«Самая главная молекула»

757

Описание

Из всего, что нас окружает, самой необъяснимой кажется жизнь. Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь из поколения в поколение? Эти вопросы стары как мир, но только во второй половине XX века удалось впервые получить на них ответы, которые, в сущности, оказались не слишком сложными и, главное, ослепительно красивыми. О том, как их удалось получить и в чем они состоят, рассказывается в этой книге. Центральное место в науке молекулярной биологии, которая призвана дать ответ на вечный вопрос: «Что такое жизнь?», занимает молекула ДНК. О ней главным образом и пойдет речь. Большое внимание автор уделил тем вопросам, при решении которых особенно важную роль играют физика и...



Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

Самая главная молекула (fb2) - Самая главная молекула [От структуры ДНК к биомедицине XXI века] 2225K скачать: (fb2) - (epub) - (mobi) - Максим Давидович Франк-Каменецкий

Максим Франк-Каменецкий Самая главная молекула. От структуры ДНК к биомедицине XXI века

Дизайн обложки А. Стельмашук

© Франк-Каменецкий М., 2017

© НП «Редакционно-издательский дом «ПостНаука», 2017

© ООО «Альпина нон-фикшн», 2017

Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).

Предисловие

Из всего, что нас окружает, самой необъяснимой кажется жизнь. Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь, из поколения в поколение? Эти вопросы стары как мир, но только во второй половине XX века удалось впервые получить на них ответы. В сущности, ответы оказались не слишком сложными и, главное, ослепительно красивыми. О том, как их удалось получить и в чем они состоят, рассказывается в этой книге. Центральное место в науке молекулярной биологии, которая призвана дать ответ на вечный вопрос: «Что такое жизнь?», занимает молекула ДНК. О ней главным образом и пойдет речь. Большое внимание автор уделил тем вопросам, при решении которых особенно важную роль играют физика и математика. Это отличает данную книгу от множества других книг, посвященных ДНК.

У этой книги своя собственная биография. Первая ее версия под названием «Самая главная молекула» была напечатана издательством «Наука» в популярной серии «Библиотечка "Квант"» более 30 лет назад. Тиражи научно-популярной литературы в советское время были громадными, и 150 000 экземпляров книги быстро разошлись. Ее прочли многие школьники и студенты. Но и маститые ученые, в особенности физики и математики, нашли книгу полезной и интересной. Второе, существенно переработанное и дополненное, издание было выпущено «Библиотечкой "Квант"» в 1988 году опять громадным тиражом (130 000). Тогда же стали появляться переводы книги на иностранные языки под разными названиями. Первое англоязычное издание (для которого она была вновь существенно переработана и дополнена) было осуществлено в 1993 году нью-йоркским отделением немецкого издательства VCH. Под новым, непереводимым на русский язык названием Unraveling DNA книга стала широко известна в читающем по-английски мире, в особенности после того, как в 1997 году американское издательство Addison-Wesley опубликовало второе, вновь переработанное и дополненное, издание в мягкой обложке, которое до сих пор регулярно допечатывается и распространяется издательством Perseus Books Publishing. Вышедшее в 2004 году в издательстве КДУ («Книжный дом "Университет"») третье русское издание книги под новым заглавием «Век ДНК» и опубликованное в 2010 году издательством «АСТ Пресс» под заголовком «Королева живой клетки» четвертое издание в значительной степени представляют собой авторский перевод на русский язык второго издания книги Unraveling DNA, причем в ходе их подготовки она была вновь существенно переработана и дополнена. Автор постепенно не только дополнял ее новым материалом, но и что-то выбрасывал, чтобы она не распухала.

Там, где это возможно, он избегал применения научных терминов. Но совсем без них обойтись невозможно. Основу жизни составляет большое число достаточно сложных молекул, и, не называя их, ни о чем рассказать было бы нельзя. Помощь в освоении терминологии призван оказать «Словарь терминов», помещенный в конце книги.

Она написана с таким расчетом, что ее не обязательно читать подряд. Главы в значительной степени независимы друг от друга. Читатель, которому не терпится познакомиться с биологическими и медицинскими аспектами молекулы ДНК, может опустить при первом чтении главы 3, 7, 8 и 9.

В течение прошедших со времени издания первой версии книги 30 с лишним лет она подвергалась существенной переработке приблизительно каждые 5 лет. И все же последняя переработка потребовала наибольших изменений. Внося многочисленные правки и дополнения по сравнению с предыдущими изданиями, автор особенно остро ощутил, насколько ускорился в XXI веке темп развития науки о ДНК и в еще большей степени – темп проникновения этой науки и основанных на ней новых технологий в повседневную жизнь. В результате СПИД перестал означать смертный приговор, огромные успехи достигнуты в области профилактики сердечно-сосудистых заболеваний. ДНК произвела подлинную революцию в криминалистике. С расшифровкой генома человека мы вступили в постгеномную эру.

Совсем недавно появилась подлинно революционная технология редактирования генома в живой клетке, сулящая как возможность полного искоренения многих заболеваний, уносящих множество жизней, таких как малярия, но и грозящая человечеству многими опасностями. Невероятный прогресс происходит на наших глазах в области методов терапии рака, в особенности в сфере иммунотерапии. Обо всем этом и о многом другом рассказано в новом издании книги.

Эта книга не могла бы быть написана без постоянной помощи и поддержки, которую я ощущал со стороны моей ныне покойной жены Аллы Воскобойник (1940–1985) в период подготовки первой версии книги, послужившей основой для последующих вариантов. Особой благодарности заслуживает В. К. Черникова, которая была редактором исходной версии и которая обучила меня секретам популяризации науки. Редактор издательства «Наука» Л. А. Панюшкина сделала очень много для публикации первых двух версий книги по-русски. Английские издания книги были бы невозможны, если бы мой друг Лев Ляпин не вложил свою душу в работу над переводом. Я глубоко признателен Чарлзу Дорингу, Эду Иммергуту и Кристине Иризарри за помощь в подготовке первого английского издания нью-йоркским отделением VCH. Лиза Адамс (книжное агентство Garamond, Ньютон, Массачусетс) взяла на себя труд быть моим книжным агентом и обеспечила успех второго английского издания. Я благодарен «ПостНауке» и ее лидеру Ивару Максутову за упорство и терпение, проявленное при переговорах со мной и с издательством «Альпина нон-фикшн», приведших к настоящему изданию.

M. Д. Франк-Каменецкий, сентябрь 2016 года, Бостон, США

1 От новой физики к новой биологии

Потрясающие вещи происходят в биологии. Мне кажется, Джим Уотсон сделал открытие, сравнимое с тем, что сделал Резерфорд в 1911 году.

Из письма Макса Дельбрюка Нильсу Бору от 14 апреля 1953 года

1930-е годы

В первой трети ХХ века наиболее значительные, революционные преобразования происходили в физике. Создание теории относительности и квантовой механики до самого основания потрясло эту старую науку, дав ей новый, неслыханной силы импульс к дальнейшему развитию как вглубь, в поисках универсальных физических законов, так и вширь, в смежные области.

Одной из главных вех на пути создания новой физики было открытие Резерфордом в 1911 году атомного ядра. Само существование атома Резерфорда находилось в вопиющем противоречии с основными законами классической физики. На смену старой физике пришла новая, квантовая физика, которая призвана была объяснить устойчивость атомов и их удивительные линейчатые спектры.

Эта теория, разработка которой была начата Планком, Эйнштейном и Бором, нашла замечательно ясную формулировку в 1926 году в виде знаменитого уравнения Шрёдингера. Квантовая механика не только позволила физикам решить все головоломки, которые накопились в области атомных спектров. Она поставила на прочный теоретический фундамент всю химию. Наконец-то был понят сокровенный смысл атомного номера в таблице Менделеева! Стал ясен истинный смысл валентности, выяснена природа химической связи, скрепляющей атомы в молекулах.

К началу 1930-х годов у физиков появилось ощущение всемогущества. Итак, с атомами все ясно, с молекулами тоже, что там еще? Ага, непонятно, как устроено атомное ядро. Занялись ядром. «Ну, здесь вряд ли есть работа на всех, – считали лидеры. – Надо бы придумать что-нибудь покрупнее». И их взоры обратились к святая святых, к тому, о чем физики раньше не могли и помышлять, – к самой жизни. Не поможет ли новая физика разгадать тайну жизни? Или, может быть, наоборот, окажется, что жизнь противоречит квантовой механике, и тогда придется опять изобретать какие-то новые законы? Это было бы особенно интересно.

В то время молодой немецкий физик-теоретик Макс Дельбрюк искал себе занятие по вкусу. Он попробовал заняться квантовой химией, потом ядерной физикой. Интересно, конечно, но не очень. И вот, будучи на стажировке в Институте Бора в Копенгагене, он в августе 1932 года попал на лекцию Бора на международном конгрессе по световой терапии. Лекция называлась «Свет и жизнь». В ней Бор поделился своими мыслями о проблеме жизни в связи с последними достижениями квантовой механики. И хотя Дельбрюк в то время был полным профаном в биологии, лекция Бора так его вдохновила, что он твердо решил посвятить себя этой науке. Вернувшись в Берлин, Дельбрюк стал искать контакты с биологами. Ему повезло. В это время в Берлине работал русский генетик Николай Владимирович Тимофеев-Ресовский.

Дельбрюк стал собирать у себя дома друзей-физиков. Он приглашал Тимофеева-Ресовского, и тот часами обучал их своей науке – генетике. Рассказывая, Тимофеев-Ресовский, по своему обыкновению, бегал из угла в угол, словно тигр в клетке. Он говорил о математически строгих законах Менделя, управляющих наследственностью. О генах и о замечательных работах Моргана, доказавших, что гены расположены цепочкой в хромосомах – маленьких червеобразных тельцах, находящихся в клеточных ядрах. Он говорил о плодовой мушке дрозофиле и о мутациях, т. е. об изменениях генов, которые можно вызвать рентгеновскими лучами. Этим последним вопросом он как раз занимался вместе с физиком-экспериментатором Циммером.

Дельбрюка крайне заинтересовала их работа. Вообще, в генетике было столько созвучного квантовой механике, что дух захватывало. Ведь квантовая механика принесла в физику дискретность, скачкообразность. Она также заставила серьезно относиться к случайности. И вот оказывается, что биологи тоже обнаружили дискретную неделимую частицу (ген), которая случайно переходит из основного состояния (генетики называют его «диким типом») в «возбужденное», «мутантное» состояние.

Что же такое ген? Как он устроен? Об этом часто спорили на вечерах у Дельбрюка. Тимофеев-Ресовский говорил, что, вообще-то, этот вопрос мало интересовал генетиков. Для них ген был тем же, чем для физиков электрон, – элементарной частицей наследственности.

«Вот, я вас спрошу, – сказал как-то Тимофеев-Ресовский, когда от него особенно настойчиво требовали ответа на вопрос об устройстве гена, – из чего состоит электрон?» Все рассмеялись. «Вот видите, так же смеются генетики, когда их спрашивают, из чего состоит ген». «Вопрос о том, что такое ген, выходит за рамки генетики, и его бессмысленно адресовать генетикам, – продолжал Тимофеев. – Вы, физики, должны искать ответ на него».

«Ну, все же, – настаивал Дельбрюк, – неужели нет никаких гипотез, пусть чисто умозрительных?» Тимофеев-Ресовский задумался на минутку и воскликнул: «Ну, как же! Мой учитель Николай Константинович Кольцов считает, что ген – это полимерная молекула, скорее всего, молекула белка». «Ну и что это объясняет?» – длинный Дельбрюк прямо-таки кричал на широкоплечего, могучего Тимофеева-Ресовского. «От того, что мы назовем ген белком, мы поймем, как гены удваиваются? Ведь главная-то загадка в этом! Ты же сам рассказывал нам, как в роду Габсбургов из поколения в поколение переходила характерная форма губы? Что делает возможным столь точное копирование генов в течение веков? Каков механизм? Разве химия дает нам такие примеры? Во всяком случае я никогда ничего подобного не слышал. Нет, тут нужна совершенно иная идея. Тут действительно таится загадка. Великая загадка. Возможно, новый закон природы. Сейчас главный вопрос – как к этому подступиться экспериментально».

Благодаря Тимофееву-Ресовскому Дельбрюк стал неплохо разбираться в генетике. Главное, его больше не смущала эта дьявольская терминология, как будто специально придуманная, чтобы отпугивать непосвященных. Раньше, когда ему случалось слушать выступления генетиков, он недоумевал, зачем им понадобилось придумывать специальный, тарабарский язык. Уж не жулики ли они? Ведь это уголовники изобретают свой особый жаргон, чтобы их преступные намерения не были понятны окружающим.

Знакомство с Тимофеевым-Ресовским изменило его отношение к генетикам. И даже знаменитая фраза, которой генетики особенно любят поражать непосвященных, «рецессивный аллель влияет на фенотип, только если генотип гомозиготен», стала казаться ему не только кристально ясной, но и прямо-таки красивой. «Черт возьми, – думал он. – А ведь и вправду иначе-то не скажешь!»

Фаговая группа

Великая тайна, скрывавшаяся за коротким словом «ген», окончательно пленила Дельбрюка. Как происходит удвоение или, опять-таки на жаргоне, репликация генов при делении клеток? В особенно сильное возбуждение пришел Дельбрюк, когда узнал о существовании бактериальных вирусов или, как их чаще называют, бактериофагов (буквально – «пожиратели бактерий»).

Эти удивительные частицы, которых и живыми-то не назовешь, вне клетки ведут себя просто как большие молекулы – из них даже выращивают кристаллы. Но когда вирус попадает в клетку, то через 20 минут клеточная оболочка лопается, и из нее вываливается сотня абсолютно точных копий исходной частицы. Дельбрюка осенило, что на бактериофагах гораздо легче будет изучать процесс репликации (удвоения генов), чем на бактериях, не говоря уже о животных; возможно, удастся понять наконец как устроен ген. «Вот он – ключ к разгадке, думал Дельбрюк. – Это очень простое явление, гораздо более простое, чем деление целой клетки. Здесь нетрудно будет разобраться. В самом деле, надо посмотреть, как внешние условия будут влиять на воспроизводство вирусных частиц. Надо провести эксперименты при разных температурах, в разных средах, с разными вирусами».

Так физик-теоретик превратился в биолога-экспериментатора. Но мышление – мышление осталось чисто физическим. А главное – цель. Во всем мире не было другого человека, который занимался бы вирусами с единственной целью – раскрыть физическое строение гена.

В 1937 году Дельбрюк покинул нацистскую Германию. В этот знаменательный во многих отношениях год Рокфеллеровский фонд начал субсидировать работы по применению физических и химических идей и методов в биологии. Распорядитель фонда Уоррен Уивер посетил Берлин и предложил Дельбрюку переехать в США, чтобы целиком посвятить себя проблеме репликации бактериофагов. Уивер, сам получивший физико-математическое образование, ясно понимал значение работ, проводимых Дельбрюком. (Кстати, это он первым назвал новую область науки, финансовую поддержку которой стал оказывать Рокфеллеровский фонд, молекулярной биологией.) Разумеется, Дельбрюк поспешил воспользоваться предоставленной ему возможностью, так как жизнь в Германии становилась просто невыносимой.

В Америке Дельбрюк собрал вокруг себя горстку энтузиастов, заразившихся его идеей изучения природы наследственности на бактериофагах. Так возникла «фаговая группа». Шли годы, и участники фаговой группы все больше и больше узнавали о том, как протекает фаговая инфекция и как процесс воспроизведения фагового потомства зависит от внешних условий и т. д. Было проведено много замечательных исследований, в особенности в области изучения мутационного процесса у бактерий и бактериофагов. Именно за работы этого периода много лет спустя Дельбрюк был удостоен Нобелевской премии, и я подробно обсуждаю его важнейшую работу этого периода в главе 6. Но все эти исследования, казалось, даже не приближали к решению основной проблемы: проблемы физической природы гена.

Как часто бывает в науке, люди, объединившиеся для решения большой и очень важной задачи, постепенно занялись скрупулезным изучением частных вопросов, сделались маститыми специалистами в той или иной узкой области, но перестали видеть исходные цели. Так путники видят издалека сияющие горные вершины, но по мере приближения к ним попадают в лесистые предгорья, откуда этих вершин уже не видно. К тому же эти леса изобилуют ягодами, грибами и прочими маленькими радостями.

Если долго бродить по предгорьям, то виденные издалека снежные вершины постепенно начинают казаться миражом. Да, скорее всего, это были лишь облака, похожие на снежные горы. Но если это и в самом деле были горы, зачем туда спешить? Ведь здесь, в почти нехоженых лесах, так хорошо. Для того чтобы путники вновь вспомнили о главной цели, нужен зычный голос лидера.

И такой голос прозвучал – это был голос Эрвина Шрёдингера, автора основного уравнения квантовой механики.

Эрвин Шрёдингер

Об истории создания квантовой механики написаны горы научно-популярной и исторической литературы. Центральное место во всех этих книгах по праву занимает исполинская фигура Нильса Бора. Но возьмите любой учебник по квантовой механике. Вы увидите, что уравнение Шрёдингера – альфа и омега этой науки. Безусловно, квантовая механика, как и любая другая наука, создавалась усилиями многих замечательных ученых. Несомненно, на Шрёдингера радикальное влияние оказала гениальная догадка де Бройля о волнах материи. Все это так. Но решающий шаг сделал все же Шрёдингер. Он собрал воедино все накопленное до него, чтобы совершить скачок замечательной интеллектуальной смелости и силы.

Хотя имя Шрёдингера не столь известно широкой публике, как имена Эйнштейна и Бора, оно глубоко почитается в кругах физиков и химиков. В 1944 году вышла в свет его небольшая книжка под броским заголовком «Что такое жизнь?», в которой обсуждалась связь между новой физикой и генетикой. Поначалу книга не привлекла почти никакого внимания. Шла война, и большинство тех, кому адресована была эта книга, с головой ушли в научно-технические проблемы, от решения которых во многом зависел исход борьбы с гитлеровской Германией.

Но когда война кончилась, появилось много специалистов, особенно среди физиков, которым надо было все начинать с начала, снова искать себе место в мирной науке, – вот для них книга Шрёдингера оказалась как нельзя кстати.

В своей книжке (на русском языке она вышла впервые в 1947 году) Шрёдингер прежде всего дал очень ясное и сжатое изложение основ генетики. Физикам представилась уникальная возможность узнать (причем в блестящем изложении их прославленного коллеги), в чем же состоит суть этой затуманенной тарабарской терминологией и все-таки загадочно привлекательной науки. Но этого мало. Шрёдингер популяризовал и развил идеи Дельбрюка и Тимофеева-Ресовского о связи генетики и квантовой механики. Пока эти идеи выдвигались неизвестными физикам людьми, им не придавали особого значения. Но когда об этом заговорил сам Шрёдингер…

По признанию всех, кто в последующие годы штурмовал проблему гена, включая основных действующих лиц – Уотсона, Крика и Уилкинса, книга Шрёдингера послужила важным толчком к этому штурму. Шрёдингер был именно тем человеком, кто крикнул: «Вот они, сияющие вершины, посмотрите, они совсем уже близко. Что же вы мешкаете?»

Рентгеноструктурный анализ

Среди тех мест, где был услышан призыв Шрёдингера, особенно большую роль суждено было сыграть двум английским научным центрам – прославленной Кавендишской лаборатории в Кембридже, главой которой некогда был Резерфорд, и Королевскому колледжу в Лондоне. Здесь разыгрались завершающие сцены драмы, развязкой которой стало выяснение физической природы гена.

Место действия не было случайным. Именно в Великобритании сформировалась к тому времени (начало 1950-х годов) самая сильная в мире научная школа рентгеноструктурного анализа. И именно этот метод оказался тем инструментом, который помог физикам проникнуть в тайну жизни.

Квантовая механика явилась теоретическим фундаментом для понимания внутреннего строения окружающих нас веществ – атомов, молекул и всевозможных состоящих из них материалов, будь то кусок железа или кристалл обыкновенной поваренной соли. Но многообразие структур, которые могут получаться из атомов, необозримо. Как узнать, какова структура того или иного конкретного материала? Тут теория обычно мало помогает. Можно, конечно, выдвинуть те или иные предположения, но нельзя утверждать наверняка – слишком много мыслимых вариантов. Необходим экспериментальный метод, который позволял бы напрямую выяснить атомное строение вещества. Именно таким методом и является рентгеноструктурный анализ.

Рентгеновские лучи знакомы всем – ими просвечивают, если вы сломали ногу или заболели воспалением легких. Физическая природа этих лучей та же, что и у видимого света или у радиоволн. Это все разные варианты электромагнитного излучения, различающиеся только длиной волны. Для рентгеновских лучей характерна длина волны порядка 10–10 м. Расстояние между атомами в молекулах и кристаллах имеет тот же масштаб. Это обстоятельство навело немецкого физика Макса фон Лауэ на мысль, что при прохождении рентгеновских лучей через кристалл, в котором атомы расположены строго регулярно, должна возникать дифракционная картина, подобная той, которая наблюдается при прохождении видимого света сквозь дифракционную решетку.

Опыты, проведенные в 1912 году, полностью подтвердили эту догадку. Когда пучок рентгеновских лучей направили на кристалл, за которым поместили фотопластинку, то после проявления фотопластинки на ней обнаружили причудливую, но весьма регулярную систему пятен (рис. 1). Вскоре стало ясно, что по распределению пятен на рентгенограмме и по их яркости можно судить о взаимном расположении атомов или молекул, образующих кристалл, и в случае молекул – даже об их внутреннем строении. Так возник метод рентгеноструктурного анализа. Наибольший вклад в его развитие внесли британские ученые Генри (отец) и Лоуренс (сын) Брэгги. Рентгеноструктурный анализ позволил точно определить структуру всех минералов, а также бесчисленного множества молекул.

Рис. 1. Так выглядит рентгенограмма кристалла белка

Мало-помалу «рентгеноструктурщики» переходили к все более сложным объектам исследования и наконец в 1930-е годы обратили свои взоры к биологическим молекулам. Однако после первых же попыток стало ясно, что решение задачи им пока еще не по плечу. Прежде всего из биологических молекул очень трудно получить кристаллы. Но даже если это удавалось, десятки тысяч атомов, входящих в каждую молекулу, создавали на рентгенограмме такой причудливый узор, что восстановить по нему координаты всей этой массы атомов было просто невозможно. Потребовались многие годы, пока ученые научились решать столь сложные задачи.

Преодолением этих трудностей занимались в Кавендишской лаборатории в довоенные и послевоенные годы. Усилия лаборатории, руководимой Лоуренсом Брэггом, были сосредоточены на определении пространственного строения белков. Это и понятно. В те годы все были убеждены, что главная молекула живой природы – молекула белка. В самом деле, ферменты, т. е. молекулы, проводящие в клетке всевозможные химические превращения, – это всегда белки. Белок представляет собой главный строительный материал клетки. Неудивительно, что всеобщим было убеждение, что и гены устроены из белка. Казалось несомненным, что путь к разгадке всех тайн жизни лежит через изучение строения белков.

Рис. 2. Аминокислотная последовательность одного из белков (лизоцима.

Белок представляет собой полимерную молекулу, мономерными звеньями, «кирпичиками» которой служат аминокислотные остатки (рис. 2). Аминокислотные остатки располагаются всегда строго линейно, плечом к плечу, подобно солдатам, стоящим по стойке смирно. Но так устроен и биологически активный белок, и белок, нагретый, скажем, до 60 °C, когда он уже полностью теряет свою биологическую активность. Значит, одного химического строения белка, т. е. последовательности аминокислотных остатков, недостаточно для того, чтобы белок был биологически активен. Необходима еще совершенно определенная укладка в пространстве групп, закодированных на рис. 2 в виде сокращенных названий аминокислот, которые на самом деле вовсе не кружочки и не шарики, а имеют каждая свою весьма причудливую форму. Вот за то, чтобы определять пространственную структуру всей молекулы белка по рентгенограммам типа приведенной на рис. 1, и велась затяжная борьба в стенах Кавендишской лаборатории. Лишь в середине 1950-х годов Джону Кендрю и Максу Перуцу удалось добиться успеха – они научились определять трехмерную структуру белков. Это случилось уже после того, как была решена проблема устройства гена, – к чему, как оказалось, белки отношения вовсе не имеют.

Уотсон и Крик

Из тех, кто откликнулся на призыв Шрёдингера, двоим посчастливилось первыми подняться на вершину. Это были совсем еще юный воспитанник фаговой группы Джим Уотсон и не столь юный, но в то время мало кому известный сотрудник Кавендишской лаборатории Фрэнсис Крик.

Будучи одержим идеей узнать, как устроен ген, и считая, что фаговой группе эта задача не по плечу, Уотсон добился в 1951 году, чтобы его отправили поработать в Европу. Вскоре он осел в Кавендишской лаборатории, так как встретил там Крика, который был настроен так же по-боевому, как и он сам. Уотсон к тому времени уже был уверен, что ключ к разгадке тайны гена лежит вовсе не в определении структуры белка, а в выяснении структуры ДНК.

Вообще-то, молекула дезоксирибонуклеиновой кислоты, а это неуклюжее название и кроется за сокращением ДНК, не была чем-то новым. Она была открыта в клеточных ядрах швейцарским врачом Фрицем Мишером еще в 1868 году. Затем было показано, что ДНК сосредоточена в хромосомах, и это, казалось бы, говорило о ее возможной роли в качестве генетического материала. Однако в 1920-х и 1930-х годах прочно утвердилось мнение, что ДНК – это регулярный полимер, состоящий из строго повторяющихся четверок мономерных звеньев (аденинового, гуанинового, тиминового и цитозинового), и поэтому эта молекула не может нести генетическую информацию.

Считали, что ДНК играет в хромосомах какую-то структурную роль, а гены состоят из белка, который входит в состав хромосом. Что же заставило Уотсона и Крика усомниться в справедливости концепции белковой природы гена? Главную роль здесь сыграла работа, законченная к 1944 году тремя американскими бактериологами из Рокфеллеровского университета во главе с О. Эвери. Эвери многие годы изучал явление генетической трансформации, открытое в опытах с пневмококками – возбудителями пневмонии (воспаления легких). Эти удивительные опыты состояли в следующем. Брали два вида пневмококков. Одни были способны вызывать болезнь, а другие – нет. Затем болезнетворные клетки убивали путем нагревания и к ним добавляли живые «безобидные» клетки. И вот оказалось, что некоторые из живых клеток после контакта с убитыми каким-то образом «научились» вызывать болезнь. Получалось, что живые клетки как-то трансформировались мертвыми клетками. Отсюда и название явления: генетическая трансформация. Было ясно, что в этих опытах что-то переходит из убитых бактерий к живым. Но что? На этот вопрос и удалось дать ответ Эвери и его соавторам. И хотя их работа была напечатана в медицинском журнале, ею заинтересовались скорее генетики, химики, физики, чем медики. В этой скрупулезно выполненной работе было показано, что при трансформации способность вызывать болезнь переносится от убитой бактерии к живой только с одним веществом – с ДНК. Ни белки, ни какие-либо другие составляющие клетки в передаче признака при трансформации никакой роли не играют. Собственно, эта работа Эвери теперь считается первой работой, в которой было доказано, что вещество наследственности, или гены, есть именно молекула ДНК.

Так что же, выходит, Эвери и его помощники, а вовсе не Уотсон и Крик первыми побывали на вершине?

Бесспорно, Эвери сделал очень важный шаг в нужном направлении, но до вершины он не добрался. Эйнштейн как-то сказал изумительные по своей глубине слова: «Лишь теория решает, что мы ухитряемся наблюдать». У Эвери не было в запасе ничего такого, что можно было бы назвать теорией, и он предпочел ограничиться сухим изложением фактов. Тем не менее несогласие его данных с концепцией белковой природы гена было очевидным.

Генетики оказались перед выбором – либо не поверить данным Эвери, либо признать, что веществом наследственности оказался не белок, как принято было считать, а ДНК. Опровергнуть Эвери было трудно – в его работе просто-напросто не к чему было придраться. Но и от устоявшихся представлений о белковой природе гена отказаться было не так-то просто. Опытам Эвери было дано следующее объяснение: ДНК, конечно, никаких генов не содержит и содержать не может. Но она может вызывать мутации, т. е. изменять гены, которые, как им и положено, состоят из белка. Правда, ДНК оказалась весьма необычным мутагеном, вызывающим от опыта к опыту одни и те же мутации, в отличие от обычных мутагенов, которые вызывают мутации случайным образом, ненаправленно. Это не могло не заинтересовать генетиков, уже давно искавших способы направленного изменения наследственности. Так удалось спасти, казалось бы, уже испускавшую дух белковую теорию гена, но при этом генетики и все те, кто занимался проблемой химической (или физической) природы наследственности, вынуждены были наконец признать, что на ДНК следует обратить серьезное внимание.

Итак, работа Эвери заставила усомниться в том, что ДНК – это всего лишь полимерная молекула, выполняющая в хромосомах структурную роль. Стало ясно, что в ДНК есть что-то еще… Но – не более того. Той теорией, которая решила, что же на самом деле ухитрился наблюдать Эвери, была модель строения молекулы ДНК, придуманная Уотсоном и Криком в 1953 году.

Уотсон и Крик не имели собственных экспериментальных данных. Вообще, в то время в Кавендишской лаборатории, где работал Крик и стажировался Уотсон, никто не занимался ДНК. Ею занимались Морис Уилкинс и Розалинда Франклин в Королевском колледже в Лондоне.

Исследовать ДНК с помощью рентгеноструктурного анализа оказалось даже сложнее, чем белок. Молекулы ДНК как следует не кристаллизовались и давали весьма бедные рентгенограммы вроде той, что приведена на рис. 3. Нечего было даже пытаться решить с помощью таких рентгенограмм обратную задачу рентгеноструктурного анализа, т. е. научиться восстанавливать пространственную структуру молекулы, как это пытались сделать для белков Перуц и Кендрю.

Рис. 3. Рентгенограмма ДНК. Такую рентгенограмму получила впервые Розалинда Франклин

Однако кое-какие очень важные параметры молекулы все же удалось извлечь. Эти параметры, полученные Р. Франклин, а также детальные данные о химическом строении ДНК и были положены Уотсоном и Криком в основу их работы. То, как они действовали, больше всего походило на игру. Они знали, как устроены отдельные элементы – мономерные звенья ДНК. Из этих элементов, как из деталей детского конструктора, надо было собрать структуру, отвечающую рентгеновским данным. Результатом этой «игры» стало одно из величайших научных открытий в истории человечества.

Собственно, тому, что в результате получилось, посвящена вся эта книга. Мы постепенно расскажем обо всех главных особенностях строения молекулы ДНК и о том, к каким головокружительным последствиям в понимании основ явления жизни они привели и как возникшие в результате биотехнологии вторглись в нашу повседневную жизнь, произведя революцию в сельском хозяйстве, в криминалистике, в здравоохранении. Но сначала давайте выделим в модели Уотсона и Крика только ее суть, самую главную «изюминку».

Итак, согласно модели Уотсона и Крика, молекула ДНК состоит из двух полимерных цепочек. Каждая цепочка построена из звеньев четырех сортов – А (адениновое), Г (гуаниновое), Т (тиминовое) и Ц (цитозиновое). Последовательность звеньев в каждой цепи может быть совершенно произвольна. Но эти последовательности в одной молекуле ДНК строго связаны друг с другом следующим принципом комплементарности, или дополнительности (рис. 4):

•против А должно быть Т,

•против Т должно быть А,

•против Г должно быть Ц,

•против Ц должно быть Г.

Рис. 4. Молекула ДНК похожа на веревочную лестницу, состоящую из перекладин цвух типов – пар нуклеотидов А•Т и Г•Ц

В открытии этого правила комплементарности, которое и составляет главную «изюминку» модели Уотсона и Крика, очень большую роль сыграли данные о том, в каком соотношении встречаются в ДНК различные звенья, т. е. нуклеотиды. Данные эти были получены чуть ранее в замечательных химических работах Эрвина Чаргаффа.

Если внутри каждой полимерной цепочки атомы скреплены очень мощными ковалентными связями, то между комплементарными цепями действуют сравнительно слабые взаимодействия, подобные тем, которые удерживают молекулы друг возле друга в кристаллах.

Самой замечательной особенностью модели Уотсона—Крика было то, что она необыкновенно изящно решала самую главную проблему – проблему репликации гена. Если мы разведем в стороны две цепи, а потом на каждой нарастим, согласно принципу комплементарности, по новой цепи, то получим из одной молекулы ДНК две, причем обе будут идентичны исходной (рис. 5).

Рис. 5. Так, согласно Уотсону и Крику, происходит процесс репликации ДНК, в результате которого из исходной молекулы, изображенной на рис. 4, получаются две абсолютно такие же молекулы

Можно представить себе, в какое возбуждение пришел Дельбрюк, когда получил от Уотсона письмо, содержащее наконец-то решение загадки удвоения гена. Он сразу и безоговорочно поверил в предложенную модель. Под впечатлением письма Уотсона Дельбрюк и написал Бору те слова, которые взяты эпиграфом для этой главы.

Не только Дельбрюк, очень многие были сразу покорены красотой модели Уотсона и Крика. И хотя некоторые генетики продолжали фанатично держаться за белки, их единственным аргументом осталось такое общее соображение: не может быть, чтобы такая сложная штука, как жизнь, была в своей основе устроена столь просто. Аргумент, прямо скажем, не из сильных.

Так было установлено, что ДНК является самой главной молекулой живой природы. Нет, новых законов физики в биологии не обнаружили. Но центральную проблему, проблему строения гена, решить удалось.

Теперь, более полувека спустя, можно констатировать, что открытие структуры ДНК сыграло в развитии биологии такую же роль, как в физике – открытие атомного ядра. Выяснение строения атома привело к рождению новой, квантовой физики, а открытие строения ДНК привело к рождению новой, молекулярной биологии. Но на этом параллель не заканчивается. Чисто теоретические, фундаментальные исследования атома позволили человеку овладеть практически неисчерпаемым источником энергии и радикально изменили нашу повседневную жизнь благодаря компьютеру, Интернету, мобильному телефону. Развитие молекулярной биологии открыло возможность неслыханным образом вмешиваться в свойства живой клетки, направленно изменять наследственность. Это уже начинает оказывать не менее радикальное воздействие на жизнь людей, чем овладение энергией атомного ядра и всеобщее распространение Интернета. Мы уже вступили в век ДНК.

2 От ДНК к белку

Как делается белок

Далекие от науки люди часто ворчат, что, мол, новые теории порождают больше вопросов, чем дают ответов. Это действительно так. Непонятно только, что здесь плохого. В действительности чем больше вопросов порождает новая теория, тем она ценнее. Ведь вопросы-то тоже новые – те, которые никому не приходили в голову, а подчас и не могли быть даже сформулированы до возникновения теории. В этом отношении модели ДНК Уотсона и Крика принадлежит, пожалуй, абсолютный рекорд. История науки едва ли знает еще теорию, которая породила бы столько новых вопросов. И каких вопросов! Они касались самой сути явления жизни. Самый первый и самый главный вопрос был поставлен уже в 1954 году известным физиком-теоретиком Георгием (Джорджем) Гамовым.

Судьба Гамова во многом похожа на судьбу Дельбрюка. Гамов прославился в 1928 году, когда создал теорию альфа-распада, основанную на идее квантового туннелирования. В 1934 году, после нескольких неудачных попыток сбежать из СССР, он наконец, став невозвращенцем из командировки в Европу, сумел покинуть родину и осел в США. Как и в Германии при Гитлере, жизнь в СССР при Сталине стала к тому времени невыносимой. Ближайшие друзья Гамова, блестящие физики Матвей Бронштейн и Лев Ландау, были арестованы во время Большого террора 1937–1938 годов. Бронштейн был расстрелян, а Ландау чудом спасся, проведя год в застенках НКВД в качестве «немецкого шпиона». Ландау был освобожден в значительной степени благодаря беспрецедентному и отчаянно смелому заступничеству другого великого физика, Петра Капицы. (Капица и Ландау впоследствии были удостоены Нобелевской премии.) Если бы Гамов не сбежал, он наверняка тоже попал бы в жернова НКВД.

В 1948 году Гамов выдвинул теорию, согласно которой в начале мироздания был гигантский взрыв, произошедший около 14 миллиардов лет назад. Теория утверждала, что от начального взрыва должно было дойти до наших дней электромагнитное излучение, и предсказывала спектр этого излучения. С легкой руки советского астрофизика И. С. Шкловского предсказанное Гамовым излучение получило название «реликтовое». Поначалу теория Большого взрыва казалась слишком экстравагантной, и мало кто в нее поверил. Но в 1965 году два американских радиоинженера, Роберт Вильсон и Арно Пензиас, случайно обнаружили излучение, равномерно поступающее со всех концов Вселенной, которое обладало всеми свойствами предсказанного Гамовым реликтового излучения. Теория Большого взрыва получила полное признание.

В 1954 году, вскоре после открытия двойной спирали ДНК, Гамов вновь выступил с кардинально новой идеей, на сей раз в области биологии. Как известно, рассуждал Гамов, основными рабочими молекулами в клетке являются белки. Всеми химическими превращениями в клетке ведают белки-ферменты. Почти весь строительный материал клетки также белковой природы. Даже хромосомы лишь наполовину состоят из ДНК, а наполовину – из белка. Значит, работа клетки определяется набором белков в ней.

Отдельная молекула белка может содержать от десятков до нескольких сотен мономерных звеньев. Но если взять все белки клетки и расчленить их на отдельные звенья, то окажется, что наберется всего 20 типов аминокислот. Собственно, разновидностей аминокислот как химических соединений может быть бесчисленное множество, и химики могут, в принципе, синтезировать любые аминокислоты. Но живая природа использует только 20 вполне определенных аминокислот, которые поэтому получили название природных, или канонических. Этот набор из 20 аминокислот абсолютно одинаков, универсален для всей живой природы на Земле. Возьмете ли вы самую ничтожную букашку или самого мудрого корифея, вы обнаружите в них один и тот же набор аминокислот. Чем же отличается букашка от корифея? Отличие заключается в том, какие цепочки образуют аминокислоты. Иными словами, оно сводится к последовательностям аминокислотных остатков в белках.

Чем же определяются последовательности белков? Ответ классической генетики на такой вопрос звучал очень формально: эти последовательности задаются генами. Как именно? Ничего вразумительного классическая, или, как ее еще часто в достаточной степени справедливо называли, формальная, генетика ответить на этот вопрос не могла.

Вот на этот главный вопрос, утверждал Гамов, теперь после работы Уотсона и Крика, имеется четкий и ясный ответ. Аминокислотные последовательности всех белков клетки определяются последовательностью звеньев в одной из двух комплементарных цепочек ДНК. Эти звенья ДНК, называемые нуклеотидами, бывают, как уже говорилось в предыдущей главе, четырех типов (А, Т, Г и Ц). Таким образом, информация о последовательности 20 типов аминокислотных остатков в белках записана в ДНК в виде последовательности нуклеотидов четырех типов. Значит, провозгласил Гамов, клетка должна обладать словарем, переводящим четырехбуквенный текст ДНК в двадцатибуквенный текст белков! Так родилась идея генетического кода.

Тут же возник целый каскад вопросов. Каким образом код реализуется, т. е. где в клетке и при помощи чего происходит перевод ДНКового текста на белковый язык? Как получается, что длинный нуклеотидный текст ДНК дает в конечном счете сравнительно короткие белковые цепи? Наверное, ДНКовый текст состоит из отдельных «предложений», каждое из которых отвечает одному белку? Так, может быть, эти «предложения» и есть гены классической генетики? А что между ними? Что играет роль «точек», разделяющих «предложения»? Иными словами, чем отличаются в физическом, химическом, т. е. в молекулярном, смысле сами гены от промежутков между ними? Ну и наконец, каков же он, генетический код, этот словарь живой клетки?

Небольшая по численности, разбросанная по разным лабораториям мира, но преисполненная боевого духа армия ученых приступила к штурму новых высот. Вел незримые полки Фрэнсис Крик. Он был в те годы признанным лидером среди молекулярных биологов. За период с 1954 по 1967 год на все основные вопросы были получены ответы. Совокупность этих ответов впоследствии стали называть центральной догмой молекулярной биологии. Не все из полученных ответов, казавшихся найденными раз и навсегда, выдержали испытание бурных 1970-х годов. И все же эти ответы, хотя они и перестали быть догмой, и по сей день являются фундаментом, на котором строится все здание молекулярной биологии.

Прежде всего никаких особенностей в химическом строении ДНК, которые отличали бы одни участки от других, обнаружено не было. По всей своей длине молекула ДНК представляет собой непрерывную последовательность нуклеотидных звеньев четырех типов: А, Т, Г и Ц. В этом смысле ДНКовый текст отличается от типографского текста, в котором есть точки, запятые, промежутки между словами. ДНКовый текст – это непрерывная последовательность букв. Роль «знаков препинания» играют сами же буквы. Это особые последовательности нуклеотидов, расположенные между участками, последовательности которых отвечают аминокислотным последовательностям в белках. Отдельный такой участок стали называть геном.

Итак, ген – это часть ДНКового текста, которая содержит информацию об аминокислотной последовательности одного белка. Теперь «элементарная» частица наследственности, о которой спорили когда-то Дельбрюк и Тимофеев-Ресовский, приобрела совершенно конкретный молекулярный, атомный смысл. Оказалось, что ген – вовсе не «неделимая частица», а построен из сотен нуклеотидов. Вот нуклеотиды – это уже действительно элементарные частицы генетического материала – мономерные звенья полимерной молекулы ДНК.

Как же ген порождает белок? Это происходит в два этапа. На первом этапе, который получил название транскрипции, специальный фермент узнает последовательность нуклеотидов, расположенную между генами (эту последовательность называют промотором), и, двигаясь вдоль гена, снимает с него копию в виде молекулы РНК.

Молекула рибонуклеиновой кислоты, что и скрывается за сокращением РНК, весьма сходна по своему химическому строению с молекулой дезоксирибонуклеиновой кислоты, т. е. ДНК. Она тоже представляет собой полимерную цепочку, построенную из мономерных звеньев – нуклеотидов. Как и ДНК, РНК строится из нуклеотидов четырех типов. Их химические формулы, которые, следует признать, выглядят довольно устрашающе, приведены на рис. 6. Чем отличаются нуклеотиды ДНК от нуклеотидов РНК? Для Ц, А и Г это отличие состоит только в том, что в каждом из них самая нижняя и самая правая ОН-группа заменяется в ДНК на Н (отсюда и приставка «дезокси»). Случай уридинового нуклеотида (У) несколько сложнее, так как для него при переходе к ДНК не только происходит замена ОН на Н, но и в шестичленном кольце водород в верхней группе СН заменяется на метильную группу СН3. Этим и объясняется отличие в названиях РНКового нуклеотида (уридиновый) и ДНКового (тимидиновый), хотя они очень похожи друг на друга и оба служат партнерами А при образовании комплементарных пар.

Рис. 6. Полные химические формулы мономерных звеньев РНК-нуклеотидов (известных также под названием нуклеозидмонофосфатов. сокращенно НМФ). Сверху приведены пиримидиновые нуклеотиды (У и Ц). а снизу – пуриновые (А и Г]. Нуклеотиды, входящие в состав ДНК, отличаются тем, что у них вместо правой нижней группы ОН стоит просто Н. Поэтому ДНКовые нуклеотиды называют дезоксинуклеозидмонофосфатами и обозначают как дНМФ. Кроме того, в ДНК вместо уридинового нуклеотида входит тимидиновый, у которого верхняя СН-группа в кольце заменена на группу СНН3

Копирование гена происходит по тому же правилу комплементарности, по которому идет репликация ДНК, только роль, которую играет в ДНК Т, в РНК играет У. Синтез РНК ведется по одной из двух комплементарных цепей гена. Фермент, ведущий синтез, т. е. осуществляющий процесс транскрипции, называется РНК-полимеразой.

Итак, РНК-полимераза снимает с участка длинной молекулы ДНК (с гена) копию в виде матричной РНК (мРНК). Этот РНКовый отпечаток гена используется на втором этапе синтеза белка, в процессе, получившем название трансляция. Собственно, этот этап является решающим, именно здесь вступает в силу генетический код.

Процесс трансляции очень сложен, в нем принимает участие множество действующих лиц. Главное из них – рибосома. Рибосома – это сложнейший агрегат, построенный из полусотни различных белков и молекулы РНК. Имеется в виду не та РНК, которая служит матрицей для синтеза белка на рибосоме, а другая, рибосомальная РНК (рРНК), которая является неотъемлемой частью рибосомы. Чтобы эти два класса РНК отличать друг от друга, рибосомальную РНК обозначают как рРНК, а матричную – мРНК. Рибосома – это молекулярный компьютер, переводящий тексты с нуклеотидного языка ДНК и РНК на аминокислотный язык белков. Этот узкоспециализированный компьютер работает только по одной программе, название которой – генетический код.

Генетический код

На рубеже 1950-х и 1960-х годов Фрэнсис Крик и его сотрудники выяснили основные свойства генетического кода. Было доказано, что код триплетный, т. е. одной аминокислоте соответствует последовательность из трех нуклеотидов на мРНК. Эта тройка нуклеотидов была названа кодоном. Текст, записанный в мРНК, считывается рибосомой последовательно, кодон за кодоном, начиная с некоторого начального инициирующего кодона по следующей схеме:

На этой схеме а0, а1… обозначают аминокислотные остатки белка. Напомним, что их может быть 20 типов. А сколько типов кодонов? Легко подсчитать, что всего существует 43 = 64 различных кодона. Так что же, не всякому кодону соответствует аминокислота? Да, не всякому.

Но таких бессмысленных, или незначащих, кодонов очень немного, и они выполняют специальную функцию – служат стоп-сигналами, обозначают конец белковой цепи. Поэтому их еще называют терминирующими кодонами. Подавляющее же большинство кодонов соответствует какому-либо аминокислотному остатку. А это значит, что код вырожден – большинству, если не всем, аминокислотным остаткам должно отвечать несколько кодонов.

К 1961 году стало ясно, что код триплетный, вырожденный и неперекрывающийся (т. е. считывание происходит кодон за кодоном) и что он содержит инициирующие и терминирующие кодоны. Дело было за тем, чтобы установить соответствие каждого аминокислотного остатка конкретным кодонам и узнать, какие кодоны обозначают начало и конец синтеза белковой цепи. Было совершенно ясно, что именно для этого требуется. Нужно «только» прочесть параллельно два текста – ДНКовый (или РНКовый) текст гена и аминокислотный текст соответствующего этому гену белка. Затем сличить эти два текста – и дело сделано.

Вспомним, что именно так были когда-то расшифрованы египетские письмена. Но беда в том, что если белковые последовательности к этому времени умели расшифровывать, то ни последовательности ДНК, ни последовательности РНК читать не умели. Поэтому пришлось пойти по иному пути.

Представьте себе, что вместо Розеттского камня, на котором один и тот же текст был написан египетскими иероглифами и по-гречески, откопали бы во время наполеоновского похода в Египет живого древнего египтянина. Тогда не потребовался бы гений Шампольона, чтобы составить французско-древнеегипетский словарь. Достаточно было бы показывать египтянину различные предметы, а он рисовал бы соответствующие иероглифы.

Именно этим принципом дешифровки кода и воспользовались американский биохимик и генетик из Национального института здравоохранения Маршалл Ниренберг и его немецкий постдок[1] Генрих Маттеи. Ведь клетки-то знают код! Значит, надо предложить им распознавать разные последовательности нуклеотидов, лишь бы было точно известно, что это за последовательности. К этому времени как раз научились синтезировать кое-какие искусственные РНК (но отнюдь еще не любые!). Ниренберг и Маттеи использовали не живые клетки, а клеточные экстракты, которые сохраняли способность синтезировать белок на РНК. Эти экстракты не умели, разумеется, многого другого, что умеет делать клетка, но важно лишь одно – они были способны синтезировать белок по внесенной извне РНК. Такие экстракты назвали бесклеточной системой.

Ниренберг и Маттеи получили экстракт из кишечной палочки и добавили к нему искусственную РНК, состоящую только из урацилов. Так бесклеточной системе был задан первый вопрос: «Какой аминокислоте соответствует кодон УУУ?» Ответ был однозначен: «Кодону УУУ отвечает фенилаланин». Этот ответ, о котором Ниренберг сообщил на Международном биохимическом конгрессе в Москве в 1961 году, произвел настоящую сенсацию. Путь к расшифровке кода был открыт!

Очень быстро удалось сделать подобный перевод для многих аминокислот. Однако определять последовательность нуклеотидов в искусственных мРНК было довольно трудно. В то время еще не умели синтезировать даже короткие фрагменты с заданной последовательностью. Умели лишь получать полинуклеотиды со случайной последовательностью из смеси мономеров, да и то не из любой смеси. Начали думать, как попытаться иными способами расшифровывать кодоны. Но неожиданно произошел новый прорыв, и ситуация резко изменялась.

Мы видели, что у истоков проблемы кода стоял физик, общие свойства кода были выяснены генетическими методами, после чего за дело взялись биохимики. Окончательно проблема была решена, когда на помощь биохимикам пришли химики-синтетики. Главный вклад внес Хар Гобинд Корана.

К 1965 году Корана научился синтезировать короткие фрагменты РНК с заданной последовательностью – сначала двойки (динуклеотиды), а потом тройки (тринуклеотиды). Из таких двоек и троек с помощью ферментов синтезировали длинные полинуклеотиды, в которых эти двойки или тройки повторялись много-много раз. Затем полинуклеотиды со строго определенной и известной последовательностью добавляли в бесклеточную систему и определяли их соответствие белковым цепям.

А к 1967 году расшифровка генетического кода была окончательно завершена. Этот код изображен на рис. 7. В центральном круге таблицы обозначены первые нуклеотиды кодонов, в следующем – вторые, а затем – третьи. На внешней части круга указаны соответствующие кодонам аминокислотные остатки.

Символ Тер обозначает терминирующие кодоны. А где же инициирующие кодоны? Специальных инициирующих кодонов не существует. Эту роль в определенных условиях играет кодон АУГ, обычно отвечающий аминокислоте метионину.

Даже беглого взгляда на рис. 7 вполне достаточно, чтобы заметить определенную закономерность. Вырожденность кода носит явно не случайный характер; то, какой аминокислоте будет соответствовать данный кодон, определяют главным образом два первых нуклеотида. Каков третий нуклеотид – не так уж важно, т. е., хотя код и триплетный, главную смысловую нагрузку несет дублет, стоящий в начале кодона. Иными словами, код квазидуплетный.

Рис. 7. Генетический код. Первая буква кодона расположена в центральном круге, вторая – в первом кольце и третья – во втором. В наружном кольце записаны сокращенные названия аминокислот

Эта главная особенность кода была замечена еще на самой ранней стадии его расшифровки. Конечно, дублетами нельзя закодировать все 20 аминокислот, так как различных дублетов может быть всего 42 = 16. Поэтому третий нуклеотид в кодоне должен нести некоторую смысловую нагрузку.

Существует, однако, правило, которому код подчиняется почти строго. Чтобы его сформулировать, нам надо вспомнить, что четыре нуклеотида – урациловый, цитозиновый, адениновый и гуаниновый – принадлежат по строению к двум разным классам – пиримидиновому (У и Ц) и пуриновому (А и Г) (рис. 6). Так вот, правило вырожденности кода можно сформулировать следующим образом: если два кодона имеют два одинаковых первых нуклеотида и их третьи нуклеотиды принадлежат к одному классу (пуриновому или пиримидиновому), то они кодируют одну и ту же аминокислоту.

Взгляните еще раз на таблицу кода (рис. 7), и вы убедитесь, что это правило выполняется очень хорошо. Но два исключения все же существует. Если бы сформулированное выше правило выполнялось совсем строго, то кодон АУА должен был бы отвечать метионину, а не изолейцину, а кодон УГА – триптофану, а не быть сигналом окончания синтеза.

Универсален ли код?

«Но позвольте, – вправе спросить читатель, – ведь бесклеточная система получена из конкретного организма. Где гарантия, что опыты по расшифровке кода в бесклеточной системе, взятой из другого организма, дадут тот же результат?» Вопрос совершенно резонный. И естественно, он возник уже в ходе работ по расшифровке кода.

Первоначально авторы исследований аккуратно оговаривали, что речь идет не о коде вообще, а о коде Escherichia coli (кишечной палочки). Именно из этой бактерии была впервые получена бесклеточная система, и именно с ней вели работы, о которых рассказано выше. Однако все свидетельствовало о том, что код других организмов не отличается от кода Е. coli. М. Ниренберг повторил опыты, взяв бесклеточные системы из организмов жабы и морской свинки. Никаких отличий от кода Е. coli эти исследования не выявили. Итак, сомнений как будто бы не оставалось – код универсален.

Правда, были получены мутанты кишечной палочки с некоторыми отклонениями в коде: отдельные терминирующие кодоны читались в них как значащие, т. е. отвечали определенным аминокислотам. Такое явление было названо супрессией.

Было ясно, однако, что структура генетического кода должна быть весьма консервативной, устойчивой в ходе эволюции. В самом деле, представим себе, что код внезапно изменился. Пусть даже совсем немного – один из кодонов поменял свой смысл, т. е. стал соответствовать другой аминокислоте. Но этот кодон определенно встречается не в одном гене, а во многих генах. И на всех этих генах будут синтезироваться белки, в которых одна аминокислота заменена на другую. Для некоторых белков такая замена пройдет безнаказанно, они сохранят свои функции. Но очень трудно представить себе, что ни в одном случае не произойдет порча какого-то важного белка. Ведь хорошо известно, что замена одной аминокислоты в одном белке может полностью нарушить его функции и как следствие привести к гибели всего организма.

Ставший классическим пример такой мутации – серповидно-клеточная анемия (СКА). Это очень тяжелое наследственное заболевание, вызванное, как совершенно точно установлено, заменой лишь одной аминокислоты в одном белке – гемоглобине. Молекула гемоглобина представляет собой агрегат из четырех сцепленных межмолекулярными силами полиаминокислотных цепей – двух идентичных α-цепей и двух идентичных β-цепей. Так часто бывает, что функциональный белок получается слипанием нескольких цепей. Так вот, мутация, о которой идет речь, приводит к тому, что шестой аминокислотой в β-цепи становится не глютаминовая кислота (Глу), как в нормальном гемоглобине, а аминокислота валин (Вал). Из таблицы генетического кода на рис. 7 можно заключить, что в кодоне, отвечающем шестой аминокислоте β-цепи, в ДНК больного СКА произошла замена А на Т во втором положении.

Такая замена меняет структуру гемоглобина, и он в значительной степени теряет свою способность переносить кислород. Название болезни СКА, о которой мы еще будем говорить в главе 12, обусловлено тем, что это изменение, происшедшее на молекулярном уровне, приводит к изменению формы клеток – переносчиков кислорода в крови (красных кровяных шариков); они становятся серповидными, а не круглыми.

Такие примеры оставляют мало сомнений в том, что код должен сохраняться неизменным в ходе эволюции, а это означает, что он должен быть универсальным для всей живой природы.

3 Знакомьтесь: самая главная молекула

Мы полагаем, что ген или, может быть, целое хромосомное волокно представляет собой апериодическое твердое тело.

Э. Шрёдингер. Что такое жизнь с точки зрения физики? (1944)

Она похожа на… штопор

План того, каким получится каждый из нас, готов в тот момент, когда половые клетки наших родителей, мамы и папы, сливаются в одно целое, называемое зиготой, или оплодотворенной яйцеклеткой. План заключен в ядре этой одной-единственной клетки, в ее молекулах ДНК, и в нем значится очень многое: и то, каким будет цвет наших глаз и волос, и насколько высоким будет рост, и какой формы нос, и насколько тонким – музыкальный слух и многое, многое другое. Конечно, наше будущее зависит не только от ДНК, но и просто от превратностей судьбы. Но очень, очень многое в нашей судьбе определяется качествами, заложенными от рождения, нашими генами, т. е. последовательностью нуклеотидов в молекулах ДНК.

ДНК удваивается при каждом делении клеток, так что каждая клетка несет в себе информацию о строении всего организма. Это как если бы в каждом кирпичике здания хранился миниатюрный план всего здания. Вот бы архитекторы с давних времен так поступали! Тогда реставраторам не пришлось бы ломать себе голову, скажем, над тем, как выглядел когда-то Пергамский алтарь, даже если бы от него сохранился один-единственный камень.

То, что специализированная клетка целого организма на самом деле знает, как устроен весь организм, было впервые продемонстрировано в конце 1950-х годов британским биологом Джоном Гёрдоном. Он брал ядро клетки из взрослой лягушки и, используя тончайшую микрохирургическую технику, пересаживал его в лягушачью икринку, в которой собственное ядро было убито ультрафиолетовым облучением. Из гибридной икринки вырастал нормальный головастик или даже лягушка – абсолютно идентичная той, чье клеточное ядро было взято. Природа сама иногда создает таких двойников. Это получается, когда после первого деления зиготы дочерние клетки не остаются вместе, а расходятся, и из каждой получается свой организм. Так рождаются однояйцовые, или идентичные, близнецы. У близнецов совершенно одинаковые молекулы ДНК, поэтому они так похожи.

В самом конце прошлого века британским зоологам удалось применить методику Гёрдона к млекопитающим: началась эра клонирования. Первой методом клонирования была успешно получена овца по имени Долли, ставшая настоящей знаменитостью. ДНК для Долли была взята в виде клеточного ядра, изъятого из вымени некой овцы, которая не дожила до рождения своего двойника. Это ядро было пересажено в яйцеклетку, извлеченную из другой овцы, из которой (яйцеклетки) свое ядро было удалено. Затем такую гибридную клетку, несущую чужое ядро, поместили назад, откуда ее извлекли. В результате и родилась Долли, полная копия той овцы, которая поставила ДНК. Долли прожила шесть лет и скончалась. Тем временем были получены клоны многих других животных, и время от времени мир облетает новость о клонировании человека. Но пока ни одно из этих сверхсенсационных сообщений (о клонировании человека) не подтвердилось, да и исходили эти сообщения от явных шарлатанов.

Так или иначе, успех опытов по клонированию не оставляет ни малейших сомнений в том, что ДНК ядра полностью определяет то, кто получится в ходе развития организма из одной-единственной клетки. Мы продолжим обсуждение клонирования и смежной темы репрограммирования клеток в главе 11.

Как же устроена молекула ДНК, эта королева живой клетки? Она вовсе не простая веревочная лестница, как можно подумать, глядя на рис. 4. Эта лестница завита в правую спираль. Она напоминает штопор, но штопор двойной; такие редко, но встречаются. Каждая из нитей ДНК образует правую винтовую линию, точь-в-точь как на штопоре (рис. 8). Азотистые основания четырех типов, в последовательности которых и заключена генетическая информация, образуют как бы начинку этого штопорообразного кабеля. На поверхности кабеля располагается сахарофосфатный остов полимерных цепей, из которых состоит ДНК. Мономерные звенья, из которых строится ДНК, очень похожи на мономерные звенья РНК, химическое строение которых показано на рис. 6. Мы не будем поэтому снова рисовать все четыре нуклеотида, покажем только, как выглядит нуклеотид Т (рис. 9), который больше всего отличается от своего РНКового аналога – У. Отметим, что верхнее кольцо называется азотистым основанием, пятичленное кольцо – сахаром, а слева расположена фосфатная группа.

Рис. 8. ДНК – это веревочная лестница, завитая в правую спираль

Каковы главные размеры ДНК? Диаметр двойной спирали 2 нм, расстояние между соседними парами оснований вдоль спирали – 0,34 нм. Полный оборот двойная спираль делает через 10 пар. Ну а длина? Длина зависит от того, какому организму ДНК принадлежит. ДНК простейших вирусов содержит всего несколько тысяч звеньев, бактерий – несколько миллионов, а высших – миллиарды.

Если выстроить в одну линию все молекулы ДНК, заключенные лишь в одной клетке человека, то получится нить длиной около 2 м. Следовательно, длина этой нити в миллиард раз больше ее толщины. Чтобы лучше представить себе, что это значит, вообразите, будто ДНК на самом деле вдвое толще, чем на рис. 8, – около 4 см. Такой ДНК, взятой всего из одной клетки человека, можно было бы опоясать земной шар по экватору. В этом масштабе клеточное ядро имеет размеры стадиона, а человек – это уже земной шар.

Рис. 9. Тимидинмонофосфат – тиминовый нуклеотид. входящий в состав ДНК, Остальные три нуклеотида ДНК имеют сходное строение, только у каждого – свое азотистое основание (верхняя группировка). Эти три основания (аденин, гуанин и цитозин) одинаковы для ДНК и РНК (см. рис. 6). Правое верхнее кольцо – азотистое основание, нижнее пятичленное кольцо – сахар, левую группу РО, называют фосфатом

Ясно, что одна из весьма серьезных проблем, особенно в многоклеточных организмах, где молекулы ДНК очень длинные, это укладка молекулы, чтобы она поместилась в клеточном ядре. Уложить-то ее надо так, чтобы ДНК была доступной по всей длине для белков, например для РНК-полимеразы, считывающей нужные гены.

Другая проблема – репликация столь длинных молекул. Ведь после удвоения ДНК две комплементарные цепи, которые первоначально были многократно закручены одна относительно другой, должны оказаться разведенными. Это значит, что молекула должна прокрутиться вокруг своей оси миллионы раз, прежде чем закончится репликация. Из этого следует, что вопросы, порожденные работой Уотсона и Крика, отнюдь не ограничивались проблемой генетического кода и связанными с ней вещами.

Эти вопросы порождали и сомнения. А верна ли модель Уотсона—Крика? Насколько надежен тот фундамент, на котором строятся все данные молекулярной биологии? Модель Уотсона—Крика была столь конкретна, столь детализирована, что прямо-таки дразнила своей уязвимостью. Достаточно было найти хотя бы один четкий факт, противоречащий ей, чтобы двойная спираль оказалась сброшенной с пьедестала. Это была задача для физиков, и они принялись за работу.

Если каждая молекула ДНК действительно состоит из двух полимерных цепочек, рассуждали одни, и эти цепочки связаны друг с другом слабыми нековалентными силами, то они должны расходиться при нагревании раствора ДНК, что можно четко зафиксировать в опыте. Если азотистые основания в ДНК действительно образуют друг с другом водородные связи, рассуждали другие, то это можно проверить, измеряя спектры ДНК в инфракрасной области или исследуя скорость обмена обычного (легкого) водорода на тяжелый (дейтерий). Если внутри двойной спирали и впрямь запрятаны азотистые основания, рассуждали третьи, то можно выяснить, действуют ли на ДНК те вещества, которые способны реагировать только с этими, запрятанными группами. И эти, и многие другие опыты были поставлены. К концу 1950-х годов стало ясно – модель выдержала первое испытание. Попытки опровергнуть ее терпели неудачу одна за другой.

Она похожа на оконное стекло

Физики занялись изучением ДНК не только потому, что понимали важность проверки всех деталей ее структуры. Молекула ДНК привлекла их внимание и сама по себе.

В книге Э. Шрёдингера «Что такое жизнь?» есть слова (они взяты эпиграфом к этой главе), оказавшиеся пророческими. ДНК действительно похожа на твердое тело. Пары оснований уложены в ней как в кристалле. Но это кристалл линейный, как бы одномерный – каждая пара оснований имеет только двух соседей. Кристалл ДНК – апериодический, так как последовательность пар оснований нерегулярна, как нерегулярна последовательность букв в осмысленном тексте книги. Но подобно буквам в печатном шрифте, пары оснований А•Т и Г•Ц имеют одинаковые размеры как в ширину, так и в высоту.

Конечно же, кристалл совершенно нового типа, одномерный кристалл ДНК, страшно заинтриговал физиков. Не полупроводник ли он? А может быть, сверхпроводник, да еще при комнатной температуре? ДНК была подвергнута очередному обследованию. Нет, она не полупроводник и уж подавно не сверхпроводник. Она оказалась обыкновенным изолятором, вроде оконного стекла. Да она и прозрачна, как стекло. Водный раствор ДНК (а в воде она растворяется очень хорошо) просто прозрачная жидкость. Этим сходство со стеклом не заканчивается. Обычное стекло, в том числе и оконное, прозрачно для видимого света и очень сильно поглощает ультрафиолетовые лучи. ДНК тоже поглощает в этой части спектра. Но в отличие от стекла, которому ультрафиолетовые лучи не вредны, ДНК к ним очень чувствительна.

Ультрафиолетовые лучи настолько губительны для молекулы ДНК, что клетка выработала в ходе эволюции специальную репарирующую систему, которая залечивает повреждения, нанесенные этими лучами. Что же это за повреждения?

Когда квант ультрафиолетового излучения (фотон) попадает в ДНК, то он передает свою энергию азотистому основанию. Основание оказывается в возбужденном состоянии. Далее события могут развернуться по-разному. Если фотон поглощен пурином (аденином или гуанином), то ничего особенного не произойдет – поглощенная энергия быстро превратится в тепло (как это бывает в оконном стекле), а ДНК останется такой же, какой была. Другое дело, если фотон поглотится пиримидином (тимином или цитозином), причем не любым, а тем, который соседствует в цепи с другим пиримидином. В этом случае поглощенная энергия не успевает еще превратиться в тепло, как два соседних пиримидина вступают в химическую реакцию. Этот процесс особенно эффективен, если по соседству оказываются два тимина. Результат – новое химическое соединение, называемое фотодимером тимина Т◊Т (рис. 10).

