«Занимательная астрофизика»

437

Описание

Книга в популярной и занимательной форме знакомит читателей с наиболее интересными проблемами современной астрофизики, с не обычными физическими объектами в космосе: пульсарами, квазарами, радиогалактиками, черными: дырами, источниками: рентгеновского и гамма-излучения, а также с наиболее интересными вопросами современной космологии. В книге рассказывается о новых методах познания Вселенной, об открытиях, сделанных в последние годы. Специальный раздел посвящен проблеме поиска разумной жизни во Вселенной. Для иллюстрации вопросов астрофизики авторы в ряде случаев прибегают к помощи научной фантастики. Под редакцией В, М. Чаругина.



Настроики
A

Фон текста:

  • Текст
  • Текст
  • Текст
  • Текст
  • Аа

    Roboto

  • Аа

    Garamond

  • Аа

    Fira Sans

  • Аа

    Times

Занимательная астрофизика (fb2) - Занимательная астрофизика 1103K скачать: (fb2) - (epub) - (mobi) - Виктор Ноевич Комаров - Борис Николаевич Пановкин

Виктор Ноевич Комаров, Борис Николаевич Пановкин Занимательная астрофизика

Предисловие

Настоящая книга не является систематическим изложением современной астрофизики — науки, цель которой — изучение физических процессов во Вселенной. Эта наука отличается разнообразием методов исследования, обилием теоретических изысканий, большим числом проблем, как решенных, так и требующих дальнейшего изучения. Она очень быстро развивается — чуть ли не каждый день приносит с собой новые факты, иногда совершенно неожиданные. Их осмысление требует от ученых немалых усилий.

Уже по этим причинам одна научно-популярная книга не в состоянии отразить все содержание современной астрофизики. Тем более что многие проблемы этой науки самым тесным образом связаны с весьма глубокими и сложными разделами современной физики. Авторы ставили перед собой более скромную задачу: представить в занимательном плане некоторые наиболее интересные вопросы, связанные с изучением физических явлений во Вселенной.

В то же время авторы всячески стремились избежать фрагментарности, добиться логической последовательности изложения.

С этой целью книга построена по следующему плану:

Глава I показывает расширение диапазона астрофизических исследований с освоением новых источников информации о космических процессах. Авторы знакомят читателя с тем, какие новые возможности открывает применение этих источников.

Глава II — это рассказ о конкретных открытиях, сделанных благодаря превращению астрономии из науки оптической в науку всеволновую.

Глава III посвящена теоретическим исследованиям в области строения и эволюции нашей Вселенной. Авторы ставили своей задачей показать, как теория, основанная на результатах наблюдений и проверяемая наблюдениями, постепенно раскрывает закономерности космических явлений, в том числе происходивших на ранних стадиях развития Вселенной, и заглядывает в ее все более отдаленное будущее…

Заключительный раздел этой главы посвящен некоторым аспектам одной из самых увлекательных проблем в современной науке о Вселенной — проблеме поиска разумной жизни во Вселенной и внеземных цивилизаций. Хотя проблема эта, разумеется, не чисто астрофизическая, но астрофизические данные составляют значительную часть ее научного фундамента.

Создавая книгу, авторы исходили из своего понимания занимательности. По нашему мнению, занимательным в науке являются не только поражающие воображение числа и впечатляющие сравнения, но и само содержание научных представлений об окружающем мире и прежде всего новые неожиданные факты, оригинальные гипотезы и теории, выявление неочевидных связей между, казалось бы, разнородными явлениями, осмысление привычного с необычных позиций, столкновение различных точек зрения, наконец, связь результатов научных исследований с практической деятельностью людей.

И, конечно, основополагающие научные проблемы и оригинальные идеи и методы, привлекаемые для их решения. Великий датский физик Нильс Бор говорил, что проблемы важнее решений; решения могут устареть, а проблемы остаются. А выдающийся советский физик-теоретик академик Л. Д. Ландау придавал первостепенное значение методам исследования. Метод важнее Открытия, утверждал Ландау, ибо правильный метод исследования обязательно рано или поздно приведет к новым еще более выдающимся открытиям.

Авторы решили также применить прием, который уже был использован в книге В. Н. Комарова «Новая занимательная астрономия», — включить в текст научную фантастику с соответствующими комментариями. Фантастика не только делает более зримыми отвлеченные научные идеи и тем самым способствует их более глубокому осмыслению, но и одушевляет эти идеи в художественной форме, раскрывает их связь с человеком. К сожалению, популярное изложение научных достижений и проблем обычно воспринимается читателем несколько отвлеченно. Между тем результаты научных исследований так или иначе влияют на нашу жизнь. В книгу включены два научно-фантастических рассказа, написанные В. Н. Комаровым. Эти рассказы отнюдь не являются беллетризованным изложением соответствующих проблем астрофизики. Их задача иная — дать возможность читателю ощутить значение этих проблем для людей.

Разделы «Они „слушают“ космос» и «Из разных точек» написаны Б. Н. Пановкиным. Раздел «Игра во внеземные цивилизации по научному» — совместно В. Н. Комаровым и Б. Н. Пановкиным. Остальные разделы — В. Н. Комаровым.

В заключение еще раз подчеркнем, что настоящая книга не является последовательным изложением современной астрофизики. Если воспользоваться аналогией с литературными произведениями, то ее можно сравнить ее с повестью, где обычно прослеживается одна сюжетная линия, а скорее с многоплановым романом. Хотя в романе много сюжетных разветвлений, у читателя после его прочтения должно сложиться отчетливое представление о событиях, в нем описанных.

Если читатели этой книги хотя бы в самых общих чертах представят себе, что такое современная астрофизика и какие проблемы ее волнуют, авторы сочтут свою задачу выполненной.

Авторы выражают глубокую благодарность члену-корреспонденту АН СССР Н. С. Кардашеву, доктору физико-.математических наук И. Д. Новикову, а также кандидату философских наук В. В. Казютинскому за полезные советы, которые были даны в процессе работы над книгой.

В Н. Комаров, Б. Н. Пановкин

Среда обитания — космос

Человек! Затерянный среди пустынь

Вселенной, один на маленьком куске

Земли, несущейся с неуловимой

быстротой куда-то в глубь безмерного

пространства, терзаемый мучительным

вопросом — «зачем он существует»,

он мужественно движется — вперед!

и выше — по пути к победам над всеми

тайнами Земли и неба…

Максим Горький

В 1963 г. было сделано одно из самых поразительных открытий XX века на очень больших расстояниях от Земли, у самых границ наблюдаемой Вселенной были обнаружены удивительные объекты, излучающие невиданные потоки энергии. В дальнейшем они получили название квазаров.

Комментируя это событие, известный советский астрофизик доктор физико-математических наук И. Д. Новиков заметил:

— Если бы до открытия квазаров нам описали их свойства, мы со всей уверенностью заявили бы, что подобные объекты в природе просто не могут существовать…

Открытие квазаров явилось неожиданностью, одним из тех поразительных сюрпризов, которые время от времени: преподносит нам бесконечно разнообразная Вселенная. Но само по себе появление подобных сюрпризов уже давно перестало быть неожиданностью. Наш век научно-технической революции требует от современного естествознания все более глубокого проникновения в тайны строения окружающего мира, познания наиболее фундаментальных свойств материи, в том числе и закономерностей Вселенной. И это не только внутренняя потребность саморазвития науки, но и задача, поставленная перед современным естествознанием всем ходом развития общества…

У известного американского ученого и писателя Айзека Азимова есть рассказ «Поющие колокольчики». Действие этого рассказа происходит в далеком будущем, когда полеты на другие небесные тела стали столь же обычным делом, как в наши дни поездка на автомобиле. Поющие колокольчики — особые куски лунной породы, издающие при ударе ни с чем не сравнимые чарующие музыкальные звуки. Эти уникальные произведения природы ценятся на Земле дороже золота и драгоценностей.

Главное действующее лицо рассказа Луис Пейтон тайком отправляется на Луну на антигравитационном корабле, чтобы попытаться отыскать тайник с поющими колокольчиками, которые украдкой собрал один лунный старатель.

Пробыв две недели на Луне, Пейтон находит клад, убивает своего спутника и возвращается на Землю. Убийство обнаруживают, и подозрение падает на Пейтона. Но он умело запутал следы и к тому же подготовил себе надежное алиби: убедительные доказательства того, что он за последнее время не покидал Землю.

По просьбе полиции за дело берется доктор Эрт. Подозреваемого Луиса Пейтона доставляют к нему. Доктор Эрт достает из своей коллекции поющий колокольчик и неожиданно бросает его сидящему в нескольких метрах Пейтону. Пейтон успевает поймать волшебную вещицу.

Не дав ему опомниться, Эрт приказывает:

— Бросьте его мне, мистер Пейтон. Скорее!

Машинально Луис Пейтон бросает колокольчик. Но бесценный комочек пемзы, не долетев до протянутой руки доктора Эрта, падает на пол и разбивается…

Эксперимент решает судьбу Пейтона. За две недели пребывания на Луне его мышцы привыкли к ослабленной силе тяжести и еще не успели вновь приспособиться к земному притяжению. Это — неопровержимое свидетельство того, что Пейтон покидал Землю и некоторое время находился на каком-то небесном теле, значительно уступающем по массе и размерам Земле…

Обживая космос, человек вступает в особый мир, где все непохоже на земное, где и окружающая обстановка и физические условия и даже характер движения всех предметов и самого человека иные, чем на Земле, — такова главная идея рассказа Азимова.

Идея, вполне соответствующая реальному положению вещей, в чем смогли убедиться наши космонавты, длительное время живущие и работающие на борту орбитальных станций, а также участники лунных экспедиций.

Таким образом, выход человека в космос, развитие космических полетов — это не просто величайшее достижение человеческого разума, науки и техники, это начало освоения человеком новой среды обитания! Точнее говоря, непосредственного освоения. Потому что, если задуматься, космос, Вселенная всегда были средой нашего обитания.

Как общественная формация человечество подчиняется своим особым специфическим закономерностям — законам общественного развития, открытым и исследованным Карлом Марксом, Фридрихом Энгельсом и Владимиром Ильичем Лениным.

Но с точки зрения естественных наук мы — часть Вселенной. И подчиняемся действующим во Вселенной физическим и другим закономерностям. Не только целый ряд условий нашей жизни, но и само существование земной цивилизации во многом зависят от того, что представляет собой наша Вселенная, как она развивается, какие физические законы в ней действуют, какие физические процессы протекают.

Конечно, прежде всего человек сталкивается с теми условиями, которые окружающего на Земле. Он не только обитает в этих условиях на протяжении тысячелетий, но все практические свершения человечества на протяжении очень долгого времени были ограничены чисто земными рамками. Однако в XX веке, в особенности во второй его половине, положение вещей существенно изменилось.

Конец 50-х годов ознаменовался величайшим событием в истории человечества — выходом в космос. Первый советский искусственный спутник Земли, выведенный на орбиту в октябре 1957 года, открыл людям путь во Вселенную. Столь грандиозное свершение, разумеется, не было простой случайностью — его подготовил весь предшествующий ход развития земной цивилизации…

На протяжении очень долгого времени астрономия была «лидером» естествознания. В частности, именно астрономические наблюдения послужили исходным фундаментом для открытия законов механики и закона всемирного тяготения, т. е. для построения основ современной науки о природе. В дальнейшем на первое место выдвинулась физика, создавшая в начале XX в. такие фундаментальные теории, имеющие принципиальное значение для познания окружающего мира, как теория относительности и квантовая механика.

Однако в последние десятилетия значение астрономических исследований вновь возросло. Несколько лет тому назад выдающийся советский физик академик Л. А. Арцимович выступил в печати со статьей, которую озаглавил: «Будущее принадлежит астрофизике». Почему же один из руководителей советской физики, известный физик-ядерщик, решил отдать предпочтение не физике, а астрономии?

Дело в том, что в нашу эпоху особенно важное значение приобретают фундаментальные научные исследования — изучение основополагающих, всеобъемлющих законов мироздания. От успешного развития фундаментальных исследований непосредственно зависит научно-технический прогресс. И прежде всего от фундаментальных исследований в области физики, познания наиболее глубоких закономерностей строения материи. Многое в этом направлении уже сделано, но, как справедливо заметил один древний мудрец, чем шире круг наших знаний, тем больше линия соприкосновения с неизвестным.

Однако на пути дальнейшего развития физических исследований лежат определенные трудности. Целый ряд явлений, которые можно было изучить в земных лабораториях, уже исследован, И для того, чтобы существенно продвинуться дальше, необходимо наблюдать материю в предельных, экстремальных состояниях. Температуры в сотни миллионов кельвинов. Давления в десятки миллионов атмосфер. Чудовищные плотности в сотни миллионов и миллиарды тонн в кубическом сантиметре. Огромные энергии, сравнимые с энергией взрыва термоядерного заряда с массой, равной массе десятков тысяч солнц. Космический вакуум.

Вот далеко не полный перечень тех условий и состояний, которые необходимы современному физику. Но ни в одной современной физической лаборатории воспроизвести подобные условия и состояния в полной мере, к сожалению, невозможно.

И все же лаборатория, где физические процессы, о которых идет речь, происходят, реально существует. Это — бесконечно разнообразная лаборатория Вселенной, созданная самой природой!

И нет ничего удивительного в том, что астрономические исследования позволили обнаружить целый ряд таких явлений, изучение которых не только расширило наши представления о космических процессах, но и внесло весьма существенный вклад в дальнейшее развитие физической науки.

В современной физике есть одно понятие, которое играет чрезвычайно важную роль в понимании окружающего нас мира. Это понятие энтропии. Дело в том, что в ходе различных природных процессов все виды энергии постепенно переходят в тепловую, а она рассеивается и теряет способность производить какую-либо работу — обесценивается. Рассеяние энергии ведет к затуханию физических процессов. Степень этого рассеяния и измеряется величиной энтропии. Во всех природных процессах энтропия накапливается, и ее значение является как бы мерой рассеяния энергии, ее омертвлениям.

В определенном смысле накоплению энтропии противостоит разумная деятельность человека, в ходе которой он создает маловероятные состояния, которые не могли бы сами собой появиться в результате течения природных процессов. Образно можно сказать, что вся практическая деятельность людей — это постоянная борьба с энтропией. И в этой борьбе чрезвычайно важную роль играет информация.

Чем более глубокой и разносторонней информацией; располагает человек, тем более сложные практические задачи может он решить. А значит, одной из важнейших проблем, стоящих перед человеком, является всемерное расширение той области природных явлений, откуда черпается информация об окружающем мире. И это одна из тех причин, которые обусловили необходимость дальнейшего развития астрофизических исследований.

Об астрономии написано немало. Однако лицо этой науки, особенно в последние годы, стремительно меняется. Классическая астрономия с ее определением положений и изучением движений небесных светил в значительной мере уступила место астрофизике. В свою очередь, буквально на наших глазах, значительные изменения претерпела и астрофизика. Если еще сравнительно недавно ее главной задачей было изучение физических характеристик космических объектов, определяющих их современное состояние, то сейчас на первый план выдвинулось исследование их истории, их предшествующих состояний, закономерностей их возникновения и развития. Астрофизика превратилась в эволюционную науку.

В какой-то мере необходимость подобного подхода явилась результатом осознания того фундаментального факта, что мы живем в изменяющейся Вселенной, прошлое которой отличается от ее современного состояния, а современное — от будущего. Знание эволюционных законов позволит человеку прогнозировать будущие состояния космических объектов и заранее выявлять возможные изменения космической среды, затрагивающие область непосредственного обитания земной цивилизации. А масштабы этой области по мере освоения космоса, судя по всему, будут расти.

Есть и еще одно обстоятельство, которое выдвигает астрофизику на самые передовые позиции. Когда люди осваивали земную среду своего обитания, свою собственную планету, то при этом огромную роль сыграл комплекс географических и геофизических наук.

С выходом человека в космос, с осознанием того, что средой нашего обитания по сути дела является вся наша Вселенная, необходима наука, которая исследовала бы состояние космической среды, те физические процессы, которые в ней протекают, те изменения, которые в ней происходят. Такой наукой и является астрофизика.

Таким образом, астрофизика не только способна питать новыми идеями, почерпнутыми в лаборатории Вселенной, физику и смежные с ней науки — в перспективе она должна стать теорией той среды, в которой со временем будет развертываться непосредственная практическая деятельность человечества.

Именно этими обстоятельствами и был обусловлен прогноз академика Арцимовича, который отвел астрофизике ведущее место в естествознании обозримого будущего.

Все это, вместе взятое, привлекает сегодня к науке о Вселенной особое внимание не только специалистов, но и самых широких кругов людей.

Глава I. От астрономии оптической к астрономии всеволновой

Научное оружие астрономов

Возможно, вам приходилось обращать внимание на одно любопытное обстоятельство. Когда в научных или серьезных научно-популярных изданиях появляются сообщения об открытии нового космического объекта или явления, они обычно излагаются в предположительной форме: «можно думать», «вероятно», «есть основания предполагать» и т. п. В чем дело? Не слишком ли ученые осторожны, не занимаются ли они своего рода перестраховкой?

Такова уж специфика работы исследователей Вселенной! Им нередко приходится сталкиваться с неопределенностями. Эти неопределенности возникают потому, что причины тех или иных наблюдаемых космических явлений могут быть в принципе истолкованы по-разному.

Конечно, с подобными ситуациями сталкиваются и физики, и химики, и биологи. Но астрономам проверить, какое объяснение ближе к истине, значительно сложнее. Это связано прежде всего с тем, что объекты, интересующие исследователей Вселенной, расположены на огромных удалениях от Земли.

Лишь в последние годы, благодаря применению космических аппаратов, появилась возможность доставлять измерительную аппаратуру непосредственно на поверхность Луны и ближайших планет Солнечной системы. Все же остальные космические объекты приходится изучать на расстоянии. Астрономия — наука дистанционная. Основным ее методом является исследование различных излучений, приходящих на Землю из космических глубин…

По вечерам многие занимают место у экранов телевизоров. Телевизионный приемник дает возможность увидеть события, происходящие в разных уголках планеты. Вас часто отделяют от передающих станций сотни и тысячи километров. Но ваши телевизионные приемники связаны с этими станциями невидимыми электромагнитными волнами. В специально преобразованном, как говорят физики, закодированном виде, они несут с собой «видеосигналы» и звуковое сопровождение: голос диктора, музыку, пение.

Электромагнитные волны могут быть носителями различной информации: телеграфных сигналов азбуки Морзе, звуков человеческой речи, музыки, изображений, команд управления на расстоянии приборами и механизмами или сообщений о показаниях измерительной аппаратуры, как это, например, имеет место при передаче научных сведений с искусственных спутников Земли и автоматических межпланетных станций.

Вложить информацию в электромагнитное излучение может не только человек — это делает и сама природа. Космические тела являются источниками всевозможных электромагнитных волн. Свойства этих волн тесно связаны с источниками излучения, с их природой и физическим состоянием, с протекающими на них процессами.

Но для того, чтобы воспользоваться этой богатейшей информацией, необходимо, во-первых, уловить и зарегистрировать интересующее нас космическое излучение, а во-вторых, разгадать тот код, с помощью которого природа зашифровала свои тайны…

Первым вестником космических миров был видимый свет. Однако свет — не единственный вестник Вселенной. Космическое пространство пронизано самыми различными излучениями и физическими полями. Это и электромагнитные волны и потоки элементарных частиц, магнитные и гравитационные поля. Они несут разнообразнейшую информацию о физических процессах в космосе.

Электромагнитные излучения в зависимости от длины волны обладают весьма разнообразными свойствами. Самые длинноволновые излучения — радиоволны. К ним примыкает более коротковолновый инфракрасный диапазон. Далее располагается видимый свет, а за ним ультрафиолетовое, рентгеновское и гамма-излучение.

Световые кванты обладают энергией от 2 до 3 электрон-вольт[1]). Энергия квантов инфракрасного излучения составляет десятые и сотые доли электронвольта, а субмиллиметровых радиоволн — сотые и тысячные доли.

Что же касается излучений более высокочастотных, чем видимый свет, то по мере увеличения частоты и соответственно уменьшения длины волны их энергия заметно возрастает. У квантов ультрафиолетового излучения она лежит в пределах от 10 эВ до 0,1 кэВ, а рентгеновского — от 0,1 кэВ до сотен кэВ. Энергией в сотни и более кэВ обладают кванты гамма-излучения. При этом различают гамма-кванты малых энергий от 0,1 МэВ до десятка МэВ, высоких энергий — до нескольких ГэВ и сверхвысоких энергий — вплоть до 1012 эВ и даже выше[2].

Рис. 1. Спектр электромагнитных волн.

Природа так устроила человека, что у него нет органов чувств, способных воспринимать (за исключением видимого света) все эти излучения и различные физические поля, И в этом, видимо, есть глубокий смысл. Вспомним хотя бы, какие неприятности доставляют нам всевозможные шумы, сопровождающие жизнь современного общества. А если бы мы воспринимали шумы не только звуковые, а магнитные, гравитационные, нейтринные и т. д. и т. п.? Наше существование, вероятно, превратилось бы в сплошной ад. Так что природа поступила мудро, оградив нас от подобных неприятностей. К тому же значительная часть космических излучений задерживается воздушной оболочкой Земли и до поверхности нашей планеты не доходит. На рис. 1 показано, до каких высот могут проникать различные излучения в земной атмосфере. Но знать, что несут с собой эти шумы и различные виды излучений, ученым просто необходимо. И когда во второй половине XX в. были созданы необходимые научно-технические предпосылки, исследователи Вселенной не преминули этим воспользоваться. Сперва возникла радиоастрономия, а с появлением космических аппаратов, способных выносить измерительные приборы за пределы плотных слоев земной атмосферы, астрономия стала стремительно превращаться во всеволновую науку. Неизмеримо расширились объем и разнообразие информации о космических явлениях. А это означало, что не за горами новые интересные открытия. И они не заставили долго себя ждать.

Астрономы «смотрят» на небо

Человек начал изучать Вселенную с того, что видел на небе. И на протяжении многих веков астрономия оставалась чисто оптической наукой.

Наш глаз — весьма совершенный оптический прибор, созданный природой. Он способен улавливать даже отдельные кванты света. С помощью зрения человек воспринимает более 80 % информации о внешнем мире. И все же возможности человеческого глаза во многом ограничены. Поэтому знания о Вселенной значительно расширились и углубились, когда на помощь глазу астронома-наблюдателя пришел телескоп, который и по сей день остается основным инструментом исследователей Вселенной.

Телескоп — прибор, собирающий свет далеких небесных тел. Чем больше площадь объектива телескопа, тем большее количество света он собирает. Даже простейший телескоп Галилея собирал в 144 раза больше света, чем глаз, а современные гигантские телескопы собирают света в сотни тысяч и миллионы раз больше нашего глаза. Самым крупным из них является созданный советскими учеными 6-метровый зеркальный телескоп Специальной астрофизической обсерватории (САО) АН СССР на Северном Кавказе.

Вторая функция телескопа состоит в том, что он позволяет различить мелкие детали изучаемых объектов или увидеть раздельно сливающиеся для глаза объекты. Чем меньше угловые размеры этих деталей (чем ближе друг к другу объекты), тем выше разрешающая способность данного инструмента.

Разрешающая способность оптического телескопа определяется отношением λ/D, где λ — длина волны принимаемого излучения, a D — диаметр входного отверстия инструмента.

Реальная же разрешающая способность значительно ниже теоретически возможной. Это объясняется тем, что вихревые движения в атмосфере, воздействуя на проходящие сквозь нее световые лучи, искажают изображение.

Вполне возможно, что телескопы недалекого будущего станут еще более крупными и диаметр их зеркал достигнет 10 метров. Обсуждается даже проект телескопа с 25-метровым зеркалом.

Однако существует еще один путь, который может оказаться и более эффективным и более экономичным. Дело в том, что современная электронно-вычислительная техника позволяет не только регистрировать сигналы, принимаемые оптическими телескопами, но и синтезировать такие сигналы от нескольких инструментов. Поэтому не исключено, что телескопостроители в будущем отдадут предпочтение не телескопам с гигантскими зеркалами, а многозеркальным системам, состоящим из нескольких инструментов с зеркалами средних размеров.

Но, пожалуй, самые большие надежды астрономы возлагают на орбитальные телескопы, которые предполагается выводить на космические орбиты, за пределы плотных слоев земной атмосферы. Такие инструменты будут обладать перед своими наземными собратьями по меньшей мере двумя ценнейшими преимуществами. Во-первых, орбитальным телескопическим наблюдениям не будет мешать атмосфера, размывающая изображения, а во-вторых, на космических высотах значительно снизится фон свечения ночного неба. Оба эти обстоятельства, вместе взятые, позволят наблюдать очень слабые оптические объекты, недоступные наземным обсерваториям.

Второй вестник Вселенной

В самом начале этой книги упоминалось об открытии, оказавшемся большой неожиданностью для исследователей Вселенной, — открытии квазаров. Спустя несколько лет автор этого открытия, малоизвестный до того голландский астроном М. Шмидт, работавший в США, с некоторой грустью говорил:

— Каждому ученому в жизни, в среднем, в лучшем случае удается совершить одно значительное открытие. Я свое уже совершил…

Многие историки науки склонны считать, что нередко в больших научных открытиях, особенно наблюдательных и экспериментальных, присутствует известный элемент везения. Определенный резон в подобных утверждениях, видимо, есть. Сами по себе открытия всегда неожиданны, иначе они не были бы открытиями. Но возникают они не на пустом месте: их подготавливает весь предшествующий ход развития науки и, прежде всего, совершенствование методов научных исследований. Открытия назревают! Если воспользоваться расхожим выражением — они носятся в воздухе. И тогда разыгрывается невидимая лотерея: кто первый? Хотя, разумеется, в отличие от обычных лотерей, здесь одного везения недостаточно — нужны наблюдательность, настойчивость, способность увидеть в обычном необычное, наконец, дерзость мысли, позволяющая сделать иногда весьма неожиданные выводы. Сто человек могут располагать всей необходимой для открытия информацией, но девяносто девять из них пройдут мимо…

Шмидту тоже в известной степени повезло. Повезло в том, что конец 50-х и начало 60-х годов стали периодом бурного расцвета радиоастрономии. Исследователи Вселенной интенсивно осваивали новый канал для получения информации о космических процессах. Радионаблюдения не только помогли обнаружить во Вселенной неизвестные ранее явления — они указали на удивительные свойства некоторых уже известных по оптическим наблюдениям космических объектов, до этого считавшихся обычными и потому не привлекавших внимание астрономов.

Таковы были обстоятельства, предопределившие возможность открытия квазаров. Мало обладать теми или иными способностями. Надо еще чтобы время подготовило необходимые условия для их успешного применения. Вот что скрывается за «фасадом» везения в науке…

Но почему радионаблюдения Вселенной не проводились раньше? Ведь в земной атмосфере наряду с «оптическим окном прозрачности» существует и «радиоокно».

Использовать это окно очень долгое время не удавалось, потому что космическое радиоизлучение по сравнению со световыми лучами несет с собой ничтожную энергию. И уловить его можно лишь при помощи чрезвычайно чувствительных приемников радиоволн. Однажды в обсерватории Кембриджского университета в Англии была организована выставка, посвященная радиоастрономии. Одним из экспонатов этой выставки служил обыкновенный стол, на котором лежала кипа бумажных листков. Посетителям предлагалось взять один из листков. Сделав это, он мог прочитать на нем следующие слова: «Взяв со стола эту бумажку, вы затратили больше энергии, чем радиотелескопы всего мира приняли за всю историю радиоастрономии».

Впервые радиосигналы космического происхождения были приняты еще в 1931 г. американским инженером К. Янским. Они шли из области Млечного Пути. Однако для дальнейшего развития радиоастрономии требовались соответствующие технические средства. А в начале 30-х годов таких средств не было. Они появились только в следующем десятилетии.

После окончания второй мировой войны радиоастрономмия стала бурно развиваться. И в этом нет ничего удивительного, потому что радиоволны в качестве «вестника космических миров» обладают целым рядом замечательных свойств. Так, они могут свободно проникать сквозь пыль, облака, межзвездную среду — там, где видимый свет пройти не может. Благодаря этому космические радиоволны позволили ученым заглянуть в самые потаенные уголки Вселенной, недоступные обычным телескопам.

Но, пожалуй, самое главное состоит в том, что радиоволны приносят сведения о бурных физических процессах, протекающих в космосе. Именно благодаря радионаблюдениям были открыты так называемые нестационарные явления, во многом изменившие наши представления о Вселенной.

Уже давно было известно, что любой космический объект, — будь то галактика, звезда, планета или туманность, — если только его температура выше абсолютного нуля, должен излучать электромагнитные волны — так называемое тепловое радиоизлучение. Это излучение порождается тепловым движением частиц излучающего тела.

Интенсивность теплового излучения различна в разных участках спектра в зависимости от степени нагретости тела — его температуры. Распределение излучаемой нагретым телом энергии по всему электромагнитному спектру характеризуется функцией Планка, отражающей зависимость интенсивности излучения от длины волны тел, нагретых до определенной температуры. Из сравнения кривых Планка для тел с разной температурой видно, что с уменьшением температуры тела падает общая интенсивность излучения, а максимум интенсивности смещается в сторону более длинных волн. Раскаленные тела излучают много света и тепла, но энергия излучения в радиодиапазоне у них невелика. Слабо нагретые тела, например, живые организмы, излучают главным образом в инфракрасной области. Поэтому живые существа, в том числе человек, являются весьма маломощными «радиостанциями», их радиоизлучение может быть обнаружено только с помощью высокочувствительных лабораторных радиоприемных устройств…

Одна из заманчивых особенностей исследований, проводимых в лаборатории Вселенной, — возможность обнаружения большого числа непредсказуемых эффектов, т. е. таких явлений, которые нельзя было предвидеть путем логических выводов на основе существующего знания. В этом отношении современная астрономия значительно опережает другие естественные науки. Именно такая «неожиданность» и произошла при изучении Крабовидной туманности, расположенной в созвездии Тельца. В 1949 г. радиоастрономы обнаружили, что Крабовидная туманность является чрезвычайно мощным источником нетеплового радиоизлучения. Изучение этого явления привело ученых к открытию очень важного механизма, порождающего электромагнитное излучение многих космических объектов.

Согласно законам физики, заряженные частицы, в том числе электроны, в магнитном поле должны двигаться вдоль направления поля по винтовым траекториям, как бы накручиваясь на магнитные силовые линии. Можно сказать, что под воздействием внешнего магнитного поля траектория движения электрона искривляется в соответствии с хорошо известным каждому школьнику правилом левой руки. И чем больше напряженность магнитного поля, тем меньше радиус витка такой спирали. А частица, движущаяся по криволинейной траектории, должна отдавать свою энергию в виде электромагнитного излучения.

Это явление было давно предсказано теоретически, а затем экспериментально наблюдалось в специальных установках — ускорителях частиц — синхротронах и бетатронах. По названию одной из этих установок подобный механизм излучения получил название синхротронного.

