух колб Винчестера. Обычно пузырьки удивительно однородны по размерам. Иногда вдруг они выходят беспорядочным образом, но этого можно избежать, меняя пипетку или давление. Ненужные пузырьки легко уничтожить, проведя над поверхностью слабым пламенем. На фиг. 1 показан наш прибор. Мы сочли удобным зачернить дно сосуда, потому что в этом случае детали структуры, такие, как границы зерен и дислокации, проявляются более ярко.
На фиг. 2 (лист 1) показана часть «плота» или двумерного кристалла из пузырьков. О правильности расположения можно судить, если взглянуть на снимок под небольшим углом к плоскости страницы. Размер пузырьков меняется с апертурой (размером отверстия), но не зависит сколько-нибудь заметным образом от давления или глубины расположения отверстия ниже уровня раствора. Основной эффект, к которому приводит увеличение давления, — это увеличение скорости рождения пузырьков.
Например, толстостенная трубка с внутренним диаметром 49 мк и давлением 100 см образовывала пузырьки диаметром 1,2 мм. Тонкостенная трубка с внутренним диаметром 27 мк и давлением 180 см образовывала пузырьки диаметром 0,6 мм. Пузырьки диаметром от 2 до 1 мм удобно называть «большими», диаметром от 0,8 до 0,6 мм — «средними», а пузырьки диаметром от 0,3 до 1,1 мм — «маленькими», так как поведение пузырьков зависит от их размеров.
С помощью такого прибора нам не удалось уменьшить размеры отверстия и получить пузырьки диаметром менее 0,6 мм.
Поскольку было желательно поставить опыты с очень маленькими пузырьками, мы влили мыльный раствор во вращающийся сосуд и ввели тонкую трубочку, расположив как можно более точно параллельно линии потока. По мере образования пузырьки уносятся и при постоянных условиях довольно близки по размерам. Образуются они со скоростью тысяча или более в секунду, причем издается пронзительный звук. При вращении сосуда мыльный раствор круто поднимается по его стенкам по всей окружности, а когда вращение прекращается, раствор уносит с собой большинство пузырьков. С помощью этого устройства, показанного на фиг. 3, могут быть получены пузырьки диаметром до 0,12 мм. Так, тонкостенная трубка с поперечным отверстием 38 мк, при давлении воздуха 190 см водяного столба и скорости потока у отверстия в 180см/сек образует пузырьки диаметром 0,14 мм. В этом случае использовался сосуд диаметром 9,5 см, а скорость вращения достигала 6 оборотов в 1 сек.
На фиг. 4 (лист 1) приведен увеличенный снимок этих «маленьких» пузырьков, иллюстрирующий степень их регулярности; при вращении порядок получается не таким полным, как в неподвижном сосуде; когда смотришь в плоскости страницы, видно, что ряды слегка нерегулярны.
Эти двумерные кристаллы образуют структуры, которые, как полагают, существуют в металлах, и имитируют такие наблюденные эффекты, как границы зерен, дислокации и другие дефекты, процессы скольжения, явление рекристаллизации и отжига и возникновение напряжений, вызванных «посторонними» атомами.
3. Границы зёрен
На фиг. 5 (лист 2) показаны типичные границы зерен для пузырьков диаметром соответственно 1,87, 0,76 и 0,30 мм. Ширина возмущенной поверхности на границе, где пузырьки имеют нерегулярное распределение, в основном бывает тем больше, чем меньше пузырьки. На фиг. 5, а, где показано несколько соседних зерен, пузырьки на границе между двумя зернами явно придерживаются либо одного, либо другого кристаллического порядка. На фиг. 5, в ясно обозначился «слой Бейлби» между двумя зернами. Маленькие пузырьки, как будет видно далее, обладают большей жесткостью, чем большие, а это приводит к значительной беспорядочности на границах. Отдельные зерна ясно видны, если рассматривать фотографии поликристаллических слоев. При подходящем освещении сами плавающие слои пузырьков, рассматриваемые вдоль страницы, удивительно напоминают полированный и травленый металл. Часто случается, что в поликристаллический плот попадают «атомы примеси», т. е. пузырьки, заметно отличающиеся по размерам от средних, и в этом случае большая доля их размещается на границах зерен. Было бы неправильно утверждать, что несоразмерные пузырьки проталкиваются к границам; невозможность диффузии пузырьков сквозь структуру составляет дефект модели. Может возникать только взаимное приспособление соседей. Оказывается, что границы стремятся перестроиться благодаря росту одного кристалла за счет другого, пока граница не пройдет через атомы примесей.