Рис. 10. Тиминовый димер

Строение димера довольно необычно. В самом деле, углерод обыкновенно бывает либо тетраэдрическим, когда его связи с соседними атомами идут из центра тетраэдра в его вершины, либо треугольным, когда связи лежат в одной плоскости и направлены из центра в вершины правильного треугольника. Но в фотодимере две связи у каждого атома углерода, участвующего в сцеплении тиминов, образуют прямой угол! А все четыре атома углерода образуют квадрат (он носит название циклобутана).

Итак, в ДНК возникло повреждение – вместо двух тиминов образовалось совершенно новое химическое соединение, дойдя до которого ферменты, работающие на ДНК, остановятся. Они знают только четыре буквы: А, Т, Г и Ц, а тут какой-то новый значок Т◊Т. Им он не известен. Если эту помарку не выправить, не убрать из текста, то ферменты не смогут ни снять с ДНК копию, ни считать с нее информацию (синтезировать РНК). Вся жизнь клетки остановится, и она погибнет.

Ультрафиолетовые лучи представляют столь серьезную угрозу для молекулы ДНК, что в ходе эволюции клетка выработала специальную систему, чтобы бороться с повреждениями ДНК, вызванные этим излучением. Ферменты этой репарирующей системы приходят на помощь. Сначала фермент УФ-эндонуклеаза узнает тиминовый димер и рвет в этом месте сахарофосфатную цепь. Далее фермент экзонуклеаза расширяет возникший разрыв. В одной из нитей ДНК, там, где образовался тиминовый димер, получается огромная брешь – в несколько тысяч нуклеотидов. При этом оказываются удаленными не только тиминовый димер, но и масса нормальных нуклеотидов, как говорится, на всякий случай. Но это не беда – другая, комплементарная нить остается целой, и по ней специальный фермент, ДНК-полимераза I, надстраивает вторую нить, создавая нормальную двойную спираль, идентичную исходной, неповрежденной ДНК.

Так вот, оказывается, в чем смысл двунитчатости ДНК! Она нужна не только для создания двух идентичных копий генетического материала, но и для того, чтобы информацию, заключенную в ДНК, можно было уберечь от повреждений. Если бы между циклами удвоения ДНК была однонитевой, то ее невозможно было бы починить.

Репарирующие системы есть во всех клетках, от простейших до человека. Это неудивительно – жизнь зародилась под Солнцем. Может показаться странным, что репарирующая система активна даже в таких клетках, которые никогда не испытывают действия солнечного излучения – например, клетки кишечника. Остроумное объяснение этому предложил Г. М. Баренбойм. Он предположил, что ДНК защищается от излучения Вавилова—Черенкова, возникающего в клетках при распаде естественной примеси радиоактивных элементов.

Если же в результате мутации репарирующая система выйдет из строя – это настоящее бедствие. Иногда рождаются дети с дефектом, который называется ксеродерма пигментозум. Они совершенно не могут быть на свету – их кожа покрывается язвами, которые постепенно переходят в злокачественные опухоли. Таких детей не удается спасти, даже тщательно оберегая их от солнца. Вообще, прямыми опытами на животных показано, что тиминовые димеры могут вызывать рак.

Выходит, загорать – это действительно совсем не невинное занятие. Конечно, мы не можем отказать себе в этом удовольствии, но не следует перегружать репарирующую систему. Кроме того, репарация – не вполне безобидная вещь. Считают, что ферменты репарирующей системы, в особенности ДНК-полимераза I, склонны допускать ошибки, так что репарация может приводить к мутациям. А соматические мутации (т. е. происходящие в неполовых клетках тела) также рассматриваются в качестве важного фактора, приводящего к злокачественному перерождению ткани (см. главу 11).

Вот сколько хлопот от того, что ДНК чувствительна к ультрафиолетовым лучам. А ведь эти лучи едва достигают поверхности Земли, основная их часть поглощается в атмосфере. Так что стоит ли сожалеть, что ДНК прозрачна, как оконное стекло, в отношении видимой части спектра?

Она плавится, но не так, как лед

И все-таки те, кто ждал от молекулы ДНК необычных физических свойств, были вознаграждены. Одномерность и апериодичность кристалла ДНК в полной мере проявляются при его плавлении. Но если кристаллическое состояние ДНК – это понятно, что такое, то как представить его переход в жидкое? Во что может превратиться одномерный кристалл ДНК при плавлении?

Чтобы разобраться в этом, вспомним, почему плавится лед. Лед представляет собой кристалл, построенный из молекул Н2О. В нем царит строгий порядок, при котором молекулы воды связаны друг с другом максимально возможным числом так называемых водородных связей (Н-связей): HO-H … OH2. Это те самые Н-связи, которые образуются в комплементарных парах оснований А•Т и Г•Ц (см. главу 9). Некоторые из этих связей рвутся, другие деформируются при переходе воды в жидкое состояние. Что же заставляет воду быть жидкой при температуре выше нуля по Цельсию? Потеряв часть из связей, ослабив другие, молекулы воды приобретают возможность гораздо свободнее двигаться (перемещаться и вращаться), что становится очень выгодным с ростом температуры. При еще большем нагревании молекулы воды ради полной свободы жертвуют последними связями друг с другом – происходит переход из жидкого в газообразное состояние. Это общая тенденция. С ростом температуры вещества проявляют готовность пожертвовать энергией связи между молекулами ради увеличения энтропии.

Все это в полной мере относится и к ДНК – с ростом температуры существование двойной спирали становится невыгодным. Межмолекулярные связи, Н-связи внутри пар оснований и так называемые стэкинг-взаимодействия между соседними вдоль цепи парами, удерживающие две комплементарные цепи друг около друга, рвутся, и из одной двунитевой молекулы образуется две однонитевые цепи (рис. 11). Энтропийно (т. е. в смысле получения большей свободы) это выгодно потому, что, не будучи связанной с комплементарным партнером, каждая цепь чувствует себя гораздо свободнее, может приобретать намного больше различных конфигураций в пространстве.

Сами нити ДНК порвать простым нагреванием нельзя – связи, соединяющие нуклеотиды в цепочку, настолько прочны, что их можно разрушить либо сильной кислотой, либо порезать ферментами нуклеазами.

Несмотря на аналогию, плавление ДНК принципиально отличается от плавления льда. Отличие состоит в том, что плавление ДНК происходит в широком интервале температур; этот интервал равен нескольким градусам, а плавление льда происходит строго в одной точке на шкале температур. Это так называемый фазовый переход. При таком переходе скачкообразно изменяется фазовое состояние вещества – из твердого оно становится жидким, из жидкого – газообразным.

Рис. 11. Так плавится ДНК

Мы каждый день сталкиваемся с фазовым переходом, когда кипятим чайник. В процессе кипения система вода—пар находится в самой точке фазового перехода – температура чайника ни на йоту не превысит 100 °C, пока не выкипит вся вода. То же самое будет происходить при нагревании льда или снега. Температура растет до 0 °C, потом рост прекратится, пока весь лед полностью не растает, а затем температура вновь пойдет вверх.

В отличие от фазовых систем, у ДНК температура растет непрерывно, и с ее повышением все новые участки молекул переходят из спирального состояния в расплавленное. Интересно, что это отличие – прямое следствие одномерности кристалла ДНК.

Осознавать, что такое поведение вещества возможно, физики начали еще до Второй мировой войны, когда и не думали о ДНК или о реальных одномерных кристаллах. Просто никак не удавалось построить полную теорию фазовых переходов в настоящих трехмерных кристаллах (это получилось лишь гораздо позже – в 1970-х годах), и возникла мысль, что, может быть, удастся это сделать хотя бы для одномерного или двумерного кристалла. Проанализировать первый вариант оказалось совсем просто. Но вот беда – никакого фазового перехода не получалось. Глубокий смысл этой неудачи был понят знаменитым советским физиком Львом Давидовичем Ландау (мы уже упоминали его имя в начале главы 2). Вот что он писал (вместе с Е. М. Лифшицем) в 1938 году: «Во всякой одномерной системе не может существовать фаз, так как они стремились бы перемешиваться друг с другом». Это утверждение, известное во всем мире как «теорема Ландау», долгое время считалось чисто негативным, означающим только, что одномерная система – никуда не годная модель для теоретического рассмотрения проблемы фазовых переходов.

Вряд ли Ландау думал, что когда-нибудь найдутся реальные системы, к которым удастся применить его утверждение. Но ДНК – это действительно почти такая система. Слово «почти» здесь поставлено потому, что теорема Ландау была доказана для строго однородных систем, а ДНК, как мы помним, – апериодический кристалл. Его составляют два сорта звеньев – пары А•Т и Г•Ц, отличающиеся силой связи. Пару А•Т легче порвать, чем пару Г•Ц. Поэтому ДНК, которая содержит больше пар А•Т, плавится при более низкой температуре.

Важно ли то, сколько типов пар – два или один, как в строго однородном кристалле? Да, важно. Это очень интересный вопрос, и его исследовали многие теоретики уже прямо в связи с проблемой плавления ДНК. Прежде всего следует отметить работы М. Азбеля, А. Веденова, А. Дыхне, Д. Крозерса, И. Лифшица, Э. Монтролла, Д. Поланда. Много занимался данной проблемой и автор этих строк.

Что же оказалось? Вывод, сделанный Л. Д. Ландау, остается в силе. И в апериодической ДНК фазового перехода быть не может. Принципиально это также объясняется одномерностью системы, но происходит по иной причине, чем в строго однородном кристалле. Фазы отсутствуют не потому, что они стремились бы перемешиваться, как говорил Ландау, а потому, что участки ДНК, обогащенные парами А•Т, плавятся при более низкой температуре, чем участки, обогащенные парами Г•Ц. Поэтому переход в новое состояние происходит с ростом температуры не скачком, а поэтапно, участок за участком.

Если мерить зависимость поглощения тепла от температуры для раствора молекул ДНК, то на графике, отражающем эту зависимость, вместо одного бесконечно узкого пика, который характерен для плавления льда, мы должны наблюдать множество пиков, отвечающих выплавлению отдельных участков в молекуле. Ширина каждого пика, как предсказывает теория, должна соответствовать примерно 0,5 °C. Эксперимент полностью подтвердил это предсказание. На рис. 12 видно, как идет поэтапное плавление ДНК (плазмиды Соl Е1), содержащей около 6500 пар оснований.

Конечно, никто не может измерить теплопоглощение одной-единственной молекулы. Экспериментатор обычно имеет дело с образцом, состоящим из миллиардов и миллиардов молекул, но у всех у них строго одинаковая последовательность нуклеотидов. И при той или иной температуре во всех молекулах раскрываются одни и те же участки. Поэтому, исследуя эффект на множестве одинаковых молекул, можно судить о том, что происходит с каждой из них в отдельности.

Рис. 12. Зависимость теплопоглощения ДНК от температуры. Такую кривую часто называют также дифференциальной кривой плавления. Приведенная кривая получена для ДНК, носящей кодовое название Соl Е1 и содержащей около 6500 пар нуклеотидов

Сотрудникам Института молекулярной генетики РАН в Москве (А. Боровик с соавторами) удалось буквально воочию наблюдать поэтапное плавление ДНК. Они научились фиксировать раскрытые участки в молекуле с помощью специально подобранного химического агента. Обработанные препараты изучались под электронным микроскопом. Опыт шел так. Раствор ДНК нагревали до определенной температуры, попадающей в интервал плавления. При этом раскрывались отдельные участки молекулы (цепи в этих местах расходились, и азотистые основания оказывались торчащими наружу). Затем в раствор добавляли вещество, реагирующее с раскрытыми основаниями, но неспособное связываться с основаниями, запрятанными внутри двойной спирали. Когда реакция заканчивалась, образец охлаждали до комнатной температуры – прореагировавшие участки уже не могли вновь закрыться и образовать двойную спираль.

Рис. 13. Так выглядит ДНК Соl Е1 под электронным микроскопом после того, как ее состояние зафиксировали при температуре 72 °C. Ясно видны три раскрытых, расплавленных участка: два – на концах и один – в середине

Обработанные таким образом молекулы ДНК исследовали под электронным микроскопом. Один из полученных электронно-микроскопических снимков показан на рис. 13. Получив множество снимков молекул, раскрытых при разных температурах, построили результирующую картину (рис. 14). По горизонтальной оси здесь отложена координата пары оснований вдоль цепи ДНК. По вертикальной оси – вероятность того, что данная пара раскрыта, а по третьей оси – температура. Сравнение с кривой зависимости теплопоглощения от температуры (слева вверху на рис. 14) показывает, что каждому пику действительно соответствует выплавление определенного участка ДНК. Рисунок позволяет определить, какой вид имеет молекула ДНК при любой температуре в интервале плавления. Например, видно, что при 72 °C в молекуле должны быть расплавлены оба конца, а также участок, отстоящий от левого конца на 80 % общей длины молекулы. Это как раз отвечает снимку, приведенному на рис. 13. Отметим, что в ДНК вовсе не всегда плавление начинается с концов, как в данном случае. Просто у этой молекулы на обоих концах расположены участки, сильно обогащенные парами А•Т.

Рис. 14. Полная картина плавления ДНК Co1E1, полученная путем компьютерной обработки большого числа электронно-микроскопических снимков типа приведенного на рис. 13

Да, изучать плавление ДНК оказалось гораздо более интересным делом, чем плавить лед. Вместо одного пика, у которого ширину-то не измерить, – множество пиков, положение и ширина которых определяются последовательностью нуклеотидов в ДНК. Каждая молекула ДНК имеет свой, характерный «профиль» плавления, в зависимости от хранящейся в ней генетической информации.

Но плавление ДНК – это не просто уникальное физическое явление. Это процесс, который постоянно происходит в клетке. В самом деле, и при удвоении ДНК, и при считывании с нее информации комплементарные цепи должны быть разведены, чтобы на каждой из них (в случае репликации) или на одной из них (в случае транскрипции) начался синтез цепей ДНК или РНК.

Как же разводятся цепи? Что играет роль утюга, способного расплавить участок ДНК? Эту роль играют специальные ферменты, в частности РНК-полимераза. Фермент прочно связывается с ДНК и расплетает ее, но не любой участок молекулы, а определенную последовательность нуклеотидов, промотор, расположенную между генами. После того как РНК-полимераза связалась с промотором и расплавила его (раскрывается около десяти нуклеотидов), она начинает двигаться вдоль гена, расплетая на своем пути все новые участки и ведя синтез молекулы мРНК. Те участки гена, с которых полимераза «съехала», вновь захлопываются, а синтезируемая молекула РНК свешивается в раствор. К ней подплывает рибосома и начинает синтез белка по законам генетического кода. Все это схематически показано на рис. 15.

Рис. 15. РНК-полимераза ползет по ДНК, синтезируя РНК. Рибосома считывает информацию с РНК, синтезируя белок, в соответствии с генетическим кодом

Способность комплементарных цепей ДНК разделяться и соединяться вновь нашла широчайшие применения в биотехнологии и генной инженерии. Хитроумные генные инженеры изобрели воистину чудодейственное устройство, осуществляющее полимеразную цепную реакцию (ПЦР). Это устройство периодически нагревает и охлаждает образец ДНК. В результате осуществляется ПЦР, и одна исходная молекула ДНК амплифицируется («преумножается») в пробирке. Вы буквально можете начать с одной молекулы и после n циклов ПЦР получить в пробирке 2n молекул. Так таинство жизни, способность к воспроизведению, осуществляется в пробирке.

Но мы забежали вперед. Нам еще предстоит рассказать о рождении генной инженерии, заложившей основу биотехнологии, о ее потрясающих достижениях и захватывающих дух перспективах в последующих главах, в особенности в главе 10. А пока продолжим знакомство с самой молекулой ДНК.

Она похожа на путь человека, заблудившегося в лесу

Почему человек, старающийся идти в лесу только вперед, обязательно заблудится в пасмурную погоду? Почему он вновь и вновь будет возвращаться на место, где уже побывал? Существуют разные поверья на этот счет. Одни говорят, что человек ходит по кругу потому, что у него одна нога чуть короче другой. Вторые видят причину в том, что шаги у нас разные – один длиннее, другой короче. Все это полнейшая чушь. Причина в ином. Человек старается идти прямо, но, не имея перед собой удаленных ориентиров, постоянно сбивается с прямой линии. Эта потеря памяти о первоначальном направлении происходит тем быстрее, чем гуще и однообразнее лес. Путь человека при этом носит случайный характер и вовсе не выглядит движением по кругу.

Чтобы представить себе такой путь, можно взять листок бумаги, положить его на стол и прижать к нему острие карандаша. Затем, закрыв глаза, прокрутить листок, а затем сдвинуть карандаш. Поступив так раз пять – откройте глаза. Вы увидите, что получилась ломаная линия, причем в ней, скорее всего, будет хотя бы одно самопересечение. Это и есть нечто вроде движения человека в лесу, а самопересечение – это возврат в то место, где он уже был.

Конечно, человек лишь постепенно отклоняется от исходного направления, он не движется зигзагами, если только он не пьян. Путь пьяного и впрямь очень похож на зигзагообразную ломаную. Поэтому случайное блуждание называют иногда движением абсолютно пьяного человека. Впрочем, если даже наш путник абсолютно трезв, но не имеет удаленных ориентиров, то его путь в лесу в конечном счете будет очень похож на ломаную линию.

Вопрос сводится лишь к тому, какой длины будет каждый прямолинейный отрезок. Обозначим этот отрезок буквой b. Для пьяного b – это один шаг. Следующий будет уже совершенно в другую сторону. Трезвый старается сделать величину b как можно большей, но без удаленных ориентиров, она все равно гораздо меньше общего пути, если, конечно, путь достаточно долог.

Блуждают не только люди. Блуждают и молекулы – они стараются двигаться прямо, но из-за столкновений друг с другом их путь искривляется. Так возникает знаменитое броуновское движение.

Теория случайных блужданий была построена Альбертом Эйнштейном. Она составила предмет одной из трех статей, опубликованных в 1905 году и определивших пути развития физики XX века (две другие статьи посвящены теории относительности и теории световых квантов). Теория Эйнштейна гласит, что если частица пройдет путь L, то она сместится из исходной точки на расстояние . Что это значит?

Вернемся к человеку в густом лесу в пасмурную погоду. Вряд ли значение b будет здесь больше 20 м. Скорость составит, по-видимому, километра два в час. Это значит, что за девять часов, а дольше идти вряд ли возможно (сил не хватит), человек сместится из исходной точки всего на 600 м! Неудивительно, что за это время он много раз пересечет свой собственный след, так и не выбравшись из леса. Единственный способ не заблудиться – любой ценой увеличивать значение b.

Но какое отношение имеет все это к ДНК? Поверьте, самое непосредственное. Подобно пути человека в лесу и частицы в среде, молекула ДНК стремится вытянуться в одну прямую линию, так как это отвечает минимуму ее энергии. Но тепловое движение портит все дело. Молекулу ДНК бомбардируют окружающие молекулы воды, и она начинает извиваться, подобно червяку, скрючивается в полимерный клубок, постоянно меняющий форму.

Поэтому двуспиральная ДНК, если, конечно, она достаточно длинна, свернута чаще всего в клубок. Размеры клубка описываются все той же формулой Эйнштейна, , где L – длина молекулы, а b определяется тем, насколько молекула ДНК сможет выпрямиться (т. е. жесткостью двойной спирали). Надежные измерения показали, что для ДНК b = 100 нм. Тот факт, что двойная спираль способна изгибаться, имеет немалое биологическое значение. Дело в том, что если бы молекула ДНК была очень жесткой, вроде спицы для вязания, то она никак не могла бы уместиться внутри клетки, не говоря уже о клеточном ядре. Ведь в клетке, особенно у высших организмов, содержится очень много ДНК, причем сосредоточена она главным образом в ядре. Если принять, что вся ДНК в клетке человека – это одна молекула, то ее длина L составит около 2 м. Это в миллион раз больше диаметра ядра. Как же она все-таки там умещается?

Может быть, достаточно теплового движения, чтобы ДНК была втиснута в ядро? Чтобы ответить на этот вопрос, оценим диаметр полимерного клубка с L = 2 м. Приняв b = 100 нм, легко убедиться, что r = 0,5 мм. Это в тысячу раз меньше полной длины молекулы, но все еще в тысячу раз больше диаметра ядра. Следовательно, теплового движения недостаточно, чтобы ДНК уместилась в столь малом объеме.

Чтобы справиться с задачей, в клетках высших организмов предусмотрен специальный механизм насильственного изгибания двойной спирали. Молекула навивается, как нитка на катушку, на особый комплекс ядерных белков (гистонов). На каждой «катушке» молекула делает около двух оборотов, затем она переходит на следующую «катушку» и так далее. «Катушка» с намотанной на нее ДНК называется нуклеосомой, так что ДНК в ядре высших – это ожерелье из нуклеосом. Конечно, и это ожерелье не вытянуто в одну линию, а очень сложным образом компактно уложено в особые тельца, называемые хромосомами. Именно таким хитрым способом клетка умудряется проделать трюк, который по плечу лишь искусному магу, – запихнуть полимерный клубок диаметром 0,5 мм в ядро, диаметр которого меньше микрометра.

4 Под знаком ДНК

Кризис молекулярной биологии

В основе того, что зовется здравым смыслом, лежит принцип (его часто называют «бритва Оккамы»), согласно которому из различных возможных объяснений мы отдаем предпочтение, при прочих равных условиях, простейшему. Сознательно или бессознательно этим принципом руководствуются все здравомыслящие люди – и старушка, потерявшая очки, и криминалист, раскрывающий преступление, и ученый, исследующий природу. Правда, объяснение, представляющееся нам самым простым, вовсе не обязательно оказывается верным. Но хотя во многих случаях мы понимаем, что выбор, скорее всего, окажется неверным, – другого пути у нас нет. Простейшее объяснение имеет приоритет перед всеми остальными уже потому, что его легче всего опровергнуть и поэтому именно его нужно прежде всего проверять.

Можно сказать, что картина мира, которую мы в данный момент себе представляем, – это совокупность простейших, для данного уровня знаний, объяснений. Но насколько эти объяснения истинны – данный вопрос выходит за рамки науки сегодняшнего дня. И, конечно, движет науку вперед именно убеждение в несовершенстве наших представлений. Однако, чтобы сделать шаг вперед, одного этого убеждения мало – надо доказать, что старое представление, кажущееся таким естественным, неверно или неполно. В том и состоит прелесть и вечная молодость истинной науки, что предлагаемая ею картина мира постоянно меняется.

На заре молекулярной биологии, в 1950-х годах, ответить на вопрос о том, как функционирует молекула ДНК в клетке, ничего не стоило. В самом деле, что нужно объяснить? А вот что: как ДНК удваивается и как на ней синтезируется мРНК. Или, выражаясь научным языком, как протекают в клетке два главных процесса, в которые вовлечена ДНК, – репликация и транскрипция.

Если идут два процесса, то должны существовать два фермента: ДНК – и РНК-полимеразы. Эти белки искали, и их действительно нашли в клетке. Все просто и ясно. Правда, много лет спустя выяснилось, что та ДНК-полимераза, которую при этом обнаружили (ее называют ДНК-полимераза Корнберга или ДНК-полимераза I), вовсе не главное действующее лицо при репликации. Оказалось, что эта ДНК-полимераза служит в клетке для залечивания брешей, образующихся в ДНК в процессе репликации и репарации. Самим процессом репликации ДНК ведает в клетке совсем другой фермент.

К счастью, с РНК-полимеразой такой ошибки не произошло. Она действительно оказалась тем самым ферментом, который ведает в клетке транскрипцией. Однако открытие этого фермента отвечало отнюдь не на все вопросы, связанные с синтезом мРНК. В самом деле, РНКовая копия снимается каждый раз не со всей ДНК, а с ее небольшого участка, содержащего один или несколько генов. Что же происходит с другими генами? Если они молчат, то почему? Может быть, есть не одна, а много РНК-полимераз, которым положено «читать» разные гены? Или, может быть, существуют еще другие белки (назовем их репрессорами), которые не подпускают РНК-полимеразу к молчащим генам, не дают их считывать? Какое объяснение предпочесть?

Не будем понапрасну ломать голову. При изучении живой природы сплошь и рядом бывает так, что два или даже более объяснений сосуществуют – в одних случаях годится одно, в других – другое. Так случилось и с проблемой регуляции транскрипции – реализуются обе возможности.

Из кишечной палочки был выделен белок-репрессор, который очень прочно связывается с ДНК у самого начала определенного гена, между промотором и инициирующим кодоном, и не дает РНК-полимеразе считывать этот ген. Так реализовалось одно возможное объяснение, предложенное французскими исследователями Ф. Жакобом и Ж. Моно.

Потом наступила очередь второго. Когда кишечная палочка заражается бактериофагом Т7, то сначала часть генов фаговой ДНК считывается «хозяйской» РНК-полимеразой. Но потом появляется совсем другая, фаговая РНК-полимераза, которая начинает считывать остальные, так называемые поздние гены фаговой ДНК. Так в зараженной клетке происходит процесс «перехода власти» от законного хозяина, ДНК E. Coli, к вторгшемуся паразиту – фаговой ДНК. Заметим, между прочим, что факт переключения синтеза молекул РНК с ранних на поздние при фаговой инфекции был открыт советским ученым Р. Б. Хесиным и его сотрудниками на рубеже 1950-х и 1960-х годов.

Считывание РНК с ДНК и тесно связанная проблема синтеза белка по РНКовым матрицам на рибосомах, т. е. процесс трансляции – это центральные темы молекулярной биологии 1950-х и 1960-х годов. Процесс репликации в то время считался совершенно понятным, а что еще может происходить с ДНК?

И вот в конце 1960-х годов стали поговаривать, что, мол, с ДНК все ясно, с проблемой синтеза белка тоже покончено (к тому времени был расшифрован генетический код) и молекулярным биологам пора переключаться на новые проблемы, например, на проблему высшей нервной деятельности мозга. Некоторые, кстати, так и поступили. Потом-то стало ясно, что это был период, когда старые идеи и методы уже исчерпали себя, а новые еще не появились. А многим показалось, что и самих проблем не осталось. Простейшие ответы были возведены в ранг абсолютных истин. Впрочем, все это ясно только теперь – задним умом все крепки, а тогда, наверное, никто не подозревал, что 1970-е, 1980-е и даже 1990-е годы и, в еще большей степени, 2000-е и 2010-е пройдут под знаком ДНК.

Напомним, что основные положения молекулярной биологии, считавшиеся установленными раз и навсегда, сводились к следующему. Все живые организмы на Земле имеют одинаковое устройство самого основного клеточного аппарата, ведающего синтезом белка. Этот аппарат устроен так.

Генетическая информация хранится в виде последовательности нуклеотидов в линейной молекуле ДНК. ДНК можно разбить на непрерывные участки (гены), на каждом из которых записана аминокислотная последовательность одного белка. Гены разделены регуляторными участками, с которыми связываются РНК-полимеразы и белки-репрессоры. Гены не могут перекрываться и не могут быть прерваны какими-либо другими последовательностями. С гена, от его начала, считывается РНКовая копия, по которой на рибосомах происходит синтез белка согласно универсальному генетическому коду. Таким образом, в клетке идет строго однонаправленный поток информации ДНК → РНК → белок.

Отдельные положения этой схемы, этой центральной догмы молекулярной биологии, были доказаны на разных объектах, хотя главным «полигоном» была, конечно, знаменитая кишечная палочка Е. coli. Но схема получилась настолько простой и естественной, она так хорошо объясняла все генетические данные, что ее универсальность для всего живого не вызывала ни малейших сомнений. Разумеется, некоторые отличия ожидались при переходе к высшим организмам. Так, предполагалось, что у высших большая часть ДНК будет занята «управленческим аппаратом», т. е. регуляторные участки, сопровождающие гены, будут гораздо более протяженными, чем у бактерий.

«Вот и хорошо, – вправе заключить рассудительный читатель. – Ученые славно потрудились и общими усилиями выяснили все главные вопросы – от атомного строения молекулы ДНК до того, как она работает в клетке. Теперь пора всем так же дружно заняться решением прикладных задач. Ведь не может же быть, чтобы такой прогресс в понимании самых глубинных жизненных процессов не привел бы к столь же головокружительным успехам в направленном их изменении. О каком кризисе может идти речь?»

Так-то оно так, но вся беда заключалась в том, что, хотя в принципе все казалось понятным, никакой возможности приложить на деле полученные знания не проглядывало. Разумеется, недостатка в разговорах о пересадке генов, о генной инженерии не было. Но дальше разговоров дело не шло. Попытки сделать что-то реальное упирались в отсутствие методов, которые позволяли бы резать ДНК на куски, отделять разные куски друг от друга и потом сшивать их вновь, как того хочет экспериментатор. Без овладения этой техникой все разговоры о генной инженерии оставались маниловщиной.

Разумеется, порвать молекулу ДНК ничего не стоит. Труднее ее не порвать, особенно если она очень длинная. Но случайные разрывы – это вовсе не то, что нужно. Нужно было научиться рвать все одинаковые молекулы в заданном образце строго в одних и тех же местах, т. е. точность разрезания не должна превышать размера одного нуклеотида. Но где взять такой скальпель, который позволял бы резать молекулу с точностью до миллиардных долей метра? Это все равно что научиться нарезать один батон колбасы так аккуратно, чтобы каждому жителю земного шара досталось по кусочку. Да, задача казалась почти безнадежно сложной.

Физики и химики перебирали свои арсеналы средств. А не ударить ли по ДНК лазером? А может быть, ее чуть-чуть подплавить и потом подействовать ферментом, расщепляющим только одиночную цепь? Ведь все молекулы с одинаковой последовательностью должны плавиться в одних и тех же местах. Идея неплохая. Стали пробовать. Оказалось, что так резать ДНК можно, но разные молекулы хоть чуть-чуть, но отличаются по длине. Это отличие составляет несколько десятков нуклеотидов, так что эта методика еще на порядок не дотягивала по своей разрешающей способности до предъявляемых генной инженерией жестких требований.

Да, пришествие золотого века генной инженерии, казалось, отодвигалось на неопределенный срок. Но дело было не только в генной инженерии. В проблему разрезания ДНК на куски упиралась и другая задача – задача определения нуклеотидной последовательности. Ведь, несмотря на уверенные рассуждения ученых о промоторах и других регуляторных участках, о генах и всем прочем, ни одна последовательность нуклеотидов в ДНК не была расшифрована. А поэтому и генетический код оставался лишь красивой картинкой, которую приятно повесить на стену, в лаборатории. Ведь код – это словарь для перевода с нуклеотидного языка ДНК на аминокислотный язык белка. А ДНКовых текстов-то и не было!

Расшифровывать последовательности сравнительно коротких полимеров, таких как белки, научились, а вот с ДНК ничего не получалось, прежде всего из-за ее длины. Если бы удалось разбить ДНК на короткие участки по сотне-другой нуклеотидов, то и прочесть последовательности в них как-то бы удалось. Но как разбить длинную цепь на маленькие куски строго определенным образом? Опять та же проклятая проблема. И опять требовалась та же дьявольская точность – до одного нуклеотида. Мы видим, что молекулярная биология в самом деле оказалась в тупике.

Во всем мире тогда, на рубеже 1960-х и 1970-х годов, едва ли удалось бы отыскать горстку чудаков, которые считали, что слишком рано ставить точку в фундаментальных исследованиях ДНК, что сложившиеся представления хоть логически и замкнуты, но представляют собой лишь простейшие, еще очень далекие от истины решения, что природа устроена гораздо сложнее и интереснее. Их никто не слушал. Их не принимали всерьез. А если и выслушивали, то разводили руками. Чего вам не хватает в этом практически законченном здании? Нет, конечно, кое-какие детали еще оставалось выяснить. Но они не дадут ничего принципиально нового. Если вам не жаль попусту тратить время – что же, занимайтесь пустяками. А мы поищем себе занятие поважнее. Что же касается проблемы разрезания ДНК, то это, конечно, достойная задача, но, по-видимому, неразрешимая. Стену лбом не прошибешь.

Перелом

На этом фоне произошло событие, в короткий срок изменившее атмосферу. Этим событием, ознаменовавшим начало нового этапа в молекулярной биологии, было открытие в 1970 году ревертазы (его еще называют обратной транскриптазой) – фермента, синтезирующего ДНК по РНКовой матрице, т. е. ведущего процесс, как бы обратный транскрипции. Поскольку до этого все прекрасно объяснялось без него, считалось, что такого фермента быть не может. А оказалось, что он существует.

Значит, в клетке возможен обратный поток информации, от РНК к ДНК? Открытие вызвало прямо-таки брожение умов. Стали говорить о ниспровержении всех основ молекулярной биологии, о возможности синтеза РНК по белку, о наследовании благоприобретенных признаков и бог знает о чем еще. А поскольку ревертазу обнаружили у вирусов, способных вызывать рак у животных, казалось очевидным, что от открытия обратной транскрипции до решения проблемы рака – ну просто рукой подать…

Но прошли годы, ажиотаж улегся, и фермент ревертаза занял свое, достаточно скромное место в ряду других ферментов. Нет, обратный поток информации в клетке не идет. Просто у некоторых вирусов (в том числе у ВИЧ, вируса СПИДа) генетическим материалом служит не ДНК, а РНК. Такие вирусы снабжены ревертазой, чтобы после проникновения в клетку можно было в ней синтезировать вирусную ДНК.

Где ревертаза действительно незаменима, так это в генной инженерии. Именно с помощью этого фермента получают ДНК на матрицах РНК, выделенных из клеток человека, чтобы перенести эти ДНК в бактериальную или дрожжевую клетку и заставить эту клетку вырабатывать, например, интерферон или другие нужные для медицины белки. Но об этом мы расскажем далее.

Открытие ревертазы было важно не только и даже не столько само по себе. Гораздо важнее был психологический эффект. Это открытие показало, что догмы молекулярной биологии вовсе не так незыблемы, как это представлялось. И новые сенсации не заставили себя долго ждать. В течение 1970-х годов были обнаружены целые классы ферментов, работающие на ДНК, о существовании которых никто не подозревал. Эти ферменты неслыханно расширили возможность вмешиваться в генетические процессы, т. е. они легли в основу новых методов, отсутствие которых застопорило развитие молекулярной биологии в конце 1960-х годов. Теперь здесь был сделан гигантский шаг вперед. При этом рухнули казавшиеся незыблемыми представления о строении генов как у вирусов, так и у высших («уцелели» только бактерии). Возникла генная инженерия – прикладная ветвь молекулярной биологии.

Ферменты, с которыми в наибольшей степени была связана новая революция в генетике, – это рестриктазы. Как и для ревертазы, этим ферментам не было места в логически завершенном здании молекулярной биологии конца 1960-х годов. Где-то на самых задворках, правда, маячил неясный вопрос о роли метилирования ДНК. Но ведь никто не говорил, что все отделочные работы в здании закончены и мусор убран – просто почти не было охотников заниматься кропотливой, но неблагодарной работой по выяснению малосущественных деталей. Да и кто будет субсидировать такую скучищу? Ведь, чтобы получить возможность заниматься какой-то научной разработкой, обычно нужно наперед указать, что и когда вы откроете. Говорят, что у открывшего ревертазу (и получившего за это Нобелевскую премию совместно с Д. Балтимором) американца Г. Темина были крупные неприятности с финансированием перед самым завершением его многолетних поисков фермента. Еле упросил чуть-чуть повременить. А если бы работа еще затянулась?

Но допустим даже, что кто-то пообещал бы в течение пяти или, там, трех лет выяснить роль метилирования в ДНК. Чтобы такое исследование, явно не сулящее фундаментальных открытий, поддержали, нужно, чтобы оно могло дать хотя бы практический эффект. В сельском хозяйстве или в медицине. Но это же смешно, какое это может иметь прикладное значение? Тем более что речь шла о метилировании ДНК бактериофагов.

К счастью, любознательность ученых неистребима. А проблема метилирования, хоть и казалась очень частной, все же давала пищу для ума. Было обнаружено, что часть нуклеотидов в ДНК химически модифицируется уже после завершения репликации. Модификация заключается в добавлении к основанию метальной группы (СНз).

Любопытным было то, что число метилированных звеньев в ДНК было очень мало – одно на тысячи. Значит, фермент метилаза, ведущий этот процесс, должен узнавать какие-то специальные последовательности нуклеотидов. Другой интересный факт: если метилазу вывести из строя (путем мутации), то фаги, созревающие в такой бактерии, оказываются неинфекционными. Такой фаг нормально присоединяется к бактериальной стенке, как положено, впрыскивает внутрь бактерии свою ДНК, но эта фаговая ДНК как бы «растворяется» в клетке.

Что же происходит? Оказалось, что с помощью метилазы бактерия метит ДНК созревших в ней бактериофагов – подобно тому, как пастух метит своих овец. В отличие от пастуха, бактерия делает это как бы себе во вред. Ведь меченый фаг – вовсе не безобидная овечка. Проникнув в клетку-хозяйку, он губит ее. Что заставляет бактерию расставлять метки – не совсем ясно. Но если метки нет, то фагу приходится туго. Как пастух не оставит в своем стаде овцу с чужой меткой или вообще без метки, так и бактерия немедленно расправляется с «чужой» ДНК, попавшей в нее. Что служит орудием расправы? По-видимому, какие-то ферменты, узнающие те же последовательности, что и метилазы. И если эти последовательности не прометилированы, клеточные ферменты рвут молекулу ДНК, причем сразу обе комплементарные цепи. Такая порванная на куски ДНК уже биологически неактивна.

В поисках ответа на вопрос, как бактерия расправляется с вирусом-чужаком, и были открыты ферменты рестриктазы. Рестриктазы – это созданный самой природой инструмент для генной инженерии. Поскольку разные бактерии по-разному метят свои ДНК, то были выделены рестриктазы, узнающие самые разные последовательности нуклеотидов. Это дает возможность разрезать ДНК на какие угодно куски, а затем сшивать их так, как того хочет экспериментатор. В результате получают химерные или рекомбинантные молекулы, состоящие из фрагментов ДНК, выделенных из разных организмов. Сшивают куски одним из ферментов репарирующей системы, ДНК-лигазой, способным залечивать одиночные разрывы в цепи ДНК. С открытием рестриктаз началась эра генной инженерии и биотехнологии.

Вековая мечта человека

Наверное, самым важным периодом в истории человечества, определившим дальнейшее развитие цивилизации, было время (от X до V века до нашей эры), когда выводились домашние животные и культурные растения. Ведь именно появление домашних животных и культурных растений избавило людей от повседневной заботы о добывании пищи, позволило им вести оседлый образ жизни со всеми вытекающими отсюда социальными, культурными и экономическими последствиями.

До нас дошло мало сведений о том, как проходила эта многовековая селекционная работа. Очевидно, навыки ее передавались и совершенствовались из поколения в поколение. Мы знаем только, что даже сегодня, в наш стремительный век, работа селекционера требует чудовищного терпения и упорства. Обычно после десятилетий каждодневного труда селекционер добивается результатов лишь на склоне лет. А сколько селекционеров так и не дожили до того, что их усилия стали приносить плоды!

К моменту, когда человек стал вмешиваться в живую природу, она уже прошла длительный путь эволюции, причем ветви древа жизни так давно разошлись в разные стороны, что развивались уже как бы совершенно независимо. Природа позаботилась о том, чтобы эти разные ветви (виды) не могли переплетаться между собой: скрещивание представителей разных видов либо вообще невозможно, либо не дает воспроизводящего потомства. Так, нельзя скрестить кошку с собакой, а мул, помесь осла и лошади, хотя вполне жизнеспособен, но бесплоден.

Этот запрет накладывает колоссальные ограничения на селекционную работу. Фактически селекционеры вынуждены перетасовывать одни и те же гены, с небольшими вариациями. Это как если бы вы пришли в магазин купить колоду карт и вдруг обнаружили, что продаются только такие колоды, в которых все карты одинаковы (в одной – только семерки пик, в другой – только дамы треф и т. д.). А все различия внутри колод состоят лишь в том, что некоторые карты пропечатались чуть-чуть лучше, некоторые имеют едва заметные пятнышки и т. д. И, как назло, у каждой колоды есть своя характерная рубашка, так что их не перемешаешь – сразу по рубашке можно будет узнать карту. Примерно в таком положении находятся селекционеры, которым приходится тасовать, в сущности, почти одни и те же гены. Можно лишь восхищаться тем, каких замечательных результатов удалось достичь им в столь тяжелых условиях.

Но насколько свободно было бы творчество селекционеров, если бы не было межвидовых барьеров! Каких только замечательных гибридов не стремились вывести селекционеры-любители, упорно пытаясь преодолеть эти барьеры. Один из таких гибридов, существующих лишь в пламенном воображении энтузиастов, – растение с клубнями картофеля и плодами помидора. Подобного рода заманчивые гибриды были одно время в большой моде. Сообщалось даже о том, что удалось получить гибрид капусты и редьки. Все в этом гибриде было замечательно – и набор хромосом, и способность давать потомство. Правда, он имел корни капусты, а ботву – редьки. Долгие годы потом некоторые сатирики и юмористы не могли забыть этот случай.

Следовательно, перетасовка генов – такой же застарелый «пунктик» человека, как превращение одних веществ в другие (философский камень алхимиков). Недаром сказки и мифы изобилуют случаями превращения людей в животных и обратно, а также густо заселены межвидовыми гибридами (кентаврами, фавнами, пегасами, русалками, сиренами и т. д. и т. п.).

Поистине чудодейственная черта науки нашего времени состоит в том, что она делает былью одну за другой сказки и легенды, накопившиеся за многие века. Ядерная физика позволила превращать одни элементы в другие. Молекулярная биология преодолела запрет на межвидовое скрещивание. И какими наивными кажутся нам мечты алхимиков о золоте по сравнению с принципиально неограниченной возможностью производить энергию и, с другой стороны, устрашающей возможностью истребить все живое на Земле, которые вытекают из нашего умения сегодня превращать одни элементы в другие в ядерных реакторах и бомбах.

Поэтому и кентавры, и русалки кажутся безделками по сравнению с тем, что дает человечеству генная инженерия. Она позволяет тасовать гены организмов, сколь угодно далеко отстоящих друг от друга на эволюционной лестнице, – таких, например, как человек и бактерия.

Генная инженерия возникла как результат всего развития науки о ДНК. Но событием, позволившим непосредственно приступить к перетасовке генов, было открытие ферментов рестриктаз. Рестриктазы узнают определенные, короткие последовательности нуклеотидов и разрезают молекулу ДНК в этом месте. Такие последовательности могут случайно встретиться в любой ДНК. Поэтому если подействовать какой-то рестриктазой на ДНК, скажем, мухи, а одновременно ею же на ДНК слона, то произойдет случайная перетасовка генов мухи и слона. Чтобы получились длинные гибридные, химерные или, как их еще называют, рекомбинантные молекулы, нужно лишь добавить фермент ДНК-лигазу, сшивающий фрагменты ДНК друг с другом. Так в пробирке можно создать какие угодно комбинации генов, причем все они заведомо никогда не реализовались в живой природе из-за запрета на межвидовое скрещивание.

Но одно дело – создать химерную молекулу ДНК в пробирке, а совсем другое – сделать так, чтобы она была биологически активна, чтобы могла размножаться в составе живой клетки да еще менять ее генетические свойства. В этом и состоит основная проблема генной инженерии. Сразу же подчеркнем, что проблема эта еще далека от своего окончательного решения. Более того, в ходе работы возникли совершенно новые трудности, о которых даже не подозревали, когда она начиналась. Однако наряду с многочисленными трудностями природа приготовила для генных инженеров замечательный подарок в виде совершенно особых организмов, плазмид. Плазмиды играли и продолжают играть очень важную роль в генной инженерии и биотехнологии.

Плазмиды

Когда в начале 1950-х годов Джошуа Ледерберг открыл плазмиды, ничто, казалось, не предвещало этому открытию громкой славы. Собственно, все, что обнаружил Ледерберг, так это то, что в кишечной палочке, кроме основной ДНК, которая нормально не переходит из одной клетки в другую, есть еще маленькие молекулы ДНК, которые он назвал плазмидами и которыми бактериальные клетки охотно обмениваются. У высших организмов, кроме основной, ядерной, ДНК также существуют маленькие ДНК в цитоплазме (внутри митохондрий), так что открытие плазмид у бактерий поначалу не вызвало особого интереса.

О плазмидах заговорили, причем не столько молекулярные биологи, сколько медики, после того как в 1959 году японские исследователи обнаружили, что неэффективность хорошо зарекомендовавших себя антибиотиков при лечении дизентерии у некоторых больных обусловлена тем, что бактерии, которыми заражены эти пациенты, несут в себе плазмиду, содержащую сразу несколько генов устойчивости к разным антибиотикам.

Оказалось, что вообще гены устойчивости к антибиотикам, т. е. те гены, из-за которых чрезвычайно осложнилась в последние десятилетия борьба с бактериальными инфекциями, почти всегда располагаются в плазмидах. Способность свободно переходить из одной бактерии в другую приводит к тому, что плазмиды, несущие такие гены, очень быстро распространяются среди бактерий, как только начинается широкое применение того или иного антибиотика. Стафилококковая инфекция, ставшая буквально бичом хирургических клиник, обязана своей дьявольской стойкостью тоже плазмидам.

Столь печальная известность привлекла к плазмидам самое пристальное внимание и медиков, и молекулярных биологов. Тщательное изучение плазмид привело к заключению, что это самостоятельные организмы совершенно особого типа. Раньше считалось, что простейшие объекты живой природы – это вирусы. Вирусы всегда состоят из нуклеиновой кислоты (ДНК или РНК), помещенной в белковый чехол. Вне клетки вирус – просто комплекс сложных молекул. То, что свободный вирус больше похож на объект неживой природы, чем на живое существо, было ярко продемонстрировано еще до Второй мировой войны, когда из вирусов научились выращивать кристаллы. Однако, попадая в клетку, вирус как бы оживает, становясь искусным, а следовательно, очень опасным хищником. Он начинает активно вмешиваться в работу клетки, переключает ресурсы клетки на удовлетворение своих нужд и в конце концов губит ее, сам при этом стократно умножаясь. Казалось бы, что может быть совершеннее и в то же время проще?

Плазмида вне клетки – это просто молекула ДНК. Внутри же клетки она ведет вполне «осмысленное» существование, используя часть ресурсов клетки для своего размножения, но строго ограничивая свои собственные аппетиты, чтобы не погубить клетку. В этом смысле плазмида ведет себя умнее вируса. Ведь, губя клетку, вирус «рубит сук», на котором сам сидит. Плазмида же размножается вместе с клеткой-хозяйкой. Если вирус можно уподобить алчному хищнику, то плазмида напоминает домашнее животное, особенно собаку. Как у людей бывает одна собака, бывает несколько, а иногда и вовсе ни одной, так и у бактерий может быть одна плазмида, несколько или ее может не быть вовсе. В благоприятных внешних условиях все эти клетки чувствуют себя примерно одинаково. Только иметь плазмиды чуть накладнее – их, подобно собакам, нужно кормить. Но вот условия изменились, клетка попала во враждебное окружение, скажем, в среде появился пенициллин, и плазмида, подобно верному псу, бросилась на борьбу с врагом. Вырабатываемый ею фермент, пенициллиназа, разрушает пенициллин, позволяя клетке выжить. Поэтому сосуществование плазмиды и бактериальной клетки – взаимовыгодный союз или, как говорят биологи, симбиоз.

Хозяин может отдать одну из своих собак другому, так и бактерии способны обмениваться плазмидами. Вот это свойство плазмид легко переходить «из рук в руки», доставляющее столько хлопот медикам, оказалось как нельзя кстати для генных инженеров. Если плазмиды извлечь из бактерий, вставить в них чужую ДНК, а затем примешать такие гибридные плазмиды к бактериальным клеткам, то по крайней мере часть гибридов будет успешно размножаться в бактериях. Иными словами, благодаря крайней простоте своего устройства плазмиды оказались теми организмами, которые легко переносят хирургическое вмешательство – встройку в них чужеродных генов. Более сложные организмы, даже вирусы, такую операцию переносят гораздо болезненнее.

Используя рестриктазы, получают гибридные плазмиды, содержащие фрагменты ДНК из любых организмов. Затем гибридные плазмиды размножают вместе с бактерией-хозяйкой, и так удается многократно умножить включенный чужеродный участок ДНК. Эта процедура получила название клонирования. Клонируют при помощи плазмид любые участки ДНК. Такой прием дал молекулярным биологам уникальную возможность манипулировать генами, причем не только бактерий и вирусов, но и высших организмов. Это открыло путь к замечательным открытиям, о которых будет рассказано в следующих главах. Но главная цель генной инженерии – научиться получать в клетках одного вида конечные продукты генов другого вида, т. е. белки.

Микробы вырабатывают нужные нам вещества

В плазмиду можно встроить участок ДНК, взятый откуда угодно, скажем, ген человека, и она внутри бактерии начинает вырабатывать белок, соответствующий человеческому гену. Это и есть тот трюк, который генные инженеры научились проделывать с проворством искусных магов. При этом используется один из трех приемов.

Первый прием был популярен на заре генной инженерии, в середине 1970-х годов, когда в плазмиду встраивали в основном гены кишечной палочки или других бактерий. Он совсем прост. ДНК, один из генов которой хотят встроить, случайным образом дробят на куски. При этом даже необязательно использовать рестриктазы. Затем такую случайно нарубленную ДНК примешивают к плазмиде, разрезанной рестриктазой в одном месте, и добавляют лигазу. Разные плазмидные молекулы захватывают разные куски ДНК, так что в результате получается масса различных плазмид. Весь этот «винегрет» добавляют к бактериальным клеткам.

Главная проблема в таком подходе – отобрать нужный штамм, несущий плазмиду с попавшим в нее искомым геном. Если существует критерий такого отбора, то этим методом можно получить хороший результат. И все же, хотя этим методом и был получен ряд ценных штаммов, вырабатывающих тот или иной бактериальный белок, за ним недаром закрепилось название «метод дробовика». Он действительно напоминает стрельбу из дробовика, причем с закрытыми глазами. В этом раннем методе генной инженерии еще слишком большая роль отводилась случаю – случайная фрагментация, случайное встраивание. Все попытки получить с его помощью штаммы, вырабатывающие белок высшего организма, закончились полным провалом.

Поэтому в последующие годы стали использовать два целенаправленных метода, с помощью которых и были достигнуты результаты, наделавшие столько шума. Первый метод состоит в том, что из клетки выделяют мРНК, отвечающую данному белку. С этой РНК с помощью ревертазы снимают ДНКовую копию, называемую комплементарной ДНК (кДНК), т. е. получают нужный ген. Далее к нему пришивают необходимые регуляторные участки (инициирующие и терминирующие кодоны) и встраивают в строго определенное место плазмиды. При этом используют плазмиды, специально сконструированные для целей генной инженерии. В такой плазмиде есть все, что необходимо для ее существования в бактериальной клетке, а также подготовлен промоторный участок, начиная с которого РНК-полимераза клетки считает любой ген, который будет встроен сразу вслед за промотором. Сюда и встраивают нужный ген.

Другой метод состоит в прямом химическом синтезе гена, исходя из нуклеотидной последовательности ДНК, которая должна соответствовать выбранному белку. Из-за вырожденности кода может быть много разных последовательностей, и экспериментатор волен выбирать, какую из них предпочесть. К синтетическому гену пришивают регуляторные участки и встраивают в плазмиду.

Плазмиду, несущую искусственный ген, добавляют к бактериальным клеткам или клеткам других микроорганизмов; часто используют дрожжи. Чтобы отобрать только те бактерии, которые несут нужную плазмиду, поступают следующим образом. Наряду с нужным геном в плазмиду включают ген устойчивости к какому-либо антибиотику или даже целый тандем генов, обеспечивающий устойчивость сразу к нескольким антибиотикам. Клетки растят на среде, содержащей эти антибиотики. Такой прием не только обеспечивает отбор нужных бактерий, но и не позволяет им избавляться от искусственных плазмид. Существуют также методы, позволяющие заставить каждую клетку содержать не одну-две, а тысячи копий плазмиды. Использование этих приемов позволяет добиться фантастической производительности по отношению к белку, закодированному во встроенном гене. Есть случаи, когда этот белок по массе составляет чуть ли не половину всего белка клетки.

Разработка технологии, позволяющей заставлять бактериальную клетку вырабатывать в больших количествах любой белок, ознаменовала начало нового этапа научно-технической революции – эры биотехнологии.

Но прежде всего эта новая технология произвела переворот в самих молекулярно-биологических исследованиях. Дело в том, что каждый конкретный белок производится клеткой, как правило, в очень малом числе, нередко всего по одной или две молекуле на клетку. В результате выделение индивидуального белка, нужного для экспериментов, превращается в труднейшую и весьма дорогую процедуру. Чтобы получить миллиграммы белка, приходится перерабатывать десятки килограммов, если не тонны, биомассы. Но все равно очистить как следует белок, когда он присутствует в столь малой концентрации, не удается. Отсюда – чрезвычайная дороговизна многих белковых препаратов и их недостаточная чистота.

Генная инженерия радикально изменила ситуацию. С использованием этого метода получены в чистом виде штаммы – суперпродуценты многих белков, о чем ранее можно было только мечтать. Резко расширился ассортимент и упали цены на ферментные и другие белковые препараты, выпускаемые фирмами, обслуживающими молекулярно-биологические исследования. Невиданно ускорились научные исследования. Молекулярная биология получила новый мощный импульс для своего развития.

Постепенно возникла новая прикладная дисциплина – синтетическая биология. Исследователи стали вставлять в геном микроба целые кассеты генов, кодирующих ферменты с таким расчетом, чтобы эти ферменты осуществляли последовательную цепь превращений исходного химического соединения, введенного в ферментер, где размножается микроб. Так удается нарабатывать в огромных количествах сложнейшие молекулы.

Пожалуй, наиболее важная работа такого рода была выполнена группой Джэя Кислинга в Беркли. Этой группой был создан штамм дрожжей – суперпродуцент очень эффективного лекарства от малярии – артемисинина. Это лекарство в виде экстракта из сладкой полыни испокон веков использовалось в китайской медицине, но в чистом виде было впервые выделено только в 70-х годах ХХ века исследовательницей из Китайской Народной Республики Ту Юю. В 2015 году Ту Юю была удостоена Нобелевской премии по физиологии и медицине. Однако до недавнего времени, особенно в годы неурожая полыни, наблюдалась острая нехватка артемисинина. Теперь ситуация коренным образом изменилась. Начиная с весны 2013 года артемисинин производится на заводе в Италии в больших количествах микробиологическим способом с использованием дрожжевого штамма, разработанного Кислингом.

5 ДНКовые тексты

Еще раз о кризисе

К концу 1960-х годов в молекулярной биологии сложилась парадоксальная ситуация. К тому времени были довольно хорошо разработаны методы определения последовательности аминокислот в белках (первый белок, инсулин, был расшифрован Фредериком Сэнгером еще в самом начале 1950-х годов). Банк белковых последовательностей довольно быстро пополнялся все новыми текстами. Был полностью расшифрован генетический код – словарь для перевода ДНКовых текстов на белковый язык. Но вот парадокс: не было прочитано ни одного ДНКового текста!

Конечно, куски текста можно было попытаться прочесть, так сказать, обратным ходом, исходя из белковых последовательностей. Но, во-первых, такое восстановление неоднозначно из-за вырожденности кода, а во-вторых, и это самое главное, так не узнаешь, что стоит в промежутках между генами. А как раз генетические знаки препинания казались самым интересным, ведь это должны были быть регуляторные участки, управляющие работой РНК-полимераз и других белков, взаимодействующих с ДНК.

Фактически решение всех насущных вопросов молекулярной биологии уперлось в необходимость уметь читать последовательности ДНК. Как уже знает читатель, главной палочкой-выручалочкой, выведшей молекулярную биологию из состояния застоя, были рестриктазы. Они не только позволяли тасовать гены, но и сделали реальным определение последовательности нуклеотидов в ДНК. Ведь главная трудность заключалась в том, что молекулы ДНК очень длинные. Рестриктазы позволили разрезать длинные молекулы на достаточно короткие куски. Но оставалось решить еще две проблемы: научиться разделять фрагменты и определять последовательность в каждом из них.

Гель-электрофорез

На помощь пришла простая физическая методика, называемая электрофорезом. Молекула ДНК несет на себе отрицательный заряд, причем величина заряда пропорциональна длине цепочки. Это следствие обычной электролитической диссоциации дезоксирибонуклеиновой кислоты, которая, как и любая кислота, распадается на анион и ион водорода. Только происходит это в каждом мономерном звене поликислоты. Конечно, каждому отрицательному заряду фосфатной группы ДНК соответствует положительный заряд катиона. Обычно это ион натрия, а вовсе не водорода, так как, хотя ДНК и называют кислотой, на самом деле она всегда – соль. Так что буква «К» в знаменитом сокращении «ДНК» – это плод чистейшего недоразумения. Ведь никто не называет поваренную соль соляной кислотой! Но ничего не попишешь – название укоренилось навеки. Придется нам и далее называть соль ДНК просто ДНК.

Катионы в большинстве своем не сидят на ДНК, а плавают отдельно в растворе, образуя вокруг молекулы очень рыхлое облако. Поэтому если раствор ДНК поместить в конденсатор, то анион ДНК поплывет к положительной обкладке. Чем длиннее молекула, тем больше заряд, больше сила, но больше и сопротивление среды. Если сопротивление увеличивается с длиной иначе, чем сила, то в результате скорость будет зависеть от длины. Тут работает закон Стокса, согласно которому в вязкой среде тела под действием силы движутся с постоянной скоростью, пропорциональной приложенной силе.

Таким образом, поместив в электрическое поле смесь, состоящую из фрагментов ДНК разной длины и выключив через некоторое время поле, мы обнаружим, что наша смесь распалась на несколько скоплений фрагментов, причем в каждом таком скоплении все молекулы будут иметь строго одинаковую длину. Это произойдет потому, что фрагменты разной длины сместятся за данное время в поле на разные расстояния от исходной точки, а одинаковые – на одно и то же расстояние. Правда, если на самом деле все это проделать, то разделения молекул по их длине добиться не удастся. Получается, что электрофорез – никуда не годный метод разделения ДНК. Так думали долгое время. Все же выход был найден.

Из повседневного опыта мы знаем, что существуют вещества вроде бы жидкие, но долго сохраняющие приданную им форму. Это – студни, желе. В науке и технике за ними закрепилось название «гели». Что же они собой представляют, эти гели, и чем обусловлены их необычные свойства?

Гель – это концентрированный раствор полимера, в котором полимерные молекулы сильно перепутаны, а кое-где сшиты друг с другом химическими связями. В результате весь гель пронизывает единая трехмерная полимерная сеть, ячейки которой заполнены растворителем. Эта сеть служит как бы арматурой, придающей всей конструкции необычную для жидкости жесткость. Полимерная арматура составляет по массе ничтожную часть всего геля – несколько процентов. Основная масса геля приходится на растворитель. Способность переходить в гелеобразное состояние – одно из поразительных свойств макромолекул, которое еще ждет своего всестороннего изучения и технических применений.

Живая природа широко использует замечательные свойства гелей. Роговая оболочка и стекловидное тело, заполняющее всю внутреннюю часть глаза, есть не что иное, как гели. Полимерным компонентом служат белки, растворителем, разумеется, – вода. Издавна гели используются человеком в кулинарном деле. Студни и желе содержат в качестве полимерного компонента белок соединительной ткани – коллаген. Пожалуй, еще чаще мы сталкиваемся с другим белковым гелем – сваренным вкрутую (или всмятку) яичным белком. Мармелад – это тоже гель.

Использование геля как среды, где проводится электрофорез, позволило решить проблему разделения фрагментов ДНК. Червеобразные молекулы ДНК, подобно угрям, или змеям, запутавшимся в рыбацкой сети, медленно ползут, извиваясь, к аноду, едва протискиваясь сквозь тесные ячейки. Чем длиннее молекула, тем медленнее она ползет. Такое змееобразное движение молекулы ДНК называют рептационным. Зависимость силы сопротивления среды от длины ДНК в случае рептационного движения гораздо сильнее, чем зависимость от длины ДНК силы электрического поля при электрофорезе, в отличие от случая движения в растворе, когда эти две зависимости одинаковые. В результате при электрофорезе в геле молекулы ДНК разной длины разделяются очень хорошо. Идея рептационного движения длинных молекул в полимерных сетках, которая легла в основу теоретического объяснения поведения ДНК при электрофорезе в геле, была выдвинута выдающимся французским физиком Пьером Жилем де Женом, который был удостоен Нобелевской премии по физике за 1991 год.

Разрешающая способность метода гель-электрофореза оказалась настолько высокой, что не слишком длинные фрагменты ДНК, отличающиеся всего на одно мономерное звено, четко отделяются друг от друга в виде хорошо различимых полосок.

Как читают ДНКовые тексты

Итак, с помощью рестриктаз можно нарезать ДНК на множество фрагментов. Метод гель-электрофореза позволяет выделить каждый фрагмент в изолированном виде. Это делается совсем просто – после выключения электрического поля гель разрезают обычным лезвием на кусочки, чтобы каждый кусочек содержал одну полоску, одно скопление фрагментов ДНК строго определенной длины. Остается только прочесть последовательность каждого из фрагментов. Но как это сделать?

Над этой проблемой бились многие годы. На какие ухищрения только не шли! Предлагали, например, пришивать к каждому нуклеотиду данного сорта, скажем, к адениновому, соединение, содержащее атомы урана, и с помощью электронного микроскопа, в который такие тяжелые атомы видны, рассмотреть, как эти метки распределены вдоль цепи одиночной нити ДНК. Затем пришивать атомы урана к тиминовым основаниям и т. д. Однако, несмотря на многолетние усилия, получить вразумительные результаты не удалось.

Наконец в середине 1970-х годов проблему смогли решить химическим и биохимическим методами. Хотя первое время оба подхода конкурировали на равных, постепенно биохимический метод Сэнгера полностью вытеснил химический метод Максама—Гилберта. Метод Сэнгера оказался очень удобным для совершенствования и роботизации. На его основе были созданы целые роботизированные фабрики по расшифровке геномов, включая геном человека.

Принцип чтения ДНКовых текстов по Сэнгеру состоит в следующем.

Обычно читают последовательность одной из двух цепей ДНК. Чтобы начать, необходимо знать заранее последовательность из примерно 20 нуклеотидов, начиная с которой и будет читаться текст. Такой участок с известной последовательностью, называемый адаптером, всегда можно заранее пришить к фрагменту ДНК, последовательность которого нужно прочесть (подробнее об адаптерах мы поговорим ниже, в последнем разделе этой главы). Синтезируется искусственный кусочек ДНК (олигонуклеотид), комплементарный этому известному участку. Этот олигомер называется праймером, он играет роль затравки для матричного синтеза комплементарной цепи при помощи ДНК-полимеразы. Такой матричный синтез с затравки называют удлинением праймера. Итак, вместе с праймером к ДНК, которую хотят прочесть, добавляют ДНК-полимеразу и все четыре предшественника нуклеотидов, нуклеозидтрифосфаты (дНТФ): дАТФ, дЦТФ, дГТФ и дТТФ, которые необходимы для матричного синтеза комплементарной цепи ДНК. Их химические формулы похожи на формулы нуклеозидмонофосфатов (дНМФ, т. е. нуклеотидов), приведенные на рис. 6, 9, только они имеют длинный хвост из трех фосфатных групп (а не одной, как на рис. 6, 9). Приставка «д» означает «дезокси», т. е. указывает на то, что речь идет о предшественниках ДНК, а не РНК (рис. 9). В ходе каждого шага реакции удлинения праймера дНТФ из раствора узнает комплементарного партнера на матрице ДНК, ДНК-полимераза отщепляет две фосфатные группы и присоединяет оставшийся дНМФ (т. е. нуклеотид) к растущей цепи. Новая цепь всегда растет путем присоединения следующего нуклеотида к той ОН-группе предыдущего, которая соединена с сахарным кольцом (нижняя ОН-группа – на рис. 9).

Способность ДНК-полимеразы удлинять праймер была хорошо известна до Фредерика Сэнгера. То, что придумал Сэнгер и что принесло ему вторую Нобелевскую премию по химии (первую он получил за то, что научился читать аминокислотные последовательности белков; пока что Сэнгер – единственный в истории, кто был дважды удостоен Нобелевской премии по химии), это добавлять в смесь четырех дНТФ небольшую примесь одного из четырех ди-дНТФ, скажем, ддАТФ. У дидезокси отсутствуют оба присоединенных к сахару кислорода (рис. 6, 9), и, хотя они способны сами включаться в растущую цепь, на них рост цепи останавливается. В результате включения, скажем, ддАТФ вместо дАТФ возникают оборванные цепи, причем, поскольку ддАТФ присутствует в малой концентрации на фоне избытка дАТФ, обрывы происходят статистически в каждом месте последовательности, где в растущую цепь включается А. Так что, когда реакция удлинения праймера идет в присутствии малой примеси ддАТФ, наряду с длинными цепями, в которые включение ддАТФ не произошло, появится набор более коротких цепей, оборванных сразу за теми местами, где в последовательности матричной цепи стоит Т.

Аналогичные реакции проводят отдельно в присутствии трех остальных ддНТФ. Затем продукты так проведенных четырех реакций удлинения праймера подвергаются разделению по длине методом гель-электрофореза, наслаивая продукт каждой реакции на отдельную дорожку геля. Здесь следует сказать, что второй конец праймера (тот, который не удлинялся, он называется 5 -концом) был заранее помечен флюорофором: молекулой красителя, которая ярко флюоресцирует, если ее освещать светом лазера с определенной длиной волны. Так что после завершения электрофореза гель сканируют лазером и получают систему полосок, схематически показанную на рис. 16. Для данной буквы положение полосок отвечает порядковым номерам в последовательности, в которых стоит данная буква. Разумеется, в современных секвенаторах (так называют машины, читающие ДНКовые тексты) все делается автоматически, и компьютер выдает готовый текст из четырех букв: А, Т, Г и Ц.