Энергия синхротронного излучения распределяется по длинам волн неравномерно. Положение ее максимума на шкале электромагнитных волн зависит от энергии частицы и напряженности магнитного поля. Электроны, разгоняемые в синхротронах и бетатронах до скорости, близкой к световой (такие электроны называются релятивистскими), начинают интенсивно светиться («светящийся» электрон). При тех условиях, которые создаются в земных лабораторных установках, максимум излучения этих релятивистских электронов лежит в оптической части спектра. Такое излучение обладает целым рядом интересных особенностей. Оно сосредоточено в узком конусе, направленном в сторону движения электрона. Чем больше скорость, а следовательно, и энергия электрона, тем этот конус уже, излучение сосредоточено в более остром угле. Релятивистский электрон является как бы микроскопическим, направленно излучающим прожектором.

Межзвездные магнитные поля очень слабы; их напряженность не превышает сотых долей эрстеда. Поэтому радиус витка спирали космического релятивистского электрона, движущегося в таком поле, очень велик, и максимум энергии соответствующего синхротронного излучения попадает в область радиоволн метрового диапазона. Таким образом, в условиях межзвездного пространства релятивистские электроны — это уже не маленькие прожекторы, а крошечные остронаправленные радиоантенны. Совокупное движение релятивистских электронов в Галактике, сопровождающееся радиоизлучением, образует, например, одну из составляющих галактического фона излучения.

Роль синхротронного механизма нетеплового радиоизлучения в космосе, теоретически исследованного главным образом советскими учеными, очень велика. Многие объекты Вселенной, где протекают активные физические процессы, являются источниками энергичных релятивистских частиц, которые, попадая в магнитные поля, порождают интенсивное радиоизлучение.

Они «слушают» космос

Освоение радиодиапазона потребовало от астрономов и создания соответствующей приемной аппаратуры. Появились специальные устройства для улавливания и регистрации космических радиоволн — радиотелескопы.

Устройство антенны радиотелескопа в принципе не отличается от устройства отражающего зеркала оптического телескопа-рефлектора, только «радиозеркало» не стеклянное, а металлическое. Как известно, при шлифовке зеркал, предназначенных для собирания света, требуется колоссальная точность. Так, например, теоретически допустимое отклонение от рассчитанной формы для зеркала шестиметрового телескопа составляет всего лишь одну двадцатую долю микрометра. Это объясняется тем, что электромагнитные волны чувствительны к неоднородностям, размеры которых сравнимы с длиной их волны. Поэтому для очень коротких волн, а именно таковы световые лучи, требования, к отражающей поверхности весьма жестки.

Иное дело радиоволны, длина которых значительно больше. При обработке зеркал, которые должны собирать такие волны, — антенн радиотелескопов — вполне можно удовлетвориться и значительно меньшей точностью. Поэтому антенны современных радиотелескопов обладают намного большими размерами, чем зеркала телескопов оптических.

Иногда радиотелескопы строят с неподвижными антеннами, направленными в определенный участок неба. Но, благодаря суточному вращению Земли, через этот участок за 24 часа проходит целая полоса небесной сферы.

Хотя создавать телескопы с неподвижными антеннами и проще, у таких инструментов есть определенные недостатки. С их помощью за сутки можно «просмотреть» лишь узкую полоску неба, в которую заведомо не попадет большая часть радиоисточников, интересующих наблюдателя. Но и те радиоисточники, которые окажутся в этой полоске, будут находиться в зоне приема всего какую-нибудь минуту. А этого явно недостаточно.

Более широкими возможностями обладают радиотелескопы с полноповоротными антеннами, которые можно направлять в любую точку небесной сферы, расположенную в данный момент над горизонтом, и вращать вслед за ее суточным перемещением по небу.

Принцип работы радиотелескопа довольно прост. Электромагнитное излучение, приходящее из космоса, отражается от поверхности приемного «зеркала» радиотелескопа и собирается в его фокусе. В этом месте находится непосредственный «съемник энергии» сфокусированных радиоволн — облучатель: антенна небольших размеров типа хорошо всем знакомого телевизионного приемного диполя.

Но аппаратура для регистрации принятых сигналов достаточно сложна. Она должна обладать очень высокой чувствительностью и создавать минимальные «шумы», мешающие приему слабых сигналов. При ее конструировании используются новейшие достижения радиоэлектроники.

Из разных точек

Как уже было отмечено выше, одна из главных задач наблюдательной астрономии — всемерное повышение разрешающей способности инструментов, с помощью которых ведутся наблюдения космических объектов. В этом отношении радиоастрономия на протяжении длительного времени значительно отставала от своей старшей сестры — астрономии оптической.

Из уже знакомой нам формулы, определяющей значение разрешающей способности для данного инструмента и принимаемого излучения, следует, что чем короче длина волны этого излучения, тем легче добиться более высокой степени разрешения.

Разрешающая способность большого оптического телескопа при благоприятных условиях наблюдения — меньше одной секунды дуги. Но поскольку длина световых волн составляет миллионные доли сантиметра, а радиоволн — сантиметры и метры, для получения такого же разрешения с помощью радиотелескопов потребовались бы колоссальные приемные антенны поперечником в сотни километров.

Между тем для изучения структуры космических радиоисточников необходимы гораздо большие разрешения, вплоть до десятых и тысячных долей секунды, а возможно, и еще более высокие.

Рис. 2. Схема радиоинтерферометра.

Чтобы увеличить разрешающую способность радиотелескопов, наблюдения космического объекта ведутся одновременно двумя инструментами, расположенными на большом расстоянии друг от друга. При таких наблюдениях радиоастрономами используется явление интерференции электромагнитных волн.

Наиболее простым радиоастрономическим прибором, работающим на этом принципе, является двухантенный радиоинтерферометр, представляющий собой систему двух радиотелескопов (рис. 2). Сигналы, принятые обеими антеннами, передаются на общее приемное устройство, где они подвергаются совместной обработке и сравнению. Наблюдения на радиоинтерферометре позволяют получать результаты, эквивалентные радионаблюдениям с помощью одной антенны очень больших размеров.

Разрешающая способность радиоинтерферометра возрастает с увеличением его базы, т. е. расстояния, на которое разнесены его антенны.

В современной радиоастрономии применяются не только двухантенные, но и многоантенные интерферометры. Они представляют собой цепочку или несколько параллельных цепочек антенн. Например, в Нью-Мексико (США) построена большая антенная решетка, состоящая из 27 связанных между собой антенн с поперечником 25 метров каждая.

Еще одна остроумная идея, получившая применение в современной радиоастрономии, состоит в том, чтобы одну из антенн двухантенного интерферометра сделать подвижной. Это дает возможность в процессе наблюдений менять длину базы интерферометра. Получается ряд наблюдений, которые после соответствующей обработки («суммирования») дают такой, же результат, который достигается с помощью цепочки неподвижных антенн того же размера.

В тех случаях, когда радиотелескопы, работающие совместно, находятся на очень больших расстояниях друг от друга, говорят о радиоинтерферометрии со сверхдлинными базами.

Подобные системы эквивалентны применению сверхгигантских сплошных антенн диаметром в тысячи и более километров. Однако при этом возникает чисто техническая трудность, связанная с передачей сигналов от каждой из антенн на общее приемное устройство. Антенны интерферометров со сравнительно малыми базами соединяются кабелем, проводящим высокочастотные колебания. При больших базах подобный способ неприменим. Дело в том, что сигналы при прохождении по кабелю, даже самому высококачественному, сильно затухают, ослабляются. Кроме того, кабели очень тяжелы, хрупки и дороги. Поэтому о проводном соединении антенн, находящихся на больших расстояниях друг от друга, не стоит и мечтать.

Ученые нашли выход из положения: при радиоастрономических наблюдениях со сверхдлинными базами сигналы, принятые каждым инструментом, записываются на магнитную ленту, а затем доставляются в одно место и синтезируются с помощью ЭВМ.

Осенью 1969 г. советскими и американскими астрономами были проведены совместные радиоинтерференционные исследования компактных внегалактических объектов. Были использованы 22-метровый радиотелескоп Крымской обсерватории в Симеизе и расположенный на расстоянии около 8 тыс. км от него 42-метровый радиотелескоп Национальной радиоастрономической обсерватории США в Грин-Бэнк.

Разрешающая способность этой системы составила 5·10-4 секунды дуги. Чтобы представить себе наглядно, что это значит, достаточно сказать, что под таким углом видна из Симеиза обычная канцелярская кнопка, находящаяся в Грин-Бэнк. Это намного больше того разрешения, которое способны обеспечить самые крупные современные оптические телескопы!

Применение радиоинтерферометров со сверхдлинными базами позволило довести разрешающую способность радиоприемных систем до одной десятитысячной секунды дуги, что примерно в 10 тысяч раз превосходит разрешающую способность оптических телескопов.

Если бы такой разрешающей способностью обладал обычный оптический телескоп, то с его помощью можно было бы разглядеть 10-копеечную монету на расстоянии 4 тыс. км.

Если же говорить не об угловых, а о реальных пространственных размерах тех наиболее «мелких» деталей различных астрономических объектов, которые можно выделять с помощью подобных радиотелескопических систем, то для объектов, расположенных на расстоянии 300 млн. световых лет[3]) от Земли — это примерно один световой год, а на расстоянии квазаров — 100 световых лет.

Однако при создании радиоинтерферометров со сверхдлинными базами ученые ограничены естественными масштабами земного шара. Для еще большего увеличения базы необходимо по крайней мере одну из антенн вынести в космос.

Как известно, первый опыт создания космического радиотелескопа — КРТ-10 («Космический радиотелескоп с поперечником антенны 10 м») был осуществлен на советской орбитальной станции «Салют-6».

Вполне реальными представляются и проекты создания внеземных интерферометров, где одна из антенн будет расположена, например, на поверхности Луны, а другая на Земле или искусственном спутнике. По мнению многих специалистов, возможности интерферометрии со сверхдлинными базами при дальнейшем совершенствовании измерительной техники принесут наиболее интересные результаты в радиоастрономии обозримого будущего.

По соседству со светом

В «промежутке» между видимым светом и радиоволнами «заключено» инфракрасное излучение, с длинами волн от 0,74 мкм до 1–2 мм. Источниками этого излучения являются тела, обладающие температурой от 20 до 5000 кельвинов.

Таким образом, подавляющее большинство космических объектов являются источниками излучения в инфракрасном диапазоне. К примеру, около 50 % солнечного излучения приходится на инфракрасную область.

Особенно ценную информацию инфракрасное излучение несет о таких космических объектах, которые не удается наблюдать в других диапазонах электромагнитных волн, в частности, о холодных звездах.

Еще одно важное достоинство инфракрасного излучения состоит в том, что оно хорошо проходит сквозь межзвездную среду, т. е. пыль и газ, заполняющие межзвездное пространство. Поэтому в инфракрасном диапазоне можно получать изображения таких космических объектов, которые нельзя наблюдать с помощью обычных оптических телескопов. Именно таким путем советскими астрофизиками было, впервые получено изображение ядра Галактики — центральной части нашей звездной системы.

В земной атмосфере есть небольшое «окно прозрачности», расположенное в инфракрасном диапазоне. Воздушная оболочка нашей планеты пропускает излучение с длинами волн от 8 до 13 мкм. Но все же основная часть инфракрасных космических излучений атмосферой, задерживается, и поэтому подлинное развитие инфракрасной астрономии началось тогда, когда появились технические средства, способные выносить измерительную аппаратуру на большую высоту за пределы плотных слоев земной атмосферы.

Исследования в инфракрасном диапазоне позволили получить весьма ценные сведения, пополнившие наши знания об атмосферах планет Солнечной системы, о свойствах лунной поверхности, о пылевых туманностях, а также о многих других космических объектах…

Весьма интересное открытие было сделано в 1983 г. международным спутником «ИРАС», предназначенным для исследования космического инфракрасного излучения. Вокруг Веги — одной из самых близких к нам звезд, расстояние до которой составляет всего около 27 световых лет, было зарегистрировано «кольцо» вещества, излучающего в инфракрасном диапазоне. Видимо, это означает, что вокруг Веги обращается рой холодных частиц — пылинок и более крупных тел. А возможно, Вега обладает и планетами.

В пользу такого предположения говорит и еще одно обстоятельство. Звезды типа Веги обладают очень быстрым вращением вокруг собственных осей. Сама же Вега вращается весьма медленно.

Есть веские основания предполагать, что в процессе формирования планет звезда каким-то образом передает им основную часть своего «„запаса“ вращения» или более точно — момента количества движения. Например, в Солнечной системе подавляющая часть момента количества движения приходится на долю планет и лишь весьма незначительная на долю Солнца.

Если вывод о наличии планетной системы (возможно, в стадии формирования) у Веги подтвердится, это будет иметь огромное значение для планетной космогонии. До сих пор мы изучали нашу Солнечную систему в единственном экземпляре — ее не с чем было сравнивать. Не исключено, что теперь такой объект для сравнения, наконец, появился. И, может быть, не один. Тот факт, что мы обнаружили нечто подобное планетной системе возле одной из ближайших к нам звезд, говорит о том, что подобные объекты, по всей вероятности, достаточно широко распространены во Вселенной.

Продолжая наше путешествие по электромагнитному спектру, мы теперь переберемся в ту его область, которая примыкает к видимому свету со стороны коротких волн. Это — область ультрафиолетового излучения с длинами волн от 4000 до 100 ангстрем[4].

Главным «поставщиком» ультрафиолетового излучения, приходящего на Землю, является Солнце. На ультрафиолетовый диапазон приходится около десятой доли энергии, излучаемой нашим дневным светилом. Среди других космических объектов основными источниками ультрафиолетового излучения являются горячие звезды.

Сквозь земную атмосферу проникает лишь очень небольшая доля ультрафиолетового излучения. Излучения с длинами волн меньшими, чем 3000 А, почти полностью поглощаются озоном, а также азотом и другими газами.

Астрофизика высоких энергий

Перейдем в область еще более коротковолновых излучений и более высоких энергий. Это — рентгеновский диапазон электромагнитных волн.

Какие же физические процессы могут порождать космическое рентгеновское излучение и тем самым о каких явлениях во Вселенной оно может рассказать?

Как мы уже знаем, кванты рентгеновского излучения обладают очень большой энергией. Поэтому и физические процессы, его порождающие, должны отличаться высокой энергией. Одним из подобных процессов является излучение очень горячей разреженной плазмы. В такой плазме быстро движущиеся свободные электроны, тормозясь в электрическом поле протонов, излучают электромагнитные кванты (тормозное излучение). Расчеты показывают, что при температуре плазмы от 10 до 500 млн. кельвинов (К) генерируется рентгеновское излучение с длиной волны от 1 до 10А. Таков, например, механизм рентгеновского излучения солнечной короны — горячей разреженной внешней оболочки нашего дневного светила.

Но возможны и другие механизмы возбуждения рентгеновского излучения, не связанные с высокими температурами. Об одном из них мы уже говорили. Это синхротронное или, как его иногда называют, магнитотормозное излучение.

Наконец, в тех областях Вселенной, где имеется достаточно много быстрых электронов и квантов электромагнитного излучения, может действовать механизм, получивший название обратного комптон-эффекта. Обычный комптон-эффект наблюдается при взаимодействии рентгеновского фотона с неподвижным электроном. Фотон передает электрону часть своей энергии, электрон приходит в движение, а вместо прежнего фотона возникает новый с меньшей частотой.

Обратный же эффект возникает тогда, когда большей энергией обладает не фотон, а электрон. В результате такого взаимодействия дополнительную энергию получает уже не электрон, а фотон. Происходит рождение рентгеновских фотонов. Исследования, проводившиеся с помощью космических аппаратов, показали, что основными источниками рентгеновского космического излучения являются объекты, обладающие очень высокой температурой — порядка миллионов и десятков миллионов кельвинов.

В частности, рентгеновское космическое излучение рождается в двойных системах (парах звезд, обращающихся вокруг общего центра масс), одним из компонентов которых является нейтронная звезда. В такой системе нейтронная звезда, обладающая чрезвычайно мощным полем тяготения, становится, по образному выражению академика Я. Б. Зельдовича, своеобразным «пылесосом». Она «всасывает» вещество соседней «нормальной» звезды, разгоняя при этом ее частицы до огромных скоростей, достигающих 0,4 скорости света. Как показывают теоретические расчеты, под воздействием магнитного поля нейтронной звезды поток газа устремляется струями в те области, где расположены ее магнитные полюса. При ударе частиц о поверхность нейтронной звезды их кинетическая энергия переходит в тепловую, и в этих областях развивается высокая температура, достаточная для генерирования рентгеновского излучения.

Рис. 3. Последовательность вспышек быстрого барстера.

Иногда в подобных системах наблюдаются весьма сильные «всплески» рентгеновского излучения, когда в течение нескольких секунд рентгеновская яркость источника возрастает в десятки раз (рис. 3).

По-видимому, это явление связано с ядерными реакциями, происходящими в поступающем на нейтронную звезду веществе. Это вещество, богатое водородом, растекается по поверхности нейтронной звезды, и в нем протекает медленная реакция синтеза гелия. При накоплении некоторой критической массы гелия возникают новые ядерные реакции, при которых гелий превращается в углерод, кислород и железо. Эти реакции происходят за доли секунды и сопровождаются резким повышением температуры, порождающим вспышку рентгеновского излучения.

В настоящее время подобных «вспыхивающих» нейтронных звезд — их иногда называют «барстерами» — известно уже более 30. Любопытно, что наблюдение этого явления позволило уточнить величину радиуса нейтронных звезд. Его значение оказалось в пределах от 8 до 12 км.

Рентгеновское излучение может возникать и в двойных системах, где одним из компонентов является еще более компактный объект, чем нейтронная звезда, — черная дыра. Подробнее об этих объектах речь пойдет впереди, а сейчас заметим, что в двойной системе с черной дырой перетекающее от нормальной звезды вещество может образовать вокруг черной дыры горячий плазменный диск, который будет излучать в рентгеновском диапазоне.

С тесными двойными звездами отождествлен ряд компактных рентгеновских источников как в нашей Галактике, так и в ее спутниках — Большом и Малом Магеллановых Облаках.

В рентгеновском диапазоне излучают также расширяющиеся газовые оболочки сверхновых звезд, с огромной скоростью рассеивающиеся в космическом пространства.

Когда чувствительность рентгеновских приемников, устанавливаемых на искусственных спутниках Земли, была значительно увеличена и появилась возможность регистрировать картину распределения рентгеновского излучения протяженных объектов, удалось обнаружить рентгеновское излучение ряда нормальных галактик и изучить его распределение. По-видимому, рентгеновское излучение таких галактик, так же как и нашей Галактики, в основном обязано рентгеновским двойным звездам.

С помощью той же аппаратуры были обнаружены излучающие в рентгеновском диапазоне газовые короны вокруг нашей Галактики и Магеллановых Облаков. Такие короны также вносят вклад в рентгеновское излучение нормальных галактик.

Мощным рентгеновским излучением обладают квазары. Так, например, у квазара ЗС 273 рентгеновская светимость достигает 2·1039 Вт. Кстати, наблюдения в рентгеновском диапазоне помогают обнаруживать эти удивительные объекты. Дело в том, Что на обычных фотографиях квазары выглядят точно так — же, как обыкновенные звезды. Однако их рентгеновское излучение по своей интенсивности намного превосходит рентгеновское излучение звезд. Поэтому на изображениях тех же участков звездного неба, полученных с помощью рентгеновских телескопов, квазары отчетливо выделяются.

Весьма интересным рентгеновским источником является разреженный межгалактический газ, заполняющий пространство между галактиками в скоплениях этих звездных систем. В рентгеновском диапазоне скопления межгалактического газа выглядят как протяженные туманности.

Как выяснилось, электроны межгалактического газа взаимодействуют с реликтовым излучением. (Реликтовое излучение — это электромагнитное излучение, возникшее на ранней стадии эволюции нашей Вселенной.) Поэтому, сопоставляя данные наблюдений в рентгеновском и радиодиапазоне, можно определить не только угловые, но и абсолютные размеры рентгеновских туманностей. А если нам известны истинные и угловые размеры какого-либо удаленного объекта, то вычисление расстояния, до него представляет собой простую тригонометрическую задачу.

Таким образом, облака межгалактического газа могут в принципе послужить своеобразными эталонами для определения расстояний до очень далеких космических объектов. Решение этой задачи имело бы огромное значение для ответа на целый ряд фундаментальных вопросов, связанных с проблемами строения и эволюции Вселенной.

Поскольку возбуждение рентгеновского космического излучения связано либо с очень высокой температурой газа, порядка десятков миллионов кельвинов, либо с воздействием нетепловых частиц, обладающих большими энергиями, рентгеновская астрономия открыла новую страницу в изучении физических процессов во Вселенной. Она позволила приступить к исследованию космического вещества, находящегося в экстремальных условиях. До появления рентгеновской астрономии такие исследования были невозможны.

Можно не сомневаться в том, что в области рентгеновской астрономии нас еще ждут интереснейшие новые открытия. Многое в поведении рентгеновских космических источников пока остается непонятным. Так, например, в 1983 г. советским искусственным спутником «Астрон», а также европейским «Экзосат» и японским «Темма» было зарегистрировано неожиданное прекращение рентгеновского сигнала от источника Геркулес Х-1. Природа этого удивительного явления пока что остается совершенно неясной.

По достигнутым результатам и количеству полученной информации рентгеновская астрономия в настоящее время может быть приравнена к оптической и радиоастрономии.

Чрезвычайно важные данные о физических процессах в космосе были получены в последние годы также благодаря развитию гамма-астрономии. Впервые с гамма-излучением физики столкнулись при исследовании явления радиоактивности. Хорошо известен классический опыт, когда источник радиоактивного излучения помещают в магнитное поле. Под воздействием этого поля радиоактивное излучение разделяется на три составляющие: альфа-, бета- и гамма-лучи (рис. 4). Альфа- и бета-лучи — это потоки заряженных частиц: ядер гелия и электронов, поэтому они отклоняются магнитным полем. Гамма-лучи своего направления не меняют. Они представляют собой, как мы уже знаем, коротковолновое высокочастотное электромагнитное излучение. Энергия гамма-квантов может в сотни тысяч и миллионы раз превосходить энергию фотонов видимого света. Для таких гамма-квантов Вселенная фактически прозрачна. Они распространяются практически прямолинейно, приходят к нам от весьма удаленных объектов и могут сообщить весьма ценные сведения о различных космических явлениях.

Рис. 4. α-, β- и γ-излучение.

Проделаем мысленный эксперимент. Попробуем представить себе, как выглядит земное небо в гамма-лучах. Чтобы ответить на поставленный вопрос, необходимо выяснить, каковы источники космического гамма-излучения. Это, прежде всего, диффузный фон гамма-излучения нашей Галактики. Светится вся полоса Млечного Пути. Особенно интенсивное излучение приходит из района галактического центра. В противоположном направлении гамма-излучение в несколько раз слабее. Кроме галактического к нам равномерно со всех сторон приходит внегалактическое гамма-излучение. На фоне этих излучений выделяется несколько десятков отдельных обособленных дискретных источников — своеобразных гамма-звезд; некоторые из них обладают переменным, пульсирующим характером. Наконец, время от времени на небе возникают очень яркие вспышки гамма-излучения.

Какие же физические процессы скрываются за всеми этими явлениями, какие события во Вселенной могут порождать гамма-фотоны? Одним из них может, служить столкновение ядерных частиц, при котором образуются так называемые нейтральные пи-мезоны (нейтральные пионы). Нейтральные пи-мезоны — недолговечные частицы — в среднем через 10-16 с они распадаются на два гамма-фотона. Пионы рождаются также при аннигиляции электрона и позитрона и протона и антипротона.

Пионы, образующиеся в результате взаимодействия протонов и атомных ядер космических лучей с межзвездным газом, являются основным источником гамма-излучения в области энергий более 100 МэВ.

Еще один физический процесс, способный генерировать гамма-фотоны, — слияние протона с нейтроном, в результате которого образуется ядро дейтерия — тяжелого водорода.

Космическое гамма-излучение, подобно рентгеновскому, может возникать и благодаря уже знакомому нам обратному комптон-эффекту, и в результате тормозного излучения электронов. Наконец, излучение в гамма-диапазоне может генерировать и синхротронный механизм.

Все эти явления тесно связаны с различными космическими процессами, и поэтому их наблюдение и изучение может многое рассказать о физике Вселенной.

Взгляд в завтрашний день

До сих пор мы знакомились только с электромагнитными носителями космической информации. Однако, как уже было отмечено выше, вестниками космических процессов могут служить и корпускулярные излучения, потоки частиц.

Прежде всего это космические лучи — потоки заряженных частиц — ядер атомов различных химических элементов, пронизывающие космическое пространство и обладающие огромными кинетическими энергиями — от 108 эВ и больше. Это в десятки тысяч раз больше, чем энергии теплового движения частиц в самых горячих объектах Вселенной.

Следовательно, своим возникновением космические лучи обязаны каким-то мощным физическим, процессам, изучение которых представляет для современной астрофизики особый интерес. Это могут быть, например, так называемые вспышки сверхновых звезд, а также активные физические процессы в ядрах звездных систем (галактик) и в квазарах.

Интересным носителем космической информации являются и элементарные частицы — нейтрино. Эти частицы рождаются при радиоактивном бета-распаде, когда ядро одного химического элемента испускает электрон и превращается в ядро другого химического элемента.

Нейтрино не имеет электрического заряда и чрезвычайно слабо взаимодействует с веществом. Точнее говоря, оно участвует только в так называемых слабых физических взаимодействиях, не вступая ни в 1012 раз более сильные электромагнитные взаимодействия, ни в ядерные взаимодействия, которые еще в сотни раз мощнее. Именно за эти свойства нейтрино и заслужило свое наименование — его предложил знаменитый итальянский физик Энрико Ферми: по-итальянски «нейтрино» означает сразу «маленький» и «нейтральный».

Длина свободного пробега нейтрино в веществе колоссальна: она исчисляется миллионами миллиардов километров. Чтобы полностью заэкранироваться от частиц космических лучей самых высоких энергий, достаточно опуститься в глубь Земли на сотни метров, максимум на несколько километров. А для полной защиты от потока нейтрино нужно было бы расположить один за другим 10 млрд. земных шаров или поставить свинцовую плиту толщиной в несколько триллионов километров.

Нейтрино должны в большом количестве рождаться в ходе термоядерных реакций, являющихся источником энергии Солнца и звезд. Свободно пронизывая толщу звездного вещества, они вылетают в космическое пространство и несут ценнейшую информацию о физических процессах, протекающих в звездных недрах. В сущности, современная астрофизика не знает другого способа, который позволял бы получать прямые сведения об этих процессах.

Как считают теоретики, на последней стадии жизни массивных звезд, когда «умирающая» звезда катастрофически сжимается и превращается либо в нейтронную звезду, либо в черную дыру, могут происходить кратковременные нейтринные вспышки, наблюдение которых дало бы бесценную информацию о заключительных стадиях существования этих небесных тел.

Возможно также, что нейтрино высоких энергий могут рождаться в различных уголках Вселенной в результате каких-либо чрезвычайно мощных физических процессов. Надо ли говорить, какой огромный интерес представляли бы сведения о подобных явлениях.

Но, пожалуй, наиболее увлекательна перспектива зарегистрировать реликтовые нейтрино, родившиеся на самых ранних стадиях существования нашей Вселенной.

Разумеется, регистрация нейтрино — задача технически чрезвычайно сложная. Но пути к ее решению существуют, необходимая аппаратура разрабатывается, ее возможности растут, и можно не сомневаться, что нейтринная астрофизика уже в недалеком будущем значительно раздвинет рамки наших представлений о физике Вселенной.

Еще один весьма перспективный и многообещающий вестник Вселенной — гипотетические гравитационные волны, существование которых предсказывается общей теорией относительности А. Эйнштейна.

Подобно тому как возмущения электрического и магнитного полей приводят к возникновению электромагнитных волн, возмущения гравитационного поля должны в принципе возбуждать гравитационные волны.

Гравитационные волны как бы отрываются от массивных объектов и распространяются в пространстве, неся с собой энергию и импульс. Однако зарегистрировать гравитационные волны чрезвычайно сложно, так как они почти не поглощаются материей.

Более десяти лет назад американский физик Д. Вебер сообщил о том, что ему удалось зарегистрировать гравитационные волны, идущие из космоса. Однако вскоре выяснилось, что радость была преждевременной. Какие именно сигналы регистрировали установки Вебера, до сих пор неясно, но нет сомнений в том, что это были не гравитационные волны: для их обнаружения чувствительность детекторов Вебера была явно недостаточна.

Но хотя гравитационные волны пока зарегистрировать не удалось, большинство ученых не сомневается в том, что они существуют. А если так, то о каких космических явлениях способны они рассказать? Их могут порождать двойные системы, а также столкновения звезд. По-видимому, они могут возникать и при вспышках сверхновых звезд, и при катастрофическом сжатии вещества под действием собственного тяготения. Кроме того, гравитационные волны могут принести чрезвычайно интересные сведения о рассеянии материи космическими объектами, о динамике многих других космических процессов.

Глава II. Сюрпризы Вселенной

Видимый космос

В предыдущей главе мы познакомились с различными носителями информации о космических явлениях — носителями, регистрация и исследование которых позволяют астрономам изучать космические объекты и космические процессы.

Мы выяснили также, что каждый из этих носителей порождается вполне определенными физическими процессами. Поэтому нет ничего удивительного в том, что «оптическая Вселенная» непохожа на «радиовселенную», а «радиовселенная», скажем, на «рентгеновскую». Как образно заметил один известный советский физик, вид нашей Галактики в рентгеновском излучении отличается от ее «оптического образа» не менее чем рентгеновский снимок Брижжит Бардо от ее цветной фотографии.

Но если так, то из этого следует, что освоение каждого нового вестника Вселенной обязательно должно приносить новые факты — информацию о неизвестных ранее свойствах уже известных объектов и явлениях до этого вообще неизвестных.

Начнем, однако, с оптического диапазона, освоение которого заложило фундамент наших знаний о Вселенной. Как выглядит Вселенная в видимом свете?

Основными структурными единицами Вселенной являются «звездные острова» — галактики, подобные нашей. Одна из них находится в созвездии Андромеды. Это — гигантская галактика, похожая по своему строению на нашу и состоящая из сотен миллиардов звезд. Свет от нее до Земли идет 2 млн. лет.

Галактика Андромеды вместе с нашей Галактикой и еще несколькими галактиками меньшей массы образуют так называемую Местную группу. Некоторые из звездных систем этой группы, в том числе Большое и Малое Магеллановы Облака, галактики в созвездиях Скульптора, Малой Медведицы, Дракона, Ориона, являются спутниками нашей Галактики. Вместе с ней они обращаются вокруг общего центра масс.

Местная группа со скоростью, равной нескольким сотням километров в секунду, движется по направлению к еще одному скоплению галактик в созвездии Девы.

Скопление в Деве является центром еще более гигантской системы звездных островов — Сверхскопления галактик, которое включает в себя и Местную группу вместе с нашей Галактикой.

Согласно наблюдательным данным, сверхскопления включают в себя свыше 90 % всех (Существующих галактик и занимают около 10 % всего объема пространства нашей Вселенной. Сверхскопления обладают массами порядка 1015 масс Солнца.