4. Дислокации
Если монокристалл или поликристаллический плот подвергается сжатию, растяжению или другой деформации, его поведение очень похоже на поведение металлов, на которые действует напряжение. До известного предела модель находится в области упругой деформации. За этой границей модель начинает скользить вдоль одного из трех равноправных направлений, вдоль плотно упакованных рядов. Скольжение происходит за счет перехода пузырьков в одном ряду над пузырьками соседнего ряда на расстояние, равное промежутку между соседними пузырьками. Очень интересно наблюдать за этим процессом. Движение вдоль всего ряда не одновременное, начинается оно на одном конце с появления «дислокации», где в рядах по одну сторону линии скольжения в одном месте оказывается на один пузырек больше, нежели в рядах по другую сторону. Эта дислокация затем пробегает вдоль линии скольжения от одного конца кристалла до другого; в результате происходит проскальзывание на одно «межатомное» расстояние. Процесс такого рода предположили Орован, Поляни и Тэйлор для объяснения малости силы, вызывающей пластическое скольжение в металлических структурах. В теории, выдвинутой Тэйлором[64] для объяснения механизма пластической деформации кристаллов, рассматривается взаимодействие и равновесие таких дислокаций. Пузырьки дают поразительную иллюстрацию того, что, как думают, происходит в металлах. Иногда дислокации движутся совсем медленно и на прохождение кристалла им требуется время порядка секунд; можно увидеть и неподвижные дислокации в кристаллах, напряжение в которых неоднородно. Они выглядят как короткие черные черточки. При сжатии поликристаллического плота эти черточки разбегаются во всех направлениях по кристаллу.
На фиг. 6 (лист 3) показаны примеры дислокаций. На фиг. 6, а дислокации имеют ограниченный характер, протягиваясь на длину около шести пузырьков. На фиг. 6, б дислокации простираются на двенадцать пузырьков, а на фиг. 6, в влияние дислокаций можно проследить на протяжении примерно пятидесяти пузырьков. Большая жесткость маленьких пузырьков приводит к более длинным дислокациям. Изучение любой массы пузырьков показывает, однако, что для каждого размера пузырьков не существует стандартной длины дислокаций. Она зависит от природы напряжений в кристалле. Границу между двумя кристаллами с осями под углом 30° друг к другу (максимальный возможный угол) можно рассматривать как серию дислокаций в чередующихся рядах, и в этом случае дислокации очень короткие. При уменьшении угла между соседними кристаллами дислокации возникают в более широких интервалах и в то же время становятся длиннее, пока, наконец, не образуется единственная дислокация в большом объеме с совершенной структурой (фиг. 6).
На фиг. 7 (лист 4) показаны три параллельные дислокации. Если (следуя Тэйлору) различать положительные и отрицательные дислокации, то это положительная, отрицательная и снова положительная, считая слева направо. Полоса между двумя последними имеет три лишних пузырька, что можно увидеть, если смотреть вдоль рядов в горизонтальном направлении. На фиг. 8 (лист 4) показана дислокация, распространяющаяся от границ зерна, что представляет собой часто встречающийся эффект. На фиг. 9 (лист 4) показано то место, где стоят два пузырька, а не один. Это можно рассматривать как предельный случай положительной и отрицательной дислокаций в соседних рядах, когда сжатые стороны дислокаций находятся друг против друга. Противоположный случай привел бы к возникновению дырки, т. е. одного пузырька не хватало бы там, где встречаются дислокации.
Лист 1
Фиг. 2. Идеальное расположение пузырьков. Диаметр 1,41 мм.
Фиг. 4. Регулярное расположение «маленьких» пузырьков. Диаметр 0,30 мм.
Лист 2
Фиг. 5. Типичные границы зерен. а — диаметр 1,87 мм; б — диаметр 0,76 мм; в — диаметр 0,30 мм.
Лист 3
Фиг. 6. Дислокации. а —диаметр 1,9 мм; б — диаметр 0,76 мм; в — диаметр 0,30 мм.
Лист 4
Фиг. 7. Параллельные дислокации. Диаметр 0,76 мм.
Фиг. 8. Дислокация, проектирующаяся от границ зерна.