Рис. 16. Метод Сэнгера (схема)

Хотя метод Сэнгера был изобретен более 40 лет назад и с тех пор чего только ни напридумывали, чтобы еще лучше и быстрее читать ДНКовые тексты, до недавнего времени он оставался вне конкуренции. Разумеется, современные монстры-секвенаторы на вид ничем не напоминают примитивный аппарат, состоящий из двух стекол с гелем между ними и из источника постоянного тока высокого напряжения, которым пользовался Сэнгер. Вместо флюорофоров он метил праймеры радиоактивным изотопом фосфора, а полоски в геле проявлял по засвечиванию фотопленки. Но при всех технических усовершенствованиях исходный принцип долго оставался без изменения.

Лишь в самые последние годы начали наконец появляться другие методы секвенирования ДНК, способные успешно конкурировать с методом Сэнгера. Но об этом мы поговорим в последнем разделе этой главы.

Первые неожиданности

В науке, да и не только в науке, часто бывает так, что находят вовсе не то, что ищут. Все ждали от первых последовательностей интересных сведений об устройстве промежутков между генами. Было множество предположений о том, как они должны быть устроены. Однако данные оказались разочаровывающими. Ничего особенного, в общем-то, не нашли – последовательности как последовательности. Ожидали, что, расшифровав последовательности нескольких промоторов, которые узнает одна и та же РНК-полимераза, можно будет сразу догадаться, как она это делает. Ан нет, не тут-то было! Хотя последовательности оказались чем-то похожими друг на друга, но чем именно, было не вполне ясно. Так пока и непонятно, как белки узнают определенные последовательности ДНК, каковы принципы такого узнавания. Это одна из проблем, еще ждущих своего решения.

Чего ожидали меньше всего, так это каких-то неожиданностей в самих генах, т. е. в участках ДНК, кодирующих последовательности аминокислот в белках. Ведь код, казалось, был твердо установлен, было четко известно, что каждому белку отвечает свой определенный участок ДНК, который, собственно, и есть ген. Короче, все опять свято верили в незыблемость центральной догмы молекулярной биологии. От шока, вызванного открытием ревертазы, к середине 1970-х годов уже оправились. И вот расшифровали первую ДНК – из вируса кишечной палочки, известного под кодовым названием ФХ174 (читается «фи-десять-сто-семьдесят-четыре»). И вдруг оказалось, что у него на одном и том же участке ДНК записана информация о двух белках!

Как же это может быть? Представьте себе, к вам в руки попала книга, в которой промежутков между словами нет, а слова разделяются стрелками. Сверху строк стоят одни стрелки, а внизу – другие. Деля текст на слова с помощью верхних стрелок, вы читали бы, допустим, «Анну Каренину», а по нижним – «Архипелаг ГУЛАГ». Скажете, это невозможно? Действительно, такого длинного текста, насколько я знаю, не существует. Но короткий текст такого типа я помню с детства. Вот он:

А как обстоит дело у ФХ174, показано на рис. 17.

Рис. 17. Участок ДНК ФХ174 и синтезируемые на нем белковые цепи

Мы видим, что последовательность гена Е находится целиком внутри последовательности гена D. При этом последовательности аминокислот белков Е и D не имеют между собой ничего общего, так как они считываются со сдвигом рамки считывания. В этом ситуация в ДНК ФХ174 неожиданнее и интереснее, чем приведенный выше лингвистический пример. Ясно, что теоретически возможна запись на одном и том же участке ДНК как максимум информации о трех белках. Такое перекрывание сразу трех генов, правда, на небольшом участке, происходит в фаге G4.

Хотя явление перекрывания генов было открыто еще в 1977 году, до сих пор нет никаких вразумительных объяснений, как такое может получиться в ходе эволюции. Если не считать этого удивительного феномена, то в остальном расшифровка первых вирусных последовательностей подтвердила ранее установленные факты. Была проведена проверка правильности расшифровки генетического кода путем прямого сопоставления последовательностей ДНК и белков. Оказалось, что код расшифрован без единой ошибки.

Новой, очень критической проверке подвергся и тезис об универсальности кода. В самом деле, ведь сама идея генной инженерии, т. е. возможность переносить гены из одного организма в другой, предполагает универсальность кода. Выяснилось, что гены, перенесенные в кишечную палочку из самых разных бактерий, прекрасно в ней работают, т. е. синтезируют те же белки, что и в исходной, родной бактерии. Когда брали мРНК, выделенную из животных, включая человека, по ней с помощью ревертазы синтезировали ген, а затем встраивали его в бактерию, то вырабатываемый бактерией белок имел ту же последовательность аминокислот, что и белок, выделенный из животных клеток. Казалось бы, какие еще нужны доказательства? И вот выяснилось, что у митохондрий код другой.

Коды митохондрий

Что это такое, митохондрии? Это не бактерии и не вирусы, не одноклеточные, это просто тельца, плавающие в цитоплазме клеток эукариот, т. е. организмов, клетки которых имеют ядра. Просто, да не совсем. Вообще-то, митохондрии выполняют очень важную для клетки функцию – в них идет процесс окислительного фосфорилирования, т. е. происходит переработка энергии, образующейся при «сгорании» пищи, в энергию АТФ. Иными словами, митохондрия – это энергетическая станция клетки. Подобно тому, как электричество – универсальный источник энергии у нас в быту, так и АТФ – универсальный источник энергии для всего внутриклеточного хозяйства.

АТФ – это адениновый нуклеотид, к фосфату которого присоединены еще две фосфатные группы. Его полное название – аденозинтрифосфат. Это молекула такого же типа, что и предшественники нуклеотидов, используемые в клетке и в лаборатории для синтеза РНК и ДНК (мы о них только что упоминали в связи с методом Сэнгера). Забирая энергию у АТФ, фермент отщепляет у него одну фосфатную группу, делая из него АДФ, т. е. аденозиндифосфат. В митохондриях происходит «подзарядка» – к АДФ вновь присоединяется фосфатная группа. Но к нашему рассказу все это не имеет прямого отношения. Для нас важно другое: митохондрии имеют свою собственную ДНК. Более того, митохондрии располагают своей собственной РНК-полимеразой, которая снимает мРНКовую копию с митохондриальной ДНК! Но и это не все. В митохондриях есть свои рибосомы, свой собственный аппарат белкового синтеза. Это уже совсем странно – ведь в той же цитоплазме масса нормальных клеточных рибосом. Но на этих рибосомах синтезируется белок только с мРНКовых копий ядерной ДНК. Митохондрии ими пользоваться почему-то не желают.

У митохондрии все – малого размера. Мини-рибосомы, мини-РНК-полимераза, мини-ДНК. И вроде бы это понятно – ведь митохондрия, разумеется, гораздо меньше клетки. Но умение самостоятельно строить белок вовсе не означает, что митохондрия – это автономная часть клетки, не зависящая от ядерной ДНК. ДНК митохондрии столь мала по размеру (она содержит всего около 15 тысяч пар оснований), что на ней никак не может уместиться вся информация о молекулах белков, необходимая для автономного существования митохондрий. Большая часть этой информации находится в ядре клетки, т. е. записана в виде последовательности нуклеотидов в ядерной ДНК. И вот ко всем странностям митохондрий добавилась еще одна, самая удивительная – у митохондрий свой собственный генетический код.

Обнаружилось все это, по-видимому, случайно. Б. Берелл и его сотрудники из Лаборатории молекулярной биологии в Кембридже (Англия) занимались расшифровкой последовательности митохондриальной ДНК человека. Кстати, это тот самый Берелл, который обнаружил впервые, что гены могут налезать друг на друга. Сравнили последовательность гена, кодирующего одну из субъединиц цитохромоксидазы, с белковой последовательностью, правда, не человеческой, а бычьей цитохромоксидазы. Последнее обстоятельство не помешало совершенно точно определить код митохондрий человека. Он изображен на рис. 18. Видно, что этот код в целом похож на код, уже известный ранее. Но четыре кодона изменили свой смысл. Кодон УГА отвечает триптофану, АУА – метионину, а кодоны АГА и АГГ стали терминирующими. Но на этом чудеса не закончились. Когда сравнили последовательности ДНК и белков у дрожжевых митохондрий, то оказалось, что у них код и не такой, как обычно, и не такой, как у митохондрий человека. К тем изменениям, которые имеются у кода митохондрий человека, добавилось еще такое: все четыре лейциновых кодона, начинающихся с ЦУ, перешли к треонину. Треонину стало отвечать восемь кодонов! У лейцина осталось только два: УУА и УУГ. Правда, кодоны АГА и АГГ вернулись к Арг, как в «универсальном» коде.

Рис. 18. Код митохондрий. Такой код имеют митохондрии человека. У митохондрий дрожжей кодоны, начинающиеся с ЦУ, кодируют треонин, а кодоны АГА и АГГ отвечают Apr. Стрелками указаны те места, в которых код митохондрий человека отличается от «универсального» кода, приведенного на рис. 7

Как же оценивать эти открытия? Безусловно, возможны разные трактовки. С одной стороны, можно сказать, что, собственно, ничего особенного и не произошло. Если бы сразу в процессе расшифровки были обнаружены маленькие вариации в коде, то они не вызвали бы большого удивления. Но, с другой стороны, шутка ли сказать, обнаружилось, что в одной клетке, причем в нашей собственной, человеческой клетке, сосуществуют два разных кода! Нет, открытие новых кодов не следует недооценивать. Ведь получены четкие доказательства того, что код эволюционировал, что он не сразу возник таким, каким мы его видим теперь.

Помните, когда генетический код обсуждался в главе 2, было сформулировано правило, которому универсальный код отвечает почти строго: не важно, какое из двух пуриновых оснований или какой из двух пиримидов находится в третьем положении кодона. А теперь взгляните опять на рис. 18. Код митохондрий человека и есть такой «идеальный» код, в котором это правило выполняется совершенно строго! Кстати, то же относится и к коду митохондрий дрожжей.

Неоднократно высказывалась точка зрения, что митохондрия – это остатки бактерии, очень давно образовавшей симбиоз с эукариотической клеткой. То, что у митохондрии даже код другой, служит еще одним очень веским доводом в пользу такого предположения. Быть может, у всех клеток был такой же код, как у нынешних митохондрий человека, а затем в коде произошли небольшие изменения. И, может быть, далеко не все живое на Земле произошло от клеток с уже изменившимся кодом? Может быть, часть видов – это прямые потомки древних клеток, имевших митохондриальный, «идеальный» код? А может быть, есть виды, которые эволюционировали от клеток, получившихся после каких-то других, пусть небольших, изменений «идеального» кода?

Но более привлекательным представляется другое объяснение того, что митохондрии имеют свой особый код. Согласно этой точке зрения, коды митохондрий не более древние, а наоборот, более молодые, чем основной код, и возникли, когда большая часть митохондриальных генов уже «утекла» в ядро. В митохондриальной ДНК осталось так мало генов, что изменение кода перестало быть обязательно смертельным событием для митохондрии и клетки в целом. После того, как такое изменение произошло из-за мутации в аппарате синтеза белка в митохондриях, в структурных генах произошли мутации, компенсирующие эти изменения кода. После этого процесс утечки генов из митохондрий в ядро прекратился, так как аппарат синтеза белка митохондрий не мог уже быть подменен аппаратом клетки. Эта гипотеза привлекательна тем, что объясняет, почему передача генов из митохондрий в ядро остановилась на полдороге.

Эра ДНКовых последовательностей

Изобретение Сэнгером в середине 1970-х годов метода секвенирования ДНК оказалось важнейшей вехой на пути создания базы данных о последовательностях ДНК всевозможных организмов. Но как раз в отношении создания таких баз данных это изобретение опередило свое время. Ведь тогда еще не был доступен Интернет, а без Интернета создание и использование базы данных о последовательностях ДНК практически немыслимо. Так что первые десять лет накопление знаний о различных геномах шло медленно, хотя и были сделаны важнейшие открытия, о которых мы говорили выше в этой главе и еще будем говорить в главе 6. Кроме Интернета, важнейшим изобретением, резко ускорившим и упростившим создание геномных баз данных, был метод полимеразной цепной реакции (ПЦР), который позволил амплифицировать, т. е. многократно приумножать любые выбранные участки генома. Но метод ПЦР заслуживает особого разговора, собственно, с него началась биотехнологическая революция, и мы о нем подробно поговорим в главе 10.

Метод Сэнгера позволяет секвенировать куски ДНК, содержащие около 1000 нуклеотидов, но они, конечно, гораздо короче геномной ДНК. Как же секвенировать целый геном, содержащий, в случае человеческого генома, 3 миллиарда нуклеотидов? Понятно, что геномную ДНК надо нарезать на короткие куски. Слава богу, у нас есть такой сверхточный инструмент: рестиктазы (см. главу 4). Итак, используя какую-нибудь рестриктазу или смесь двух рестриктаз, если хотим, чтобы куски были покороче, нарезаем ДНК на куски (рис. 19). Прекрасно, теперь можно прочесть каждый кусок методом Сэнгера. Но постойте, для метода Сэнгера нужен праймер. Откуда же нам знать, какой праймер использовать, ведь мы еще ничего не знаем о последовательности кусков? Как же быть? А очень просто. Ведь после действия рестриктазы у фрагментов, как правило, образуются «липкие концы». Например, после разрезания ДНК рестриктазой EcoRI образуются два взаимно комплементарных конца:

Но эти концы одинаковые, так что если мы сделаем на ДНК-синтезаторе такую искусственную молекулу:

то она прилипнет к обоим концам, образовавшимся под действием рестриктазы. Правда, в обоих случаях между нашей синтетической молекулой, которая называются адаптером, и куском неизвестной пока ДНК имеются два однонитевых разрыва, но это не беда: они легко залечиваются ферментом ДНК-лигазой. Теперь все наши фрагменты, полученные после нарезания геномной ДНК, оказываются снабженными по концам прекрасно известной нам последовательностью, ведь мы ее сами выдумали, когда делали дизайн адаптеров: все 20 нуклеотидов слева от концевого Г в верхней цепи адаптера я выдумал сам, совершенно произвольно. Так что теперь нет никакой проблемы с дизайном праймеров для чтения последовательностей кусков геномной ДНК методом Сэнгера. Снабженные адаптером фрагменты разделяются с помощью гель-электрофореза или каким-нибудь другим способом (рис. 19), а затем секвенируются.

Рис. 19. Секвенирование генома. Вся геномная ДНК подвергается разрезанию на фрагменты рестриктазой (то же самое повторяется с использованием другой рестриктазы, чтобы в дальнейшем на последней стадии провести сборку всей последовательности по перекрывающимся участкам фрагментов, полученных при разрезании разными рестриктазами). Рестрикционные фрагменты соединяются с синтетическими адаптерами, как объяснено в тексте, с использованием «липких» концов, создаваемых рестриктазой. Затем фрагменты разделяются, и каждый фрагмент отдельно секвенируется, после чего следует сборка всего генома

Итак, мы секвенировали все куски, на которые была порезана геномная ДНК рестриктазой EcoRI. Дело в шляпе? Не тут-то было! Мы же не знаем, в каком порядке расположены куски вдоль генома. Как их теперь правильно собрать? К сожалению, нет другого способа, как повторить все сначала, используя другую рестриктазу. Тогда мы получим другое разрезание и по перекрывающимся участкам сможем узнать, какой кусок, полученный с помощью первой рестриктазы, следует за куском, полученным с помощью второй рестриктазы (рис. 19). Конечно, такая сборка полной последовательности делается компьютером. Но повторное секвенирование так и так надо делать, чтобы избежать случайных ошибок, ведь, как бы ни была хороша ДНК-полимераза, она редко, но ошибается. В реальности, чтобы получить последовательность генома с очень малым количеством ошибок, всю процедуру повторяют 10 раз.

В общем, трудоемкое дело. Недаром прочтение первого человеческого генома, которое было осуществлено в рамках проекта «Геном человека» к 2000 году, обошлось американским налогоплательщикам в кругленькую сумму – в $3 млрд, по баксу за нуклеотид! Если бы такие цены сохранились, то эра ДНКовых последовательностей всерьез так бы и не наступила.

Поразительно, какие плоды приносит здоровая конкуренция при условии щедрого финансирования! Вскоре после завершения проекта «Геном человека» Национальный институт здравоохранения США объявил новый конкурс грантов под названием «Геном за $1000». Честно говоря, это звучало как насмешка: удешевить секвенирование в три миллиона раз! Это вы серьезно? Хотите верьте, хотите нет, но спустя 15 лет конкурс был остановлен, так как он выполнил свою задачу. За прошедшие годы какие только подходы ни напридумывали! Большинство идей не выдержало конкуренции, но несколько идей оказались суперуспешными. И даже те, что были оставлены, сыграли свою роль, заставляя совершенствоваться тем подходам, которые выжили, иначе им бы не удалось избежать печальной участи. Это была жесточайшая гонка! Как же теперь, после того, как ситуация более или менее устаканилась, выглядит «пейзаж после битвы»?

Лидирующее положение занимают методы, основанные на идее Сэнгера использования ДНК-полимеразы, они коллективно называются методами «секвенирования посредством синтеза». Самый успешный из них, который лежит в основе секвенатора, выпускаемого компанией «Иллюмина», даже использует идею Сэнгера по терминации синтеза. Но секвенатор «Иллюмины» примерно так же напоминает примитивный аппарат Сэнгера, как беспилотный электромобиль – ручную тачку. Все этапы в секвенаторе компании «Иллюмина» полностью роботизированы, это подлинный триумф инженерной мысли.

Остальные подходы в рамках «секвенирования посредством синтеза» не используют терминирования синтеза. В подходе, называемом пиросеквенирование, используется тот факт, что при присоединении ДНК-полимеразой очередного нуклеотида высвобождается дифосфатная группа, называемая пирофосфатом. Регистрация этого события, появление пирофосфата, лежит в основе метода пиросеквенирования. Метод был доведен до прибора, но он не выдержал конкуренции, и соответствующая компания обанкротилась. Более успешной оказалась сходная идея, основанная на том, что, кроме пирофосфата, при присоединении нуклеотида высвобождается еще один протон, т. е. ион Н+, что приводит к микроскопическому изменению pH в микролунке, сделанной в чувствительном к pH полупроводниковом материале, где идет ДНК-полимеразная реакция. В этом методе полупроводникового секвенирования изменение pH удается детектировать электроникой, так что в данном подходе последовательность читается непосредственно компьютером, а не путем превращения оптического сигнала в электрический, как это делается и в методе Сэнгера, и в машине «Иллюмины», и в случае пиросеквенирования. Это большое преимущество метода полупроводникового секвенирования, и соответствующая компания успешно конкурирует с компанией «Иллюмина».

Особняком стоит метод секвенирования индивидуальной молекулы ДНК, основанный на использовании нанопор. Вот уж воистину нанотехнология par excellence! Этот метод не принадлежит к разряду «секвенирования посредством синтеза». Если секвенаторы компании «Иллюмина» представляют собой громоздкие приборы, а приборы для полупроводникового секвенирования хоть и компактнее, но все же достаточно крупные, то устройство для секвенирования при помощи нанопор, MinION, выпускаемое компанией Oxford Nanopore, и прибором не назовешь, это устройство чуть больше обычной флешки, которое имеет USB-интерфейс. Подобно флешке, MinION вставляется в USB-порт компьютера, на него наносится капля, содержащая ДНК, и через короткое время в памяти компьютера оказывается записанной последовательность нуклеотидов этой ДНК. Как же работает это чудо-устройство?

Рис. 20. Прохождение ДНК через нанопору. В мембране, разделяющей ячейку на две половины, проделано отверстие диаметром около 4 нм. Это и есть нанопора. В обеих половинах ячейки находится солевой раствор (диссоциированные ионы соли обозначены точками), но молекулы ДНК первоначально находятся только в той половине, к которой приложено отрицательное напряжение. Ток в ячейке измеряется амперметром (А)

Основу нанопор-секвенатора составляют миниатюрные камеры, к которым подведено электрическое напряжение (рис. 20). Камера разделена на две части при помощи очень тонкой мембраны и заполнена буфером, т. е. подсоленной водой с определенным значением pH. В одну из двух половин, ту, к которой подключен «—» постоянного тока, вводится одноцепочечная ДНК. В мембране сделана малюсенькая дырка диаметром в несколько нанометров, одна на всю мембрану, которая и есть та самая нанопора. Если никаких молекул ДНК в камере нет, через камеру протекает ток определенной силы, вызванный прохождением ионов соли сквозь мембрану, через нанопору. Если ввести молекулу ДНК, то, подобно ситуации с электрофорезом, которую мы уже обсуждали в этой главе, ДНК начнет мигрировать от отрицательно к положительно заряженной половине камеры. После многочисленных неудачных попыток ДНК начнет пролезать через нанопору. Что будет с током? Он упадет, ведь пока молекула ДНК пролезает сквозь нанопору, она блокирует существенную часть поперечного сечения нанопоры, и ионам остается меньше места для прохождения сквозь мембрану, электрическое сопротивление мембраны увеличивается, и, соответственно, ток падает. Чтобы сделать из нанопоры секвенатор, надо было добиться, чтобы ток, протекающий через нанопору, зависел от того, какая последовательность нуклеотидов проходит в данный момент сквозь нанопору.

Добиться этого оказалось очень трудной задачей, над которой начиная с середины 1990-х годов, когда впервые возникла идея нанопорового секвенирования, бились многие. Наиболее упорным оказался оксфордский профессор Хаган Бейли. У Бейли была мечта: он представлял себе визит пациента к доктору в XXI веке следующим образом. Прежде чем начать осмотр пациента, доктор просит его плюнуть на флешку, которая является нанопоровым секвенатором, вставляет флешку в порт своего компьютера и только после этого начинает медосмотр. Пока доктор измеряет пациенту давление, кардиограмму, спрашивает о жалобах, в его компьютер загружается полная последовательность нуклеотидов генома пациента. Компьютер сам, при помощи облачных технологий и самых современных баз данных, проводит полный анализ генома пациента на предмет его предрасположенности к различным болезням и т. д. К концу осмотра доктор уже имеет в своем распоряжении все эти данные в виде готовых рекомендаций того, какие дальнейшие тесты пациенту необходимо пройти.

Принципиальным моментом на пути создания нанопорового секвенатора была замена простой дырки в мембране на специальный белок с нанопорой внутри, альфа-гемолизин. Этот белок вырабатывается бактерией в качестве токсина, убивающего живую клетку. Белок представляет собой цилиндр с дыркой вдоль оси, так что, когда он внедряется в клеточную стенку, в стенке появляется дырка, и клетка погибает. Нанопора в гемолизине как раз нужного диаметра, так что однонитевая ДНК в нее пролезает, но с трудом, и разные нуклеотиды блокируют пору в разной степени. Бейли еще несколько изменил аминокислотную последовательность белка при помощи генной инженерии и добился существенного улучшения способности белковой нанопоры различать нуклеотиды, проходящие сквозь нее.

Вторым важнейшим моментом была замена неконтролируемого, случайного прохождения молекул ДНК через пору на контролируемое протягивание молекулы. С этой целью используется ДНК-полимераза. Все-таки без этого фермента обойтись не удалось. Но в отличие от методов «секвенирования посредством синтеза» в случае нанопорового секвенирования ДНК-полимераза используется лишь как молекулярный мотор, который, синтезируя на секвенируемой однонитевой ДНК, как на матрице, комплементарную цепь, протягивает однонитевую молекулу ДНК сквозь нанопору, причем скорость протягивания можно контролировать, так как она зависит от концентрации в растворе предшественников нуклеотидов, нуклеозидтрифосфатов. Само считывание последовательности происходит посредством анализа силы ионного тока, протекающего через белковую нанопору.

Когда создание флешки-секвенатора стало казаться реальным, Хаган Бейли основал компанию Oxford Nanopore Technologies Ltd., которая в 2014 году начала выпуск нанопоровых секвенаторов. И все-таки осуществить свою мечту Хагану Бейли не удалось. Несмотря на все усовершенствования, нанопоровый секвенатор делает слишком много случайных ошибок, чтобы им можно было секвенировать геном человека. Но есть задачи, для которых он оказался очень даже пригоден. Если секвенируемый геном небольшой, скажем вирусный, то случайные ошибки не так страшны, их можно исправить многократным прочтением той же ДНК. Зато флешку-секвенатор очень удобно использовать в полевых условиях, вдали от цивилизации. Это преимущество нанопорового секвенатора ярко проявилось во время эпидемии вируса Эболы, вспыхнувшей в Африке в 2013 году и свирепствовавшей два года. Геном вируса Эболы содержит всего 19 тысяч нуклеотидов, так что он очень удобен для нанопорового секвенирования. В 2015 году большая международная команда прибыла в Африку, вооружившись флешками-секвенаторами, и провела огромную работу по выявлению всевозможных мутантных вариантов генома вируса, возникших в ходе эпидемии.

И все же последовательности крупных геномов, включая человеческие геномы, которыми с невероятной скоростью пополняются базы данных, получают с помощью методов, основанных на «секвенировании посредством синтеза», главным образом на секвенаторах «Иллюмины». Только используя в полной мере ДНК-полимеразу, необыкновенно точный инструмент, созданный Природой за миллиарды лет биологической эволюции, удается прочесть последовательности ДНК любых геномов.

После прошедшего за первые 15 лет XXI века радикального удешевления секвенирования геномов доктора получают в свое распоряжение не только полный геном пациента, но, в случае злокачественной опухоли, полные геномы различных клонов раковых клеток, из которых опухоль состоит. Это открывает путь для возникновения и развития персонифицированной медицины, в том числе для совершенно новых подходов к терапии раковых заболеваний, о чем пойдет речь в главе 11.

6 Откуда берутся гены?

Теория эволюции и генетика

Между генетикой и теорией эволюции всегда были довольно сложные отношения. Эти науки опираются на весьма надежные, но принципиально различные методы исследования. Эволюционная теория выросла из анализа всего многообразия живущих на Земле существ. Это наблюдательная наука, подобная астрономии. В отличие от нее, генетика носит сугубо экспериментальный характер и весьма схожа с физикой. (Не случайно основоположник генетики Грегор Мендель получил солидное физическое образование – он учился у К. Доплера.) Нет нужды доказывать, что наблюдательная наука, вообще говоря, очень сильно уступает в скорости и возможностях развития науке экспериментальной. Достаточно сравнить прогресс в эволюционной теории и в генетике, достигнутый за последние 100 лет. Конечно, в действительности между наблюдательной и экспериментальной науками нет и не должно быть соревнования. Их уместнее уподоблять супружеской чете, а не двум спортсменам на дистанции. Но, как и между супругами, между ними, конечно, возможны разногласия, а порой даже бурные споры.

По мере того как множились успехи генетики (особенно с переходом ее на молекулярный уровень), все более разрастался конфликт между нею и теорией эволюции, конфликт, который возник еще в начале ХХ века. Суть его состоит в следующем.

Теория эволюции зиждется на двух китах: изменчивости и отборе. Генетика как будто вскрыла механизм изменчивости – в его основе лежат точечные мутации в ДНК. Но та ли это изменчивость, которая способна объяснить эволюцию? Прозорливые умы уже довольно давно поняли, что на такой изменчивости далеко не уедешь. Все новое, что мы узнали в ходе развития молекулярной генетики, подтвердило эти сомнения.

В самом деле, точечные мутации приводят к заменам отдельных аминокислот в белках, в частности, ферментах. Слово точечная означает, что в результате мутации может быть заменен только один аминокислотный остаток в одном из белков целого организма. Мутации чрезвычайно редки, и одновременное изменение даже двух аминокислотных остатков в одном белке совершенно невероятно. Но к чему может привести одиночная замена? Она либо окажется нейтральной, т. е. не повлияет на функцию фермента, либо ухудшит его работу.

Это то же самое, что приделать к автомобилю хвост от самолета. Автомобиль не полетит, но ездить еще будет (правда, несколько хуже). Такова нейтральная мутация. А если приделать к автомобилю правое крыло, то он опять-таки не полетит, но и ездить на нем вы не сможете: будете задевать за все фонарные столбы. Или вам придется ездить по левой стороне дороги, что очень скоро приведет к катастрофе. Кстати, с левым крылом тоже далеко не уедешь, да и полететь шансов мало.

Ясно, что превратить автомобиль в самолет просто так не удастся, нужна радикальная переделка всей машины. То же самое и с белком. Чтобы превратить один фермент в другой, точечными мутациями не отделаешься – придется существенно менять аминокислотную последовательность.

Отбор в этой ситуации не помогает, а, наоборот, очень сильно мешает. Можно было бы думать, что, последовательно заменяя по одному аминокислотные остатки, удастся в конце концов сильно переделать всю последовательность, а значит, и пространственную структуру фермента. Однако в ходе этих малых изменений неизбежно наступит время, когда фермент уже перестанет выполнять свою прежнюю функцию, но еще не начнет выполнять новую. Тут-то отбор его и уничтожит – вместе с несущим его организмом. Придется все начинать сначала, причем с теми же шансами на успех. Как преодолеть эту пропасть? Как сделать, чтобы старое не отбрасывалось до тех пор, пока создание нового не будет завершено?

Классическая генетика не могла предложить модель, которая допускала бы испытание новых вариантов без полного отстранения старых. Это и создало острый конфликт между генетикой и эволюционной теорией.

Успехи в исследовании генетической организации бактерий усугубили конфликт. Бактерии посредством плазмид довольно охотно обмениваются уже имеющимися генами. Это придает им способность быстро меняться. Взять, например, гены устойчивости к антибиотикам. Эти гены вовсе не возникают вновь и вновь у каждой бактерии, которая «привыкает» к данному антибиотику, как думали когда-то, а попадают к ней в готовом виде извне вместе с плазмидой.

Может быть, так же, на основе перегруппировки готовых генов, можно объяснить изменчивость и у высших организмов? Но тогда получается, что гены возникли однажды, раз и навсегда, а эволюция только тасует их как колоду карт. Новые признаки – это лишь новые комбинации старых генов. Самое неприятное в этой схеме то, что она вроде бы объясняет весь комплекс наблюдений, на котором базируется эволюционная теория. И многовековой опыт селекционеров ни в коей мере не противоречит этому. Все, что ими достигнуто, – это результат перетасовки генов, заранее заготовленных природой.

Природа сама часто использует вновь и вновь в разных организмах однажды найденный белковый дизайн, причем подчас для совершенно разных целей. Один такого рода пример – белок, отвечающий за нашу способность видеть, родопсин. Этот белок, находящийся в сетчатке глаза, поглощает свет и посылает соответствующий сигнал в мозг. Множество таких сигналов, поступающих от различных молекул родопсина в сетчатке, создают зрительный образ в нашем мозгу. Неудивительно, что молекулы родопсина из разных видов организмов, имеющих глаза и мозги, устроены одинаково. Но поразительно то, что практически точно такая же молекула, названная бактериородопсином, встречается у бактерий, не имеющих ни глаз, ни мозгов. Эта молекула выполняет тоже очень важную функцию, хотя и совершенно другую, чем родопсин. Вместо того, чтобы посылать сигналы из глаза в мозг, бактериородопсин снабжает бактерию энергией, будучи ключевым белком в сложном процессе превращения энергии света в химическую энергию АТФ.

Чем больше мы узнаем о генах и их функциях в разных, организмах, тем больше накапливается подобных примеров. Но вместе с тем остается без ответа главный вопрос – откуда все-таки взялись сами эти гены? Возможно, бактериородопсин возник сотни миллионов лет назад и Природа позднее воспользовалась готовым удачным дизайном световой антенны при создании нового хитроумного устройства – глаза. Или наоборот, сначала возник глаз с родопсином, а затем некоторые бактерии воспользовались удачным дизайном для своих целей.

Итак, дарвиновский вопрос о происхождении видов превращается в вопрос о происхождении генов. Может быть, на свете есть фабрика, на которой делаются новые гены, проверяются и отбраковываются негодные? А может быть, такое производство существовало когда-то, на ранних стадиях эволюции, а потом, наработав огромный набор генов, отмерло? Конечно, было бы куда приятнее, если бы эти живые фабрики генов сохранились до сих пор и их удалось бы обнаружить.

Так что же, давайте снаряжать экспедиции, заранее занеся некие диковинные реликтовые существа в Красную книгу? Вот и название уже готово – геногены!

Расчлененные гены

Но не будем торопиться. Если окажется верной гипотеза, выдвинутая У. Гилбертом (это тот самый Гилберт, который участвовал в разработке химического метода чтения ДНКовых текстов, за что был удостоен Нобелевской премии по химии вместе с Сэнгером в 1980 году), то далеко отправляться на поиски нам не придется. И нового названия тоже не потребуется. «Геногены» это не что иное, как эукариоты. Если яснее не стало, то, пожалуйста, это мы с вами! К эукариотам принадлежим не только мы с вами. К ним относятся вообще все высшие организмы: и животные, и растения, и даже некоторые простейшие. Так что если предположение Гилберта справедливо, то недостатка в фабриках генов нет и быть не может, пока есть жизнь на Земле.

Следует признать, что упомянутая гипотеза возникла не от хорошей жизни. Она потребовалась для того, чтобы объяснить совершенно неожиданные факты, обнаруженные после того, как были определены первые же последовательности ДНК, выделенные из высших.

Совершенно естественно, что поскольку аминокислотная последовательность в белках непрерывна, то непрерывной считалась и последовательность нуклеотидов в генах. Многочисленные исследования на бактериях и бактериофагах показали, что это действительно так.

Исследовать детальную структуру генов у высших и их вирусов стало возможным лишь с появлением генной инженерии и после разработки методов чтения ДНКовых текстов. Каково же было изумление и замешательство ученых, когда в 1977 году выяснилось, что гены у высших организмов не непрерывны, а состоят из отдельных кусков, разделенных какими-то другими последовательностями нуклеотидов! ДНК вдруг предстала этаким винегретом из генов, порубленных на части. Когда Ричард Робертс (работавший в то время в возглавлявшейся Уотсоном Колд-Спринг-Харборской лаборатории в окрестностях Нью-Йорка, на Лонг-Айленде) и Филип Шарп (Массачусетский технологический институт) независимо пришли к такому выводу, изучая геном одного из вирусов, вызывающих обычную простуду (аденовирус), это было воспринято в качестве курьеза. Однако затем выяснилось, что так же устроены и глобиновый ген у кролика, и овальбуминовый ген у цыпленка, и гены рибосомальной РНК у плодовой мушки дрозофилы. Короче, так оказались устроены почти все гены высших организмов. За открытие расчлененных генов Робертс и Шарп были в 1993 году удостоены Нобелевской премии по физиологии и медицине.

Промежутки между кусками генов бывают разными – от десятков до многих тысяч пар оснований. Как же на таких расчлененных генах синтезируются единые молекулы мРНК, по которым далее идет синтез единых молекул белков? Оказалось, что с участка ДНК, по которому разбросаны куски данного гена, включая и промежутки, снимается копия в виде очень длинной молекулы РНК. Эта молекула-предшественник или, как говорят, про-мРНК. Из про-мРНК сложным путем нарезания и последующего сшивания (этот процесс иногда называют «созреванием») получаются «зрелые» молекулы мРНК, которые уже могут выполнять свои прямые обязанности. Таким образом, сам факт расчлененности генов заставляет высшие организмы заботиться о «созревании» мРНКовых копий. Отметим, что в зачаточном (или, наоборот, в рудиментарном) виде механизм созревания РНК есть и у бактерий, но там дело ограничивается отрезанием «лишних» концов у молекул.

Как в деталях идет процесс созревания? Конечно, существуют специальные ферменты, разрезающие молекулу про-мРНК и сшивающие полученные фрагменты друг с другом. Но что указывает ферменту, как правильно нарезать молекулу и как правильно сшить получившиеся куски мРНК? И как выбрасываются промежуточные участки? Кухня такой рубки-сборки совсем не проста: ведь если фермент просто разрежет мРНК на куски, то эти куски разбегутся в разные стороны из-за броуновского движения – и пойди собери их!

Как удалось установить, в процессе «созревания» или, как его принято называть, сплайсинга мРНК участвуют специальные коротенькие молекулы РНК. Они «склеивают» про-мРНК так, чтобы специальным ферментам было ее удобно нарезать на куски и вновь сшить, выбросив лишнее. С легкой руки Гилберта те участки ДНК, слепок с которых сохраняется в ходе сплайсинга, называют экзонами, а выбрасываемые в ходе сплайсинга участки – интронами.

Какие же преимущества дает высшим организмам такой запутанный механизм производства мРНК? Ведь он не только очень сложен, но и таит в себе возможности очень грубых ошибок?

В самом деле, физико-химические данные свидетельствуют, что пространственная структура РНК не жесткая, она колеблется между различными состояниями, сильно различающимися по тому, какие участки образуют шпильки или другие элементы пространственной структуры. Это значит, что в одном состоянии про-мРНК будет нарезана на куски одним способом, а в другом – иным. Соответственно, разными окажутся выброшенные участки, и «зрелые» молекулы мРНК будут очень сильно отличаться друг от друга. Кроме того, накопление небольшого числа (или даже одной) точечных мутаций в про-мРНК может существенно нарушить соотношение пространственных структур, которые образует эта молекула.

Гилберт первым обратил внимание на то, что эти недостатки в организации генов эукариот, из-за которых они, по всей видимости, должны сильно уступать прокариотам в точности белкового синтеза, могут обернуться огромными преимуществами в эволюции. Судите сами: большая чувствительность к малым изменениям в ДНК и возможность одновременного синтеза зрелых мРНК с совершенно различными последовательностями нуклеотидов – все это может обеспечить искомое. А именно: испытание самых разных новых вариантов без полного отказа от старого. Это значило бы, что высшие организмы обладают тем механизмом изменчивости и отбора, которого так не хватало для примирения генетики и теории эволюции.

Считают, что экзон-интронное устройство генов сохранилось у эукариот от общего с прокариотами предка, гипотетического прародителя всего живого на Земле, «прогенота». У прокариот в ходе эволюции произошло сокращение управленческого аппарата, и они утратили способность к сплайсингу.

В ходе изучения сплайсинга мРНК Томас Чек (Колорадский университет, США) сделал открытие, оказавшее столь же ошеломляющий эффект, как в свое время открытие синтеза ДНК на РНК. Он обнаружил, что сплайсинг может идти и без участия белков! Сама РНК, без всякой посторонней помощи, разрезает себя на куски, выбрасывает интроны и сшивает экзоны. Конечно, такой «самосплайсинг» наблюдается лишь в редких случаях, для некоторых экзотических РНК, но принципиальное значение имеет сама возможность того, что РНК ведет себя подобно ферменту. До открытия Чека все были абсолютно убеждены, что нуклеиновые кислоты сами по себе, без помощи белков, ни на что не способны. Молекулы РНК, работающие как ферменты, назвали рибозимами.

Способность РНК к ферментативной активности неожиданно проливает свет на одну из центральных проблем предбиологической эволюции. Уже на заре молекулярной биологии стало ясно, что биологической, дарвиновской эволюции должна была предшествовать эволюция молекул. Но какому из двух основных классов биополимеров, белкам или нуклеиновым кислотам, отдать предпочтение, кто из них возник раньше в ходе предбиологической эволюции? Это напоминает вопрос о том, что появилось раньше – курица или яйцо, так как сегодня в клетке белки не могут появиться без ДНК и РНК, а ДНК и РНК ничего не могут без белков. Все же те, кто пытался представить себе, как было дело, склонялись к тому, что сначала были белки, которые как-то могли воспроизводить самих себя.

Открытие рибозимов радикально изменило ситуацию. Теперь кажется наиболее вероятным, что прародительницей всего живого на Земле была молекула РНК. То, что РНК может играть роль вещества наследственности, известно давно, со времени открытия РНК-содержащих вирусов. Теперь мы знаем, что РНК может играть роль ферментов и, наверное, она могла катализировать необходимые для воспроизведения самой себя реакции. Лишь впоследствии, в ходе дальнейшей эволюции, на стадии образования прогенота, РНК передала функции хранения генетической информации ДНК, которая больше подходит для этой цели, а каталитические функции передала молекулам белка, которые обладают уникальной способностью катализировать практически любые реакции.

В современной клетке РНК отведена достаточно скромная роль вспомогательной молекулы. Но следы ее былого величия видны повсюду. По существу, ни один важный, глубинный процесс в клетке не идет без участия РНК, даже тогда, когда, казалось бы, без нее вполне можно было бы обойтись. Например, для репликации ДНК нужна «затравка» (праймер). Роль праймера в клетке всегда играет коротенькая РНК (подробнее об этом мы поговорим в главе 7). А сколько молекул РНК участвует в синтезе белка? Ведь, казалось бы, можно обойтись и без мРНК, и без тРНК, и уж подавно без рибосомальных РНК. Но не тут-то было. К всеобщему изумлению выяснилось, что присоединение следующей аминокислоты к растущей белковой цепи на рибосоме происходит без участия белков, а катализируется рибосомной РНК. Таким образом, одна из самых важных реакций в современной клетке все еще катализируется не белковым ферментом, а рибозимом!

Для нашей прародительницы РНК сплайсинг не был чем-то особенным, так как РНК его легко делает сама. Так что, похоже, прав Гилберт – экзон-интронное устройство генов отражает очень древний принцип организации генетического материала. Оно сохранилось с того допотопного времени (его называют РНКовым миром), когда самой главной молекулой жизни была не ДНК, а РНК.

Прыгающие гены

С наступлением новой эры в изучении генов высших организмов, связанной с появлением генной инженерии и методов чтения ДНКовых текстов, рухнуло не только представление о генах как о непрерывных участках ДНК. Не устояло и другое положение генетики, казавшееся столь же незыблемым и утверждавшее, что все клетки организма имеют одинаковый набор генов. Справедливость его, казалось бы, была раз и навсегда доказана опытами Дж. Гёрдона по выращиванию лягушек-двойников и недавними успехами по клонированию разных животных, о которых мы рассказывали в начале главы 3. Но выяснилось, что и для этого правила есть свои, очень существенные исключения.

Правда, надо сразу оговорить, что если «лоскутное» устройство генов – это правило для высших, что изменению в ходе развития организма подвергаются лишь немногие гены в очень специальных клетках, – это исключение из правила. Важно, однако, что это исключение распространяется на гены и клетки, имеющие для организма особое значение. Это гены и клетки, отвечающие за иммунитет.

Способность к иммунному ответу на вторжение извне – важнейшее свойство нашего организма, позволяющее ему сохранить индивидуальность, бороться против инородных клеток и вирусов. Можно утверждать, что, не будь у людей этой способности, они не могли бы жить так скученно, как живут сейчас. Средневековые хроники полны ужасающих рассказов об эпидемиях, опустошавших целые города, а иногда и обширные территории. Почему же этого не происходит теперь? Конечно, многое дало применение санитарно-гигиенических мер. Но все же главное – это вакцины, т. е. прививки.

Прививка – это как бы заблаговременное предупреждение организма о грозящей ему опасности. Она включает иммунную систему, в результате возводится неприступная стена против потенциального агрессора (бактерии или вируса) заранее, еще до того, как он совершит нападение. Массовые прививки привели к тому, что страшные в прошлом враги человеческого рода, возбудители чумы, холеры, оспы и т. д., не могут теперь найти место, где они могли бы размножаться, их численность практически сведена к нулю. Это один из немногих случаев, когда исчезновение с лица Земли некоторых ее обитателей не беспокоит даже наиболее ярых поборников охраны окружающей среды.

Что же позволяет иммунной системе успешно бороться с разнообразными возбудителями болезней? Роль орудия борьбы играют клетки крови, лимфоциты (белые кровяные шарики) и особые белковые молекулы, иммуноглобулины, называемые также антителами. Лимфоциты образуют не одну, а две линии обороны организма от внешнего нашествия. Первыми распознают и встречают врага (это может быть бактерия, вирус, чужеродный белок или еще какое-нибудь химическое соединение, одним словом, какой-то антиген) Т-лимфоциты, а уже потом вступают в бой В-лимфоциты. Т-лимфоциты несут на своей оболочке белки-рецепторы, которые распознают антиген. В-лимфоциты вырабатывают антитела к вторгшимся антигенам. Рецепторы Т-лимфоцитов, В-лимфоцитов и иммуноглобулины – очень похожие белки.

Иммунная система каждого организма способна вырабатывать невероятно большой набор разных рецепторов и иммуноглобулинов. Точнее, молекулы эти почти одинаковы, они построены по одному и тому же общему плану, но в них есть участки, называемые вариабельными частями, которые отличаются друг от друга своей аминокислотной последовательностью. Лимфоциты – строго специализированные клетки. Каждый Т-лимфоцит несет свой рецептор, узнающий строго определенный антиген. Каждый В-лимфоцит несет свой рецептор и способен вырабатывать только строго определенный иммуноглобулин, связывающийся только с данным антигеном.

Итак, в организме заранее имеются лимфоциты, способные узнать практически любой антиген, даже тот, который ни разу до того не попадал в этот организм. Если, скажем, вирус впервые проник в организм, то найдется Т-лимфоцит, рецептор которого узнает белок оболочки вируса. Связывание антигена с рецептором запускает очень длинную цепь событий, в результате чего, во-первых, образуются так называемые Т-киллеры, клетки-убийцы, которые уничтожают зараженные вирусом клетки. Во-вторых, одна из В-клеток, та самая, которая способна производить антитело против узнанного рецептором антигена, начинает размножаться и вырабатывать иммуноглобулины, связывающиеся с вирусными частицами и в конечном счете выводящие их из организма.

Однако, чтобы все это случилось, нужно время. Если нападение происходит внезапно, то, прежде чем сработает иммунная система, вирус успеет наделать много бед, а то и вообще погубить организм. Другое дело, если вирус уже до этого, скажем, в неинфекционной форме, побывал когда-то в этом организме. Будучи однажды включенной, иммунная система многие годы, а иногда и всю жизнь, сохраняет способность в случае повторного появления антигена быстро нарабатывать Т-киллеры и антитела против него. Они не дадут вирусу как следует развернуться.

Основной вопрос, на который очень долго не удавалось получить ответ, состоит в следующем. Что обеспечивает реакцию организма на самые разные антигены? Ведь каждый организм готов к выработке антител в ответ практически на любой чужеродный белок. В то же время иммуноглобулины и рецепторы Т-лимфоцитов очень специфичны – одна молекула, как правило, узнает только вполне определенный антиген и теряет способность узнавать, если в молекулу антигена внести минимальные изменения. Чтобы обеспечить одновременно и огромную специфичность и разнообразие иммунных реакций, организм держит наготове громадный репертуар различных лимфоцитов, способных распознать практически любой антиген. Их в каждом организме многие миллиарды.

Так что же, существует много миллиардов генов, каждый из которых кодирует свой рецептор и свой иммуноглобулин? И откуда они берутся, эти гены? Они есть уже в зиготе, т. е. достались от родителей? Что за дурацкие вопросы! Конечно! Как же может быть иначе, если химическое строение рецепторов и иммуноглобулинов определяется последовательностью ДНК (а чем еще может определяться строение белков?!).

Но постойте, как такое может быть?! Наш геном состоит из 3 млрд нуклеотидов. Так что, если даже весь геном кодирует только аминокислоты и ничего больше, а это точно не так, он может закодировать миллиард аминокислот, но в геноме никак не найдется места закодировать много миллиардов белков-иммуноглобулинов. Тут концы с концами не сходятся на много порядков. Это во-первых. А во-вторых, если гены рецепторов и иммуноглобулинов переходят к нам от наших родителей вместе с генами других белков, то почему внутри нас иммуноглобулины мамы не атакуют белки папы, и наоборот?

Наши родители, как и все люди (за исключением идентичных, или однояйцовых близнецов, получившихся из одной зиготы), иммунологически несовместимы. Иммунная система одного человека атакует белки другого человека. Отсюда столько проблем при пересадке органов (почек, сердца и т. д.). Но факт есть факт. В каждом из нас вырабатываются и белки, унаследованные от папы, и белки, унаследованные от мамы, а вот ничего ужасного не происходит. Страшно подумать, что было бы, если бы у человека вырабатывались антитела к собственным белкам. К счастью, если это и случается, то очень редко. Но парадокс состоит в том, что объяснять надо не то, что такая болезнь бывает, а то, что она не поражает всех нас!

В 1960-х годах те, кто пытался объяснить иммунитет на генетическом уровне, ясно понимали, что само существование иммунной системы явно противоречило молекулярной биологии того времени. Было ясно, что здесь кроется какая-то загадка, разгадка которой может произвести переворот в наших представлениях.

Поэтому, как только появилась возможность выяснить детальное строение генов высших организмов, в первые объекты изучения попали гены иммуноглобулинов. Наибольший вклад в решение проблемы методами генной инженерии внес иммуногенетик японского происхождения Судзуми Тонегава, который был удостоен за эти его работы Нобелевской премии по физиологии и медицине за 1987 год.

Изучая гены иммуноглобулинов в Институте иммунологии в Базеле, Швейцария (с тех пор он уже давно перебрался в Бостон и работает в Массачусетском технологическом институте), Тонегава впервые в 1976 году обнаружил расчлененные гены. Оказалось, что между участками ДНК, на которых записана информация о вариабельной и постоянной частях иммуноглобулинов, есть участок, где не записано никакой белковой последовательности. А в готовой молекуле иммуноглобулина вариабельная и постоянная части образуют единую полиаминокислотную цепь. Эта новость мгновенно облетела весь научный мир, и буквально через несколько месяцев стало ясно, что «лоскутное» устройство – типичная картина для любых генов высших организмов.

Но не успели привыкнуть к этой новости, как Тонегава сообщил уж совсем потрясающую вещь. Он сравнил ДНК, выделенную из лимфоцитов взрослой мыши, с ДНК из мышиного эмбриона. Оказалось, что у эмбриона вариабельная часть гена состоит не из одного, как у лимфоцитов взрослой мыши, а из двух кусков, которые были обозначены J и V. Меньшая часть, J, всегда находится на месте, а более длинная часть, V, отстоит от J так далеко, что Тонегаве даже не удалось определить расстояние до нее вдоль ДНК.

У эмбриона, как и во всех обычных клетках (не лимфоцитах) взрослого организма, гены иммуноглобулинов устроены так, как показано на рис. 21 вверху. Насчитывается около 300 V-генов, четыре J-гена и один С-ген. Скопление V-генов отделено от скопления J-генов большим промежутком. Между J-генами и С-геном также имеется промежуток, но гораздо меньше. Клетки, имеющие устроенную таким образом ДНК, не способны вырабатывать антитела. Поэтому у эмбриона, и даже у новорожденного, собственные антитела отсутствуют – есть только антитела матери, поступившие в его кровь до рождения.

Рис. 21. Перегруппировка генов иммуноглобулинов. Стадия I происходит в процессе созревания лимфоцитов. Стадия II отвечает синтезу иммуноглобулина и рецептора в лимфоцитах

Вскоре после рождения начинает пробуждаться собственная иммунная система – образуются лимфоциты. В каждом лимфоците происходит следующее. Из ДНК вырезается протяженный участок, начинающийся на конце одного из V-генов и оканчивающийся строго в начале одного из J-генов. В результате данный лимфоцит содержит ДНК, имеющую строение, как показано на рис. 21 (средняя строка). Далее со всего получившегося участка, начиная с гена V и кончая геном С, снимается РНКовая копия. Эта РНК подвергается сплайсингу в принципе так же, как это происходит с любыми расчлененными генами у высших. При этом из РНК удаляется всё, кроме реплики с образовавшегося на предыдущей стадии единого гена VJ, а также гена С. Все три реплики образуют единую непрерывную РНКовую цепь (нижняя строка рис. 21), которая считывается рибосомой, давая белковую цепь иммуноглобулина.

Конечно, самое интересное происходит на стадии I, т. е. тогда, когда образуется лимфоцит данного типа. Чем определяется то, какая именно пара генов V и J состыкуется, окажется рядом при вырезании участка ДНК? Это центральный вопрос, так как от этого целиком зависит строение вырабатываемого лимфоцитом иммуноглобулина.

Кардинальный факт состоит в том, что при этом перебираются все (или почти все) комбинации генов V и J. Это – первый шаг к созданию на базе сравнительно скромного набора исходных генов несметного разнообразия иммуноглобулинов. Ведь, если имеется n генов V и m генов J, то различных пар из них может получиться пт. Таким образом, если, как упоминалось выше, п = 300, а т = 4, то число разных антител оказывается около тысячи.

Но этого мало. Молекула иммуноглобулина состоит не из одной, а из четырех полиаминокислотных цепей, двух легких и двух тяжелых (рис. 22). Обе легкие цепи идентичны друг другу, как и обе тяжелые. Но тяжелые и легкие цепи синтезируются совершенно независимо, и для каждой из них происходит вся та перетасовка, о которой говорилось выше. Поэтому цифру тысяча нужно возвести в квадрат. Так получается миллион.

Но и это еще не все. Оказалось, что в какой-то момент включается механизм, природа которого оставалась до недавнего времени загадкой, благодаря которому возникают мутации, причем только в V-генах. Окружающие V-гены участки ДНК не меняются, а в V-генах происходят случайные замены нуклеотидов. Это еще многократно повышает разнообразие иммуноглобулинов.

Мы рассмотрели события, происходящие в В-лимфоцитах. Точно такие же процессы происходят в Т-лимфоцитах, в результате чего образуется множество рецепторов.

Вот какой хитроумный механизм придуман природой, чтобы снабдить нас с вами лимфоцитами и вырабатываемыми ими антителами на любой мыслимый случай. Загадка, мучившая несколько поколений медиков и биологов, была решена быстро и однозначно, как только за нее взялись специалисты, вооруженные умением манипулировать молекулой ДНК.

Рис. 22. Так устроена молекула иммуноглобулина (схема)

И надо сказать, открывшаяся картина просто ошеломила даже привыкших к сенсациям молекулярных биологов. Шутка ли сказать, оказывается, в организме каждого человека, каждого млекопитающего (и еще шире – позвоночного) происходит перетасовка генов, образуются миллионы новых, причем это еще сопровождается интенсивным мутационным процессом.

А мы-то думали, мы были абсолютно убеждены, что весь план строения организма готов раз и навсегда, как только образовалась зигота. Мы думали, что этот план совершенно одинаков во всех клетках, просто одни клетки «читают» одну часть плана, другие – другую. Конечно, возможность мутаций в генах при развитии организма никем никогда не отрицалась, но к этому относились как к случайным помехам, ошибкам в ходе планомерного развития организма. А оказывается, каждый организм в ходе развития вырабатывает свой, совершенно уникальный набор генов рецепторов и иммуноглобулинов и, соответственно, уникальный набор лимфоцитов. Собственно, это и есть один из тех факторов, которые определяют индивидуальность, свое «я» каждого позвоночного.

А как же решается вопрос о том, чтобы иммунная система не набрасывалась на свои белки? Это осуществляется путем отбраковки тех лимфоцитов, которые узнают свои белки. Гигантская проблема – поиск связи между иммунитетом и раком. Ведь эта болезнь так же, как и иммунитет, – удел позвоночных. Несомненно, между этими двумя важнейшими для жизни всех людей явлениями существует очень тесная связь. Эту связь изучают на всех уровнях, включая уровень ДНК. Мы вернемся к этим вопросам в главе 11, чтобы обсудить, как в самое последнее время удалось научиться направлять иммунную систему на борьбу с раком.

Врожденный иммунитет

Клеточный и молекулярный иммунитет существуют только у позвоночных. А как же насекомые или растения? Неужели они не имеют никакой защиты от вторжения микробов (бактерий, вирусов и грибковых)? Да и позвоночным не помешало бы иметь, быть может, не столь избирательную, но более быстро реагирующую линию обороны против вторжения извне, чем наша иммунная система. Ведь если враг вторгся впервые, то требуется время, чтобы наработать достаточно антител и Т-лимфоцитов. Поэтому клеточный и молекулярный иммунитет вместе называют приобретенным иммунитетом: он возникает как реакция на достаточно длительное воздействие антигена на организм. Обычно иммунная система побеждает в конечном счете, но вирус или бактерия успевает размножиться и сильно навредить: мы испытываем все «прелести» болезни, прежде чем выздороветь.

Биологи давно подозревали, что, кроме приобретенной в ответ на конкретный антиген, существует еще и врожденная, неспецифическая иммунная реакция, присущая не только всем животным, но и растениям. Однако лишь в последние годы стали проясняться механизмы этого врожденного иммунитета. Теперь стало ясно, что в ходе эволюции возникли разнообразные механизмы врожденного иммунитета. По-видимому, любая особенность, по которой эукариоты существенно отличаются от прокариот, может вызвать реакцию врожденного иммунитета. Давайте разберем один пример такого рода.

Как мы знаем, геномная ДНК нормально находится в форме двойной спирали. Так что, если в клетке вдруг появилась однонитевая ДНК, она скорее всего вторглась извне и должна служить законной мишенью для атаки одной из систем врожденного иммунитета. Такая ДНК может оказаться злейшим врагом клетки и всего организма. Ведь однонитевая ДНК всегда образуется как промежуточное звено при заражении клетки ретровирусами, у которых генетическим материалом служит РНК. Достаточно сказать, что к таким вирусам принадлежит вирус СПИДа, ВИЧ.

Как же реагирует система врожденного иммунитета на вторжение врага? Происходит следующее. Специальный фермент деаминаза набрасывается на однонитевую ДНК, отбирает аминогруппу (NH2) у цитозинов (Ц), заменяя ее на атом кислорода, тем самым превращая их в урацилы (У) (как показывают химические формулы на рис. 6, именно эта замена отличает Ц от У). Деаминаза не способна отобрать аминогруппу у цитозинов в геномной ДНК, так как у них эта группа запрятана в двойной спирали и недоступна для фермента. Так вторгшегося врага пометили на ликвидацию – ведь «по закону» в ДНК не должно быть У, только Т. Теперь фермент-полицейский (с мудреным названием урацил-ДНК-гликозилаза) реагирует на непорядок – У в ДНК – и расщепляет цепь ДНК около всех У: враг обезврежен!

Не правда ли, чем-то похоже на то, как бактерия расправляется с чужой ДНК при помощи рестриктаз? На самом деле система рестрикции – это не что иное, как форма врожденного иммунитета у бактерий. Так же как и бактерии, клетки высших часто используют метилирование геномной ДНК, чтобы система врожденного иммунитета могла отличить «своих» от «чужих».

Интересно, что та же деаминаза обеспечивает долго остававшийся загадочным процесс мутирования V-частей генов иммуноглобулинов, о чем речь шла в предыдущем разделе. Как выясняется, это происходит, когда в V-участках цепи ДНК временно расходятся в процессе транскрипции и деаминаза успевает сделать свое дело, а урацил-ДНК-гликозилаза не успевает. ДНК остается целой, но часть цитозинов превращена в урацилы. При дальнейшей репликации ДНК эти урацилы ведут себя как тимины, так что в результате происходят замены Ц → Т. Так возникшая на поздних этапах эволюции система приобретенного иммунитета использует элементы гораздо более древней системы врожденного иммунитета в целях создания немыслимого разнообразия иммуноглобулинов.

Но и в случае однонитевой ДНК урацил-ДНК-гликозилаза не всегда справляется с трудной задачей ликвидации всех вражеских молекул. В результате часть вирус-специфической ДНК выживает, но она сильно мутирует, так что возникшие в результате вирусы теряют способность причинить вред. И здесь возникает вот какой вопрос. Не в результате ли не очень тщательной работы системы врожденного иммунитета получаются, пусть сравнительно редко, мутантные, но способные к заражению клеток вирусы, которые не распознаются антителами, выработанными к немутантному вирусу? Иными словами, не будучи способной добить все вражеские молекулы, не помогает ли система врожденного иммунитета выжившим вирусам обмануть систему приобретенного иммунитета? Не отсюда ли берется хорошо известная изменчивость ВИЧ, препятствующая выработке вакцины против СПИДа? Этот крайне интересный вопрос еще ждет своего ответа…

Но, как оказалось, в большинстве случаев врожденный иммунитет работает посредством так называемых «толл-подобных рецепторов», которые находятся на поверхности специальных клеток-пожирателей чужих клеток, вторгшихся извне, фагоцитов. Как и во многих других случаях, открытие было сделано сначала на модельном организме, в данном случае на дрозофиле. В лаборатории французского генетика дрозофилы Жюля Хофмана изучали мутации в гене «толл» дрозофилы. Оказалось, что мутанты становятся беззащитными против грибка, паразитирующего на мухе. Это наблюдение и привело к открытию целого класса толл-подобных рецепторов на поверхности фагоцитов различных организмов, включая человека. Эти рецепторы распознают общие молекулярные характеристики, отличающие патогены от клеток организма, и, если такое узнавание происходит, фагоциты просто съедают непрошеного гостя. К таким отличительным особенностям, распознаваемым толл-подобными рецепторами, относятся липополисахариды, которые являются частью бактериальной стенки, но отсутствуют в клетках животных. За открытие толл-подобных рецепторов Хофман был удостоен Нобелевской премии по физиологии и медицине за 2011 год.

Генные глушители

Чего только не стали вытворять биологи с наступлением эры неограниченной манипуляции генами! Ботаники тоже не желали плестись в хвосте прогресса. Не им ли, продолжателям славных дел Бербанка, Мичурина и Барлоуга, надлежало быть впереди планеты всей? И они принялись за работу. Успехи в создании генетически улучшенных форм сельскохозяйственных растений методами генной инженерии колоссальны (см. главу 10). Но вовсе не всегда ботаникам сопутствовал успех. Были и досадные промахи.

Так, в начале 1990-х годов цветоводы решили применить новейшие методы для усиления цвета петуний. Было ясно, что надо сделать – увеличить количество генов, кодирующих белки-пигменты. В полной уверенности в успехе предприятия цветоводы стали «всаживать» в клетки растений плазмиды, несущие дополнительные гены пигмента. Каково же было разочарование цветоводов, когда генетически измененные петуньи не только не приобретали более яркую окраску… но становились бесцветными! К чести цветоводов, они поняли, что наткнулись на что-то важное, хотя, конечно, и не помышляли о том, что их наблюдение приведет к новой революции в молекулярной биологии. Ученые стали ставить новые эксперименты в попытках выяснить, как же так вышло, что увеличение количества генов перешло в качество с обратным знаком. Этакая гегелевская диалектика шиворот-навыворот.

А выяснилось вот что. Имеется огромное количество вирусов растений, от которых растениям надо как-то защищаться. Иными словами, растения никак не выжили бы, если бы не выработали свою иммунную систему. Оказалось, что бороться с вирусами у растений призвана специальная иммунная система, совершенно отличная от иммунной системы человека и других позвоночных и получившая название РНК-интерференция, или РНКи. Подобно тому, как в ответ на вторжение вируса наша иммунная система вырабатывает антитела, у растений начинается наработка коротких молекул РНК (содержащих приблизительно 21 нуклеотид; они получили название коротких интерферирующих РНК, или киРНК). Последовательность киРНК такова, что они могут связаться с молекулами мРНК, вырабатываемыми вторгшимся вирусом, и, как только это случится, специальные ферменты-рибонуклеазы системы РНКи набрасываются на мРНК и расщепляют ее. Таким образом, короткие РНК играют роль глушителей для вирусных генов и предотвращают их экспрессию в растительных клетках.

Откуда же клетка знает, какие киРНК производить? Может быть, как в случае нашей иммунной системы, у растений заранее заготовлен огромный арсенал генов, кодирующих всевозможные киРНК? Нет, так растения поступить не могли. Потому у них и не могла возникнуть нормальная, «человеческая» иммунная система с В – и Т-лимфоцитами, что у них нет кровообращения, которое разносило бы громадный арсенал лимфоцитов, готовых бороться с вторгшимся врагом, по всему телу. Иммунная система, основанная на РНКи, не принадлежит ни к категории врожденного иммунитета, ни приобретенного. Она совсем особая. Вторгшаяся вирусная РНК (у очень многих растительных вирусов, как, впрочем, и у животных вирусов, генетическим материалом является одноцепочечная РНК) превращается в клетке в двойную спираль РНК. Затем ферменты, принадлежащие к системе РНКи, нарезают эту РНК на короткие куски (тоже двуспиральные, примерно по 21 нуклеотиду в каждой из комплементарных цепей), которые и играют роль киРНК. Так что киРНК на самом деле двухцепочечные молекулы. Одна из двух цепей комплементарна РНК вируса, и она-то и играет роль РНК-глушителя.

Ну а что же все-таки происходило с петуньями? Почему они теряли окраску в ответ на вторжение дополнительных генов пигмента? Читатель, конечно, уже догадался, в чем было дело: иммунная система петуний ошибочно принимала мРНК белка-пигмента за вторгшуюся вирусную РНК и включала систему РНКи. В результате вырабатывались киРНК, специфичные к мРНК пигмента, что вело к деградации всех мРНК пигмента: пигментный белок переставал вырабатываться вовсе. Иными словами, происходило полное «глушение» экспрессии пигментных генов.

Так невинное занятие цветочками привело к важнейшему открытию – обнаружению иммунной системы у растений, или системы РНКи. Впрочем, вся генетика началась с цветочков (Мендель разводил цветной горошек), так что удивляться не приходится. Нет, все же есть чему удивляться: как же такой важнейший процесс столь долго оставался незамеченным? Может, дело в том, что система РНКи есть только у растений и ее нет ни у прокариот, ни у животных? Действительно, у прокариот нет такой системы, а вот у животных она есть, и у нас с вами тоже. Когда такое выяснилось в начале 2000-х годов, пошли разговоры об очередной революции в молекулярной биологии. Впрочем, почему только разговоры? Сейчас уже ясно, что эта революция в самом разгаре. Но об этом позже – в самом конце книги.