Современным средствам астрономических исследований доступна колоссальная область пространства радиусом около 10–12 млрд. световых лет. В этой области, по современным оценкам, расположено 1010 галактик. Их совокупность получила название Метагалактики.

По своему внешнему виду галактики разделяются на три основных типа: эллиптические, спиральные и неправильной формы.

Эллиптические галактики различаются по степени сжатия. Они могут быть как шаровыми, так и достаточно сильно «сплюснутыми».

Что же касается спиральных галактик, то они различаются по характеру строения спиральных ветвей. В основной плоскости спиральных галактик, как правило, присутствуют темные массы поглощающей материи. На основе многочисленных наблюдений в настоящее время установлено, что спиральные галактики состоят из двух компонентов — сфероидального и диска. Если диск отсутствует, такая галактика принадлежит к числу эллиптических.

Неправильные галактики лишены определенной формы, они несимметричны и обычно не имеют ядер.

Кроме того, следует выделить так называемые взаимодействующие — галактики, детальное исследование которых было проведено советским астрономом проф. Б. А. Воронцовым-Вельяминовым.

Существуют также переходные формы между эллиптическими и спиральными звездными системами.

Возможно, что галактики окружены своеобразными «коронами», состоящими из слабосветящихся, а потому невидимых звезд. Если подобное предположение подтвердится, то это будет означать, что реальная масса «звёздных островов» примерно в 10 раз больше, чем та, что определена по их светящейся части.

Внешние формы галактик в определенной степени отражают характер происходящих в них физических процессов. Поэтому классификация звездных систем представляет большой научный интерес. Она не только позволяет выяснить состав «населения» нашей Вселенной, но и понять пути эволюции звездных систем.

В 1922 г. советский математик А. А. Фридман, анализируя уравнения общей теории относительности Эйнштейна, пришел к выводу, что Вселенная не может находиться в стационарном состоянии — она должна либо расширяться, либо пульсировать.

В дальнейшем выводы Фридмана получили подтверждение в астрономических наблюдениях, обнаруживших в спектрах галактик так называемое красное смещение спектральных линий, что соответствует взаимному удалению этих звездных систем.

Поскольку все галактики от нас удаляются, невольно складывается впечатление, что наша Галактика находится в центре расширения, в неподвижной центральной точке расширяющейся Вселенной. В действительности же мы имеем дело с одной из астрономических иллюзий. Расширение Вселенной происходит таким образом, что в нем нет «преимущественной» неподвижной точки. Какие бы две галактики мы ни выбрали, расстояние между ними с течением времени будет возрастать. А это значит, что на какой бы из галактик ни оказался наблюдатель, он также увидит картину разбегания звездных островов, аналогичную той, какую видим и мы.

Итак, мы живем в нестационарной, расширяющейся Вселенной, которая изменяется со временем и прошлое которой нетождественно ее современному состоянию, а современное — будущему.

«Соты» Вселенной

Наблюдая с помощью все более совершенных телескопов все более далекие космические объекты, мы не только проникаем все дальше в глубины мирового пространства, но и получаем возможность изучать ранние стадии эволюции Вселенной. Ведь чем дальше от нас находится тот или иной космический объект, тем больше времени затрачивают световые лучи, чтобы преодолеть расстояние, отделяющее его от Земли, и, следовательно, в тем более отдаленное прошлое мы заглядываем.

Но далекое прошлое проявляет себя и в современных состояниях космических объектов и их систем. Эти состояния — как бы «следы минувшего». Их изучение — ключ к познанию истории нашей Вселенной.

В современной астрофизике существует несколько гипотез или, как сейчас стало модно говорить, «сценариев» происхождения галактик. Один из них можно назвать сценарием фрагментации. Его разрабатывает группа советских ученых под руководством академика Я. Б. Зельдовича. Согласно этому сценарию, звездные острова сформировались в результате существования неоднородностей плотности, возникших на одной из ранних стадий эволюции Вселенной, когда еще не было ни звезд, ни галактик, а среда представляла собой нейтральную смесь водорода и гелия, достаточно равномерно распределенную в пространстве. Тем не менее в различных точках плотность среды могла несколько различаться. Возникшие на еще более ранней стадии расширения, когда во Вселенной доминировало излучение, а плазма была ионизована, небольшие возмущения плотности теперь стали расти. Как считает группа Я. Б. Зельдовича, сперва эти возмущения представляли собой плоские волны очень большой длины. Под действием сил тяготения гребни этих волн становились все круче и круче, вследствие чего возникали плоские и плотные газовые образования дискообразной форумы.

Газ в трехмерном пространстве можно сжать в любом из трех взаимно перпендикулярных направлений. Однако в природе одновременное сжатие газа вдоль трех или даже двух осей — явление маловероятное. Как правило, в каждом элементарном объеме имеется одно преимущественное направление сжатия.

В результате такого сжатия должны были образоваться тонкие плотные слои, которые в шутку назвали «блинами» (рис. 5). Это были первые обособленные объекты Вселенной. С течением времени внутри «блинов» складывались условия для рождения галактик и звезд. Сначала формировались сверхскопления галактик, потом они дробились на галактики и шаровые звездные скопления. Этим сценарий фрагментации отличается от другого сценария — сценария скучивания, сторонники которого полагают, что сперва возникали шаровые скопления, которые затем объединялись в галактики, а те, в свою очередь, — в скопления галактик и сверхскопления. Какой из этих сценариев ближе к действительности? Математические расчеты расчетами, но ответ могут дать только наблюдения. Только они, в конечном счете, могут либо подтвердить выводы теоретиков, либо их опровергнуть.

Что же предсказывает гипотеза фрагментации? Из нее следовало, что вне «блинов», в пространстве между ними, газ был настолько сильно разрежен, что в таких областях галактики формироваться не могли. Для этого потребовалось бы время, превосходящее продолжительность существования Вселенной. А отсюда следовал довольно неожиданный вывод: в процессе увеличения размеров «блинов» и их взаимных пересечений должна была образоваться сложная «пористая» структура, состоящая из ячеек, по стенкам которых сконцентрированы галактики. А во внутренних областях этих ячеек галактик быть не должно. (Иногда эти области образно называют «черными областями».)

Рис. 5. Моделирование возникновения «блинов» на ЭВМ. «Блины» видны с ребра в виде полос, вдоль которых концентрируются частицы.

Однако осуществить наблюдательную проверку этого предсказания далеко не так просто, как может показаться на первый взгляд.

Представим себе на минуту, что о нашего земного неба исчезли все звезды нашей Галактики, и мы невооруженным глазом можем наблюдать далекие «звездные острова». Мы обнаружим, что в одних местах их больше, в других меньше, хотя в общем галактики заполняют все небо. Но это картина, которую мы наблюдаем в проекции на небесную сферу.

А какие «узоры» образуют галактики в пространстве? Чтобы ответить на этот вопрос, т. е. составить представление о пространственном распределении звездных островов, необходимо знать расстояния до каждого из них. Но определение расстояний до отдельных галактик — задача очень сложная. Обычно она решается путем измерения величины красного смещения в спектрах этих звездных систем. Мы уже говорили о том, что наша Вселенная расширяется, что галактики удаляются друг от друга. Но если источник светового излучения от нас удаляется, то возникает так называемый эффект Доплера — смещение спектральных линий к красному концу спектра, пропорциональное скорости удаления (в случае приближения источника света линии в спектре смещаются к фиолетовому концу).

В 1929 г. американский астроном Э. Хаббл показал, что красное смещение галактик возрастает с увеличением расстояния до этих объектов. Чем дальше от нас находится та или иная галактика, тем быстрее она удаляется. Оказалось, что эта зависимость носит линейный характер, т. е. значение одной величины прямо пропорционально значению другой,

VR = HR, (1)

где R — расстояние до наблюдаемого объекта, a VR — скорость удаления галактики, находящейся на расстоянии R. Коэффициент пропорциональности Н получил название постоянной Хаббла.

Зная доплеровское красное смещение того или иного внегалактического объекта, можно определить его скорость VR,

где с — скорость света, λ — фактически наблюдаемая длина волны, а λ0 — длина волны той же спектральной линии, излучаемой неподвижным источником.

Таким образом, если нам известно значение постоянной Хаббла, то, определив скорость удаления интересующего нас внегалактического объекта по формуле (2), мы можем по формуле (1) вычислить расстояние до нею.

Выражение

которое входит в формулу (2), обозначается буквой z,

Приравнивая правые части формул (1) и (3), получим для z,

Таким образом, в первом приближении величина z прямо пропорциональна расстоянию до внегалактического объекта и скорости его удаления. (Заметим, кстати, что в первом приближении z значительно меньше единицы, поскольку VR значительно меньше с).

Таким образом, чем больше г, тем дальше от нас находится тот или иной внегалактический объект и тем быстрее он удаляется.

Но точное измерение расстояний до галактик по красному смещению, т. е. с помощью постоянной Хаббла, требует весьма сложных наблюдений. Поэтому те данные, которыми располагали на этот счет астрономы, долгое время не отличались точностью. А неточные наблюдения — это бич естественных наук, ибо на основе неточных наблюдений легко можно сделать ошибочные выводы. Как говорил академик Л. А. Арцимович, нет ничего хуже неточных наблюдений, подтверждающих неточную теорию…

В середине 60-х годов наиболее далекому объекту, обнаруженному астрономами, соответствовало z = 0,46. Однако в последние годы совершенствование методов астрономических наблюдений позволило измерять красное смещение для чрезвычайно слабых оптических объектов и благодаря этому приступить к поиску еще более далеких галактик. Для этой цели применялась современная электронная аппаратура.

Было использовано то обстоятельство, что существуют галактики g очень яркими линиями излучения — эмиссионными линиями, которые удается обнаруживать раньше, чем остальной спектр. Таким методом было зарегистрировано свыше 10 галактик, для которых Δλ/λ0 больше, чем 0,5. Четыре из этих галактик оказались наиболее далекими. Это объекты ЗС 13 (z=1,050), ЗС 356 (z=,079), ЗС 368 (z=1,132) и ЗС 4271 (z=1,175)…

В 1977 г. эстонские астрономы — группа под руководством члена-корреспондента АН ЭССР Я. Э. Эйнасто — установили, что в созвездии Персея есть большая область, свободная от галактик («черная область»).

В настоящее время, с помощью новейших методов астрономических наблюдений, оценены расстояния примерно до 10 тысяч галактик. Это позволяет воспроизвести картину их распределения уже не только на небесной сфере, но и в трехмерном пространстве. Статистическая обработка полученных данных позволила обнаружить несколько достаточно больших областей, внутри которых галактики практически отсутствуют.

Выяснилось, что галактики в сверхскоплениях действительно образуют своеобразные «сети» в виде дуг, перемычек и стенок гигантских ячеек, напоминающих пчелиные соты. Протяженность каждой стороны такой ячейки — порядка 100 млн. световых лет.

В частности, американские астрономы сообщили о том, что им удалось обнаружить свободную от звезд и галактик область с поперечником около 300 млн. световых лет. Они изучали распределение звездных островов вдоль трех, близко расположенных прямых линий, направленных в глубины Вселенной. В результате такого зондирования обнаружилось, что по избранным направлениям в промежутке между «отметками» 240 и 360 мегапарсеков[5]) (соответственно около 500 млн. и 800 млн. световых лет) находится одна-единственная галактика. Наоборот, вблизи указанных «отметок» галактики расположены достаточно густо. Ориентировочный объем открытой учеными полости составляет около 1 млн. кубических мегапарсеков или 3·1064 см3.

Открытие сетевой структуры сверхскоплений галактик, если ее повсеместный характер подтвердится дальнейшими наблюдениями, имеет чрезвычайно важное значение для понимания особенностей строения и эволюции нашей Вселенной.

Дело в том, что сетевая структура неустойчива. Это, возможно, и служит причиной того, что систем более высокого порядка, чем сверхскопления, в нашей Вселенной не существует. Не исключено, что именно поэтому иерархия звездных систем обрывается на сверхскоплениях. Устойчивыми образованиями наиболее крупного масштаба являются скопления галактик. Правда, в современной Вселенной существует и следующая ступень иерархии — сверхскопления галактик. Но они рассеиваются и представляют собой временную фазу пространственного распределения звездных систем.

По-видимому, это говорит о том, что мы живем на некоем промежуточном этапе эволюции нашей Вселенной, этапе не слишком молодом, но и не слишком старом, когда структуре Вселенной еще предстоит измениться весьма существенным образом. По некоторым оценкам продолжительность этапа эволюции, на протяжении которого сохраняется сетевая структура в распределении галактик, — порядка 10 млрд. лет.

С другой стороны, сетевая структура сверхскоплений галактик как-то возникла. Она сформировалась из какого-то предшествующего состояния, которое, в свою очередь, тоже образовалось не на «пустом месте». Эта «цепочка» последовательных состояний, в конце концов, приведет нас к тому отдаленному этапу эволюции нашей Вселенной, когда складывались «зародыши» будущих космических объектов и их систем, которые составляют структуру современной Вселенной. Иными словами, сетевая структура сверхскоплений галактик отражает определенные начальные условия, которые и привели к подобному положению вещей. Какие? Возможно, ответ на этот вопрос сможет дать теория «блинов».

Правда, между этой теорией и наблюдаемой сетевой структурой обнаружились и некоторые несоответствия. Дело в том, что во всех обнаруженных полостях встречаются так называемые галактики Маркаряна — активные галактики с избыточным ультрафиолетовым излучением[6]). Между тем с точки зрения «блинной» теории должны существовать и полости, которые заполняет только ионизованный газ, но нет условий для образования галактик.

Таким образом, соотношение между «блинной» теорией и наблюдениями оказывается достаточно сложным. С одной стороны, теория предсказывает существование сетевой структуры, а с другой — не все ее выводы подтверждаются наблюдениями, а некоторые факты даже вступают с нею и в противоречия.

Но, вообще говоря, было бы трудно ожидать, чтобы сравнительно молодая теория, описывающая столь сложный процесс, как формирование галактик, к тому же процесс, удаленный от нас во времени на миллиарды лет, не стал иным излучением космической среды. На этом фоне выделяются отдельные дискретные источники — это второй класс космических «радиостанций».

Одним из важнейших открытий астрономии второй половины XX в., значительно расширившим наши представления о Вселенной, было обнаружение внегалактических источников радиоизлучения — радиогалактик. Большинство внегалактических радиообъектов составляют звездные системы, подобные нашей, — их называют нормальными галактиками. Радиоизлучение ближайших нормальных галактик (в частности, знаменитой галактики в Андромеде) имеет такие же свойства, как и радиоизлучение нашего звездного острова.

Однако есть галактики, которые резко отличаются от нормальных своим исключительно мощным радиоизлучением. Они излучают в радиодианазоне в сотни и даже миллионы раз больше энергии, чем нормальные. Один из самых известных объектов такого рода — радиоисточник в созвездии Лебедя. Подобные галактики и получили название радиогалактик. Поток радиоизлучения от галактики в Лебеде, принимаемый на Земле, такой же, как и от одного из самых интенсивных галактических радиоисточников — остатка сверхновой в Кассиопее. Но при этом расстояние до источника в Лебеде в 50 000 раз больше.

Как выяснилось, излучение радиогалактик, подобно радиоизлучению Крабовидной туманности, имеет синхротронную природу. Но если в Крабовидной туманности электроны приобрели околосветовые скорости в результате взрыва сверхновой звезды, то какие источники энергии работают в радиогалактиках? Источники, способные поддерживать их мощное радиоизлучение на протяжении многих миллионов лет?

Сейчас уже мало кто сомневается в том, что таким источником являются очень мощные физические процессы, протекающие в центральных частях радиогалактик — их ядрах.

Среди космических радиостанций особое внимание привлекают к себе уже известные нам квазары. В настоящее время зарегистрировано свыше 1500 квазаров. Внешне, для неспециалиста, квазары — довольно невзрачные объекты. На чувствительных астрономических фотопластинках они выглядят как крошечные звездообразные объекты (рис. 7). Однако астрономы были поражены, когда выяснилось, что эти объекты находятся от нас на огромных расстояниях — в миллиарды световых лет.

Одним из самых близких к нам квазаров является квазар ЗС 273[7]). Именно этот квазар и был открыт первым. Но даже он находится от нас на столь большом расстоянии, что мы наблюдаем его таким, каким он был несколько миллиардов лет назад. Одиночная звезда при таком удалении наблюдаться не может.

Рис. 7. Квазар ЗС 273. Справа вверху — «выброс».

Исходя из этого, можно заключить, что энерговыделение квазаров огромно. Светимость всей нашей Галактики составляет около 1037 Вт. У квазаров она на несколько порядков выше! А общее количество энергии, выделяемой квазарами, оценивается в 1054 Дж. Это в 10 триллионов раз больше, чем выделило Солнце за все время своего существования. Такого количества энергии вполне достаточно, чтобы поддерживать наблюдаемое энерговыделение квазаров на протяжении сотен тысяч лет.

К этому следует добавить, что оптическое излучение многих, квазаров является переменным. И в максимуме оно может достигать фантастической величины. Так, например, квазар ЗС 279 несколько десятков лет тому назад обладал светимостью, в 10 тысяч раз превосходящей светимость нашей Галактики! Когда же были определены размеры компактных, радиоисточников, связанных с квазарами, астрономы удивились еще больше. Выяснилось, что эти объекты гораздо меньше даже одиночных галактик. Их диаметры не превышают одного светового года. Напомним, что поперечник нашей Галактики — около 100 тыс. световых лет.

Тем не менее имеются серьезные основания предполагать, что квазары и галактики эволюционно связаны. Во всяком случае есть одно очень весомое соображение в пользу того, что квазары — объекты, которые характерны для более ранних стадий истории нашей астрономической Вселенной, чем галактики. В самом деле, все квазары находятся от нас на огромных расстояниях в миллиарды световых лет. Следовательно мы видим их такими, какими они были много миллиардов лет назад. На этом основании можно сделать вывод, что квазары — образования, которые были характерны для Вселенной много миллиардов лет тому назад и не свойственны ее современному состоянию.

Однако, по вопросу о характере связи между квазарами и ядрами галактик существуют две точки зрения. Согласно одной из них, в центре галактики, в совокупности большого количества звезд и газа образуется сравнительно не-1 большое (размером 1016-1017 см), но гигантское по масса (порядка 108-109 масс Солнца) ядро. Если галактика медленно вращается, то формирование такого ядра представляется довольно естественным: газ и звезды как бы «стекают» в «потенциальную яму», т. е. в ограниченную область, расположенную в центральной части галактики, в которой потенциальная энергия частиц меньше, чем вне ее. С точки зрения подобной гипотезы колоссальная светимость квазаров объясняется выделением при гравитационном сжатии огромного количества энергии.

Согласно другой гипотезе, квазары могут быть ранней стадией эволюции звездных систем — «голыми ядрами» еще не родившихся активных галактик. Они образовались раньше, чем галактики, и уже затем «обрастали» звездами.

Космические выбросы

Астрономические наблюдения в радиодиапазоне, проведенные в последние годы с помощью радиоинтерферометров, позволили значительно уточнить наши представления о характере активных процессов, происходящих в центральных частях некоторых галактик.

Как выяснилось, эта активность в очень многих случаях проявляется в форме узких выбросов плазмы — ионизованного газа, исходящих из центра галактики и являющихся источниками радиоизлучения.

Еще при изучении радиогалактики в созвездии Лебедя (радиоисточник Лебедь А) было установлено, что источником ее радиоизлучения является не сама эта галактика, а две диффузные области, расположенные по обе ее стороны.

В дальнейшем оказалось, что такую же двойную структуру имеет и большинство известных нам внегалактических источников радиоизлучения (см. рис. 6).

Рис. 8. Выброс в галактике NGC 4486 в созвездии Девы.

Протяженность выбросов может быть весьма велика. Так, например, в галактике М 87 (NGC 4486) протяженность выброса в проекции на плоскость, перпендикулярную лучу зрения, составляет около 5 тыс. световых лет (радиоисточник Дева А — рис. 8). Как показывают наблюдения и теоретические исследования, яркое оптическое излучение этого выброса порождается релятивистскими электронами, движущимися в магнитных полях со скоростями, близкими к скорости света. Таким образом, и это излучение имеет синхротронную природу. Очевидно, в ядре галактики М 87 происходят какие-то мощные физические процессы, сопровождающиеся выделением огромного количества энергии.

Иногда выбросы вытягиваются на расстояние до миллиона световых лет, заканчиваясь в своеобразных округлых, протяженных «радиооблаках», расположенных за пределами изображения галактики, наблюдаемого в оптическом диапазоне (рис. 9). В таких радиооблаках заключена колоссальная энергия — до 1063 Дж и даже выше. Чтобы оценить количество этой энергии, достаточно сказать, что для ее выделения пришлось бы полностью превратить в излучение массу десятков и даже сотен миллионов звезд.

А у галактики NGC 6251, расположенной от нас на расстоянии 300 млн. световых лет, выброс тянется на 4 млн. световых лет.

Рис. 9. Зеркально симметричные выбросы в галактике ЗС 449.

Высказывается предположение, что радиоизлучающая субстанция выбрасывается из ядра радиогалактики в двух диаметрально противоположных направлениях вдоль оси вращения ядра. Особого внимания заслуживает тот факт, что выброшенное вещество на протяжении многих миллионов лет не рассеивается. Видимо, это объясняется тем, что сгустки выброшенной намагниченной плазмы проходят со сверхзвуковой скоростью через межгалактическую среду. Поэтому расширение сгустка за счет внутреннего давления происходит лишь до тех пор, пока это давление не будет уравновешено внешним давлением. При этом внутреннее давление складывается из обычного газового давления, пропорционального температуре, и плотности сгустка, магнитного давления и давления космических лучей, а внешнее равно половине произведения плотности окружающей среды ρcp на квадрат скорости Vсг движения сгустка:

Однако после того, как движение сгустков оказывается заторможенным внешней средой, они постепенно начинают рассеиваться.

Вообще же семейство космических выбросов довольно разнообразно. Они бывают мощными и мелкомасштабными, двойными и односторонними, прямолинейными и искривленными, зеркально-симметричными и обладающими обращенной симметрией (т. е. изгибу в одну сторону у одного из выбросов соответствует изгиб в противоположную сторону у другого).

Из числа известных в настоящее время двойных радиоисточников более 70 имеют крупномасштабные выбросы. И вот что особенно любопытно: как правило, такие выбросы наблюдаются у слабых двойных радиоисточников. В какой-то мере это, возможно, связано с условиями наблюдения. Дело в том, что большинство мощных радиоисточников — это объекты сравнительно молодой Вселенной, и поэтому находятся на столь больших расстояниях от нас, что связанные с ними выбросы трудно обнаружить.

Но дело, по-видимому, не только в этом. Возможно, явление, о котором, идет речь, связано с различной ориентацией магнитных полей в слабых и сильных выбросах. Однако эта проблема требует дальнейшего исследования.

Что же представляют собой космические выбросы? Какова их физическая природа? Имеющиеся в распоряжении современных астрономов данные говорят о том, что это струи газа, которые, подобно струям воды из шланга, выбрасываются из центра галактики. Они пронизывают межзвездную, а затем и межгалактическую среду, неся с собой массу, энергию, импульс и магнитный поток. Преодолевая сопротивление среды., головная часть выброса постепенно теряет скорость и движется медленнее, чем газ в средней его части. Благодаря этому в головной части выброса накапливается энергия.

Не исключено, что движение газа в выбросах происходит со сверхзвуковой скоростью. В этом случае должна возникать ударная волна, которая распространяется по поперечному сечению выброса. Когда газ проходит через фронт этой волны, кинетическая энергия его движения переходит в энергию магнитного поля — и энергию движения электронов, которые разгоняются до околосветовых скоростей. Благодаря этому складываются благоприятные условия для генерации синхротронного радиоизлучения. При этом наибольшей интенсивности оно достигает как раз в местах торможения выброса. В этих местах возникают так называемые горячие пятна.

Испытав торможение, вещество выброса поворачивает вспять и растекается в большие облака, унося с собой релятивистские электроны и силовые линии магнитного поля.

Основываясь на результатах наблюдений, астрономы пришли к выводу, что в горячих пятнах газ с электронами и магнитным полем находится от десяти тысяч до миллиона лет — срок по космическим масштабам сравнительно небольшой. А в облаках этот срок достигает ста миллионов лет. За это время в них накапливается чудовищная энергия. Например, в источнике Лебедь А она эквивалентна полной энергии, заключенной в массе ста миллионов звезд.

У некоторых галактик в радиодиапазоне интенсивно излучает центральная часть звездной системы — ядро. Вокруг такой компактной области может располагаться гало — гигантский радиоореол. А если наряду с компактным источником в центре имеются и «боковые» радиокомпоненты, то мы наблюдаем тройной радиоисточник на небе. В настоящее время методы радиоинтерферометрии позволяют с необыкновенной точностью исследовать структуру многих внегалактических радиоисточников.

Примером источника с весьма сложной структурой является космическая «радиостанция» в созвездии Персея. У этого источника очень маленькое компактное «радиоядро», окруженное «оболочкой» сравнительно небольших размеров. Эти детали в свою очередь погружены в более протяженную радиоизлучающую область — гало, которое охватывает еще две соседние небольшие радиогалактики. Предполагается, что возникновение столь сложной структуры связано о тем, что основная активная галактика, которая является ядром радиоисточника, движется с высокой скоростью через плотный межгалактический газ в скоплении галактик. Выброшенное активной галактикой вещество дробится по мере того, как оно «пробивается» через межгалактическую среду.

С помощью радиоинтерферометров удалось установить, что ядра радиоисточников — это не какие-то однородные образования: они обладают внутренней структурой, имеют определенные детали. К сожалению, размеры этих деталей настолько невелики, что для их выявления нужны были бы радиоинтерферометры с разрешающей способностью до нескольких тысячных долей секунды дуги.

Любопытно, что у горячих пятен, о которых говорилось выше, какие-либо мелкомасштабные детали отсутствуют.

И наблюдатели и теоретики много работают над тем, чтобы объяснить явления, происходящие в выбросах, определенными физическими причинами. Но главное — поиски ответа на вопрос о том, какие физические процессы порождают выделение колоссальных количеств энергии в ядрах активных галактик и квазарах, в частности, порождают выбросы и на протяжении длительного времени питают их все новыми и новыми порциями газа. Это одна из фундаментальных проблем современной астрофизики.

У наиболее мощных радиоисточников интенсивность выбросов настолько велика, что для их поддержания ежегодно требуется энергия, эквивалентная энергии, которая выделилась бы при полном превращении в излучение массы нескольких звезд.

Если иметь в виду обычные эволюционные процессы, происходящие в галактиках, то они, по-видимому, способны обеспечить не более десятой части этой энергии.

Поэтому приходится предположить, что процессы, ответственные за возникновение выбросов, связаны с какими-то необычными физическими явлениями.

По мнению члена-корреспондента АН СССР И. С. Шкловского активные процессы «порождаются какими-то особенностями (сингулярностями) в ядрах галактик. Выяснение природы этих сингулярностей — одна из важнейших, пока еще окончательно не решенных проблем современной астрофизики»[8]).

Есть веские основания предполагать, что физические процессы, порождающие выбросы, происходят в сравнительно небольших областях размером всего в несколько световых лет. Например, было замечено, что некоторые из наиболее активных источников космического радиоизлучения изо дня в день изменяют свою оптическую яркость. Но это значит, что поперечник такого источника должен быть сравнительно небольшим — не больше того расстояния, на которое физический процесс может распространиться в течение суток. Если учесть, что максимальная скорость такого распространения — это скорость света, то получается, что поперечник источника радиоизлучения весьма невелик.

В настоящее время большинство ученых считают, что основными источниками грандиозных физических процессов, происходящих в активных ядрах галактик и квазарах, являются компактные массивные тела с поперечником не более-0,1 светового года. Таковы, например, размеры компактного объекта, расположенного в ядре галактики М 87. Его масса — около 6 млрд. солнечных масс. Аналогичный объект с массой в несколько миллиардов солнечных масс обнаружен и в радиогалактике NGC6251.

Возможно, что на такое тело происходит натекание газа. В результате вокруг компактного объекта образуется вращающийся намагниченный газовый диск. Дальнейшее падение струй вещества на такой диск приводит к его разогреву до очень высокой температуры, выбрасыванию сгустков плазмы и релятивистских частиц. Если эта модель справедлива, то источником энергии квазаров и ядер галактик является энергия взаимодействия плазмы и компактных массивных образований, расположенных внутри этих объектов.

Что же касается физической природы подобных образований, то она все еще остается неясной. К этому вопросу мы еще вернемся.

Другим возможным механизмом, способным обеспечивать «подпитывание» космических выбросов, является «всасывание» одной из галактик вещества соседней, менее массивной галактики. Явление это получило название «каннибализма». Галактика-«каннибал» уничтожает соседнюю галактику-«миссионера». О возможности существования подобного процесса говорят наблюдения галактик с двойными ядрами.

Вообще замечено, что далекие радиогалактики, как правило, объединяются друг с другом. Не говорит ли это о том, что развитие в центральных частях галактик активных и физических процессов, порождающих радиоизлучение, есть в какой-то мере результат взаимодействия соседних звездных, систем?

В самом деле, как показывают статистические подсчеты, вероятность того, что та или иная галактика может оказаться источником радиоизлучения, значительно возрастает, когда мы обращаемся к более ранним этапам эволюции Вселенной. Например, для Вселенной, вчетверо более молодой, чем современная, эта вероятность в 1000 раз выше. Но ведь в прошлом галактики были расположены ближе друг к другу.

В заключение заметим, что сравнительно недавно в центральной области нашей Галактики был обнаружен точечный радиоисточник неизвестной природы с очень высокой радиосветимостью. Не исключена возможность, что этот источник связан с каким-то массивным компактным объектом в ядре. Правда, такое предположение пока что не получило подтверждения в радиоастрономических наблюдениях. Однако следует иметь в виду, что интерпретация результатов астрономических наблюдений, в особенности наблюдений за пределами оптического диапазона электромагнитных волн, всегда обладает некоторой степенью неопределенности. Это связано прежде всего с тем, что в принципе различные физические процессы могут порождать электромагнитные излучения с приблизительно одинаковыми свойствами. Возможны и другие причины, ведущие к неоднозначности в истолковании астрономических данных.

Это заставляет с определенной осторожностью относиться к выводам, сделанным на основе, скажем, радионаблюдений в тех случаях, когда речь идет об исследовании сложных и неясных космических процессов. В подобных ситуациях необходима многократная тщательная проверка полученных данных, а также их интерпретации, независимыми методами.

Очередная загадка!

Вселенная неистощима на сюрпризы! Особенно щедро она их нам преподносит в последние десятилетия с развитием всеволновой астрономии. Но даже на этом впечатляющем фоне выделяется загадочный объект, обнаруженный в 1978 г. в созвездии Водолея и получивший обозначение SS 433.

Первая загадка, связанная с SS 433, возникла тогда, когда астрономы занялись тщательным изучением его спектра. Необычное состояло в том, что у SS 433 часть линий была смещена к красному концу спектра, а часть — к фиолетовому. Это было удивительно и на первый взгляд необъяснимо, так как означало, что объект SS 433 удаляется от нас со скоростью около 80 000 км/с и одновременно… приближается к нам со столь же высокой скоростью.