Фиг. 9. Дислокации в соседних рядах.
Примечания
1
Выпуски 5—7.— Прим. ред.
(обратно)2
Выпуски 8 и 9, в них вошли и восемь дополнительных лекций.— Прим. ред.
(обратно)3
Нужно только договориться о выборе знака циркуляции.
(обратно)4
В наших обозначениях выражение (а, b, с) представляет вектор с компонентами а, b, с. Если вам нравится пользоваться единичными векторами i, j и k, то можно написать
(обратно)5
Мы рассматриваем h как физическую величину, зависящую от положения в пространстве, а не как заданную математически функцию трех переменных. Когда h «дифференцируется» по х, у и z или по х', у' и z', то математическое выражение для h должно быть предварительно выражено в виде функции соответствующих переменных. Поэтому в новой системе координат мы не отмечаем h штрихом.
(обратно)6
Конечно, последующие выкладки в равной мере относятся и к любому прямоугольному параллелепипеду.
(обратно)7
См. статью Мюллера [Е. W. Mueller, The field-ion microscope, Advances in Electronics and Electron Physics, 13, 83 (I960)].
(обратно)8
О новых работах по этому вопросу и библиографию см. в статье С. J.Powell, J.B. Swann, Phys. Rev., 115, 869 (1959).
(обратно)9
Удобный способ наблюдать размер капель — дать воде падать на большой противень. От крупных капель дробь будет громче.
(обратно)10
Sānger, Steiger, Gachter, Helvetica Physica Acta, 5, 200 (1932).
(обратно)11
Имеется перевод: Ч. Киттель, «Введение в физику твердого тела», М., 1962.— Прим. ред.
(обратно)12
По-английски сегнетоэлектричество называется ferroelectricity (ферроэлектричество); этот термин возник по аналогии с ферромагнетизмом: наличие спонтанного момента (электрического в сегнетоэлектриках, магнитного в ферромагнетиках), точки Кюри, гистерезиса и т. п. Однако физическая природа этих групп явлений совершенно различна.— Прим. ред.
(обратно)13
Поскольку мы говорим о некогерентных источниках, интенсивности, которых всегда складываются линейно, то электрические заряды в аналогичной задаче всегда будут иметь одинаковые знаки. Следует учесть, что наша аналогия применяется только к световой энергии, падающей на поверхность непрозрачной плоскости, поэтому мы должны включить в интеграл лишь источники, излучающие над поверхностью (конечно, не те, которые расположены под поверхностью!).
(обратно)14
Или, короче, — тесла. — прим. ред.
(обратно)15
Потом мы увидим, что такие предположения, вообще говоря, неправильны для электромагнитных сил!
(обратно)16
Это и есть магнитная проницаемость пустоты.
(обратно)17
Наше определение все еще не полностью задает А. Чтобы задание было единственным, мы должны были бы что-нибудь сказать о поведении поля А на какой-либо границе или на больших расстояниях. Иногда бывает удобно выбрать, например, поле, спадающее к нулю на больших расстояниях.
(обратно)18
Если поле B выходит из плоскости рисунка, то поток, в соответствии с его определением, будет отрицательным, а x0— положительным.
(обратно)19
Мы пользуемся сейчас буквой А для обозначения векторного потенциала, поэтому площадь мы предпочитаем обозначать через S.
(обратно)20
Знак M12 и M21 в (17.31) и (17.32) зависит от произвола в выборе положительного направления токов в обеих катушках.
(обратно)21
Кстати, это не единственный способ установления соответствия между механическими и электрическими величинами.
(обратно)22
Мы пренебрегаем всеми тепловыми потерями энергии в сопротивлении катушки. Эти потери требуют дополнительных затрат энергии источника, но не меняют энергии, которая тратится на индуктивность.
(обратно)23
К-2— вторая по высоте вершина мира в северо-западных отрогах Гималаев, называемых Каракорум.— Прим. ред.
(обратно)24
Это не совсем так. Поля могут быть «поглощены», если попадут в область, в которой есть заряды. Это значит, что где-то могут быть созданы другие поля, которые наложатся на эти поля и «погасят»их в результате деструктивной интерференции (см. гл. 31, вып. 3)
(обратно)25
Выбор значения ∇·А называется «выбором калибровки». Изменение А за счет добавления ∇ψ называется «калибровочным преобразованием». Выбор (18.23) называют «калибровкой Лоренца».