Приобретенный иммунитет у бактерий

Не успели улечься страсти вокруг открытия системы РНК-интерференции у растений и животных, как в 2013 году грянула новая технологическая революция, по своим масштабам превзошедшая все предыдущие прорывы за всю историю молекулярной биологии, начиная с ее возникновения в 1953 году. Об этой революционной технологии редактирования генома мы поговорим позже, в главе 10, а сейчас речь пойдет о чисто научном открытии, приведшем к технологическому прорыву, – об открытии приобретенного иммунитета у бактерий.

Вообще, никакого приобретенного иммунитета бактериям иметь категорически не положено. Ведь отдельная бактериальная клетка – это организм, который производит потомство путем простого деления. Если при соприкосновении с конкретным вирусом (вирусы бактерий называются бактериофагами, или просто «фагами») бактерия приобретает иммунитет против заражения этим вирусом, то она передаст этот признак своим потомкам. Но тогда чем способность бактерий передавать приобретенный признак отличается от того, что собака, у которой отрубили хвост, передаст этот признак (иметь короткий хвост) своим потомкам? Послушайте, да это же подлинный ламаркизм или, хуже того, лысенковщина! Это есть не что иное, как наследование благоприобретенных признаков! Утверждать такое – это анафема. Ведь именно то, что благоприобретенные признаки не могут наследоваться, имел в виду великий русский генетик Николай Иванович Вавилов, когда говорил свои знаменитые слова: «На костер пойдем, гореть будем, но от убеждений своих не откажемся». И пошел на костер, и сгорел (точнее, был уморен голодом в заточении).

Интересно, что последний гвоздь в гроб ламаркизма и лысенковщины был забит именно в опытах с бактериями и их вирусами. Эти опыты были проведены в США Сальвадором Лурией и Максом Дельбрюком (тем самым, берлинским учеником Тимофеева-Ресовского и основателем фаговой группы в США, о котором мы уже говорили в главе 1) в 1943 году, и главным образом за эти опыты Лурия и Дельбрюк были удостоены Нобелевской премии по физиологии и медицине за 1969 год. В чем же состояли эти знаменитые опыты, которые, как считалось до самого недавнего времени, раз и навсегда поставили крест на концепции наследования благоприобретенных признаков?

Лурии и Дельбрюку было прекрасно известно, что, если на чашку Петри содержащую и питательный агар, и фаг, убивающий данный штамм, высеять бактерии, подавляющее количество из них погибнет, но отдельные клетки выживут. И исследователи задались вопросом: эти устойчивые клетки есть мутанты, уже присутствовавшие среди нормальных клеток до их соприкосновения с фагом, или малая доля клеток приобрела иммунитет против фага в момент контакта с ним? Иными словами, является устойчивость к фаговой инфекции результатом случайной мутации или это благоприобретенный признак? Чтобы различить эти две возможности, опыт был поставлен следующим образом.

Рис. 23. Схема опыта Лурии-Дельбрюка

Выращенные в питательном бульоне клетки были тщательно перемешаны и разделены на две равные части. Из одной половины клеток, показанной на рис. 23 справа, были при помощи пипетки сразу же взяты пробы определенного объема и высеяны на чашки Петри с агаром и фагом. Вторая половина, та, что слева, была сначала разлита в то же число пробирок, сколько чашек Петри справа, проинкубирована достаточное время, чтобы клетки могли размножиться, и только потом из каждой пробирки, после тщательного перемешивания, была взята своя проба того же объема, что и в случае справа, и высеяна на свою чашку Петри (рис. 23). Затем, дав выжившим клеткам время размножиться, образовавшиеся колонии были посчитаны во всех чашках Петри. Какой результат следовало ожидать в случае мутационной гипотезы, а какой – в случае гипотезы приобретенного иммунитета, т. е. наследования благоприобретенных признаков?

Ясно, что в случае приобретенного иммунитета результат опыта в обоих случаях (левая и правая сторона рис. 23) должен быть один и тот же, ведь иммунитет приобретается в момент контакта между бактерией и фагом, так что манипуляции с клетками до такого контакта значения не имеют.

Так что в случае иммунитета Лурия и Дельбрюк должны были наблюдать примерно одинаковое число колоний в чашках Петри, как в левом случае, так и в правом. Конечно, поскольку иммунитет приобретается случайно, малой частью бактерий, количество колоний в разных чашках должно немного флуктуировать, подчиняясь так называемому пуассоновскому распределению. Если же верна мутационная гипотеза, то пуассоновское распределение должно наблюдаться только для постановки опыта, как в правой части рис. 23; для постановки опыта согласно схеме слева распределение не должно быть пуассоновским. Пуассоновским должно быть в этом случае распределение мутантов по пробиркам. После наращивания бактерий в пробирках и высевания их на чашки Петри распределение колоний должно быть гораздо более широким, чем пуассоновское. В самом деле, можно ожидать, что в каких-то чашках вообще не окажется колоний, но практически не должно быть чашек с одной или несколькими колониями, так как, даже если в пробирке оказалась только одна мутантная клетка, она многократно размножилась за время инкубации и высевание даст множество колоний.

Проверить, является ли распределение пуассоновским, очень просто. Если через m1 m2 … m10 обозначить число колоний в соответствующей чашке Петри (предположим, что их 10), то для пуассоновского распределения должно выполняться равенство:

(m1+ m2 +…m10) / 10 = (m12 + m22 +…m102) / /10 – (m1 + m2 +…m10)2 / 100

Иными словами, для пуассоновского распределения среднее значение (левая часть равенства) должно совпадать с дисперсией (правая часть).

Теперь давайте посмотрим, что же Лурия и Дельбрюк наблюдали экспериментально в своей работе 1943 года. В случае левой части на рис. 23 значения m были следующими:

14, 15, 13, 21, 15, 14, 26, 16, 20, 13.

Подставив эти значения в левую часть равенства, получим 16,7, подставив в правую, получим 16,4. Вывод ясен: Пуассон. Теперь посмотрим, что получилось в случае опыта, поставленного по схеме слева на рис. 23:

107, 0, 0, 0, 1, 0, 0, 64, 0, 35.

Среднее (левая часть равенства) не сильно отличается от предыдущего случая, оно получается 20,7, но дисперсия (правая часть равенства): 1268,7! Ничего похожего на пуассоновское распределение.

Своим, ставшим классическим, опытом, повторенным разными исследователями на разных парах бактерия-фаг тысячи раз, Лурия и Дельбрюк вбили последний гвоздь в гроб концепции наследования благоприобретенных признаков, в котором (гробу) она (эта концепция, известная также как ламаркизм) пролежала 60 лет, а потом взяла да воскресла. Потому что оказалось, что у бактерий есть система приобретенного иммунитета, специально направленная на защиту от бактериофагов и плазмид, т. е. от вторжения в бактериальную клетку чужой ДНК. Как же такое могло случиться? Неужели в опыте Лурии и Дельбрюка обнаружился какой-то изъян?

Нет, с опытом Лурии и Дельбрюка все в порядке, и в таких опытах действительно наблюдается спонтанное возникновение мутантов, устойчивых к фагу, и ни в одном из тысяч экспериментов такого рода не наблюдалось явление приобретенного иммунитета. Просто принцип или—или (или мутация – или иммунитет) не работает в биологии именно потому, что живая природа – это продукт эволюции в течение невообразимо длинного отрезка времени в 3,5 миллиарда лет. В биологии почти всегда оказывается, что справедлив принцип и—и, т. е. в нашем случае и мутации – и иммунитет. Иными словами, в науке о живой природе нет правил без исключений, нет строгих и незыблемых законов, как в физике, науке о неживой природе. У биологов не должно быть убеждений, за которые они были бы готовы пойти на костер: сгорят все, некому будет работать.

Мне известен только один закон живой природы, который не имеет исключений: у всех живых организмов генетическая информация содержится в форме двойной спирали ДНК. (Вирусы не в счет: они не способны к автономному существованию, помимо живой клетки.) То, что этот закон не знает исключений, означает, что жизнь на планете Земля возникла только один раз и все живые существа произошли от этой клетки-прародительницы. Но я не готов пойти на костер за это свое убеждение, потому что нет никакого запрета с точки зрения незыблемых законов физики, чтобы «самой главной молекулой» была не ДНК, а, скажем, РНК, что, по-видимому, и имело место на самых ранних этапах возникновения жизни, в эпоху РНКового мира. Более того, у меня нет сомнений, что рано или поздно человеку удастся создать полностью искусственную жизнь и в этих искусственных клетках носителем генетической информации будет не ДНК, а нечто другое, может быть, та же РНК.

Почему же опыт Лурии и Дельбрюка был воспринят не тем, чем он был: свидетельством важной роли случайных мутаций у бактерий в приобретении устойчивости к заражению фагами? Почему этот опыт был воспринят генетическим сообществом гораздо шире: как окончательное доказательство того, что наследование благоприобретенных признаков невозможно – нигде и никогда?

Скорее всего, здесь сыграли роль не столько научные, сколько политические мотивы. Мировое генетическое сообщество с ужасом наблюдало в течение ряда лет, как русская генетическая школа, едва ли не самая сильная в мире, систематически истреблялась самыми жестокими методами сталинским режимом, который поднял на щит шарлатана Трофима Лысенко, исповедовавшего ламаркизм в его самой вульгарной форме. Особенно остро генетическое сообщество восприняло исчезновение одного из самых уважаемых своих членов – Николая Вавилова, даже еще не зная о его ужасной участи. Конечно, масло в огонь подлила печально знаменитая сессия ВАСХНИЛ 1948 года, где генетика подверглась полному разгрому. А затем еще началась открыто антисемитская кампания «борьбы с космополитизмом». Насколько генетики всего мира были вовлечены в эти события, можно судить по тому, что, когда в 1949 году в журнале «Огонек» была опубликована чудовищная статья под названием «Мухолюбы-человеконенавистники», обвинившая генетику и генетиков во всех смертных грехах, английский перевод этой статьи был сразу же опубликован в ведущем международном научном журнале по генетике Journal of Heredity. Так что неудивительно, что в 1940-е годы и позднее ламаркизм стал вызывать у генетиков всего цивилизованного мира самые ужасные ассоциации. Не могло быть более страшного оскорбления в адрес биолога, чем назвать его ламаркистом или, боже упаси, лысенковцем.

Но вернемся к приобретенному иммунитету у бактерий. Как же его удалось обнаружить? Это открытие – прямое следствие успехов в области секвенирования геномов. Первые 10 лет после того, как Фредерик Сенгер изобрел свой метод секвенирования ДНК, дело продвигалось очень медленно. Как уже отмечалось в главе 5, всерьез эра секвенирования геномов началась после изобретения метода ПЦР в середине 1980-х годов, позволившего получать неограниченное количество копий выбранного исследователем участка ДНК (см. главу 10), и после широкого развития Интернета. К концу 1980-х годов даже геном кишечной палочки не был еще расшифрован и исследователи секвенировали отдельные участки этого генома. В 1987–1989 годах группа японских ученых из университета Осаки во главе с Атсуо Наката сообщила в специализированном микробиологическом журнале об обнаружении очень странного участка в геноме кишечной палочки. Он состоял из повторяющейся 14 раз идентичной последовательности из 29 нуклеотидов, причем эти повторы были отделены друг от друга промежуточными последовательностями из 32–33 нуклеотидов, не имеющими между собой ничего общего (рис. 24). Авторы не высказали никакой гипотезы, что бы это могло значить, и их статьи не привлекли ничьего внимания.

Спустя более 10 лет этими странными повторами заинтересовался испанский микробиолог Франциско Мохика. К началу 2000-х годов геномная база данных пополнилась множеством геномов бактерий и их вирусов. Мохика с соавторами обнаружил, что очень у многих бактерий наблюдаются участки, похожие на те, что были впервые описаны Накатой. Они получили длинное и неуклюжее название, которое сокращается как КРИСПР. Но самое главное, Мохика сравнил последовательности неповторяющихся промежутков между повторами с последовательностью различных вирусов и плазмид и обнаружил, что часто последовательности промежутков заимствованы из последовательностей ДНК фагов или плазмид, как раз тех, которые паразитируют на данной бактерии. При этом фаги, чьи участки перенесены в виде промежутков в кассету КРИСПР, не могут заражать бактерию. В своей статье 2005 года Мохика впервые предположил, что кассеты КРИСПР как-то связаны с иммунитетом у бактерий против чужой ДНК.

Рис. 24. Повторы, обнаруженные Атсуо Накатой с сотрудниками в геноме кишечной палочки. Ясно видно, что последовательность из 29 нуклеотидов (подчеркнуто) строго повторяется 14 раз, в то время как между промежуточными последовательностями, содержащими от 32 до 33 нуклеотидов, нет ничего общего

Это было поворотным моментом. К изучению системы КРИСПР подключился крупнейший американский биоинформатик российского происхождения Евгений Кунин, который углубил и расширил анализ последовательностей. Были выявлены кодирующие белки гены, участвующие в КРИСПР, получившие название «кас». Большой вклад в изучение проблемы внес российско-американский микробиолог Константин Северинов. Затем подоспели молекулярные биологи, которые довольно быстро разобрались в деталях того, как осуществляется иммунная реакция.

А происходит следующее (рис. 25). Вся кассета КРИСПР транскрибируется. Получившаяся РНК нарезается на куски, каждый из которых содержит один повтор и один промежуток. Такая небольшая молекула РНК, содержащая около 60 нуклеотидов, обозначается как крРНК. Ген кас экспрессирует кас-белок, который связывается с крРНК и начинает внимательно обследовать двунитевую ДНК в клетке. Белок локально раскрывает двойную спираль и примеряет к раскрытому участку крРНК. Когда происходит комплементарная гибридизация между крРНК и одной из цепей ДНК, кас-белок режет обе цепи ДНК, создавая двунитевой разрыв двойной спирали. Такой разрыв ведет к деградации ДНК в бактериальной клетке. Вторгшаяся в клетку плазмидная или фаговая ДНК обезврежена.

Почему же комплекс крРНК с кас-белком не набрасывается на саму кассету КРИСПР и не производит разрыв геномной ДНК бактерии? Для этого существует специальная, очень короткая последовательность, которая присутствует в ДНК фага или плазмиды и узнается кас-белком, но которая отсутствует в кассете КРИСПР. В отсутствие этой последовательности кас-белок не работает.

Таким оказался механизм приобретенного иммунного ответа бактерий. Да, остается только признать: в эклектическом буйстве жизни, с которым нам приходится иметь дело, нашлось место и Ламарку. Но громадный интерес, который привлекает к себе обнаруженный у бактерий иммунитет, связан не с частичной реабилитацией ламаркизма, а с практическими приложениями системы КРИСПР-кас в области редактирования генома в живой эукариотической клетке, о чем речь пойдет в главе 11.

Рис. 25. Механизм приобретенного иммунитета у бактерий (КРИСПР). КРИСПР-кассета состоит из повторов (белые участки) и промежутков 1, 2, 3,4… n. В случае кишечной палочки n = 13 (см. рис. 24). За КРИСПР-кассетой следуют гены, кодирующие кас-белки. Вся кассета транскрибируется и затем нарезается на отдельные крРНК, каждая из которых несет только одну промежуточную последовательность. Кас-белок связывает одну из крРНК, локально раскрывает двойную спираль вторгшейся ДНК, и когда происходит гибридизация между крРНК и участком вторгшейся ДНК, кас-белок наносит два однонитевых разрыва в обеих цепях раскрытой области двойной спирали: инфекция блокирована

7 Кольцевые ДНК

ДНКовые кольца

Внимательный читатель, должно быть, заметил, что для понимания биологических функций ДНК важны два ее основных свойства: она состоит из двух комплементарных цепей, и генетическая информация заключена в последовательности нуклеотидов четырех типов (А, Т, Г и Ц). Собственно, на этих двух фактах зиждется все стройное здание современной молекулярной биологии, включая генную инженерию. Даже то, что ДНК – это спираль, а не просто веревочная лестница, биологам знать как бы ни к чему, а уж генным инженерам – и подавно, не говоря уже о более тонких деталях физического строения молекулы. Во всяком случае есть люди, которые действительно так считают. Эти люди говорят, что хватит, мол, копаться в этой ДНК, пора всем дружно взяться только за сугубо практические задачи, для решения которых вполне достаточно того, что известно.

Конечно, позиция эта недальновидна. То, о чем было рассказано в предыдущих главах, убеждает, что при изучении ДНК даже самые, казалось бы, пустяковые факты могут привести к открытиям первостепенной важности. Вспомните историю открытия рестриктаз. Ведь все началось с выяснения очень тонкой химической особенности молекул ДНК – метилирования ничтожной доли нуклеотидов. Эта особенность не была связана с основными функциями ДНК, а лишь позволяла клетке отличать «свои» молекулы от «чужих». А где были бы сейчас молекулярная биология и генная инженерия, не будь открыты рестриктазы?!

Так кто же осмелится утверждать, что тщательное изучение структуры ДНК не откроет нам совсем новые характеристики молекулы, важные для ее работы, не выявит новые ферменты, о которых никто раньше и не подозревал? Где гарантия, что в результате мы не сможем еще активнее вмешиваться в генетические процессы? Вновь и вновь мы убеждаемся в том, что изучение биологической роли тонких особенностей структуры ДНК обещает интересные и неожиданные находки. Пожалуй, самое яркое свидетельство тому – открытие кольцевой формы ДНК, явления сверхспирализации и ферментов топоизомераз. При выяснении возникших здесь вопросов молекулярным биологам в наибольшей степени потребовалась помощь со стороны физики и математики.

Когда научились выделять из клеток молекулы ДНК (а биохимики овладели этим искусством очень давно), то вскоре убедились, что эти молекулы ведут себя так, как и положено себя вести обычным линейным полимерам. На каждую молекулу приходилось по два конца. И ни у кого не вызывало сомнений, что все молекулы ДНК – линейные цепи. Правда, генетикам часто было неясно, какие же гены считать концевыми. Поэтому им приходилось рисовать свои генетические карты в виде кольцевых диаграмм. Но можно себе представить, как посмеялись бы над тем чудаком, который стал бы утверждать, что эти условные кольцевые карты отражают истинное кольцевое строение самих молекул! Для того, чтобы всерьез утверждать такое, надо было доказать, что молекулы ДНК и впрямь бывают кольцевыми. Как это часто случается, ответ пришел оттуда, откуда его и не ждали.

Электронные микроскописты изучали маленькие ДНК онкогенных вирусов, т. е. вирусов, вызывающих рак. Генетические сведения об этих ДНК практически вообще отсутствовали, но работать с ними было удобно – маленькие ДНК не рвутся на куски, как это происходит с длинными молекулами, выделять которые в неповрежденном виде – очень трудная задача. Так вот, к величайшему удивлению своему, микроскописты обнаружили, что некоторые вирусные ДНК замкнуты в кольцо. Это наблюдение было сделано в начале 1960-х годов. Стало ясно, что кольцевые генетические карты – штука вовсе не случайная.

Однако особого интереса открытие не вызвало. Мало ли какой бывает ДНК в вирусах! Иногда она находится там в виде одной из двух комплементарных цепей. Порой эта цепь замкнута в кольцо. Но заведомо известно и много случаев, когда внутри вирусной частицы ДНК линейна.

Все же поиск кольцевых ДНК продолжался. И постепенно выяснилось, что даже в тех случаях, когда ДНК в вирусной частице линейна, она, как правило, замыкается в кольцо после проникновения вируса в клетку. Оказалось, что перед началом репликации такая линейная молекула переходит в форму (ее называют репликативной), в которой обе комплементарные цепи ДНК образуют замкнутые кольца (рис. 26). Кольцевыми оказались ДНК бактерий, в частности, кишечной палочки. Плазмиды, эти незаменимые в генной инженерии переносчики генов, всегда кольцевые. Короче, трудно назвать случаи, когда ДНК работает в прокариотической клетке, не находясь в кольцевом состоянии. Отметим сразу, что у эукариот хромосомная ДНК всегда линейна. Мы еще вернемся к этому фундаментальному различию между двумя основными царствами живых существ. А пока сосредоточим свое внимание на прокариотах. Зачем прокариотической клетке замыкать молекулы ДНК в кольца? Что это дает? К каким изменениям свойств молекул приводит? Чтобы ответить на эти вопросы, надо было подробно изучить эту новую форму ДНК.

Рис. 26. В замкнутой кольцевой ДНК две комплементарные цепочки образуют зацепление высокого порядка

Сверхспирализация и топоизомеразы

Для нас сейчас важнее всего то, что в молекуле ДНК комплементарные цепи обвивают друг друга подобно двум лианам, и когда каждую из цепей замыкают, то два кольца оказываются зацепленными так, что их невозможно развести. Простейшее зацепление двух колец известно всем – это символ бракосочетания (рис. 27). Только две комплементарные цепи в ДНК сцеплены друг с другом гораздо сильнее.

Количественно степень зацепленности двух колец характеризуется величиной, называемой порядком зацепления и обозначаемой Lk (от английского слова linking). Определить эту величину для любого зацепления очень легко. Нужно представить себе, что на одно кольцо натянута мыльная пленка, и подсчитать, сколько раз второе кольцо протыкает эту пленку. Тогда легко убедиться, что для символа бракосочетания Lk = 1, а для зацепления, изображенного на рис. 26, Lk = 9.

Величина Lk замечательна тем, что ее значение для заданной пары колец не может измениться, как бы мы ни гнули эти кольца, лишь бы не рвали их. Поэтому математики говорят, что Lk есть топологический инвариант системы, состоящей из пары колец. А без помощи математиков молекулярным биологам никогда не удалось бы разобраться в свойствах кольцевых ДНК.

Рис. 27. Простейшее зацепление – символ бракосочетания

Итак, если мы превратили ДНК в кольцевую замкнутую молекулу, то созданный в ней порядок зацепления двух цепей не может измениться, что бы мы ни делали с молекулой, пока сахарофосфатные цепи, образующие «хребет» каждой из комплементарных цепочек, остаются целыми и невредимыми. Благодаря этому обстоятельству замкнутые кольцевые (зк) ДНК обладают совершенно особыми свойствами, резко отличающими их от линейных молекул. Самое главное заключается в том, что в зкДНК может быть запасена впрок энергия в виде так называемых сверхвитков.

Чтобы пояснить только что сказанное, представим линейную ДНК в каких-то определенных внешних условиях. В такой ДНК на один виток двойной спирали приходится вполне определенное число пар оснований. Это величина γ0. В двойной спирали Уотсона—Крика γ0 = 10, но она может немного меняться (всего лишь на десятые доли, но сейчас для нас это важно) при изменении внешних условий. Допустим теперь, что из линейной молекулы сделали кольцевую, прибегнув к минимальному насилию. Проще всего представить себе, что мы превратили молекулу в окружность и «заклеили» концы каждой из цепей. Чему будет равно Lk? Ясно, что Lk = N / γ0, где N – число пар оснований в молекуле.

Теперь изменим внешние условия. Молекула ДНК приобретает другое равновесное значение числа пар оснований на виток – γ0, хотя величина Lk измениться не может. Что же происходит? Молекула стремится обрести положенный порядок зацепления: Lk' = N / γ0, но не в состоянии себе этого позволить, ей уже навязано иное значение Lk. Подобное случается и с брачными узами. Когда они заключались, то Lk = 1, но вот условия изменились, той или другой стороне хочется расторгнуть брак, т. е. сделать Lk равным нулю. Возникает очень напряженная обстановка. Нечто похожее происходит и с ДНК. Молекула оказывается в напряженном, энергетически невыгодном состоянии сверхспирализации.

Обычно сверхспирализованные молекулы принимают форму, показанную на рис. 28. Количественно сверхспирализация характеризуется величиной τ = Lk-N / γ0. Подобно тому, как самой двойной спирали приписывается определенный знак (положительный для правой спирали и отрицательный для левой), так и сверхспирализация может в принципе быть положительной или отрицательной. На рис. 28 двойная спираль правая, как и положено для ДНК, а сверхспирализация отрицательна.

Последнее утверждение может вызвать недоумение. Ведь кажется, что сверхспираль на рис. 28 правая, а не левая. Это один из парадоксов, с которыми приходится сталкиваться при изучении сверхспирализации. Чтобы проще было во всем этом разобраться, возьмите кусок резинового шланга длиной чуть меньше метра, по возможности жесткого. Вставьте в один конец шланга какой-нибудь штырь так, чтобы он немного торчал наружу и на него можно было надеть другой конец, замкнув шланг в кольцо. Важно, что концы шланга после замыкания не должны свободно прокручиваться относительно друг друга.

Теперь можно моделировать сверхспирализацию. Для этого, держа один конец неподвижным, вращайте другой конец шланга вокруг оси штыря так, чтобы ось шланга образовала левую винтовую линию. Затем дайте замкнутому в кольцо шлангу принять наиболее выгодное для него положение, придерживая его двумя пальцами одной руки. Вы убедитесь, что он примет форму, аналогичную изображенной на рис. 28.

Рис. 28. Такой вид принимает сверхспиральная ДНК. Сверхспирализация отрицательная

По мере того как из клеток аккуратно выделяли все новые ДНК и определяли их состояние, вновь и вновь убеждались в том, что эти ДНК не только замкнуты в кольцо, но и завиты в сверхвитки; при этом сверхспирализация абсолютно во всех случаях оказывалась отрицательной. Стало ясно, что сверхспирализованное состояние ДНК не исключение, как думали вначале, а правило. Но тут возникло сомнение – а такова ли ДНК там, внутри клетки? Пришлось признать, что, скорее всего, нет, не такова. По-видимому, сверхспирализация – это реакция на насильственное извлечение ДНК из родной стихии, ведь условия, в которых пребывает ДНК внутри клетки, конечно же, отличаются от условий после ее извлечения.

В клетке ДНК связана с какими-то белками, в частности, с теми, которые раскрывают двойную спираль и расплетают в этих местах две цепи. Но из-за расплетения среднее для всей молекулы значение γ0 становится больше, чем для чистой ДНК, не связанной с белками. Поэтому, если ДНК все-таки не закручена в клетке в сверхспираль, то очистка ее от белков приведет к тому, что она обязательно перейдет в сверхспирализованное состояние с отрицательным знаком.

Таково было простейшее объяснение сверхспирализации ДНК, сложившееся к началу 1970-х годов. Оно означало, что сверхспирализация не имеет никакого биологического значения.

В начале 1970-х годов проблемой сверхспирализации ДНК занимались практически только две группы, обе в США, – Джерома Винограда (Калифорнийский технологический институт), открывшего само явление сверхспирализации, и Джеймса Уонга (Гарвард). Кому хотелось изучать свойство ДНК, явно не имеющее биологического значения? Собственно, и Уонг подключился только потому, что решил выяснить, могут ли те или иные белки расплетать ДНК.

Опыты Уонга требовали времени и усилий: надо было в зкДНК разрывать одну из цепей, создавать комплекс между белком и разорванной ДНК, затем залечивать разрыв лигазой, отделять ДНК от белка и, наконец, измерять величину сверхспирализации. Хорошо бы иметь один белок, который и рвет цепь, и залечивает разрыв, думал Уонг. Насколько меньше было бы возни. И он принялся искать такой белок в клеточных экстрактах кишечной палочки.

Что могло помочь в поисках? Приметы были ясны: если нужный белок существует, то с его помощью сверхспирализованная ДНК должна превращаться в кольцевую замкнутую молекулу, не имеющую сверхвитков. В самом деле, как только белок разорвет одну из цепей, напряжение в ДНК немедленно пропадет, т. е. сверхспираль исчезнет. А когда белок залечит разрыв, то получится ДНК, у которой Lk = N / γ0. Иными словами, шла охота за ферментом, способным менять величину Lk.

Уонгу удалось обнаружить такой фермент. Этот белок оказался родоначальником обширного класса ферментов, меняющих топологические свойства ДНК и названных впоследствии топоизомеразами. Обнаруженный Уонгом первый представитель этого нового класса ферментов получил название топоизомераза I. Открытие топоизомераз заставило усомниться в том, что сверхспирализация никчемна в биологическом смысле. Ведь если есть ферменты, меняющие топологию, то, значит, сама топология клетке не совсем безразлична.

Начался планомерный поиск топоизомераз. И вот в 1976 году группа Мартина Геллерта (Национальный институт здравоохранения, США) обнаружила фермент, который при помощи АТФ (этого универсального «аккумулятора» энергии в клетке) производит действие, обратное тому, что проделывает белок, открытый Уонгом. Этот фермент, названный ДНК-гиразой, превращает расслабленную несверхспирализованную зкДНК в сверхспираль. И вот тут-то выяснилось, что если вывести из строя гиразу, то самые важные процессы в клетке, в частности репликация ДНК, полностью прекращаются. Стало ясно, что сверхспирализация – жизненно важное для клетки состояние ДНК.

Зачем нужна сверхспирализация?

Сверхспирализация – важнейший пример того, как физическое состояние молекулы ДНК влияет на ее работу в клетке. Всю эту проблему интенсивно изучают специалисты самых разных профилей – от медиков до математиков. Поэтому неудивительно, что существует множество гипотез о роли сверхспирализации в работе клетки. Мы остановимся более подробно на одной из них, которая кажется сейчас наиболее простой и правдоподобной.

Гипотеза эта возникла потому, что было прямо доказано: для того чтобы начать удваиваться, молекуле ДНК обязательно надо закрутиться в сверхспираль, но для самого процесса репликации сверхспираль вовсе не нужна. Более того, иногда перед репликацией одна из цепей кольцевой замкнутой ДНК рвется, причем этот разрыв делает специальный белок и только в том случае, если ДНК сверхспирализована. Получается какая-то бессмыслица – клетка затрачивает усилия, чтобы превратить ДНК в сверхспираль с помощью одного белка (ДНК-гиразы) для того, чтобы другой белок эту сверхспирализацию немедленно ликвидировал. Но факты неопровержимы – без этого загадочного ритуала репликация не начнется, во всяком случае в тех объектах, которые были исследованы (например, в бактериофаге ФХ174).

Объяснение всему этому может быть, по-видимому, только одно. Описанный ритуал – не что иное, как проверка ДНК на целостность сахарофосфатной цепи, своеобразный ОТК для ДНК. В самом деле, не следует забывать, что ДНК в клетке постоянно повреждается – облучением, химическими агентами, собственными нуклеазами, тепловым движением, в конце концов. В клетке есть целый арсенал средств, называемый репарирующей системой, для залечивания этих повреждений. В главе 3 мы рассказывали о том, как эта репарирующая система залечивает повреждения, наносимые ультрафиолетовыми лучами. Репарирующая система располагает множеством ферментов. Одни, нуклеазы, рвут цепь ДНК вблизи поврежденного нуклеотида. Другие ферменты расширяют брешь, удаляя поврежденное звено. Но генетическая информация при этом сохраняется, ведь есть вторая, комплементарная цепь, по которой ДНК-полимераза I вновь наращивает удаленную часть цепи ДНК.

Итак, в клетке постоянно залечиваются раны, наносимые молекуле ДНК, причем сплошь и рядом приходится прибегать к хирургическому вмешательству – разрывать одну из цепей двойной спирали. Что произойдет, если одновременно с ремонтом начнется репликация? Дойдя до разрыва цепи, ДНК-полимераза, ведущая репликацию, остановится: не сможет идти ни тот, ни другой процесс. Это катастрофа. Значит, репликацию следует начинать, только до конца убедившись, что ремонт завершен, а судить об этом можно по тому, что обе цепи ДНК целы. Но как это проверить? Пустить какой-нибудь белок вдоль ДНК, чтобы он ее прощупывал? Но на ДНК могут сидеть другие белки, которые не пропустят «ощупывающий» белок, и потом этот контроль очень долог. Где гарантия, что, пока будет проверяться целостность цепи звено за звеном, не произойдет новое повреждение? Нет, такой путь не годится.

И вот тут-то на помощь приходит сверхспирализация. Ведь она возможна только в той ДНК, в которой обе цепи на всем протяжении целы. А убедиться в наличии сверхспирали очень просто – в сверхспиральной ДНК гораздо легче развести две комплементарные цепочки, т. е. раскрыть участок двойной спирали. Раскрытие подобно действию расплетающего белка – оно снимает напряжение в отрицательно сверхспирализованной ДНК. Итак, белку, которому поручен контроль, следует связаться с нужным участком ДНК (он узнает его по определенной последовательности нуклеотидов) и попробовать развести в этом месте комплементарные цепи. Если получилось, то с этого места быстро-быстро начинается репликация. Если развести цепи не удалось, то придется подождать – ДНК еще не готова к воспроизведению.

Не правда ли, очень похоже на то, как мы проверяем исправность электрического шнура? Мы не прощупываем его по всей длине, а просто пропускаем ток. Если ток проходит – все в порядке, если нет – ищем неисправность. Найдя дефект и устранив его, мы вновь проверяем прохождение тока – а вдруг есть еще разрыв? Во всяком случае без такой проверки никто не станет прилаживать шнур. Но ДНК – не проводник, по ней ток не течет, так что пришлось клетке изобрести свой, надо признать, весьма остроумный тестер.

Но сверхспирализация нужна не только для начала репликации. Чтобы понять связь между сверхспирализацией и транскрипцией, проделайте следующий опыт. Подойдите к окну и закрутите двойной шнур от штор по часовой стрелке, пока не получится двойная спираль. Затем вставьте карандаш или авторучку между двумя цепями и начните его двигать вдоль двойной спирали без вращения. Тем самым вы смоделируете процесс транскрипции: карандаш моделирует РНК-полимеразу, а двойной шнур – ДНК. Из такого эксперимента станет ясно, что по мере того, как РНК-полимераза ползет по ДНК, она должна перезакручивать двойную спираль впереди себя и раскручивать ее за собой. Иными словами, ДНК становится положительно сверхспирализованной впереди РНК-полимеразы и отрицательно сверхспирализованной позади нее. Уонг с сотрудниками из Гарварда убедительно доказал, что такие волны сверхспирализации действительно имеют место и в прокариотических, и в эукариотических клетках.

Если вы продолжите опыт со шнуром и карандашом, то вскоре убедитесь, что не сможете больше двигать карандаш, так сильно шнур перекручен впереди карандаша. Следовательно, приходится допустить, что либо молекула ДНК и РНК-полимераза могут вращаться относительно друг друга, либо клетка способна снимать как положительную, так и отрицательную сверхспирализацию. С одной стороны, трудно ожидать, что очень длинная молекула ДНК и громоздкая транскрипционная машина, в случае прокариот еще нагруженная трансляционной машиной (рис. 15), будут вращаться вокруг друг друга. С другой стороны, топоизомеразы как раз способны менять сверхспирализацию. Основываясь на приведенных простых аргументах, Лерой Лю и Джэймс Уонг выдвинули в 1987 году концепцию волн сверхспирализации. Но как же обнаружить эти волны? Ведь при выделении ДНК из клетки память о волнах сверхспирализации теряется, поскольку волна не меняет величину Lk ДНК.

Хотя Уонг с сотрудниками не смог непосредственно наблюдать волны сверхспирализации в клетке, они сумели убедительно доказать реальность этих волн путем выключения различных топоизомераз. Наиболее убедительным было наблюдение положительной сверхспирализации плазмидной ДНК в клетках E. Coli, в которых выключена ДНК-гираза. Объяснение этого замечательного факта состоит в том, что в этом случае топоизомераза I продолжает снимать отрицательные сверхвитки, в то время как происходит накопление положительных сверхвитков, которые в норме снимаются ДНК-гиразой.

Опыты Уонга заставили пересмотреть вопрос о биологической роли сверхспирализации. В самом деле, до этих опытов считалось, что ДНК-гираза существует в E. Coli, чтобы создавать отрицательную сверхспирализацию. Совместно с топоизомеразой I, действующей в противоположном направлении, они поддерживают некую «естественную» или, как говорят биологи, нативную отрицательную сверхспирализацию в клетке. Считалось даже, что путем изменения значения сверхспирализации может грубо регулироваться экспрессия генов.

Опыты Уонга перевернули все эти представления. Оказывается, ДНК-гираза в клетке выполняет работу по снятию положительных сверхвитков, а вовсе не по созданию отрицательной сверхспирализации. Понятие нативной сверхспирализации потеряло всякий смысл, так как локальная сверхспирализация может оказаться сильно положительной, сильно отрицательной или вообще нулевой в зависимости от положения промоторов, от соотношения между скоростью перемещения РНК-полимеразы вдоль ДНК и эффективностью работы топоизомераз по снятию сверхвитков, создаваемых движением РНК-полимеразы.

Физики и математики за работой

Конечно, чтобы понять как следует, в чем состоит роль сверхспирализации, необходимо всесторонне изучить не только ее влияние на биологические функции ДНК, но и на физическую структуру молекулы. За дело взялись физики. Однако сразу же возникли серьезные проблемы. Разные физические методы, с помощью которых пытались измерить величину сверхспирализации, давали разные результаты.

Как-то в начале 1970-х годов Джером Виноград, открывший явление сверхспирализации и работавший в Калтехе (так называют сокращенно Калифорнийский технологический институт), встретил математика Брока Фуллера, также из Калтеха, и попросил его помочь разобраться в проблеме кольцевых ДНК, поскольку сам он к тому времени совершенно запутался. Фуллер живо заинтересовался рассказом Винограда. Он почувствовал, что здесь могут оказаться полезными некоторые результаты, как раз привлекшие внимание математиков в то время. Они касались неожиданной связи между топологией и дифференциальной геометрией.

Эти две области математики изучают одинаковые объекты, кривые и поверхности, но с абсолютно разных точек зрения. Дифференциальная геометрия исследует локальные свойства поверхности, такие как кривизна, кручение. Топологию, напротив, совершенно не интересуют эти характеристики, для нее имеет значение, например, есть ли в поверхности дырки (но не важно, какой формы эти дырки), сколько их и т. д. Так, мраморную статую может изучать и геолог, и искусствовед. Но геолога интересует только камень, а искусствоведа – форма, приданная камню скульптором. Вряд ли эти люди нашли бы между собой общий язык, подходя к делу строго профессионально.

Столь же неожиданной оказалась для математиков связь между дифференциально-геометрическими и топологическими характеристиками одного класса поверхностей – двусторонних полос. Знаменитый лист Мёбиуса – частный случай полосы. Чтобы смастерить лист Мёбиуса, возьмите полоску бумаги, перекрутите ее на 180° вдоль длинной оси и склейте концы полоски. Затем начните с любой точки и ведите карандашом линию, параллельную краям полосы. Вскоре вы увидите, что вернулись к исходной точке, ни разу не оторвав карандаша от листа. Это и есть замечательное, даже несколько загадочное свойство листа Мёбиуса – он имеет всего лишь одну сторону. Поэтому его называют односторонней полосой.

Теперь вырежьте еще полоску из бумаги и вновь склейте концы. Но при этом перекручивайте их не на 180°, как при склейке листа Мёбиуса, а на угол, равный т × 360°, где т – целое число. Вы всегда будете получать двусторонние полосы. У двусторонней полосы два края представляют собой замкнутые кривые, причем они могут быть незацепленными или образовывать зацепление с каким-то значением порядка зацепления Lk, причем очевидно, что Lk = т.

Фуллер быстро сообразил, что с точки зрения математики молекула зкДНК представляет собой двустороннюю полосу. Краями полосы следует считать сахарофосфатные цепи молекулы. То, что зкДНК может быть только двусторонней полосой, – факт чисто химический, связанный с существованием направления в каждой из цепочек ДНК, причем комплементарные цепи направлены навстречу друг другу, т. е. антипараллельны (о чем мы поговорим подробно в конце этой главы). Легко убедиться, что если из такой молекулы попытаться склеить лист Мёбиуса, то ничего не получится – концы комплементарных цепей подойдут друг к другу в положении «голова к голове» и «хвост к хвосту», т. е. не смогут соединиться.

То, что сообщил Фуллер в статье, опубликованной вскоре после его разговора с Виноградом, состояло в следующем. Топологическая характеристика зкДНК, т. е. полосы, Lk не выражается однозначно через какую-либо геометрическую, а следовательно, и физическую характеристику молекулы. Она связана сразу с двумя геометрическими характеристиками. Первая хорошо известна в дифференциальной геометрии. Это кручение, осевая закрутка полосы Tw (от английского слова twist). Это есть суммарное количество оборотов, которое делает вектор, лежащий в плоскости полосы и перпендикулярный оси полосы, при движении вдоль полосы. Вторая характеристика не имела названия. Фуллер впервые дал ей имя – райзинг Wr (от английского глагола writhe, что значит скрючиваться, корчиться), так что модой давать экзотические названия, возникшей сначала в физике элементарных частиц (вспомните кварки, очарование, цвет и т. д.), постепенно заразились и математики.

Результат, приведенный Фуллером, был впервые строго доказан американским математиком Джеймсом Уайтом в 1968 году. Он устанавливает однозначную связь между Lk, Tw и Wr:

Lk = Tw + Wr.

Поразительно то, что столь простая формула (она вполне могла бы принадлежать Гауссу) была открыта столь поздно. Она оказала неоценимую помощь в изучении свойств кольцевых ДНК. В чем же состоит значение этой, казалось бы, простой до примитивности формулы?

Прежде всего очень важно то, что величина Wr зависит только от формы, которую имеет ось полосы в пространстве, но совершенно не зависит от того, как полоса закручена вокруг своей оси. Далее, для Wr существует общая формула, позволяющая вычислить эту величину для любой кривой. Эта формула была известна очень давно и называется интегралом Гаусса, но истинный смысл этого интеграла как разности между Lk и Tw для полосы стал ясен только после построения теории полос.

Наконец, совсем необычно то, что в левой части формулы Уайта стоит величина, которая может принимать только целочисленные значения (это непосредственно следует из определения Lk – ведь количество протыканий поверхности не может быть не целым). В то же время обе величины, стоящие справа, могут принимать любые значения, вовсе необязательно целочисленные.

В этом месте может, даже должен возникнуть целый каскад недоуменных вопросов. Ведь величина Tw – это число оборотов, которые делает полоса вокруг своей оси. Почему же это не целое число, если полоса замкнута? Да и вообще, существует ли райзинг? Чем, собственно, Lk отличается от Tw? Не находим ли мы, вычисляя Lk и Tw, разными способами одну и ту же величину?

Рис. 29. Полоса, намотанная на цилиндр

Чтобы разобраться во всем этом, поставим опыт. Вырежем из бумаги узкую полоску шириной сантиметр. Обмотаем ею какой-нибудь цилиндрический предмет (типа того, как показано на рис. 29) несколько раз, причем сделаем это так, чтобы полоска при наматывании не закручивалась вокруг собственной оси. Затем чуть-чуть выдвинем концы полоски так, чтобы их можно было склеить. Это не вызовет сколько-нибудь значительной осевой закрутки.

Так мы получим замкнутую полосу, у которой, по самому способу ее получения, Tw = 0. Чему же будет равно Lk? Это можно выяснить теперь экспериментально. Возьмем ножницы, проткнем ими полоску в любом месте и разрежем ее вдоль по всей длине. Получатся две сцепленные друг с другом совсем узенькие полоски. Порядок их зацепления и есть Lk краев исходной полосы.

Вот и выходит, что можно создать Lk, не создав никакого Tw. То, что мы делали, когда обматывали полоску вокруг цилиндрического предмета, – это придавали ей райзинг. Равенство Lk = Tw справедливо тогда, когда ось полосы лежит на плоскости. Ощущение, что так должно быть всегда, основано на том, что мы обычно представляем себе полосу (или молекулу ДНК) так, будто ее ось описывает простую фигуру, скажем, окружность или что-то вроде того.

После статьи Фуллера стало ясно, что противоречия при исследовании сверхспирализации возникли потому, что одни методы измеряют физические характеристики, зависящие от Wr, а другие – от Tw. Получив в руки надежный математический аппарат, физики начали планомерно изучать влияние сверхспирализации на свойства зкДНК.

Как раз в то время в обиход стал входить метод гель-электрофореза, о котором мы говорили в главе 5. Была продемонстрирована очень высокая разрешающая способность метода при разделении молекул ДНК, имеющих разную длину. И тогда немецкому ученому Вальтеру Келлеру пришла в голову сумасшедшая идея: а что если попробовать разделить при помощи гель-электрофореза молекулы зкДНК с разными значениями Lk? Принцип разделения здесь должен быть совсем не тот, что для линейных молекул ДНК разной длины.

У молекул, отличающихся только числом сверхвитков (такие молекулы называют топоизомерами), длина будет одинакова. Следовательно, одинаковы будут и заряд, и действующая со стороны электрического поля сила. Однако скорость движения молекулы в геле определяется не только приложенной к ней силой, но и сопротивлением, которое она испытывает при движении. А это зависит в свою очередь от формы молекулы. Ясно, что если молекула имеет форму сильно переплетенной веревки, как на рис. 28, то она будет испытывать гораздо меньшее сопротивление среды при движении в поле, чем расправленная молекула. Иными словами, чем больше райзинг по абсолютной величине, тем быстрее должна двигаться молекула. Речь идет о райзинге, а не об Lk, потому что сопротивление среды определяется пространственной формой оси двойной спирали и не зависит практически от того, как закручена спираль вокруг оси.

Рассуждая таким образом, Келлер стал работать с гелем и вскоре показал, что если нанести на гель препарат сверхспиральной ДНК, выделенной из клетки, то получится набор отдельных полос, отстоящих друг от друга приблизительно на равные расстояния. Единственная дискретная характеристика зкДНК – величина Lk. Значит, молекулы ДНК, находящиеся в этих полосах, могут отличаться друг от друга только значением Lk, т. е. каждая полоса отвечает определенному топоизомеру. Скорее всего, соседние топоизомеры отличаются по значению Lk на единицу. Впоследствии было доказано, что так оно и есть.

Результат разделения молекул зкДНК, отличающихся по величине сверхспирализации, показан на рис. 30. Справа дан снимок геля после окончания электрофореза. Чтобы ДНК была видна, гель прокрашивают флуоресцирующим красителем, который прочно связывается с ДНК и как бы метит ее. Слева показан график зависимости интенсивности флуоресценции красителя от координаты вдоль геля. Можно видеть, насколько четкого разделения удается достичь. По таким картинкам нетрудно подсчитать величину сверхспирализации, отвечающую каждому топоизомеру.

В изучении кольцевых ДНК и сверхспирализации метод гель-электрофореза дал столь же много, как и в определении ДНКовых последовательностей. Было сделано множество тонких измерений, позволивших определить важнейшие характеристики зкДНК. Именно с помощью гель-электрофореза была точно определена энергия, которая может быть запасена в ДНК с помощью сверхспирализации.

Рис. 30. Разделение молекул ДНК, отличающихся числом сверхвитков, методом гель-электрофореза. Опыт проводился с ДНК маленькой плазмидой рА03. содержащей 1683 пары нуклеотидов. Первоначально молекулы были нанесены сверху, вблизи отрицательной обкладки (это место не показано на рисунке)

Какие изменения в структуре ДНК может вызывать сверхспирализация? Понятно, что выгодным будет любое изменение структуры, в результате которого произойдет ослабление напряжения, вызванного в зкДНК сверхспирализацией. Поэтому было ясно, что сверхспирализация должна способствовать образованию в двойной спирали раскрытых областей, а также крестообразных структур. Крестообразные структуры в ДНК могут возникать в участках с последовательностями-перевертышами.

Что такое перевертыши? Они существуют в любом языке, не только в ДНКовом. Вот пример на русском языке: ИСКАТЬТАКСИ. Читайте эту фразу слева направо или справа налево – будет одно и то же (промежутки между словами и знаки препинания при составлении перевертышей не принимаются во внимание). А вот перевертыш подлиннее: НАЖАЛКАБАННАБАКЛАЖАН.

В свое время, когда поступили первые сообщения о существовании и возможной важной роли перевертышей в ДНКовых текстах (это было после открытия рестриктаз), началось повальное увлечение сочинением перевертышей на русском языке среди специалистов по ДНК. Мне очень нравится перевертыш, придуманный в то время Валерием Ивановичем Ивановым, известным специалистом по физике ДНК: РИСЛИНГСГНИЛСИР. Я представляю себе при этом короля и его дворецкого, торжественно провозглашающего: «Рислинг сгнил, сир!»

В ДНКовых текстах часто встречаются перевертыши. Из-за того, что ДНК состоит из двух цепей (т. е. как бы из двух параллельных, точнее, антипараллельных текстов), перевертыши могут быть двух типов. Такие перевертыши, как в обычном, одиночном тексте, называют зеркальными. В ДНК чаще встречаются перевертыши, которые читаются одинаково по каждой из цепей в направлении, заданном химическим строением ДНК (еще раз напомним, что две цепи ДНК имеют противоположное направление).

Практически всегда такими перевертышами бывают те участки, которые узнаются рестриктазами. Вот примеры (слева дано название рестриктаз; эти названия весьма причудливы, так как включают в себя первые три буквы названия бактерии, из которой выделена рестриктаза; стрелками показаны места разрезания ДНК рестриктазой):

Так вот, замечательное свойство ДНКовых перевертышей состоит в том, что они могут образовывать крестообразные структуры. В самом деле, ведь обязательно левая половина перевертыша будет комплементарна правой, т. е. можно сделать так:

для места узнавания рестриктазой ЕсоRI и аналогично для любого другого перевертыша. Во всяком случае это не противоречит правилу комплементарности.

Однако сразу возникают вопросы. Разрешает ли структура ДНК существование таких резких изломов, какие должны возникнуть в двух вершинах креста? Ведь цепь ДНК обладает определенной жесткостью, не так просто сделать в ней резкий излом. В главе 3 мы уже обсуждали эту проблему в связи с укладкой ДНК в хромосомах. Двойная спираль – весьма жесткая штука, и для ее изгибания в хромосомах существуют специальные белки (гистоны и другие). Правда, одиночная цепь гораздо менее жесткая, так что вообще изломы в одиночной цепи возможны. Но они требуют затрат энергии. Поэтому совершенно неясно, зачем в ДНК будет возникать крест, если он может превратиться в регулярную двойную спираль. Но все это так в случае линейных молекул. А в сверхспирализованных?

Образование креста приводит к снятию сверхспирального напряжения. Не может ли это сделать выгодным образование креста в сверхспиральной ДНК? Какая сверхспирализация для этого необходима?

Чтобы ответить на все эти вопросы, группа теоретиков Института молекулярной генетики АН СССР – Вадим Аншелевич, Александр Вологодский, Александр Лукашин и автор этих строк – в 1979 году подробно проанализировала процесс образовании раскрытых и крестообразных структур в линейных и сверхспирализованных ДНК.[2] Теоретический анализ показал, что вероятность образования и раскрытых пар, и крестов в линейной ДНК очень мала. Особенно ничтожна вероятность возникновения креста – она порядка 10–15, т. е. практически равна нулю. С ростом сверхспирализации картина очень сильно меняется. Быстро увеличивается вероятность образования раскрытых пар. Но вероятность образования крестов в коротких перевертышах вроде тех, которые узнаются рестриктазами, остается пренебрежимо малой при любых значениях сверхспирализации.

Другое дело – более длинные перевертыши, содержащие 15–20 или более пар. Такие перевертыши редко, но встречаются в ДНК. Вот, например, перевертыш из плазмиды Соl Е1, он показан на рис. 31. Для таких длинных перевертышей вероятность образования крестов растет, согласно расчетам, фантастически резко с ростом сверхспирализации. При нормальных значениях сверхспирализации, типичных для многих ДНК, вероятность образования креста оказывается порядка единицы, т. е. становится в 1015 (миллион миллиардов!) раз больше, чем в линейной молекуле. После того как наши теоретические предсказания были опубликованы, многие экспериментаторы принялись искать крестообразные структуры в зкДНК. Первыми финишировали две команды – британская (Дэвид Лилли) и американская (Роберт Уэллс). Им удалось доказать, что длинные перевертыши в сверхспиральных ДНК действительно образуют кресты.

Рис. 31. Такой крест образуется в ДНК Co1 Е1. когда она находится в сверхспиральном состоянии

Как же удалось это сделать? Ведь сами шпильки, возникающие в крестообразных структурах, слишком малы, чтобы их можно было разглядеть даже в электронный микроскоп. Поэтому для поиска крестов был применен такой прием. Сверхспирализованную ДНК обрабатывали ферментом – однонитевой эндонуклеазой. Этот фермент рвет только одиночную цепь ДНК, но не трогает двойную спираль. Поэтому обычную линейную, или кольцевую замкнутую, но не сверхспирализованную молекулу фермент не разрывает. Оказалось, однако, что сверхспирализованную ДНК он разрывает, причем в строго определенном месте. Определили последовательности нуклеотидов слева и справа от места разрыва. Оказалось, что во всех случаях разрезание шло строго в середине больших перевертышей, именно тех, в которых, согласно теоретическим расчетам, должны образовываться кресты. Такие опыты, казалось бы, могут иметь только одно объяснение: в сверхспирализованных ДНК в местах длинных перевертышей двойная спираль с большой вероятностью превращается в крестообразную структуру; однонитевая эндонуклеаза разрывает образующиеся при этом в вершинах креста однонитевые петли.

Однако вскоре возникли сомнения. Образуются ли кресты на самом деле в ДНК или они возникают лишь под действием белка, однонитевой эндонуклеазы? Чтобы рассеять эти сомнения, необходимо было зарегистрировать образование крестов каким-либо другим методом, без фермента. Но, как уже говорилось выше, непосредственно увидеть кресты нельзя даже под электронным микроскопом. Как же быть?

Вновь на помощь пришел метод гель-электрофореза. Воистину нет цены тем услугам, которые эта удивительно простая методика оказала и продолжает оказывать тем, кто занимается ДНК. Мы привыкли к тому, что научный прогресс немыслим без сложнейших, дорогостоящих установок, начиненных сверхсовременной электроникой, сверхмощными компьютерами, лазерами и бог знает чем еще. Эти установки многие годы разрабатывают мощные фирмы с многотысячным персоналом, и стоят они десятки и сотни тысяч долларов. А вот представьте себе, что вы попали в лабораторию 1980-х годов, где проводились работы по изучению структуры ДНК, пользующиеся широкой известностью, и попросили показать экспериментальную установку, на которой эти работы были выполнены. Вы были бы поражены. Вас бы провели в комнату, в которой ничего не было, кроме обычного химического стола. Среди всяких склянок с реактивами вам показали бы небольшую, явно самодельную прозрачную коробку из плексигласа, частично заполненную водой, от которой отходят два тоненьких провода. И все. И вам еще сказали бы, что в это самое время на этой установке идет важный опыт. Вы почувствуете себя одураченным, как на выступлении хорошего фокусника. «Не может быть, – воскликнули бы вы, – чтобы с помощью такой примитивной штуки можно было решать тончайшие вопросы структуры ДНК, которые не помогают выяснить ни самые мощные электронные микроскопы, ни другие чудеса современной техники! Это какой-то обман».

Никакого обмана нет. Просто, как в любом хорошем фокусе, самого главного не разглядишь. Разумеется, этот волшебный ящик был бы совершенно бесполезен, если бы в нем не лежала прозрачная пластинка геля, а на гель не был бы наслоен образец ДНК, который вы, конечно, не могли заметить. И весь фокус в том, что это за ДНК. Она была специально приготовлена с использованием самых изощренных методов генной инженерии. Прежде чем попасть в этот неказистый приборчик, ДНК прошла через руки многих людей, крупнейших экспертов в своем деле, разбросанных по лабораториям в разных частях света. И каждый использовал все свои знания, все свое умение, чтобы изменить свойства этой ДНК нужным ему образом. Наконец, где-то в одной из соседних комнат были проведены последние приготовления ДНК к запланированному опыту. Вот вам и разгадка фокуса. В последние десятилетия успех в исследовании структуры ДНК стал невозможен без освоения специалистами по структуре ДНК методов генной инженерии.

Но вернемся к крестам. Использование метода гель-электрофореза для регистрации крестов в ДНК основано на том, что в результате перехода участка ДНК, имеющего последовательность-перевертыш, в крестообразное состояние, происходит частичное снятие сверхспиральных напряжений в молекуле. Молекула расправляется, становится менее сверхскрученной и начинает медленнее двигаться в геле под действием электрического поля из-за большего сопротивления среды. В результате топоизомер, в котором образовался крест, оказывается на электрофореграмме, типа приведенной на рис. 30, выше, чем топоизомер, имеющий на единицу меньшее число отрицательных сверхвитков, но не несущий креста. Так что в случае образования крестов должна нарушаться регулярная «лесенка», в которой топоизомеры с ростом отрицательной сверхспирализации движутся все быстрее и быстрее. Происходит наложение двух «лесенок» – отвечающих топоизомерам без крестов и с крестами. В результате на опыте возникает довольно сложная картина полос, в которой легко запутаться.

Разобраться в этой картине помогает остроумный прием, придуманный в начале 1980-х годов и получивший название «двумерный гель-электрофорез».

Опыт проводят не в столбике геля, как в случае традиционного, одномерного гель-электрофореза, а в квадратной пластинке из геля. На один из углов пластинки наслаивают образец ДНК и к двум противоположным сторонам квадратной пластинки прикладывают электрическое поле. В результате получают систему полосок, идущих вдоль одной из сторон пластинки. Эта картина тождественна той, которая получается при одномерном гель-электрофорезе. Теперь электроды переключают так, чтобы электрическое поле было перпендикулярно тому полю, в котором проводили первое разделение. При этом гель насыщают молекулами хлорокина. Эти молекулы связываются с двойной спиралью ДНК и уменьшают осевую закрутку (т. е. величину Tw). Связывание приводит к резкому уменьшению сверхспирального напряжения во всех топоизомерах образца, и его оказывается недостаточным, чтобы вызвать образование крестов. Кресты исчезают, и, следовательно, при гель-электрофорезе во втором направлении должна образоваться только одна, регулярная «лесенка». То, что в результате получается, видно на рис. 32.

Самое главное в этой картине – это то, что в регулярном следовании пятен происходит разрыв. В том, что во всех топоизомерах, идущих после разрыва, действительно возник крест, легко убедиться с помощью однонитевой эндонуклеазы. Если провести двумерный электрофорез после обработки препарата ДНК однонитевой эндонуклеазой, то на получившейся картине исчезают все пятна, следующие после разрыва. Это происходит потому, что эндонуклеаза атакует однонитевые петли креста и рвет их. ДНК перестает быть замкнутой, топологические напряжения снимаются, и все топоизомеры превращаются либо в расправленные кольца, либо (после длительной обработки однонитевой эндонуклеазой) в линейные молекулы.

Если далее локализовать место разрыва на молекуле ДНК, то оказывается, что эндонуклеаза наносит разрыв в точности в центре главного палиндрома. Такие опыты, проведенные впервые Виктором Лямичевым и Игорем Панютиным все в том же Институт молекулярной генетики АН СССР, окончательно рассеяли всякие сомнения в том, что кресты действительно самопроизвольно возникают в ДНК при достаточной отрицательной сверхспирализации. Эти опыты также продемонстрировали, что наши теоретические предсказания вероятности образования крестов в сверхспиральных ДНК верны количественно.

Рис. 32. Типичная картина двумерного гель-электрофореза, наблюдаемая при образовании в ДНК крестообразных или других альтернативных структур, о которых речь будет идти в главе 9. Специально приготовленная смесь различных топоизомеров одной и той же ДНК, несущей вставку, способную переходить в альтернативную структуру, была помещена в левый верхний угол квадратной пластинки геля. Затем было приложено электрическое поле так, чтобы молекулы ДНК двигались сверху вниз вдоль левого края пластинки. После завершения разделения топоизомеров в первом направлении гель насыщали молекулами хлорокина, которые уменьшают сверхспиральное напряжение. Концентрацию хлорокина подбирали с таким расчетом, чтобы сверхспирального напряжения было недостаточно для образования альтернативной структуры. Затем направление электрического поля меняли так, чтобы молекулы двигались слева направо. В результате последовательность пятен во втором направлении соответствовала последовательности топоизомеров.

Самое верхнее пятно отвечает нулевому топоизомеру, т. е. релаксированной, несверхспирализованной ДНК. Пятна, следующие от этого пятна по часовой стрелке, отвечают положительным топоизомерам, а те, что против часовой стрелки, – отрицательным. Ясно виден скачок подвижности, наблюдающийся в данном случае между топоизомерами –10 и –12. Это означает, что в топоизомерах –12, –13,… альтернативная структура присутствует, а в топоизомерах…, –9, –10 она отсутствует. Топоизомер –11 занимает промежуточное положение – в нем альтернативная структура то образуется, то исчезает

Какова роль крестов в ДНК? Пока об этом ничего не известно. Думают, что крестообразные структуры могут служить местами посадки на ДНК каких-то белков. Во всяком случае кресты – это первый надежно доказанный пример того, что структура отдельных участков биологически активной ДНК может существенно нарушаться при условиях, близких к тем, в которых ДНК функционирует в живой клетке. Насколько важную роль играют эти и, возможно, другие нарушения, о которых будет рассказано в главе 9, в работе ДНК в клетке – это вопрос дальнейших исследований.

Проблема концов

Эволюция – бездарный инженер. Она действует методом тыка или, выражаясь по-научному, методом проб и ошибок. Эволюцию не заботят отдаленные последствия принятых решений, лишь бы как-то решить сиюминутную проблему. Она не считается с гибелью почти всех ради выживания немногих, лишь бы выжившие еще протянули. Такая недальновидная инженерия сплошь и рядом заводит в эволюционные тупики, приводит к полному вымиранию целых видов. Можно лишь поражаться, что такой бездарный инженер создал все это буйство жизни, которое нас окружает, и нас самих, способных оценить степень бездарности нашего создателя. И в дополнение к своей собственной бездарности эволюции приходится работать в условиях строгих ограничений, налагаемых изначально избранной химической природой главных биологических молекул, прежде всего ДНК и РНК.

Эта химическая природа диктует жесткие правила, которым должны подчиняться процессы синтеза самих этих молекул. Одиночная цепь ДНК (и РНК) имеет химически заданное направление, т. е. концы различны. Конец, который принято считать началом цепи, обозначают как 5 и называют «пять-штрих конец». Противоположный конец обозначают как 3 и называют «три-штрих конец».

В двойной спирали цепи антипараллельны, т. е. направлены навстречу друг другу.

Так вот, цепи ДНК (и РНК) могут удлиняться только с 3 -конца, точнее с 3 -концевой гидроксильной группы OH. Удлинение производится при помощи специальных ферментов: ДНК – и РНК-полимераз. Ну это для читателя не новость, об этих ферментах уже много говорилось выше. Напомним, что, чтобы вести синтез, полимеразам необходимы четыре предшественника нуклеотидов и матрица (цепь ДНК или РНК), чтобы полимераза знала, какой нуклеотид ставить следующим. Эволюция привнесла еще одно существенное ограничение или, если хотите, ляп. ДНК-полимераза не способна начать синтез ДНК, имея только матрицу: ей еще подавай затравку (называемую праймером) с 3 -концевой OH-группой, иначе она работать категорически отказывается. Это свойство всех ДНК-полимераз (и ревертаз). РНК-полимеразы не столь привередливы, им достаточно матрицы, чтобы начать синтез. Кстати, ДНК-полимеразе безразлична химическая природа праймера (ДНК или РНК), лишь бы была 3 -концевая OH-группа. Одиночная цепь ДНК с сидящим на ней праймером выглядит так:

Вот на этой конструкции ДНК-полимераза работает с большим удовольствием, быстро и практически без ошибок превращая ее в такую:

Проблема праймирования уже обсуждалась нами в главе 5 в связи с секвенированием ДНК методом Сэнгера. В лаборатории эта проблема решается просто: вы заказываете нужный праймер в одной из множества фирм, синтезирующих кусочки ДНК (олигонуклеотиды) по заказу. Праймеры почти ничего не стоят, и их делают очень быстро. Это прекрасно, но как же быть клетке, если ей необходимо реплицировать свою ДНК? Тоже прикажете в фирму обращаться? Наш инженер вроде бы нашел выход из положения. Он приспособил к делу РНК-полимеразу, благо ей праймер не нужен. Такая РНК-полимераза, которая играет в клетке роль фирмы по синтезу РНКовых праймеров, называется праймазой. Вот вам и еще один пример былого величия РНК.

Может, наш инженер не так уж глуп, просто, когда еще в эпоху предбиологической эволюции впервые понадобилась ДНК-полимераза, проще оказалось воспользоваться уже готовой РНК-полимеразой, чем создавать ДНК-полимеразу, способную работать без праймера. Да, возможно, наш инженер и не глуп, но уж точно недальновиден. Проблема с репликацией ДНК все-таки возникла, причем серьезнейшая. Скорее всего, не сразу, а гораздо позже, в ходе биологической эволюции, когда что-либо изменить в ДНК-полимеразе было уже невозможно – все поломаешь. В чем же проблема?

Представим себе одноцепочечную линейную ДНКовую матрицу, и пусть праймаза сделает праймер на самом 3 краю нашей матрицы:

(Мы выделили праймер волнистой линией, чтобы подчеркнуть его РНКовую природу.) ДНК-полимераза достроит комплементарную цепь ДНК начиная с 3 -конца праймера и до самого 5 конца матрицы. Получится почти полноценная двойная спираль ДНК:

Вот именно, что «почти»: ведь на 5 -конце новой цепи сохранился кусочек РНК! Конечно, этот РНКовый кусочек легко удалить, для этой цели существует специальный фермент:

Но проблему это не решает. Как заполнить удаленную часть ДНКовыми нуклеотидами? Матрица есть, а 3 -конца-то нет, вместо него никчемный 5 -конец! Получается, что при каждом цикле репликации ДНК укорачивается на размер РНКового праймера. Самоедство какое-то, да и только. Все-таки никудышный инженеришко нам достался. Опять надо как-то выкручиваться, а то постепенно весь геном проедим. И прокариоты, и эукариоты нашли выход из тупика, в который их завела недальновидная эволюция, но они вышли из трудного положения совершенно по-разному.