Но материальное тело в реальном мире не может в одно и то же время перемещаться в двух противоположных направлениях. Так способна вести себя только сложная система, различные части которой движутся по-разному.

Вскоре обнаружился новый, не менее удивительный факт. Оказалось, что линии в спектре SS 433 меняют свое положение с периодом, равным 164 суткам.

Выяснилось также, что загадочный объект интенсивно излучает в рентгеновском диапазоне, является переменным источником инфракрасного излучения и радиоисточником с чрезвычайно сложной структурой…

Что же представляет собой SS 433? Какова физическая природа этого загадочного объекта?

Наиболее привлекательна так называемая кинематическая модель. Суть ее состоит в следующем. Из центральной части объекта с большой скоростью выбрасываются две струи газа. Одна из них движется по направлению к земному наблюдателю, другая — от нас. Именно этим объясняется таинственное «раздвоение» SS 433, о котором шла речь выше.

В центральной же части объекта находится плотное аккреционное[9] облако — газовый диск, вращающийся вокруг центрального массивного тела. При этом струи газа движутся в направлении, образующем с осью вращения диска угол около 20 градусов. Таким образом, вся система приобретает свойства наклонного волчка.

Из механики известно, что ось вращения такой системы должна медленно менять свое положение в пространстве — испытывать так называемую прецессию. Благодаря этому положение газовых струй относительно земного наблюдателя будет с течением времени медленно изменяться. Таково возможное объяснение второй загадки SS 433 — 164-суточной периодичности в перемещении спектральных линий в его спектре…

Остается, однако, не вполне ясным вопрос, за счет каких сил движение газа в струях оказывается таким постоянным и упорядоченным. Не исключено, что здесь существенную роль играют мощные магнитные поля. А массивное тело, находящееся в центре аккреционного диска, представляет собой двойную систему — комбинацию нейтронной звезды или черной дыры и обычной массивной звезды-гиганта.

Загадок очень много. Не выяснено, в частности, даже точное расстояние до объекта. Оценки колеблются от 3500 парсеков (11 000 световых лет) до 5000 парсеков (17 000 световых лет), что, впрочем, свидетельствует о том, что объект находится в нашей Галактике.

Бросается в глаза и определенное сходство между тем, что происходит в SS 433, и явлениями, протекающими в радиогалактиках и некоторых квазарах, где, как мы уже знаем, тоже наблюдаются выбросы газовых струй. А ведь SS 433 — не ядро галактики, обладающее массой порядка миллиарда солнечных масс, а всего лишь двойная система! Это говорит о том, что космические выбросы — явление достаточно распространенное во Вселенной и что масштабы подобных процессов могут колебаться в весьма широких пределах.

Впрочем, расход массы у SS 433 очень велик. Ежегодно в струях здесь выбрасывается около 10-6 солнечной массы. Поэтому современная стадия SS 433 вряд ли может быть достаточно продолжительной. Возможно, именно этим объясняется уникальность SS 433. Других подобных объектов обнаружить не удалось.

Не исключено, что нам просто повезло и мы оказались современниками редчайшего явления, изучение которого может пролить свет на природу физических процессов, порождающих многие активные явления, происходящие во Вселенной.

Излучение из прошлого

В 1947 г. известный физик-теоретик Г. Гамов выдвинул идею, согласно которой наша Вселенная на начальной стадии своего существования была «горячей». Она возникла в результате расширения сверхплотной горячей плазмы, обладавшей колоссальной температурой порядка десятков, а возможно, и сотен миллиардов кельвинов и чудовищной плотностью около 1095 г/см3, что на 81 порядок выше плотности атомного ядра.

Это был не обычный взрыв, который начинается из определенного центра и постепенно охватывает все большие области пространства, а взрыв, который, по образному выражению известного американского физика-теоретика С. Вайнберга, произошел одновременно везде, заполнив с самого начала все пространство, причем каждая частица материи устремилась прочь от любой другой частицы [10]).

Иными словами, другого пространства, кроме того, которое было первоначально занято исходным веществом, не существовало. И начальный взрыв был не расширением материи в окружающее пространство, а расширением самого пространства.

Дальнейшее формирование структуры Вселенной связано с расширением сверхплотного состояния — расширением, которое началось около 15–20 млрд. лет назад — и с теми физическими процессами, которыми оно сопровождалось.

Об эпохе, закончившейся примерно через миллион лет после «Большого взрыва», мы получаем прямую информацию благодаря открытию реликтового излучения, возникшего на ранней стадии расширения.

История обнаружения этого излучения довольно любопытна. Его в некотором смысле случайно впервые зарегистрировали американские радиофизики А. Пензиас и Р. Вильсон, которым 13 лет спустя за это открытие была присуждена Нобелевская премия.

Первые попытки обнаружить радиоизлучение, идущее из глубины времен, и тем самым подтвердить теорию горячей расширяющейся Вселенной относятся к началу шестидесятых годов. Осенью 1964 г. известный американский физик Р. Дикке и его сотрудники в Принстонском университете приступили к созданию установки для обнаружения реликтового излучения.

В то же самое время Пензиас и Вильсон по заданию известной радиотелефонной фирмы «Белл» занимались изучением характеристик новой радиоастрономической антенны, предназначавшейся для системы радиосвязи через искусственные спутники Земли. Эта система и связанная с ней аппаратура отличались очень хорошей защитой от помех и низкой шумовой температурой, т. е. сами приемные устройства вносили в результаты измерений минимальные искажения. Такого результата удалось достичь благодаря специальной конструкции приемной аппаратуры с усилителем на рубиновом кристалле, охлажденном жидким гелием.

В процессе работы ученые обнаружили неожиданную помеху — непонятный шумовой фон на волне длиной 7,3 см. Дальнейшие измерения показали, что загадочный радиошум не зависит ни от направления системы, ни от времени суток и года. Это указывало на его космическое происхождение.

В мае 1965 г. статья Пензиаса и Вильсона, в которой сообщались результаты исследований неизвестного излучения, однако без объяснения его физической природы, была опубликована в «Астрофизическом журнале». Объяснение в том же номере журнала дала группа Р. Дикке, истолковавшая таинственный шумовой фон как реликтовое излучение.

Кстати сказать, образный термин «реликтовое» был предложен И. С. Шкловским.

Справедливость, однако, требует отметить, что еще до появления статей в «Астрофизическом журнале» была опубликована весьма интересная работа советских астрофизиков И. Д. Новикова и А. Г. Дорошкевича, в которой обосновывается возможность практической регистрации реликтового радиоизлучения. Авторы статьи впервые рассчитали весь спектр излучения от известных в то время источников радиоизлучения во Вселенной с учетом их эволюции в процессе расширения и показали, как на их фоне должно выглядеть реликтовое излучение. При этом они пришли к выводу, что в области сантиметровых и миллиметровых волн это излучение может быть практически обнаружено. Как мы видели, действительность подтвердила это предсказание.

Таким образом, открытие реликтового излучения является еще одним блестящим примером научного предвидения, которыми так богата история естествознания, в особенности физики и астрономии.

По мере расширения Вселенной реликтовое излучение постепенно остывало, и его современная температура составляет около 3 кельвинов.

В настоящее время его исследованиями занимаются радиоастрономы на многих радиотелескопах мира, в том числе на гигантском советском радиотелескопе РАТАН-600. Оно зарегистрировано на волнах длиной 20,7; 3,2; 1,5; 0,26 см. Температура реликтового излучения на всех длинах волн оказалась равна 3 К, максимум интенсивности лежит в области миллиметровых волн.

Многократные измерения интенсивности реликтового излучения в различных направлениях показали, что с точностью до десятых долей процента оно и изотропно. Это значит, что куда бы мы ни направили наш радиотелескоп, интенсивность реликтового излучения окажется практически одинаковой. Этот факт как раз и свидетельствует о том, что излучение, о котором идет речь, действительно является реликтовым, а не возникшим в каких-либо обособленных дискретных источниках.

Исследование физических характеристик реликтового излучения показало, что первоначальная плазма обладала чрезвычайно высокой температурой. Тем самым было получено важное подтверждение справедливости теории горячей расширяющейся Вселенной.

Однако всем сказанным значение реликтового излучения для познания окружающего нас мира не ограничивается. Так, например, исследование этого излучения позволило получить данные, которые являются независимым подтверждением фундаментального вывода современной астрофизики об однородности нашей Вселенной в больших масштабах, об отсутствии систем большего масштаба; чем сверхскопления галактик. Если бы в окружающем нас мире существовали достаточно большие регионы с повышенной плотностью вещества, сравнимые по своим размерам со всей наблюдаемой областью пространства, то в этих регионах реликтовое излучение испытывало бы определенные изменения.

Дело в том, что согласно общей теории относительности Эйнштейна должно, существовать так называемое гравитационное красное смещение. — Электромагнитное излучение в сильных гравитационных полях испытывает определенный сдвиг в сторону более длинных волн и низких частот. Этот эффект с большой точностью проверен экспериментально.

Если бы во Вселенной существовали сгущения вещества столь больших масштабов, то их тяготение должно было бы, согласно общей теории относительности, вызвать увеличение длины волны реликтового излучения (гравитационное красное смещение). Иными словами, реликтовое излучение, приходящее к нам с некоторых направлений, было бы «покрасневшим». В общей картине его распределения по всему небу должны были бы существовать «пятна» пониженной интенсивности.

Расчеты показывают: для того чтобы подобные пятна могли быть замечены наиболее крупными современными радиотелескопами, такими, например, как РАТАН-600, размеры сгущений вещества должны иметь масштаб порядка миллиарда световых лет, а их плотность, как можно полагать, должна превосходить средний уровень по меньшей мере на 10 %.

Однако современные радиоастрономические наблюдения соответствующих «пятен» интенсивности реликтового излучения не обнаружили. Видимо, это означает, что сгущений, о которых идет речь, не существует.

Следовательно, в пределах той области пространства, откуда доходит к нам реликтовое излучение, самыми большими структурными образованиями являются сверхскопления галактик поперечником приблизительно до ста миллионов световых лет. В больших масштабах распределение вещества во Вселенной представляется достаточно однородным.

С учетом достигнутой точности наблюдений можно считать, что средняя плотность вещества по достаточно большим областям Вселенной различается не больше, чем на десятые доли процента.

Если верна гипотеза Я. Б. Зельдовича о возникновении скоплений галактик из образований типа «блинов», то, сформировавшись на определенном этапе, такие «блины», определившие ячеистую структуру Вселенной, неизбежно должны были повлиять и на характер реликтового излучения. В его распределении по небесной сфере должны в этом случае наблюдаться определенные мелкомасштабные колебания (флуктуации) радиояркости. Однако таких флуктуаций пока обнаружить не удалось.

Разумеется и в этом случае требуются дальнейшие тщательные исследования с помощью еще более чувствительной аппаратуры.

Наблюдения реликтового излучения позволяют решить еще одну интереснейшую задачу. Все космические объекты находятся в постоянном движении. Планеты обращаются вокруг Солнца. Солнце вместе с другими звездами движется вокруг центра Галактики. Галактики, в свою очередь, не только участвуют в расширении Вселенной, но и перемещаются друг относительно друга.

Для того чтобы обнаружить и изучить любое движение, измерить его физические характеристики: скорость, ускорение, направление — необходима определенная система отсчета, связанная с теми или иными материальными объектами. Так, движение Земли и планет мы обычно отсчитываем относительно системы координат, связанной с Солнцем, а движение Солнца и звезд относительно галактической системы координат.

Но все дело в том, что космические тела, с которыми мы связываем те или иные системы отсчета, сами движутся. Иными словами, любой космический объект одновременно участвует в целом ряде различных движений. И для того, чтобы определить суммарное движение, нужна была некая «независимая» система отсчета, не связанная с перемещающимися небесными телами. Такой в определенном смысле «абсолютной» или, точнее говоря, физически преимущественной системой может служить система отсчета, жестко связанная с реликтовым излучением.

Мы введем эту систему таким образом, чтобы в каждой точке пространства по отношению к ней поток излучения был равен нулю. В этом и заключается физическая преимущественность построенной нами системы.

Если Земля движется относительно реликтового излучения, реликтового фона Вселенной, то плотность энергии этого излучения, а следовательно и его «радиояркость», в направлении движения будет соответственно выше, чем в противоположном. В самом деле, представим себе реликтовое излучение как поток фотонов. Тогда, очевидно, за одно и то же время Земля будет «сталкиваться» с большим числом встречных фотонов, чем догоняющие.

Как мы уже говорили, реликтовое излучение практически изотропно, но из-за того, что Земля обладает собственным движением, эта изотропия должна несколько нарушаться. Нарушения эти, разумеется, весьма незначительны и не меняют общую картину благодаря тому, что скорость движения нашей планеты ничтожна в сравнении со скоростью распространения электромагнитных волн. Но тем не менее такие нарушения существуют, и их можно в принципе обнаружить. Измерив разницу в интенсивности реликтового фона в диаметрально противоположных направлениях, мы определим скорость движения Земли по отношению к введенной нами преимущественной системе отсчета.

Точнейшие измерения с помощью современных радиотелескопов на волне длиной 9 мм показали, что радиояркость реликтового фона в направлении на созвездие Льва (это созвездие расположено на небе несколько ниже «донышка ковша» Большой Медведицы) чуть больше, а в противоположном направлении чуть меньше средней для всего неба величины. Различие едва уловимо: всего на одну тысячную. Но из этого следует, что наша планета вместе с Солнцем и всей Солнечной системой движется по направлению к созвездию Льва (к точке с координатами: прямое восхождение α=10±0,12 ч, склонение σ= 6±3°) со скоростью 372 км/с относительно системы отсчета, связанной с реликтовым излучением. (Возможная ошибка в определении указанной скорости составила при этом около 25 км/с в ту или другую сторону.) Зная эту величину, а также скорость движения нашей Галактики относительно Местной группы галактик, можно определить скорость относительно реликтового фона и всей Местной группы… Она равна 610 км/с плюс-минус 50 км/с и направлена к точке с координатами α= 10,5 ± 0,4 ч, σ=−26 ± 5°.

Изотропна ли Вселенная?

Одним из основных положений современной науки о Вселенной всегда считалось представление об ее однородности и изотропности. Однородность означает, что свойства достаточно больших по масштабам областей Вселенной в основных чертах одинаковы.

Все наблюдательные данные, имевшиеся в распоряжении астрономов до самого последнего времени, не противоречили подобному представлению. В частности, вывод об однородности Вселенной в больших масштабах не опровергается и открытием гигантских космических «пустот». Ведь их размеры не идут ни в какое сравнение с размерами Метагалактики — области пространства, которая охвачена астрономическими наблюдениями.

При современных методах исследования «горизонт видимости» (о нем подробнее говорится на с. 148) равен примерно 10–12 млрд. световых лет. В ограниченной им области пространства можно разместить не менее 1000 ячеек, для каждой из которых имеет место однородность. Однако не так давно были получены весьма интересные и неожиданные результаты, которые, может быть, заставят пересмотреть представление об изотропии Вселенной. Проводились наблюдения двойных радиоисточников — радиогалактик, каждая из которых состоит из двух связанных между собой радиокомпонентов. Таких источников зарегистрировано достаточно много, и они распределены по всей небесной сфере. Английский астроном П. Берч на радиотелескопе обсерватории Джодрелл Бэнк изучил 100 таких радиогалактик, расположенных в северном и южном полушариях неба.

Как известно, электромагнитные волны, в том числе и радиоволны, в отличие, например, от звуковых волк, — поперечные. Если у звуковой волны направление колебаний совпадает с направлением распространения волны, то у электромагнитных волн направление колебаний перпендикулярно направлению распространения. Если к тому же поперечные колебания происходят в одной плоскости, то электромагнитная волна называется линейнополяризованной, а плоскость, перпендикулярная плоскости колебаний, называется плоскостью поляризации.

В процессе наблюдений, о которых идет речь, измерялся угол между линией, соединяющей компоненты двойных радиоисточников, и направлением плоскости поляризации их радиоизлучения. При этом было обнаружено удивительное явление: оказалось, что для радиоисточников, расположенных в одной полусфере неба, этот угол имеет один знак, а для радиоисточников, расположенных в другой полусфере, — противоположный!

Естественно возникает вопрос: связан ли обнаруженный эффект с условиями наблюдения? Вопрос, который всегда задают себе наблюдатели и экспериментаторы для того, чтобы убедиться, что изучаемое ими явление носит реальный характер, а не искажается какими-либо побочными обстоятельствами. В ситуации, о которой идет речь, такое побочное влияние мог бы оказывать так называемый эффект Фарадея — эффект вращения плоскости поляризации под воздействием внешнего магнитного поля. Не вызвано ли обнаруженное различие свойств двойных радиоисточников, расположенных в противоположных областях небесной сферы, влиянием магнитного поля нашей Галактики?

Однако эта возможность была весьма тщательно учтена исследователями и последствия, связанные с эффектом Фарадея, были исключены из результатов наблюдений. Таким образом, обнаруженное различие свойств носит явно внегалактический характер, и, следовательно, породившая его причина кроется в самых общих закономерностях нашей Вселенной.

Попутно был зарегистрирован еще один интересный факт. Радиоизлучающие компоненты двойных радиоисточников связаны друг с другом газовыми перемычками. Наблюдения показали, что в одной полусфере эти перемычки изогнуты в одну сторону, а в противоположной — в другую. Наконец, двойные радиоисточники вращаются вокруг собственных осей. И эти оси имеют некое преимущественное направление в пространстве.

О чем говорят все эти факты? Видимо, о том, что существуют некоторые весьма общие свойства нашей Вселенной, которые нарушают ее изотропию. В частности, одной из причин обнаруженных явлений могло бы служить вращение Вселенной с угловой скоростью, обеспечивающей один оборот за 100 триллионов лет.

Небезынтересно заметить, что в свое время советский ученый Р. М. Мурадян разработал оригинальную гипотезу, согласно которой наша Метагалактика произошла в результате взрыва сверхмассивного суперадрона (с массой порядка 1056 г) — элементарной частицы из числа участвующих в так называемых сильных взаимодействиях[11]). Его распад на относительно более мелкие адроны привел к образованию протоскоплений галактик, а последующие распады на адроны еще меньшей массы — к образованию галактик. Если эта гипотеза верна, то Метагалактика должна обладать собственным вращением. Правда, такое вращение является лишь необходимым, но еще недостаточным условием справедливости того механизма образования галактик, который предложен Мурадяном. Поэтому вращение Метагалактики само по себе еще не может служить доказательством того, что его гипотеза верна.

Однако возможность объяснения тех фактов, которые были обнаружены в связи с наблюдением двойных радиоисточников, вращением нашей Вселенной заставляет об этой гипотезе вспомнить.

Правда, справедливость требует заметить, что в научной печати появились сообщения, авторы которых подвергают результаты Берча сомнению. Сам Берч настаивает на их обоснованности. Впрочем, в этой дискуссии нет ничего удивительного. Когда речь идет о научных результатах, способных заметно повлиять на существующие фундаментальные представления о мироздании, необходимо их всестороннее обсуждение. Поэтому факты, свидетельствующие об отсутствии во Вселенной изотропии, нуждаются в самой тщательной проверке и перепроверке. Но если они подтвердятся, то это будет иметь огромное значение для современного естествознания.

И звезда с звездою «говорит»

В последние, годы в центре внимания современной астрофизики оказались так называемые «сильные» явления, во Вселенной, т. е. такие явления, которые сопровождаются выделением чрезвычайно большого количества энергии. Их исследование позволяет глубже понять особенности строения Вселенной, обнаружить неизвестные физические эффекты, познать новые фундаментальные законы.

Несколько лет назад аппаратура, установленная на искусственных спутниках Земли и высотных аэростатах, зарегистрировала загадочное явление — мощные вспышки гамма-излучения, идущего из глубин космического пространства. Эти вспышки носили характер коротких всплесков продолжительностью от долей секунды до нескольких десятков секунд. За год отмечалось от пяти до восьми подобных вспышек. Поражала их огромная мощность: мощность, выделяемая во время вспышек таинственными источниками, примерно в миллион раз превосходила мощность светового излучения Солнца и в десять раз мощность гамма-излучения всей нашей звездной системы — Галактики, в состав которой входят сотни миллиардов звезд. И это при том предположении, что неизвестные космические объекты, порождающие гамма-вспышки, расположены сравнительно недалеко в пределах нашего звездного острова. А если бы оказалось, что они находятся где-то в других галактиках, то выделяемая ими мощность достигала бы фантастического значения.

Довольно долго природа космических объектов, «ответственных» за возникновение гамма-вспышек, оставалась неизвестной. И только сравнительно недавно кое-что начало проясняться…

В конце 1978 г. к нашей космической соседке Венере были направлены две советские автоматические межпланетные станции — «Венера-11» и «Венера-12». На каждой из них, кроме аппаратуры для исследования планеты, были установлены специальные устройства для регистрации космического гамма-излучения — аппараты «Конус», созданные учеными Физико-технического института имени А. Ф. Иоффе АН СССР. Чувствительность этих приборов примерно в пятьдесят раз превосходила чувствительность гамма-аппаратуры, применявшейся раньше. Каждые два-три дня приборы отмечали всплески гамма-излучения глубин Вселенной. Всего за три месяца путешествия по маршруту Земля-Венера удалось зарегистрировать тридцать шесть гамма-вспышек — больше, чем за несколько предыдущих лет наблюдений.

Но самое интересное открытие было сделано 5 и 6 марта 1979 г. В эти дни аппаратура космических станций и искусственных спутников зарегистрировала две гамма-вспышки от одного и того же источника в созвездии Золотой Рыбы. Особенно любопытной оказалась первая из них: по своей мощности она примерно в тысячу раз превосходила все вспышки, отмечавшиеся когда-либо прежде. Излучение максимальной мощности длилось всего около четверти секунды. Однако чувствительный «Конус» сумел достаточно подробно зафиксировать всю картину — не только максимум, но и, как его называют астрофизики, «хвост» всплеска.

Когда ученые взглянули на график, они с изумлением увидели хорошо знакомую картину излучения рентгеновского пульсара…

Применение космических аппаратов, как уже было отмечено в гл. I, дало возможность приподняться над плотными слоями земной атмосферы, задерживающими подавляющее большинство космических электромагнитных излучений, и получить доступ к богатейшей информации, содержащейся в инфракрасных, ультрафиолетовых, рентгеновских и гамма-излучениях.

Особенно большой интерес представили астрофизические исследования в рентгеновском и гамма-диапазонах электромагнитных волн.

Изучение «рентгеновской Вселенной» началось в 1962 г., и к настоящему времени обнаружено уже большое число космических рентгеновских источников. Что они собой представляют? Какие космические объекты за ними скрываются? Какие физические процессы их порождают?

Оказалось, довольно разнообразные. Например, рентгеновское излучение может возникать при вспышках сверхновых звезд. Расширяющаяся оболочка «вспыхнувшей» звезды нагревает окружающую среду до очень высокой температуры, при которой возникает рентгеновское излучение.

Рентгеновское излучение порождается также перемещениями сгустков вещества в межзвездных магнитных полях и некоторыми другими физическими процессами в космосе.

Но, пожалуй, наибольший интерес представляют явления, происходящие в двойных системах. Как показывают наблюдения, почти половина всех звезд образует пары. Особенно любопытен тот случай, когда один из компонентов пары является нейтронной звездой.

Как известно, чтобы преодолеть земное притяжение, любое тело должно развить вторую космическую скорость 11.2 км/с. И наоборот, если неподвижное тело начнет издалека свободно падать на нашу планету, то у поверхности оно разовьет как раз вторую космическую скорость — 11.2 км/с. При ударе выделится энергия, равная той потенциальной энергии, которую тело имело в начальный момент.

Нейтронная звезда в сотни тысяч раз массивнее Земли, и вторая космическая скорость достигает для нее огромной величины — примерно 100 тыс. км/с. Поэтому и энергия, которая должна выделиться при аккреции вещества на такую звезду, колоссальна.

Откуда же это вещество берется? Его поставляет второй Член двойной системы — обычная звезда. Выброшенные ею заряженные частицы плазмы вырываются в магнитосферу нейтронной звезды и выпадают на ее поверхность в районе магнитных полюсов. В этих местах происходит выделение гравитационной энергии, и на поверхности нейтронной звезды возникают «горячие пятна» с температурой в миллионы кельвинов. А при таких температурах генерируется электромагнитное излучение в рентгеновском диапазоне. Так как нейтронная звезда вращается, то эти излучающие зоны могут попадать в поле зрения земного наблюдателя попеременно через промежутки времени, зависящие от периода вращения звезды.

Так явления, о которых идет речь, выглядят в теории, А в действительности — во Вселенной?

Рентгеновские пульсары были в самом деле обнаружены в 1972 г. с помощью специальной аппаратуры, установленной на одном из искусственных спутников Земли. Но правомерен вопрос: а может быть, это одиночные объекты и механизм генерации рентгеновского излучения у них совсем иной?

Однако по меньшей мере два факта говорили в пользу изложенной выше модели.

Во-первых, оказалось, что излучение некоторых рентгеновских пульсаров иногда «выключается», а потом появляется вновь. Это явление можно объяснить затмениями в двойной системе, когда обычная звезда закрывает от нас нейтронную, преграждая путь ее рентгеновскому излучению. Разумеется, такие затмения могут происходить только в тех случаях, когда Земля расположена в той же плоскости, в которой движутся вокруг центра масс оба члена двойной системы.

Второе свидетельство в пользу двойных систем — периодические изменения частоты импульсов, испускаемых рентгеновским пульсаром. Обращаясь в двойной системе, нейтринная звезда то приближается к нам, то удаляется. Поэтому и рентгеновские импульсы приходят то чаще, то реже.

Правда, оба эти свидетельства являются в какой-то мере косвенными, однако в дальнейшем были получены и прямые подтверждения. С помощью оптических телескопов удалось обнаружить светящиеся звезды, составляющие пары с невидимыми нейтронными источниками рентгеновского излучения.

Не надо думать, что рентгеновский пульсар в двойной системе — это нечто абсолютно стабильное, раз навсегда данное. Как считают астрофизики, взаимодействие вещества, выброшенного обычной звездой, с магнитосферой нейтронной звезды проходит ряд последовательных этапов. Сперва генерируется импульсное радиоизлучение, похожее на радиоизлучение одиночного пульсара.

Но, видимо, развитие физических процессов в двойных системах далеко не всегда протекает строго последовательно.

В 1967 г. в созвездии Центавра неожиданно вспыхнул новый рентгеновский источник. В течение некоторого времени интенсивность его излучения постепенно нарастала, а затем стала также постепенно убывать. Затем тот же источник обнаружил себя еще дважды — в 1969 и 1974 гг. В последнем случае он наблюдался на протяжении десяти суток. При этом были обнаружены периодические колебания его «рентгеновской яркости» с периодом около семи минут. Иными словами, был открыт «кратковременный» рентгеновский пульсар.

Но самый интересный «кратковременный» рентгеновский источник был зарегистрирован в созвездии Единорога 3 августа 1975 г. Сперва он был едва заметен, однако уже через пять суток его блеск в рентгеновских лучах превзошел блеск самого яркого объекта рентгеновского неба — источника Скорпион Х-1, а через следующие пять суток он светил еще в пять раз ярче. Ничего подобного за все годы рентгеновских наблюдений Вселенной астрономы не отмечали.

А еще через несколько дней в том же месте была обнаружена слабенькая звездочка. Ее стали усиленно изучать и пришли к выводу, что и возникновение «кратковременных» рентгеновских источников также связано с какими-то физическими явлениями именно в двойных системах, где одним из компонентов является компактный объект, собирающий на себя вещество, выбрасываемое второй звездой. Вероятно, время от времени в силу еще не известных нам причин скорость аккреции может изменяться. В тех случаях, когда она резко возрастает, создаются условия, способствующие кратковременной вспышке рентгеновского излучения.

Правда, наблюдательных данных, прямо доказывающих, что все «кратковременные» источники рентгеновского излучения связаны с двойными системами, пока нет. И все же большинство астрономов склонны придерживаться именно такого объяснения. Тем более что мы не знаем вообще ни одного источника рентгеновского космического излучения в нашей Галактике, о котором можно было бы с уверенностью утверждать, что он является «одиночкой», т. е. не входит в двойную систему.

Но какие события в двойной системе могут вызвать усиление аккреции и кратковременную вспышку рентгеновского излучения?

Одно из возможных объяснений состоит в том, что соседом нейтронной звезды в двойной системе является пульсирующая звезда, которая то сжимается, то расширяется. В момент расширения такая звезда выбрасывает большое количество вещества, которое, попадая на нейтронную звезду, генерирует излучение в рентгеновском диапазоне.

Возможно также, что нейтронная звезда движется вокруг обычной по сильно вытянутой орбите, то удаляясь от нее, то приближаясь, вызывая тем самым периодические усиления и ослабления аккреции.

Таким образом, появление космических аппаратов, сделавших возможными наблюдения в рентгеновских и гамма-лучах, привело к открытию нового физического эффекта — механизма аккреции в двойных системах, который может оказаться ключом к объяснению целого ряда необычных явлений во Вселенной. Наблюдения с помощью гамма-аппаратуры на борту межпланетных станций «Венера-11» и «Венера-12» подтвердили это предположение.

Как уже говорилось, гамма-всплеск 5 марта оказался очень мощным — в течение четверти секунды поток гамма-излучения из созвездия Золотой Рыбы в несколько тысяч раз превосходил свечение в гамма-диапазоне всего неба! Затем в течение следующих шести минут излучение сделалось примерно в сто раз слабее, и в этот промежуток времени была отмечена его пульсация с периодом 8,1 с.

Таким образом, к тем одиннадцати рентгеновским пульсарам, которые считались надежно зарегистрированными к марту 1979 г., прибавился еще один пульсар, открытый советскими учеными. Но пульсар совершенно особого типа, первый космический объект подобного рода, обнаруженный астрофизиками.

Многое из того, что относится к этому объекту, связано со словом «впервые». Впервые зарегистрирована гамма-вспышка, при которой светимость источника нарастала столь стремительно — за тысячные доли секунды она увеличилась в три тысячи раз! Впервые был зафиксирован повторный гамма-всплеск от одного и того же объекта с интервалом всего четырнадцать часов! И наконец, впервые удалось прояснить физическую природу источника гамма-вспышки. Анализ полученных данных не оставлял никакого сомнения в том, что во время вспышки 5 марта действовал тот же самый физический механизм, который порождает и рентгеновские пульсары, — аккреция вещества, выброшенного одной из звезд в двойной системе, на нейтронную звезду.

Что же касается повторной вспышки, которая была примерно в сто раз слабее первой, то ее возникновение, по-видимому, связано с термоядерным процессом. При падении на нейтронную звезду вещество может разгоняться до огромных скоростей, достигающих одной трети скорости света. В результате удара вещества с такой скоростью о поверхность звезды выделяется колоссальная энергия. Вероятно, этот процесс аккреции и породил гамма-излучение, зарегистрированное 5 марта. Но вещество обычной звезды, падающее на нейтронную, — это главным образом водород и гелий. Оказавшись на поверхности нейтронной звезды, они нагреваются до очень высоких температур, при которых возникают термоядерные реакции. Правда, водородная реакция протекает довольно медленно, зато гелиевая может приводить к кратковременному выделению энергии, как раз примерно в сто раз меньшей, чем энергия, выделяющаяся при аккреции. Вполне возможно, что именно гелиевая термоядерная вспышка и породила повторный гамма-всплеск 6 марта.