(обратно)26
Эта лекция никак не связана со всем остальным. Она прочитана лишь для того, чтобы отвлечься от основной темы и немного передохнуть. (Перевод надписей, сделанных на доске, приведен около рисунков, над стрелками.— Прим. ред.)
(обратно)27
С обратным знаком. См. дальше.— Прим. ред.
(обратно)28
Формула была выведена Р. Фейнманом в 1950 г. и приводится иногда в лекциях как удобный способ расчета синхротронного излучения.
(обратно)29
Если у вас достаточно времени и вам не жаль бумаги, то попытайтесь проделать это самостоятельно. Вот вам парочка советов: во-первых, не забывайте, что производные r' довольно запутанны, ведь они суть функции от t'! Во-вторых, не пытайтесь вывести формулу (21.1); лучше проделайте в ней все дифференцирования и затем сопоставьте то, что у вас получится, с выражением для Е, полученным из потенциалов (21.33) и (21.34).
(обратно)30
Кое-кто говорит, что предметы мы обязаны называть словами «катушка» и «конденсатор», а их свойства — соответственно «индуктивность» и «емкость». Но я предпочитаю пользоваться словами, какие слышу в лаборатории, где почти всегда и про физическую катушку, и про ее самоиндукцию L говорят «индуктивность». Точно так же предпочитают говорить «емкость», «сопротивление», хотя часто можно услышать и слово «конденсатор».
(обратно)31
Эта эквивалентная схема годится только для низких частот. На высокой частоте эквивалентная схема усложняется, в нее надо включить различные, так называемые «паразитические», емкости и индуктивности.
(обратно)32
Вас может удивить, почему же мы не пользуемся реакцией
Или даже
для которой, несомненно, требуется меньшая энергия? Все дело в принципе, называемом сохранением барионного заряда, согласно которому величина, равная числу протонов минус число антипротонов, не может измениться. В левой стороне нашей реакции эта величина равна 2. Следовательно, если мы хотим справа иметь антипротон, то ему должны сопутствовать еще три протона (или других бариона).
(обратно)33
В английском оригинале «unworldliness». — Прим. ред.
(обратно)34
Штрих используется здесь для обозначения запаздывающего положения и времени; не путайте его со штрихом в предыдущей главе, обозначавшим систему отсчета, подвергнутую преобразованиям Лоренца.
(обратно)35
В этом параграфе мы не будем принимать с за единицу.
(обратно)36
Мы пользуемся такими обозначениями .x=dx/dt, ..x=d2x/dt2, ...x=d3x/dt3 и т. д.
(обратно)37
Литература: Ch. Кittel, Introduction to Solid State Physics, 2nd ed., New York, 1956. (Имеется перевод: Ч.Киттель, Введение в физику твердого тела, Физматгиз, М., 1962.)
(обратно)38
В сокращенном виде она помещена в конце этого выпуска, — Прим. ред.
(обратно)39
В гл. 10, следуя общепринятому соглашению, мы писали Р=ε0χЕ и величину χ (хи) называли «восприимчивостью». Здесь же нам удобнее пользоваться одной буквой, так что вместо ε0χ мы будем писать α. Для изотропного диэлектрика α=(ϰ-1)ε0, где ϰ — диэлектрическая проницаемость (см. гл. 10 §4 вып.5)
(обратно)40
Обычно для коэффициентов пропорциональности между P и E пользуются термином тензор восприимчивости, оставляя термин поляризуемость для величин, относящихся к одной частице. Прим. ред.
(обратно)41
Эту работу, затраченную на создание поляризации электрическим полем, не нужно путать с потенциальной энергией —p0*Е постоянного дипольного момента p0 в поле Е.
(обратно)42
Если не полагать с=1, как это делается здесь, то плотность энергии в принятых в книге единицах будет равна (ε0/2)(E2+с2B2) или в единицах СИ 1/2[ε0E2+(l/μ0)B2]. — Прим. ред.
(обратно)43
Всюду в этой главе мы будем пользоваться обозначениями, принятыми в гл. 31 (вып. 3); пусть α — атомная поляризуемость, как это определено здесь. В предыдущей главе мы пользовались буквой α для обозначения объемной поляризуемости, т. е. отношения Р к Е. Но в обозначениях этой главы P=Nαε0E [см. выражение (32.8)].