Представим себе, что наша матрица замкнута сама на себя. Тогда, дойдя до праймера и уткнувшись в его 5 -конец, ДНК-полимераза может подождать, пока другой фермент (или экзонуклеазный домен самой ДНК-полимеразы) удалит РНКовый праймер, а затем ДНК-полимераза продолжит синтез ДНК до полного покрытия матрицы (рис. 33). Именно так решают проблему бактерии и вирусы, у которых ДНК всегда реплицируется в кольцевом состоянии (также реплицируется и митохондриальная ДНК в цитоплазме эуакариот). Не правда ли, изящное решение? Здесь наш инженер превзошел самого себя, надо отдать ему должное.

Рис. 33. У кольцевой ДНК не возникает укорочения при синтезе комплементарной цепи. На последнем этапе брешь залечивается ДНК-лигазой

Не так славно дело обстоит с геномной ДНК эукариот, т. е. у нас с вами. Здесь найденное решение изящным не назовешь. Судите сами. У эукариот геномная ДНК всегда линейна. У нас с вами в каждой клетке тела находятся ровно 46 линейных молекул ДНК, по числу хромосом. Как же быть с их неизбежным укорочением при каждом клеточном делении? Оказывается, на обоих концах всех этих ДНК имеются длиннющие последовательности, называемые теломерами, которые ничего не кодируют и представляют собой регулярные повторы. В частности, у человека (да и у всех позвоночных) повторяется мотив из шести букв: 5'ТТАГГГ3. Много тысяч раз этот мотив повторяется в виде двухцепочечной ДНК, только на самом конце хромосомные молекулы ДНК имеют одноцепочечный хвост, содержащий десятки повторов 5'ТТАГГГ3 , причем всегда выступает 3 -конец. Наличие теломеров позволяет основной части ДНК оставаться в целости и сохранности в ходе многих циклов репликации, каждый раз жертвуя несколькими теломерными повторами. Понятно, однако, что так можно только оттянуть развязку, но не решить проблему самоедства.

Загадка концов хромосом была разгадана Элизабет Блэкбёрн в середине 1980-х годов, когда она работала в Калифорнийском университете в Беркли. Блэкбёрн обнаружила необычный фермент, который она назвала теломеразой и который способен наращивать теломерные концы. Как же он это делает, ведь 3 -конец торчит наружу, не хватает матрицы? Оказалось, что теломераза таскает матрицу с собой в виде довольно длинной молекулы РНК (опять РНК!), которая содержит несколько повторов, комплементарных торчащим наружу теломерным повторам (т. е. РНК содержит повтор 5'ЦЦЦУАА3). Белковая часть фермента представляет собой ревертазу. Фермент подставляет РНКовую матрицу к однонитевому 3 -концу хромосомной ДНК, и этот конец служит праймером для ревертазы-теломеразы, которая удлиняет конец (рис. 34). Так делается много раз, а затем праймаза синтезирует праймер на нарощенной цепи, и ДНК-полимераза синтезирует вторую цепь.

Вот таким хитроумным способом эукариотическая клетка защищает свои гены от самоедства. За открытие теломеразы Блэкбёрн была удостоена Нобелевской премии по физиологии и медицине за 2009 год.

Интересно, что теломераза работает только в половых клетках. Так что, пока мы живем и клетки нашего тела (соматические клетки) делятся, они используют резерв теломерных концов, нарощенных в половых клетках. Московский ученый Алексей Оловников впервые предположил еще в начале 1970-х годов, что исчерпание этого резерва теломерных повторов и поедание самих генов является одной из основных причин старения. Пока неясно, насколько это так, но теломеры в наших клетках действительно укорачиваются с возрастом.

8 Узлы из ДНК

Об узлах

Всякий знает, что такое узел. Мы каждый день завязываем множество узлов. Обычно мы делаем это так:

Не правда ли, самый простой узел? Ну а это что такое?

Немного подумав, благоразумный читатель ответит: «Просто закрученное в жгут кольцо. К узлам эта штука отношения не имеет. Зря это здесь нарисовано». Нет, я не зря изобразил жгут – он, как и само кольцо, из которого жгут образован,

имеет не меньше, а, пожалуй, даже больше прав именоваться узлом, чем фигура (1).

Математик назовет фигуру (2) или фигуру (3) тривиальным узлом. А первую вообще откажется считать узлом.

«Ох, уж эти математики! – думаете, наверное, вы. – Вечно они все запутывают». Пожалуй, я бы согласился с вами. Я не математик и часто сам думаю точно так же. Но в данном случае я решительно с вами не согласен.

Можно, конечно, называть фигуру (1) узлом, но попробуйте четко объяснить, чем она отличается от такой:

Ведь фигуру (1) всегда можно распутать, и цепь вернется в исходное состояние. Этого нельзя сделать только в одном случае – если концы цепи бесконечно длинные. Поэтому лучше вообще избавиться от концов:

Попробуйте-ка теперь распутать! Каждому ясно, чем фигура (5) отличается от фигуры (3): их никаким образом нельзя перевести одну в другую, не порвав цепь. Узел (5) называют трилистником или клеверным листом, так как его можно переделать вот так:

Думаю, теперь вы согласитесь, что понятие узла имеет строгий смысл только для замкнутых цепей, хотя в домашнем обиходе вы можете продолжать называть узлами фигуры типа (1), если вам это очень нравится.

Итак, мы уже знаем два узла – тривиальный (среди узлов он занимает то же положение, что и нуль среди чисел) и трилистник, (5) или (6). Следующий после трилистника по сложности узел называется восьмеркой. Он выглядит так:

А это что такое?

Представьте себе, что такая штука сделана из веревки. Можно ли, не разрывая веревку, перевести ее в простое кольцо (тривиальный узел), или в трилистник, или в восьмерку? Или нельзя? Иными словами, до какого простейшего вида этот узел можно распутать?

Первым всерьез заинтересовался узлами британский физик и математик П. Тэйт. Это было в 1860-х годах. Тогда физики (как, впрочем, и сейчас) хотели понять, как устроены простейшие частицы материи. Тогда, как и сейчас, они думали, что частицы могут представлять собой вихри электричества. Как-то в письме к Тэйту Максвелл написал: «А что, если этот вихрь будет заузлен?» И нарисовал трилистник.

Тэйт имел склонность к абстрактным математическим построениям. Он стал думать: какие еще бывают узлы? Но вскоре совсем забыл о частицах (будто знал, что с ними и через полтораста лет не разберутся) и стал просиживать долгие часы с веревкой, завязывая всевозможные узлы. Тэйт составил первую таблицу узлов. В ней он последовательно разместил те узлы, которые смог придумать. В дальнейшем была проведена полная «инвентаризация» всех узлов, имеющих менее десяти пересечений на их проекциях. Таких узлов набралось 84. Часть из них изображена на рис. 35.

Узлы располагают по возрастанию минимального числа пересечений на их проекции. Для трилистника это число равно трем, для восьмерки – четырем. Если есть несколько разных узлов с одинаковым числом пересечений, то они группируются в таблице вместе и каждый получает, кроме обозначения числа пересечений, еще и дополнительный индекс.

Тэйт заинтересовал проблемой узлов знакомых математиков. Повозившись с узлами лет 60, они довольно здорово наловчились распутывать сложные узлы и в 1928 году придумали инвариант узла.

Инвариант узла – это такое алгебраическое выражение, значение которого не меняется, как бы вы ни запутывали узел. Умение вычислять инвариант позволяет в принципе распутать любой узел. Достаточно определить инвариант, а затем сравнить его со значениями инвариантов, вычисленными для узлов, вошедших в таблицу. Наиболее удобным инвариантом оказались так называемые полиномы (многочлены) Александера ∆(t). Для тривиального узла ∆(t) = 1. Для трилистника ∆(t) = t2—t + 1. Для восьмерки ∆(t) = t2–3t + 1 и т. д. Таким образом, каждый узел характеризуется не отдельным числом, а целым алгебраическим выражением, в котором есть некая переменная, не имеющая специального смысла.

Если вы умеете вычислять полином Александера, то довольно быстро убедитесь, что фигура 7 – это на самом деле тривиальный узел, только сильно запутанный. Возможно, вы этого делать не умеете, и придется повозиться, чтобы в этом убедиться. Или вы должны будете мне просто поверить.

Рис. 35. Узлы

Узлы в химии

«Все это, конечно, очень мило, – скажете вы. – И даже довольно занимательно. Но какое это имеет отношение к молекуле ДНК?» Прошу прощения, я действительно немного увлекся.

Идею завязать какую-нибудь молекулу в узел стали всерьез обсуждать в начале 1960-х годов. Наверное, раньше об этом тоже говорили, но в шутку. Просто к указанному времени появились люди, для которых это перестало казаться смешным. Речь идет, разумеется, об истинном узле – трилистнике, восьмерке или более сложном. То, что молекулы могут образовать тривиальные узлы, т. е. быть замкнутыми, известно со времен Фридриха Кекуле. Но попробуйте завязать бензол в узел. Ясно, что это невозможно – его кольцо имеет слишком маленькую дырку. Да и потом, как его завяжешь? Ведь молекулу не возьмешь руками за концы, как кусок веревки. Можно поступить иначе. Сделать концы молекул «липкими». Тогда можно надеяться, что при случайном сближении концов в молекуле возникнет узел.

Для того чтобы молекула завязывалась в узел, она должна быть достаточно длинной. Но какой все-таки должна быть ее длина? Так возникает вопрос, на который непросто ответить и который в более общем виде формулируется следующим образом: какова вероятность того, что при замыкании цепи, состоящей из п сегментов, возникнет нетривиальный узел?

Речь идет о сегментах, а не об атомах и даже не о мономерных звеньях, потому что разумно говорить о некоторой идеализированной цепи, в которой под сегментом понимается более или менее прямолинейный отрезок. В жестких полимерных цепях в этот отрезок входит очень много атомов и даже много мономерных звеньев. Так называемая свободно-сочлененная цепь, с помощью которой теоретики моделируют реальные полимерные молекулы (хотя эта модель, как и всякая модель вообще, имеет ограниченную область применения, в чем читатель сможет еще убедиться), выглядит примерно так:

Узнаете? Да это же траектория движения абсолютно пьяного человека, о котором шла речь в главе 3. Я нарисовал плоский аналог незамкнутой полимерной цепи из 10 сегментов. Кружочки между сегментами означают шарниры. Представьте теперь, что вы заставляете эту цепь случайно замыкаться в трехмерном пространстве. (На плоскости, разумеется, вообще никаких узлов быть не может. Интересно, что в четырехмерном пространстве узлов тоже не бывает. Они возникают только в пространстве трех измерений.) Итак, свободно-сочлененная цепь случайно замыкается. Это происходит много раз. Сколько же получится при этом нетривиальных узлов? Их доля и будет мерой вероятности образования узлов. Но не пытайтесь угадать эту вероятность. Вам это не удастся! Интуиция здесь не поможет. Более 40 лет назад этот вопрос превратился в навязчивую идею у меня и у моих товарищей по работе – Вадима Аншелевича, Александра Вологодского и Александра Лукашина. Мы тогда еще ничего не знали ни о Тэйте с его таблицей узлов, ни о существовании полиномов Александера.

Мы проводили часы в беседах о том, как бы оценить эту вероятность. Например, всерьез обсуждали такой проект. Построить из чего-нибудь большую кубическую (или еще какую-нибудь) решетку. Взять веревку и пропускать ее по ребрам решетки. Направление в каждом узле решетки разыгрывать с помощью обыкновенной игральной кости. Сделать так, чтобы траектория веревки всегда получалась замкнутой (как этого добиться, можно придумать). Замкнув концы веревки, снять ее с решетки и распутывать, чтобы узнать, получился ли узел, а если получился, то какой.

От реализации проекта нас удерживало только то, что мы не знали, как снимать веревочное кольцо с решетки. Но теперь нам известно, что, даже и преодолей мы эту трудность (например, можно было бы сделать решетку разборной), остаток своих дней мы провели бы, лазая по этой дурацкой конструкции. И все равно ничего хорошего из этого бы не вышло (почему – об этом чуть ниже).

Как-то вечером я забрел в книжный магазин, расположенный недалеко от Курчатовского института, где я тогда работал (и совсем рядом с домом, где я тогда жил). В этом магазине в те годы был очень хороший научный отдел, и я туда частенько наведывался. На сей раз мое внимание привлекла небольшая книга «Введение в теорию узлов», оказавшаяся русским переводом книги американских математиков Р. Кроуэлла и Р. Фокса (М., Мир, 1967). С чувством недоверия (опять, небось, какая-нибудь математическая заумь) я открыл книгу и стал ее просматривать. Пролистывая книгу, я наткнулся на главу «Полиномы узла» и сразу почувствовал, что это как раз то, что нам нужно. Я немедленно купил книгу и приволок ее на работу на следующее утро. Именно из книги Кроуэлла и Фокса мы узнали о полиномах Александера, о таблице узлов и о многом другом. Тогда стало ясно, как действовать. Вместо того, чтобы вязать узлы самим, мы заставили это делать компьютер. Оказалось возможным также научить компьютер вычислять полиномы Александера и тем самым научить его распутывать узлы.

Что же в итоге получилось?

Оказалось, что вероятность образования узла зависит не только от числа сегментов в цепи. Именно поэтому я вам и не советовал заниматься угадыванием. Если цепь очень гибкая, т. е. в каждом сегменте содержится очень мало атомов, то вероятность образования узла ничтожно мала. Даже при n = 100 узел встречается один раз на 10 тысяч случаев. Вы видите, что, когда я говорил о грозившей нам участи бесславно провести остаток жизни, это были не пустые слова. Стало понятным, почему были обречены на неудачу попытки синтезировать узел способом случайного замыкания простых полимерных (углеводородных) цепей, как это предлагали делать некоторые химики. Эти цепи слишком гибкие, и в них узлы практически не могут образоваться.

Другое дело – очень жесткие цепи, у которых в сегмент входит много мономерных звеньев. Для таких цепей вероятность образования узлов гораздо выше. Результаты расчетов этой вероятности приведены на рис. 36. Вы видите, что вероятность образования нетривиального узла растет почти линейно с ростом числа сегментов и при п = 200 приближается к 0,5. По мере удлинения цепи вероятность асимптотически приближается к единице. Для коротких цепей чем сложнее узел, тем меньше шансов его получить.

Рис. 36. Зависимость вероятности образования заузленной молекулы от числа сегментов в ней n. Кривая получена в результате расчетов на компьютерах

Наша работа по узлам была опубликована в 1975 году в журнале Nature и поэтому стала широко известна научному сообществу, несмотря на то, что мы сами еще много лет вынуждены были прозябать за железным занавесом, без каких-либо прямых контактов с внешним миром. Химики почерпнули из нашей статьи важную для них информацию о том, что не стоит надеяться завязать в узел простую полимерную цепочку: слишком мало шансов, что получится даже простейший узел. Поэтому они пошли по пути направленного контролируемого синтеза узлов, составленных из довольно жестких элементов. Этот путь привел к успеху: в конце 1980 – начале 1990-х годов удалось наконец синтезировать чисто химическим путем простейший узел (трилистник) и простые катенаны. Катенан – это вот что:

или вот:

Похоже на цепочку от карманных часов. Математики называют такие конструкции зацеплениями. Впрочем, эти самые зацепления вам, должно быть, уже порядком надоели в предыдущей главе.

У читателя, заточенного на практические приложения, эти упорные попытки химиков синтезировать заузленную молекулу, пусть и завершившиеся успехом, могут показаться никому не нужными забавами, а не серьезной наукой. Такой недальновидный взгляд мог быть уместен до самого последнего времени, но не сегодня. Как это повторяется в истории науки вновь и вновь, совершенно, казалось бы, бесполезные исследования вдруг приобретают необыкновенную актуальность. Совсем недавно, в середине 2016 года, в журнале Science появилось сообщение британских химиков, которое вызвало сенсацию. Им удалось синтезировать очень компактный узел в форме пятиконечной звезды (это узел 51 в таблице простых узлов на рис. 35). Во всех шести «дырках» этого узла встроены ионы. Такая конструкция оказалась очень мощным катализатором расщепления химической связи между атомами углерода и галогена. Но когда авторы работы разорвали цепочку, образующую узел, во всех пяти оконечностях звезды так, что сама звезда осталась как есть, но она перестала быть узлом, то каталитический эффект испарился.

Авторы объясняют наблюдаемое ими явление тем, что заузливание приводит к фиксации напряженного состояния, способствующего катализу. Когда напряжение, связанное с образованием узла, снимается, конструкция, хоть и остается той же, принимает расслабленное состояние, которое не способно к катализу.

Узлы из однонитевой ДНК

Завязать ДНК в узел удалось задолго до того, как химики достигли успеха. Это было сделано уже в следующем году, после публикации наших расчетов о вероятности образования узлов в полимерных цепях, т. е. в 1976 году. Все тот же Джэймс Уонг из Гарварда и его сотрудники обработали открытой ими топоизомеразой I однонитевые кольца ДНК. А потом поместили препарат под электронный микроскоп. Конечно, под микроскопом не отличишь узлы от просто смятых колец. Однако авторы работы утверждали, что в тех же самых условиях исходные молекулы, которые не обрабатывались топоизомеразой, образуют расправленные кольца, практически не имеющие пересечений.

Эти данные вместе с другими аргументами, которые мы здесь опустим, не оставляли сомнений в том, что Уонгу и его сотрудникам действительно удалось завязать однонитевую молекулу ДНК в узел. И таких молекул было в препарате множество – около 90 %. «Но позвольте, – скажете вы, – эти данные никак не согласуются с теоретическими расчетами, о которых шла речь выше!» Действительно, никак нельзя было ожидать столь большой эффективности образования узлов в однонитевых ДНК.

Уонг очень эффектно объяснил это противоречие. По его мнению, в тех условиях, в каких шел эксперимент, никак нельзя уподоблять однонитевую ДНК простой свободно-сочлененной цепочке, как это делалось в упомянутых расчетах. В любой достаточно длинной последовательности нуклеотидов всегда есть комплементарные участки, которые находят друг друга, образуя короткие спирали.

Конечно, дело не ограничивается спиральными участками. Однонитевая ДНК склонна принимать весьма причудливую пространственную конфигурацию. При этом замкнутость цепи в кольцо неизбежно вызывает напряжения, которые могли бы исчезнуть, будь кольцо разомкнуто.

Связывается топоизомераза, скорее всего, со спиральными участками, раскусывает одну нить, после чего вокруг другой, нетронутой нити может начаться свободное вращение одной части молекулы относительно другой. При этом снимается внутреннее напряжение – происходит релаксация. Далее топоизомераза вновь сшивает разорванную нить, закрепляя новое состояние молекулы. Дело сделано – узел готов.

Вопрос об узлах в однонитевой нуклеиновой кислоте вновь стал актуальным в самое последнее время. Неожиданно в нервных клетках был обнаружен новый тип молекул РНК: кольцевые однонитевые РНК, или циркулярные РНК (циркРНК). Их роль до конца неясна, но, по-видимому, они как-то участвует в развитии нервной системы. Считается, что преимуществом циркРНК является их устойчивость к экзонуклеазам. После первых сообщений об обнаружении кольцевых РНК, я опубликовал заметку под заголовком «Топология РНК», в которой поставил вопрос об узлах в таких молекулах и, соответственно, о существовании РНК-топоизомераз. И действительно, РНК-топоизомеразы были вскоре обнаружены. Пока не было сообщений об обнаружении заузленных молекул циркРНК.

Узлы из двойной спирали

Итак, впервые молекулу завязали в узел. То, что было не под силу химикам-синтетикам, удалось молекулярным биологам. Конечно, это было только начало. Было очень заманчиво завязать в узел двухнитевую ДНК. Сделать это в принципе нетрудно. Наиболее подходящим объектом казалась ДНК бактериофага λ.

Этот фаг был излюбленным объектом изучения в фаговой группе, собранной в свое время Дельбрюком. Когда возникла молекулярная биология, он стал вместе со своей клеткой-хозяйкой (кишечной палочкой) главным полигоном для изучения репликации, транскрипции, организации генов.

Внутри фаговой частицы ДНК фага λ линейна, но у нее есть «липкие» концы – однонитевые взаимно комплементарные участки, содержащие по 12 нуклеотидов, т. е. она выглядит примерно так:

Если такой ДНК дать возможность свободно плавать в растворе, то «липкие» концы сомкнутся и ДНК превратится в кольцо. Поскольку эта молекула довольно длинная (в ней около 50 тысяч пар нуклеотидов), то при замыкании в кольцо она с довольно высокой вероятностью завяжется в узел.

Вспомним, что двухцепочечная ДНК – это очень жесткая цепь, один ее сегмент содержит около 300 пар оснований. Поэтому оценивать вероятность образования узла в двунитевой ДНК можно с помощью графика, приведенного на рис. 36 и основанного на компьютерных расчетах. По нему выходит, что около половины молекул ДНК фага λ при замыкании должны образовать узлы. Беда в том, что для такой длинной ДНК очень трудно отличить нетривиальный узел от тривиального. Во всяком случае пока это сделать не удалось. Липкие концы нужны ДНК фага λ как раз для того, чтобы замыкаться в кольцо, попадая в клетку-хозяйку. Если она не замкнется, то не сможет реплицироваться и вообще нормально работать (если, конечно, можно назвать работой тот разбой, который она учиняет, попав в кишечную палочку).

И вот тут возникает вопрос, на который необходимо найти ответ. А что будет, если при замыкании в кольцо ДНК завяжется в узел – ведь теория показывает, что это вполне вероятно? Не повредит ли это ее работе в клетке? Ведь вирусная ДНК должна произвести множество копий самой себя. Если завязывание в узел мешает этому, то, значит, в клетке должны существовать специальные механизмы, препятствующие образованию узлов. Но что это за механизмы?

Убедиться в том, что ДНК, завязанной в узел, будет трудно удваиваться, вы можете сами. Возьмите полоску бумаги и склейте из нее нетривиальный узел, например трилистник. Затем ножницами разрежьте полоску вдоль, на две половины. Это будет моделировать удвоение ДНК, во всяком случае один из возможных вариантов удвоения. Вы увидите, что вам не удастся развести два образовавшихся узла. Эти вопросы были подняты нами в уже упоминавшейся статье в журнале Nature. Ответ пришел спустя пять лет.

В 1980 году Л. и Ч. Лю и Б. Олбертс сообщили, что после многолетних поисков им удалось наконец подобрать условия, в которых обычная двунитевая ДНК образует узлы. Они работали не с ДНК фага λ, в которой узлы трудно обнаружить из-за большой длины, а с короткими кольцевыми молекулами. Оказалось, что если к таким молекулам добавить одну из топоизомераз в большом избытке, то очень эффективно идет образование узлов. Об их возникновении можно судить по тому, что в геле при электрофорезе появляются фракции ДНК с большой подвижностью. Авторы пошли дальше – обработали заузленные молекулы топоизомеразой, но взятой в низкой концентрации и в присутствии АТФ. Что же произошло? Узлы развязывались!

Последнее событие произошло в полном соответствии с теорией, так как использовавшаяся ДНК была короткой и равновесная доля узлов в ней не должна была превышать 5 %.

Образование узлов при избытке фермента вызвано, по-видимому, тем, что белок, связываясь с ДНК, меняет физические свойства молекулы, прежде всего усиливает слипание удаленных вдоль цепи звеньев. Как показывают расчеты, такое слипание должно резко увеличивать вероятность образования узла.

Открытие американских ученых вызвало целый поток аналогичных публикаций. Немедленно для получения узлов были применены методы генной инженерии.

Итак, топоизомеразы явно делились на две группы. Одни делают узлы на однонитевых ДНК. Их стали называть топоизомеразами I, другие специализируются на двунитевых молекулах, их назвали топоизомеразами II.

Но это были еще не все новости. Выяснилось, что топоизомеразы II, к которым относится и ДНК-гираза, не только умеют завязывать и развязывать узлы, но и объединяют две или более молекулы ДНК в катенаны (т. е. делают их зацепленными).

Способность белков образовывать узлы вызвала большой интерес. Прежде всего она позволила понять, как работают топоизомеразы и, в частности, важнейший фермент этого класса – гираза. Ведь завязать кольцевую замкнутую ДНК в узел невозможно, не разорвав двойную спираль. Но мало просто разорвать цепь. Нужно еще протащить через образовавшуюся брешь другую часть молекулы, а потом заделать брешь. Вот какую сложную работу проделывает топоизомераза II.

Получается, что ДНК в присутствии этого фермента ведет себя так, будто на нее не распространяется запрет материальным телам проходить друг сквозь друга. Конечно, все дело здесь в ферменте – без него ничего не получилось бы. Ведь ДНК – не электрон или α-частица, для которых возможен эффект квантового туннелирования. Топоизомеразы позволяют ДНК вести себя в клетке не менее странным образом.

Это как если бы вы, играя в теннис, попали мячом в сетку, а он взял и преспокойненько пролетел бы сквозь нее. Но, подбежав к сетке, вы не обнаруживаете дырки, сетка совершенно цела и невредима. Теперь ясно, как клетка решает ДНКовые топологические проблемы и, в частности, проблему репликации заузленных молекул.

Можно ли на основе сказанного понять, как ДНК-гираза меняет сверхспирализацию ДНК? Оказывается, можно. На рис. 37 видно, что если протаскивать один участок ДНК сквозь другой, то возникает сверхспираль, так как меняется величина райзинга, причем Wr всегда меняется на ±2. Именно это было и обнаружено экспериментально. В отличие от топоизомераз I, меняющих Lk ДНК на любое целое число, топоизомеразы II меняют Lk только на четное число. Дальнейшие исследования показали, что и работа топоизомераз типа I также идет путем образования разрывов и протаскивания цепи через образовавшуюся брешь. Только в отличие от топоизомераз типа II топоизомеразы I проделывают этот трюк не с двойной спиралью, а с однонитевой ДНК, так что, по-видимому, узлы в однонитевой ДНК завязываются топоизомеразой I точно так же, как узлы в двунитевой молекуле – топоизомеразой II.

Рис. 37. Три «топологические реакции», катализируемые топоизомеразой II; а – изменение числа витков сверхспирали ∆Lk = ±2); б – развязывание и завязывание узлов: в – расщепление и образование катенанов

Открытие топоизомераз и выяснение механизма их работы лишило почвы одно из основных возражений против двойной спирали, всплывавшее вновь и вновь за прошедшие с момента открытия двойной спирали десятилетия. Очень многих в течение этих лет смущало то, что ДНК должна раскручиваться при репликации. Неужели она крутится в клетке, словно тросик спидометра?

Разные люди относились к этому по-разному. Одним это не казалось странным. Другие отмахивались – мол, как-нибудь все уладится. Третьи придумывали хитроумные объяснения. Один физик-теоретик, например, утверждал, что одна цепь может пройти сквозь другую путем квантового туннелирования. И наконец, были такие, кто усматривал в этом явный дефект модели Уотсона—Крика. Они настаивали на том, что по крайней мере в клетке ДНК – не двойная спираль.

По-видимому, правы были те, кто занял выжидательную позицию. Похоже, что топоизомеразы решают все подобные проблемы. Во всяком случае они способны создать в клетке такие условия, при которых цепи и впрямь как бы туннелируют друг сквозь друга. Как все это происходит реально в клетке – еще предстоит выяснить. Пока ясно одно – основной аргумент критиков двойной спирали, которым они пользовались многие годы, потерял силу.

Таким образом, упорные попытки завязать ДНК в узел неожиданно привели к разрешению старых споров в отношении двойной спирали. И все же оставался вопрос о том, насколько количественно верны наши теоретические предсказания о вероятности заузливания ДНК. В 1993 году две группы, С. Шоу и Дж. Уонг в Гарварде и В. Рыбенков, Н. Коззарелли и А. Вологодский в Беркли, пришли к однозначному заключению на этот счет, исследуя замыкание молекул ДНК с липкими концами. Они изучали молекулы, значительно более короткие, чем λ ДНК, содержащие около 10 тысяч пар оснований, для которых узлы разного типа приводят к различию в подвижности в геле. Это дало возможность экспериментально измерить долю узлов разных типов, образующихся при замыкании молекул ДНК в результате слипания липких концов. Эта доля служила мерой вероятности образования узлов. Данные, независимо полученные двумя группами, количественно совпали и оказались в полном согласии с теоретическими предсказаниями.

И все-таки, как же быть с ДНК бактериофага l? Помните, с какого аргумента все началось? Если концы фаговой ДНК слипнутся и образуют кольцо, то с вероятностью около 50 % кольцо окажется заузленным. Могут ли топоизомеразы решить эту проблему? Казалось бы, нет. Ведь, будучи ферментами, т. е. биологическими катализаторами, топоизомеразы должны лишь ускорять протекание реакций, но не смещать равновесие между начальным и конечным продуктом в ту или иную сторону. Безусловно, когда образуются страшные напряжения при репликации ДНК, просто включение процесса прохождения цепи ДНК сквозь саму себя (что вообще не может произойти за любое сколько-нибудь разумное время без помощи топоизомераз) решает проблему. Но не то в случае с l ДНК. Ведь 50 %-ная вероятность заузливания отвечает теоретической, равновесной величине, которую топоизомераза, будучи ферментом, не может сдвинуть ни в ту, ни в другую сторону. Как же так? За что боролись?! Неужели надо искать еще какие-то механизмы, препятствующие образованию узлов?

Оказывается, что не надо. Как выяснилось, топоизомераза II ведет себя более чем странным образом. Она активно развязывает узлы, вместо того чтобы приводить ДНК к равновесию в отношении ее топологии. Точно так же топоизомераза II расцепляет катенаны, состоящие из двух молекул ДНК. Что за чертовщина? Постойте, какой же тогда это катализатор?!

Конечно, никакой чертовщины в таком поведении топоизомеразы нет. Ведь при своей работе топоизомеразы II потребляют энергию АТФ. Более того, уже давно известно, что первый из открытых ферментов этого типа, ДНК-гираза, уводит зкДНК от равновесного, релаксированного состояния, делая ее отрицательно сверхспирализованной. Все это означает, что топоизомераза II (таки да!) – никакой не биологический катализатор, а молекулярный мотор, запрограммированный упрощать топологию в случае возникновения узлов и зацеплений. В этом есть очевидный биологический смысл – так клетка решает все свои топологические проблемы. Вообще, мы напичканы молекулярными моторами, а вовсе не только ферментами. Иначе на что бы мы были способны? Пальцем пошевелить бы не могли. Другой вопрос: как же на самом деле наш топологический мотор работает? Как топоизомеразам удается развязывать узлы? Ведь топология – это глобальная характеристика замкнутой в кольцо ДНК, размеры которой гораздо больше размеров белка-мотора. Это интереснейший вопрос, который недавно удалось разрешить, но мы не будем здесь на этом останавливаться – в двух словах не объяснишь, а длинное объяснение уведет нас слишком далеко.

9 Споры вокруг двойной спирали

Правы ли Уотсон и Крик?

В наше время слово «ДНК» стало столь же привычным, как «нефть» или «сталь». Вокруг ДНК царит обстановка бума: тысячи лабораторий, биотехнологических и фармацевтических компаний заняты производством «рекомбинантных ДНК», многотысячная армия специалистов манипулирует генами и ищет возможности практического приложения результатов этих манипуляций. А началось все с маленькой, на одну страничку, заметки в журнале Nature от 25 апреля 1953 года, подписанной двумя именами, мало кому известными в то время, – Джеймс Уотсон и Фрэнсис Крик.

В заметке излагалось мнение авторов о том, как устроена молекула дезоксирибонуклеиновой кислоты. Сообщалось, что она состоит из двух антипараллельных полинуклеотидных цепочек, завитых в двойную спираль; что внутри двойной спирали находятся азотистые основания, образующие как бы начинку кабеля, а оболочка кабеля построена из отрицательно заряженных фосфатных групп. Азотистые основания из противоположных цепей образуют пары согласно принципу комплементарности: аденин (А) всегда против тимина (Т), а гуанин (Г) против цитозина (Ц) (рис. 38). Комплементарные пары скреплены водородными связями: двумя в случае А•Т-пар и тремя в случае Г•Ц пар. Пары оснований располагаются строго перпендикулярно оси двойной спирали, подобно перекладинам в перевитой веревочной лестнице.

Эта структура, которую, по всеобщему убеждению, ДНК имеет при физиологических условиях, получила название В-формы. Структура ДНК сильно меняется, только если молекулу поместить в совершенно необычные условия, скажем, в очень концентрированный раствор спирта (не в водку, а в гораздо более крепкое пойло, содержащее около 80 % спирта). Но в широком интервале внешних условий структура ДНК, как показывали многочисленные данные, оставалась практически неизменной.

Как это ни покажется странным, в течение продолжительного времени не было строгих доказательств, что ДНК – это действительно двойная спираль. Дело в том, что экспериментальные данные, на которых основывались Уотсон и Крик, а также те, кто шел за ними, не могут трактоваться вполне однозначно. Всегда остается, в принципе, возможность того, что тем же данным, в пределах экспериментальной точности, удовлетворит какая-то совсем другая структура.

В конце 1970-х годов, например, много шума наделала модель новозеландских и индийских ученых, согласно которой две цепи ДНК не переплетаются друг с другом, а идут параллельно бок о бок (ее так и назвали БОБ-форма).

Первоначально утверждалось, что БОБ-форма дает такую же рентгенограмму, как и В-форма. Когда выяснилось, что это не так, стали говорить, что, мол, в волокнах и кристаллах, где изучают ДНК методом рентгеноструктурного анализа, она, может быть, и находится в В-форме, а в растворе и уж подавно в клетке – в БОБ-форме. Большим преимуществом модели считалось отсутствие топологических проблем при репликации (не нужно расплетать закрученные в спираль комплементарные цепи). Несостоятельность БОБ-формы как модели ДНК при обычных условиях была показана многими методами. Однако возникшие вокруг этой модели споры оказались полезными. Они заставили придирчиво пересмотреть вопрос о том, насколько мы уверены, что модель Уотсона и Крика справедлива во всех главных чертах, а не только в том, что ДНК состоит из двух цепей и последовательности в них взаимно комплементарны.

Наиболее убедительные доказательства были получены в опытах с кольцевыми ДНК. Это было сделано все тем же Джеймсом Уонгом из Гарварда, имя которого нами не раз упоминалось. Уонг не только однозначно доказал, что ДНК представляет собой спираль, но и с высокой точностью определил число пар, приходящихся на виток двойной спирали В-ДНК в растворе. Эта величина оказалась равной 10,5, что очень близко к величине, постулированной Уотсоном и Криком. Опыты Уонга, однако, требуют довольно сложного анализа (любознательный читатель может ознакомиться с этим анализом, раздобыв одну из предыдущих версий этой книги: М. Д. Франк-Каменецкий «Самая главная молекула», М., 1988). Здесь мы ограничимся анализом не менее убедительных, но более доступных для понимания опытов Д. Шора и Р. Болдвина из Стэнфордского университета.

Шор и Болдвин занимались изучением вопроса о том, как зависит от длины ДНК вероятность ее замыкания в кольцо. Для этого они брали молекулы, имеющие липкие концы (о таких молекулах уже шла речь в главах 5 и 8), и добавляли фермент лигазу. О вероятности судили по выходу замкнутых кольцевых молекул. Сначала Шор и Болдвин ограничились природными молекулами, затем привлекли методы генной инженерии, что позволило исследовать очень короткие цепи, содержащие всего 200 пар. Поначалу получавшаяся картина радовала исследователей – она соответствовала теории и здравому смыслу. Для очень длинных молекул, содержащих много куновских сегментов, вероятность замыкания падала с ростом длины цепи. Наоборот, для коротких молекул вероятность падала с уменьшением длины. Это вполне понятно, так как длинные молекулы подобны траектории человека, заблудившегося в лесу (см. главу 3), а короткие подобны резиновой дубинке – чем короче дубинка, тем труднее ее согнуть в кольцо.

Одно обстоятельство смущало исследователей. По мере уменьшения длины резко увеличивался статистический разброс результатов, хотя опыты с короткими ДНК ставились не менее тщательно, чем с длинными. В чем дело? Чтобы разобраться в этой неприятной ситуации, Шор и Болдвин приготовили, используя методы генной инженерии, набор образцов, содержащих молекулы из 237, 238 и т. д. до 255 пар нуклеотидов. Когда они измерили для каждого препарата вероятность образования кольцевых цепей и нанесли их на график, то получили отрезок синусоиды с периодом в 10 пар. Стала ясна причина разброса точек. К разбросу приводили вовсе не случайные выбросы, а регулярные осцилляции, связанные со спиральным строением ДНК.

Чтобы понять результат этих важных опытов, представим себе, что мы имеем дело с кольцевой ДНК, одна из цепей которой порвана, и молекула предоставлена самой себе в растворе. Как будет выглядеть ситуация в месте разрыва? Может оказаться, что два конца разорванной цепи готовы к стыковке, как показано на рис. 39а. Но возможно и совсем неблагоприятное взаимное расположение концов, как показано на рис. 39б.

Рис. 39. Два предельных случая стыковки кольцевой молекулы ДНК в месте эдноцепочечного разрыва: а – удачная стыковка: б – неудачная

Представим себе теперь, что мы добавили ДНК-лигазу, которая залечивает разрывы. Фермент может сделать свое дело, только если разорванные края подходят друг к другу «стык в стык». Что же, он зашьет только такие молекулы, как на рис. 39а? Нет, не только. Дело в том, что молекула ДНК – это все-таки микроскопический объект. Одна из принципиальных особенностей микрообъектов, отличающая их от макрообъектов, к которым мы привыкли в повседневной жизни, состоит в том, что микрообъекты испытывают значительные изменения своей формы и размеров вследствие просто теплового движения. В нашем макромасштабе эти изменения незаметны, мы их просто не видим.

В свое время уже шла речь о том, что тепловое движение изгибает линейную ДНК, не дает ей вытянуться, как спице. Оно же не дает кольцевой ДНК принимать энергетически наиболее выгодную форму окружности. Молекула принимает в пространстве причудливую, постоянно меняющуюся форму. Кроме того, в результате теплового движения постоянно меняется угол поворота между соседними парами оснований в двойной спирали. Вследствие теплового движения в опытах Шора и Болдвина лигаза залечивала разрывы не только в случае идеальной стыковки, изображенной на рис. 39а, но и в неблагоприятном случае (рис. 39б), и во всех промежуточных ситуациях. Разница состояла лишь в том, что вероятность замыкания была максимальной в случае, изображенном на рис. 39а, и минимальной для случая, изображенного на рис. 39б. Синусоидальные изменения вероятности замыкания, следовательно, отражали вращение одного конца в месте разрыва относительно другого конца из-за спиральной природы ДНК при удлинении молекулы. Период этой синусоиды соответствовал периоду двойной спирали. Так Шору и Болдвину удалось наглядно продемонстрировать спиральное строение ДНК и оценить период спирали. В дальнейшем Д. Горовиц и Дж. Уонг определили из данных для коротких колец период спирали с очень высокой точностью. Он оказался равным 10,54, в полном соответствии с результатами опытов Уонга.

Замечательной чертой результата Уонга, так же как и опытов Шора и Болдвина, является то, что он получен для изолированных молекул в растворе. Ведь со времени классической работы Р. Франклин все сведения о детальной структуре ДНК основывались на рентгеновских данных для волокон, в которых молекулы сильно взаимодействуют друг с другом.

Итак, ДНК в растворе находится в В-форме – в этом теперь уже нет никаких сомнений. Но это относится к несверхспирализованной ДНК. При сверхспирализации структура основной части молекулы не меняется заметным образом, но некоторые участки с характерными последовательностями могут радикально менять свою структуру. Вспомним про перевертыши и кресты, существование которых доказано экспериментально. А какие еще изменения структуры ДНК могут происходить? Прежде чем обратиться к этим темам, мы рассмотрим фундаментальный вопрос о том, какие силы удерживают две комплементарные цепочки вместе в двойной спирали.

Силы, стабилизирующие двойную спираль

Ответ на вопрос, поставленный в конце предыдущего раздела, может показаться тривиальным. В самом деле, очевидно, что те силы, которые обеспечивают образование комплементарных пар, А•Т и Г•Ц (рис. 38), и удерживают две цепочки друг около друга. Речь идет о так называемых водородных связях (Н-связях). Эти связи по своей силе занимают промежуточное положение между ковалентными связями, соединяющими атомы в молекулы, и чисто межмолекулярными взаимодействиями. Н-связи играют огромную роль и в ДНК, и в РНК, и в белках, и просто в чистой воде, особенно во льду. Именно способность молекул Н2О образовывать друг с другом Н-связи обусловливает многие аномальные свойства воды, делающие ее столь необычной субстанцией.

Итак, кажется очевидным, что именно Н-связи между комплементарными основаниями удерживают две цепочки ДНК вместе. Так долгое время и считалось. В главе 3 было рассказано о плавлении ДНК, т. е. о расхождении комплементарных цепей при нагревании раствора ДНК. В полном соответствии с представлением о том, что водородные связи удерживают комплементарные цепи друг с другом, ДНК с большим содержанием Г•Ц-пар плавится при более высокой температуре. В самом деле, именно это и следовало ожидать, ведь в Г•Ц-паре имеется три Н-связи, а в А•Т-паре – только две (рис. 38). Причем температура плавления ДНК растет строго линейно с увеличением доли Г•Ц-пар в молекуле. Эта строго линейная зависимость ясно свидетельствовала о том, что стабильность участка двойной спирали зависит только от количества Н-связей в участке и не зависит от того, как Г•Ц – и А•Т-пары распределены вдоль цепи.

С другой стороны, те же данные по плавлению ДНК свидетельствовали о существенном взаимодействии между соседствующими вдоль цепи парами оснований, которое получило название стэкинг-взаимодействия (от английского слова stack, что значит «штабель, стопка»). Получалось, что по каким-то непонятным причинам все 10 стэкинг-взаимодействий между соседними парами оснований практически одинаковы, иначе бы нарушалась линейная зависимость температуры плавления от Г•Ц-содержания. Заметим, что всего контактов между соседними парами 16, но из-за правила комплементарности разных контактов 10: идентичны контакты АГ / ЦТ, ГА / ТЦ, АЦ / ГТ, ЦА / ТГ, АА / ТТ и ГГ / ЦЦ. Из данных по плавлению удалось извлечь различия в стэкинг-взаимодействиях между разными контактами, но эти различия рассматривались как малая поправка к основному эффекту: была полная уверенность, что двойная спираль стабилизируется главным образом Н-связями между коплементарными парами и различие в температуре плавления разных участков ДНК практически целиком определяется различием в содержании Г•Ц-пар между этими участками. На самом деле, как стало постепенно ясно, из данных по плавлению нельзя извлечь отдельно вклад в стабильность от спаривания оснований и вклад от стэкинг-взаимодействий. Так что уверенность в определяющей роли спаривания оснований основывалась не на твердом знании, а на знаменитом принципе, известном как «бритва Оккамы» (мы уже упоминали этот принцип в главе 4), т. е. казавшееся простейшим объяснение данных по плавлению ДНК принималось за истину.

Разделить вклады в стабильность двойной спирали от спаривания оснований и от стэкинг-взаимодействий удалось в моей группе в Бостонском университете в 2004–2006 годах. Эта работа была выполнена моим тогдашним постдоком, выпускницей МФТИ, защитившей диссертацию в Университете Торонто, Катей Протозановой и моим аспирантом Петей Яковчуком.

Идея работы возникла совершенно случайно, в ходе изучения коротких синтетических молекул ДНК, содержащих однонитевой разрыв («ник»). Мы обратили внимание на то, что такие молекулы движутся в геле при электрофорезе слегка медленнее, чем молекулы без разрыва. Оказалось, что причина в том, что молекулы с ником часть времени проводят в состоянии стэкинга, т. е. движутся так же, как и молекулы без разрыва, а часть времени проводят в состоянии разрушенного стэкинг-взаимодействия, как проиллюстрировано на рис. 40, и движутся в геле медленнее. Соотношение этих двух состояний должно экспоненциально зависеть от энергии стэкинга, согласно известному распределению Больцмана (точнее, речь идет не об энергии как таковой, а о свободной энергии). Таким образом, приготовив 16 синтетических молекул, отличающихся только двумя парами оснований слева и справа от места ника, мы определили энергию стэкинг-взаимодействий для всех 16 контактов. Важным инструментом, который мы при этом использовали, были специальные ферменты – никазы, способные совершенно точно наносить ник в определенном месте двухнитевой ДНК. Собственно, в ходе изучения работы никаз мы и наткнулись на эффект замедленного движения молекул с ником в геле.

Рис. 40. ДНК, содержащая однонитевой разрыв («ник»), может находиться в двух состояниях, в одном из которых сохраняется стэкинг-взаимодействие между парами оснований, расположенными по обе стороны от ника, а в другом это взаимодействие разрушено

Что же в итоге оказалось? Мы определили энергии всех контактов, и они менялись от контакта к контакту так же, как те значения энергии, которые были найдены ранее из данных по плавлению ДНК. Но когда мы вычли из общей энергии стабилизации двойной спирали энергию стэкинг-взаимодействий и тем самым определили вклад Н-связей внутри комплементарных пар в энергию стабилизации, нас ждал большой сюрприз. Оказалось, что этот вклад практически равен нулю! Точнее, А•Т-пары слегка дестабилизируют двойную спираль, а Г•Ц-пары слегка стабилизируют, но вклад тех и других гораздо меньше, чем стабилизирующий эффект стэкинг-взаимодействий. Иными словами, открывшаяся картина меняла устоявшееся представление об относительной роли Н-связей и стэкинг-взаимодействий в стабилизации двойной спирали на 180 градусов.

Но как такое могло быть? Как это так: Н-связи, считавшиеся такими важными и в ДНК, и в РНК, и в белках, вдруг оказались не важными для стабильности двойной спирали? И разве из железно установленного факта линейной зависимости температуры плавления ДНК от Г•Ц-содержания не следовало однозначно, что вклад стэкинг-взаимодействий мал по сравнению с вкладом Н-связей? Давайте разберемся по порядку.

Говоря о стабильности, мы всегда имеем в виду не саму энергию двойной спирали (точнее, не свободную энергию), а разницу между энергией двойной спирали и двух разделенных цепей ДНК. Так что мы должны сравнивать ситуацию с Н-связями в этих двух состояниях. Но когда основания перестают образовывать комплементарные пары, их группы, способные к образованию Н-связей, немедленно образуют Н-связи с молекулами воды. Наши данные лишь означали, что этот баланс оказывается близким к нулю, но это не так уж удивительно. Это никак не умаляет роль Н-связей в уотсон-криковских парах оснований: ведь если бы Н-связи не образовывались внутри двойной спирали, но продолжали образовываться с молекулами воды в раскрытых парах, то это приводило бы к такой страшной невыгодности спирального состояния, что никакие стэкинг-взаимодействия не могли бы ничем помочь. Точно так же стэкинг-взаимодействия не выручают, если по каким-то причинам в ДНК образуется некомплементарная пара, скажем, А против А: тогда возникает дефект, который устраняется репарирующей системой клетки.

Хорошо, с Н-связями разобрались, ну а как же быть с линейной зависимостью температуры плавления от Г•Ц-содержания? Ведь если стабильность определяется стэкинг-взаимодействиями, которые разные для разных контактов, то наряду с линейным членом должен быть квадратичный член, а его нет, согласно эксперименту. Кажется, Эйнштейн как-то сказал, что Природа не злонамеренна, но коварна. Это тот самый случай, когда проявилось коварство Природы: она как будто нарочно ввела нас в заблуждение о том, какие силы стабилизируют «самую главную молекулу». Если предположить, что различные нуклеотиды распределены вдоль ДНК случайным образом, вычислить в этом предположении коэффициент при квадратичном члене и подставить значения стэкинг-взаимодействий, полученные нами в опытах с короткими ДНК, содержащими ник, то этот коэффициент получится практически равным нулю. Иными словами, стэкинг-взаимодействия для разных контактов таковы, что температура плавления ДНК со случайной последовательностью должна строго линейно зависеть от Г•Ц-содержания, т. е. имитировать ситуацию, будто водородные связи, а не стэкинг-взаимодействия определяют стабильность двойной спирали. А поскольку данные о температурах плавления были получены для бактериальных геномов, в которых нет мусорной ДНК, в отличие от эукариот (о мусорной ДНК речь пойдет в главе 12), то предположение о случайном распределении нуклеотидов вполне реалистично, как реалистично предположение о случайности распределения букв в осмысленном лингвистическом тексте.

Ну и последнее. Если дело не в том, что у Г•Ц-пары три Н-связи, а у А•Т-пары две, то как объяснить рост температуры плавления с Г•Ц-содержанием ДНК? Очень просто. Согласно нашим данным, стэкинг-взаимодействия для контактов, содержащих Г•Ц-пары, сильнее, чем для контактов, состоящих только из А•Т-пар. Этим и объясняется рост температуры плавления с увеличением Г•Ц-содержания ДНК, а вовсе не тем, что у Г•Ц-пары больше Н-связей, чем у А•Т-пары.

Такой поворот на 180 градусов в фундаментальных научных представлениях принято называть сменой парадигмы. Обычно научная общественность реагирует весьма болезненно на подобные резкие повороты. Но странным образом с нашей работой такого не произошло: нам без проблем удалось опубликовать наши результаты в ведущих профессиональных журналах, и эти статьи очень интенсивно цитируются в научной литературе. По-видимому, приведенные выше аргументы оказались для научной общественности вполне убедительными.

Z-форма

Как мы уже говорили, Уотсон и Крик, а также их последователи, занимавшиеся моделированием структуры ДНК, опирались на данные по рассеянию рентгеновских лучей от волокон ДНК. Это были именно волокна, а не кристаллы, так как естественные, выделенные из клеток молекулы ДНК не кристаллизуются. Причина этого понятна – молекулы ДНК слишком длинные, чтобы из них можно было получить кристалл.

Определенная упаковка молекул при частичном высушивании раствора происходит – они укладываются подобно бревнам в запани (на лесосплаве), только не в двух измерениях, как на поверхности воды, а в трех. Промежутки, как и в запани, заполнены водой. Рассеяние рентгеновских лучей от подобного частично упорядоченного расположения молекул дает довольно богатую информацию, но недостаточную для однозначного восстановления структуры молекул, исходя только из рентгенограмм. Это обстоятельство и явилось причиной долгих споров о том, правильно ли Уотсон и Крик «угадали» структуру ДНК в волокнах.

После опытов Уонга, а также Шора и Болдвина создалась в определенном смысле парадоксальная ситуация. Стало ясно, что в растворе изолированные молекулы ДНК имеют структуру, в своих основных чертах соответствующую модели Уотсона—Крика. А в волокнах, в условиях возникновения взаимодействия между молекулами? Не изменяется ли структура? Специалисты, занимающиеся моделированием ДНК и расчетами того, как происходит рассеяние рентгеновских лучей от этих моделей, убеждали, что только В-форма ДНК может дать наблюдаемую картину. Но могли оставаться сомнения, не упустили ли они из виду что-либо.

Проблема была бы решена, если бы удалось все же получить кристаллы из ДНК, исследовать рассеяние рентгеновских лучей от этих кристаллов, а потом строго решить обратную задачу восстановления структуры по картине рассеяния. Именно так определяют пространственное строение обычных химических соединений любой сложности, а также белков. Но для ДНК это сделать не удавалось.

Ясно, что для длинных молекул или для коротких молекул, имеющих разную длину или разную последовательность, нет шансов получить кристаллы. Надежда была на то, что если взять короткие молекулы, содержащие около 10 пар оснований и имеющие одинаковую длину и последовательность, то их удастся как-то закристаллизовать.

Но получение кристаллов – это весьма кропотливое дело. Нужно варьировать маточный раствор, из которого ведется кристаллизация, так что требуются очень большие количества вещества. А где взять много кусочков ДНК строго заданной длины? Такие препараты стали доступны только в конце 1970-х годов благодаря потрясающим успехам в химическом синтезе ДНК с заданной последовательностью.

Успехи химиков в этой области действительно поражают. В свое время синтез Кораной троек нуклеотидов разной последовательности вызвал сенсацию и в конечном счете принес автору Нобелевскую премию. (Как, возможно, помнит читатель, эти тринуклеотиды позволили провести полную расшифровку генетического кода, см. главу 2.) К началу 1980-х годов стало возможным заказать небольшой ящик размером с пишущую машинку. На ящике кнопки с буквами А, Т, Г, Ц. Вы нажимаете кнопки в том порядке, какую вы хотите получить последовательность (но не более 20 нуклеотидов), засыпаете в ящик исходные ингредиенты, также выпускаемые промышленностью, и идете обедать. Потом вы можете сходить в библиотеку или на семинар, а вернувшись через несколько часов, обнаружите в выходном устройстве вашего ящика несколько миллиграммов препарата, который вы заказали. Но в последние годы народ совсем обленился. Теперь эти чудо-приборы пылятся на полках или, скорее всего, вообще выброшены на свалку, а кусочки ДНК нужной последовательности заказывают по Интернету на одной из множества фирм по смехотворной низкой цене.

Так или иначе, больше не существует проблем, связанных с искусственным синтезом гена. Из синтетических олигонуклеотидов можно при помощи лигазы сшить ген любой длины. Это решает также проблему получения в больших количествах коротких кусков ДНК для их кристаллизации. Впрочем, машины, синтезирующие куски ДНК, появились в самом начале 1980-х годов, но в конце 1970-х в некоторых лабораториях, занимавшихся синтезом генов, уже умели быстро синтезировать лоскутки ДНК, правда, вручную.

Впервые хорошие кристаллы маленьких кусочков ДНК удалось получить в 1979 году в лаборатории Александра Рича (Массачусетский технологический институт). Кристаллы были из гексануклеотидов:

Каково же было удивление Рича и его сотрудников, когда, проделав все необходимые очень трудоемкие процедуры, они получили наконец структуру своих кусочков. Эта структура не имела ничего общего с моделью Уотсона и Крика!

Нет, разумеется, у нее были нормальные пары ГЦ, и даже кусочек образовывал отрезок двойной спирали, но на виток спирали приходилось не 10, а 12 пар оснований. Но главное не это. Главное, что спираль была не правая, как в В-форме, а левая!

Имелся еще целый ряд принципиальных отличий этой новой структуры, названной авторами Z-формой, от В-формы ДНК. Название происходит от того, что, в отличие от В-формы, в которой сахарофосфатный остов образует плавную винтовую линию, в Z-форме эта линия имеет зигзагообразный вид (рис. 41).

Что же получается, неужели все-таки модель Уотсона—Крика оказалась в конечном счете неверной? Ведь первая же структура ДНК, найденная с помощью абсолютно надежных методов рентгеновской кристаллографии, оказалась принципиально отличной от В-формы.

Нет, открытие американских ученых при всей своей сенсационности не носит столь радикального характера. Опыты с кольцевыми ДНК однозначно свидетельствуют о том, что спираль ДНК в растворе правая и на виток спирали приходится 10 пар, что соответствует В-, а не Z-форме. Так что же, значит, в кристалле вследствие межмолекулярных взаимодействий структура двойной спирали столь сильно меняется? Нет, дело и не в этом.

Как удалось установить, тому, что изученный гексануклеотид оказался в Z-форме, способствовала главным образом строго чередующаяся последовательность Г и Ц.

Вскоре Р. Диккерсон и его сотрудники из Калифорнийского университета в Лос-Анджелесе определили структуру в кристалле ДНК другой последовательности:

Оказалось – В-форма. Стали изучать переход ДНК в Z-форму в растворе. Выяснилось, что при обычных условиях, по крайней мере в линейной ДНК, Z-форма не образуется. Ну а в сверхспирализованной?

Рис. 41. Так выглядят объемные модели Z– и В-формы ДНК. Черные линии нарисованы, чтобы показать ход сахарофосфатной цепи

Конечно, сверхспирализация должна делать Z-форму более выгодной, так как изменение знака спирали из положительного на отрицательный в отрезке ДНК снимает напряжение в остальной части отрицательно сверхспирализованной молекулы. Поэтому вполне естественно предположить, что в сверхспирализованной ДНК участки, имеющие чередующуюся последовательность Г и Ц, будут переходить в Z-форму. Так ли это?

Ответ на этот вопрос зависит от того, какова энергия перехода В – Z для участка, имеющего последовательность …ЦГЦГЦГЦГЦГ… Ведь помимо регулярной В-формы образование Z-формы должно стать более выгодным, чем образования креста, чтобы эта форма существовала. Ведь последовательность

это перевертыш, так что вопрос о том, переходят ли участки ДНК с подходящей последовательностью в Z – форму, совсем не прост. Его необходимо было исследовать экспериментально.

Как и в случае с крестами, наиболее эффективным методом выяснения вопроса о том, образуется ли Z-форма в отрицательно сверхспирализованной ДНК, оказался метод двумерного гель-электрофореза (см. главу 7). Только достаточно длинные участки …ЦГЦГЦГЦГ… в обычных плазмидах не встречаются. Поэтому потребовалось конструирование специальных плазмид, несущих искусственные вставки …ЦГЦГЦГЦГ… разной длины.

Дж. Уонг впервые применил к исследованию Z-формы метод двумерного гель-электрофореза. Исследуя плазмиды с длинными вставками …ЦГЦГЦГЦГ…, он наблюдал картинки типа приведенной на рис. 32 в условиях, когда для контрольной плазмиды, лишенной вставки, никакого разрыва на электрофореграмме не наблюдалось. Это означало, что наблюдаемый структурный переход происходил во вставке …ЦГЦГЦГЦГ… Но что при этом возникало – крест или Z-форма? Ответ на этот вопрос могла дать величина скачка, т. е. то, на сколько топоизомеров вверх происходил скачок при переходе. Если бы происходил переход в крест, то следовало ожидать скачок на т/10,5 топоизомеров, где т – число пар в перевертыше, т. е. в последовательности …ЦГЦГЦГЦГ… В случае же образования Z-формы следовало ожидать скачка на т (1/10,5 + 1/12,5) топоизомеров (12,5 – это число пар, приходящихся на виток левой спирали ДНК в Z-форме). Эксперимент дал четкий ответ – величина скачка отвечала образованию Z-формы, а не креста. Так было показано, что последовательности …ЦГЦГЦГЦГ… могут переходить в Z-форму в условиях, близких к физиологическим. Это позволяло надеяться, что Z-форма может возникать в ДНК внутри клетки и играть какую-то биологическую роль.

Образование Z-формы в ЦГ-последовательностях при отрицательной сверхспирализации ДНК можно регистрировать не только методом двумерного гель-электрофореза. Другой метод, широко применявшийся А. Ричем с сотрудниками, состоит в использовании антител к Z-форме. Эти антитела были получены путем иммунизации животных химически модифицированным ЦГ-полимером, который находится в Z-форме при любых условиях. Такие антитела не связываются с ДНК или ЦГ-полимером в В-форме, но сильно связываются с ЦГ-полимером, находящимся в Z-форме. Было показано, что искусственные плазмиды, несущие ЦГ-вставки, начинают связывать антитела к Z-форме, когда их отрицательная сверхспирализация становится достаточно высокой.

Анализ пространственной структуры Z-ДНК привел к заключению, что для этой формы ДНК важно регулярное чередование пуриновых и пиримидиновых нуклеотидов в каждой из комплементарных цепей. Если такого чередования нет, то Z-форма становится сильно невыгодной по сравнению с В-формой. Поэтому можно было ожидать, что наряду с последовательностями …ЦГЦГЦГ… отрицательная сверхспирализация будет способствовать образованию Z-формы еще в двух простых пурин-пиримидиновых последовательностях:

и

Выяснение этого вопроса было особенно важно потому, что протяженные участки с такими последовательностями сравнительно часто встречаются в эукариотических ДНК. Были сконструированы специальные плазмиды, несущие такие вставки, и проведены опыты по двумерному гель-электрофорезу, связыванию антител к Z-форме, расщеплению однонитевой эндонуклеазой. Эти опыты показали, что, как и ожидалось, ГТ-вставки переходят в отрицательно сверхспирализованной ДНК в Z-форму (образование крестов в таких последовательностях, очевидно, невозможно), а вот АТ-вставки образуют кресты.

Открытие Z-формы буквально всколыхнуло души молекулярных биологов. Вместе с доказательством существования крестов в сверхспиральных ДНК это открытие показало, что, хотя в целом ДНК, безусловно, находится в В-форме, отдельные ее участки могут иметь резко отличающуюся структуру. Начался поиск этих и других структур в ДНК и выяснение их возможной биологической роли.

Н-форма

В ходе работы по выяснению возможной биологической роли альтернативных (отличных от В-формы) структур наиболее популярным оказался ферментативный метод, так как он прост и позволяет локализовать на ДНК место атаки однонитевой эндонуклеазы. Дэвид Лилли (Университет Данди, Великобритания) показал, что кресты атакуются в центре перевертыша, а Роберт Уэллс (Алабамский университет, США) обнаружил, кроме того, что при образовании Z-формы атакуются границы между ней и В-формой.

Генные инженеры, встраивая все новые и новые участки ДНК из самых разных организмов в плазмиды, стали проверять их на чувствительность к однонитевой эндонуклеазе в надежде обнаружить кресты или Z-форму. Действительно, некоторые участки ДНК из высших оказывались очень чувствительными к ферменту. Они получили название гиперчувствительных мест. Когда удалось локализовать эти места, выяснилось, что они всегда находятся в важных регуляторных участках генома. Это привлекло к ним еще большее внимание. Когда же были определены их последовательности, то, к большому смущению исследователей, оказалось, что они – не перевертыши и не чередующиеся пурин-пиримидиновые участки. Как правило, гиперчувствительными к однонитевой эндонуклеазе оказывались последовательности, которые в одной цепи содержат только пурины, а в другой – только пиримидины, т. е. гомопурин-гомопиримидиновые последовательности типа (Г)n•(Ц)n или (ГА)n•(ТЦ)n.

Как же это следовало понимать? Может быть, однонитевая эндонуклеаза предпочтительно атакует такие последовательности, даже если они находятся в нормальной В-форме? Или эти последовательности способны принимать в сверхспиральной ДНК какую-то новую, до сих пор не обнаруженную форму ДНК?

Последняя возможность была особенно интересной, поскольку это означало бы, что мы еще не знаем о структуре ДНК что-то очень важное, причем это «что-то» могло оказаться существенным для функционирования ДНК в клетках эукариот. Специалисты по структуре ДНК взялись за работу, пытаясь выяснить образуют ли гомопурин-гомопиримидиновые последовательности альтернативную структуру, а если образуют, то какую именно.

Возможно, рассуждали одни, эти последовательности могут образовывать левую спираль, не Z-форму, а какую-то другую левоспиральную форму, одну из тех, что можно построить с помощью молекулярных моделей. Нет, возражали другие, все дело в том, что это очень однородные последовательности и поэтому две комплементарные нити могут проскальзывать друг относительно друга, образуя две однонитевых петли по краям гомопурин-гомопиримидинового участка. Однонитевая эндонуклеаза атакует эти петли, что и делает такие последовательности гиперчувствительными. А может быть, указывали третьи, такие последовательности образуют четверные спирали, еще одну гипотетическую структуру, предложенную теоретиками на основе «игры» с молекулярными моделями. Однонитевая эндонуклеаза атакует вершину такой структуры, где должны быть однонитевые петли.

Очень скоро стало ясно, что сам по себе факт гиперчувствительности к однонитевой эндонуклеазе мало что дает, тем более что оставался открытым вопрос об избирательном действии самого фермента. В начале 1985 года В. Лямичев, С. Миркин и автор этих строк (мы тогда работали в Москве, в Институте молекулярной генетики[3]) решили применить к исследованию этого запутанного вопроса метод двумерного гель-электрофореза.

Была сконструирована плазмида, несущая последовательность (ГА)16 •(ТЦ)16. Топоизомеры этой плазмиды были подвергнуты разделению методом двумерного электрофореза. На картинах электрофореза наблюдались характерные разрывы, как в случае крестов и Z-формы. Эти разрывы отсутствовали в контрольных экспериментах с плазмидой, в которую не был встроен участок (ГА)16 •(ТЦ)16. Пятна, отвечающие следующим за разрывом топоизомерам, исчезли из картин двумерного фореза после обработки плазмиды со вставкой однонитевой эндонуклеазой. Эти опыты показали, что под действием отрицательной сверхспирализации в гомопурин-гомопиримидиновой последовательности на самом деле образуется некая альтернативная структура. Но, может быть, образуется одна из уже известных альтернативных структур, крест или Z-форма, просто требования к последовательности на самом деле не столь строги, как принято считать?

Эта возможность полностью исключалась, так как обнаруженный переход оказался очень чувствительным к кислотности среды. При добавлении в среду кислоты переход резко облегчался. Более того, при достаточной кислотности переход наблюдается вообще в релаксированной, несверхспирализованной ДНК! Стало ясно, что речь идет на самом деле о какой-то совершенно новой структуре, поскольку ни одна из известных ранее структур не была столь чувствительной к кислотности среды. Так как эта загадочная структура стабилизировалась кислотой, т. е. ионами водорода, мы назвали ее Н-формой.

У нас в руках были две очень важные количественные характеристики Н-формы. Во-первых, величина скачка при электрофорезе, которая свидетельствовала о том, что в Н-форме комплементарные цепи не закручены друг относительно друга (как и в случае крестов). Во-вторых, зависимость сверхспирализации, при которой происходит переход из В – в Н-форму, от кислотности среды. Теоретический анализ этой зависимости показывал, что в Н-форме на каждые четыре пары оснований вставки (ГА)16 •(ТЦ)16 приходится одно место связывания протона. Нам никак не удавалось придумать структуру, которая бы удовлетворяла этому требованию.