В эти дни был впервые получен еще один чрезвычайно интересный результат. Дело в том, что одновременные наблюдения с борта нескольких космических станций, находящихся на значительных расстояниях друг от друга, позволяют намного повысить точность, с которой определяются положения источников гамма-излучения на небесной сфере.

Кроме «Венер» в космосе в это же время находился и советский искусственный спутник Земли «Прогноз-7», также оснащенный гамма-аппаратурой.

Гамма-всплеск 5 марта был отмечен всеми тремя космическими аппаратами. Благодаря этому удалось выяснить, что источник излучения находится в районе созвездия Золотой Рыбы и проецируется на окраинный район одной из ближайших к нам галактик — Большого Магелланова Облака. Но где источник расположен на самом деле — в нашей Галактике или в соседней?

Современные приборы еще не позволяют получить прямой ответ на этот вопрос. Поэтому приходится прибегнуть к логическим соображениям. Предположим, что источник гамма-всплеска 5 марта находится в Большом Магеллановом Облаке. Исходя из мощности зарегистрированного сигнала и зная расстояние до Большого Магелланова Облака, нетрудно подсчитать, что в подобном случае этот источник во время вспышки должен был излучать 1044 эрг/с (1037 Вт) — чудовищную энергию, в несколько тысяч раз превосходящую энергию излучения Большого Магелланова Облака во всех диапазонах электромагнитных волн, вместе взятых! А ведь эта галактика состоит из миллиардов звезд. Очевидно, что подобное предположение выглядит весьма фантастично. Таким образом, скорее всего, счастливым обладателем этого феномена является наша собственная Галактика.

Итак, накапливается все больше данных, говорящих о том, что механизм аккреции в двойных системах является весьма универсальным, порождающим многие явления, наблюдаемые во Вселенной. Причем такие явления, которые сопровождаются выделением огромного количества энергии и, следовательно, оказывают особое воздействие на состояние космической среды.

Действие этого механизма может в разных конкретных условиях вызывать различные следствия. Этим, видимо, объясняется и различный характер возникающего электромагнитного излучения: в одних случаях правильно-переменное рентгеновское излучение (рентгеновские пульсары), в других — кратковременные вспышки в рентгеновском диапазоне, в третьих — мощные всплески гамма-излучения. При этом различие в физических условиях, влияющих на картину явления, должно быть очень заметным. Это видно хотя бы из того, что рентгеновские пульсары излучают на протяжении миллионов лет, а при гамма-вспышках вся энергия выплескивается почти мгновенно.

Для объяснения явлений, о которых идет речь, было предложено немало других гипотез, не связанных с двойными системами, Оригинальную попытку объяснить природу гамма-вспышек предприняла группа советских ученых из Института прикладной математики АН СССР и Института космических исследований АН СССР.

По современным представлениям, нейтронная звезда в момент образования имеет очень высокую температуру — порядка 1011 кельвинов. Затем в результате бурного выброса нейтрино происходит довольно быстрое остывание звезды — буквально за несколько дней температура ее поверхности снижается до 1010, а за десяток лет — до 109 кельвинов. Потом этот процесс протекает несколько медленнее. Когда температура снизится до 108-109 кельвинов, поверхностные слои нейтронной звезды становятся твердыми, возникает своеобразная кристаллическая корка. Иногда она может растрескиваться.

Таковы существующие представления. А гипотеза, о которой идет речь, состоит в следующем. Время от времени в подкорковом слое накапливается потенциально радиоактивное вещество. «Потенциально радиоактивное» — потому что, по предположению авторов гипотезы, в недрах нейтронной звезды в силу некоторых причин радиоактивный распад не идет. Однако при землетрясениях такое вещество по трещинам может выплескиваться на поверхность. Оказавшись снаружи, оно бурно распадается, этот распад сопровождается мощным гамма-излучением, которое и регистрируется на Земле как гамма-вспышка.

И все же объяснение, связанное с аккрецией вещества в двойных системах, выглядит более убедительно. Особенно после результата, полученного межпланетными станциями «Венера». А также потому, что с помощью механизма аккреции удается с единой точки зрения объяснить целый комплекс хотя и внешне разнородных явлений, но вызывающих сходные следствия — рентгеновское и гамма-излучение.

Разумеется, еще предстоит ответить на ряд фундаментальных вопросов. Какой физический процесс способен вызвать усиление рентгеновской светимости источника в десятки тысяч раз за тысячные доли секунды? Связаны ли гамма-вспышки с изменением скорости аккреции? Если да, то почему эта скорость может изменяться?

И так далее…

Разумеется, отдельные космические объекты, расположенные на огромных расстояниях от Земли, практически не оказывают на земные условия никакого влияния. Но Вселенная — это совокупность колоссального множества различных объектов, в том числе и проявляющих разные степени активности. Их совокупная «деятельность» во многом определяет физическое состояние космической среды нашего обитания. Поэтому изучение подобных объектов представляет для нас особый интерес.

Загадочный фон

Наблюдая Вселенную в световых лучах, мы видим звезды, галактики, скопления галактик. Оптические объекты нашей Вселенной сгруппированы в определенные структурные образования. Аналогичную картину мы обнаруживаем в инфракрасном, ультрафиолетовом и радиодиапазонах электромагнитных волн. Исключение составляет уже знакомое нам реликтовое излучение, обладающее изотропным характером.

Однако существует и еще одно исключение подобного же рода — фоновое рентгеновское излучение. Это излучение, обнаруженное в 60-е годы, подобно реликтовому, также равномерно заполняет все небо.

Невольно напрашивается предположение о какой-либо связи, существующей между этими двумя изотропными «свечениями» Вселенной. Однако подобное предположение приходится сразу отвергнуть — ведь ультракоротковолновое радиоизлучение и рентгеновское излучение порождаются в природе совершенно различными физическими процессами.

Происхождение реликтового излучения к настоящему времени изучено достаточно хорошо. Что же касается рентгеновского фона, то его природа до сих пор остается загадкой.

Проще всего было бы предположить, что диффузный рентгеновский фон обязан своим происхождением тормозному излучению электронов в разреженной высокотемпературной плазме, заполняющей межгалактическое пространство. Однако непосредственные доказательства того, что такая плазма существует, в распоряжении современной астрономии отсутствуют.

Кстати, если бы подобный механизм в самом деле действовал, то это привело бы нас к фундаментальным выводам относительно дальнейшей эволюции нашей Вселенной. Предварительные подсчеты показывают, что межгалактическая плазма, порождающая фактически наблюдаемое рентгеновское фоновое излучение, должна была бы обладать плотностью, близкой к «критической», т. е. к тому значению средней плотности материи во Вселенной, которое согласно общей теории относительности необходимо для того, чтобы остановить разбегание галактик.

Если источник того или иного излучения нам неизвестен, и мы вынуждены судить о его природе косвенным путем, то прежде всего необходимо обратить внимание на свойства этого излучения. В пределах точности, доступной лучшим современным приемникам рентгеновского излучения, никаких колебаний интенсивности рентгеновского фона обнаружить не удалось. О чем говорит подобная изотропия излучения? О том, что его источник либо расположен в непосредственной близости от нас, и мы находимся «внутри» его излучения, либо на очень и очень большом удалении. Поскольку наличие мощного рентгеновского источника в окрестностях Солнечной системы заведомо исключается, то остается только вторая возможность.

Но вспомним: чем с больших космических расстояний приходит к нам то или иное излучение, тем более отдаленные в прошлое явления оно отражает. Поэтому есть веские основания предполагать, что возникновение рентгеновского фона (подобно возникновению реликтового излучения) связано с какими-то космологическими процессами, обусловившими формирование крупномасштабной структуры Вселенной.

В частности, существует гипотеза, согласно которой диффузное рентгеновское излучение порождается большим числом достаточно мощных дискретных рентгеновских источников, более или менее равномерно распределенных на небесной сфере и расположенных на очень больших расстояниях от Земли.

Но тогда возникает новый вопрос: что могут представлять собой эти источники, какова их природа? Галактики здесь не годятся. Они состоят из звезд, а изучение Солнца показало, что обычные, нормальные звезды являются весьма слабыми источниками рентгеновского излучения. Поэтому даже сотни миллиардов звезд, входящих в галактики, не могли бы обеспечить наблюдаемой интенсивности рентгеновского фона. Правда, в последние годы было установлено, что богатые скопления галактик являются источниками рентгеновского излучения, которое порождается механизмом тормозного излучения в горячей плазме, заполняющей объем таких скоплений. Однако, если учесть концентрацию скоплений галактик во Вселенной, то и этот источник оказывается явно недостаточным… Значит — не галактики.

Больше всего на роль дискретных рентгеновских источников, необходимых для генерирования диффузного рентгеновского фона, подходят квазары. Как показывают наблюдения, большинство квазаров являются мощными генераторами рентгеновского излучения. Достаточно сказать, что один квазар излучает в рентгеновском диапазоне в 1000 раз больше энергии, чем ее излучают в оптическом диапазоне все звезды нашей Галактики.

Квазары — весьма удаленные объекты. Некоторые из них расположены на расстояниях, намного превосходящих расстояния до самых далеких галактик. Поэтому, вероятно, большинство квазаров недоступно наблюдению современными средствами. Однако статистические подсчеты, основанные на распределении в пространстве известных нам квазаров, говорят о том, что значительная доля рентгеновского фона (а возможно, и весь этот фон) генерируется именно далекими квазарами, которые мы по отдельности наблюдать пока не можем.

В нейтринном «свете»

В этой главе мы познакомились с некоторыми результатами изучения Вселенной в различных диапазонах электромагнитных волн и могли убедиться в том, что освоение каждого нового канала космической информации вело к новым интереснейшим открытиям.

На фоне этих открытий достижения нейтринной астрофизики выглядят, быть может, намного скромнее. В сущности говоря, пока что получен только один реальный результат: поток солнечных нейтрино, которые должны рождаться в недрах нашего дневного светила в ходе термоядерных реакций, оказался значительно менее интенсивным, чем следует из теоретических соображений.

Результат, что и говорить, весьма интригующий и все еще ожидающий своего объяснения. В чем тут дело — в несовершенстве ли наших представлений о внутреннем строении Солнца или в том, что не учитываются некоторые свойства самих нейтрино, в частности, возможность того, что эти частицы обладают массой покоя, пока неясно.

Но изучение Солнца отнюдь не исчерпывает заманчивых возможностей нейтринной астрономии. Вообще, нормальные звезды являются источниками нейтрино низких энергий, и если учесть огромные расстояния до этих небесных тел, то регистрация потоков нейтрино от отдельных звезд представляется весьма трудноразрешимой в техническом отношении задачей: ведь эти частицы очень слабо взаимодействуют с веществом.

Правда, на заключительных этапах существования массивных звезд с массой в 20 — 30 масс Солнца при гравитационном коллапсе этих объектов, как показал Я, Б. Зельдович, могут возникать условия, при которых генерируются кратковременные нейтринные вспышки длительностью около 20 секунд. При этом испускаются нейтрино с энергией порядка 10–15 МэВ. Такие вспышки в принципе могут быть зарегистрированы.

Но, пожалуй, наиболее перспективна нейтринная астрономия высоких энергий — от 50 — 100 ГэВ и выше. Эта астрономия пока еще только зарождается, но о том, какого рода сведения она способна нам принести, можно судить уже сейчас, поскольку физические процессы, способные порождать нейтрино подобных энергий, нам известны. Такие нейтрино должны рождаться в результате взаимодействия ускоренных высокоэнергичных частиц с газом или электромагнитным излучением.

Где во Вселенной это может происходить? Например, при прохождении протонов высоких энергий, которые входят в состав космических лучей, через большие толщи газа. Столкновение таких протонов с атомными ядрами приводит к рождению заряженных пи-мезонов (пионов), при распаде которых появляются нейтрино.

Возможен и другой процесс. Многие космические объекты являются источниками интенсивных электромагнитных излучений. Вблизи этих объектов плотность фотонов может быть настолько велика, что протоны высоких энергий, многократно сталкиваясь с ними, растрачивают всю свою энергию. Это также приводит к рождению пионов, а затем и появлению нейтрино.

Важно отметить, что механизмы, о которых идет речь, рождают не только нейтрино, но и гамма-излучение. Однако при всей своей энергии гамма-фотоны не всегда достигают Земли. Потому ли, что объект, где они возникают, для гамма-излучения непрозрачен, или же в связи с расстоянием, столь большим, что гамма-фотоны поглощаются в межгалактическом пространстве прежде, чем дойдут до нас. В подобных случаях нейтринный вестник космических процессов может принести особенно интересную информацию.

Что же касается тех космических объектов, которые способны ускорять заряженные частицы и порождать протоны высоких энергий, то они могут иметь различную природу. Вообще говоря, ускорителями частиц являются все сколько-нибудь активные космические объекты. Частицы могут ускоряться в межзвездной и межпланетной среде, на Солнце, в магнитосфере Юпитера и даже Земли. Но особенно мощными ускорителями заряженных частиц являются вспышки сверхновых звезд и активные физические процессы, происходящие в ядрах галактик и квазарах.

Большой интерес представила бы также регистрация реликтовых нейтрино, которые согласно существующей теории могли возникать на некоторых этапах ранней стадии эволюции Вселенной. Изучение подобных нейтрино не только позволило бы еще раз проверить справедливость этой теории, но и помогло бы глубже разобраться в тонкостях происходивших в отдаленном прошлом физических процессов.

Новое тело в Солнечной системе

До сих пор в этой главе речь шла о тех новых данных, которые принесло современной астрономии овладение методами наблюдений в различных диапазонах электромагнитных излучений. Конечно, и эти данные, как и любые данные наблюдений, «вливаются» в общую картину Вселенной только тогда, когда их удаётся осмыслить с позиций определенных научных теорий. Но есть и такие проблемы, в которых теоретические исследования играют особенно важную роль, и именно они ведут к новым открытиям.

Одной из таких проблем является вопрос о «пределах» планетной семьи Солнца.

Как известно, каждая из планет Солнечной системы, перемещаясь по своей орбите, испытывает притяжение не только со стороны Солнца, но и со стороны других планет, обращающихся вокруг дневного светила. Благодаря этому наблюдаются так называемые возмущения — небольшие отклонения планетных орбит от тех, по которым двигалась бы каждая из планет, находись она в одиночестве.

Так как взаимное расположение планет постоянно изменяется, то и картина возмущений планетных движений весьма сложна и в целом не поддается абсолютно точному расчету. Однако при некоторых упрощающих предположениях возмущения, по крайней мере со стороны ближайших планет, могут быть вычислены. Возможно решение и обратной задачи — по наблюдениям возмущений орбиты той или иной планеты можно определить массу и положение в пространстве возмущающего тела.

Именно таким путем была в свое время открыта восьмая планета Солнечной системы — Нептун. К концу первой половины XIX в. в движении седьмой планеты — Урана были обнаружены такие отклонения, которые никак нельзя было объяснить притяжением уже известных планет, обращающихся вокруг Солнца. Оставалось предположить, что на Уран влияет какая-то еще неизвестная «заурановая» планета. Исходя из этого, французский ученый У. Леверье и английский ученый Дж. Адамс рассчитали, где и когда должна находиться неизвестная планета. Следуя этим указаниям, немецкий астроном И. Галле действительно обнаружил новую планету, которая и получила название Нептун. В начале текущего века американский астроном П. Ловелл по возмущениям орбиты Нептуна вычислил орбиту девятой планеты — Плутона, которая и была открыта в 1930 г.

Однако возмущения, вызываемые Плутоном, не могут объяснить всех тех возмущений, которые наблюдаются в движении Нептуна. Зарегистрированы «незапланированные» возмущения и у орбиты самого Плутона. Это давало основания предполагать, что за орбитой 9-й планеты Солнечной системы существует еще какое-то неизвестное тело. Тем не менее обнаружить это тело или получить о нем какие-либо более точные сведения долгое время не удавалось. Однако наблюдения за траекториями движения американских космических аппаратов «Пионер» и «Вояджер» обнаружили довольно значительные отклонения от расчетных орбит. Последующие вычисления показали, что эти отклонения с большой степенью вероятности могут быть объяснены воздействием со стороны неизвестного объекта, расположенного за орбитой Плутона, с массой, превосходящей массу Земли и, быть может, достигающей массы Солнца. Согласно предварительным данным находится это тело на расстоянии от нескольких сотен миллиардов до триллиона километров от Солнца. Это в несколько десятков тысяч раз больше, чем расстояние Земли от Солнца.

Рис. 10. Записи излучения трех пульсаров.

Интересно отметить, что несколько лет назад был обнаружен еще один любопытный эффект, возможно, также указывающий на существование в окрестностях Солнечной системы какого-то массивного тела. Этот эффект связан с наблюдением пульсаров. Пульсары — это быстровращающиеся нейтронные звезды. Вследствие вращения регистрируемое радиотелескопами остронаправленное радиоизлучение таких звезд представляет собой серии радиоимпульсов, следующих один за другим (рис. 10). Но так как со временем скорость вращения пульсаров изменяется, то изменяется и частота принимаемых на Земле радиоимпульсов.

Было замечено, что у пульсаров, расположенных в одной половине небесной сферы, эта частота изменяется медленнее, чем у пульсаров, расположенных в другой ее половине. Совершенно очевидно, что подобный эффект не может быть присущ самим пульсарам, а как-то связан с условиями их наблюдения. Одной из возможных причин и является присутствие в окрестностях Солнечной системы достаточно массивного тела. Если такое тело действительно существует, то Солнечная система должна определенным образом смещаться относительно центра масс системы «Солнце — массивное тело». Именно это ускоренное движение и может вызывать тот эффект в наблюдаемом радиоизлучении пульсаров, о котором идет речь.

Естественно возникает вопрос: что представляет собой неизвестное тело, какова его физическая природа? Пока на этот счет можно только строить предположения. В частности, не исключено, что загадочный объект является черной дырой.

Согласно расчетам И. Д. Новикова и Н. С. Кардашева, одна из черных дыр, возможно, образовавшихся на ранней стадии эволюции Вселенной и обладающих сравнительно небольшими массами, может находиться как раз на таком расстоянии от Солнца, на каком предположительно расположено то неизвестное тело, о котором мы только что говорили. Но черные дыры можно наблюдать только по некоторым побочным эффектам, например по эффектам, возникающим вследствие падения на них окружающего вещества. Однако в той области пространства, где находится неизвестное тело, межзвездная среда настолько сильно разрежена, что обнаружить подобный эффект практически невозможно.

Прежде всего, астрономам предстоит по имеющимся данным определить, в каком направлении относительно Солнца находится неизвестный объект, и постараться его непосредственно обнаружить. Если это не черная дыра, а обычное космическое тело — такая задача в принципе вполне разрешима.

Если предварительные выводы ученых подтвердятся, изменит ли это что-либо в окружающем нас мире? Внешне как будто ничего. Но это позволит лучше понять прошлое нашей Солнечной системы, историю ее образования. В частности, академик О. Ю. Шмидт — автор широко известной теории происхождения Земли и планет из холодного газово-пылевого облака — первоначально считал, что это облако было захвачено Солнцем во время его «путешествия» по Галактике. Однако в дальнейшем Шмидт отказался от этой идеи, поскольку, согласно законам механики, захват в системе двух тел невозможен, а в те годы, когда Шмидт создавал свою теорию, реального кандидата на роль «третьего» тела, которое обладало бы необходимой массой и находилось на достаточно близком расстоянии от Солнца и облака, в науке не существовало.

Но если подтвердится, что Солнце в самом деле является одним из компонентов двойной системы и неизвестное тело сравнимо с ним по массе, то положение кардинальным образом изменится и захват облака в принципе может оказаться возможным…

Присутствие массивного тела в Солнечной системе должно оказать определенное влияние на ее дальнейшую эволюцию, и хотя это влияние, скорее всего, может сказаться лишь в очень отдаленном будущем, а может и вообще оказаться несущественным, астрономам в своих расчетах придется принимать его во внимание. Это сделает прогнозирование будущих состояний Солнечной системы более точным и надежным.

Черные дыры

«Первый свой опыт я проделал над куском белой шерстяной материи. До чего же странно было видеть, как эта белая материя постепенно таяла, как струя пара, и затем совершенно исчезла! Мне не верилось, что я это сделал. Я сунул руку в пустоту и нащупал материю, столь же плотную, как и раньше. Я нечаянно дернул ее и она упала на пол. Я не сразу ее нашел»[12]).

Так герой научно-фантастического романа знаменитого английского писателя Герберта Уэллса осуществляет свой первый опыт. Он изобрел способ делать невидимыми различные тела, а затем превратил в невидимку и самого себя.

Любой предмет мы видим потому, что он отражает некоторую часть падающего на него света. Предмет, который бы никаких лучей не отражал, а был для них абсолютно прозрачен, оказался бы невидимым. Однако материальных объектов, удовлетворяющих подобным условиям и существующих в нашем обыденном мире, мы не знаем.

Тем не менее объекты-невидимки, полностью поглощающие любые излучения, а сами абсолютно ничего не излучающие, в принципе могут существовать!..

Двадцатый век принес с собой целый ряд удивительных открытий в области физики и астрономии. Многие из них с трудом укладываются в наши обыденные представления об устройстве окружающего мира, а иногда и вступают с этими представлениями в прямое противоречие.

Но таков закономерный путь развития естествознания. Идет своеобразная цепная реакция: обнаруживаются диковинные явления, а их дальнейшее изучение и осмысление приводит к открытию явлений еще более поразительных…

К числу таких явлений, оказавшихся в последние годы в центре внимания современной астрофизики, относятся и черные дыры. Одно название чего стоит: дыры во Вселенной, да еще черные!..

В начале века А. Эйнштейн разработал одну из наиболее фундаментальных физических теорий — теорию относительности. Собственно говоря, существуют две теории относительности: специальная и общая. Специальная теория (СТО) занимается изучением явлений, происходящих при больших скоростях, близких к скорости света. Общая теория относительности (ОТО) — ее иногда называют эйнштейновской гравитационной теорией — это теория тяготения, пространства и времени, представляющая собой обобщение ньютоновской теории тяготения.

Одним из главных выводов этой теории является вывод о тесной связи между геометрическими свойствами пространства, темпом течения времени и распределением массы. В частности, любые массы искривляют пространство и тем сильнее, чем эти массы больше.

Как известно, классическая физика Ньютона рассматривала пространство Вселенной как пустое «вместилище», в котором расположены небесные тела, взаимодействующие по закону всемирного тяготения.

Если бы из мира исчезла вся материя, говорил Эйнштейн, формулируя для широкой публики различие между классической физикой и общей теорией относительности, то с точки зрения физики Ньютона пространство и время сохранились бы. С точки зрения общей теории относительности с исчезновением материи исчезли-бы пространство и время.

Нет абсолютного пространства и абсолютного времени, единых для всей Вселенной. И пространство, и время — формы существования материи.

Еще в довоенные годы физики рассмотрели любопытную теоретическую возможность: если очень большая масса вещества оказывается в сравнительно небольшом объеме, то под действием собственного тяготения это вещество начинает неудержимо сжиматься. Наступает катастрофа — гравитационный коллапс — падение вещества в точку, где плотность в принципе может достигнуть чуть ли не бес конечной величины…

В процессе коллапса растет концентрация массы, растет в соответствии с общей теорией относительности и кривизна. Дело в том, что сильные поля тяготения существенным образом искривляют пространство в сфере своего действия. Это может проявляться, например, в отклонении от прямолинейного распространения световых лучей вблизи каких-либо масс, в частности, в отклонении света далеких звезд при его прохождении вблизи Солнца.

В конце концов, в результате сжатия наступает момент, начиная с которого ни один физический сигнал не может «вырваться» изнутри коллапсирующего образования наружу, и для внешнего наблюдателя оно как бы перестает существовать. Вот такой объект и называется черной дырой. От него к нам не поступает никакая информация. Ведь любая информация должна иметь «материального носителя» — она не может распространяться сама собой.

Правда, тут следует сделать оговорку. Хотя непосредственно обнаружить черную дыру невозможно, она, строго говоря, невидимкой в том смысле, который вкладывал в это понятие Уэллс, все же не является: мы не можем видеть сквозь нее. Отсюда и название — черная дыра.

Возможно, именно по этой причине теоретическое исследование, о котором шла речь выше, было выполнено по принципу: «рассмотрим некоторую воображаемую ситуацию и попытаемся выяснить, что из нее получается….». О существовании во Вселенной реальных черных дыр в то время не было никаких фактических данных.

Заметим, кстати, что принципиальная возможность существования объектов типа черных дыр вытекает и из обычной классической механики. На это обратил внимание в конце XVIII в. П. Лаплас. Но полная теория физических процессов, происходящих в черных дырах, может быть построена только с позиций общей теории относительности.

В последние десятилетия в глубинах космоса был открыт целый ряд явлений, которые говорят о возможности концентрации огромных масс вещества в сравнительно небольших областях пространства. В связи с этим астрофизики снова вспомнили о гравитационном коллапсе и пришли к выводу, что существует ряд космических процессов, которые в принципе могут приводить к образованию черных дыр.

Черные дыры привлекают к себе внимание не только потому, что в них могут достигаться чудовищно большие плотности, но и потому, что в районе этих объектов, возможно, приобретают совершенно удивительные, экзотические свойства пространство и время.

Одно из существенных различий между теориями тяготения Ньютона и Эйнштейна состоит в том, что гравитационные силы определяются в этих теориях различными формулами. Формула, выражающая закон тяготения Ньютона, общеизвестна:

где G — постоянная тяготения, Mm — массы взаимодействующих тел, a R — расстояние между их центрами. Именно с такой силой, например, звезда массы М, с точки зрения классической теории тяготения, притягивает тело массы m, расположенное на ее поверхности.

В теории тяготения Эйнштейна сила тяготения определяется иной формулой:

где с — скорость света в пустоте.

Различие этих формул определяет и разный характер поведения силы тяготения в тех или иных ситуациях. Рассмотрим, например, случай, когда звезда массы М сжимается в точку, т. е. расстояние между ее центром и центром тела массы т сокращается.

Согласно формуле (4), сила тяготения при этом будет соответственно расти, оставаясь в то же время конечной при любом конечном расстоянии.

Иным будет поведение силы тяготения, рассчитанной по формуле (5). При определенной величине R=rg выражение под корнем в знаменателе обращается в нуль, а Fэ — в бесконечность.

Подсчитаем величину rg:

Эта величина получила название гравитационного радиуса. Если R намного больше, чем rg, то выражение под корнем в знаменателе формулы (5) мало отличается от единицы, так как с2 — величина очень большая и дробь пренебрежимо мала. В этом случае формула (5) практически совпадает с формулой (4). Однако по мере того, как R приближается к rg, различие становится все более существенным. И при R = rg сила тяготения, как мы уже знаем, становится бесконечно большой.

Можно подсчитать, что для массы Солнца гравитационный радиус равен 3 км, для массы Земли — 0,9 см; а для массы нашей Галактики — 1011 км, в то время как действительные радиусы этих объектов соответственно равны 700 тыс. км, 6400 км и 9·1017 км. Таким образом, размеры «обыкновенных» космических объектов — планет, звезд, галактик, как правило, в миллионы и миллиарды раз больше их гравитационных радиусов. Отсюда, между прочим, следует, что для небесных тел, сходных с Землей или Солнцем, эффекты общей теории относительности (ОТО) весьма невелики, и практически их можно не принимать во внимание.

Отметим одно любопытное обстоятельство. Хотя гравитационные радиусы Земли и Солнца весьма заметно отличаются от их реальных радиусов, тем не менее они имеют конечные значения. Возникает вопрос: чему равна сила тяготения Fэ на расстояниях, еще меньших, чем rg? Ведь уже при rg она равна бесконечности. Все дело в том, что в наших расчетах мы вычисляли силу тяготения, действующую на покоящееся «пробное» тело массы М. В действительности же сфера радиуса rg — так называемая сфера Шварцшильда — обладает тем свойством, что любое тело, оказавшееся на ее поверхности или внутри нее, не может оставаться неподвижным — оно должно падать внутрь…

Следовательно, если любое тело окажется на сфере Шварцшильда (иногда ее называют «горизонтом черной дыры»), то оно будет двигаться только внутрь черной дыры.

Свойства невращающихся черных дыр, образовавшихся в результате коллапса, зависят только от двух параметров: массы и электрического заряда. Все остальные возможные различия, связанные с распределением коллапсирующей массы в пространстве, вещественным составом и т. п., в процессе коллапса полностью исчезают. Поэтому по состоянию такой черной дыры в данный момент невозможно восстановить ее предысторию.

Рассмотрим ситуацию, которую нередко используют авторы научно-фантастических произведений в качестве «физической предпосылки» для развития событий. Звездолет неосторожно приблизился на критическое расстояние к черной дыре, и его «затянуло» под сферу Шварцшильда. Может ли в такой ситуации экипаж предпринять какие-либо эффективные меры для своего спасения? К сожалению, таких мер не существует. И не более чем через 10-5 (М/Мс) секунд (где М — масса черной дыры, а Мс — масса Солнца) звездолет попадет в центр черной дыры.

Более того, любая попытка с помощью двигателей затормозить падение приведет к противоположному результату. Дело в том, что согласно специальной теории относительности ускоренное движение приводит к так называемому лоренцеву замедлению времени. И по часам экипажа звездолет достигнет сингулярности за еще более короткий промежуток времени.

А может ли какое-либо тело обращаться вокруг черной дыры по окружности? Для этого, очевидно, необходимо, чтобы падение тела к центру черной дыры под действием ее притяжения в каждый данный момент компенсировалось соответствующим его перемещением в направлении, перпендикулярном радиусу орбиты. Как показывают расчеты, для обеспечения кругового движения на расстоянии, равном 3rg от центра черной дыры, тело должно обладать орбитальной скоростью, равной половине скорости света, а на расстоянии, равном 1,5rg, орбитальная скорость должна равняться световой.

Из этого следует, что на еще более близком расстоянии круговое движение вообще оказывается невозможным — ведь для его поддержания потребовалась бы сверхсветовая скорость.

В действительности круговое движение оказывается невозможным уже даже на расстоянии 3rg, так как на подобном расстоянии движение по окружности вокруг черной дыры является неустойчивым. Это значит, что сколь угодно малые возмущения должны привести к тому, что тело покинет круговую орбиту и либо упадет в черную дыру, либо улетит от нее. Впрочем, прежде чем это произойдет, тело может совершить большое число оборотов вокруг черной дыры.