(обратно)44
Взяты из справочника «Handbook of Physics and Chemistry».
(обратно)45
Или записав — i=е-iπ/2; √-i=e-iπ/4=соsπ/4-isinπ/4, что приводит к тому же результату.
(обратно)46
Обычные пары натрия в основном моноатомны, хотя изредка там и встречаются молекулы Na2.
(обратно)47
Если бы все «другие» заряды находились на проводниках, то ρдр было бы тем же самым, что и ρсвоб в гл. 10 (вып. 5).
(обратно)48
Или, если хотите, ток I на каждой грани может быть поровну; распределен на кубиках с двух сторон.
(обратно)49
В системе, которой пользуется здесь автор, В=Н+1/ε0c2 М, но D=ε0E+P. В старой, доброй системе единиц писали В=μ0Н=(1/ε0c2)Н и D=ε0Е или В=(Н+4πМ) и D=Е+4πР. Надо быть очень внимательным, когда формулы для магнетиков пишутся по аналогии с формулами для диэлектриков (ср. § 6).— Прим. ред.
(обратно)50
Литература: Ch. Кittel, Introduction to Solid State Physics, 2nd ed., New York, 1956. (Имеется перевод: Ч. Киттель, Введение в физику твердого тела, Физматгиз, М., 1962.— Ред.)
(обратно)51
Вместо В мы записали это уравнение через H=B-M/ε0c2, чтобы согласовать со сказанным в предыдущей главе. Если вам больше нравится, можете написать U=±|μ|Ba=±|μ|(В+λ'M/ε0с2), где λ'=λ-1. Это одно и то же.
(обратно)52
Вас может удивить, каким образом спины, которые должны быть направлены либо «вверх», либо «вниз», могут также быть направлены «вбок»! Это, конечно, правильно, но мне, право, не хотелось бы останавливаться на этом вопросе сейчас. Мы просто встанем на классическую точку зрения, представив себе атомные магнитики в виде магнитных диполей, которые могут быть ориентированы и в боковом направлении. Чтобы понять, как в квантовой механике можно в одно и то же время квантовать как «вверх—вниз», так и «направо — налево», требуется поднакопить больше знаний.
(обратно)53
Это и есть момент инерции пластинки единичной плотности и с единичной площадью сечения
(обратно)54
Кстати, точно такое же уравнение возникает и в других физических ситуациях: например, в мениске на поверхности жидкости, заключенной между двумя параллельными стенками, а поэтому можно воспользоваться тем же самым геометрическим рассмотрением.
(обратно)55
Решение его можно выразить также через особые функции, называемые «эллиптическими функциями Якоби», которые когда-то раз навсегда были вычислены и протабулированы.
(обратно)56
Литература: Ch. Kittel, Introduction to Solid State Physics, 2nd ed., New York, 1956. (Имеется перевод: Ч. Киттель, Введение в физику твердого тела, Физматгиз, М., 1962.)
(обратно)57
Предположим на минуту, что полный угол сдвига θ делится на две равные части, чтобы деформация была симметричной относительно осей x и y.
(обратно)58
Пластик с мудреным названием «поливинилиденхлорид», применяемый для обертки.— Прим. ред.
(обратно)59
В литературе вы часто столкнетесь с другими обозначениями. Так, многие пишут:
(обратно)60
Большие частицы можно сдуть со стола, а мельчайшие— невозможно. Их верхушки не «высовываются» в поток.
(обратно)61
Можно представить себе и такой случай, когда это окажется неверным. Теоретически стекло есть тоже «жидкость», однако оно вполне может скользить по стальной поверхности. Так что и такая теория где-то должна погореть.
(обратно)62
Здесь воспроизведены лишь первые четыре параграфа статьи из Proceedings of the Royal Society of London, Vol. 190, p. 474 (1947). Нумерация листов, на которых размещены рисунки, в оригинале и переводе не совпадают. Литература, приведенная в конце статьи, дана в переводе в подстрочных примечаниях.— Прим. ред.
(обратно)63
W. L. Bragg, Journ. Sci. Instr., 19, 148 (1942).
(обратно)64
G. I. Тау1ог, Ргос. Roy. Soc., A145, 362 (1934).
(обратно)
Комментарии к книге «Том 2. Электромагнетизм и материя», Ричард Филлипс Фейнман
Всего 0 комментариев