В то время, когда мы ломали головы над этой загадкой, наше внимание привлекла статья А. Р. Моргана и Джероми Ли (Университет Альберты, Канада), опубликованная несколькими годами раньше. Канадские ученые исследовали синтетическую ДНК, комплекс поли (ЦТ) •поли (АГ). Они обнаружили, что в кислой среде пара таких двойных спиралей объединяется в тройной комплекс, состоящий из двух цепей ЦТ и одной цепи АГ. Вторая цепь АГ оказывается «лишней». Тройной комплекс состоит из триад, структура которых приведена на рис. 42. Для нас очень существенно то, что триада ЦГЦ+ образуется путем захвата из среды одного протона. Это и объясняет, почему такая структура образуется, в отсутствие сверхспирального напряжения, только в кислой среде. На основе этих данных мы предположили, что Н-форма имеет структуру, показанную на рис. 43.

Рис. 42. Структура триад ТАТ и ЦГЦ+, из которых строится тройная спираль ДНК. В основе каждой триады лежат обычные уотсон-криковские пары А •Т и Ц •Г (см. рис. 38), к которым присоединяется третье основание. Такой необычный способ присоединения оснований впервые наблюдал в кристаллах К. Хугстин. Для образования хугстиновской пары ГЦ цитозин должен захватить из раствора лишний ион водорода, т. е. протон. Штриховыми линиями показаны водородные связи между основаниями. Как и в случае уотсон-криковских пар, обе триады имеют одинаковые расстояния между атомами азота, связанными с сахаром

Рис. 43. Структура Н-формы ДНК для участка (ГА)16 •(ТЦ)16, встроенного в плазмидную ДНК. Основной элемент структуры – тройная спираль, состоящая из триад, приведенных на рис. 42. Показаны два возможных «изомерных» варианта структуры. Уотсон-криковское спаривание обозначено затемненными кружками, хугстиновское спаривание ГЦ, в котором участвует дополнительный протон, обозначено крестиками

Ясно, что такая структура должна быть очень чувствительна к однонитевой эндонуклеазе, так как половина пуриновой нити вставки находится в однонитевом состоянии.

Мы исследовали также вставки (Г)n •(Ц)n и другие регулярные гомопурин-гомопиримидиновые последовательности. Во всех случаях наблюдалось образование Н-формы.

Так что же, Н-форма может возникнуть в любой гомопурин-гомопиримидиновой последовательности? Нет, согласно модели (рис. 42), гомопурин-гомопиримидинового характера последовательности недостаточно. Требуется еще, чтобы последовательность была зеркальным перевертышем, т. е. чтобы она одинаково читалась справа налево и слева направо по одной и той же цепи (в отличие от обычных перевертышей, образующих кресты, которые одинаково читаются по разным цепям). Понятно, почему все регулярные гомопурин-гомопиримидиновые последовательности образуют Н-форму – ведь они как раз принадлежат к классу зеркальных перевертышей. Легко, однако, придумать нерегулярную последовательность – зеркальный перевертыш, скажем:

Не важно, что центральная последовательность не является гомопурин-гомопиримидиновой, – все равно она окажется в петле в Н-форме (рис. 43). Эксперимент полностью подтвердил наши ожидания, что зеркально-симметричные гомопурин-гомопиримидиновые последовательности переходили в Н-форму, тогда как малейшее нарушение симметрии предотвращало переход. Эти и многие другие опыты доказали правильность предложенной нами структуры Н-формы.

Открытие Н-формы инициировало настоящий бум в изучении тройных спиралей ДНК, начавшийся в середине 1980-х годов и продолжающийся по сегодняшний день.

Мы теперь знаем, что сверхспирализация может вызывать образование в ДНК альтернативных структур трех типов: крестов, Z-формы и Н-формы. Вопрос о биологической роли этих структур находится в стадии интенсивного изучения во многих лабораториях.

10 Генная инженерия и технология редактирования генома. Опасения и надежды

Мы говорим о вступлении в биологический век, и это – не пустые слова. Это явление огромной значимости, один из поворотных пунктов в истории человеческой мысли. Ученые говорят о нуклеопротеинах и ультрацентрифугах, о биохимической генетике, электрофорезе и электронном микроскопе, о строении молекул и радиоактивных изотопах. Не думайте, что все это – не более чем еще одна их забава. Это надежный путь к решению проблем рака и полиомиелита, ревматизма и сердечно-сосудистых заболеваний. На этом пути будут получены знания, на основе которых мы сможем решить проблему обеспечения продовольствием все возрастающее население Земли. Это путь к познанию тайн жизни.

У. Уивер, 1949 г.

Наука и изобретательство

За то время (около 150 тысяч лет), которое существует на планете Земля вид Homo sapiens, с ним не произошло с биологической точки зрения сколько-нибудь значительных изменений. Наши дети рождаются такими же, какими рождались дети наших предков десятки тысяч лет назад. Но насколько изменился мир! Земной шар покрыли сети стальных и асфальтовых дорог, а околоземное пространство исчерчивают невидимыми трассами тысячи самолетов и космических кораблей. Человек побывал на Луне, а сделанные им аппараты посетили Марс, Венеру, прислали на Землю потрясающие снимки Юпитера, Сатурна и их многочисленных спутников, побывали в самых отдаленных уголках Солнечной системы. Часто говорят, что все эти головокружительные успехи человечества – результат развития науки. Это не совсем верно.

Страсть к преобразованию окружающего мира – по-видимому, один из главных инстинктов человека, и проявилась она задолго до возникновения науки. Давным-давно люди стали строить дороги, величественные храмы, пирамиды и другие сооружения, которые и тысячелетия спустя поражают воображение и даже порождают гипотезы о пришельцах из иных миров. Рассказы о пришельцах – это мифы эпохи научно-технической революции, когда люди перестали верить в возможности чистого изобретательства, не основанного на научных знаниях.

Но пирамиды, храмы, парусные и дизельные корабли, паровозы, автомобили и даже самолеты – все это в большей степени результат изобретательства, чем систематического научного исследования. Древо науки стало обильно плодоносить только в XX веке. Но плоды эти оказались такими, что затмили собой все предыдущие достижения человека. В XX веке наука породила две совершенно новые технологии – ядерную технику и электронику, радикально изменившие мир, в котором мы живем. И это произошло на глазах лишь одного поколения.

Подобно тому, как появление транзистора привело к рождению современной электроники, открытие рестриктаз и разработка других методов генной инженерии породили биотехнологию. Как грибы после дождя, возникают биотехнологические компании, создающие на основе совершенно новых технических принципов фармацевтические препараты, вакцины, другие биологически активные вещества. Так что же достигнуто сегодня и над чем будет работать завтра вся эта армия ученых и инженеров?

Но давайте по порядку. Когда в середине 1970-х годов впервые возник шум вокруг генной инженерии, его вызвали не ее успехи, которых тогда еще не было, а наоборот, опасения, что она приведет к непредвиденным отрицательным последствиям. Эти опасения вспыхнули с новой силой совсем недавно, уже в середине 2010-х, когда возникла технология редактирования генома, о которой речь пойдет далее в этой главе.

Опасна ли генная инженерия?

Рассказывают, что перед первым испытанием атомной бомбы руководители американского атомного проекта обратились к теоретикам со следующим вопросом: «А что, если взрыв совершенно нового типа, подобных которому не было на Земле, приведет к глобальной катастрофе? Вдруг атомная бомба послужит запалом для термоядерной реакции, которая охватит всю земную атмосферу?» Первой реакцией теоретиков был ответ: «Скорее всего, ничего страшного не произойдет». Но что значит «скорее всего»? При ответе на подобные вопросы обычные допуски не годятся. Ведь на карту была поставлена ни много ни мало судьба всего человечества.

Поэтому, поразмыслив, теоретики решили, что одному из них следует попытаться совершенно строго решить задачу: есть ли малейшая вероятность того, что подобная катастрофа произойдет? Был выбран самый дотошный, самый аккуратный из американских теоретиков – Г. Брейт. Представляете, какой груз ответственности был возложен на плечи одного человека? Скрупулезно проанализировав все мыслимые возможности, Брейт дал ответ: возможность того, что взрыв атомной бомбы вызовет цепную реакцию в атмосфере, следует считать полностью исключенной.

Подобные драматические события разыгрались и при рождении генной инженерии. В 1974 году, после самых первых опытов по получению рекомбинатных молекул ДНК и доказательств их успешной работы в клетке, ученые сами себе задали вопрос: «А что, если в ходе перетасовок генов, перетасовок, которые совершенно невозможны в естественных условиях, возникнет молекула ДНК с чудовищно губительными для человека качествами? Что, если она начнет безудержно размножаться, заразит массу людей, а потом всех их убьет?»

Группа ведущих американских молекулярных генетиков во главе с Полом Бергом опубликовала в главных научных журналах, а затем и в широкой прессе сенсационное письмо, в котором сообщалось, что они временно прекращают работы по генной инженерии. Ученые призывали своих коллег во всем мире сделать то же самое, вплоть до чрезвычайного съезда специалистов, где предлагалось обсудить обоснованность возникших опасений и разработать меры, которые позволили бы максимально уменьшить риск, связанный с генной инженерией.

И хотя съезд, состоявшийся в 1975 году, наложил запрет на работы по генной инженерии, через год этот запрет был снят. За это время были разработаны четкие рекомендации, как следует проводить генно-инженерные работы, сопряженные с разной степенью риска.

Понятно, что решить вопрос раз и навсегда в данном случае нельзя. Вопрос о риске генно-инженерных работ связан со слишком сложным комплексом микробиологических, экологических и других проблем, и, по-видимому, единственный путь здесь – постепенное ослабление ограничений с тщательной проверкой каких-либо последствий. По этому пути и пошли. Первые правила работы с рекомбинантными ДНК были очень строгими, затем они были смягчены.

Пока что все мыслимые проверки, на которые были затрачены огромные средства, не выявили ни малейших следов влияния этих экспериментов на окружающую нас микробиологическую среду. Рекомбинантные ДНК оказываются совершенно нежизнеспособными вне тех искусственных условий, в которых их культивируют генные инженеры.

Во всяком случае есть все основания считать, что ситуация находится под контролем – если когда-нибудь возникнут какие-либо неприятности, то они будут обнаружены до того, как станут необратимыми, и опасность удастся ликвидировать. В конце концов, пользование зажигалкой, газовой плитой, электрическим утюгом, не говоря уже об атомном реакторе, – все это сопряжено с определенным риском для людей и имущества. Было бы безрассудством отказаться от исследований, сулящих решить многие острые проблемы, стоящие перед людьми, просто из соображений «как бы чего не вышло».

Теперь, много лет спустя после описанных драматических событий, работы по генной инженерии идут полным ходом в тысячах лабораторий мира. Были ли опасения оправданны? Не было ли обращение Берга и его коллег лишь ловким трюком, как подозревали некоторые циники, рассчитанным на то, чтобы привлечь к генной инженерии внимание широкой публики и финансирующих науку инстанций?

С одной стороны, опыт прошедших лет показал, что при соответствующих предосторожностях работы по генной инженерии не связаны с заметным риском. Однако, с другой стороны, человечество столкнулось за эти годы с новой страшной болезнью, которая особенно ярко показала, насколько коварны бывают вирусы. Речь идет, как уже, наверное, догадался читатель, о печально знаменитом СПИДе, т. е. синдроме приобретенного иммунного дефицита. Эта болезнь, заявившая о себе впервые в начале 1980-х годов, подчас вызывает такой же ужас у миллионов людей, как в Средние века чума или холера.

Безусловно, СПИД служит предупреждением, насколько коварной и безжалостной ДНК (и РНК) может быть. В то же время трудно найти лучший пример того, какую пользу сулят генная инженерия и биотехнология, чем успех, достигнутый в борьбе со СПИДом.

Битва века

Как считают, родина этой «чумы нового времени» – Центральная Африка. Оттуда она была занесена в Карибский бассейн, а потом из Гаити попала на Американский континент. В 1983–1984 годах французской и американской группам вирусологов удалось выделить вызывающий СПИД вирус, названный ВИЧ (вирус иммунодефицита человека). Впрочем, слава досталась французам: за открытие ВИЧ Франсуаза Барре-Синусси и Люк Монтанье получили Нобелевскую премию в области физиологии и медицины за 2008 год. ВИЧ поражает Т-лимфоциты, т. е. клетки крови, ответственные за иммунитет. В результате больной теряет способность к иммунной реакции на любую инфекцию и умирает от воспаления легких или от чего-нибудь еще. Главным образом СПИД передается через кровь, подобно сывороточному гепатиту. Но в отличие от гепатита и всех других известных медицине болезней заболевший СПИДом человек практически наверняка умирал – ведь выведенной из строя оказывалась та самая иммунная система, которая единственная и может защитить от вирусной инфекции. Подчеркнем, что к моменту возникновения эпидемии СПИДа наука не располагала лекарствами, позволяющими лечить вирусные болезни, в отличие от бактериальных болезней, которые к тому времени уже давно лечились с помощью антибиотиков.

Два фактора – длительный инкубационный период, в течение которого отсутствуют какие-либо внешние признаки болезни, и то, что смерть наступала от обычных болезней типа пневмонии, привели к сильной задержке в обнаружении СПИДа. В результате к моменту начала борьбы с болезнью уже около миллиона американцев оказались носителями вируса.

Ученые во всем мире взялись за обуздание СПИДа. Прежде всего, вооружившись новейшими достижениями молекулярной биологии и генной инженерии, вирус СПИДа подвергли всестороннему исследованию. Была определена полная нуклеотидная последовательность вирусной РНК (ВИЧ принадлежит к классу ретровирусов, у которых генетическим материалом служит РНК, а не ДНК). Начали издаваться специальные журналы о СПИДе, страницы многих научных журналов запестрели статьями о нем. Был разработан иммунологический тест, позволяющий обнаружить ВИЧ в крови и выявить всех его носителей, а также проверить донорскую кровь.

С конца 1980-х годов весьма значительные ресурсы были направлены на изучение ВИЧ и на борьбу со СПИДом. Однако поначалу исследователи не осознавали в полной мере масштабы проблемы. Ведь с тех пор, как Эдвард Дженнер изобрел вакцинацию (более 200 лет назад), многие вирусные болезни были успешно побеждены. Наиболее впечатляющий успех в сравнительно недавнее время – это создание Джонасом Солком вакцины против полиомиелита. В результате практически исчезла эта страшная болезнь, терроризировавшая многие поколения тем, что убивала и оставляла калеками миллионы детей. Вспомним хотя бы знаменитого ФДР, любимейшего американцами президента Рузвельта, проведшего страну и через Великую депрессию, и через Вторую мировую войну, но всю жизнь не встававшего с инвалидного кресла.

Казалось бы, в случае СПИДа беспрецедентные усилия огромной армии исследователей во всем мире, вооруженных самыми современными средствами, должны были быстро привести к созданию вакцины. К сожалению, пока эти усилия не дали желаемых результатов. Сам Солк в последние восемь лет своей жизни пытался повторить со СПИДом то, что ему удалось сотворить с полиомиелитом. Не получилось. Подобно вирусу гриппа, ВИЧ слишком быстро меняется. Вакцинация против одного штамма не защищает против другого штамма. Разумеется, охота за вакциной продолжается, но надежд на успех меньше, чем 20 лет назад.

В отсутствие вакцины врачи беспомощны в борьбе с вирусной болезнью. Неудивительно, что к началу 1990-х годов больные СПИДом потеряли надежду вылечиться. Люди были столь запуганы, что даже положительная реакция на ВИЧ уже расценивалась как смертный приговор. Во многих случаях такая реакция немедленно меняла весь стиль жизни человека задолго до появления первых симптомов СПИДа.

Несмотря на неудачи с вакциной, ученые не сдавались. Они поняли, что традиционными методами эту болезнь не одолеешь. Необходимо было найти принципиально новые способы борьбы с вирусной инфекцией. Было ясно, что такую труднейшую задачу можно решить только в результате воистину глубокого понимания всех стадий ВИЧ-инфекции. Надежда состояла в том, чтобы найти ахиллесову пяту у зловредного вируса и ударить по этому критическому звену с помощью специально разработанного лекарства.

Собственно говоря, такое уязвимое место у ВИЧ было обнаружено очень рано, как только выяснилось, что ВИЧ принадлежит к классу ретровирусов, у которых генетическим материалом является одноцепочечная РНК. Уже в 1987 году в борьбе со СПИДом стали применять производное дидезокситимидина (АЗТ), который ингибирует ревертазу. Поскольку важнейшей стадией вирусной инфекции в случае ретровирусов является синтез ДНКовой копии вирусной РНК, ожидалось, что ингибитор ревертазы предотвратит инфекцию. Хотя отчасти ожидания оправдались, АЗТ лишь замедлял протекание болезни, но не вылечивал от нее. Поначалу у пациентов, принимавших АЗТ, количество вирусов уменьшалось, количество Т-лимфоцитов (клеток-мишеней ВИЧ) росло, но затем все возвращалось на круги своя. Основная проблема опять же была в проклятой изменчивости ВИЧ: появлялись мутантные вирусы, устойчивые к АЗТ. Как только такой мутант появляется в организме пациента, АЗТ перестает помогать этому больному.

Ситуация напоминала ту, с которой врачи столкнулись, когда стали появляться штаммы бактерий, устойчивые к антибиотикам. Мы этой проблемы коснулись в главе 4 в связи с плазмидами. Отличие в скорости возникновения проблемы. В случае бактерий устойчивость к антибиотикам превратилась в серьезную проблему после десятилетий массового применения первого антибиотика, пенициллина. К тому времени были спасены многие миллионы жизней и были найдены новые, более мощные антибиотики, которые пришли на смену пенициллину. В случае со СПИДом устойчивость в АЗТ возникала в ходе лечения каждого больного.

Все же оставалась надежда, что комбинация ингибиторов ревертазы окажется более эффективной, чем один АЗТ, или что удастся найти новые лекарства, атакующие другие ферменты, необходимые ВИЧ для его размножения. Исследователи пошли обоими путями. Был разработан ряд новых ингибиторов ревертазы, отличных от АЗТ. Врачи стали прописывать больным различные комбинации ингибиторов, или, как их стали называть, «коктейли», пытаясь остановить размножение ВИЧ, пока не возникла устойчивость ко всему коктейлю. Успех оставался весьма ограниченным.

Истинный прорыв в борьбе со СПИДом наступил в середине 1990-х годов, когда к коктейлю стали добавлять принципиально новые лекарства – ингибиторы протеаз. В ходе детального изучения процесса развития ВИЧ в клетках больных исследователи столкнулись с необычным способом «созревания» белков оболочки ВИЧ, которые образуют капсулу для генетического материала вируса, молекулы РНК. Эти белки синтезируются на клеточных рибосомах в виде очень длинных полиаминокислотных молекул, представляющих собой тандем из нескольких белковых цепей. Затем специальная вирусная протеаза разрезает эти длинные цепи на отдельные белки. Если протеаза не работает, вирусные частицы не способны к «созреванию». Протеаза была подвергнута детальному изучению. Методом рентгеноструктурного анализа определили ее атомную структуру. После ряда неудачных попыток нескольким группам, работавшим в крупнейших фармацевтических компаниях, удалось разработать специфические ингибиторы протеазы ВИЧ.

В результате врачи получили в свое распоряжение два типа лекарств, которые ингибируют разные, но одинаково критические для размножения ВИЧ ферменты. По отдельности каждое из лекарств действует, но не предотвращает инфекцию ВИЧ. Но когда больные СПИДом стали принимать в течение продолжительного периода большие дозы коктейлей, содержащих разные пропорции обоих лекарств, количество вирусных частиц у пациентов резко снижалось, достигая уровня, когда их невозможно было детектировать. В течение 1996 года это чудо повторялось вновь и вновь с сотнями больных. Впервые такие коктейли применил Дэвид Хо в Центре по исследованию СПИДа в Нью-Йорке. Его успех вызвал такой всеобщий энтузиазм, что в 1996 году доктор Хо был избран журналом Time человеком года.

1996 год и впрямь стал важной вехой в истории здравоохранения. В этот год человек впервые научился побеждать вирусную инфекцию не путем стимулирования средств, созданных самой природой (т. е. иммунной системы), а пустив в ход арсенал мощных методов молекулярной биологии и биотехнологии. При этом исследователи научились бить по самым чувствительным точкам вирусного цикла размножения. Оказалось, что, если подвергать эти чувствительные точки массированной и продолжительной атаке, размножение вируса удается остановить до того, как он успеет защититься от атаки.

Практически в США проблема СПИДа решена. Опустели специальные приюты, где больные должны были провести свои последние дни. В значительной степени проблема СПИДа перешла в плоскость политики, финансов и в особенности образования. Коктейли против СПИДа достаточно дороги, и курс лечения ими очень длинный. Больным в слаборазвитых странах, особенно в Африке, где СПИД стал настоящим бедствием, лечение не по карману. Также большую роль играет низкий уровень сексуальной гигиены в этих странах, что приводит к быстрому распространению ВИЧ. И уж совсем печально, когда руководитель государства, население которого буквально вымирает от СПИДа (речь идет о Южной Африке, где миллионы граждан заражены ВИЧ), подпадает под влияние шарлатанов и начинает отрицать, что СПИД вызывается ВИЧ, как это случилось в свое время с президентом Табо Мбеки. Сейчас главная причина продолжающейся в ряде стран, в том числе в России, эпидемии СПИДа – чудовищное невежество населения нашей планеты в отношении самых элементарных вопросов биологии, медицины и сексуальной гигиены. К сожалению, не существует таблеток, которые могли бы победить эту заразу невежества.

Но вернемся к нашей теме. Среди методов генной инженерии, без которых успехи в борьбе со СПИДом были бы невозможны, один занимает особое место. Этот метод, ПЦР, кратко упоминавшийся нами ранее, совершил в конце ХХ века подлинную революцию в генной инженерии и биотехнологии.

ДНКовая цепная реакция

Как ни трудно в этом признаться, но существует только одна-единственная цель, с которой каждый из нас пришел в этот мир: передать свою ДНК следующему поколению. Нет больше абсолютно никакого смысла в нашем существовании. Весьма неприятно осознавать, что наше тело есть не что иное, как оболочка для заключенной в нем ДНК. Нет совершенно никакой разницы, в отношении смысла жизни, между человеком и бактерией, или простым вирусом, или даже плазмидой. С биологической точки зрения люди блуждают во тьме, пытаясь отыскать смысл жизни в культах, религии, музыке, поэзии и в изобразительном искусстве.

Несмотря на то, что цель у всех видов одна, средства ее достижения отличаются радикальным образом. Учитывая примитивность цели, приходится поражаться изощренности и разнообразию средств, которые демонстрирует природа. Однако, если подумать хорошенько, становится ясно, что в условиях жесткой конкуренции за ограниченные ресурсы более примитивные организмы в конечном счете проигрывают более совершенным организмам, не говоря уже о видах. Еще предстоит убедиться в том, достаточно ли совершенен вид Homo sapiens, чтобы его не постигла судьба когда-то многочисленного и могущественного семейства Dinosauria.

Читатель вправе возразить, что приведенные рассуждения справедливы только для уже достаточно сложных организмов типа животных, в то время как совсем примитивные организмы, такие как бактерии, вирусы и плазмиды, компенсируют отсутствие изощренности своей способностью размножаться со страшной скоростью. Это возражение отчасти верно, но только до тех пор, пока такое размножение не причиняет вред людям. Самое изощренное существо на Земле разработало и продолжает разрабатывать мощные средства для истребления вредных микробов. Этот постоянно растущий арсенал средств включает вакцины, антибиотики и различные лекарственные препараты. В предыдущем разделе мы обсудили нашу недавнюю убедительную победу над наиболее коварным врагом, с которым людям пришлось столкнуться, – с ВИЧ.

Хотя на сегодняшний день человеческое тело представляется наилучшей упаковкой, обеспечивающей размножение ДНК, мы все еще являемся свидетелями впечатляющего разнообразия упаковок для ДНК. Двухцепочечная природа ДНК наиболее подходит для быстрого размножения. В самом деле, если мы разведем две ДНКовые цепи и синтезируем комплементарные цепи на каждой из них, то получим две «дочерние» молекулы, идентичные исходной, «материнской» молекуле. Если мы повторим тот же трюк с двумя «дочерними» молекулами, то получим четыре молекулы-«внучки», идентичные их «бабушке». Очевидно, что в n-м поколении мы будем иметь 2n молекул, каждая из которых будет идентична исходной молекуле. Процесс такого рода, ведущий к экспоненциальному росту числа особей, называется цепной реакцией.

Это название пошло от важного класса химических реакций, открытого и объясненного теоретически в 1930-х годах Н. Н. Семеновым и его учениками Ю. Б. Харитоном, Я. Б. Зельдовичем и Д. А. Франк-Каменецким (отцом автора этих строк). Хотя экспоненциальный рост был к тому времени хорошо изучен в биологии, цепные химические реакции были новостью. За их открытие Семенов был удостоен в 1956 году Нобелевской премии по химии. Цепная реакция объяснила явление теплового взрыва, происходящего при использовании обычных взрывных зарядов. Она оказалась столь же важной для проектирования ядерных реакторов и атомной бомбы. Именно из-за шума вокруг атомной бомбы термин «цепная реакция» вошел в обиход и теперь, к месту или не к месту, используется повседневно.

Рис. 44. Три цикла полимеразной цепной реакции (ПЦР)

Итак, феномен жизни можно рассматривать как ДНКовую цепную реакцию. Эта цепная реакция протекает в контролируемом режиме (подобно цепной реакции в ядерном реакторе), при котором рождаемость примерно уравновешивается смертностью и количество особей остается более или менее постоянным. Но иногда ДНКовая цепная реакция напоминает взрыв: это происходит при эпидемиях заразных болезней.

Сразу же после открытия химических цепных реакций стала ясна аналогия между ними и размножением живых существ. Цепной характер размножения ДНК был очевиден сразу после открытия двойной спирали. Поразительно, что вплоть до середины 1980-х годов никто не пытался осуществить ДНКовую цепную реакцию в пробирке, хотя все для этого уже было. Плавление ДНК (т. е. разделение комплементарных цепей при нагревании) было к тому времени детально изучено. Синтез ДНКовых праймеров уже стал рутинным делом. Удлиняющая праймеры ДНК-полимераза I была общедоступна и широко использовалась (см. главу 5). Молекулярным биологам просто не приходило в голову, с какой стати они стали бы размножать ДНК в пробирке. В одной из своих статей Корана упомянул, что ДНКовая цепная реакция может быть осуществлена путем периодического нагревания и охлаждения образца ДНК в присутствии праймеров и четырех дНТФ при помощи ДНК-полимеразы I. Ну и что? Корана не собирался тратить время, чтобы доказывать кому-то, что такая цепная реакция действительно возможна. Разумеется, возможна! Какие могут быть сомнения?

Скорее всего, Кари Мулис не читал статью Кораны. Мулис работал в одной из биотехнологических компаний, которые стали расти как грибы после дождя в конце 1970-х и в начале 1980-х годов. Работая в биотехе, а не в научном институте, Мулис ясно осознавал, что возможность размножать ДНК в пробирке может привести к подлинной революции в биотехнологии. Он был настолько захвачен идеей о ПЦР, что ему удалось заразить своим энтузиазмом коллег по компании и убедить их поставить опыты. Схема их первых опытов показана на рис. 44.

Прежде всего выбиралась ДНКовая мишень для размножения. Необходимо было знать последовательность оснований в выбранной мишени, по крайней мере концевые последовательности. Затем синтезировали два праймера. Один из них был комплементарен нижней цепи ДНК на левом конце мишени; второй был комплементарен верхней цепи ДНК на правом конце мишени. Оба праймера примешали к образцу в большом избытке по отношению к ДНК-мишени. (ПЦР может быть осуществлена, даже когда в образце исходно находится одна молекула ДНК-мишени.) Также в образце находились в достаточном количестве все четыре дНТФ. После этого образец нагревался до температуры, гарантировавшей плавление ДНК-мишени (т. е. разделение комплементарных цепей). Затем образец вновь охлаждали. В ходе охлаждения синтетические праймеры связывались с комплементарными участками на разделенных цепях мишени, в то время как взаимно комплементарные цепи исходной ДНК-мишени не могли найти друг друга, так как они присутствовали в образце в ничтожно низкой концентрации.

Итак, в результате охлаждения получились два субстрата для реакции удлинения праймера (см. главы 5 и 7). Следовательно, добавление к образцу ДНК-полимеразы I приводило к удлинению двух праймеров навстречу друг другу. Так появлялись две дочерние молекулы. Они частично состояли из двух цепей, но содержали длинные одноцепочечные хвосты. Существенно, что последовательность-мишень была полностью двухцепочечной. Последующие циклы нагревания / охлаждения / добавления полимеразы приводили к синтезу все новых молекул, и у всех них участок-мишень был двухцепочечным.

Как видно из рис. 44, молекулы, состоящие исключительно из последовательности-мишени, появляются только в третьем цикле. В ходе дальнейших циклов их количество растет экспоненциально. Восемь таких молекул образуется на 4-м цикле, 32 738 – на 15-м и миллиард на 30-м. В ходе своих первых опытов Мулис и его коллеги не могли делать так много циклов. Основная проблема состояла в инактивации фермента при нагревании, так что порции свежего фермента приходилось добавлять вновь и вновь в каждом цикле.

Важнейшее усовершенствование, сделавшее ПЦР столь потрясающим методом, состояло в замене ДНК-полимеразы I так называемой Taq-полимеразой. Выделенная и термофильных бактерий, живущих в горячих источниках, Taq-полимераза легко выдерживает нагревание до 94 °C. При такой температуре цепи ДНК расходятся. Taq-полимераза лучше работает в горячих условиях, так что с ее помощью реакцию удлинения праймера ведут при 72 °C.

Использование Taq-полимеразы позволяет проводить ПЦР в полностью автоматизированном режиме, используя простой робот, называемый термоциклером или ПЦР-машиной. В обычной пробирке смешивают ДНК-мишень, четыре дНТФ и Taq-полимеразу в соответствующем буфере, содержащем необходимые ионы металлов. Затем пробирку помещают в термоциклер, который программируется на изменение температуры по следующей схеме: нагрев до 94 °C и выдерживание при этой температуре 1 минуту; охлаждение до 60 °C и выдерживание при этой температуре 1 минуту (на этом этапе праймеры связываются с комплементарными участками на концах мишени); нагрев до 72 °C и выдерживание при этой температуре 1 минуту для проведения реакции удлинения праймера при оптимальной температуре для Taq-полимеразы. Затем термоциклер начинает новый цикл по той же схеме (подъем температуры до 94 °C и т. д.). Затем еще цикл и еще цикл, сколько пожелает оператор.

Одна из многих замечательных особенностей ПЦР состоит в том, что вам не нужно очищать мишень от примеси чужеродной ДНК. Праймеры строго отберут только истинную мишень для размножения, даже если она представлена всего в одном-единственном экземпляре на фоне громадного избытка других молекул ДНК. Отметим также, что в отличие от живой природы, где размножение линейных молекул ДНК сопряжено с серьезным проблемами (см. главу 7), в случае ПЦР проблемы концов не возникает из-за того, что используются синтетические ДНКовые праймеры, а не РНКовые праймеры, как при репликации ДНК в клетке. Выбирая число циклов ПЦР, вы можете получить столько копий молекулы-мишени, сколько пожелаете (точнее, пока не исчерпаете дНТФ или праймеры).

За изобретение ПЦР Кари Мулис в 1993 году получил Нобелевскую премию по химии. Изобретение ПЦР повсеместно признано одним из самых главных прорывов в истории ДНКовых технологий, которая (эта история), как мы знаем, богата замечательными открытиями.

Существует две главные причины столь ошеломительного успеха этой, в сущности, крайне простой, если не сказать тривиальной, идеи. Во-первых, и это главная причина успеха, ПЦР работает потрясающе здорово, гораздо лучше, чем Мулис мог мечтать, когда идея впервые пришла ему в голову. Во-вторых, такой замечательный метод размножения ДНК оказался абсолютно незаменимым в бесчисленных биотехнологических приложениях. Если смысл жизни и впрямь состоит в ДНКовой цепной реакции, искусственная жизнь в данную минуту бурно процветает во многих тысячах ПЦР-машин в лабораториях всего мира.

Генно-инженерная фармакология

Первыми генной инженерией всерьез заинтересовались фармацевтические фирмы. Для них возможность сравнительно дешево производить практически любые белки в больших количествах открыла совершенно новые горизонты. Ведь помимо того, что белки – основные «рабочие молекулы» в клетке, они играют еще ключевую роль в регуляции процессов, идущих в организме в целом. Почти все гормоны – это небольшие белковые молекулы, содержащие от десятка до нескольких десятков аминокислотных остатков.

Раньше производство гормонов часто было весьма щекотливым делом. Хорошо еще, если, как в случае с инсулином, животный белок (из крупного рогатого скота или свиньи) может служить заменой человеческого гормона. Но во многих случаях это невозможно. Понятно, как фармацевтические фирмы ухватились за новые альтернативы. По их заказу генные инженеры в короткий срок получили штаммы бактерий, вырабатывающие различные человеческие гормоны.

Один пример – гормон роста. У некоторых детей из-за генетического дефекта не вырабатывается гормон роста, и без лечения они превращаются в карликов. Им необходимо вводить этот гормон, а взять его можно было в те времена, когда еще не было генной инженерии, только из человеческих трупов. Генная инженерия открыла путь к широкому производству этого гормона.

Другой пример – инсулин. Он необходим больным сахарным диабетом – недугом, распространенным весьма широко. Хотя большинство больных успешно обходятся животным инсулином, некоторым необходим человеческий, так как животный белок вызывает у них аллергию.

Но наибольший интерес вызвала возможность получения человеческого интерферона. Хотя о нем говорили давно, во многом он оставался загадкой. Твердо было установлено лишь то, что интерферон – белок, обладающий очень эффективным антивирусным действием, причем действие это универсально, интерферон эффективен против самых разных вирусов. Иными словами, интерферон для вирусов – это то же самое, что антибиотики для бактерий. Но с одним важнейшим отличием.

Антибиотик эффективно подавляет бактериальное заражение в любом организме, лишь бы бактерия не несла гены устойчивости к нему. Интерферон обладает видовой специфичностью – в организме человека подавлять вирусную инфекцию может только человеческий интерферон, в крайнем случае – обезьяний. И хотя борьба с вирусами (против которых антибиотики бессильны, и, вообще, кроме вакцин, до недавнего времени не было эффективных средств борьбы) – это проблема номер один, наладить получение достаточно дешевого и чистого интерферона не удавалось. О том, насколько плохо обстояло дело, можно судить по тому, что не получалось даже определить его аминокислотную последовательность. Генная инженерия в короткий срок, буквально за год, радикально изменила ситуацию.

В случае с интерфероном были реализованы два способа заставить клетку вырабатывать чужеродный белок, о которых шла речь в главе 4. Из клеток крови человека, в которых производство интерферона было стимулировано вирусной инфекцией, выделили интерфероновую мРНК, на ней синтезировали с помощью ревертазы ген интерферона, внедрили его в плазмиду и так получили первый бактериальный штамм, вырабатывавший искусственный интерферон. Удалось добиться очень высокой производительности. Была определена полная аминокислотная последовательность интерферона.

Тогда наступила очередь второго способа – чисто химического. По аминокислотной последовательности была построена нуклеотидная последовательность гена интерферона, и этот ген был синтезирован. Его опять же встроили в плазмиду и получили еще один штамм, вырабатывающий интерферон.

Искусственный интерферон оказался весьма эффективным противовирусным препаратом. Были сделаны такие опыты. Взяли шесть обезьян и разделили их на две равные группы. Всем обезьянам ввели вирус энцефаломиокардита, и так как у них не было иммунитета к этому вирусу, то всем им суждено было погибнуть. Действительно, три обезьяны, входившие в первую, контрольную группу, погибли через несколько дней после заражения. Второй группе обезьян за четыре часа до заражения, а также несколько раз после него вводили внутривенно искусственный интерферон. Все три обезьяны остались живы.

Получение искусственного интерферона позволило приступить к широким биологическим и клиническим испытаниям препарата. В результате интерферон уже используется для лечения ряда вирусных заболеваний, таких как гепатит и венерические болезни, вызываемые вирусом папилломы. Без генной инженерии интерферон остался бы до сих пор, да и надолго, многообещающим, но загадочным белком.

Другим обширным полем применения генной инженерии в медицине и сельском хозяйстве стало производство вакцин. Вакцинация – это самое действенное средство предупреждения вирусных эпидемий. Обычно используют убитые вирусы, у которых тем или иным способом выведена из строя ДНК (или РНК), но белки сохранены. После введения в организм к белкам этих убитых вирусов вырабатываются антитела, так что если в дальнейшем в него попадают «живые» вирусы, то они узнаются этими антителами и обезвреживаются иммунной системой.

Многие болезни, от которых раньше умирали миллионы людей (прежде всего оспа), были полностью ликвидированы благодаря вакцинации. Но есть вирусы, от которых избавиться не удается. Для человека это прежде всего ВИЧ и вирус гриппа, для домашних животных – вирус ящура. Вакцинация приводит в борьбе с этими вирусами лишь к частичным успехам.

Одна из причин этого – большая изменчивость вирусов. Вирусы часто мутируют, в их белках происходят отдельные замены аминокислот, и «старые» антитела уже не узнают эти белки. В результате вакцинацию приходится проводить вновь и вновь. У частой вакцинации, проводимой в гигантских масштабах, есть крупный недостаток. Трудно обеспечить полную незаразность вакцины, т. е. получить гарантию, что абсолютно все вирусные частицы в вводимом препарате убиты. А раз так – вакцина может обернуться не спасением, а бедствием, источником эпидемии.

Генная инженерия позволяет, в принципе, получать абсолютно безвредную вакцину. Нужно заставить бактерию вырабатывать один (или несколько) из белков оболочки вируса, и этот белок использовать для вакцинации. В этом случае вакцина вообще не содержит инфекционного начала (ДНК или РНК) и поэтому не может возбудить болезнь, хотя должна пробудить иммунитет. Такая вакцина принципиально нового типа была получена и испытана. Опыты проводились с одним из белков оболочки вируса ящура. Испытания дали неплохие результаты, хотя оказалось, что иммунизация такой вакциной приблизительно в 1000 раз менее эффективна, чем в случае убитого вируса.

Однако многие эпидемиологи считают, что подобные принципиально новые вакцины пока вряд ли найдут широкое применение. Их скептицизм исходит из того, что такие вирусные заболевания, как гепатит и СПИД, наиболее широко распространены в развивающихся странах, где уровень здравоохранения недостаточен для восприятия этих слишком новых и сложных методов вакцинации. Они ссылаются на то, что наиболее крупный успех в искоренении вирусной болезни в мировом масштабе был достигнут при применении живой вакцины против оспы.

Эта история, которой по праву гордятся эпидемиологи, началась очень давно, когда оспа еще свирепствовала в Европе. В 1798 году английский врач Эдвард Дженнер обратил внимание на то, что доярки, переболевшие легкой формой оспы, которой они заражались от коров, в дальнейшем уже не болеют оспой. Он стал нарочно заражать здоровых людей коровьей оспой и таким образом защищать их от настоящей оспы. Так было положено начало вакцинации (само слово «вакцина» по-латыни означает «коровий»).

Много позже, когда благодаря изобретению Дженнера оспа была уже практически искоренена в Европе, выяснилось, что оба типа оспы вызывают вирусы. Они хотя и разные, но родственные. Некоторые белки, расположенные на поверхности коровьего вируса, названного вирусом осповакцины, идентичны поверхностным белкам вируса оспы. Поэтому иммунная система, приведенная в состояние боевой готовности после вакцинации, т. е. прививки вируса осповакцины, отлично защищает и от вируса оспы.

Вирус осповакцины оказался уникальной находкой для эпидемиологов. Он практически безвреден для человека, очень эффективен при иммунизации и легко размножается при заражении им коров. Все это позволило Всемирной организации здравоохранения (ВОЗ) провести широкую многолетнюю кампанию по борьбе с оспой, которая увенчалась блестящим успехом. В 1977 году ВОЗ объявила, что этой болезни, которая еще недавно уносила миллионы жизней, на Земле больше нет.

Б. Мосс и его сотрудники из Национального института здравоохранения (США) решили, используя методы генной инженерии, изменить вирус осповакцины таким образом, чтобы вакцинация защищала не только от оспы, но и от гепатита. Они встроили ген поверхностного белка вируса гепатита в ДНК вируса осповакцины, снабдив его эффективным промотором. Опыты на кроликах показали, что белок гепатита вырабатывается при вакцинации таким вирусом, причем в ответ на выработку этого белка в крови появляется множество антител против вируса гепатита.

Метод Мосса позволяет создавать вакцины против разных вирусных заболеваний животных и человека на основе вируса осповакцины путем встраивания в ДНК вируса генов соответствующих поверхностных белков. Это очень многообещающее направление генно-инженерной эпидемиологии развивается весьма успешно в разных странах. При этом не надо заново учить медперсонал – ему приходится иметь дело с хорошо знакомым вирусом осповакцины. А если будет реализована идея Мосса, одним махом удается убить сразу нескольких зайцев, т. е. покончить одновременно с несколькими вирусными болезнями.

Технология редактирования генома

Как я уже много раз отмечал, решающим событием, приведшем к рождению генной инженерии и вообще современной биотехнологической индустрии, было открытие ферментов рестриктаз. Рестриктазы узнают специальные последовательности в двуспиральной ДНК и наносят двунитевой разрыв в совершенно определенном месте (см. главу 4). Но рестриктазы узнают короткие последовательности, в основном состоящие всего из шести нуклеотидов, так что каждая конкретная рестриктаза нарезает геномную ДНК на множество фрагментов. Такой инструмент не годится для редактирования генома, т. е. для локального изменения текста, которое не затрагивало бы другие участки. Для этого нужен инструмент, способный с хирургической точностью сделать во всей геномной ДНК человека один разрыв.

Давайте оценим, последовательность какой длины такой инструмент должен узнавать. Будем считать для простоты, что геномная ДНК представляет собой чисто случайную последовательность четырех нуклеотидов А, Т, Г, Ц, причем все четыре нуклеотида встречаются с одинаковой вероятностью (это, конечно, грубое предположение, но для приблизительной оценки вполне годится). Тогда вероятность встретить конкретную последовательность из n нуклеотидов будет, очевидно, 4—n. Такая последовательность встретится в геноме, состоящем из N нуклеотидов, N 4—n раз. Следовательно, чтобы последовательность встретилась всего один раз, нужно, чтобы выполнялось условие: N 4—n = 1. Из этого уравнения легко находим: n = logN / log4 – и, вспомнив, что человеческий геном состоит из 3109 нуклеотидов, получаем для n значение 16. Таким образом, для того, чтобы последовательность не повторялась в геноме, т. е. была уникальной, она должна состоять не менее чем из 16 нуклеотидов. Теперь мы видим, насколько рестриктазы – негодный инструмент для редактирования генома.

Химики, биохимики и биофизики взялись за поиск адекватного инструмента, в частности, автор этих строк приложил большие усилия в этом направлении. Первой идеей было использовать способность ДНК образовывать тройную спираль, о чем мы уже говорили в главе 9. Идея казалась очень привлекательной. Достаточно выбрать целевую последовательность в геноме из, скажем, 16 нуклеотидов и синтезировать соответствующую цепь однонитевой ДНК из 16 нуклеотидов, которая образовывала бы с выбранным участком геномной ДНК тройную спираль. На один из концов синтетической ДНК можно приладить активную химическую группу или даже целый белок-эндонуклеазу, способный разрезать ДНК там, куда он доставлен. Но проблема с триплексами в том, что они образуются только в тех местах генома, в которых в одной цепи стоят одни пурины (А и Г), а, соответственно, в комплементарной цепи одни пиримидины (Т и Ц). Такие участки длиной в 16 или более нуклеотидов редко встречаются в геноме, что резко сужает выбор целевых участков для разрезания. Так что от ДНКовых триплексов пришлось отказаться.

Следующей идеей было использовать синтетический аналог ДНК, ПНК, или пептидную нуклеиновую кислоту. Этот очень интересный синтетический аналог ДНК был изобретен в 1991 году в группе Питера Нильсена в университете Копенгагена. ПНК имеет те же основания, что и ДНК, но вместо сахарофосфатного остова основания присоединены к пептидному остову, похожему на остов белковой цепи (рис. 45). Поскольку, в отличие от ДНК, ПНК не несет отрицательного заряда, две молекулы ПНК образуют с одиночной цепью ДНК очень прочные триплексы. Эти триплексы настолько прочные, что две молекулы ПНК в определенных условиях способны раскрыть двойную спираль, образовав триплекс с одной из цепей, оставив комплементарную цепь без партнера (рис. 45). У ПНК множество применений, но нас сейчас интересует одно из них, состоящее в превращении обычных рестриктаз, узнающих последовательности из шести нуклеотидов, в инструмент с гораздо большей избирательностью. Как это делается, схематически показано на рис. 45.

Рис. 45. ПНК имеет те же основания, что и ДНК (обозначены как В), но они прикреплены к совсем другому остову, чем в ДНК, напоминающему остов молекулы белка. Так называемая бис-ПНК, состоящая из двух коротких молекул ПНК, связанных гибкой молекулярной связкой, образует триплекс с одной из цепей ДНК (посредством триад, изображенных на рис. 42), оставляя комплементарную цепь в виде однонитевой петли. В нижней части рисунка дана схема того, как бис-ПНК используется для того, чтобы превратить обычную рестриктазу в очень редко расщепляющий ДНК инструмент

Целевой участок в геноме для связывания двух молекул ПНК с образованием триплекса выбирается таким образом, чтобы он чуть-чуть перекрывался с участком связывания какой-нибудь рестриктазы. После связывания ПНК с ДНК препарат обрабатывается соответствующей рестриктазе метилазой. Метилаза метилирует все участки узнавания в геноме, кроме одного, который стал недоступен для связывания метилазы, так как его дуплексная структура была нарушена связыванием ПНК. Затем делается так, чтобы связывание ПНК с ДНК было разрушено. В результате единственное место связывания рестриктазы с ДНК восстанавливается, тогда как все остальные места связывания не работают, поскольку они прометилированы. Теперь рестриктаза разрежет ДНК только в одном месте, в том, которое было изначально выбрано для этой цели. Конечно, мы несколько утрировали ситуацию, неметилированных участков в геноме может оказаться несколько, но ясно, что такой подход должен резко увеличивать избирательность нуклеаз, что и было экспериментально продемонстрировано в моей лаборатории в Бостонском университете в работе, выполненной совместно с Нильсеном.

Все же подход, основанный на ПНК, оказался слишком сложным, и, что самое главное, его не удавалось использовать в живой клетке. А именно редактирование ДНК непосредственно в живой клетке представляет наибольший интерес. К началу 2010 года два очень изощренных биохимические метода специфического разрезания ДНК были разработаны в биотехнологических компаниях. И их уже стали применять для редактирования геномов. Но в начале 2013 года произошел подлинный прорыв, который самым радикальным образом изменил ситуацию. Появился метод, носящий неуклюжее название КРИСПР-кас.

Метод целиком базируется на системе приобретенного иммунитета у бактерий, о котором рассказано в главе 6.

Для редактирования генома действующие лица иммунной защиты бактерий, крРНК и кас-белок, переносят в эукариотическую клетку, при этом дизайн молекулы крРНК делается с таким расчетом, чтобы промежуточная последовательность в ней была идентична выбранному участку в геномной ДНК эукариотической клетки. «Как это можно?! – слышу изумленный возглас читателя. – Система произведет двунитевой разрыв в ДНК, на этом все и закончится: клетка погибнет». Нет, не закончится. Ведь недаром мы диплоидные существа: у каждого участка нашей аутосомной ДНК есть двойник, гомологичный участок, расположенный на сестринской хромосоме. Наличие гомологичного участка позволяет нашим соматическим клеткам залечивать или, как говорят, репарировать ДНК, которая подверглась самому опасному повреждению: двунитевому разрыву. Этот механизм репарации двунитевых разрывов называется гомологичной рекомбинацией. В деталях гомологичная рекомбинация – это сложный процесс, и он происходит не только при репарации, но и в других случаях.

Для нас важно следующее: для того чтобы гомологичная рекомбинация репарировала двунитевой разрыв, необходимо, чтобы в клетки находилась ДНК с двумя последовательностями, идентичными двум последовательностям, расположенным справа и слава от места разрыва. Бактериальная ДНК гораздо более уязвима в отношении двунитевых разрывов именно потому, что бактерии – это гаплоидные существа, у них имеется только одна-единственная копия генома, и поэтому никакая гомологичная рекомбинация невозможна. Именно гомологическая рекомбинация не только спасает эукариотическую клетку от гибели, когда в клетку вводят крРНК и кас-белок, но и позволяет осуществить редактирование генома. Как это делается?

Давайте разберем ситуацию на конкретном примере. Представим себе, что мы решили осуществить генную терапию больного серповидно-клеточной анемией (СКА), о которой шла речь в главе 2 (и еще пойдет в главе 12). Иными словами, мы хотим заменить мутантный ген у больного на здоровый ген β-цепи гемоглобина, не несущий мутацию СКА (рис. 46). Используя генную инженерию, мы готовим вектор, которым может быть плазмида или ДНК обезвреженного аденовируса. В вектор мы встраиваем следующие добавочные участки: два участка, кодирующие две молекулы крРНК, причем дизайн одной сделан так, чтобы она вызывала разрыв около левого края гена СКА, а дизайн другой сделан так, чтобы разрыв был около правого края; ген, кодирующий кас-белок. Мы размножаем взятые из пациента клетки – предшественницы красных кровяных клеток и вводим в них наш вектор, а также отрезок двунитевой ДНК, состоящий из здорового гена β-цепи гемоглобина, не несущего мутации СКА, слева и справа от которого имеются точно такие же последовательности (они обозначены как ГЛ и ГП на рис. 46), как последовательности слева и справа от двунитевого разрыва в геномной ДНК, который получится после удаления из генома гена СКА с помощью двух молекул крРНК, которые закодированы в векторе.

Рис. 46. Редактирование генома при помощи технологии КРИСПР-кас. Стандартными методами генной инженерии создается вектор (плазмида или обезвреженный аденовирус), в который включены гены, кодирующие две крРНК, узнающие левый и правый концы гена, который будет заменен (в нашем случае это ген СКА), ген кас и ген, на который мы хотим заменить ген СКА, т. е. в нашем случае – нормальный ген β-цепи гемоглобина. Слева и справа от гена β-цепи гемоглобина должны быть участки, гомологичные (т. е. идентичные) тем участкам, которые соседствуют с ним (а также с геном СКА) в геноме (они обозначены как ГЛ и ГП). Введение – вектора в клетку – предшественницу красных кровяных шариков приводит к экспрессии крРНК1, крРНК2 и кас-белка, что в свою очередь приводит к выбрасыванию гена СКА из генома и к двунитевому разрыву в ДНК, как было объяснено в главе 6 (см. рис. 25). В клетке – предшественнице красных кровяных шариков включается система репарации двунитевого разрыва, называемая «гомологичной рекомбинацией». Наличие участков ГЛ и ГП в векторе (или в отдельно введенном отрезке ДНК, несущем здоровый ген) приводит к тому, что ген β-цепи гемоглобина переносится из вектора в образовавшуюся брешь – замена мутантного гена СКА на здоровый ген β-цепи гемоглобина совершена

Надо только, чтобы вектор и ДНК, несущая здоровый ген, проникли в клеточное ядро, дальше все происходит само собой. Транскрибируются две молекулы крРНК и мРНК кас-белка, которая транслируется в цитоплазме, и кас-белок проникает назад в ядро. Система крРНК и кас-белка вырезает мутантный ген из генома, а репарирующая система в процессе залечивания двунитевого разрыва использует для гомологичной рекомбинации введенную ДНК, несущую здоровый ген β-цепи гемоглобина. В результате происходит то, что мы хотели: мутантный ген заменен на здоровый (рис. 46). Осталось только вернуть отредактированные клетки назад в организм пациента, чтобы они стали производить красные кровяные клетки, содержащие нормальный, здоровый гемоглобин.

Технология редактирования генома с помощью КРИСПР-кас, как обычно обозначается описанная методика, обладает громадными преимуществами по сравнению с генной инженерией, о которой речь шла выше в этой главе, и по сравнению с другими методами редактирования генома. Главное, что эта технология позволяет резать и сшивать ДНК внутри живой клетки, причем делать это довольно просто и дешево. Конечно, имеются свои проблемы, главная из которых – это доставка в клеточное ядро крРНК и кас-белка или векторов, которые их экспрессируют. Имеется несколько способов такой доставки, но все они далеко не идеальны. Конечно, были бы гораздо лучше, если бы аналог кас-белка существовал в эукариотической клетке и требовалось бы только доставить крРНК, подобно тому, как в случае системы РНК-интерференции нужно доставить только киРНК (см. главу 12). Но пока что такие поиски не привели к успеху, и надо довольствоваться тем, что имеется, а это уже очень много.

В сотнях лабораторий во всем мире идет неустанная, подчас лихорадочная работа по использованию новой технологии редактирования генома в самых разных областях. Конечно, хотя эта методика открывает захватывающие воображение перспективы генной терапии типа нашего примера с СКА, внедрение новой технологии в медицинскую практику – это долгий путь. Хотя, как будет рассказано в главе 12, отдельные клинические испытания на безнадежно больных пациентах, которым не помогли все остальные методы лечения, уже проводятся. Но то, что продвигается с молниеносной скоростью, это применения нового метода там, где не требуется редактировать геном человека. Уже созданы новые сорта овощей и фруктов, устойчивые к гербицидам, не портящиеся при транспортировке и т. д. Сообщается, что средняя частота поступления в патентную администрацию США заявок на патенты в области КРИСПР-кас соответствует одной заявке каждый божий день.

Пожалуй, наиболее яркий пример того, в каком направлении идут исследования, – это работа, опубликованная в конце 2015 года группой исследователей во главе с Тони Ноланом из Имперского колледжа в Лондоне. Речь идет, ни много ни мало, о разработке метода уничтожения целых видов животных, которые приносят вред человеку, например комаров, переносящих малярию. Как же такое можно сделать? Хорошо известно, что малярийный плазмодий переносится только самками определенного вида комаров, поскольку только самки пьют кровь, чтобы производить потомство. Самцы совершенно безвредны. Уже давно возникла идея генетически модифицировать самцов, чтобы они несли ген бесплодия самок. Как и ген СКА, это рецессивный аутосомный ген (т. е. он находится в неполовой хромосоме), и он должен быть в гомозиготном состоянии, чтобы приводить к бесплодию (т. е. он должен присутствовать в обеих аллелях комариных клеток). Если запустить в популяцию самцов, несущих ген бесплодия во всех своих гаметах (т. е. сперматозоидах), это не приведет к бесплодию самок первого поколения. Лишь при встрече самок первого поколения с несущими ген бесплодия самцами будут рождаться бесплодные самки (и то только в половине случаев). Но при оплодотворении самок первого поколения нормальными самцами бесплодных самок не будет появляться. Так что, чтобы уменьшить популяцию комаров, нужно нарастить и выпустить в экосистему чертову уйму самцов, несущих ген бесплодия. Не очень-то эффективно получается.

Рис. 47. Использование технологии КРИСПР-кас для создания бесплодных комаров. А. Создается вектор, содержащий конструкцию, состоящую из гена бесплодия, гена крРНК и гена кас. На левом и правом концах конструкция имеет два участками, ГЛ и ГП, которые в геноме комара находятся слева и справа от участка, узнаваемого молекулой крРНК. Этот вектор вводится в комариного самца, и в результате гаметы самца несут всю конструкцию. Б. Когда такой ГМО-комар оплодотворяет нормальную самку, зигота сначала оказывается гетерозиготной относительно всей конструкции. Однако вскоре после возникновения зиготы в ней происходит экспрессия генов крРНК и кас в отцовской хромосоме, в результате чего нормальная материнская хромосома оказывается отредактированной: в нее переносится из отцовской хромосомы вся конструкция. Возникает гомозиготный комар. Если это самец, то у него все сперматозоиды несут конструкцию, если это самка, то она к тому же бесплодна

Ну а что дает технология редактирования генома? Нолан с соавторами ввели в самцов вектор, содержащий ген крРНК, ген, кодирующий кас-белок, и ген бесплодия. Дизайн крРНК был таким, что двунитевой, разрыв должен был происходить в месте на хромосоме, где должен быть размещен ген бесплодия. На левом и правом концах конструкция из трех генов содержала две последовательности, гомологичные последовательностям, расположенным слева и справа от места разрыва (рис. 47). Экспрессия вектора в клетках самца приводит, очевидно, к тому, что вся конструкция (назовем ее КРИСПР-конструкцией), расположенная между двумя концевыми последовательностями, встраивается в геном комара. Что происходит, когда такой генно-модифицированный самец (ГМО-комар), несущий КРИСПР-конструкцию в своих гаметах, выпускается в популяцию нормальных малярийных комаров? Он оплодотворяет самку, не несущую гена бесплодия, и все потомки первого поколения, и самцы, и самки, должны, согласно законам Менделя, быть гетерозиготами. Но уже в зиготе потомков первого поколения происходит экпрессия КРИСПР-конструкции, в результате чего в доставшуюся от самки нормальную хромосому вставляется вся КРИСПР-конструкция, включая ген бесплодия. Зачатые как гетерозиготы, комары уже в первом поколении превращаются в гомозиготы в отношении гена бесплодия!

Такие гомозиготные самки бесплодны, а гомозиготные самцы чувствуют себя совершенно нормально и готовы к оплодотворению. Причем все гаметы самцов будут нести КРИСПР-конструкцию. Так, через несколько поколений ген бесплодия завладевает популяцией, в ней не остается плодовитых самок. Популяция малярийных комаров вымирает. Такое развитие событий немыслимо с точки зрения канонических законов Менделя и с точки зрения популяционной генетики. Начав с ниспровержения запрета на наследование благоприобретенных признаков у бактерий, система КРИСПР-кас при перенесении на животных ниспровергла законы Менделя и законы популяционной генетики. Слыханное ли дело: зачатая как гетерозигота вдруг превращается в гомозиготу, а ген бесплодия завладевает всей популяцией! И это все не фантазии и не прожекты – такие ГМО-комары уже существуют в лаборатории Нолана. Успешное создание ГМО-комаров ясно иллюстрирует, насколько радикальным шагом является технология редактирования генома КРИСПР-кас по сравнению с генной инженерией. Главное различие в том, что редактирование генома происходит в живой клетке и поэтому удается ввести в действие автономную программу геномной перестройки, которая сама включается вновь и вновь в каждом поколении, без вмешательства экспериментатора, и представляет собой вопиющее нарушение законов классической генетики.

Так что же, проблема малярии решена? С научной точки зрения – да. Мы оказались перед очень трудным выбором. С одной стороны, ясно, что надо немедленно запустить ГМО-самцов в гущу малярийных комаров где-нибудь в Африке. Но, с другой стороны, имеется опасность, что КРИСПР-конструкция, несущая ген бесплодия, передастся от комаров, распространяющих малярию, к обычным, безвредным комарам, которые являются неотъемлемой частью экосистемы. Ими и их личинками питаются рыбы и лягушки; наверное, они играют еще какую-то роль. Хотим ли мы их уничтожения? Как обычно, эксперты разделились на два лагеря. Одни призывают не спешить и сначала попытаться уяснить в полной мере возможные риски. Другие говорят, что это тот случай, когда бездействие преступно: ведь каждый день от малярии умирает около 1000 человек, почти все – в Северной Африке. Очень трудный выбор… И такого рода труднейшие вопросы будут нарастать как снежный ком, по мере дальнейшего внедрения технологии редактирования генома. Конечно, можно поступить, как это сделала Государственная дума в России: вообще запретить все ГМО, да и дело с концом. Когда я узнаю о таких новостях, я вспоминаю собственные слова, которые люблю повторять моим студентам. «Есть болезнь пострашнее рака, инфаркта, чумы, холеры и даже СПИДа: имя ее – невежество. И болезнь эта неизлечима».

К счастью, наряду с вопиющими невеждами среди представителей вида Homo sapiens встречаются индивидуумы, способные на поразительные прозрения. Одним из таких людей был Уоррен Уивер, чьи воистину пророческие слова взяты эпиграфом к этой главе. Это тот самый Уивер, который в 1932–1955 годах возглавлял отдел естественных наук Фонда Рокфеллера и который в 1937 году сумел осуществить переезд Дельбрюка из Германии в США (см. главу 1). Кто знает, насколько бы задержалось открытие структуры ДНК, которое было началом всего, о чем рассказано в этой книге, не окажись такой человек, как Уивер, в нужное время в нужном месте. Ведь Уотсон произошел из фаговой группы Дельбрюка…

Грядущий золотой век

Итак, биотехнология, вооружившись новейшими методами генной инженерии и редактирования генома, объявила новый поход на инфекционные болезни. Есть веские основания рассчитывать на то, что это решительное наступление приведет к революции в медицине и ветеринарии, подобной той, какую вызвало в свое время открытие антибиотиков. Но, разумеется, одной медициной воздействие биотехнологии на жизнь людей не ограничится. Но вот какие формы примет это воздействие в других областях, сказать пока очень трудно.

Если в области медицинских и ветеринарных дел похоже, что многое уже «на мази», то в остальных областях в основном дело ограничивается пока достаточно туманными обещаниями чего-то вроде золотого века. Впрочем, одна задача вырисовывается достаточно четко. Это – производство промышленным путем белка для корма скоту. Дело в том, что обычный корм (сено, зеленая масса кукурузы) обеднен белком, особенно некоторыми аминокислотами. Восполнение этого дефицита резко увеличивает эффективность усвоения обычных кормов. Это известно давно, и уже много лет некоторые аминокислоты производятся промышленным, микробиологическим способом и добавляются в корм. Методы генной инженерии позволяют сконструировать штаммы, обладающие невиданной ранее производительностью, так что задачу производства корма, оптимально сбалансированного по белку, биотехнология, несомненно, решит.

Но в этом нет ничего радикально нового. Худо-бедно проблема решалась и без генной инженерии. Окажется ли выгодным перейти к полностью индустриальному изготовлению кормов генно-инженерным способом – покажет будущее. Если биотехнология вызовет такой поворот, это будет действительно революцией. Мне, например, золотой век мерещится так.

Где-то в пустынях стоят солнечные электростанции, от них ток, а также необходимое минеральное сырье поступают на громадные биотехнологические заводы, где готовят оптимально сбалансированные корма из бактерий или дрожжей и в удобной упаковке рассылают их по всему миру на животноводческие фермы и птицефабрики. Там, словно в инкубаторах, где сегодня растят кур, выращивают всю остальную живность, а может быть, и совсем новых, выведенных с помощью генной инженерии и технологии редактирования генома, животных. Кроме кормов, заводы изготовляют искусственную пищу.

Разумеется, в каком-то объеме сохранилось и обычное земледелие с возделыванием пшеницы и других культур. Но потребность в этих весьма дорогих продуктах настолько снизилась, что их возделывают только в отдельных климатических зонах, с полной мелиорацией и т. д. Огромные пространства, которые были в добиотехнологическую эру заняты под пашни, освободились, люди перестали скучиваться в городах, а живут вольготно среди лесов, озер и рек и ездят на работу, в ближайший магазин и друг к другу в гости в беспилотных электромобилях…

Новая технология всегда изменяет рано или поздно повседневную жизнь, но очень трудно угадать заранее, как это произойдет. Радиоэлектроника, например, уже радикально изменила привычные когда-то способы получения и обработки информации. Скорость этих изменений необычайно возросла с возникновением Интернета. Сейчас, с переходом ее на качественно новую ступень (миниатюризация), она вторгается буквально во все области жизни. Случится ли нечто подобное с биотехнологией? Уверен, что да.

11 ДНК и судьба

…Мы многое узнали о том, как живет и эволюционирует клетка, хотя недостаточно – о том, как предотвращать рак. Скорее наоборот: мы увидели многообразие факторов и механизмов, которые его индуцируют, а это ослабляет надежду на универсальные способы терапии. Поэтому вспоминаются слова Екклесиаста: во многой мудрости много печали; и кто умножает познания, умножает скорбь. Но ученые работают.

Р. Б. Хесин. Непостоянство генома (1984)

ДНК и рак

Наша затянувшаяся борьба с раком – это самая настоящая война. Число жертв в этой войне не поддается учету: нет ни одной семьи на Земле, которая не была бы затронута. И несмотря на громадные усилия, несмотря на появляющиеся вновь и вновь надежды, несмотря на медленный, но устойчивый прогресс в методах терапии, люди продолжают умирать: рак наряду с сердечно-сосудистыми заболеваниями остается главной причиной смерти в развитых странах.

Рак стоит среди других болезней особняком – потому, что раковая клетка – это своя же клетка, но ведет она себя как чужая. Это, если угодно, «пятая колонна» в организме. До поры до времени такая клетка ничем не отличается от других. Она строго подчиняется правилам общежития, принятым в многоклеточном сообществе. Согласно главному из этих правил во взрослом организме деление клеток происходит строго контролируемо, в разных тканях по-разному, а в некоторых (например, в нервных тканях) строго запрещено. Иначе нельзя, ведь если бы каждая клетка делилась как ей вздумается, то организм быстро превратился бы в бесформенный сгусток клеток.

В какой-то момент такая «послушная» дифференцированная клетка перестает подчиняться правилам и начинает безудержно делиться, т. е. превращается в раковую. Причем это свойство передается всему ее потомству. Отсюда и метастазы – множественные очаги болезни, возникающие в результате деления раковых клеток, разнесенных кровотоком от исходной опухоли. И все это – результат какого-то перерождения, наступившего в одной-единственной клетке.