Одной из причин, которая может заставить тело, обращающееся вокруг черной дыры, покинуть круговую орбиту, является излучение уже знакомых нам (см. гл. I) гравитационных волн, существование которых предсказано ОТО. Согласно этой теории, гравитационные волны должны возникать при любом ускоренном движении тел и уносить определенное количество энергии. При обычных взаимных движениях астрономических тел, происходящих в соответствии с законом тяготения Ньютона, излучение гравитационных волн обладает чрезвычайно слабой интенсивностью. Однако при круговом движении тела вокруг черной дыры на достаточно близком расстоянии от нее оно становится существенным. Теряя энергию на гравитационное излучение, тело будет постепенно приближаться к черной дыре и, достигнув расстояния, равного 3rg, окажется на неустойчивой орбите. Дальнейшее излучение гравитационных волн приведет к тому, что тело сойдет с круговой орбиты и «провалится» в черную дыру.

В рамках теории тяготения Ньютона захват в системе двух тел, как уже было отмечено в предыдущем разделе, невозможен. Тело, приближающееся извне к некоторой массе, обладающей гравитационным полем, должно либо упасть на нее, либо пройти мимо неё по гиперболе или параболе. Иная картина возникает в том случае, если какое-либо тело приближается со стороны к черной дыре со скоростью, значительно уступающей скорости света. Если при этом оно подойдет к окружности, радиус которой равен 2rg, то прежде, чем улететь обратно в космос, это тело совершит вокруг черной дыры большое число оборотов — произойдет как бы «временный захват». Но может произойти и полный — в том случае, если движущееся тело подойдет к окружности с радиусом 2rg вплотную. При такой ситуации орбита движущегося тела будет неограниченно навиваться на эту окружность.

Итак, черные дыры — это объекты, радиус которых равен гравитационному радиусу для данной массы. Иначе можно сказать, что все вещество черной дыры находится внутри сферы Шварцшильда. Поэтому эффекты ОТО играют для таких объектов решающую роль. В столь сильных гравитационных полях свойства пространства описываются уже не привычной нам евклидовой геометрией, а так называемой римановой геометрией, в которой хорошо знакомые нам геометрические соотношения оказываются недействительными.

В области черных дыр совершенно необычным образом протекают и временные процессы. Согласно общей теории относительности, в сильных гравитационных полях течение времени замедляется. Поэтому ход физических процессов в черной дыре и вблизи нее для наблюдателя, находящегося на большом расстоянии в обыкновенной среде, и для наблюдателя «вблизи» и «внутри» черной дыры будет выглядеть по-разному. Для внешнего наблюдателя процесс сжатия коллапсирующего вещества будет протекать бесконечно длительное время. А момента вхождения массы «под» гравитационный радиус он вообще не дождется, так как вблизи границы черной дыры время останавливается.

Иную картину увидел бы воображаемый наблюдатель, падающий вместе с веществом в черную дыру. Он за конечный промежуток времени достиг бы гравитационного радиуса и продолжал падение к центру черной дыры.

Таким образом, ход времени вне черной дыры и внутри нее оказывается качественно различным. С точки зрения обычной «земной» логики и здравого смысла, опирающегося на круг явлений, привычных для человека и протекающих в привычной для него среде обитания, эти рассуждения о неодинаковом ходе времени могут показаться странными и противоречивыми. Тем не менее они соответствуют реальности.

Еще одно принципиальное отличие между теорией тяготения Ньютона и ОТО состоит в следующем. С точки зрения классической теории гравитационное поле центральносимметричного тела, например шара, не зависит от того, неподвижен этот шар или он вращается. Другими словами, в классической физике поле тяготения полностью определяется распределением масс в данный момент.

Иначе обстоит дело в гравитационной теории Эйнштейна. Как мы уже знаем, при отсутствии вращения сила тяготения обращается в бесконечность на сфере Шварцшильда. Однако, если черная дыра (будем для простоты считать ее сферической) вращается, то обращение силы тяготения в бесконечность происходит на некоторой поверхности, охватывающей сферу Шварцшильда. Эта поверхность получила название границы эргосферы, а пространство, заключенное между нею и сферой Шварцшильда, называется эргосферой.

Любое движущееся тело, оказавшееся внутри эргосферы или на ее поверхности, будет увлекаться в движение вокруг черной дыры. При этом оно может как приближаться к сфере Шварцшильда, так и удаляться от нее, а также пересекать границу эргосферы в разных направлениях.

В частности, если какая-нибудь частица, оказавшаяся в эргосфере, распадается на две частицы, то одна из них может быть поглощена черной дырой, а другая вылететь наружу, увеличив за этот счет свою кинетическую энергию. Таким образом, из области эргосферы может происходить частичный возврат энергии, накопленной черной дырой. Хотя, как показывают расчеты, подобный механизм «выкачивания» энергии не слишком эффективен.

Во вращающихся и заряженных коллапсирующих объектах фаза сжатия может смениться фазой расширения. А это, в свою очередь, может привести к образованию «белой дыры». Н. С. Кардашев предложил «мысленный эксперимент», наглядно иллюстрирующий свойства черных и белых дыр. Он рассмотрел ощущения воображаемого наблюдателя, погружающегося на космическом корабле в заряженную черную дыру. Оказывается, такой «путешественник» никогда не возвратится в свой мир. Проникновение в заряженную черную дыру с последующим выходом в белую дыру будет соответствовать путешествию на «машине времени», которая проходит бесконечно большие расстояния за конечные промежутки времени и преодолевает в конечном интервале собственного времени (времени, протекающего для наблюдателя) бесконечно большие интервалы времени для «внешних» наблюдателей. В этом путешествии наблюдатель «выныривает» как бы в «абсолютном будущем» — в мире, которым, может быть, станет наш мир через невообразимо огромные промежутки времени. Мало того, возможно, что этот «новый» мир не связан с нашим миром никаким простым пространственно-временным образом, а отделен от него бесконечным интервалом времени. И в него обычным способом нельзя попасть никогда.

Очень интересны эффекты, сопутствующие такому воображаемому путешествию. Н. С. Кардашев отмечает, что наблюдатель на космическом корабле во время погружения в черную дыру увидит все будущее нашей Вселенной, а при выходе из белой дыры — все прошлое «новой» Вселенной.

А как обстоит дело с «захоронением» вещества внутри черных дыр? Так ли оно бесповоротно? Или при каких-то обстоятельствах это вещество все же может «возвращаться» во Вселенную?

В 1974 г. было теоретически показано, что квантовые эффекты, связанные с черными дырами, должны приводить к тому, что и эти объекты излучают подобно абсолютно черному телу с температурой, не равной нулю, и тем самым теряют свою массу (испаряются). Однако более или менее ощутимым такое излучение может быть только для черных «мини-дыр», т. е. дыр с массой в миллиарды миллиардов раз меньше солнечной. Так, дыра с массой порядка нескольких миллиардов тонн может полностью испариться за 10 млрд. лет, т. е. за срок, сравнимый с возрастом нашей Вселенной. В современную эпоху подобные «мини-дыры» в нашей Вселенной вряд ли могут возникать, по крайней мере для этого не видно соответствующих физических процессов. Но на ранней стадии расширения их возникновение, вероятно, было возможно. Однако к нашему времени такие реликтовые черные дыры должны были полностью испариться. Что же касается черных дыр с несколько большими массами, то они в принципе могли «дожить» и до нашего времени. Сейчас подобные объекты должны переживать заключительную стадию своей эволюции, а именно бурно «испаряться». Однако поиски подобных объектов пока что не принесли успеха.

До сих пор речь шла, так сказать, о теоретической стороне дела. Однако для того, чтобы убедиться в том, что черные дыры не просто «теоретическая возможность», а действительно существующие во Вселенной объекты, надо обнаружить хотя бы одну реальную черную дыру.

Как показывают теоретические расчеты, в черные дыры в принципе могут на заключительных стадиях своей эволюции превращаться звезды с массой в 3 и более раз превосходящей массу Солнца. Есть несколько космических объектов, которые находятся «на подозрении». Однако даже относительно наиболее вероятного кандидата в черные дыры такого рода — рентгеновского источника в созвездии Лебедя полной уверенности все же нет, хотя наблюдения этого объекта и не противоречат гипотезе о черной дыре.

Дело в том, что картина, которая наблюдается, в принципе может иметь и другие объяснения. По мнению некоторых ученых, образование черных дыр в результате «умирания» массивных звезд вообще представляет собой довольно редкое явление.

«Звезда, — пишет академик В. Л. Гинзбург, — может окончить свой жизненный путь одним из четырех способов: взорваться без остатка, превратиться в белый карлик, превратиться в нейтронную звезду и, наконец, стать черной дырой. Возможно, и некоторые известные из литературы расчеты подкрепляют это предположение, что конечное состояние в форме черной дыры достигается лишь при редком стечении условий и параметров»[13]).

Впрочем, коллапс массивных звезд — не единственная возможность образования черных дыр во Вселенной. Вернемся к обсуждавшемуся в предыдущей главе вопросу о природе квазаров и ядер галактик.

Прибегая к известной кибернетической терминологии, можно сказать, что «сердцевины» или, как их называют, «керны» этих объектов представляют собой «черные ящики», т. е. образования, внутреннее устройство которых нам неизвестно, и мы можем судить о нем лишь по «входным» и «выходным» сигналам. По мнению некоторых исследователей, основанному на существующих наблюдательных данных, керны не находятся в каких-то особых, экстраординарных условиях, и протекающие в них явления можно в принципе объяснить в рамках известных нам физических закономерностей и физических процессов. Высказывается, например, предположение, согласно которому керн представляет собой вращающееся магнитоплазменное образование магнитоид (иногда его называют спинаром). Согласно другой гипотезе, керны квазаров и ядер галактик являются массивными черными дырами.

По мнению некоторых ученых, их масса может достигать миллиардов солнечных масс. Такие черные дыры способны «заглатывать» окружающее вещество, в том числе небольшие небесные тела, разрывать приближающиеся к ним звезды или срывать с них атмосферные оболочки и «питаться» образующимся при этом газом.

Благодаря мощной концентрации массы в небольшом объеме черная дыра может с очень высокой степенью эффективности преобразовывать энергию падающего на нее газа в энергию излучения или кинетическую энергию.

В частности, если черная дыра вращается, то, как показывают расчеты, она должна вовлечь во вращение и окружающий ее газ. А это, в свою очередь, может привести к выбрасыванию газовых струй вдоль направлений, параллельных оси вращения черной дыры.

Следует, однако, подчеркнуть, что и это предположение является только гипотезой, которая должна быть подтверждена наблюдениями. Вообще говоря, существует целый ряд причин, которые могут препятствовать превращению больших сжимающихся масс вещества в черные дыры. С точки зрения теории достаточно большая компактная масса вещества действительно должна коллапсировать и может превратиться в черную дыру. Но является ли подобный финиш коллапса практически неизбежным — еще вопрос! Имеется ряд факторов, которые в принципе способны помешать образованию в процессе сжатия массивных черных дыр.

В частности, при коллапсе быстровращающегося тела на его экваторе развиваются центробежные силы, препятствующие дальнейшему сжатию. Оно продолжается только вдоль линии, соединяющей полюса. В результате может сформироваться «блин» с радиусом значительно больше гравитационного и образования черной дыры не произойдет. Коллапсирующие массы могут фрагментировать — распадаться на части. На определенной стадии сжатия возможно возникновение ядерных процессов, способных вызвать разлет газовых масс. Эти и некоторые другие физические явления могут помешать «коллапсу до конца» или по крайней мере сильно его замедлить, настолько, что стадия черной дыры будет достигнута лишь через несколько миллиардов лет. А если это так, то образование черных дыр в квазарах и ядрах галактик должно представлять собой весьма редкое явление. Следовательно, высокую активность и огромное энерговыделение этих объектов присутствием черных дыр объяснить трудно!

Во всяком случае, до сих пор астрономические наблюдения реальных указаний на существование черных дыр как в ядре нашей Галактики, так и в ядрах других звездных систем не принесли.

Разумеется, все эти соображения не являются, как отмечает В. Л. Гинзбург, «…решительным возражением против возможности связать активность в квазарах и галактических ядрах с массивными черными дырами. Речь идет лишь о том, что нельзя без дальнейших доказательств принимать такую гипотезу как нечто почти обязательное или даже наиболее вероятное. Проблема состоит в том, чтобы выяснить природу кернов квазаров и активных галактических ядер путем наблюдений»[14]).

Нельзя, в частности, сбрасывать со счета и предположение, высказанное академиком В. А. Амбарцумяном, согласно которому компактные образования в ядрах галактик и квазарах представляют собой очень плотные сгустки так называемой дозвездной материи, физическая природа которой, однако, тоже остается неясной.

Видимо, истинное положение вещей удастся выяснить лишь в результате дальнейших исследований.

Таким образом, в современной астрофизике по вопросу о реальном существовании черных дыр во Вселенной и их роли в различных космических процессах существуют разные мнения. Однако удивляться тому, что в процессе изучения некоторых сложных научных проблем возникают различные концепции, иногда даже прямо противоречащие друг другу, не следует.

«… при движении в неизведанной области, — пишет В. Л. Гинзбург, — только достигнутый успех подтверждает правильность выбранного пути. Поэтому никто не может на серьезном уровне заранее объявлять те или иные подходы „идейными“ или „безыдейными“. Вместе с тем при рождении новых гипотез и предложений каждый заинтересованный наблюдатель выносит для себя определенное интуитивное суждение, делает какой-то прогноз. В дальнейшем, естественно, такой наблюдатель радуется, если оказался прав, и огорчается в случае ошибки»[15]).

Открытие реальных черных дыр имело бы фундаментальное теоретическое значение. Существование подобных объектов явилось бы важным подтверждением справедливости ОТО в сильных гравитационных полях. И не только качественным, но и (если удастся осуществить соответствующие измерения вблизи черных дыр) количественным. В настоящее время ОТО широко применяется физиками и астрофизиками и для тех случаев, когда речь идет о сильных гравитационных полях (при условии, что квантовые эффекты в рассматриваемой области малы). Тем не менее нельзя сбрасывать со счета то обстоятельство, что справедливость ОТО для сильных полей проверена все же недостаточно. К тому же существуют теории гравитационного поля, отличающиеся от эйнштейновской теории, с точки зрения которых определенные явления (например, поведение гравитационных волн) должны протекать иначе, чем предсказывает ОТО.

И хотя непротиворечивость этих теорий, — отмечает В. Л. Гинзбург, — и их «внутренняя последовательность не всегда доказаны, было бы, как я убежден, неправильно без доказательств принимать, что черные дыры заведомо могут существовать» [16]).

Поэтому обнаружение во Вселенной реальных черных дыр и изучение их свойств явилось бы очень важной проверкой ОТО в сильных гравитационных полях, представляющей первостепенный интерес для понимания физики Вселенной.

Космические иллюзии

Знаменитый английский мыслитель Бертран Рассел как-то сказал: математики обычно говорят так — если верно то, то верно и это; таким образом, математики никогда не знают, о чем они говорят, и верно ли то, о чем они говорят. Разумеется, Бертран Рассел несколько сгустил краски — он вообще был склонен к парадоксальным высказываниям. Но бесспорно одно — многие теоретические построения, и не только в математике, но и в астрофизике, конструируются именно по тому самому формальнологическому принципу, о котором упомянул Рассел. Выдвигается некоторое предположение или допущение, затем чисто теоретическим путем из него выводятся всевозможные следствия.

И тем не менее было бы неправильно утверждать, что физики и астрономы «не знают, о чем они говорят». Ведь исходные предположения строятся либо на фундаменте существующей теории, либо на почве тех или иных конкретных фактов. А выводы с помощью наблюдений и экспериментов сопоставляются с реальностью.

Но что верно, то верно: логическая машина обладает завидной способностью перерабатывать любую заложенную в нее информацию, независимо от того, чему именно она соответствует в реальной действительности. Вероятно, это обстоятельство в какой-то мере побуждает ученых к теоретической разработке даже самых экстравагантных предположений, и нередко подобные усилия оправдываются, приводят к открытию новых явлений, новых закономерностей окружающего мира. Даже в тех случаях, когда полученный результат не подтверждается наблюдениями, он все равно приносит немалую пользу, способствуя выяснению того, «как в природе не бывает», и тем самым отсекая бесперспективные пути исследования, сужая круг возможных объяснений.

Поэтому попытки применения разнообразных теоретических подходов к тому или иному еще недостаточно хорошо изученному явлению отнюдь не бесполезны. Особенно в тех случаях, когда ни один из предлагаемых теоретических вариантов объяснения подобных явлений нельзя признать достаточно убедительным. Именно с такого рода ситуациями то и дело сталкиваются современные астрономы.

Как мы уже говорили, астрономия — наука дистанционная, изучаются не сами космические объекты непосредственно, а их излучения. Свойства этих излучений зависят от свойств их источников — таким образом природа вкладывает в них информацию о тех физических процессах, которые их порождают.

Однако связь между тем, что регистрирует прибор, установленный на поверхности Земли или на борту искусственного спутника, и космическим явлением далеко не прямая. Показания прибора необходимо истолковать, интерпретировать. А сделать это можно лишь в рамках определенных теоретических представлений.

Но далеко не всегда теоретические представления о тех или иных космических процессах являются однозначными. Особенно в тех случаях, когда речь идет о новой области исследований. Отсюда могут возникать всевозможные неопределенности. Речь, разумеется, идет не о том, что астрономические методы исследования вообще недостоверны, а лишь о тех специфических затруднениях, которые нередко возникают в астрономии на пути к желаемому.

Вспомним хотя бы нашумевшую в свое время историю открытия пульсаров. Это произошло в 1967 году…

Подходила к концу ничем не примечательная августовская ночь. На радиоастрономической обсерватории неподалеку от Кембриджа велись обычные наблюдения. И вдруг на ленте регистрирующего прибора появилась странная запись. Импульсы радиоизлучения, следующие один за другим через равные промежутки времени. И с такой точностью, что по ним можно было бы с успехом проверять не только обычные, но даже атомные часы!.. Объяснение напрашивалось само собой — обнаружен искусственный радиопередатчик неведомой внеземной цивилизации. Английские ученые были настолько ошарашены этим поразительным открытием, что на протяжении нескольких месяцев хранили его в строжайшей тайне и даже окрестили своих предполагаемых далеких корреспондентов «зелеными человечками».

Сегодня природа загадочных импульсных сигналов уже ни для кого не составляет секрета: их порождают пульсары — быстровращающиеся нейтронные звезды, т. е. физические объекты в космосе, не имеющие никакого отношения к деятельности гипотетических разумных существ.

Таким образом, оказалось, что во Вселенной возможны физические процессы, порождающие правильно организованное радиоизлучение и тем самым как бы «маскирующиеся» под искусственные радиопередачи.

Другой пример связан с черными дырами. Как уже говорилось, непосредственно наблюдать черные дыры нельзя. Обнаружить их можно лишь косвенным путем.

Я. Б. Зельдович предложил оригинальный метод — искать подобные экзотические образования в двойных системах. Если один из компонентов такой системы света не излучает, а его масса превосходит пять солнечных масс, то можно предполагать, что это — звезда, закончившая в полном соответствии с теорией свое существование в стадии черной дыры. В этом случае, как показывают расчеты, из области такой двойной системы должно исходить интенсивное рентгеновское излучение.

Объект, обладающий всеми перечисленными свойствами, был обнаружен в созвездии Лебедя. Его масса равна 14 солнечным, и из этой области идет рентгеновское излучение. Казалось бы, все признаки черной дыры налицо! Но когда астрофизиков спрашивают, уверены ли они в том, что объект в созвездии Лебедя действительно черная дыра, они с неопределенной улыбкой говорят примерно следующее: «Весьма вероятно, но голову на отсечение я бы пока все-таки не дал. Разве что… палец».

Неопределенность улыбки в данном случае отражает астрономическую неопределенность. Да, эффекты, предсказываемые теорией, в самом деле зарегистрированы. Однако не исключена возможность, что причиной этих эффектов является не черная дыра, а совсем иной физический процесс.

Случаются в астрофизике и неопределенности несколько иного рода. Они возникают в связи с тем, что полученные в результате наблюдений данные могут оказаться недостоверными благодаря… оптическим иллюзиям. Иными словами, иногда при астрономических исследованиях из-за особенностей распространения световых лучей в мировом пространстве возникают своеобразные обманы зрения, способные вводить в заблуждение наблюдателей…

В словаре В. И. Даля понятие «иллюзия» расшифровывается так: «видимость, мнимое, обманчивость, обман чувств, обман воображения, надежд…».

А в Советском энциклопедическом словаре мы читаем: «Иллюзии (от латинского illusio — обман), искаженное восприятие действительности, обман восприятия…».

И далее: иллюзии оптические (обманы зрения), ошибки зрительного восприятия объектов — их цвета, величины, формы, удаленности и др. Иллюзии оптические связаны с влиянием цветового контраста, освещенности окружающих предметов, движения объекта и др.

Хорошо известна классическая астрономическая иллюзия, жертвой которой оказались наши предки, — иллюзия суточного обращения всех небесных светил вокруг Земли. Земной шар вращается вокруг своей оси с запада на восток, а нам кажется, что Солнце, Луна, планеты и звезды перемещаются в обратном направлении с востока на запад. Эта иллюзия сыграла исключительно важную роль в истории человечества: она способствовала построению ошибочной геоцентрической картины мира, господствовавшей на протяжении многих столетий. До тех пор, пока Копернику не удалось раскрыть ее иллюзорный характер.

Еще одну космическую иллюзию мы тоже наблюдаем чуть ли не каждый день. Нам представляется, что диск Солнца обладает таким же поперечником, как и диск Луны. В действительности же диаметр Солнца примерно в 450 раз больше лунного. Но Солнце находится в 400 раз дальше от Земли, и по этой причине, видимые угловые размеры обоих светил для земного наблюдателя почти совпадают. Кстати, именно по этой причине маленькая Луна может (это происходит во время солнечных затмений) полностью закрыть огромный диск дневного светила.

Рис. 11. Двойной квазар.

Но это еще сравнительно простые случаи. Встречаются ситуации и гораздо более сложные.

В середине 1979 г. в созвездии Большой Медведицы был открыт очередной необычный космический объект — двойной квазар. Два квазара, расположенные на небе на очень небольшом угловом расстоянии друг от друга, соответствующем фактическому расстоянию всего в 500 световых лет (рис. 11).

Этот квазар зарегистрирован в соответствующем астрономическом каталоге под индексом Q 0957+ 561 А, В. Буква Q означает «квазар», цифры — небесные координаты, буквы А и В — двойной характер, объект а.

Столь близкое расположение квазаров уже само по себе удивительно, поскольку эти объекты распределены на небесной сфере более или менее равномерно и находятся друг от друга на значительных расстояниях.

Но еще удивительнее было то, что оба квазара, о которых идет речь, оказались похожими один на другой словно близнецы-братья. Спектры их излучения совершенно одинаковы: совпадают и химический состав и даже интенсивности соответствующих спектральных линий. А последующие наблюдения показали, что спектры обоих компонентов совпадают не только в диапазоне видимого света, но и в ультрафиолетовой области. Более того, и тот и другой квазары удаляются от нас с совершенно одинаковыми скоростями, составляющими около 0,7 скорости света. А это, между прочим, означает, что оба объекта не просто проектируются в одну и ту же область небесной сферы, а находятся от нас на совершенно одинаковых расстояниях порядка 10 млрд. световых лет.

Рис. 12. Эффект Эйнштейна.

Что же в таком случае представляет собой загадочный двойной квазар? Редчайшее случайное совпадение? Однако, как известно, вероятность случайных совпадений в природе весьма невелика. А может быть, никакого двойного квазара на самом деле и не существует, и мы столкнулись со своеобразной «космической иллюзией» — своего рода космическим миражом?

Ничего невероятного в подобном предположении нет. Еще в 1936 г. А. Эйнштейн высказал предположение о возможности отклонения световых лучей в полях тяготения массивных космических тел, играющих таким образом роль своеобразных гравитационных линз. Он, в частности, рассмотрел случай, когда на одном луче зрения расположены две звезды — более далекая и более близкая. Эйнштейн показал, что в этой ситуации гравитационное поле ближней звезды может действовать как собирательная линза, фокусирующая свет дальней звезды. В результате видимый блеск этой звезды значительно возрастет (рис. 12).

Когда были открыты квазары с их необычайно мощным излучением, намного превосходящим все, что было известно ранее, некоторые астрономы предприняли попытку объяснить это явление не реальными свойствами квазаров, а действием космических «гравитационных линз», в фокусе которых случайно оказалась наша Земля. Однако дальнейшие исследования со всей убедительностью показали, что квазары в самом деле являются чрезвычайно мощными источниками энергии и гравитационные линзы здесь ни при чем.

Рис. 13. Гравитационная линза

Однако это вовсе не означает, что отклонение световых лучей в сильных гравитационных полях вообще не может приводить к космическим иллюзиям. Открытие двойного квазара вновь заставило вспомнить об идее Эйнштейна. Представим себе, что между каким-либо космическим объектом, например квазаром, и Землей расположен компактный массивный объект — черная дыра большой массы или галактика (рис. 13).

Если бы этого объекта не существовало, то световые лучи квазара распространялись бы прямолинейно. И те из них, которые направлены в сторону наблюдателя, создали бы обычное одиночное его изображение. Однако при наличии массивного объекта картина оказалась бы иной. Под воздействием сильного гравитационного поля световые лучи испытали бы искривление, и на прежнем месте наблюдатель квазара бы не увидел. Зато к нему пришли бы световые лучи, «обогнувшие» гравитационную линзу справа и слева, подобно тому, как струи водного потока огибают встретившееся на их пути препятствие. В этом случае наблюдатель увидел бы вместо одного два «мнимых» изображения квазара, несколько отстоящие одно от другого. Мнимых потому, что они находились бы не в том месте, где в действительности расположен квазар, а по направлениям касательных к искривленным световым лучам, пришедшим в точку, откуда ведутся наблюдения. Иными словами, в этом случае сработал бы тот же самый физический механизм, который приводит к возникновению хорошо известных земных миражей.

Как показывают теоретические расчеты, в зависимости от взаимного расположения наблюдаемого космического объекта, гравитационной линзы и наблюдателя могут возникать и более сложные картины.

Вернемся, однако, к обнаруженному астрономами двойному квазару в созвездии Большой Медведицы. Что это — реальная двойная система или оптический обман?

Как это выяснить? Вычисления показывают, что расщепленные гравитационной линзой световые лучи, создающие двойное изображение, по дороге к наблюдателю должны пройти пути разной длины. Следовательно, один из них придет на Землю с некоторым опозданием.

Запаздывание, о котором идет речь, т. е. возникновение разности фаз в поведении различных компонентов изображения, образованного гравитационной линзой, обусловлено еще и одним из эффектов общей теории относительности — замедлением течения времени в сильных гравитационных полях. Этот эффект вызывает дополнительное «торможение» электромагнитных сигналов, испытавших воздействие гравитационной линзы. И если двойной космический объект действительно космическая иллюзия, то все изменения, происходящие с одним из компонентов подобной «системы», должны через некоторые определенные промежутки времени совершенно точно повторяться со вторым компонентом: ведь это один и тот же объект, который мы наблюдаем с различной степенью запаздывания! В том случае, когда все наблюдаемые изменения будут повторяться с одним и тем же «сдвигом фазы», предположение о расщеплении света и возникновении «космического миража» получит весомое подтверждение.

В результате наблюдений, проведенных в 1980 г. на 6-метровом телескопе Специальной астрофизической обсерватории АН СССР, было установлено, что с течением времени яркость компонента А постепенно ослабевает, а компонента В — возрастает.

В дальнейшем обнаружилось, что аналогичные изменения происходят также в радио- и ультрафиолетовом диапазонах. Полученные данные позволяют предполагать, что двойственность квазара, о котором идет речь, в самом деле представляет собой оптический эффект, вызванный отклонением световых лучей в сильном гравитационном поле. Однако окончательный ответ о природе двойного квазара дадут лишь дальнейшие исследования.

Теоретические подсчеты показали, что ожидаемый сдвиг фаз в поведении компонентов А и В квазара Q 0957+561 А, В составляет около 5 — 6 лет. Таким образом, ответ на вопрос о том, совпадает ли характер изменений обоих компонентов, должен быть получен в ближайшем будущем.

Пока что положение остается неопределенным — есть аргументы и «за», и «против». В частности, против объяснения двойственности квазара Q 0957+561 А, В, вызванной действием гравитационной линзы, казалось, говорило и то обстоятельство, что согласно астрономическим наблюдениям компонент А оказался несколько краснее компонента В. Различными по своей структуре оказались и радиоизображения загадочной пары, полученные в результате радиоинтерферометрических наблюдений.

Однако исследования, проведенные на 5-метровом телескопе обсерватории Маунт Паломар, оборудованном специальной телевизионной системой с электронно-вычислительным устройством, как будто разрешили эти недоразумения.

Анализ полученных данных показал, что в красных лучах компонент В обладает несколько более протяженным профилем, чем компонент А., Ученые предположили: это различие вызвано тем, что компонент В сливается с галактикой-линзой, искажающей его очертания. Исходя из этого, они осуществили своеобразную операцию — «вычли» из компонента В компонент А и таким способом выделили ту часть компонента В, которая, возможно, и представляет собой искомую галактику-линзу.

Если это действительно так, то, как показывают измерения, ее угловое расстояние от компонента В очень мало — всего 0,8 угловой секунды. Следовательно, излучение, идущее от компонента В, по дороге к земному наблюдателю проходит через среду галактики-линзы. Благодаря этому, к излучению компонента В в красной части спектра добавляется красное излучение звезд галактики-линзы.

Таково возможное объяснение различной яркости компонентов А и В в красных лучах, не противоречащее объяснению двойственности квазара Q 0957+561 А, В с точки зрения гипотезы гравитационной линзы.

В принципе космические иллюзии могут возникать и по несколько иной схеме. Если объект, играющий роль гравитационной линзы, обладает очень большой массой (например, массивная черная дыра), то он способен не только искривить световые лучи, идущие от того или иного светила, но и повернуть их на значительный угол. Это может привести к весьма любопытному иллюзионному эффекту.

Луч звезды, расположенной в стороне от черной дыры, обогнув ее, придет к нам на Землю, и мы увидим эту звезду на его продолжении, т. е. как раз в том направлении, где находится черная дыра, играющая роль гравитационной линзы. Но то же самое может произойти и со световыми лучами многих других звезд. Испытав в районе черной дыры, играющей роль гравитационной линзы, отклонения различной степени, эти лучи сольются вместе и создадут мнимое изображение объекта чрезвычайно высокой яркости. Хотя в действительности в этом месте небесной сферы расположена черная дыра, которая вообще ничего не излучает!

Невольно возникает вопрос: а не являются ли вообще квазары просто-напросто одной из возможных форм оптических иллюзий в космосе — результатом фокусировки света звезд черными дырами?

И еще один вопрос: что будет, если черная дыра расположена как раз между Землей и наблюдаемой звездой, т. е. в случае, аналогичном рассмотренному Эйнштейном?

Тогда к наблюдателю придут не только лучи, искривленные гравитационной линзой, но и множество лучей, совершивших вокруг черной дыры один или несколько оборотов прежде, чем им удастся вырваться из поля ее тяготения и двинуться дальше. Что увидит в этом случае земной наблюдатель? Расчеты показывают, что звезда предстанет перед ним как система концентрических светящихся колечек. Вследствие огромного расстояния эти колечки сольются, и звезда покажется наблюдателю значительно более яркой, чем она есть в действительности.

А теперь представим себе такую картину. Некая звезда, совершающая свое движение вокруг центра Галактики, в какой-то момент оказывается на продолжении прямой линии, соединяющей Землю с черной дырой. Тогда создается только что описанная ситуация, и в течение некоторого времени мы будем воспринимать звезду, о которой идет речь, как сверхъяркий космический объект. Иными словами, эта ничем не примечательная звезда как бы вспыхнет, а затем вновь возвратится в прежнее состояние. Но ведь подобная картина весьма напоминает явление, хорошо известное в астрономии, — вспышку сверхновой звезды!

Разумеется, и квазары и сверхновые звезды — это вполне реальные физические объекты во Вселенной. Что касается квазаров, то с ним связан целый комплекс физических явлений, которые никак нельзя свести к одним лишь оптическим эффектам. А при вспышках сверхновых звезд, как мы уже знаем, образуются газовые туманности — остатки выброшенного звездой вещества.

Стоит ли в таком случае вообще говорить о каких-то космических иллюзиях? Но если оптические эффекты, подобные описанным выше, теоретически возможны, то при определенных условиях они в принципе могут возникать. И об этом нельзя забывать. Ведь не исключено, что некоторые явления, наблюдаемые во Вселенной, в той или иной степени связаны с действием гравитационных линз.

Любопытно отметить, что гравитационные линзы по сравнению с обычными обладают целым рядом удивительных свойств. Так, например, согласно теоретическим выкладкам, видимая яркость космического объекта, усиленная гравитационной линзой, с увеличением расстояния между ней и наблюдателем, не только не должна уменьшаться, а наоборот, будет возрастать. Кроме того, гравитационная линза не имеет фиксированного фокусного расстояния: она собирает лучи не в одной точке — фокусе, а на поверхности некоторого конуса, начиная в определенного минимального расстояния от данной линзы и до бесконечности.

Наблюдатель, который находится вне такого конуса, увидит только сам реальный космический объект в том направлении, в котором он действительно находится. Если же наблюдатель располагается внутри конуса, то он будет видеть как минимум три изображения. А при определенном строении объекта, играющего роль гравитационной линзы, — даже пять и больше.

Почему же в случае двойного квазара Q 0957+561 А, В наблюдается только двойное изображение? Ведь если двойственность этого объекта — иллюзия, вызванная искривлением лучей гравитационной линзой, то согласно теории должно наблюдаться тройное изображение. Как считают некоторые специалисты, третий компонент изображения не удается в данном случае увидеть потому, что он сливается либо с компонентом В, либо с галактикой, играющей роль гравитационной линзы.

Разумеется, упомянутые выше свойства гравитационных линз практически реализуются только до определенной степени. С одной стороны, при расчетах, в результате которых они выведены, допускаются известные упрощения, а с другой — на ход лучей, прошедших через гравитационную линзу, оказывают влияние гравитационные поля и других небесных тел.

Но, пожалуй, самая интересная особенность гравитационных линз состоит в том, что их воздействие на электромагнитные излучения не зависит от длины волны. Это значит, что они одинаковым образом фокусируют как лучи видимого света, так и радиоволны и ультрафиолетовые и рентгеновские лучи и гамма-излучение.

Согласно современным представлениям, наблюдаемая нами часть материального мира представляет собой сферическую область, заполненную галактиками, квазарами и другими космическими объектами. Вследствие разбегания галактик радиус этой сферы быстро увеличивается.

Однако наши представления о расположении космических объектов в пространстве основываются на предположении о прямолинейном распространении электромагнитных волн, в том числе лучей видимого света. Но ведь мы живем не в пустой Вселенной, а во Вселенной, заполненной различными массами. А там, где есть массы, пространство, согласно общей теории относительности, искривляется. Иными словами, распространение электромагнитных излучений перестает быть прямолинейным. Вследствие этого действительные положения космических объектов могут весьма существенно отличаться от наблюдаемых. И эти отклонения будут тем сильнее, чем больше расстояния.

Вообще, геометрическая структура Вселенной может оказаться чрезвычайно сложной, а ход световых лучей в ней весьма замысловатым. В некоторых теоретических моделях световые лучи могут приходить к земному наблюдателю не только непосредственно от того или иного далекого космического объекта, но и обежав несколько раз пространство Вселенной! В результате наблюдатель увидит примерно такую же картину, какую мы видим, оказавшись между двумя обращенными друг к другу параллельными зеркалами, т. е. бесконечный ряд последовательных отражений.

Иными словами, один и тот же космический объект земной наблюдатель может увидеть многократно: вместо одного объекта целую цепочку абсолютно одинаковых. И только самый близкий из них существует реально, остальные — мираж. Теоретики изобрели для них впечатляющее название — «духи».

Опять-таки то, о чем идет речь, — теоретическая возможность. Реализуется ли она? Тщательное изучение и сравнение известных космических объектов показало, что на расстояниях вплоть до 30 световых лет цепочек, состоящих из одинаковых объектов, нет. А на больших расстояниях? Вопрос пока остается открытым…

Не составляют «цепочки» и знакомые нам близнецы — квазары. Во-первых, их только два, а во-вторых, они находятся от нас на одинаковых расстояниях и, что самое главное, обладают одинаковой яркостью. Что же касается миражей — «духов», то они должны быть созданы лучами, прошедшими столь различные пути, что их изображения одинаковой яркостью обладать заведомо не могут.

Весьма заманчива также возможность уточнения о помощью космических гравитационных линз, если они действительно существуют, постоянной Хаббла (см. с. 41).

Определение значения постоянной Хаббла связано о очень большими трудностями, так как для этого необходимо точно знать расстояния до удаленных «космических объектов. А прямых методов определения этих расстояний в распоряжении современной астрономии, к сожалению, все еще не имеется. Поэтому неудивительно, что значение постоянной Хаббла не раз подвергалось существенному пересмотру. Так, еще сравнительно недавно она считалась равной примерно 100 километрам в секунду на один мега-парсек. Затем значение постоянной было уменьшено вдвое. Однако в последнее время известный астроном Ж. де Вокулер на основе анализа обширного материала наблюдений галактик и их скоплений произвел очередной пересмотр постоянной Хаббла, приняв ее прежнее значение, т. е вновь увеличив ее в два раза.

Если это значение соответствует действительности, то все космические расстояния должны быть пересмотрены в сторону их уменьшения. Мало того, должен быть пересмотрен в сторону уменьшения и возраст Вселенной, т. е. продолжительность ее расширения от начального состояния до нашей эпохи.

Чем же могут помочь гравитационные линзы? Если наблюдения позволят в дальнейшем определить величину запаздывания луча, искривленного гравитационной линзой, то можно будет вычислить время хода прямого, неискривленного луча, а следовательно, и определить точное расстояние до наблюдаемого объекта. Зная это расстояние, а также величину красного смещения в спектре объекта, можно рассчитать и постоянную Хаббла.

Наконец, по степени задержки искривленного луча можно будет вычислить истинную массу галактики, играющей роль гравитационной линзы, и тем самым выяснить, какой вклад в нее вносят нейтрино (см. раздел „Великое объединение“, с. 133).

В заключение следует отметить, что в непосредственной близости от квазара PC И15-08 обнаружено два очень слабых объекта, спектры которых совпадают со спектром этого квазара. Не исключено, что открыта еще одна космическая иллюзия, обязанная своим возникновением эффекту гравитационной линзы.

Несколько лет тому назад астрономы столкнулись с весьма загадочным явлением. Начиная с июля 1977 г. и до июля 1980 г. в результате радиоинтерференционных наблюдений была получена серия последовательных изображений квазара ЗС 273, расположенного на расстоянии около 2 млрд. световых лет от Земли. На этих изображениях был отчетливо виден компактный сгусток, выброшенный из ядра квазара, который постепенно удалялся от него и за три года отошел от своего первоначального положения в плоскости, перпендикулярной лучу зрения, на угол, соответствующий (для расстояния, на котором находится ЗС 273) реальному расстоянию в 25 световых лет.

Но согласно одному из наиболее фундаментальных положений современной физики никакой физический процесс не может распространяться со скоростью, превосходящей скорость света. Таким образом, максимальная возможная скорость движения выброса — это один световой год за год. А за три года, в течение которых велись наблюдения, — три световых года.

Три, а не двадцать пять!

Не значит ли это, что обнаружено явление, подрывающее основы основ наших физических представлений о мире? Однако хоронить современную физику мы все-таки подождем, а лучше зададимся вопросом: нет ли у „сверхсветового“ выброса другого объяснения? Оказывается, есть!

Рассмотрим схему, изображенную на рис. 14.

Представим себе следующую ситуацию. Квазар, расположенный в точке О, выбросил компактный сгусток плазмы по направлению к Земле ОВ1, отличающемуся от направления луча А1О на малый угол а. Предположим, что скорость движения сгустка близка к скорости света и за 300 лет он проходит расстояние в 297 световых лет.

Луч света, вышедший из точки О, спустя 300 световых лет придет в точку A1. За это время сам сгусток приблизится к Земле на 297 световых лет. Линии A1B2 он достигнет с опозданием (по сравнению со световым лучом, вышедшим из точки О) примерно на 3 года.

Следовательно, когда луч света, вышедший из точки О, достигнет точки A2, где расположен земной наблюдатель, луч света, вышедший из точки В1 отстанет на три световых года и достигнет земного наблюдателя с опозданием на эти 3 года.

Таким образом, в июле 1977 г. земной наблюдатель зарегистрировал луч от компактного выброса, вышедший из точки О, а в 1980 г. он зафиксировал луч от того же источника, пришедший из точки В1.

Внешне это выглядит так, будто в плоскости, перпендикулярной лучу зрения, источник переместился из точки А1 в точку В2, отстоящую от А1 на 25 световых лет. В действительности же произошло совсем иное: сам источник приблизился к нам, удалившись от точки О на значительно большее расстояние в 297 световых лет. Но преодолел он это расстояние за 300 лет, а не за 3 года, как могло показаться на первый взгляд.

Иными словами, источник фактически перемещался, хотя и о очень большой, но все же досветовой скоростью, а его удаление» со скоростью, превосходящей скорость света, оказалось явлением иллюзорным, возникшим вследствие условий наблюдения.

Весьма любопытная ситуация, показывающая, что о выводами, ставящими под сомнение фундаментальные основы наших научных знаний, никогда не следует торопиться!

Рис. 14. Возникновение иллюзии сверхсветового выброса.

Глава III Вселенная

«Вселенная естествоиспытателя»

В предыдущих разделах этой книги мы не раз пользовались термином «Вселенная». Это и понятно: ведь астрономия — наука о Вселенной. Однако для того, чтобы это (утверждение приобрело определенность, необходимо прежде всего выяснить, что мы понимаем под термином «Вселенная». Вообще, в науке обсуждение каких-либо проблем всегда должно начинаться с определений, иначе любое обсуждение теряет всякий смысл. В особенности это относится к такому фундаментальному понятию, как Вселенная. Тем более что за последние годы в понимании содержания этого понятия произошли существенные изменения.

Еще сравнительно недавно термином «Вселенная» пользовались для обозначения всего существующее. Таким образом, понятие «Вселенная» было равнозначно понятиям «материя», «материальный мир».

Однако бурное развитие астрономии, расширение области познания природных явлений поставило в повестку дня необходимость уточнения и разграничения терминологии, о которой идет речь.

«Исходя из принципа эволюции есть все основания считать, — пишет известный советский ученый академик П. Н. Федосеев, — что Вселенная, изучаемая современным естествознанием, представляет развивающееся во времени образование, которое возникло из каких-то предшествовавших ему состояний и форм материи и сменится новыми ее состояниями и формами.

Для материалистической философии чужды представления о порождении физического мира сознанием как об акте творения Вселенной каким-то высшим существом. Если Вселенная, изучаемая нами сегодня, возникла 20 млрд. лет тому назад, то с философской точки зрения важно признание этого процесса как космического этапа саморазвития материи. Дело конкретной науки — физически понять и описать этот процесс. Возможно мыслить и существование многих Вселенных со сложной топологией. Поэтому целесообразно отличать термин „Вселенная естествоиспытателя“, которым обозначаются наши сведения о Вселенной, накопленные к данному моменту времени, от философского понятия материального мира. Это понятие включает в себя в скрытом виде все будущие достижения в учении о Вселенной естествоиспытателя»[17]).

В то же время наряду с понятием «Вселенная естествоиспытателя» целесообразно ввести и термин «Астрономическая Вселенная» или «наша Вселенная», понимая под этим тот объективно существующий материальный контекст, который в результате познавательной деятельности человека получает отражение в образе «Вселенной естествоиспытателя».

С некоторыми астрофизическими явлениями, возникшими в процессе изучения космических миров и таким образом вошедшими во «Вселенную естествоиспытателя», мы познакомимся в этой главе.

Разумеется, астрономия, как и всякая другая наука, обладает внутренней логикой своего развития. Новые данные неизбежно рождают новые вопросы, а новые исследования влекут за собой постановку новых проблем — и так без конца. Но прежде всего любая наука стремится решить те задачи, которые представляют наибольший интерес для человечества на том или ином этапе его развития.

Чем же в этом плане — так сказать, «по большому счету» — привлекает изучение Вселенной современного исследователя?

Во-первых, тем, что в этой бесконечно разнообразной лаборатории, созданной природой, мы можем изучать такие физические процессы, состояния материи, Источники энергии, которые нельзя воспроизвести и исследовать в земных условиях. Вселенная все в большей и большей степени становится лабораторией современной физики — науки, которая является основой научно-технического прогресса.

А во-вторых, в последние годы, в особенности в связи в освоением космоса, мы стали все яснее и отчетливее понимать, что средой нашего обитания является не только непосредственно планета Земля и даже не только Солнечная система, но по сути дела вся наша Вселенная!

Это значит, что чрезвычайно важное значение для существования и сознательной деятельности человечества имеет изучение космических процессов, тех изменений, которые совершаются во Вселенной, тех физических явлений, которые в ней происходят. Земную среду нашего обитания изучают такие науки, как география, геофизика, геология, экология. Астрофизика становится наукой о космической среде нашего обитания.

Круг (научная фантастика)

Критическая ситуация, как нередко бывает в жизни, возникла до ужаса просто и нелепо…

— А теперь сфотографируй меня здесь, Стен! — весело прокричала Глен и легко взбежала на причудливо изогнутый ажурный мостик, переброшенный через узкую щель каньона.

Внизу, в головокружительной глубине, крутясь и пенясь, несся стремительный горный поток.

Глен тряхнула головой, отбросив на спину волну золотистых волос и, улыбаясь, облокотилась на перила.

— Ну…

Фостер поймал ее в прямоугольник видоискателя и приготовился нажать спуск.

Он знал, что произойдет через мгновение…

Глухой треск. Прогнившие перила не выдержали.

— Глен! — в ужасе закричал Стенли Фостер.

Но было поздно. Теряя равновесие и цепляясь за рассыпающиеся перила, Глен закачалась над пропастью.

Выпустив из рук фотоаппарат, Стенли в два прыжка взлетел на мостик и успел ухватиться за изогнувшуюся полированную рейку в тот самый момент, когда она готова была оторваться от последнего крепления. Мышцы его, ощутив тяжесть, мгновенно напряглись. Там, внизу, над пустотой, ухватившись обеими руками за другой конец рейки, беспомощно висела Глен.

— Держись, Глен… — прохрипел Стенли, осторожно подтягивая к себе рейку вместе с девушкой. — Держись…

Он видел, как ее руки медленно скользят по полированной поверхности. Только бы успеть…

Стенли знал, что не успеет!

Продолжая подтягивать рейку одной рукой, он перегнулся через край настила и попытался дотянуться до Глен. Ему не хватило каких-нибудь сантиметров…

Пальцы Глен соскользнули к самому концу рейки. Торопясь, Стенли рванул рейку к себе, и его рука почти коснулась руки Глен. Отчаянным усилием девушка попыталась подтянуться ему навстречу, но рейка вырвалась у нее из рук, и Глен с пронзительным криком унеслась в бездну…

Словно вдогонку, с дерева, низко нависшего над мостиком, сорвался большой, рано пожелтевший лист. Плавно кружась в застывшем полуденном воздухе, он коснулся мостика, проскользнул под сохранившейся частью перил и, на мгновение неподвижно повиснув над пропастью, ринулся вниз, видимо, попав в нисходящий поток воздуха.

С трудом удержав равновесие на покачнувшемся настиле, Фостер мгновенно выпрямился, продолжая держать в руках ненужную теперь рейку. В его ушах все еще звучал последний крик Глен.

Он слышал этот крик в четвертый раз…

А день начинался чудесно. После недели нудных дождей впервые появилось солнце, и они с Глен забыли о недавней ссоре.

Между ними нередко вспыхивали споры об отвлеченных предметах, незаметно переходившие, к неудовольствию Стенли, в обсуждение их собственных отношений, что почти всегда оканчивалось взаимными обидами.

— Не могу понять, — сказала Глен, — зачем это нужно — поворачивать вспять время?

— Люди многое бы отдали, чтобы прожить минувший день еще раз и не повторять ошибок, которые они совершили.

Глен с сомнением покачала головой:

— Нет… От человека мало что зависит. У каждого свой путь, и он должен по нему пройти…

— Ты веришь в судьбу?

— Свою судьбу я, во всяком случае, знаю… Томиться в одиночестве, пока ты дни и ночи проводишь в своей лаборатории.

— Ведь ты знаешь, на какую идею я натолкнулся!

— Но уходят месяцы и годы, — грустно заметила Глен, — и не вернуть их никаким хроноскопом.

— Потерпи, — мягко сказал Стенли. — Осталось совсем немного… Пойми — это мой долг перед людьми…

Это было вчера… А сегодня утром, когда Глен еще спала, Стенли удалось справиться с последним препятствием. Он закончил монтаж и теперь мог позволить себе передышку.

Правда, сделан был только самый первый шаг: построенный Фостером вариант хроноскопа позволял возвращаться в прошлое всего на какие-нибудь два часа… Но преграда, веками казавшаяся совершенно неприступной, наконец, была преодолена.

Глен предложила провести этот день в Шаленском парке…

Оставив машину у подножья горы, они вскарабкались по узкой тропинке на верхнюю террасу, и тут Глен захотелось сфотографироваться. А потом этот роковой мостик…

Несколько мгновений Стенли стоял, оглушенный случившимся, ничего не видя вокруг. Потом его пронзила мысль, которая неизбежно является каждому, кто стал свидетелем или жертвой несчастного случая: ведь этого могло и, не быть. Если бы вернуть назад всего несколько минут и проявить совсем немного осмотрительности и осторожности…

Стенли вздрогнул. Для всех остальных людей, живших на Земле, подобные сожаления бывают, увы, запоздалыми. Но у него… у него был хроноскоп!

Еще не успев ничего обдумать, Фостер, скользя по усыпанной сосновыми иглами крутой тропинке и обдирая руки о колючий кустарник, помчался к оставленной внизу машине.

Прежде всего — успеть! Сюда они с Глен добирались часа полтора. Не меньше пятнадцати минут понадобится на то, чтобы аппаратура вошла в режим; Сейчас около полудня…

Значит, он во что бы то ни стало должен попасть в лабораторию не позже половины второго. И то времени останется в обрез, ведь необходимо сдвинуть его вспять настолько, чтобы захватить момент, предшествовавший несчастью. А подвластны Стенли всего два часа…

Вскочив в машину, он чуть ли не с места дал полный газ. Вообще Стенли не любил слишком быстрой езды, и по этому поводу у него тоже нередко возникали споры с подвижной, экспансивной Глен. Но сейчас он развил бешеную скорость, выжимая из машины все, что было возможно…

Когда позади осталась большая часть пути, Стенли вдруг показалось, что, создавая хроноскоп, он допустил элементарную непоправимую ошибку. Ведь каждому мало-мальски грамотному физику отлично известно, что вторгаться в прошлое, изменять его ни в коем случае нельзя! Последствия таких изменений могут прийти в противоречие с уже совершившимися событиями и создать неразрешимые парадоксы. Путешествующий на машине времени, возвратившись в сбою эпоху, рискует встретить катастрофические перемены. И, уж конечно, абсолютно недопустимо возвращать к жизни человека, который ушел из нее…

Но тут же неожиданное затмение прошло, и Стенли облегченно вздохнул. Ведь он десятки раз обдумывал эту проблему. И давно пришел к выводу, что к его хроноскопу все это не имеет ни малейшего отношения.

Хроноскоп — не машина времени, переносящая путешественника в различные эпохи. Это аппарат, возвращающий вспять само время. После его включения мир мгновенно оказывается в прошлом. Правда, пока только на два часа… Такой переход как бы «стирает» все, что успело за эти два часа совершиться. И если в повторном варианте какие-то события будут развертываться иначе, парадоксов все равно не произойдет…

Фостер на мгновение оторвал взгляд от летящей навстречу дороги и посмотрел на часы. Как он ни спешил, времени оставалось в обрез.

Перескакивая через ступеньки, Стенли взлетел по лестнице, дрожащей рукой повернул ключ, рванул дверь и, метнувшись к пульту, одну за другой нажал пусковые кнопки. Лабораторию наполнило мерное гудение.

Потом он снова посмотрел на часы. Оставалось минут двадцать — не больше. Но теперь он успеет!..

Гудение постепенно нарастало. В него вступил новый, свистящий звук, словно откуда-то рвалась упругая струя пара. Стрелки на многочисленных шкалах плавно оторвались от нулевых отметок и поползли, отсчитывая деление за делением. Положив руку на пусковой рычаг блока управления временем, Фостер напряженно ждал. Медленно уходили минуты…

Сейчас ему не хотелось даже думать о том, что будет, если установка недоработает.

Разумеется, прежде чем приступить к сборке хроноскопа, Фостер проделал сотни экспериментов. Однако сдвиг времени в тех опытах не превосходил миллионных долей секунды. На полную мощность он включал хроноскоп впервые… Предстоял прыжок сразу на два часа… Впрочем, Стенли был уверен в том, что его расчеты не содержат ошибок. Мысль о возможности неудачи он постарался загнать в глубь сознания…

До критического срока оставалось только четыре минуты. Стараясь сохранить спокойствие, Фостер прибавил напряжение. Потом еще. И еще…

Наконец, последняя стрелка коснулась контрольной черты. Через минуту темпоральное поле должно было достигнуть расчетной величины.

Плотно сжав губы, Фостер до отказа перевел рычаг…

Гудение оборвалось сразу — и наступила необычная глухая тишина. Потом Фостеру показалось, что лаборатория наполнилась странным голубым туманом. Но сам он не испытывал никаких необычных ощущений… Туман мгновенно сгустился до полной черноты, а когда рассеялся, Фостер увидел себя снова в парке на берегу каньона у знакомого мостика. Рядом с ним была Глен.

— А теперь сфотографируй меня здесь, Стен! — весело прокричала она, вбегая на роковой мостик.

С беспощадной отчетливостью Фостер представил все, что должно за этим последовать. И… не смог даже крикнуть, предупреждая об опасности. Как и в первый раз, он поднял аппарат, поймал Глен в прямоугольник видоискателя…

Всеми его движениями и поступками сейчас словно руководила некая внешняя неумолимая сила. Он ощутил себя безвольной марионеткой. Это было невыносимо: казалось, он вполне мог помешать трагическому исходу и тем не менее поступал вопреки такой возможности.

Все повторилось точь-в-точь, словно эпизод, записанный на пленку видеомагнитофона.

И падение… И крик…

И снова Стенли, обдирая лицо и руки, мчался вниз, к машине, снова в безумной надежде бешено гнал ее по дороге, страшась потерять хотя бы минуту. Чтобы вновь, на рамой грани критического срока, нажать рычаг хроноскопа…

И опять он оказался вблизи рокового мостика в тот же самый момент, и вновь пережил ужас катастрофы, и вновь ничего не смог сделать.

И опять этот ужасный крик. И тот же сорвавшийся в дерева желтый лист, медленно оседающий в пропасть…

А потом гонка на автомобиле, лаборатория, хроноскоп, красный рычаг…

Круг, заколдованный круг!

Только что несчастье повторилось в четвертый раз.

И Фостер понял, что попал в ловушку, из которой нет выхода. Как он мог не подумать об этом раньше?

Ведь если все однажды совершившиеся события должны повторяться с железной неумолимостью, то в их число входит и включение хроноскопа!.. И значит, теперь он, Фостер, обречен весь остаток жизни мчаться сломя голову в машине, врываться в лабораторию, включать хроноскоп, — и все только для того, чтобы еще и еще раз присутствовать при гибели Глен… Заколдованный круг, из которого ему никогда не выбраться.

Впрочем, что значит — остаток жизни? Время фактически остановилось — теперь оно вечно будет кружиться в пределах двух роковых часов: катастрофа, машина, лаборатория, хроноскоп, снова катастрофа… И опять, и опять… И так веки вечные!..

Его точно пронзило током: а Глен? Каждые два часа она будет возникать из небытия, чтобы через несколько секунд умирать — умирать несчетное число раз!

Смерть ужасна — все в человеке восстает против нее, но умирать целую вечность!..

И тут же эта мысль уступила место другой, неизмеримо более страшной.

Ведь в том же самом заколдованном двухчасовом круге обречено теперь вращаться и все человечество… Нет, впрочем. Мощность хроноскопа не так уж велика, чтобы воздействовать на всю планету. И все-таки — а вдруг?..

Стенли похолодел, живо представив себе, как многие тысячи людей на Земле будут вечно умирать, а другие тысячи вечно страдать от болезней. И даже те, у кого в течение этих двух часов произошли радостные события, вряд ли станут счастливы от их бесконечного повторения. Ведь за этой радостью ничего не последует!

Фостеру мучительно захотелось проснуться и стряхнуть о себя немыслимое наваждение. Но он отчетливо сознавал, что это не сон, что ему вообще не суждено больше видеть снов, его ждет вечное бодрствование в несокрушимых пределах между двенадцатью и двумя часами пополудни…

В этот момент мрачные размышления Стенли были прерваны: контрольная стрелка достигла красной черты, и водоворот времени вновь подхватил, закружил его и вынес в то же трагическое место — к змеящейся среди пышной зелени щели глубокого каньона…

Еще один неотвратимый круг… И еще один… и еще… От непрерывного калейдоскопа изнурительно повторяющихся событий Стенли постепенно терял способность мыслить. Он уже почти не реагировал на происходящее, и лишь тупо и бессмысленно продолжал автоматически играть снова и снова свою двухчасовую роль…

И все же, несмотря на липкий густой туман, обволакивающий его мозг, Фостер натренированным глазом физика-экспериментатора отметил странную деталь…

Он не мог бы сказать, на каком это случилось круге. Но он увидел, как желтый листок, сорвавшийся с дерева, на этот раз упал в пропасть, не коснувшись мостика. Ничтожное различие в несколько сантиметров. Но — различие!..

Сознание Фостера, мгновенно избавившись от оков безразличия, лихорадочно заработало, словно двигатель, к которому подключили электроэнергию.

Разница в несколько сантиметров!.. Мельчайший штрих, ничтожнейшая деталь, вряд ли способная сколько-нибудь существенно повлиять на воспроизведение событий.

Но она есть, эта разница, — вот в чем главное! Фостер не мог ошибиться, он видел совершенно отчетливо… А если так, значит, в мире в самом деле нет той железной последовательности и предопределенности всех событий, которую исповедовали физики во времена Ньютона и Лапласа…

Как же он мог позабыть?.. Случайность!.. Она есть… Вселенной правит не алгебра, исключающая любые неожиданности и непредвиденные повороты, а вероятность… Разве сам он не объяснял много раз своим студентам, что мировые процессы необратимы? И приводил пример: если, скажем, взорвать мост через реку, а затем пустить время вспять, то разлетающиеся во все стороны осколки хотя и повернут назад, но никогда не соберутся вновь в точно такой же мост…

Прошедшее и будущее связаны неоднозначно!

Падающий листок… А может быть, не только листок? Просто он не обратил внимания. Был подавлен одной только мыслью о невозможности спасти Глен.

Теперь Фостер стал внимательнее присматриваться к повторяющимся событиям. И ему удалось заметить, что некоторые детали действительно различаются. Однажды тот же лист опустился не слева от мостика, а с противоположной стороны. В другой раз на одном из перекрестков, который он неизменно проскакивал при зеленом свете светофора, его едва не задержал красный сигнал. Тогда же Фостер отметил, что аппаратура хроноскопа входила в режим на одну миллисекунду дольше, чем обычно…

Разумеется, все это были только мелкие, в общем-то несущественные детали, которые сами по себе мало что могли изменить. И все же у Фостера появилась надежда. Смутная, неосознанная, неясная — и все-таки надежда.

Стенли преобразился. Он обладал бесценным для экспериментатора свойством::способностью, если нужно, сотни и тысячи раз настойчиво повторять один и тот же опыт, без устали производить повторные однообразнее измерения. До тех пор, пока не будет получен желаемый результат. Именно это всесокрушающее упорство и помогло Фостеру создать хроноскоп…

Но, прежде чем действовать, надо было все продумать и взвесить. Теперь, когда он снова обрел какое-то равновесие, в голову ему пришла поразительная мысль. Настолько очевидная, что можно было лишь удивляться, как она не возникла раньше. Может быть, именно в силу своей очевидности?..

Только на пятнадцатом, а может быть, на двадцатом круге Фостер обратил внимание на то, что помнет все случившееся, начиная с момента трагедии у мостика. И все, что происходило потом, всеоднообразные повторения событий. А ведь он считал, что обращение времени должно стирать всякую памятью событиях, которые из прошедших становятся будущими.

И разве не удивительно, что в его сознании рождаются новые мысли, которые не возникали на прошлых кругах? Все действия и поступки воспроизводятся точь-в-точь, а сознание почему-то себя не повторяет. В чем же дело?

Может быть, правы те, кто считает, что мозг — это своеобразное квантово-механическое устройство, где предшествующие состояния связаны с последующими далеко не однозначно. Система, работающая на принципе неопределенности…

Но разве не сознание управляет поступками человека? Почему же, в таком случае, он ясно видит возможность спасти Глен, но не способен совершить для этого ни одного реального шага? Почему, словно бездушный автомат, он каждый раз только повторяет и повторяет одни и те же действия? Странное раздвоение разума и тела?… Какой-то совершенно удивительный, не укладывающийся в сознании парадокс.

Парадокс!.. Но всякий парадокс — сигнал о неведомых возможностях…

«Порвалась связь времен» — почему-то пришли на память знаменитые гамлетовские слова. Если бы Датский принц был диалектиком, он понимал бы, что именно тогда, когда рвется «связь времен» — цепь привычных причин и следствий, — и создаются наиболее благоприятные условия для прогресса, для скачка в неизвестное.

Эту истину. Фостер за долгие годы своих занятий физикой успел усвоить очень хорошо. Сколько раз перед ним вырастала глухая стена, которую, казалось, невозможно было ни преодолеть, ни обойти. Но стоило только обнаружить парадокс — явление, противоречащее привычным теориям, — и всегда находилась хорошо замаскированная потайная дверца, за которой открывался совершенно новый путь.

Где же та дверца, которую он должен отыскать на этот раз?