Откуда же берутся клетки-предательницы? Так как их плохое поведение передается по наследству, то первое, что приходит в голову, – предположить, что имеет место какое-то изменение в ДНК данной клетки, которое превращает нормальную клетку в «сумасшедшую». Впрочем, это предположение, которое не вызывало бы никаких возражений применительно к бактериям (вспомним опыты Эвери, о которых рассказывалось в главе 1), в отношении клеток высших далеко не столь очевидно.

Мы знаем, что клетки многоклеточного организма обладают способностью резко менять программу своего поведения и без изменения в ДНК. Так из одной-единственной оплодотворенной яйцеклетки возникает целый организм, построенный из клеток, весьма отличающихся друг от друга по свойствам и функциям (скажем, клетки печени и кости). Но во всех (точнее, почти во всех) этих клетках содержится вся исходная генетическая информация.

В большинстве случаев дифференцировка клеток связана с изменением активности генов – при неизменности самих генов и вообще последовательности ДНК. Просто в одних клетках многоклеточного организма работают одни гены, а в других – другие.

У приверженцев весьма стройной теории, согласно которой рак – это просто дедифференцировка клетки, происходящая по каким-то внутренним причинам, есть свои трудности. Главная трудность выявилась еще в начале XX века в опытах на животных.

Эти опыты показали, что рак можно вызывать извне, в частности, заражая животных вирусом. Вирусы, способные вызывать рак у животных, были названы онкогенными. Их в настоящее время известно множество.

Одной из самых плодотворных идей, выдвигавшихся за всю долгую историю изучения рака, была вирусогенетическая теория, предложенная в 1940-х годах замечательным российским ученым Львом Александровичем Зильбером (1894–1966). На современном языке эту теорию можно сформулировать так. Попадая в здоровую клетку, ДНК онкогенного вируса встраивается в ДНК клетки и изменяет ее генетические свойства, из-за чего клетка начинает безудержно делиться. Встроенная вирусная ДНК удваивается вместе с ДНК клетки и передается следующим поколениям.

Вирусная теория с большим трудом пробивала себе дорогу. Конечно, то, что некоторые опухоли, наблюдаемые у животных, вызываются вирусами, никто не отрицал. Но относительно общности этой концепции и ее применимости к опухолям человека имелись серьезные сомнения. Ведь хорошо известно, что рак можно вызвать самыми разнообразными воздействиями – физическими и химическими. Известно огромное разнообразие веществ, называемых канцерогенами, которые резко повышают вероятность образования раковой опухоли. При чем же здесь вирусы?

Но наиболее сильный удар по вирусной теории был нанесен, когда выяснилось, что у многих онкогенных вирусов генетическим материалом служит не ДНК, а РНК. РНК не может встраиваться в ДНК. Что же в таком случае встраивать вирусу? То, что по РНК может синтезироваться ДНК, необходимая для встраивания, тогда не было известно и считалось просто невозможным. Получалось, что изменения, приводящие к раку, могут не затрагивать ДНК, а значит, вирусогенетическая теория оказывалась несостоятельной.

Все же некоторые биологи никак не хотели расставаться с идеей Зильбера. Она импонировала своей простотой и конкретностью, да и эксперимент упорно показывал – онкогенные вирусы могут вызывать рак. И хотя это явно противоречило представлениям молекулярной биологии того времени, все же продолжались поиски причин, которые позволяли бы РНКовым вирусам передавать свою генетическую информацию клетке. Особенно упорным был Говард Темин. И его настойчивость была вознаграждена. В 1970 году он, а также Дэвид Балтимор обнаружили в РНКовых онкогенных вирусах фермент, названный ревертазой, который синтезирует ДНК по вирусной РНК, как только вирус попадает в клетку. Эта «вирусная» ДНК встраивается в ДНК клетки, что и вызывает злокачественные перерождения.

Это открытие, которое, как уже говорилось в главе 4, было знаменательной вехой в истории молекулярной биологии, стало триумфом вирусогенетической теории рака. Казалось несомненным, что вирусная природа рака доказана. Действие канцерогенов и многие неясности вирусной теории отступили на второй план. Главное – выделить вирусы, отвечающие разным видам рака, и научиться бороться с ними.

Но время шло, а реальные успехи не приходили. Прежде всего никак не удавалось обнаружить вирусы рака человека. Вообще-то, значительному отставанию исследований в области рака человека по сравнению с раковыми заболеваниями животных не приходится удивляться. Конечно, можно попытаться выделить вирус из удаленной опухоли, из крови больного лейкемией. Но как проверить, что это действительно вирус рака? Нельзя же заражать здорового человека! Правда, эту трудность, хотя и отчасти, удалось преодолеть. Уже довольно давно биологи научились культивировать клетки человека и других животных in vitro, вне живого организма. Растить такие клетки несравненно труднее, чем бактериальные или дрожжевые. Но зато это позволяет ставить эксперименты, невозможные в иных условиях.

Обычные, дифференцированные клетки и в пробирке ведут себя цивилизованно, подчиняясь тем правилам, к которым приучены в многоклеточном организме. Они, например, образуют на дне стеклянного сосуда с плоским дном лишь один слой, после чего их рост прекращается. Совсем иначе ведут себя раковые клетки. Делясь, они начинают вылезать из монослоя, образуя хорошо видимый под микроскопом очаг, уплотнение. Так что раковое перерождение клеток вполне успешно изучают in vitro, вне организма.

В конце концов Роберту Галло из Национального института исследования рака (США) удалось добиться успеха. Он выделил онкогенный вирус, вызывающий одну из форм лейкемии у человека. Кстати, когда впоследствии был выделен ВИЧ, вирус СПИДа, оказалось, что эти два вируса – близкие родственники. И все же вирусную природу имеют весьма редкие формы рака человека. Абсолютное большинство случаев заболевания раком никак не связано с вирусами.

Да и с изучением рака животных, где выделенных и изученных онковирусов хоть отбавляй, тоже не все обстояло благополучно. Оказалось, что в большинстве случаев ДНК вируса уже встроена в ДНК животного от рождения, заранее. Тогда почему же все животные с детства не болеют раком? Получалось, что, кроме присутствия вирусной ДНК в клетке, для возникновения рака нужно еще что-то, еще какая-то команда. Может быть, сигналом к включению в работу вирусной ДНК и служит канцероген?

Но тогда получается, что канцероген и есть главная причина. Ведь если вирусная ДНК уже всегда заранее есть в клетке, то зачем вообще говорить о вирусе? Просто так устроена ДНК у данного животного, а рак возникает под действием канцерогена. Может быть, канцероген действует на встроенную ДНК вируса, может быть, на другие участки ДНК. А может быть, он вообще действует не на ДНК, а на какой-то неведомый пока сигнал дифференцировки, после чего клетка «забывает» правила поведения?

Да, не прошло и десяти лет со времени торжества вирусной теории рака, как все опять сползло к старым вопросам и к старым аргументам. Получалось, что от проклятой проблемы дифференцировки никуда не уйти.

Правда, надежда все же оставалась. Что, если канцерогены все-таки действуют на ДНК (встроенную вирусную или на другие участки – не так важно), изменяя ее текст? Иными словами, что, если канцерогены – это на самом деле мутагены?

Проблема канцерогенов уже давно привлекает внимание науки, и вовсе не только в связи с теоретическими исследованиями природы рака. Каждое новое химическое соединение, с которым сталкивается человек, должно быть проверено на канцерогенность. История знает слишком много примеров того, как легкомысленное отношение к этой проверке приводило через много лет к гибели людей.

Но как проверить, канцероген данное вещество или нет? Вот уже многие годы предпринимаются попытки разработать быстрые и достаточно дешевые методы тестирования химических веществ на их канцерогенность. Собственно, именно эта проверка оказывается сейчас самой дорогой и самой длительной процедурой при испытании любого нового лекарства. Считается, что необходимо подвергнуть подопытных животных воздействию препарата, а потом проследить за ними и за контрольными животными, вплоть до их естественной (или неестественной, в случае, если испытываемое вещество окажется канцерогеном) смерти. Нельзя ли эту процедуру упростить?

Обширный материал, накопленный в результате трудоемких испытаний химических соединений на канцерогенность, позволил Б. Эймсу (Калифорнийский университет в Беркли, США) разработать и обосновать весьма эффективный тест на канцерогенность. В 1975 году Эймс предложил проверять вещества не на канцерогенность, а на мутагенность. Для проверки на мутагенность не нужно возиться с животными и даже с культурой их клеток. Можно взять бактерии, для которых существуют давно разработанные методы быстрого подсчета темпа мутирования, т. е. изменения ДНКового текста. Эймс еще усовершенствовал эти методы и постарался проверить гипотезу, по которой мутагенность и канцерогенность – это на самом деле одно и то же.

Казалось бы, для проверки надо было бы брать химические соединения, известные как канцерогены, и проверять на мутагенную активность.

Но нет, так просто поступать нельзя. Ведь в организме химические соединения претерпевают перестройку, циркулируя в крови. Это случается в печени, которая прямо-таки напичкана ферментами, способными проводить самые разные модификации. Вполне может быть (и в ряде случаев показано, что это так), что рак вызывают не сами исходные вещества, а продукты их метаболизма в организме. Поэтому, прежде чем испытывать вещества на мутагенность в своем тесте, Эймс обрабатывал их экстрактом из печени животных. Эймс проверил на мутагенность 300 веществ, среди которых были как известные канцерогены, так и вещества вполне безобидные. Эта проверка показала, что между канцерогенностью и мутагенностью существует совершенно явная корреляция. В 90 случаях из 100 канцерогены оказывались и сильными мутагенами. В то же время только 13 % соединений, не являющихся канцерогенами, оказывали мутагенное действие.

Это очень убедительный результат. Он показывает, что тест Эймса эффективен, во всяком случае – для массовых испытаний химических соединений. Ведь Эймс вместе с одним всего лишь помощником сумел за короткое время испытать 300 соединений. Чтобы накопить сведения о канцерогенности этих веществ обычными методами, потребовались десятилетия упорного труда многих людей.

Цель работы Эймса была сугубо практической: разработать эффективный и дешевый тест на канцерогенность. Но результаты работы имели большое значение для понимания природы рака. Реально они не оставляли сомнений в том, что канцерогены вызывают рак именно потому, что изменяют ДНК клетки.

Получалось, что первичные события, приводящие в итоге к раку, разыгрываются в генетическом материале, в ДНК. А раз так, то к штурму проблемы рака вновь приступили молекулярные биологи. Только на этот раз, спустя десять лет после работ Темина и Балтимора, они были уже во всеоружии мощных методов манипулирования с ДНК – методов генной инженерии.

В 1979 году были поставлены опыты, в которых удалось, на этот раз окончательно, доказать генетическую, ДНКовую природу рака. Эти опыты проводились на мышах, но принципиально они не отличаются от опытов по трансформации у пневмококков, которыми занимался Эвери на 40 лет раньше (см. главу 1). Автор работы Роберт Вайнберг (Массачусетский технологический институт) рассуждал так. Из экспериментов Эймса следует, что канцерогены должны что-то менять в ДНК, после чего она приобретает способность превращать нормальную клетку в раковую. Если это действительно так, то, выделив ДНК из раковых клеток и перенеся ее в здоровые клетки, мы должны (с некоторой вероятностью, разумеется, – как и при любой трансформации) наблюдать превращение здоровых клеток в раковые.

Вайнберг выделил ДНК из мышиных опухолевых клеток, перерождение которых было вызвано действием мощного канцерогена. Затем он провел опыты по трансформации. Раковая ДНК была добавлена к культуре здоровых клеток мыши, известной под кодовым названием NIH3Т3. Результаты опыта были таковы. В пяти случаях из пятнадцати клетки NIH3Т3 превратились в раковые. Ни в одном из десяти контрольных опытов, в которых к культуре NIH3Т3 была добавлена нормальная ДНК, злокачественного перерождения не происходило.

Свойства клеток, перерожденных способом трансформации, были проверены на животных. Раковые клетки NIH3Т3 были приживлены здоровым мышам, и у тех образовались самые настоящие раковые опухоли. Но это еще не все. Перерождение клеток NIH3Т3 в раковые удалось вызвать не только с помощью ДНК, взятой из раковых клеток мыши, но и с помощью ДНК, выделенной из раковых клеток человека! ДНК из здоровых тканей человека не приводит к злокачественному перерождению клеток NIH3Т3.

Вот на этом этапе к работе подключились генные инженеры. Раз ДНК человека вызывает трансформацию, значит, в ней есть онкоген – участок, ответственный за роковые события. Началась охота на онкогены. Очень большую пользу в поиске онкогенов оказали онкогенные вирусы. Выяснилось, что они несут уже готовый онкоген. В кратчайший срок было клонировано и детально охарактеризовано (т. е. определена полная нуклеотидная последовательность) около 30 онкогенов. Специалисты считают, что этот сравнительно небольшой набор генов ответствен практически за все многообразие раковых заболеваний у животных и человека.

Выяснилось, что у каждого онкогена есть свой клеточный «брат», нормальный ген, названный протоонкогеном. С молекулярно-генетической точки зрения онкогены, так же как и протоонкогены, – это обычные структурные гены, т. е. каждый из них несет информацию о строении определенного белка. Сам по себе протоонкоген не опасен. Более того, белки – продукты протоонкогенов играют ключевую роль в процессах межклеточной и внутриклеточной коммуникации.

Ведь чтобы примерно вести себя в дружной семье клеток многоклеточного организма, каждая клетка должна подчиняться поступающим к ней сигналам. Важнейший из таких сигналов – это сигнал о размножении (делении). Если, скажем, вы поранились при бритье, то клетки кожи, окружающие ранку, начинают усиленно делиться, чтобы залечить образовавшуюся брешь. Курьером, приносящим клетке приказ о делении, служат специальные белковые молекулы – ростовые факторы. Они доставляют свои «сообщения» другим белковым молекулам – рецепторам, встроенным во внешнюю оболочку клетки.

Итак, сообщение получено клеткой – ростовой фактор связался со своим рецептором. Но ведь всем в клетке заправляет ДНК, которая запрятана внутри ядра. Значит, чтобы быть услышанным, сигнал должен еще преодолеть внешнюю оболочку клетки, цитоплазму и ядерную оболочку. На этом сложном пути сигнал еще несколько раз преобразуется, его переносят особые внутриклеточные курьеры, в процессе участвует целый ряд белков.

Так вот, важнейший факт состоит в том, что белки – продукты протоонкогенов – это ростовые факторы, рецепторы и другие белки межклеточной и внутриклеточной коммуникации. Чем же отличается зловредный онкоген от безобидного, даже очень нужного протоонкогена?

Известен ряд механизмов, приводящих к превращению протоонкогена в онкоген. Это может быть просто точечная мутация – замена одного аминокислотного остатка. Это может быть хромосомная перестройка, в результате которой протоонкоген переносится в другую хромосому. При этом либо резко нарушается регуляция синтеза нормального продукта протоонкогена, либо в ходе перестройки происходит усечение самого гена. Может быть и так, что сам протоонкоген остается на месте, но к нему перемещается регуляторная область из другой хромосомы, и т. д.

Из детективных книг и фильмов известно, что самый опасный шпион – это тот, кто, внедрившись в цепь передачи приказов вражеской армии, в нужный момент подсовывает ложный сигнал о наступлении. Именно так ведут себя онкогены. Путем усиленной наработки ростового фактора, производя дефектный рецептор или какой-либо белок внутриклеточной коммуникации, онкоген заставляет ДНК клетки подчиниться ложному сигналу о делении. Клетки, несущие онкоген, начинают безудержно делиться, причем дочерние клетки тоже несут онкоген, т. е. снабжены сигналом к делению. Так возникает рак.

Итак, исследование природы рака прочно перешло на молекулярный уровень. Мы понимаем гораздо лучше, чем раньше, что требуется сделать, чтобы победить эту страшную болезнь. Необходимо либо убить все раковые клетки, либо заставить раковую клетку прекратить экспрессию онкогена, что и делает ее раковой. Исследователи пошли обоими путями.

Команда «Умри!»

Одно из самых острых психических заболеваний, суицидальный синдром, состоит в упорном и практически неудержимом стремлении пациента убить самого себя. К сожалению, как правило, несмотря на все усилия родственников и друзей, предотвратить фатальный исход не удается. Что-то чудовищно неправильное происходит в мозгу больного, в результате чего естественный инстинкт самосохранения уступает место противоестественному стремлению к саморазрушению. Ни в коем случае не следует путать суицидальный синдром с распространившимся в последние годы по всему миру феноменом террористов-смертников. Цель террориста – убить как можно больше других («врагов», иноверцев). Он так одержим этой идеей, что даже готов пожертвовать собой. С медицинской точки зрения террорист-смертник нормален. Другое дело – больной, страдающий суицидальным синдромом. Он действует так, будто запрограммирован убить себя.

Безусловно, в отношении индивидуума суицидальный синдром представляет собой ненормальное явление. Ну а в отношении популяции, общества в целом? Вот было бы славно, если бы Гитлер и Сталин страдали суицидальным синдромом и покончили с собой вместо того, чтобы уменьшить население планеты на миллионы и миллионы достойных лучшей участи человеческих существ. Не вызывает сомнений, что наш мир был бы куда более безопасным местом, если бы некоторые индивидуумы никогда бы не родились, а если все же родились, то наложили бы на себя руки в ранней молодости. Чего далеко ходить за примерами? Взять хотя бы бен Ладена.

В живой природе часто встречается генетически запрограммированное полное или частичное саморазрушение. Чтобы передать эстафету жизни следующему поколению, лосось, повинуясь своей генетической программе, покидает просторы океана, поднимается вверх к самым истокам мелких рек и ручьев, преодолевая на своем пути чудовищные препятствия. На всем протяжении этой дороги смерти рыба ничего не ест, используя исключительно ресурсы, нагуленные в океане. Достигнув места нереста совершенно истощенной, рыба освобождается от икры или спермы, после чего умирает от голода. Поведение лососевых – яркий пример того, как организмы бывают генетически запрограммированы на полное самопожертвование ради продолжения рода.

Каждую осень мы являемся свидетелями массового «временного самоубийства», когда лиственные деревья сбрасывают листву, опять же строго подчиняясь генетической программе. В дополнение ко всему этому в ДНК эукариот была обнаружена программа, которая, будучи включена, запускает цепь событий, ведущих к гибели клетки. Такое запрограммированное саморазрушение клетки получило название апоптоза, что по-гречески означает «отпадание».

Выявление апоптоза и его роли в биологии и медицине принадлежит к числу наиболее значительных прорывов в области молекулярной и клеточной биологии самого конца ХХ века. Удивительно, что такое фундаментальное и широко распространенное явление так долго оставалось в тени. Но когда, в основном благодаря работам Роберта Горвица из Массачусетского технологического института, важность апоптоза была осознана, явление оказалось в центре внимания исследователей и врачей. (Сам Горвиц был удостоен Нобелевской премии по физиологии и медицине за 2002 год.) Несомненно, апоптоз заслуживает такого всеобщего внимания. Ведь если клетки оборудованы всем необходимым, чтобы совершать самоубийство, и только ждут специального сигнала, все, что нам нужно научиться делать, – это посылать такой сигнал вредным клеткам, от которых мы хотели бы избавиться. Разумеется, прежде всего речь идет о раковых клетках.

Выяснилось, что один из таких сигнальных белков, посылающих команду «Умри!» раковым клеткам, был давно известен: это так называемый фактор некроза опухоли (ФНО). Подобно другим сигнальным белкам, ФНО связывается со специальными рецепторами на поверхности клеток, и это связывание дает начало длинной эстафете событий, ведущей непосредственно к ДНК. В результате происходит включение специальных генов системы апоптоза, в том числе наработка протеаз и нуклеаз, которые разрушают клеточные белки и нуклеиновые кислоты. Клетка распадается на куски, и эти куски пожираются специальными клетками, макрофагами, которые в нашем теле играют роль мусорщиков. В результате от клетки, получившей команду «Умри!», не остается и следа.

«Потрясающе! – наверное, думает читатель. – Вот оно, наконец-то, настоящее средство от рака. ФНО специфичен к раковым клеткам, так что нормальные клетки не воспримут команду "Умри!"». Несомненно, ФНО – очень перспективное средство борьбы с раком. Но вскоре после того, как ФНО был открыт лет 40 назад, выяснилось, что он не убивает большинство раковых клеток. Нормальная функция ФНО, по-видимому, состоит в устранении зародышевых опухолей, состоящих всего из нескольких раковых клеток. В то же время организм должен защитить себя от пусть очень редких случаев, когда команда «Умри!» воспринимается нормальной клеткой. Поэтому, как в последствии выяснилось, наряду с включением процесса апоптоза ФНО индуцирует выработку белка, ядерного фактора каппа Б (ЯФ-κБ), который включает гены, препятствующие клеточной смерти.

ЯФ-κБ – это одно из нескольких «лекарств», вылечивающих клетки от суицидального синдрома. В лаборатории Балтимора в МТИ провели следующие опыты. Был приготовлен эмбрион мыши, у которого путем специальной процедуры (известной как генный нокаут) был удален ген ЯФ-κБ. Это привело к такому массовому самоубийству клеток печени, что эмбрион умер, так и не родившись.

Так возникла еще одна идея борьбы с раком. Можно попытаться найти лекарства-ингибиторы ЯФ-κБ, в результате чего раковые клетки станут гораздо охотнее подчиняться команде «Умри!» со стороны ФНО. Но ингибиторы ЯФ-κБ могут оказаться даже еще более полезными. Апоптоз можно вызвать далеко не только с помощью ФНО. Если клетка (особенно клеточная ДНК) существенно повреждена, она может вступить на путь самоуничтожения, т. е. апоптоза. Однако ЯФ-κБ обычно мешает клетке пойти по этому пути. Если вывести из строя ЯФ-κБ, опухолевые клетки, поврежденные в результате радио – и химиотерапии, сами закончат свое существование посредством апоптоза.

Решаться на самоубийство в случае сильного повреждения ДНК помогает клетке белок со скромным названием п53, который сейчас привлекает к себе огромное внимание. Этот белок следит за повреждением ДНК при многочисленных клеточных делениях в ходе развития многоклеточного организма. Читатель уже знает, что повреждение ДНК, т. е. соматические мутации и другие перестройки в ДНК, являются главной причиной рака. Функция п53 состоит в том, что, если белок обнаруживает, что ДНК в клетке существенно повреждена, п53 дана власть приговорить клетку к смерти, т. е. запустить процесс апоптоза. Если п53 выведен из строя вследствие мутации или как-то еще, повреждение ДНК не отслеживается, и в результате могут возникнуть разные формы рака. Исследователи пришли к заключению, что инактивация п53 является главной причиной рака в подавляющем большинстве случаев. Например, был проанализирован образец мочи известного американского политика 1960-х годов Хьюберта Хамфри, сохранившийся с 1967 года. Оказалось, что клетки в моче Хамфри содержали мутантный белок п53. Хамфри умер от рака мочевого пузыря в 1976 году. В 60 % случаев рака п53 оказался неактивным. Неудивительно, что огромные усилия исследователей сейчас направлены на то, чтобы научиться поддерживать п53 в активном состоянии.

Таким образом, еще до наступления эры секвенирования человеческих геномов стало ясно, что возникновение раковой опухоли сопровождается интенсивным мутационным процессом. После того, как в течение первого десятилетия XXI века научились достаточно дешево секвенировать ДНК из отдельных клеток, факт существенного генетического отличия раковых клеток от нормальных получил полное подтверждение. Со всей остротой встал вопрос: почему же в таком случае наша иммунная система не расправляется с раковыми клетками? Ведь мутировавшие белки на поверхности раковых клеток должны узнаваться рецепторами Т-клеток как чужие, и Т-киллеры должны такие клетки атаковать.

Оказалось, что рак сам использует явление апоптоза в свою пользу: при некоторых особенно зловредных формах рака, таких как меланома, раковые клетки посылают Т-киллерам сигнал «Убей себя!». Как мы уже отмечали ранее в главе 6 и в этой главе, Т-киллеры – это клетки иммунной системы, призванные распознавать и убивать раковые клетки на ранней стадии, пока их еще мало. Получается, что преступники, используя частоты радиосвязи полиции, посылают полицейским команду убить самих себя, и те, подчиняясь команде, совершают самоубийство. Казалось бы, такое можно увидеть только в дурном голливудском боевике, но буквально это происходит в случае меланомы. Основная служба безопасности нашего организма, Т-киллеры, совершают самоубийство, подчиняясь гнусной команде безжалостных убийц – клеток меланомы. Это поразительное открытие швейцарских исследователей объясняет, почему наша иммунная система оказывается беспомощной перед лицом наиболее ужасных форм рака.

За прошедшие 30 лет, многократно переиздавая эту книгу и каждый раз обновляя ее, я старался заканчивать данный раздел о раке на оптимистической ноте. «Не может быть, – писал я, – чтобы такое понимание причин перерождения клеток из нормальных в раковые, чтобы открытие апоптоза, чтобы огромный прогресс в понимание механизмов иммунитета, чтобы все это не привело к появлению совершенно новых и эффективных подходов в области терапии раковой болезни». Но вновь и вновь мой оптимизм ослабевал, когда я вспоминал мудрые слова замечательного генетика Романа Бениаминовича Хесина, взятые эпиграфом к этой главе. Сам Хесин умер от рака через год после публикации своей монографии, из которой я почерпнул эту цитату. И действительно, раз за разом оказывалось, что к следующей переработке книги «мы многое узнавали о том, как живет и эволюционирует клетка, хотя недостаточно – о том, как предотвращать рак».

И вот теперь впервые все изменилось. За последние годы началась подлинная революция в методах раковой терапии. Наконец-то накопленные знания и новые технологии в области клеточной биологии, в области иммунитета, в области секвенирования ДНК начали коренным образом менять то, как врачи лечат раковых больных. Об этой революции и пойдет речь в следующем разделе.

Иммунотерапия рака

Идея напустить иммунную систему пациента на его же собственную злокачественную опухоль впервые возникла на рубеже XIX и XX веков. Нью-йоркский врач Уильям Коли нарочно заражал раковых пациентов стрептококком, чтобы вызвать острую иммунную реакцию. В 10 % случаев пациенты вылечивались от рака. Однако такой подход не получил широкого распространения из-за низкой эффективности терапии. В середине 1980-х годов за разработку иммунотерапии рака взялся Стивен Розенберг из Национального института исследования рака (США). Он решил использовать для этой цели определенный класс Т-лимфоцитов, точнее, Т-киллеров. Они способны распознать и обезвредить, а попросту убить раковые клетки.

Розенберг обрабатывал Т-киллеры, взятые из крови больного, специальным белком, ростовым фактором Т-лимфоцитов. Этот белок называют интерлейкин-2, его нарабатывают в больших количествах стандартными методами генной инженерии. Затем размноженные Т-киллеры вводились в кровь пациента. Розенбергу удалось таким способом полностью исцелить больную меланомой – считавшейся неизлечимой формой рака кожи. У ряда других больных наблюдалось резкое уменьшение размера опухолей. Исследования Розенберга первоначально вызвали огромный интерес у специалистов и широкой публики. Но и этот подход не получил распространения, видимо, тоже из-за малого процента успешного вылечивания. Скорее всего, низкий процент успеха был связан с тем, что раковые клетки научались защищаться от Т-киллеров, как уже обсуждалось в предыдущем разделе. Потребовалось еще 30 лет упорной работы, чтобы методы иммунотерапии рака наконец стали широко внедряться.

Наиболее продвинутым в медицинскую практику является метод блокады контрольных точек иммунитета, разработанный, главным образом, Джеймсом Эллисоном из Ракового центра им. М. Д. Андерсона Техасского университета. Исследователям удалось разобраться, как раковые клетки избегают того, чтобы быть уничтоженными Т-киллерами. В арсенале раковых клеток таких способов несколько, мы остановимся на одном из них (рис. 48). Т-клетки несут на своей поверхности рецептор, белок PD-1. Коварная раковая клетка выставляет на своей поверхности другой белок, лиганд PD-1, или PD—L1. Когда Т-киллер приближается к раковой клетке, чтобы ее убить, PD—L1 вступает в контакт с рецептором PD-1, и в результате внутрь Т-клетки, к ее ДНК, идет команда «Умри!», и включается механизм апоптоза. Ведь акроним PD означает «запрограммированная смерть» (programmed death). На самом деле все оказалось не так драматично, как первоначально думали. Т-клетка не совершает самоубийство, она получает сигнал «Отставить!», т. е. отказывается убивать раковую клетку. Ну так давайте, решили исследователи, наработаем специальные антитела, которые будут связываться с рецептором PD-1 или с его лигандом, PD—L1, или и с тем и с другим, тем самым блокируя взаимодействие между рецептором и лигандом! Тогда команда «Отставить!» не пройдет, и Т-киллер благополучно слопает раковую клетку (рис. 48). Это и была та «Эврика!», которая привела к революции в терапии рака.

Рис. 48. Иммунотерапия рака, основанная на блокировке контрольных точек иммунитета. Сверху: раковая клетка выставляет лиганд рецептора PD-1, PD-L1 и тем самым выключает Т-клетку. Внизу: антитела к рецептору PD-1 и к лиганду PD-L1 препятствуют связыванию рецептора и лиганда и тем самым не позволяют раковой клетке командовать: Т-клетка узнает антиген на поверхности раковой клетки и уничтожает ее

Блокаторами контрольных точек иммунитета являются антитела. Их вводят пациенту, и происходит настоящее чудо: зловреднейшая меланома скукоживается и исчезает. Антитела против PD-1 и PD—L1 особенно эффективны именно против меланомы IV стадии, в ситуации, считавшейся безнадежной до наступления эры иммунотерапии. Но иммунотерапия работает и в случае некоторых других форм рака. Конечно, не все пациенты вылечиваются, но уже здравствуют тысячи людей, которым первоначально был вынесен смертный приговор.

Хорошо помню, как в августе 2015 года в телевизоре неожиданно появился бывший президент США Джимми Картер и объявил, что у него диагностирована меланома IV стадии, причем метастазы уже обнаружены в мозгу. Ему тогда было 90 лет. Ситуация казалась безнадежной, но Картер держался очень мужественно, шутил, все время улыбался. Ему прописали лечение антителами блокирующими контрольные точки иммунитета. В марте 2016 года Картер опять появился в ящике и объявил, что он признан врачами полностью чистым от рака. Именно благодаря успехам в лечении считавшихся ранее безнадежными случаев рака при помощи антител президент Обама объявил в конце 2015 года о государственной программе борьбы с раком, аналогичной космической программе «Аполлон» 1960-х годов. Эту программу возглавил вице-президент Джо Байден, сын которого умер от рака в расцвете лет.

Почему блокировка контрольных точек иммунитета помогает далеко не всегда и вообще работает не для всех видов рака? Почему опухоль одних пациентов прекрасно реагирует на терапию и случается прямо-таки чудо, как в случае с Картером, а в других случаях такого не происходит? Попробуем разобраться, в чем может быть причина. Ведь блокировка при помощи антител лишь нейтрализует защиту раковой клетки против иммунной системы. В основе иммунотерапии лежит способность Т-клеток распознать в раковой клетке чужака. Такое распознавание происходит потому, что раковые клетки несут соматические мутации, и в результате на поверхности раковой клетки презентуются мутантные белки, которые распознаются иммунной системой как антигены. Поскольку это новые для организма антигены, их называют неоантигенами.

Основная причина разного ответа на терапию в разных случаях, наверное, в том, что у каждого пациента имеется свой конкретный неоантиген на поверхности раковых клеток и одни неоантигены способны сильно стимулировать иммунный ответ, а другие не способны. Если это так, то следует помочь иммунной системе адекватно ответить на появление неоантигена. Как мы помогаем иммунной системе адекватно реагировать на вирусную инфекцию? Правильно, при помощи вакцин. Так возникла идея антираковой вакцины. В отличие от антивирусных вакцин, антираковая не предотвращает болезнь, но лечит ее, т. е. это терапевтическая вакцина.

Пока еще такие вакцины не используются в клинической практике, хотя уже идут клинические испытания после того, как опыты на мышах дали очень обнадеживающие результаты. Когда такие вакцины начнут применяться в больницах, это будет началом персональной терапии. Потому что цель антираковой вакцины состоит в максимальном стимулировании Т-клеток на атаку раковых клеток конкретной опухоли у конкретного пациента.

Здесь необходимо пояснить, что, в отличие от рецепторов В-клеток, рецепторы Т-клеток (РТК) распознают не сам белок-антиген как таковой. РТК распознает отдельные пептиды, содержащие примерно по 10 аминокислотных остатков, нарезанные из белка-антигена. Именно такие пептиды презентуются на поверхности клетки, в которой экспрессируется белок-антиген, специальным белковым устройством, составляющим важнейшую часть иммунной системы, которым оборудована каждая клетка. Это устройство носит название «главный комплекс гистосовместимости», сокращенно: ГКГС. Вот такой презентуемый с помощью ГКГС пептид и распознает рецептор конкретной Т-клетки. В зависимости от типа Т-клетки такое распознавание приводит либо к наработке Т-киллеров, способных убивать клетки, презентующие этот конкретный пептид, либо, если распознавшая пептид клетка сама есть Т-киллер, – к непосредственному убийству клетки. Как же будет работать персонифицированная антираковая вакцина?

Выделенная из клеток опухоли пациента ДНК секвенируется, и ее последовательность сравнивается с последовательностью ДНК из нормальной клетки пациента. Таким образом идентифицируется множество неоантигенов. Как было только что объяснено, такими неоантигенами служат не полные белки, а короткие пептиды, состоящие из примерно 10 аминокислотных остатков. Все пептиды, имеющие последовательности, содержащие аминокислотные замены, по сравнению с пептидами, которые соответствуют ДНК нормальных, нераковых клеток пациента, входят в лонг-лист кандидатов на вакцину. С помощью специальной компьютерной программы из этого лонг-листа выбирают шорт-лист пептидов, обладающих наибольшим сродством к ГКГС. Так получают 5–10 пептидов, которые должны в наибольшей степени стимулировать иммунную систему пациента на то, чтобы она атаковала клетки опухоли. Затем отобранные пептиды синтезируют, и смесь их всех или только нескольких из них и представляет собой антираковую вакцину, которую вводят пациенту. Весь это путь уже пройден в опытах на мышах, и уже начаты клинические испытания на больных. Довольно скоро должно стать ясно, оправдывает ли эта радикально новая иммунотерапия рака возложенные на нее ожидания.

И метод блокады контрольных точек иммунитета, и метод антираковых вакцин основан на использовании в полной мере собственного потенциала иммунной системы пациента. Упорно разрабатывается еще более радикальный подход, восходящий к ранним попыткам иммунотерапии, которые делал Розенберг и о которых мы упоминали выше. Идея состоит в том, чтобы извлечь Т-киллеры из крови пациента и как-то с ними проманипулировать. Розенберг просто размножал Т-киллеры и потом вводил их обратно пациенту. А что, если провести манипуляции с геномом Т-клеток, заменив имеющийся у них ТКР на ТРК, узнающий с большой эффективностью антиген, присущий данной опухоли пациента и к тому же посылающий мощный сигнал внутрь Т-клетки, к ее ДНК, сигнал об усиленном размножении? Такая технология, разработанная в Институте им. Вейцмана в Израиле, представляет собой высший пилотаж использования генетически модифицированных клеток для терапии рака. Она получила название «Технология химерного антигенного рецептора Т-клеток» или, сокращенно, ХАР-Т.

Хотя громадный потенциал технологии уже был продемонстрирован на пациентах, пока что это слишком грозное оружие в борьбе с раком, чтобы его можно было внедрять в практику. Если генетически модифицированные Т-киллеры обнаруживают даже ничтожное присутствие антигена на поверхности здоровой клетки, они набрасываются на нее и расправляются с ней. В результате несколько пациентов умерло в ходе клинических испытаний. Но в то же время имеется замечательный случай успешного применения этой технологии, информация о котором облетела в свое время все мировые СМИ.

Это произошло в Лондоне в 2015 году. В возрасте трех месяцев девочка Лайла заболела чрезвычайно острой формой лейкемии. Никакие стандартные методы лечения болезни не помогали, и казалось, что ребенок обречен. Даже иммунотерапия не работала, поскольку у ребенка почти не вырабатывались свои собственные Т-клетки. Тогда доктора, заручившись согласием родителей девочки и контролирующих органов, пошли на отчаянный шаг. Они связались с исследователями, незадолго до того разработавшими новый вариант технологии ХАР-Т, направленной как раз на лечение лейкемии, в котором не требовалось использовать Т-клетки пациента. Как такое может быть? Ведь введение в организм Т-клеток донора вместо собственных Т-клеток пациента должно вызывать сильнейшую реакцию отторжения! Чтобы избежать этого, исследователи, используя технологию редактирования генома (только использовалась не новейшая технология КРИСПР-кас, о которой мы подробно говорили в главе 10, а одна из более ранних технологий), так изменили геном Т-клеток донора, несущих химерный рецептор, что на этих Т-клетках не презентовались белки-антигены донора. Иными словами, исследователям удалось сделать Т-клетки-невидимки, не распознаваемые иммунной системой пациента.

Результат превзошел самые смелые ожидания. Лайла выздоровела и уже больше года развивается совершенно нормально. Совсем недавно в той же больнице удалось проделать то же самое еще с одним ребенком. Следует еще раз подчеркнуть, что подобные случаи пока единичны и метод ХАР-Т пока далек от внедрения в медицинскую практику. Но, безусловно, у этого метода огромный потенциал.

ДНК и сердце

Сколь же многолика ДНК! Она вызывает восхищение тем, как ладно «сработана», она производит переворот в медицине и сельском хозяйстве. Но, подобно некоему языческому божеству, ДНК может вселять и почти мистический ужас. Ведь подумать только, достаточно произойти ничтожному изменению в ее химическом строении – и из блага она оборачивается страшным злом. Человек ничего не подозревает, беспечно предается земным радостям, а в его ДНК уже сидит зловредный ген, из-за которого он умрет в расцвете лет. В отличие от мифических богов, ДНК чужды такие понятия, как милосердие и справедливость. По ее неотвратимым законам злой рок, постигший отца, подчас нависает и над сыном.

Если в прошлом, да часто и теперь, люди были убеждены, что все их беды – от бога, от дурного глаза или от их собственных грехов, то теперь нам все больше приходится привыкать к мысли, что наши беды от ДНК, от генов. Это относится не только к раку или к серповидно-клеточной анемии. Повреждение генов играет ключевую роль во втором наряду с раком главном бедствии рода человеческого – атеросклерозе, в особенности раннем.

Ранний атеросклероз развивается у людей, у которых поврежден ген, отвечающий за строение специального рецептора, расположенного на поверхности клеток, главным образом клеток печени. Эти рецепторы распознают особые жировые тельца, циркулирующие в крови, так называемые липопротеины низкой плотности (ЛНП), которые буквально «нашпигованы» молекулами холестерина. В результате связывания со своими рецепторами частицы ЛНП попадают внутрь клеток, где доставленный ими холестерин утилизируется для производства гормонов и для других целей. Поврежденный ген производит дефектный рецептор, неспособный связывать ЛНП. Это приводит к накоплению в крови ЛНП и, следовательно, к резкому повышению уровня холестерина. Холестерин начинает осаждаться на стенках кровеносных сосудов, что ведет к атеросклерозу. Такой больной, клетки которого полностью лишены рецепторов ЛНП, умирает от осложнений, вызванных атеросклерозом (в частности, от инфаркта), не достигнув и 20-летнего возраста.

Такое встречается, к счастью, очень редко – в среднем у одного человека на миллион. Ведь для этого необходимо, чтобы поврежденными оказались оба гена рецептора ЛНП: и полученный от мамы, и полученный от папы. Как говорят генетики, человек должен быть гомозиготен по поврежденному гену. Гораздо чаще, в одном случае на 500, встречаются люди, гетерозиготные по гену рецептора ЛНП, т. е. получившие поврежденный ген только от одного из родителей. При этом исправный ген обеспечивает половинное, по сравнению с нормой, число исправных рецепторов ЛНП. Как правило, в этом случае атеросклероз развивается к 40–50 годам.

Конечно, далеко не всегда инфаркт – от генов. Но именно исследование раннего, наследственного атеросклероза привело к открытию рецепторов ЛНП, их ведущей роли в регуляции уровня холестерина в крови. А это, в свою очередь, окончательно доказало, что именно уровень холестерина является решающим фактором в развитии болезни.

Все это поставило на новую, строго научную основу работу по поиску путей профилактики атеросклероза. Один путь – повысить число рецепторов ЛНП. Уже давно широко используются препараты, известные под общим названием статины (ловастатин, мевакор, зокор, аторвастатин, липитор, крестор), которые позволяют этого достичь (разумеется, если у больного есть хотя бы один исправный ген рецепторов ЛНП). Эти препараты уменьшают уровень холестерина у сотен миллионов пациентов во всем мире, существенно снижая смертность от инфаркта. Липитор стал первым в истории лекарством, официально получившим титул «средство, продлевающее жизнь» от американского Управления по санитарному надзору за качеством пищевых продуктов и медикаментов.

Другой путь доступен каждому – необходимо уменьшить поступление в кровь холестерина, т. е. сократить число самих ЛНП. Самый насыщенный холестерином продукт повседневного потребления – это яичный желток. Тем, у кого в семье были случаи атеросклероза (а эта болезнь едва ли обошла стороной хотя бы одну семью в наше время), рекомендуется избегать яичных желтков. Вот вам и невинный гоголь-моголь. Да и стакан молока, если, конечно, молоко хорошего качества, – тоже отнюдь не безобидная вещь.

Эти открытия в области атеросклероза, которые изменили качество и продолжительность жизни миллионов и миллионов людей, были сделаны в начале 1980-х годов биохимиком Майклом Брауном и генетиком Джозефом Гольдштейном из Юго-Западного медицинского центра Техасского университета, за что они в 1985 году получили Нобелевскую премию по физиологии и медицине.

Репрограммирование клетки

Мы уже обсуждали в начале главы 3 замечательную особенность многоклеточного организма: каждая клетка несет полную информацию обо всем организме, полный геном. В этой особенности заложена возможность клонирования: переноса генома (в виде целого клеточного ядра) из специализированной (дифференцированной, как говорят биологи) клетки в зиготу (оплодотворенную яйцеклетку, предварительно разрушив или удалив собственное ядро), из которой вырастает взрослый организм по программе привнесенного генома. Такое клонирование уже проделано со множеством разных видов животных. В самые последние годы в этой области возникло новое направление, сулящее совсем уж замечательные перспективы.

«А нельзя ли, – спросили себя исследователи, – изменить программу без переноса генома из клетки в клетку? Нельзя ли репрограммировать клетку, заставить геном дифференцированной клетки плясать совершенно другой танец?» Для этого надо было разобраться, что же определяет то, какой танец пляшет дифференцированная клетка: ведь геном во всех клетках один и тот же.

Разумеется, на ранних стадиях развития зародыша все клетки одинаковые, такие же, как исходная зигота, из которой они получились простым делением. Такие, еще не дифференцированные клетки называются стволовыми. Огромный интерес к ним связан с тем, что, оказавшись в том или ином окружении, одинаковые стволовые клетки могут начать плясать разные танцы, т. е. превратиться в разные дифференцированные клетки. С помощью стволовых клеток можно делать клеточную терапию, т. е. регенерировать поврежденную ткань.

Как же происходит превращение исходно идентичных стволовых клеток в разные специализированные клетки? Мы еще не знаем полного ответа на этот вопрос, но ясно, что ключевую роль играют специальные регуляторные белки, называемые транскрипционными факторами. Данный транскрипционный фактор (ТФ) узнает определенную последовательность нуклеотидов на межгенном участке ДНК, связывается с этим участком одной своей частью, а другой частью касается РНК-полимеразы, которая воспринимает это касание как сигнал начать считывания мРНК (т. е. начать транскрипцию, см. главу 2) с гена, около начала которого ТФ связался с ДНК. Разумеется, существует множество разных ТФ.

Итак, связывание одного из ТФ с определенным участком ДНК включает соответствующий ген, в результате чего в клетке синтезируется новый белок. А то, какие гены включены, а какие выключены, и определяет различие между разными клетками, несмотря на идентичность их геномов. Получается, что репертуар присутствующих в клетке ТФ и определяет то, что эта клетка собой представляет.

В многоклеточном организме этот репертуар как-то зависит от внешних условий, в которых оказалась данная клетка, и эта зависимость очень сложная. Но что будет, если этот репертуар искусственно нарушить? Что, если вырвать клетку из ее нормального окружения и попробовать изменить репертуар ТФ в ней? Вдруг удастся поменять клеточную программу, т. е. репрограммировать клетку так, что из клетки кожи она превратится, скажем, в клетку печени? Или еще интереснее: она превратится в стволовую клетку, и тогда ее можно будет использовать в клеточной терапии!

В 2006 году двое японских исследователей из Киотского университета – Синъя Яманака и Казутоши Такахаши провели следующие опыты. Путем впрыскивания в клетку специально приготовленной ДНК обезвреженного вируса они стали вводить в мышиные фибробласты (клетки соединительной ткани) гены разных ТФ. Используя стандартные методы генной инженерии, японские ученые так приготовили вирусную ДНК, что, когда она оказывалась в клетке, вставленные в нее гены ТФ активно включались, в результате чего в клетке появлялось значительное количество введенных извне ТФ. Яманака и Такахаши перепробовали множество комбинаций разных ТФ – ничего путного не получалось. И вот, можно себе представить, какова же была радость исследователей, когда после введения в клетку «коктейля» из четырех определенных ТФ на их глазах фибробласты переродились в стволовые клетки!

Работа японских ученых вызвала громадный интерес как со стороны исследователей и врачей, так и со стороны широкой публики. Были успешно проведены опыты по репрограммированию фибробластов человека в стволовые клетки. Тем самым открыт путь к наработке стволовых клеток, специфических для данного пациента с целью их использования в клеточной терапии. В 2012 году за свои работы по репрограммированию клеток из дифференцированных в стволовые Синъя Яманака был удостоен Нобелевской премии по физиологии и медицине. Он разделил премию с Джоном Гёрдоном, о чьих пионерских работах по клонированию было рассказано в начале главы 3.

Стремительность, с которой происходит развитие исследований в области стволовых клеток и клеточного репрограммирования после сделанного японскими исследователями прорыва, просто поражает. Если так пойдет дело и дальше, то, может быть, не придется долго ждать появления совершенно новых методов борьбы с самыми разными болезнями, основанных на клеточной терапии.

12 Вездесущая ДНК

ДНК – это наше всё

После выхода в 1983 году первого издания этой книги под тем же названием, что и сейчас, «Самая главная молекула», некоторые коллеги журили меня за то, что, выпячивая роль ДНК в названии книги, я принижаю роль других важнейших молекул живой клетки, прежде всего белков и РНК. Думаю, что теперь таких возражений не возникнет. За прошедшие годы мы не только утвердились в понимании главенствующей роли ДНК в феномене жизни – ДНК вторглась и продолжает вторгаться в повседневную жизнь людей. Мы узнали, что ДНК содержит далеко не только инструкцию о строении нашего организма. По последовательности ДНК можно совершенно однозначно идентифицировать того, кому эта ДНК принадлежит, например преступника, оставившего микроскопический кусочек своей кожи на месте преступления. По ДНК можно однозначно установить близкое родство или судить об этническом происхождении группы людей. ДНК современного человека, подобно древним письменам, несет в себе ценнейшие сведения об истории его предков, причем эту историю можно проследить вглубь не только веков, но и тысячелетий, когда никакой письменности еще не существовало.

Дело в том, что в человеческом геноме (т. е. в полном наборе ДНК, содержащемся в каждой клетке организма), который представляет собой текст, содержащий три миллиарда букв (нуклеотидов А, Т, Г и Ц), имеются самые разные области. Одни области содержат инструкцию о строении белков, т. е. собственно гены, которых в геноме человека оказалось не так уж много, всего около 20 тысяч, гораздо меньше, чем ожидалось до того, как первый человеческий геном был расшифрован к 2000 году. Кодирующие белки участки (экзоны) составляют очень маленькую долю всего генома, около 2 %. А что же основная часть? Конечно, кроме кодирующих белки областей имеется еще много чего важного, но все же очень существенная часть генома не несет никакой смысловой нагрузки, это просто мусор, накопившейся в ходе эволюции. Ее так и называют: «мусорная ДНК» (Junk DNA). Откуда же в ДНК берется мусор?

Моя любимая метафора, позволяющая понять, как в нашем геноме накопилось столько мусора, состоит в следующем. Каждые несколько лет я меняю компьютер и переношу в новый со старого все свои личные файлы. При этом я не провожу отбраковку файлов, не выбрасываю старые и ненужные: это была бы огромная работа, и нет гарантии, что какой-то документ или старое электронное письмо не окажется вдруг нужным в будущем. Так поступают все, насколько я понимаю. Мы не испытываем никакого давления в том смысле, что объем памяти ограничен и надо освободить место на жестком диске для свежих файлов, если, конечно, мы не загружаем в свой компьютер фильмы с высоким разрешением. В результате за многие годы на моем жестком диске накопилась наряду со многими очень важными, нужными и дорогими мне документами, картинками, видео и т. д. масса мусора, т. е. совершенно устаревших документов, многие из которых я не могу даже открыть, так как они были записаны с помощью устаревших программ, которых уже нет в моем новом компьютере. Вот наш геном и представляется мне таким жестким диском. В случае высших организмов естественный отбор не оказывает давления, с тем чтобы геном очищался от мусора. Гены передаются от родителей следующему поколению вместе со всем накопившимся мусором, потому что проверено, что этот мусор по крайней мере безвреден, так как родители дожили с ним до репродуктивного возраста. А если начать чистить геном, т. е. вырезать из ДНК какие-то куски, то уж точно жди беды.

Другое дело прокариоты. Они находятся под давление отбора, препятствующего разрастанию генома, так как репликация замусоренного генома требует дополнительного времени и дополнительных ресурсов. А скорость размножения и умение выживать при дефиците ресурсов – это важнейшие факторы в жесточайшей конкурентной борьбе, которую ведет каждый бактериальный штамм за выживание. Поэтому у бактерий геномы гораздо более экономные, в них практически нет мусора.

В отношении мусорной ДНК, очевидно, не существует никакого давления отбора, которое бы препятствовало быстрому накоплению мутаций. Поэтому некоторые участки мусорной ДНК являются гипервариабельными: они меняются из поколения в поколение. Вот они-то и используются в криминалистике. Когда Алек Джеффрис (универистет Лестера, Англия) впервые предложил метод идентификации личности по ДНК (известный также как ДНК – дактилоскопия) в середине 1980-х годов, сразу же после изобретения метода ПЦР, гипервариабельный участок генома подвергался действию рестриктаз, и полученные фрагменты разделялись в гель-электрофорезе. Получалась система полосок, которая была разной для разных людей. Если положение полосок ДНК подозреваемого и образца ДНК, взятого на месте преступления, совпадало, то подозреваемый переходил в категорию преступника и шел в тюрьму или даже получал смертный приговор, если дело происходило в стране или штате, где есть такое наказание.

В наше время сторона обвинения может представить в суде полную последовательность гипервариабельного участка ДНК подозреваемого и ДНК с места преступления и продемонстрировать их полное совпадение. При таком способе доказательства единственным аргументом защиты остается утверждение, что полицейские нарочно подмешали ДНК подозреваемого к ДНК, взятой с места преступления. Иначе говоря, преступником является не подозреваемый, а полицейские. В таком случае, конечно, любая наука бессильна, даже наука о ДНК.

Подобным образом, изучая вариабельные участки мусорной ДНК, устанавливают близкое родство. А можно ли по ДНК установить, наоборот, очень дальнее родство, принадлежность двух организмов к одному и тому же виду? Такая технология тоже была разработана. Тут мусорная ДНК только мешает, даже кодирующие белки области эволюционируют слишком быстро в этом масштабе времени, чтобы их можно было использовать. Вообще, геномная ДНК оказалась бесполезной для этой цели. Как же быть? На помощь пришла совершенно особая ДНК, которая находится не в ядре, а в цитоплазме клетки и о которой уже говорилось в главе 5, – митохондриальная ДНК (мтДНК). Она очень короткая, содержит всего 15 тысяч пар оснований. Конечно, в такой короткой ДНК вообще нет мусора, и она очень медленно меняется в ходе эволюции. После упорных поисков исследователи остановились на определенном участке из 600 нуклеотидов мтДНК в составе гена, кодирующего оксидазу цитохрома Ц. Они определили последовательности этого участка у множества самых разных животных. Им удалось показать, что последовательность нуклеотидов в этом участке одинакова внутри вида, но отличается для представителей разных видов. Ученые составили базу данных, в которой практически каждому виду животных сопоставлена последовательность этого участка. В результате они основали в Канаде компанию, которая по заказу определяет вид животного. Метод получил название «ДНК-штрихкодирование».

Вскоре после создания компании произошла забавная история. Две школьницы в Нью-Йорке посетили несколько суши-баров и рыбных магазинов и собрали образцы сырой рабы с указанием того, за какой сорт рыбы эти образцы выдавались. Они отослали все образцы в канадскую компанию и сравнили результат ДНК-штрихкодирования с тем, за что платили деньги. Результат оказался шокирующим: только в двух из четырех суши-баров и в четырех из десяти магазинов с ними поступили честно. Все остальные бары и магазины жулили, подменяя более дорогую рыбу более дешевой, но похожей по виду рыбьего мяса. Разразился скандал, получивший название «Сушигейт». Вскоре аналогичная история случилась в Бостоне, где сходное расследование провела местная газета. Эти события произошли в 2008 году. С тех пор суши-бары и рыбные магазины, по крайней мере в Нью-Йорке и Бостоне, регулярно инспектируются на предмет тестирования ДНК подаваемой там сырой рыбы.

После того, как уже совсем недавно был разработан метод ДНК-штрихкодирования растений, подобный скандал разразился с пищевыми добавками. Оказалось, что состав практически всех продаваемых в США добавок не имеет ничего общего с указанным на этикетке. Вместо экзотических трав из Тибета или откуда-то еще они содержат примерно одни и те же тривиальные пищевые компоненты.

Конечно, было бы здорово, если бы все мы могли проводить подобное тестирование, посетив любой ресторан, и не только японский. Всегда ли мы уверены, что едим жаркое из баранины, а не из собаки или кошки? К сожалению, проверить это невозможно, по крайней мере с использованием ДНК. При тепловой обработке ДНК очень быстро деградирует: ее цепи рвутся, и определение последовательности становится невозможным. Так что в отношении приготовленной пищи нам и дальше придется мириться с проклятой неизвестностью. Я, по крайней мере после «Сушигейта», никогда не уверен, что ем в ресторане, особенно в отношении приготовленной рыбы.

Деградация ДНК – очень существенное препятствие на пути осуществления всяческих проектов по воссозданию исчезнувших видов. Все смотрели знаменитый фильм Стивена Спилберга «Парк Юрского периода». Интересно, что изначально он создавался вроде бы на вполне научной основе. Это была сенсация. В начале 1990-х годов, вскоре после изобретения метода ПЦР, в самом престижном научном журнале Nature появились сообщения об определении последовательности ДНК из комаров, сохранившихся со времен Юрского периода (который был 200 миллионов лет назад) в янтаре! Дальше идея состояла в том, что такой комар мог напиться крови своего современника-динозавра и тем самым ДНК динозавра могла сохраниться до наших дней. Действительно, исследователи утверждали, что они нашли последовательности ДНК, принадлежавшие динозавру. Таким образом можно было бы восстановить геном динозавра, синтезировать его ДНК, ввести ее в оплодотворенную яйцеклетку какой-нибудь рептилии, из которой бы вырос настоящий динозавр. Как-то так, вкратце.

Загвоздка только в том, что очень скоро выяснилось, что опубликованные в Nature статьи были ошибочными. Никакая это была не ДНК динозавра. То, что они секвенировали, оказалось собственной ДНК исследователей, которая попала в качестве загрязнения в образцы из янтаря. Постепенно стало ясно, что никакой ДНК из древнего янтаря вообще извлечь невозможно: за такое время, да при таких температурах ДНК полностью деградирует, без остатка. Теперь считается, что в тепле ДНК вообще не может сохраняться в течение миллионов лет. Во льду ДНК может сохраняться очень долго, может быть, и миллионы лет. В отношении динозавров беда состоит в том, что со времени их исчезновения Земля прошла периоды очень сильного потепления наряду с периодами оледенения. Не представляется разумным считать, что где-то остались образцы ДНК динозавров, которые все эти сотни миллионов лет непрерывно находились во льду.

Так что сценарий «Парка Юрского периода» из более или менее научной фантастики быстро перешел в разряд фантастики ненаучной. Впрочем, есть проект, куда менее амбициозный, но зато не совсем нереальный. Речь идет о воссоздании мамонта. В нашем распоряжении имеются туши мамонтов, сохранившиеся в вечной мерзлоте со времен последнего ледникового периода, и это позволило секвенировать геномы нескольких мамонтов. Дальнейшая перспектива введения этой ДНК в оплодотворенную яйцеклетку слонихи представляется значительно более туманной, хотя отдельные гены мамонта уже удалось вставить в геном слонихи. Наверное, в конечном счете задачу воссоздания мамонта можно решить, но это потребует такой уймы денег и таких многолетних усилий, что конечный результат – появление живого мамонта – вряд ли того стоит.

РНК-интерференция

Как же добиться того, чтобы «немусорная» часть генома тоже не пропадала без дела, а работала на медицину и вообще позволила бы разобраться во всех сложностях работы организма? В этом отношении ситуация в начале 2000-х годов оказалась очень похожей на кризис начала 1970-х, описанный в главе 4. Тогда все уперлось в необходимость аккуратно разрезать ДНК на куски. Произошедший тогда прорыв (открытие рестриктаз) привел в конечном счете к расшифровке генома. Теперь, имея в руках геном, исследователи вновь почувствовали себя беспомощными. Как разобраться во всей этой мешанине из многих тысяч генов? Как узнать, какие гены отвечают за те или иные функции, за те или иные болезни? Неужели опять, как в догеномную эру, вся надежда на выявление мутантов с последующей тяжелейшей работой по анализу мутаций? Зачем же тогда геном? За что боролись?! Но даже если мы точно знаем, какое изменение на уровне ДНК приводит к болезни, лечить-то как? Неужто по старинке, методом тыка, испытывая миллионы разных химических соединений – авось какое-то и подействует? Было от чего впасть в уныние.

И вот, представьте себе, ровно как в случае с кризисом 1970-х, помощь пришла совершенно неожиданно и откуда ее никто не ожидал. Только это было еще более удивительно. Ведь тогда, в начале 1970-х, наука о ДНК, молекулярная биология, была еще молодой и много чего предстояло еще наоткрывать. Другое дело теперь, в 2000-х. Громадная армия исследователей «утюжила» эту область вдоль и поперек в течение полувека. Как же можно было проворонить нечто принципиальное? Выходит, что можно.

То, что так долго не замечали, носит странное название РНК-интерференция, или РНКи (RNAi по-английски). Это та самая система РНКи, о которой речь шла в конце главы 6 в связи с иммунитетом у растений. Эта система, основным элементом которой являются короткие интерферирующие молекулы РНК (киРНК), возникнув у растений как механизм защиты от вирусов, сохранилась в ходе эволюции, хотя у животных она играет другую роль. По-видимому, киРНК принимали за РНКовый мусор, за продукт естественной деградации разных молекул РНК, и потому так долго не обращали на них внимание. Что же в них такого особенного, в этих коротких РНК, почему о них вдруг все заговорили? Более того, все вдруг стали ими заниматься. Дело в том, что киРНК делают в клетке именно то, что нам необходимо научиться делать, чтобы выйти из постгеномного кризиса: они избирательно «глушат» гены.

Делают они это на уровне мРНК; киРНК (они имеют практически строго определенную длину: 21 нуклеотид) связываются, согласно обычному правилу комплементарности, с участком мРНК. Специальные ферменты системы РНКи распознают этот комплекс и деградируют мРНК. Поскольку, как правило, только один тип молекул мРНК, отвечающий какому-то одному белку, имеет участок, комплементарный данной 21-членной РНК, эта киРНК выключает синтез только конкретного белка.

На самом деле все происходит сложнее: киРНК должна быть двухцепочечной, чтобы механизм РНКи работал. Но это детали. Суть в том, что наряду с хорошо известными механизмами регуляции экспресии гена на уровне транскрипции обнаружен новый способ «глушения» экспрессии гена путем деградации уже синтезированной мРНК по механизму РНКи. Прелесть этого нового механизма состоит в том, что ему можно подсунуть искусственную киРНК, последовательность которой выбрана так, чтобы она была комплементарна какому-то участку мРНК того белка, выработку которого экспериментатор желает заглушить. И представьте себе, система РНКи работает с подсунутой искусственной киРНК так же, как с естественной, выключая белок.

Когда весть об успешных экспериментах такого рода, сделанных первоначально на малюсеньком червячке, облетела лаборатории мира, началась подлинная золотая лихорадка. Вот тут-то геномы заработали вовсю. Ведь для того, чтобы узнать, какую последовательность нуклеотидов синтезировать, чтобы «заглушить» выбранный ген, нужно знать ДНКовую последовательность этого гена. За короткий срок наличие системы РНКи и возможность ее использования для избирательного глушения генов были документированы практически для всех растений и животных, включая человека.

Хотя изучение системы РНКи и ее применение находятся на ранней стадии, мало кто усомнится в том, что этому открытию суждено сыграть в постгеномную эру такую же ключевую роль, какую открытие рестриктаз сыграло в эпоху возникновения генной инженерии и биотехнологии. РНКи открывает воистину необозримые горизонты. Получив в свое распоряжение универсальный способ выключения генов по одиночке и группами, исследователи в лабораториях всего мира всерьез взялись за выяснение функций всех генов генома. Разумеется, эксперименты проводятся на отдельных клетках и на животных, но результаты, как правило, можно перенести на человека из-за большого сходства геномов.

Но и этого мало. Возникли биотехнологические фирмы, которые разрабатывают подходы к прямому использованию киРНК в медицине. Ведь потенциально система РНКи сулит человечеству совершенно новый класс лекарств. В самом деле, очень часто болезнь связана с выработкой дефективного белка, что особенно хорошо изучено на примере многих форм рака, о чем говорилось в главе 11. Если выработку такого белка заглушить при помощи киРНК или каким-то другим способом, болезнь будет излечена. Захватывающая дух перспектива состоит в том, что, если научиться так лечить какую-то одну болезнь, все, что нужно сделать, чтобы лечить другую, – заменить одну киРНК на другую. Очень похоже на философский камень алхимиков. Но очень солидные ученые мужи и жены не покладая рук трудятся, чтобы претворить эту «алхимию» в жизнь. Безусловно, трудностей на их пути много. Но ни одна не выглядит непреодолимой.

Зловредный ген королевы Виктории

Если речь идет не о сотнях тысяч, а о сотне лет, то отдельные участки ДНК могут сохраниться даже в весьма неблагоприятных условиях. Это случилось с останками последней царской семьи, которые удалось полностью идентифицировать благодаря анализу ДНК. Провел его главным образом российско-американский ученый Евгений Рогаев. Но он сумел сделать нечто большее: путем анализа ДНК царской семьи ему удалось точно установить, в чем состояла мутация в геноме королевы Виктории, которая в конечном счете привела к тому, что царевич Алексей оказался болен гемофилией. А мутация эта архиважная: она сыграла роковую роль в судьбе России, да и всего человечества.

У нас есть все основания считать, что мутантный ген фактора свертываемости крови Виктория получила от своего отца Эдварда, графа Кентского. Мы уверены в этом потому, что Эдвард зачал Викторию поздно, в возрасте 50 лет. Благодаря анализу полных геномов нам теперь точно известно, что у мужчин с возрастом происходит накопление мутаций в половых клетках, в среднем по две мутации в год. Конечно, мать Виктории была моложе, но это не важно. У женщин весь запас яйцеклеток образуется еще до рождения, так что накопления мутаций в половых клетках с возрастом не происходит. Вообще, заводить ребенка, когда отец уже немолод, – не очень хорошая идея. Впрочем, есть выход. Комментируя в журнале Nature упомянутые количественные данные о накоплении с возрастом мутаций в половых клетках мужчин, известный российско-американский эволюционист Алексей Кондрашов посоветовал молодым людям замораживать свою сперму на случай, если они вдруг на склоне лет решат заводить ребенка. Как мы уже обсуждали в этой главе, при низкой температуре ДНК может храниться сколь угодно долго.

Впрочем, у самой Виктории зловредный ген никак себя не проявил. Как известно, до самого последнего времени она оставалась самым долго правившим монархом в истории Великобритании (совсем недавно ее «обошла» нынешняя королева Елизавета II). У Виктории была куча детей, а ее правление на протяжении большей части XIX века, времени могущества Британской империи, именуется «викторианской эпохой». Ген гемофилии, который несла в своем геноме Виктория, никак себя не проявлял, поскольку находился на одной из двух Х-хромосом королевы. Он производил нефункциональный фактор свертываемости крови, но функционального фактора, производимого второй Х-хромосомой, полученной Викторией от ее мамы, было вполне достаточно. Зловредный ген стал проявляться только у детей, внуков и правнуков Виктории мужского пола. Никакого гена свертываемости крови на Y-хромосоме нет, так что у мальчиков, получивших через их матерей от Виктории дефектный ген, вообще отсутствовал функциональный фактор свертываемости крови, и они погибали молодыми от кровотечения, которое не удавалось остановить. Через здоровых носителей женского пола зловредный ген распространился среди высшей аристократии по всей Европе, а гемофилия получила название «монархической болезни».

Одной из таких носительниц зловредного гена оказалась внучка Виктории, русская императрица Александра Федоровна. В момент, когда Николай обручился с Александрой, шансы для России и мира избежать ужасной участи стали практически 50 на 50. К тому времени в России девочки не котировались на роль монарха, а шансы, что мальчик родится здоровым, были как раз 50 на 50. К несчастью, царевичу Алексею досталась Х-хромосома, несущая мутантный ген. В момент зачатия Алексея в ход был запущен механизм, приведший к трагическим последствиям как для народов Российской империи, так и для многих других народов.

Вся Россия праздновала рождение наследника престола в 1904 году. Но мальчик был болен, и любой случайный порез мог привести к фатальному исходу. В результате ко двору был приближен шарлатан, убедивший монаршую чету, что он способен останавливать кровотечение у царевича. Его звали Григорий Распутин. Присутствие при дворе явного шарлатана, к тому же склонного к весьма экстравагантному поведению, назовем это так, больше, чем что-либо другое, подорвало престиж монархии как в глазах аристократии, так и среди народных масс. И хотя Распутина аристократы все же убили, непоправимый ущерб был нанесен: в 1917 году монархия пала, а к власти в России в конечном счете пришел кровавый тиран – Иосиф Сталин.

Трагична была судьба самой царской семьи. Она находилась в руках большевиков в Екатеринбурге в 1918 году, когда армия белогвардейского адмирала Колчака приблизилась к городу и появилась реальная опасность того, что Екатеринбург падет. Вся царская семья – Николай II, Александра, четыре девочки и царевич Алексей – были зверски убиты чекистами, а их тела после попытки их сжечь спешно закопаны в неглубоких ямах в окрестном лесу. По-настоящему сжечь тела чекисты не сумели, что спасло ДНК убитых от полной деградации. После падения коммунистического режима в СССР останки были постепенно найдены, и ученые провели их ДНК-анализ. Особенно важным было обнаружение в 2007 году останков царевича Алексея.

В 2009 году Рогаеву удалось точно выяснить, в чем заключалась зловредная мутация. Это была замена одного нуклеотида (А заменен на Г) в третьем с конца положении в интроне, находящемся между экзонами #3 и #4, гена, кодирующего фактор свертываемости крови IX (рис. 49). В результате этой замены возникает новый сигнал сплайсинга на конце интрона, и сплайсинг происходит неверно: в результирующей молекуле мРНК между экзонами #3 и #4 вклиниваются два нуклеотида. Это приводит к тому, что сразу после экзона #3 сбивается рамка считывания мРНК рибосомой, в белковую цепь включаются совсем другие аминокислоты, а вскоре вообще появляется терминирующий кодон, и белковая цепь обрывается (рис. 49). Получается не просто мутантный белок, а вообще нечто не имеющее ничего общего с нормальным белком. Вот такой зловреднейшей мутацией наградил свою дочь граф Кентский Эдвард в 1818 году. И что ему взбрендило за год до своей смерти ребенка заводить, честное слово?!

Рис. 49. Мутация в геноме королевы Виктории, приведшая к тому, что царевич Алексей оказался болен гемофилией. Сверху показана последовательность нормального гена фактора свертываемости крови IX, а внизу – последовательность мутантного гена. Последовательности отличаются только одной буквой, которая помечена стрелкой и дана курсивом: буква А в нормальном гене заменена в мутантном гене на Г. Последовательность нуклеотидов в интроне, расположенном между экзонами #3 и #4, дана строчными буквами. Подчеркнутые крайние пары букв в интроне, гт и аг, служат сигналами сплайсинга. Мутация приводит к тому, что возникает новый сигнал сплайсинга аГ на две буквы раньше правильного сигнала. В результате в самом начале экзона #4 вклиниваются два нуклеотида из интрона: АГ. Поэтому после места сплайсинга экзонов #3 и #4 сбивается рамка считывания мРНК рибосомой, и синтезируется аминокислотная последовательность, совершенно отличная от последовательности нормального фактора свертываемости крови (подчеркнуто), а потом вообще появляется терминирующий кодон УАА, и белковая цепь обрывается

Еврейские гены

Открытие двойной спирали Уотсоном и Криком было самым главным, но не единственным прорывом в нашем понимании феномена жизни. Задолго до этого, в 60-х годах XIX века, возникли две теории – Чарльза Дарвина и Грегора Менделя, которые привели к пониманию того, что необыкновенное разнообразие форм жизни является следствием эволюционного процесса. Краеугольным камнем эволюционной теории являются концепции изменчивости и отбора. Изменчивость происходит благодаря мутациям в генах, которые представляют собой, как мы теперь знаем, изменения последовательности нуклеотидов в ДНК, а затем отбор приводит к выживанию наиболее приспособленных мутантов. Успехи эволюционной теории в объяснении происхождения видов привели к тому, что концепция отбора наиболее приспособленных стала применяться для объяснения не только происхождения видов, но и для понимания распространенности тех или иных генов внутри человеческих популяций. Хотя описано множество генетических болезней, ярких примеров таких болезней с большим количеством случаев известно не так уж много. Долгое время наиболее известным примером была, да и остается серповидно-клеточная анемия (СКА), и факт ее широкого распространения среди населения Северной Африки (и их потомков афроамериканцев) многие десятилетия служил убедительным аргументом в пользу того, что принцип отбора наиболее приспособленных прекрасно работает в случае генетических болезней. Дело в том, что ареал распространения СКА в Африке с высокой точностью совпадает с ареалом распространения малярии.

В главе 2 мы уже обсуждали мутацию, приводящую к СКА. В отличие от гена гемофилии, ген СКА расположен не в половой хромосоме, а в одной из аутосом (так называют все хромосомы, кроме половых хромосом). У аутосомного гена всегда есть двойник, другой аллельный вариант, как говорят генетики. Если оба аллеля несут СКА-мутацию, т. е. имеет место гомозиготная ситуация, то такой человек заболевает СКА, и его дни сочтены. В случае же гетерозиготной ситуации, когда только один из двух аллелей несет мутацию, не только нормального гемоглобина оказывается достаточно для переноса кислорода, но наличие мутантного гемоглобина каким-то образом защищает от заражения малярией. Механизм защиты не вполне понятен, но сам факт надежно установлен. Так что накопление в популяции гетерозигот по гену СКА является чисто дарвиновским ответом на давление отбора со стороны малярии. Ну а неизбежное появление летальных гомозигот – это вполне приемлемая с точки зрения популяции в целом плата за защиту гетерозигот от малярии.

Однако по мере изучения все большего числа генетических болезней дарвиновская природа их распространения среди разных этнических групп становилась все менее очевидной. Получалось, что в этом смысле СКА – не правило, а исключение. У других болезней, обусловленных рецессивным аутосомным мутантным геном, не удавалось обнаружить никаких причин, чтобы считать носителей мутантного гена в гетерозиготном состоянии более приспособленными, чем чистые особи, не являющиеся носителями мутантного гена. В результате в последнее время стала весьма популярной совершенно другая концепция, известная как «эффект основателя». В чем он заключается?

Рис. 50. «Эффект основателя». В исходной большой популяции (левый круг) носители мутантного гена (зачерненные кружки) составляют малую долю от нормальных особей (белые кружки). Отделившаяся группа из малого числа основателей (средний круг) по чисто случайным причинам может оказаться содержащей непропорционально много носителей мутантного гена. Эта резко повышенная доля носителей мутантного гена сохранится при дальнейшем росте численности отделившейся группы (правый круг). Рост доли мутантных носителей необязательно происходит из-за отделения группы основателей, он может быть вызван резким сокращением общей численности исходной популяции. В этом случае говорят, что популяция прошла через популяционное «бутылочное горлышко»

Представим себе многочисленную популяцию, в которой происходит случайное скрещивание особей и в которой малая доля особей является носителем мутантного гена. Теперь представим себе, что очень небольшая группа по каким-то причинам, скажем из-за преследования на религиозной почве, решила уплыть на необитаемый остров, чтобы там навсегда обосноваться. Эта группа и будет представлять собой «основателей» новой популяции. Так как группа основателей состоит из малого количества особей, доля носителей мутантного гена среди них может по случайным причинам оказаться нулевой или, наоборот, гораздо большей, чем в целом в исходной популяции (рис. 50). Последний случай представляет для нас наибольший интерес, так как эта завышенная доля будет в дальнейшем сохраняться во вновь возникшем островном этносе и превратится в одну из отличительных черт этого этноса, когда он постепенно размножится и станет вполне многочисленным. При этом никакого давления отбора не было, сыграл роль лишь фактор случайности.

Почему важно, чтобы основателей было мало, не просто гораздо меньше, чем особей в исходной популяции, а мало в абсолютном смысле? Потому что если число основателей остается большим, то работает закон больших чисел и вероятность того, что доля носителей мутантного гена среди основателей будет существенно отличаться от средней доли в большой популяции, становится исчезающе малой.

Чтобы стать основателями, необязательно уплывать на острова. Группа основателей может жить в гуще большой популяции, но по каким-то причинам не смешиваться с ней, т. е. достаточно, чтобы был строгий запрет на смешанные браки между членами этой группы и членами основной популяции. Именно такой группой в течение 2000 лет были европейские евреи. Строгие религиозные правила делали невозможным заключение брака между евреями и христианами, ведь на протяжении большей части последних 2000 лет браки в Европе заключались только на религиозной основе либо христианским священником, либо раввином. В тех случаях, когда еврей принимал христианство, он полностью выбывал из общины и переставал быть евреем. Случаи перехода из христианства в иудаизм были крайне редки: иудаизм не поощряет этого и устанавливает чрезвычайно жесткие правила для гиюра, как в иудаизме называется подобное обращение. Вплоть до эры эмансипации евреев, наступившей в Европе с эпохой Просвещения и связанной главным образом с именем Наполеона, положительную роль которого в судьбе еврейского народа невозможно переоценить, любые контакты между евреями и христианами были сведены к минимуму. Из-за строгих правил кашрута евреи даже не могли разделить трапезу со своими христианскими соседями. Христиане, со своей стороны, устанавливали всевозможные ограничения на проживание евреев либо путем полного изгнания, как было в Англии, Франции и германских землях в Средние века и в Испании XV века, либо путем установления «черты оседлости», как было в Российской империи вплоть до Февральской революции 1917 года.

В результате образцы ДНК евреев представляют собой ценнейший материал для изучения эффекта основателя и его роли в генетике человека. Конечно, в течение ХХ века и в наше время роль указанных выше факторов, изолировавших евреев от окружающего населения в течение 2000 лет рассеяния, значительно уменьшилась. И тем не менее не представляет труда даже сегодня найти весьма представительную выборку «чистокровных» евреев для генетического анализа. Речь идет не обо всех евреях, а только о евреях европейского, точнее, центральноевропейского происхождения, именуемых ашкеназийскими евреями (АЕ). Это те евреи, которые говорили на языке идиш и сформировались как отдельный этнос на берегах Рейна. Сефардийские евреи испанского происхождения представляют собой другую ветвь еврейского народа, отличную от АЕ, и мы не будем обсуждать их генетические особенности. Мы также не будем касаться небольших общин еврейской диаспоры, существовавших на протяжении веков во многих странах, таких, например, как бухарские евреи. Дело в том, что АЕ представляют особый интерес с точки зрения «эффекта основателя», потому что в их истории было несколько эпизодов резкого снижения общей численности, называемых популяционное «бутылочное горлышко» (рис. 50). Как мы обсуждали выше, возникновение такого рода малочисленной группы необходимо для того, чтобы «эффект основателя» мог себя проявить.

По-видимому, главное популяционное «бутылочное горлышко» в истории АЕ имело место в XIV веке. Анализ геномов АЕ позволил установить, что их абсолютная численность упала в это время приблизительно до 350 человек. Такое катастрофическое снижение было вызвано комбинацией нескольких факторов. Во-первых, отправляясь в Крестовые походы, христианские воины сначала «упражнялись» на местных евреях, вырезая их целыми поселениями. В конце XIII и начале XIV веков евреи были изгнаны из Англии, Франции и германских земель, что сопровождалось их массовой гибелью. Во-вторых, это была эпоха «черной смерти», гигантской эпидемии чумы, уполовинившей население Европы. В-третьих, евреи меньше страдали от чумы, чем христиане, так как религия предписывает им мыть руки. Казалось бы, это должно было быть благоприятным фактором. Но все получилось наоборот – то, что от чумы погибает меньше евреев, служило для христиан доказательством того, что это евреи насылают на них «черную смерть». В результате христиане с удесятеренной яростью истребляли евреев.

Вот в результате этого падения численности и вследствие «эффекта основателя» среди АЕ оказалось непропорционально много носителей мутантных генов, которые теперь принято называть еврейскими. Таких мутантных генов несколько, но самый главный из них – ген болезни Тея—Сакса (ТС). Надо сказать, что факт распространения гена ТС среди АЕ именно в результате популяционного «бутылочного горлышка» XIV века не является полностью доказанным. Нельзя исключить значительно более раннего происхождения этого явления. Популяционных «бутылочных горлышек» в истории АЕ и их непосредственных предков было несколько, начиная с Иудейской войны, приведшей к разрушению Храма в 70 году новой эры. Иудейская война, проводившаяся римлянами при императоре Веспасиане под руководством его сына Тита, была исключительно кровопролитной. Мы хорошо знаем об этой войне благодаря повествованию, оставленному еврейским перебежчиком на сторону римлян – Иосифом Флавием. При императоре Адриане, в 132–136 годах новой эры, произошло восстание еврейского народа против римского владычества под руководством Бар-Кохбы, тоже подавленное римлянами с невероятной жестокостью. В результате этой череды кровавых событий проживавшие в тогдашнем Израиле евреи были почти полностью истреблены, а немногие уцелевшие были рассеяны или уведены в рабство римлянами. Хотя само явление еврейской диаспоры, т. е. наличие еврейских общин за пределами Святой земли, к тому времени уже существовало, именно тогда началась двухтысячелетняя диаспора АЕ. По-видимому, группа рабов, угнанных в Рим и сохранивших верность Моисееву закону, просочилась в дальнейшем через Альпы в Центральную Европу, и ее члены стали основателями ашкеназийского еврейства. У нас нет данных на этот счет, но естественно предположить, что популяция основателей АЕ была совсем малочисленной.

Подобно СКА, мутация ТС – это рецессивная аутосомная мутация. Она состоит во вставке четырех нуклеотидов (ТАТЦ) в экзон #11 некоего гена, расположенного в хромосоме #15. Понятно, что вставка четырех нуклеотидов сбивает рамку считывания, и получается полностью нефункциональный белок. Это ведет к поражению нервной системы ребенка и к его ранней смерти. До эпохи ДНК ТС-больные встречались среди АЕ в 100 раз чаще, чем среди населения в целом, в одном случае на 3,5 тысячи родившихся АЕ. Именно громадная разница во встречаемости болезни у евреев и неевреев и послужила основанием для гена ТС считаться главным еврейским геном. С наступлением эпохи ДНК ситуация с болезнью ТС резко изменилась. Была разработана ДНК-диагностика мутации СТ, и евреи ашкеназийского происхождения стали проходить такую диагностику до вступления в брак. Если и жених, и невеста являются носителями гена ТС, им сообщается, что с вероятностью 1/4 у них родится больной ребенок. Более того, раввин не проводит процедуру бракосочетания, если ему не приносят справку о прохождении генетической консультации. Видимо, как правило, носители гена ТС не вступают в брак друг с другом, так как статистика гласит, что теперь случаев болезни ТС среди евреев наблюдается меньше, чем среди неевреев. Зловредный ген по-прежнему сидит в геноме многих евреев (в среднем в каждом 30-м потомке АЕ), но ДНК-диагностика и здравый смысл позволяют избежать страданий, связанных с рождением безнадежно больного ребенка. Вот если бы ДНК-диагностика существовала во времена, когда Николай II выбирал себе невесту! История России, да и вся мировая история ХХ века пошла бы другим путем…

Интересно, что мутантный ген рецептора ЛНП, о котором шла речь в главе 11 и который отвечает за наследственную болезнь, называемую фамильной гиперхолестеринемией (ФГ), тоже принадлежит к числу еврейских генов. Встречаемость этой болезни у АЕ не столь ярко выражена, как в случае болезни ТС: мутантный ген в гетерозиготном состоянии встречается в среднем в каждом 70-м потомке АЕ, а не в каждом 30-м, как в случае гена ТС. Мутация заключается в делеции (выпадении) сразу трех нуклеотидов ГГТ, в результате чего рецептор ЛНП лишается глицина в 197-м положении белковой цепи. Такой мутантный рецептор не способен нормально выполнять свои функции. Анализ ДНК АЕ привел к выводу о том, что повышенная встречаемость болезни ФГ у АЕ является следствием «эффекта основателя», как и в случае болезни ТС. Геномные данные свидетельствуют о том, что ген ФГ распространен не среди всех современных потомков АЕ, а среди той их части, чьи предки были основателями литовский еврейской общины, возникшей после изгнания евреев из германских земель в XIV веке.

Генетика ФГ отличается от генетики классических рецессивных мутаций, таких как гемофилия, СКА и ТС, которые никак себя не проявляют в гетерозиготном состоянии. Как обсуждалось в главе 11, производство вдвое меньшего по сравнению с нормой количества рецептора ЛНП гетерозиготами приводит к повышенному содержанию холестерина в крови и при отсутствии лечения – к атеросклерозу к 40–50 годам.

Изучение тысяч еврейских геномов и их сравнение с геномами других народов дает огромный материал для анализа роли различных факторов – и генетических, и факторов среды – на индивидуальное развитие. Пока еще у нас больше вопросов, чем ответов на этот счет. Неоднократно поднимался вопрос о причинах непропорционально большого вклада евреев во все сферы интеллектуальной деятельности. Какую роль в этом играет генетика, а какую – факторы среды? Действительно, факты на этот счет просто поражают. Достаточно сказать, что 20 % всех Нобелевских премий присуждено евреям, в то время как евреи составляют 0,2 % населения планеты. Не могут не бросаться в глаза два обстоятельства. Во-первых, практически все евреи – нобелевские лауреаты являются АЕ. Во-вторых, если приписать получение Нобелевской премии «гену гениальности» и считать, что это аутосомный ген, проявляющийся в полной мере в гомозиготном состоянии, то мы получим ситуацию, полностью аналогичную гену ТС: «больные гениальностью» встречаются среди АЕ в 100 раз чаще, чем среди населения в целом. Легко себе представить распространение «гена гениальности» среди АЕ вследствие «эффекта основателя», в ходе прохождения АЕ одного из популяционных «бутылочных горлышек» в своей полной драматизма истории. Это было бы только справедливо. Ведь не должен «эффект основателя» приносить евреям одни лишь дополнительные несчастья в виде ТС и других болезней, должны же быть и какие-то бенефиты, в конце концов!

Пока «ген гениальности» обнаружить не удалось. Но это не должно обескураживать ученых. Исследования генома человека по-настоящему начались не так давно, лишь после секвенирования первого человеческого генома в 2000 году. В этом отношении очень поучительна история поиска гена шизофрении. Учитывая распространенность болезни, поиски этого гена начались очень давно и, конечно, сильно интенсифицировались после 2000 года. Долгое время они не приносили плодов. И все же упорство исследователей было вознаграждено. В начале 2016 года группа исследователей из Бостона опубликовала в журнале Nature статью, в которой они сообщили о выяснении генетической природы шизофрении. Оказалось, что шизофрению вызывает не отдельная мутация в кодирующей белок части генома, как в случае гемофилии, СКА, ТС, ФГ и других генетических болезней, а болезнь происходит вследствие увеличения экспрессии в клетках мозга определенных генов иммунной системы. Белки-продукты этих генов ответственны за отсечение синапсов между нейронами в ходе развития мозга. Увеличенная экспрессия этих белков ведет к избыточному отсечению синапсов, что связано с развитием шизофрении.

Наверное, к чему-то подобному приведут и поиски гена гениальности. Это будет не какая-то мутация в части генома, кодирующей экзоны, а, скорее всего, мутация, меняющая регуляцию генов, в результате чего мозг «больного гениальностью» развивается иначе, чем мозг «нормального» человека.

Поскольку, как теперь ясно, генетические особенности евреев неразрывно связаны с трагическими страницами их истории, нельзя не упомянуть о холокосте. Могла ли эта самая трагическая страница в истории еврейского народа повлиять на генофонд евреев? Нет, не могла. Безусловно, Гитлер поставил рекорд в отношении абсолютного количества уничтоженных евреев, превзойдя и Тита с Веспасианом, и императора Адриана, не говоря уже о таких «мелких» злодеях, как Великий инквизитор Торквемада. Но ко времени холокоста еврейское население чрезвычайно размножилось и составляло около 14 миллионов (а еще в XIV веке было всего 350 АЕ). В популяционной генетике человека даже есть специальный термин «демографическое чудо АЕ», это относится к чрезвычайному росту численности АЕ в период между эмансипацией евреев Европы Наполеоном и Второй мировой войной. Гитлеру удалось практически уполовинить численность еврейского народа, но до оставшихся 8 миллионов евреев в СССР, США, Великобритании, Канаде, Латинской Америке и Австралии, в Северной и Южной Африке и на Ближнем Востоке ему добраться не удалось. В результате еврейская популяция мира осталась весьма значительной по численности, и при всем ужасе случившегося холокост нельзя отнести к разряду популяционных «бутылочных горлышек». Так что к изменению генофонда еврейского народа холокост привести не мог.

На пороге

Пока я готовил это издание книги, пытаясь, насколько это возможно, осветить те новые направления в науке о ДНК, которые не вошли в предыдущие издания, меня все больше охватывало чувство, что мы, я имею в виду всю нашу цивилизацию, находимся на пороге чего-то совершенно невиданного. Накопленные нами знания и наше понимание феномена жизни именно сегодня достигли того рубежа, за которым открываются совершенно невероятные перспективы. Эти перспективы вселяют надежду, но и пугают. Иммунотерапия рака обещает спасти жизнь миллионам, да что обещает, уже спасла тысячи жизней. Технология редактирования генома уже производит революцию в сельском хозяйстве и в здравоохранении. Буквально не проходит недели, чтобы не появилась новая сенсационная публикация, открывающая новую страницу.

Вот вам еще один пример. В апреле 2016 года в журнале Nature появилась статья гарвардского профессора Дэвида Лиу, в которой он продемонстрировал, как можно корректировать точечные мутации в геноме без внесения в ДНК двунитевых разрывов. Лиу с сотрудниками использовал мутантный кас-белок, который не способен разрезать ДНК, но сохраняет способность раскрывать двойную спираль и гибридизовать крРНК с раскрытым участком. Помните, в главе 6, в разделе о врожденном иммунитете, речь шла о ферменте деаминазе, который превращает Ц в У? Он также осуществляет мутагенез в генах вариабельных частей иммуноглобулинов при создании репертуара иммуноглобулинов и рецепторов Т – и В-лимфоцитов. Так вот, Лиу присоединил через короткий пептид деаминазу к мутантному кас-белку. Что получилось? Как было объяснено в главе 6, деаминаза не способна атаковать Ц в составе Г•Ц пары, ей требуется отдельно Ц. Такой мишенью становится цитозин, оказавшийся в коротком раскрытом участке ДНК, который узнала крРНК. При дальнейшей репликации такой отредактированной ДНК У ведет себя как Т, и в результате происходит точечная мутация – замена Ц на Т. Так редактировать отдельные мутации, конечно, гораздо лучше, чем вызывать двунитевые разрывы, вырезать из-за одного неправильного нуклеотида целый ген и вставлять хороший ген, как мы подробно обсуждали в главе 10. Конечно, в подходе Лиу есть свои трудности, например, нужно, чтобы не было других цитозинов, до которых может добраться деаминаза, а то получится исправление одних мутаций и создание новых. Но Лиу привел много примеров, когда с помощью его подхода можно починять гены, ответственные за генетические болезни. Сюда, кстати, относится, в принципе, мутация, приведшая к монархической болезни, о которой шла речь выше, там ведь тоже надо заменить Ц на Т, чтобы провести коррекцию. До появления этого нового подхода к внесению точечных изменений в ДНК мне казалось, что в обозримом будущем технология редактирования генома будет использоваться главным образом в других организмах, не в человеке. Теперь мне так больше не кажется.

Возникает острое ощущение, что, хорошо это или плохо, мы находимся на пороге эры массированного вмешательства в геном конкретных живых людей. И приход этой эры уже не остановить никакими начальственными окриками. Ведь речь идет о здоровье, да и о самой жизни. Помните в главе 11, в разделе о раке, речь шла о белке п53? Этот белок отслеживает повреждения ДНК в клетке, и если их становится слишком много, он включает механизм апоптоза и тем самым своевременно убивает потенциально раковую клетку. Мутантный п53 этого делать не может, более того, он мешает делать свое дело нормальному аллельному варианту п53 в гетерозиготном состоянии, и у носителя такого мутантного гена резко повышена вероятность разнообразной онкологии. Наиболее распространенная мутация в гене белка п53 как раз исправляется заменой Ц на Т, и Лиу в своей статье в Nature продемонстрировал коррекцию этой мутации в определенном проценте культивированных клеток. Конечно, это только начало, но когда такие коррекции научатся делать с высокой эффективностью и без существенных побочных эффектов, кто сможет запретить генную терапию пациенту с мутантным геном п53?

Ну а дальше… Когда наконец откроют ген гениальности, сколько мамаш захотят чуть подправить геномы своих чад, чтобы из них выросли Яши Хейфецы и Альберты Эйнштейны?

Словарь терминов

А

Аденин – химическая группировка, входящая в состав ДНК и РНК. Одно из четырех оснований нуклеиновых кислот. Сокращенное обозначение – А.

Аденовирус – вирус человека, содержащий линейную двунитевую ДНК в качестве генетического материала. Обезвреженный вирус используется для доставки в клетку генов в виде аденовирусной ДНК, модифицированной методами генной инженерии.

АЕ – ашкеназийские евреи, т. е. евреи германского происхождения.

Аллель – один из двух генов, ответственных за один и тот же признак. Один аллель поступает от одного родителя, другой – от другого.

Аллергия – чрезмерная реакция иммунной системы.

Аминогруппа – NH2.

Аминокислота – химическое соединение вида Н2N-СНR-СООН, где R – любой радикал. Является исходным продуктом для синтеза белка.

Аминокислотный остаток – химическая группировка строения НN-СНR-СО, являющаяся мономерным звеном белковой цепи. То, что остается от аминокислоты, когда она встраивается в белковую цепь.

Амплификация – размножение. Термин особенно часто используется в контексте многократного размножения участка ДНК методом ПЦР.

Антибиотик – органическое вещество, подавляющее размножение бактерий, но не являющееся ядом для человека или животного. Первым антибиотиком был пенициллин, выделенный Александром Флемингом из плесени в 1929 году. Открытие антибиотиков произвело революцию в лечении многих болезней, против которых медицина ранее была практически бессильна, таких как воспаление легких, туберкулез и т. д. Однако широкое и бесконтрольное применение антибиотиков привело к «привыканию» бактерий к ним. В результате традиционные антибиотики теперь гораздо менее эффективны, чем были в первые десятилетия их использования. Антибиотики совершенно бесполезны в борьбе с вирусными заболеваниями.

Антиген – чужеродное вещество, вызывающее иммунную реакцию организма.

Антитело – белок, вырабатываемый иммунной системой в ответ на проникновение в организм чужеродного вещества – антигена. Синоним иммуноглобулина.

Апоптоз – запрограммированная гибель клетки.

Атеросклероз – хроническое заболевание, вызванное сужением кровеносных сосудов, главным образом за счет образования на их внутренних стенках наростов (бляшек), состоящих преимущественно из холестерина.

АТФ – сокращенное название аденозинтрифосфорной кислоты. Является универсальным аккумулятором энергии в клетке. Энергия запасается в трифосфатном «хвосте» молекулы. «Разрядка» происходит в результате отщепления одной фосфатной группы. «Зарядка» производится в митохондрии.

Аутосома – неполовая хромосома.

Б

Бактериородопсин – белок, играющий ключевую роль в превращении световой энергии в химическую у светочувствительных бактерий.

Бактериофаг – вирус, убивающий бактерию. Состоит из нуклеиновой кислоты (ДНК или РНК), помещенной в белковую оболочку. Заражение бактерии происходит тогда, когда бактериофаг, присоединившись к оболочке, впрыскивает внутрь бактерии свою нуклеиновую кислоту. Вскоре после этого ресурсы бактерии переключаются на синтез вирусной нуклеиновой кислоты и вирусных белков. Минут через 20 после заражения бактериальная оболочка лопается, и из нее вываливается сотня готовых вирусных частиц, являющихся точной копией исходного бактериофага.

Бактерия – одноклеточный микроорганизм. Мир бактерий чрезвычайно многообразен и играет огромную роль в обеспечении существования других живых существ на Земле. Многие бактерии живут в самых примитивных условиях, требуя для своего размножения лишь простейшие молекулы, содержащие химические элементы, которые входят в состав биологических молекул. Так, для удовлетворения потребности в углероде некоторым бактериям достаточно нефти; азот и кислород они берут из воздуха. Бактерии окружают нас повсюду, вызывая скисание молока или бульона, они находятся в нас самих, помогая нам переваривать пищу (кишечная палочка Escherichia coli). Бактерии вызывают многие заразные болезни.

Белок – важнейший компонент живой клетки. Представляет собой полиаминокислотную цепь, образующую весьма сложную пространственную структуру. Природные белки – это гетерополимеры, состоящие из аминокислотных остатков 20 типов. Один белок отличается от другого последовательностью аминокислотных остатков. Часто вместо термина «белок» используют синоним: протеин.

Благоприобретенный признак – признак, не заложенный от рождения, а появившийся под влиянием внешних воздействий. Благоприобретенные признаки не наследуются, так как не имеют отражения в генах. Например, в какой бы экзотический цвет ни красила женщина свои волосы, это никак не отразится на цвете волос ее будущего ребенка.

Близнецы (идентичные или однояйцовые) – братья или сестры, выросшие из одной зиготы. Рождаются в тех случаях, когда до начала развития плода оплодотворенная яйцеклетка по каким-то причинам делится на две зиготы, каждая из которых дает начало отдельному плоду. Идентичные близнецы имеют в точности одинаковый набор генов. Поэтому они всегда одного пола и так похожи друг на друга. Всестороннее обследование идентичных близнецов, разлученных по тем или иным причинам в раннем возрасте, дало очень богатую информацию о том, какая роль в судьбе человека принадлежит генам, а какая – внешним условиям.

Броуновское движение – хаотическое движение микрочастиц. Является следствием теплового движения молекул.

В

Вакцина – препарат, содержащий безвредные для человека или обезвреженные (убитые) бактерии или вирусы. Используется для прививок против заразных болезней. Терапевтическая вакцина используется не для прививок, а непосредственно для лечения.

Валин – одна из 20 канонических аминокислот.

Вектор – термин генной инженерии. Так называют молекулу ДНК-переносчик (плазмидную, вирусную и т. д.), в составе которой клонируют нужный ген.

Вид – одно из основных понятий описательной биологии, занимающейся систематизацией живых существ. Основным принципом деления на виды является невозможность дать при скрещивании потомство, способное к дальнейшему продолжению рода. Например, ослы и лошади принадлежат к разным видам, поскольку продукт их скрещивания (мул) не способен к размножению (стерилен).

Вирус – клеточный паразит, один из простейших объектов живой природы. Вне клетки вирус – это молекулярный комплекс, состоящий из нуклеиновой кислоты (ДНК, иногда РНК) и нескольких белков, образующих оболочку вируса. После проникновения в клетку вируса (или его нуклеиновой кислоты) происходит переключение ресурсов клетки на синтез вирусной нуклеиновой кислоты и белков. Когда клеточные ресурсы исчерпываются, ее оболочка разрывается, и из нее вываливаются готовые вирусные частицы. Вирусы животных устроены значительно проще, чем вирусы бактерий (бактериофаги). Животные вирусы не способны впрыскивать в клетку свою нуклеиновую кислоту и попадают внутрь клетки целиком. Вирусы вызывают многие заразные болезни, такие как грипп, оспа, полиомиелит, гепатит (болезнь Боткина), СПИД и т. д. В некоторых случаях вирус, оказавшись внутри клетки, не губит ее, а встраивает свою ДНК в ДНК клетки, после чего вирусная ДНК начинает размножаться вместе с ДНК клетки. При этом, однако, поведение самой клетки может резко измениться.

ВИЧ – вирус иммунодефицита человека. ВИЧ вызывает СПИД.

Водородная связь (Н-связь) – межмолекулярная связь, которая образуется между группами O связь H и N связь H и атомами O и N. Играет важную роль в образовании пар, комплементарных в ДНК.

Вырожденность кода – одно из свойств генетического кода, заключающееся в том, что одной и той же аминокислоте может отвечать несколько кодонов.

Г

Гаплоидный – содержащий одиночный набор хромосом.

Гель – полимерная сетка, пропитанная растворителем. Подобно твердому телу, гель сохраняет форму. Примеры: студни, желе. Электрофорез в гелях широко используется при определении последовательности ДНК, в генной инженерии и при исследованиях кольцевых ДНК.

Гемоглобин – белок, переносящий кислород в крови. Обусловливает красный цвет крови.

Гемолизин – токсин, вырабатываемый патогенными микробами. Представляет собой цилиндрический белок с дыркой нанометрового размера внутри (нанопорой). Белок внедряется в клеточную стенку жертвы и делает клеточную оболочку пористой, в результате чего клетка гибнет.

Гемофилия – тяжелое наследственное заболевание, состоящее в неспособности крови больного к свертываемости.

Ген – основное понятие классической генетики, в которой под этим термином долгое время понималась неделимая частица наследственности. В 1950-х и 1960-х годах под словом «ген» понимали непрерывный участок ДНК, на котором в виде последовательности нуклеотидов записана информация об аминокислотной последовательности одного белка. В настоящее время после открытий, о которых рассказано в главах 5 и 6, понятие гена перестало быть столь однозначным. Этим словом по-прежнему называют участок ДНК. Но в одних случаях имеется в виду непрерывный участок, лишь часть которого отвечает белковой цепи, а в других – совокупность участков, отвечающих целой белковой молекуле. А может быть и так, что один и тот же участок ДНК принадлежит сразу двум и даже трем генам.

Генетика – наука о наследственности.

Генная инженерия – прикладная ветвь молекулярной биологии, занимающаяся направленным изменением наследственности путем разрезания и сшивания молекул ДНК с последующим встраиванием их в живую клетку.

Генная терапия – генная инженерия, проводимая с медицинскими целями.

Геном – вся генетическая информация организма.

Генотип – понятие классической генетики, означающее всю совокупность генов данного организма. Теперь чаще используется термин «геном», имеющий тот же смысл.

Гепатит – тяжелое вирусное заболевание печени. Известно также под названием инфекционной желтухи или болезни Боткина.

Гетерозиготность – понятие классической генетики. Означает, что аллельные гены различны в своем проявлении.

Гибридная ДНК – искусственная молекула, составленная методами генной инженерии из участков разных природных ДНК. Тот же смысл имеют термины «рекомбинантная» и «химерная ДНК».

Гипервариабельный участок – область генома с очень высокой скоростью мутирования.

Гираза – фермент (точнее, белковая машина), делающий зкДНК отрицательно сверхспирализованной. Использует энергию АТФ. Принадлежит к классу топоизомераз II.

Гистоны – белки, входящие в состав хромосом. Образуют белковую сердцевину нуклеосом.

ГМО – генетически модифицированный организм.

Гомозиготность – понятие классической генетики. Означает, что аллельные гены одинаковы в своем проявлении.

Гомологичная рекомбинация – основной механизм репарации двунитевых разрывов в диплоидной эукариотической клетке.

Гормоны – молекулы как белковой, так и иной природы, регулирующие многие процессы в организме. Недостаток или избыток того или иного гормона является причиной многих хронических заболеваний. Широко известны такие гормоны, как инсулин, гормон роста, половые гормоны и др.

Гуанин – химическая группировка, входящая в состав ДНК и РНК. Сокращенное обозначение – Г.

Д

Двунитевой разрыв – разрыв сахарофосфатного остова в обеих цепях двойной спирали.

Деаминаза – фермент, отбирающий аминогруппу у цитозина, превращая его в урацил.

Дезоксирибонуклеиновая кислота – полное название молекулы ДНК.

Диабет – заболевание, состоящее в накоплении сахара в крови. Причина состоит в неспособности поджелудочной железы вырабатывать гормон инсулин.

Диплоидный организм – состоит из клеток, содержащих пары гомологичных хромосом.

Дифференцировка – специализация клеток в процессе развития многоклеточного организма. В результате дифференцировки образуются различные органы, ткани и типы клеток, такие как печень, мозг, кожа, лимфоциты и т. д. Принципиально, что в ходе дифференцировки весь геном передается целиком всем специализированным клеткам без изменений (исключение составляют лишь клетки иммунной системы, лимфоциты, в ходе образования которых происходят определенные геномные перестройки, о которых рассказано в главе 6).

ДНК – дезоксирибонуклеиновая кислота. Молекула, в которой содержится генетическая информация. Состоит из двух полинуклеотидных цепей, образующих двойную спираль. Линейная ДНК имеет два конца. Замкнутая кольцевая (зкДНК) не имеет концов. Каждая из полинуклеотидных цепей в зкДНК замкнута сама на себя. Одноцепочечная ДНК состоит из одной полинуклеотидной цепи.

ДНК-полимераза – фермент, ведущий синтез ДНК по матрице ДНК. Для начала работы ДНК-полимеразы обязательно требуется праймер ДНКовой или РНКовой природы.

ДНК-штрихкодирование – определение вида при помощи анализа ДНК. Используется последовательность нуклеотидов одного из генов митохондрий.

дНТФ – дезоксирибонуклеозид трифосфорная кислота. Служит мономерным предшественником для синтеза ДНК при помощи ДНК-полимеразы.

З

Зацепление – топологическое состояние двух или более контуров, при котором они не могут быть разведены без того, чтобы хотя бы один из них был разорван.

Зигота – оплодотворенная яйцеклетка. Является той единственной клеткой, из которой вырастает целый организм.

Злокачественный – раковый. Злокачественным перерождением ткани называют процесс возникновения раковой опухоли.

И

Изолейцин – одна из 20 канонических аминокислот.

Иллюмина – ведущая компания в сегменте биотехнологического рынка, занимающегося секвенированием ДНК. Компания выпускает секвенаторы ДНК.

Иммунитет – невосприимчивость к данной заразной болезни того, кто ее перенес в прошлом. Изучение явления иммунитета привело к открытию иммунной системы, служащей для удаления из организма проникших в него чужеродных веществ, в первую очередь белков, вирусов и бактерий. Такой иммунитет часто называют приобретенным иммунитетом. В последнее время была обнаружена дополнитальная иммунная система, называемая врожденным иммунитетом.

Иммуноглобулин – белок, вырабатываемый иммунной системой в ответ на проникновение в организм чужеродного вещества. Иммуноглобулины часто называют антителами.

Иммунотерапия рака – комплекс методов, позволяющих направлять иммунную систему пациента на борьбу с собственной онкологией больного.

Инициирующий кодон – кодон, означающий начало белковой цепи.

Инсулин – белок, вырабатываемый поджелудочной железой. Является гормоном, регулирующим содержание сахара в крови.

Интерлейкин-2 – белок, являющийся ростовым фактором Т-лимфоцитов.

Интерферон – белок, вырабатываемый в организме в ответ на вирусную инфекцию. Не является иммуноглобулином и не имеет отношения к иммунной системе. Эффективен против самых разных вирусов и поэтому принадлежит к числу наиболее многообещающих антивирусных препаратов. Производство интерферона в больших количествах стало возможно только благодаря генной инженерии.

Интрон – участок ДНК, разделяющий экзоны.

Инфаркт (миокарда) – омертвение части сердечной мышцы вследствие нарушения кровоснабжения. Одна из основных причин смерти. Обычно происходит из-за закупорки кровеносного сосуда сердца вследствие далеко зашедшего атеросклероза.

Инфекция – заражение микробом: бактерией, вирусом, грибком и т. д.

Инфекционность – заразность.

К

Канцероген – агент, вызывающий рак.

Кас-белок – белок, участвующий в системе КРИСПР. Способен раскрывать двойную спираль, гибридизировать крРНК с комплементарным участком раскрытой ДНК и наносить ДНК двунитевой разрыв. Английский вариант: Cas protein.

Катенан – зацепление двух или более колец.

киРНК – короткие интерферирующие РНК. Двухцепочечные молекулы РНК, в которых каждая цепь состоит из 21 нуклеотида. Определяют специфичность системы РНКи. Английский вариант: siRNA.

Кишечная палочка – бактерия, живущая в природных условиях в кишечнике человека. Латинское название Escherichia coli, сокращенно Е. coli, читается «эшерихия коли». Долгое время была излюбленным объектом исследования для молекулярных биологов.

Клонирование – получение большого числа клеток из одной-единственной клетки. Теперь используется также в отношении молекул ДНК. Этот термин используется и для обозначения технологии, состоящей в пересадке ядра соматической клетки в яйцеклетку с целью получения «двойников» или клонов.

Клубок (полимерный) – понятие физики полимеров. Служит для описания пространственной формы полимерной молекулы. Из-за теплового движения форма полимерного клубка постоянно меняется.

Ковалентная связь – прочная химическая связь, обеспечивающая целостность молекул. Например, связь в молекулах Н2, N2, СО и т. д.

Код (генетический) – словарь для перевода ДНКовых и РНКовых текстов на белковый (аминокислотный) язык.

Кодон – термин, связанный с генетическим кодом. Означает тройку нуклеотидов, отвечающую одному аминокислотному остатку. Существует несколько бессмысленных (незначащих) кодонов, не отвечающих никакой аминокислоте. Они играют роль стоп-сигналов при синтезе белка по мРНК на рибосоме. Их называют терминирующими кодонами. Инициирующие кодоны служат сигналами начала синтеза белка.

Коллаген – белок соединительной ткани. Важнейший пример белка, не являющегося ферментом, а играющего структурную роль. Коллаген является главным компонентом костей и сухожилий. В быту известен под названием «желатин». Из него изготовляют студни, желе, столярный клей и т. д.

Комплементарность – свойство двойной спирали ДНК, согласно которому против А всегда стоит Т, и наоборот, а против Г – всегда Ц, и наоборот.

Крестообразная структура – структура ДНК, которая может образовываться в последовательностях – перевертышах.

КРИСПР – система приобретенного иммунитета у бактерий против заражения бактериофагами и плазмидами. Английский вариант: CRISPR. Название является акронимом.

крРНК – короткие молекулы РНК, участвующие в системе КРИСПР. Английский вариант: crRNA.

Л

Ламаркизм – учение, согласно которому биологическая эволюция происходит путем наследования благоприобретенных признаков. Основоположником учения был французский биолог конца XVIII – начала XIX века Жан Батист Ламарк.

Лигаза – фермент, залечивающий однонитевой разрыв («ник») в молекуле ДНК.

Лимфоциты – клетки крови, ответственные за иммунитет.

ЛНП – липопротеины низкой плотности. Жировые тельца, служащие для переноса молекул холестерина.

М

Макро – – приставка, означающая, что речь идет о чем-то, состоящем из очень большого числа атомов.

Матрица – полимерная молекула, последовательность которой используется для задания последовательности другой полимерной молекулы. ДНК служит матрицей для синтеза ДНК при репликации и РНК при транскрипции. РНК служит матрицей для синтеза белка при трансляции и ДНК при обратной транскрипции.

Метастаз – вторичный очаг злокачественного перерождения. Признак далеко зашедшего заболевания раком. Способность давать метастазы – одна из наиболее неприятных особенностей ракового заболевания.

Метилаза – фермент, осуществляющий метилирование.

Метилирование – присоединение метильной группы СН3.

Метионин – одна из 20 канонических аминокислот.

Микро – приставка, означающая, что речь идет о чем-то, содержащем не очень большое число атомов.

Митохондрия – сигарообразное тело, расположенное в цитоплазме. Является энергостанцией клетки, перерабатывающей продукты питания в энергию АТФ.

Мономер – повторяющийся элемент полимерной цепи. Например, в полиэтилене это группа СН2, в белке – аминокислотный остаток, в ДНК – нуклеотид. Правильнее говорить не «мономер», а «мономерное звено», так как мономером химики часто называют исходный продукт для синтеза полимера (этилен, аминокислота и т. д.).

Мусорная ДНК – часть генома высших организмов, которая не имеет функционального значения. Английский вариант: Junk DNA.

Мутаген – агент, вызывающий мутацию.

Мутация – наследуемое изменение генетического материала. Мутации могут быть спонтанными, т. е. вызванными естественными причинами, и индуцированными, т. е. вызванными искусственно (радиация, химические вещества и т. д.). В результате мутации происходит изменение последовательности нуклеотидов в ДНК.

Н

Нанометр (нм) – единица измерения длины (миллиардная доля метра, 1 нм = 10–9 м).

Нанопора – отверстие в мембране диаметром несколько нм.

Неоантиген – новый антиген, возникший в результате соматической мутации в раковой клетке.

Ник – однонитевой разрыв, т. е. разрыв сахарофосфатного остова в одной из двух цепей ДНК.

Нуклеаза – фермент, расщепляющий ДНК или РНК.

Нуклеиновые кислоты – ДНК и РНК.

Нуклеосома – основной структурный элемент хромосомы. Представляет собой белковую (гистоновую) сердцевину, на которую намотана ДНК длиной в 140 пар оснований, делающая около двух оборотов.

Нуклеотид – мономерное звено ДНК и РНК.

О

Однонитевой разрыв («ник») – разрыв сахарофосфатного остова в одной из двух цепей ДНК.

Олигомер – нечто промежуточное между мономером и полимером.

Олигонуклеотид – одиночная цепь ДНК или РНК, содержащая от нескольких до нескольких десятков мономерных звеньев.

Онкоген – ген, вызывающий рак.

Онкогенный вирус – вирус, вызывающий рак.

Основание (нуклеиновое или азотистое) – класс химических соединений, к которому принадлежат аденин, гуанин, тимин, цитозин и урацил.

П

Пенициллин – первый антибиотик. Открыт Александром Флемингом в 1929 году.

Пенициллиназа – фермент, расщепляющий пенициллин. Выработка этого фермента бактерией защищает ее от действия пенициллина.

Перевертыш – фраза, которая звучит одинаково, читать ли ее слева направо или справа налево. При написании перевертыша не принимаются во внимание промежутки между словами и знаки препинания. Примеры: ТОНЕТЕНОТ; ЛЕЗУВУЗЕЛ; НЕГНИПАПИНГЕН; ЛЁШАНАПОЛКЕКЛОПАНАШЁЛ; УЖРЕДКОРУКОЮОКУРОКДЕРЖУ. В приложении к ДНКовым текстам такие перевертыши называют зеркальными. Просто перевертышем (палиндромом) называют отрезок двойной спирали, который имеет одинаковую последовательность при чтении по одной и по другой нити в одном и том же направлении, диктуемом химическим строением цепей ДНК. Например:

Пиримидин – класс химических соединений, к которому принадлежат тимин, урацил и цитозин.

Пиросеквенирование – метод чтения последовательности ДНК, основанный на том, что на каждом шаге синтеза ДНК на матрице высвобождается один пирофосфат.

Плазмида – кольцевая молекула ДНК, размножающаяся вместе с бактерией и способная переходить из клетки в клетку.

Поли– – приставка, обозначающая, что речь идет о полимере.

Полимер – химическое соединение, представляющее собой цепочку повторяющихся группировок. Простейшим полимером является полиэтилен… – СН2 – СН2 – СН2 – …, из которого делают пакеты, сумочки и многое другое. Гомополимеры состоят из совершенно одинаковых мономерных звеньев. Биологические полимеры являются гетерополимерами, так как в каждом из них звенья хотя и принадлежат к одному классу (аминокислоты в белке и нуклеотиды в нуклеиновых кислотах), но отличаются по своему строению. Белок состоит из мономеров 20 типов, нуклеиновая кислота – четырех типов.

Половые клетки – клетки, служащие для продолжения рода (сперматозоиды и яйцеклетки). В отличие от остальных клеток эукариот, половые клетки содержат только одиночный набор хромосом (23 в случае человека).

Половые хромосомы – женская хромосома X и мужская хромосома Y. Во всех клетках, кроме половых, мужчины имеют набор половых хромосом XY, а женщины – XX.

Популяционное «бутылочное горлышко» – резкое снижение численности популяции.

Порядок зацепления – количественная характеристика степени зацепления двух контуров. Порядок зацепления равен числу раз, которое один контур протыкает поверхность, натянутую на другой контур. Обозначается через Lk.

Праймаза – специальная РНК-полимераза, синтезирующая РНКовые праймеры при репликации ДНК в клетке.

Праймер – короткий кусочек однонитевой ДНК или РНК, служащий затравкой при работе ДНК-полимераз и ревертаз.

Прививка – введение в организм вакцины. Смысл прививки – выработать иммунитет к болезни без того, чтобы переболеть ею.

Прогенот – гипотетический общий предок всего живого на Земле.

Прокариоты – одноклеточные, не имеющие клеточных ядер.

Промотор – участок ДНК, с которым связывается РНК-полимераза, чтобы начать синтез мРНК.

Протеаза – фермент, расщепляющий белок (протеин).

Протеин – то же, что и белок.

Пуассоновское распределение – одно из важнейших понятий теории вероятностей.

Пурин – класс химических соединений, к которому принадлежат аденин и гуанин.

ПЦР – полимеразная цепная реакция. Используется для размножения молекул ДНК в пробирке.

Р

Райзинг – понятие теории полос. Величина райзинга зависит только от того, какую форму в пространстве имеет ось полосы, но не зависит от того, как полоса закручена вокруг этой оси. Обозначается через Wr.

Рамка считывания – фаза чтения рибосомой последовательности нуклеотидов в мРНК. Поскольку код триплетный, для любой последовательности существует три рамки считывания. Для всех трех рамок считывания последовательность аминокислотных остатков будет разной.

Ревертаза – фермент, ведущий синтез ДНК по матрице РНК. Этот процесс называется обратной транскрипцией.

Редактирование генома – направленное изменение последовательности ДНК в живой клетке по воле экспериментатора.

Рекомбинатная ДНК – искусственная молекула, составленная методами генной инженерии из участков разных природных ДНК. Тот же смысл имеют термины «гибридная» и «химерная» ДНК.

Рентгеновские лучи – коротковолновое электромагнитное излучение с длиной волны порядка 10–10 м.

Рентгенограмма – изображение на фотопластинке в результате ее засвечивания рентгеновскими лучами, рассеянными кристаллом.

Рентгеноструктурный анализ – метод определения внутренней структуры кристаллических веществ путем специальной обработки получающихся от них рентгенограмм. Является наиболее прямым и наиболее мощным методом определения строения вещества. Наши знания о строении молекул любой сложности, в том числе основных биологических молекул, белков и нуклеиновых кислот, являются прямым результатом использования этого метода.

Репарация – залечивание повреждений в ДНК.

Репликация – удвоение генетического материала. Синтез ДНК на ДНК.

Репрессор – белок, очень прочно связывающийся с определенным участком ДНК, расположенным между промотором и самим геном. Связавшись с ДНК, репрессор препятствует продвижению РНК-полимеразы от промотора к гену и тем самым блокирует синтез мРНК. Служит для регуляции транскрипции.

Репрограммирование клетки – направленное изменение программы экспрессии генома, приводящее к перерождению одного типа клеток многоклеточного организма в другой тип клеток.

Рестриктаза – фермент, разрезающий двойную спираль в местах с определенной последовательностью нуклеотидов. Главный инструмент генной инженерии.

Рестрикционный фрагмент – кусок ДНК, вырезанный из молекулы при помощи рестриктаз.

Ретровирусы – вирусы животных, у которых генетическим материалом является одноцепочечная РНК. К ретровирусам принадлежат ВИЧ и многие онкогенные вирусы.

Рецепторы – молекулы белка, встроенные в клеточную оболочку и служащие для восприятия клеткой внешних сигналов. Этими сигналами являются другие белковые молекулы, плавающие в межклеточной среде. Примеры: рецепторы ростовых факторов, рецепторы антигенов у Т-лимфоцитов.

Рецессивность – понятие классической генетики. Рецессивный ген проявляется только в гомозиготном состоянии.

Рибозим – молекула РНК, обладающая способностью работать как фермент.

Рибосома – сложный комплекс РНК и белков, осуществляющий в клетке процесс трансляции.

Рибонуклеиновая кислота – полное название молекулы РНК.

РНК – рибонуклеиновая кислота. Биологический полимер, очень близкий к ДНК по своему химическому строению. Способен образовывать двойную спираль, но в природе, как правило, существует в виде одиночной цепи. У некоторых вирусов является носителем генетической информации, т. е. подменяет ДНК. В клетке генетической роли не играет. Играет важную роль при передаче информации от ДНК к белку. По выполняемым функциям различают три главных типа РНК: информационная или матричная (мРНК), рибосомальная (рРНК) и транспортная (тРНК).

РНКи – РНК-интерференция. Особая внутриклеточная система эукариот, состоящая из ферментов и коротких РНК (киРНК), способная к специфическому «глушению» экспрессии отдельных генов. У растений система РНКи играет роль иммунной системы, защищающей растения от вирусов.

РНКовый мир – гипотеза о том, что первоначально, при возникновении жизни на Земле, те функции, которые в современных организмах разделены между ДНК, РНК и белком, осуществлялись исключительно молекулами РНК.

РНК-полимераза – фермент, ведущий синтез мРНК по матрице ДНК. Осуществляет процесс транскрипции.

Родопсин – белок, находящийся в клетках сетчатки глаза и обеспечивающий чувствительность сетчатки к световым квантам (фотонам).

С

Сахар – химическая группировка, входящая в состав нуклеотида. Принадлежит к тому же классу соединений, что и пищевой сахар.

Сефардские евреи – евреи испанского происхождения.

Сверхспирализация – свойство кольцевой замкнутой ДНК. Сверхспирализация возникает тогда, когда порядок зацепления Lk в ДНК отличается от величины N / γ0, где N – число пар оснований в ДНК, а γ0 – число пар оснований, приходящейся на один виток двойной спирали в линейной ДНК, находящейся в тех же условиях.

Сегмент (куновский или статистический) – понятие физики полимеров. Элемент идеализированной полимерной цепи, состоящей из прямолинейных отрезков, соединенных свободными шарнирами.

Секвенирование – определение последовательности нуклеотидов в ДНК или аминокислот остатков в белках.

Секвенирование посредством синтеза – методы секвенирования ДНК, в которых используется способность ДНК полимеразы очень точно осуществлять реакцию удлинения праймера. Первым таким методом был метод Сэнгера.

Селективные условия – условия, в которых могут размножаться не все бактерии, а только те, которые обладают какими-то особыми свойствами. Например, среда, в которую добавлен антибиотик. На такой среде могут размножаться только те бактерии, которые несут ген устойчивости к данному антибиотику.

Серповидно-клеточная анемия (СКА) – неизлечимая наследственная болезнь.

Симбиоз – взаимовыгодное сосуществование двух или более видов. Симбиоз имеет огромное значение для всего живого на Земле. Только благодаря симбиозу с азотфиксирующими бактериями растения могут использовать азот воздуха – необходимый элемент, входящий в состав белков, нуклеиновых кислот и других соединений.

СКА – серповидно-клеточная анемия. Неизлечимая наследственная болезнь.

Соматические клетки – все клетки многоклеточного организма, за исключением половых клеток.

Соматические мутации – мутации в соматических клетках, т. е. в любых клетках тела, за исключением половых.

СПИД – синдром приобретенного иммунного дефицита. Очень серьезное заболевание, вызываемое РНК-содержащим вирусом (ВИЧ). ВИЧ поражает Т-лимфоциты, в результате чего больной теряет способность к иммунному ответу.

Сплайсинг – процесс созревания мРНК у эукариот, в результате которого выбрасываются интроны, а экзоны соединяются в одну цепь РНК.

Стволовая клетка – недифференцированная клетка многоклеточного организма. Стволовые клетки являются клетками-предшественницами дифференцированных клеток.

Стэкинг-взаимодействия – взаимодействия между соседними парами оснований в двойной спирали.

Т

Теломераза – фермент, удлиняющий теломерные концы хромосомной ДНК.

Теломеры – концевые участки хромосомной ДНК, представляющие собой длинные регулярные повторы. У позвоночных повторяющимся элементом является последовательность ТТАГГГ.

Терминирующий кодон – кодон, служащий сигналом окончания белковой цепи.

Термоциклер – прибор, позволяющий периодически нагревать и охлаждать помещенные в него пробирки. Используется для проведения ПЦР. Часто термоциклер называют ПЦР-машиной.

Тея—Сакса болезнь (болезнь ТС) – неизлечимая наследственная болезнь мозга, приводящая к ранней смерти.

Тимин – химическая группировка, входящая в состав ДНК. Сокращенное обозначение – Т.

Т-киллеры – класс Т-клеток, непосредственно убивающих клетки организма, зараженные бактерией или вирусом или опознанные как чужие.

Т-клетки – лимфоциты, представляющие собой клеточный ответ иммунной системы организма.

Топоизомеразы – класс ферментов, меняющих топологию кольцевой замкнутой ДНК.

Топоизомеры – молекулы ДНК, идентичные в химическом отношении, но отличающиеся топологией (типом узла или порядком зацепления).

Топология – область математики, изучающая общие свойства кривых и поверхностей, не меняющиеся при их всевозможных деформациях, производимых без разрезания и склеивания.

Транскрипция – синтез РНК на матрице ДНК. Обратная транскрипция – синтез ДНК на матрице РНК.

Транскрипционный фактор (ТФ) – регуляторный белок, «включающий» определенные гены. ТФ узнает специальные последовательности ДНК вблизи начала генов и связывается с ними, тем самым давая сигнал к транскрипции этих генов.

Трансляция – синтез белка по матрице мРНК на рибосоме.

Трансформация – изменение наследственности клеткой вследствие проникновения в нее чужеродного генетического материала.

Триплекс – тройная спираль ДНК.

Триптофан – одна из 20 канонических аминокислот.

Тройная спираль – структура, состоящая из трех цепей ДНК.

ТС-болезнь – болезнь Тея—Сакса. Неизлечимая наследственная болезнь мозга.

ТФ – транскрипционный фактор. Белок, связывающийся с определенным участком ДНК и инициирующий транскрипцию гена или группы генов.

У

Ультрафиолетовые лучи – невидимое глазом излучение электромагнитной природы с длиной волны меньшей 400 нм.

Урацил – химическая группировка, входящая в состав РНК. Одно из четырех оснований РНК. Сокращенное обозначение – У.

Ф

Фаг – сокращенное название бактериофага.

Фаза – одно из трех состояний вещества (твердое, жидкое или газообразное).

Фазовые переходы – переход вещества из одного фазового состояния в другое.

Фамильная гиперхолестеринемия (ФГ) – наследственная болезнь, состоящая в резком повышенном содержании холестерина в крови.

Фенилаланин – одна из 20 канонических аминокислот.

Фенотип – понятие классической генетики. Означает всю совокупность внешних признаков и свойств живого организма, сложившихся в ходе его развития.

Фермент – молекула белка, катализирующая одну из химических реакций в клетке. Будучи биологическими катализаторами, ферменты сами не изменяются в ходе реакции, но их присутствие очень сильно ускоряет ее протекание. Ферменты также обеспечивают очень высокую специфичность, избирательность реакций, происходящих в клетке. Синоним – энзим.

Фибробласты – клетки соединительной ткани. Играют важную роль в процессе заживления ран.

ФНО – фактор некроза опухоли.

Фосфат – химическая группировка, входящая в состав нуклеотида.

Фотодимер (тимина) – особое химическое соединение, образующееся после того, как один из двух тиминов, стоящих рядом вдоль цепи в ДНК, поглотил фотон.

Х

ХАР – химерный антигенный рецептор.

Химерная ДНК – искусственная молекула, составленная методами генной инженерии из участков разных природных ДНК. Тот же смысл имеют термины «гибридная» и «рекомбинантная» ДНК.

Холестерин (или холестерол) – сложная органическая молекула из класса стероидов. В умеренном количестве необходим как материал для построения клеточной оболочки, служит предшественником ряда гормонов (в частности, половых). При избытке в крови ведет к атеросклерозу.

Хромосома – находящийся в клеточном ядре сложно организованный комплекс ДНК с белками, в котором хранится генетическая информация.

Ц

Цепная реакция – процесс, продукты которого инициируют новые процессы того же рода. Например, при ядерной цепной реакции расщепление ядра урана сопровождается появлением нескольких нейтронов, каждый из которых при столкновении с новым ядром урана инициирует расщепление ядра, в результате чего появляются новые нейтроны, и т. д.

Цитозин – химическая группировка, входящая в состав ДНК и РНК. Сокращенное обозначение – Ц.

Цитоплазма – содержимое клетки, за исключением ядра.

Ш

Штамм – совокупность бактериальных клеток, полученных из одной клетки. В том же смысле используется термин «клон».

Э

Экзон – участок ДНК, на котором записана информация о части аминокислотной последовательности белка.

Экзонуклеаза – нуклеаза, расщепляющая нуклеиновую кислоту с концов, нуклеотид за нуклеотидом.

Экспрессия гена – производство белка, закодированного в гене.

Электрофорез – движение молекул в электрическом поле.

Эндонуклеаза – нуклеаза, расщепляющая нуклеиновую кислоту в произвольном месте цепи, а не только с конца, как экзонуклеаза.

Энтропия – физическое понятие, количественно характеризующее степень разупорядочения системы.

Эукариоты – организмы, имеющие клеточное ядро.

«Эффект основателя» – понятие популяционной генетики человека. Английский вариант: the founder effect.

Я

Яйцеклетка – женская половая клетка.

Примечания

1

Постдокторантура (постдокторат, постдок) – в странах Западной Европы, Америки, в Австралии научное исследование, выполняемое ученым, недавно получившим докторскую степень PhD.

(обратно)

2

Много воды утекло с той поры. Нет больше СССР, разбросало по миру участников работы: Вадим Аншелевич перебрался в Даллас (Техас), Саша Вологодский – в Нью-Йорк. Только Саша Лукашин, вплоть до своей безвременной кончины в 2004 году, находился поблизости от автора этих строк, правда, не в Москве, а в Бостоне.

(обратно)

3

Как уже упоминалось, Виктор Лямичев теперь в Мэдисоне, штат Висконсин. Сергей Миркин ныне профессор биологии в университете Тафтса, расположенном под Бостоном.

(обратно)

Оглавление

  • Предисловие
  • 1 От новой физики к новой биологии
  •   1930-е годы
  •   Фаговая группа
  •   Эрвин Шрёдингер
  •   Рентгеноструктурный анализ
  •   Уотсон и Крик
  • 2 От ДНК к белку
  •   Как делается белок
  •   Генетический код
  •   Универсален ли код?
  • 3 Знакомьтесь: самая главная молекула
  •   Она похожа на… штопор
  •   Она похожа на оконное стекло
  •   Она плавится, но не так, как лед
  •   Она похожа на путь человека, заблудившегося в лесу
  • 4 Под знаком ДНК
  •   Кризис молекулярной биологии
  •   Перелом
  •   Вековая мечта человека
  •   Плазмиды
  •   Микробы вырабатывают нужные нам вещества
  • 5 ДНКовые тексты
  •   Еще раз о кризисе
  •   Гель-электрофорез
  •   Как читают ДНКовые тексты
  •   Первые неожиданности
  •   Коды митохондрий
  •   Эра ДНКовых последовательностей
  • 6 Откуда берутся гены?
  •   Теория эволюции и генетика
  •   Расчлененные гены
  •   Прыгающие гены
  •   Врожденный иммунитет
  •   Генные глушители
  •   Приобретенный иммунитет у бактерий
  • 7 Кольцевые ДНК
  •   ДНКовые кольца
  •   Сверхспирализация и топоизомеразы
  •   Зачем нужна сверхспирализация?
  •   Физики и математики за работой
  •   Проблема концов
  • 8 Узлы из ДНК
  •   Об узлах
  •   Узлы в химии
  •   Узлы из однонитевой ДНК
  •   Узлы из двойной спирали
  • 9 Споры вокруг двойной спирали
  •   Правы ли Уотсон и Крик?
  •   Силы, стабилизирующие двойную спираль
  •   Z-форма
  •   Н-форма
  • 10 Генная инженерия и технология редактирования генома. Опасения и надежды
  •   Наука и изобретательство
  •   Опасна ли генная инженерия?
  •   Битва века
  •   ДНКовая цепная реакция
  •   Генно-инженерная фармакология
  •   Технология редактирования генома
  •   Грядущий золотой век
  • 11 ДНК и судьба
  •   ДНК и рак
  •   Команда «Умри!»
  •   Иммунотерапия рака
  •   ДНК и сердце
  •   Репрограммирование клетки
  • 12 Вездесущая ДНК
  •   ДНК – это наше всё
  •   РНК-интерференция
  •   Зловредный ген королевы Виктории
  •   Еврейские гены
  •   На пороге
  • Словарь терминов
  •   А
  •   Б
  •   В
  •   Г
  •   Д
  •   З
  •   И
  •   К
  •   Л
  •   М
  •   Н
  •   О
  •   П
  •   Р
  •   С
  •   Т
  •   У
  •   Ф
  •   Х
  •   Ц
  •   Ш
  •   Э
  •   Я Fueled by Johannes Gensfleisch zur Laden zum Gutenberg

    Комментарии к книге «Самая главная молекула», Максим Давидович Франк-Каменецкий

    Всего 0 комментариев

    Комментариев к этой книге пока нет, будьте первым!

    РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

    Популярные и начинающие авторы, крупнейшие и нишевые издательства