Хотя Фостер продолжал участвовать в безостановочно вращающейся карусели событий, его сознание было теперь целиком поглощено поисками решения.

* * *

Итак, предопределения нет и события необратимы. Миром правят не железные правила механики, а законы случая. Их тоже невозможно нарушить: закон природы — это закон природы, и ничего тут не поделаешь. И все же вероятность оставляет какую-то возможность «от» и «до», какую-то., пусть даже минимальную, свободу выбора, свободу действий. Пропасть между мыслью и действием не может быть абсолютно непреодолимой.

Теперь, подумал Стенли, все зависит от меня, только от меня. От моей сосредоточенности, воли, упорства, от веры в возможность совершить то, что я должен совершить…

Он наметил план: постараться включить хроноскоп хотя бы чуть-чуть быстрее. Тогда чуть раньше он окажется там, у мостика, — у него появится дополнительное время, и можно будет попытаться что-то изменить.

В очередной раз ворвавшись в лабораторию, Фостер величайшим напряжением воли заставил себя чуть быстрее метнуться к пульту. Электронный секундомер бесстрастно отметил, что аппаратура включена на десятую долю секунды раньше…

На следующем’цикле выигрыш составил уже полсекунды.

А потом пошло и пошло! Разрыв во времени по сравнению с «исходным графиком» событий быстро нарастал и скоро достиг уже нескольких секунд. Видимо, Фостеру все же удалось что-то изменить в цепи причин и следствий.

Но у мостика пока что все оставалось по-прежнему. Только теперь Фостер с каждым новым кругом удалялся от рокового момента все дальше и дальше в прошлое. Постепенно разница достигла почти двадцати секунд.

В водоворот времени включались все новые и новые события, предшествовавшие падению Глен. Однако их последовательность оставалась неизменной. И теперь Фостер сосредоточил все свои силы, всю волю только на том, чтобы нарушить эту последовательность, выбить какое-то звено из цепи событий именно в этом месте.

Он уже потерял счет циклам, — вероятно, их промелькнуло несколько десятков, может быть, даже полсотни, — но сейчас это его не интересовало. Лишь однажды в его сознании возникла мысль о том, что пятьдесят двухчасовых циклов — это четверо суток: четверо суток он не спал, не ел, не испытывая ни голода, ни усталости. Должно быть, так могло продолжаться целую вечность, по крайней мере — пока не перегорит что-то в хроноскопе.

Но не будет продолжаться! Он, Стенли Фостер, вызвал «из бутылки» этого джинна, этот взбесившийся вихрь времени, он его и разрушит, укротит, разомкнет заколдованный круг. Теперь, после того, как в сражении с вечностью было выиграно двадцать секунд, — Стенли поверил в свою победу…

Надо остановить Глен, увести ее от этого проклятого мостика, увести раньше, чем она взойдет на него и обопрется о хрупкие обманчивые перила. И достичь этого нужно с помощью какого-то предельно минимального действия, которое прежде отсутствовало в цепи событий. Какого же?

Фостер не сомневался в том, что сколько-нибудь серьезного отступления от записанного однажды в анналах времени «сценария» ему при всем желании и настойчивости осуществить не удастся…

Заставить себя крикнуть «стой»? Но своенравная, экспансивная Глен просто его не послушает. Уж он-то ее знает… Схватить ее за руку? Слишком велико расстояние, их разделяющее, — о том, чтобы его преодолеть, нечего и думать…

Действие… Необходимо простейшее, элементарное единоразовое действие. Но такое, чтобы могло изменить весь дальнейший ход событий…

Фотоаппарат?.. Уничтожить фотоаппарат! Тогда нельзя будет фотографировать, и Глен незачем будет всходить на мостик. К тому же, разумеется, сам факт неожиданного и непонятного уничтожения дорогой фотокамеры не сможет не привлечь ее внимания. «Стрелка» окажется «переведенной», Глен будет вовлечена в другую череду событий…

Уничтожить! А как? Самое простое и незамысловатое в обычных условиях, сейчас это действие приобретало черты безнадежной неосуществимости. Разбить о камень? Но Стенли чувствовал, что способен совершить в лучшем случае лишь одно «запрограммированное» движение. А камера висит у него на шее, на прочном кожаном ремне. Отбросить ее в сторону одним широким взмахом руки, одновременно освободив голову из петли ремня? Нет, и такое движение слишком сложно…

Между тем, следовало торопиться. Фостер интуитивно чувствовал, что наступил благоприятный момент. Сейчас, когда ему удалось расшатать связь причин и следствий, медлить нельзя. Кто знает, что может произойти на очередном круге? События могут принять самый нежелательный оборот.

А стрелки на пульте показывали, что через несколько секунд начнется новый цикл…

Нарастающее гудение. Голубой туман. И вот Фостер снова у мостика…

Глен привычным движением поправила волосы на лбу и улыбнулась. Через секунду она произнесет свою «дежурную реплику», и «пьеса» будет разыграна в очередной раз. Надо действовать!..

Решение сложилось мгновенно, где-то в подсознании. Во всяком случае, Стенли еще не успел ничего обдумать, а его мозг уже послал команду. Коротким резким движением руки Стенли рванул камеру сверху вниз с нечеловеческой силой, той силой, которая рождается в критические моменты. Ремень лопнул… Стенли разжал пальцы, и аппарат врезался в каменистую тропинку. Фонтанчиком брызнули осколки стекла…

Глен повернула голову, брови ее удивленно приподнялись. Она быстро шагнула к Стенли и наклонилась над обломками фотоаппарата.

Шагнула к Стенли!.. И тем самым вышла, вырвалась из прежней своей роли, которая неумолимо вела ее в пропасть…

Новая ситуация породила и новые следствия. Хотя и теперь цепь событий во многом повторяла прежнюю.

Стенли не успел опомниться, как вновь, оступаясь и царапая лицо и руки, мчался вниз по крутой тропинке. Но на этот раз он крепко сжимал руку Глен, которая, все еще ничего не понимая, спотыкаясь и скользя, следовала за ним.

Теперь Фостеру незачем было спешить. Он достиг цели, совершил почти невозможное; вырвал у вечности жизнь Глен. Но однажды сложившаяся последовательность событий все еще влекла его по прежнему пути — к машине и в лабораторию.

И Стенли с ужасом подумал о том, что произойдет, когда, оказавшись в аппаратной и будучи не в силах воспротивиться этой неумолимой последовательности, он вновь включит хроноскоп… Чего он, собственно, добился? Снова все тот же заколдованный круг, безостановочная карусель, с той лишь разницей, что теперь рядом с ним в том же безнадежном, бесконечно повторяющемся вихре времени будет кружиться и Глен, и вообще все вокруг.

— А возможно, все еще хуже… Появление Глен не может не внести каких-то изменений в сложившуюся цепь причин и следствий. Но каких? И какие отношения теперь могут возникнуть? Предвидеть это невозможно.

Стенли похолодел при мысли о том, что может оказаться на месте происшествия уже после рокового события. Тогда он потеряет Глен навсегда…

Если что-то можно еще сделать, то именно сейчас. Так подсказывала уже не интуиция, а логика. Благодаря появлению Глен в системе событий возникла неопределенность. Для Глен пока еще не существовало жесткого «сценария» — ведь она не принимала участия в предыдущих циклах. И ее действия зависели сейчас только от нее самой.

Пока… До тех пор, пока не замкнется круг. Следующий цикл, скорее всего, уже будет точным повторением предыдущего. Тогда и она уже ничего не сможет сделать…

Машина приближалась к лаборатории, и у Стенли почти не оставалось времени на дальнейшие размышления.

Если бы Глен хотя бы попыталась о чем-то с ним говорить! Быть может, это помогло бы как-то изменить ход событий и воспрепятствовать включению хроноскопа. Но она, словно загипнотизированная, всю дорогу сидела молча, вжавшись в сиденье и не отрывая испуганных глаз от несущейся навстречу асфальтовой ленты.

Впереди показался последний поворот… Взвизгнули тормоза, и Стенли, не в силах сопротивляться непреодолимому давлению. «запрограммированных» событий, еще не дождавшись полной остановки машины, распахнул дверцу и выпрыгнул наружу. Момент включения хроноскопа неумолимо приближался, и теперь оставалось Надеяться разве что на импровизацию…

А ноги уже несли Фостера к лестнице, ведущей в лабораторию. Но в этот момент Глен вдруг очнулась от своего транса и, выскочив из машины, оказалась между Стенли и входной дверью.

— Нет! — закричала она, расставив руки и заслоняя собой дорогу. — Нет!..

Стенли остановился, словно автомат, из которого на время выключили ток. Цепь неумолимо связанных друг с другом событий прервалась.

Это было явным нарушением «сценария», хотя и не настолько сильным, чтобы Фостер освободился от его влияния и обрел собственную инициативу.

Они стояли друг против друга, замерев, неподвижные, словно статуи. А время шло…

Случилось самое худшее. Безвозвратно исчезали в прошлое секунда за секундой. А вместе с ними уходило за пределы досягаемости хроноскопа и все происшествие у мостика. Правда, оставалась еще надежда, что последующие циклы будут повторением последнего, в котором катастрофы удалось избежать. А если все вернется к исходному варианту? Когда имеешь дело с вероятностью, ни в чем нельзя быть уверенным на сто процентов…

Прошла минута или, может быть, несколько больше. У Фостера даже затеплилась надежда, что непредвиденная пауза затянется, окончательно разорвав цепь причин и следствий и очередного включения хроноскопа удастся избежать.

Но тут Глен так же неожиданно отступила в сторону и бессильно прислонилась к косяку двери, освобождая путь в лабораторию…

И все вновь пришло в привычное движение.

Перепрыгивая через ступеньки, Фостер побежал вверх по лестнице.

Аппаратная… Пульт… Пусковые кнопки… Нарастающий гул генератора…

Стенли повернулся к контрольному пульту и увидел наполненные ужасом глаза Глен.

— Зачем? — чуть слышно сказала она.

Фостер не отвечал — он снова был целиком во власти «программы».

Взгляд Глен беспомощно забегал по лаборатории.

— Нет! — пронзительно вскрикнула она и, метнувшись к Фостеру, повисла у него на руке. — Не хочу…

И так как Стенли продолжал стоять неподвижно, ни на что не реагируя, она с неожиданной силой повернула его к себе.

— Слышишь? Не хочу!..

Скорее всего, этот рывок все и решил… Он окончательно выбросил Фостера из «наезженной колеи». Стенли почувствовал себя так, будто освободился от непосильного груза. Еще не веря, что это возможно, и опасаясь, что в любое мгновение может вернуться прежнее состояние, он судорожно схватил лежавший на столе тестер и, размахнувшись, швырнул его в темпоральный блок хроноскопа. Туда, где с помощью хитроумной комбинации электромагнитных и гравитационных полей осуществлялось управление ходом времени.

* * *

Оглушительный треск!.. Темпоральный блок вспыхнул слепящим голубым сиянием. Аппаратная наполнилась призрачным клочковатым туманом…

Стихли генераторы…

Неудержимый водоворот времени иссяк, вновь превратившись в величавый, неторопливый поток.

Стенли медленно вытер ладонью взмокший лоб и, обессилев, привалился к столу.

Дрожа всем телом, Глен прижалась к Фостеру.

— Что это было? — прошептала она.

— Ты… спасла… нас всех, — устало сказал Фостер.

Куда течет река времени?

Природа времени — одна из самых излюбленных тем современной научной фантастики. Существует бесчисленное множество рассказов, повестей и романов, в основу которых положены различные предположения о свойствах этой физической величины.

Разумеется, авторы подобных произведений не ставят перед собой задачу раскрыть эти свойства. Манипуляции с временем они используют как фон, на котором развертывается действие, фон, позволяющий ставить героев в необычные ситуации. И, надо признать, фон, создающий для этого поистине неограниченные возможности. Потому что категория времени до сих пор таит в себе великое множество загадок…

Проблема времени занимала человека еще с глубокой древности. Над сущностью времени задумывались самые могучие умы, самые выдающиеся мыслители пытались постичь его сокровенный смысл.

Интерес этот вполне понятен. Пожалуй, нет среди физических величин, характеризующих течение явлений в окружающем нас мире, величины более таинственной, неуловимой, ускользающей от понимания человека, чем время…

Особенно пристальное внимание проблема времени привлекает к себе во второй половине текущего века. Это в значительной степени связано с тем, что современное естествознание — физика, астрономия, космология, кибернетика, математика — поставляет все большее количество новых данных, способных пролить свет на природу времени. При этом центральным вопросом является вопрос о его направленности.

Народная мудрость гласит: дом потеряешь — можно выстроить новый, деньги потеряешь — можно заработать другие, время потеряешь — все потеряешь!

В этом афоризме нашло свое отражение наиболее характерное отличительное свойство времени — его необратимость. Время нельзя повернуть вспять: что прошло, то прошло безвозвратно. Мы не можем возвратиться в прошлое и не можем, опередив время, забежать в будущее, а затем вернуться в свою эпоху.

Итак, необратимость — одна из основных особенностей времени. Другими словами, время всегда течет в одном направлении, и, чтобы подчеркнуть это обстоятельство, часто говорят о стреле времени.

Исторически представление о необратимости или однонаправленности времени, видимо, сложилось под влиянием того факта, что все реальные процессы, с которыми сталкивается человек в окружающем мире, практически необратимы. Ведь если бы время потекло вспять, то вокруг нас стали бы происходить совершенно поразительные явления. Но таких явлений никто и никогда не наблюдал.

Немаловажную психологическую роль сыграло, по всей вероятности, и то обстоятельство, что мы ничего не можем изменить в прошлом и не способны во всех деталях предвидеть будущее. Для прошлого характерна полная определенность, а для будущего значительная неопределенность. Иными словами, между прошлым и будущим существует явная асимметрия. А вся жизнь человеческая протекает на той грани, на которой будущее превращается в прошлое: сама жизнь человека — это необратимый процесс.

Философы неоднократно пытались вывести временной порядок из причинного. Но все дело в том, что при определении причинного порядка мы явно или неявно опираемся на понятия временного порядка. Ведь когда речь идет о том, что «причина порождает следствие», подразумевается, что следствие появилось после причины. Таким образом, любая попытка вывести временной порядок из порядка причинного фактически неизбежно приводит к логическому кругу.

Однако наряду с рассуждениями общего характера закономерно возникает вопрос: нельзя ли выявить такие необратимые процессы в самой природе, с которыми можно было бы строго связать однонаправленность времени?

Еще Аристотель писал: «Мы не только измеряем движение временем, но и время движением… ибо время определяет движение, будучи его числом, а движение — время»[18]).

Сущность времени нельзя понять, не связывая его с поведением материальных объектов, с конкретными физическими явлениями. Каковы же те физические процессы, протекающие в реальном мире, которые могут определять однонаправленность времени?

Вообще говоря, для того чтобы доказать необратимость времени, в сущности, достаточно обнаружить в природе хотя бы один строго необратимый физический процесс. Его наличие сразу придало бы физический смысл направленности времени как для самого этого процесса, так и для всех других, связанных с ним, обратимых процессов, которые вследствие этого стали бы необратимыми.

Естественно прежде всего обратиться к механике. Любопытно, что в классической механике нет никаких запретов, препятствующих обращению времени. В ее уравнениях можно поменять знак времени на противоположный, и все процессы потекут в обратном направлении, проходя в обратном порядке те же самые состояния. Другими словами, уравнения механики, так же как и их решения, обратимы во времени.

Однако «теоретической» обратимости отнюдь не соответствует фактическая обратимость механических процессов в реальном мире. Это связано с тем, что идеальных чисто механических процессов в природе практически не бывает. В любой механической системе в результате взаимодействия составляющих ее объектов происходит неизбежное рассеяние энергии, ее диссипация. А при этом условии процесс становится необратимым.

Таким образом, возникает парадоксальное противоречие. Реальные механические процессы необратимы, а теория механических явлений допускает их полное обращение. Следовательно, оставаясь в рамках чистой механики, физического обоснования однонаправленности времени мы получить не можем.

Между тем для обоснования необратимости времени одних экспериментальных доказательств, как бы многочисленны они ни были, недостаточно. Необходимо, как принято говорить, иметь еще обоснования номологические — на уровне физических законов. Но такого обоснования однонаправленности времени, оставаясь в рамках «чистой» механики, мы, очевидно, получить не можем.

Нельзя ли, однако, использовать то обстоятельство, что из обратимых уравнений механики могут быть выведены необратимые уравнения, описывающие поведение статистических систем? Иначе говоря, нельзя ли воспользоваться тем, что все реальные процессы сопровождаются неизбежным рассеянием энергии?

Действительно, наиболее распространенным обоснованием односторонней направленности времени как раз и является обоснование, связанное с фактом возрастания энтропии (меры рассеяния энергии), вытекающим из второго качала термодинамики. То обстоятельство, что во всех природных процессах энтропия возрастает, может быть принято за физическую причину необратимости времени («термодинамическая стрела» времени).

Однако и на этом пути мы также сталкиваемся с определенными парадоксами. С точки зрения статистической физики в принципе возможны ситуации (вероятность их возникновения отлична от нуля), когда в той или иной системе происходит спонтанное, т. е. самопроизвольное, уменьшение энтропии.

И поэтому, хотя в нашем распоряжении нет ни одного экспериментального факта нарушения второго закона термодинамики, мы тем не менее не имеем права говорить о строгом обосновании необратимости времени на основании статистических и термодинамических закономерностей.

Чтобы обойти эти трудности, необходимо задать стрелу времени каким-то другим способом, независимым от свойств термодинамических систем.

Логично попытаться связать однонаправленность времени с фактом расширения Вселенной. Очевидно, каждому состоянию расширяющейся Метагалактики можно поставить в соответствие определенный момент времени, характеризующий временной интервал, отделяющий это состояние от начала расширения. И поскольку взаимные расстояния между галактиками непрерывно возрастают, этому соответствует и единое направление времени — «космологическая стрела».

Однако и в обосновании «космологической стрелы» времени мы также встречаемся с существенными трудностями. Дело в том, что нам неизвестен какой-либо общий закон или принцип, запрещающий «сбегание» космических объектов, т. е. сжатие Вселенной. Напротив, с точки зрения общей теории относительности возможность смены расширения сжатием зависит только от средней плотности материи во Вселенной.

Таким образом, следует признать, что нашим необратимым миром почему-то управляют законы, безразличные к направлению течения времени. Естественно поэтому ожидать, что должен существовать некий более общий, фундаментальный закон, определяющий это направление. Каков этот закон, нам пока совершенно неизвестно. Тем более что аналогичные частные законы не сформулированы ни в одной ограниченной области физических явлений.

Можно лишь предполагать, что общий закон, о котором идет речь, должен не только разрешать течение тех или иных процессов в определенном направлении, но и запрещать их протекание в обратном направлении.

Итак, если стрела времени всегда направлена в одну сторону, то возникает закономерный вопрос: имела ли она свое начало? Или в несколько парадоксальной формулировке: было ли такое «время», когда времени не было?

Еще древнегреческий мыслитель Прокл в своих основах физики писал: «Время непрерывно и вечно»[19]).

Предложенные им алгоритмы доказательства вечности времени опираются на представление о его непрерывности. Но эти и им подобные рассуждения носили умозрительный характер.

Современная теория расширяющейся Вселенной, как известно, исходит из того, что существовал начальный момент Т= 0.

«Мыслима такая космологическая схема, — отмечает академик Эстонской ССР Г. И. Наан, — в которой Вселенная не только логически, но и физически возникает из ничто, притом при строгом соблюдении всех законов сохранения.

Ничто (вакуум) выступает в качестве основной субстанции, первоосновы бытия»[20]).

К идее «начального момента» в современной теории расширяющейся Вселенной наиболее близка категория «вдруг», описанная Платоном: «…„вдруг“, видимо, означает нечто такое, начиная с чего происходит изменение в ту или другую сторону. В самом деле, изменение не начинается с покоя, пока это покой, ни с движения, пока продолжается движение; однако это странное по своей природе „вдруг“ лежит между движением и покоем, находясь совершенно вне времени; но в направлении к нему и, исходя от него, изменяется движущееся, переходя к покою, и покоящееся, переходя к движению»[21]).

Возможен и такой вариант, при котором «начало» расширения имело место, а продолжительность существования Вселенной от начального момента до сегодняшнего дня тем не менее бесконечна.

Классическая физика XIX века, как известно, рассматривала время как нечто абсолютное, единое для всей Вселенной, не зависящее от материи.

А. Эйнштейн показал, что никакого абсолютного времени не существует. Течение времени зависит от положения и движения наблюдателя, а также от воздействия гравитационных полей. В частности, оказалось, что в сильном гравитационном поле течение времени существенно замедляется. Например, как мы уже отмечали в предыдущей главе, на границе черной дыры, где сила тяготения бесконечно велика, время вообще останавливается!

Возможно также, что время квантуется, подобно некоторым другим физическим величинам, т. е. существуют минимальные промежутки времени, короче которых в природе уже нет.

Словом, вопросов, связанных с природой времени, более чем достаточно. Их изучение — одна из увлекательнейших проблем современного естествознания.

Нас прежде всего будет интересовать космологическая «стрела времени», связанная с ходом эволюционных событий во Вселенной. Как они развертывались во времени, как одно состояние материи сменялось другим? Изучение этой последовательности событий — центральная задача астрофизики наших дней. Ведь понять современное состояние Вселенной невозможно без изучения тех предшествующих состояний, которые к нему привели. А без понимания современного состояния нельзя предвидеть состояния будущие.

Но раскрыть связь прошлого, настоящего и будущего можно лишь на основе глубокого изучения происходящих в мире физических процессов, взаимосвязи и взаимозависимости различных физических явлений.

Великое объединение

Изучение закономерностей эволюции материи во Вселенной — не только одна из важнейших, но в то же время одна из труднейших проблем современного естествознания. Интенсивные исследования в этой области, развернувшиеся во второй половине XX в., привели ученых к мысли, что для решения этой проблемы мало исследовать закономерности одних лишь космических явлений. Необходимо выяснить связь этих явлений с микропроцессами, с миром элементарных частиц.

Одним из основных положений материалистической диалектики является представление о всеобщей взаимосвязи и взаимозависимости явлений природы.

Развитие физики не раз убедительно подтверждало плодотворность этой идеи. Так, например, из знаменитых уравнений, выведенных Дж. Максвеллом в конце прошлого века, вытекало, что казавшиеся в то время совершенно разнородными электричество, магнетизм и свет на самом деле представляют собой различные проявления одних и тех же фундаментальных законов.

Создать единую теорию, которая объединила бы электромагнитные взаимодействия и гравитацию, пытался еще.

А. Эйнштейн. Однако Эйнштейну были тогда неизвестны сильные и слабые взаимодействия, к тому же он принципиально отвергал квантовую механику. Поэтому его попытки к успеху не привели.

Однако в истории науки нередко складываются парадоксальные ситуации. К их числу можно отнести создание так называемой квантовой теории поля, которая представляет собой синтез специальной теории относительности, гениально разработанной Эйнштейном, и той самой квантовой механики, которую полностью он так и не принял до последних дней своей жизни.

На основе квантовой теории поля, в свою очередь, была разработана квантовая электродинамика, описывающая взаимодействие между электронами и фотонами и с очень большой степенью точности подтвержденная экспериментально.

Согласно этой теории, электромагнитные взаимодействия, т. е. взаимодействия между заряженными частицами, например, между электронами и атомными ядрами, обеспечиваются благодаря тому, что эти частицы обмениваются фотонами.

В последние годы аналогичная теория была создана и для сильных взаимодействий. Она получила наименование квантовой хромодинамики. В основе этой теории лежит представление о том, что составные части атомных ядер — нуклоны, т.,е. протоны и нейтроны, состоят из особых фундаментальных частиц — кварков, обладающих дробным электрическим зарядом.

Кварки как теоретические объекты стали рассматриваться физиками, начиная с 1964 г. На первых порах в реальности существования кварков заставляла сомневаться дробность их электрического заряда. Однако в последние годы были получены экспериментальные данные, которые, судя по всему, говорят в пользу того, что кварки действительно обладают дробными зарядами.

Что же касается неудачных попыток выделения кварков «в чистом виде», то не исключено, что эти объекты представляют особый тип частиц, которые в отличие от барионов, мезонов или лептонов не могут существовать в свободном состоянии.

В связи с этим возник принципиальный вопрос, так сказать, методологического свойства: можно ли считать реально существующими физические объекты, которые не удается выделить в чистом виде? В частности, по отношению к кваркам некоторые физики проявляют определенную осторожность: они допускают, что эти гипотетические фундаментальные частицы являются всего лишь вспомогательными физическими образами, позволяющими удобно описывать некоторые свойства микрообъектов. Такой точки зрения, например, придерживался один из крупнейших физиков-теоретиков В. Гейзенберг, и хотя в настоящее время под воздействием впечатляющих успехов хромодинамики и основанной на кварковой модели теории сильных взаимодействий подобная точка зрения является уже менее популярной, тем не менее она все же существует.

Возможно, это в значительной степени объясняется тем обстоятельством, что физики, работающие в области изучения элементарных частиц, привыкли к тому, что до сих пор все теоретически предсказанные новые элементарные частицы рано или поздно обнаруживались экспериментально. Кварки же выпали из этой привычной схемы развития событий.

Вообще вопрос о том, «что из чего состоит», когда речь идет о явлениях микромира, утрачивает свой совершенно ясный и отчетливый смысл. Так, например, на основе экспериментальных данных считается, что при распаде нейтрона образуются протон, электрон и нейтрино. Значит ли это, однако, что нейтрон состоит из этих частиц? Подобное заключение было бы неверно хотя бы уже потому, что сам протон может распадаться на нейтрон, позитрон и нейтрино.

Таким образом, понятие «состоит из…» по отношению к элементарным частицам обладает ограниченной применимостью.

Эти соображения необходимо принимать во внимание и тогда, когда речь идет о том, что адроны состоят из кварков.

В настоящее время считается, что в природе существуют кварки нескольких разных типов, или «ароматов» (по современной физической терминологии), и для каждого кварка имеется соответствующий антикварк.

Подобно тому, как квантовая электродинамика связывает взаимодействие заряженных частиц с обменом фотонами, квантовая хромодинамика объясняет взаимодействие кварков в нуклонах обменом особыми безмассовыми частицами — глюонами. Глюоны представляют собой кванты особых «глюонных» полей (от английского слова glue — клей).

Между теориями, о которых идет речь, существует и другое сходство. В квантовой хромодинамике есть физическая величина, аналогичная электрическому заряду в квантовой электродинамике. Она называется «цветом». Из опыта известно, что электрический заряд «квантуется» — заряд электрона, например, в точности равен по абсолютной величине заряду протона. Что же касается «цвета», то каждый кварк может находиться в одном из трех «цветовых состояний», условно названных красным, зеленым и синим (в некоторых вариантах теории — красным, синим и желтым).

Любой барион состоит из трех кварков разного цвета, но сам тем физическим свойством, которое соответствует понятию «цвет», не обладает. Именно по этой причине способ описания с помощью цвета оказался весьма удобным. Ведь, как известно, смешение красного, зеленого и синего цветов дает цвет, близкий к белому. Что касается мезонов, то согласно кварковой модели каждый из них образован кварком и антикварком. Поэтому мезоны так же «бесцветны», как и барионы: цвет антикварка нейтрализует «антицвет» кварка. А вот глюоны, осуществляющие сильные взаимодействия, имеют цвет и поэтому в изолированном виде не существуют.

Если на первых порах кварки рассматривались только в качестве составных частей некоторых элементарных частиц, то к настоящему времени понимание той роли, которую они играют в строении материи, в ее глубинных свойствах, значительно расширилось. В частности, обнаруживается явная взаимосвязь между тяжелыми частицами, электронами, мю-мезонами и кварками. Связь, которая позволила приступить к созданию единой теории, объединяющей все известные элементарные частицы. Суть этой теории состоит в том, что основные физические взаимодействия — слабое, электромагнитное, сильное и гравитационное — проявляются как разные только при сравнительно небольших энергиях, а при достаточно высоких энергиях они объединяются, сливаются.

В случае, если энергия взаимодействующих частиц достигает 102 ГэВ (соответствующая температура 1015 К), объединяются слабое и электромагнитное взаимодействия. При энергиях около 1015 ГэВ и температуре 1028 К происходит «Великое объединение» — слияние не только слабого и электромагнитного, но и сильного взаимодействий. Когда же энергия достигает 1019 ГэВ, а температура 1032 К, то с ними; по-видимому, объединяется и гравитационное взаимодействие. Осуществляется так называемое «Величайшее объединение».

Сперва была разработана теория, объединяющая электромагнитные и слабые взаимодействия. Иногда ее называют «электрослабой». Эта теория уже получила блестящие экспериментальные подтверждения. В частности, она предсказала существование неизвестного ранее класса физических явлений — так называемых нейтральных токов.

В основе современной электрослабой теории лежит представление о так называемых промежуточных векторных W-бозонах — положительных, отрицательных и нейтральных (последние иногда и называют «нейтральными токами»). При слабых взаимодействиях эти частицы играют ту же роль, что и фотоны при электромагнитных взаимодействиях (т. е. являются «переносчиками» взаимодействия). В 70-е годы были получены убедительные доказательства их существования. Промежуточные векторные W-бозоны были обнаружены совсем недавно с помощью ускорителей, разгоняющих элементарные частицы до энергии свыше 100 ГэВ.

Однако и «электрослабая» теория обладает определенными изъянами. В ней слишком много произвольных параметров, с ее помощью не удается объяснить все наблюдаемые явления. Преодолеть эти недостатки физики и стремятся с помощью еще более общей теории, теории «Великого объединения».

Сперва предсказания новой теории казались фантастичными. Однако в дальнейшем многие из них получили убедительные экспериментальные подтверждения. Это дает основания предполагать, что подтвердятся и остальные. Как сказал один известный советский физик-теоретик: «Сначала я был скептиком. Но этот скепсис был неоднократно бит новыми экспериментальными фактами и теперь я стал оптимистом. Думаю, что и те частицы, которые пока еще появились только „на кончике пера“, будут открыты и в действительности».

Теория «Великого объединения» — важный шаг к более глубокому пониманию взаимозависимости явлений микромира и космических процессов.

В настоящее время можно говорить о двусторонней связи между физикой и наукой о Вселенной. С одной стороны, сложные явления, протекающие в космосе, не могут быть поняты без учета достижений современной физики, в частности, физики элементарных частиц. С другой же стороны, те параметры, которые интересуют современную физику, а именно расстояния порядка 10-20-10-30 см и энергии порядка 1015-1016 ГэВ, не могут быть достигнуты в обозримом будущем в лабораторных условиях. Но именно такие параметры характерны для ранней стадии эволюции Вселенной.

Поэтому теоретические и экспериментальные исследования в области физики элементарных частиц, о которых идет речь, имеют чрезвычайно важное значение и для понимания многих фундаментальных свойств Вселенной. В частности, от того, существуют кварки или нет, сколько их, каковы их массы, как они себя ведут и как взаимодействуют, зависит поведение Вселенной в первые мгновения расширения, а также ее будущая судьба…

Представим себе достаточно мощный конденсатор, который мы чрезвычайно быстро разряжаем и заряжаем. В результате поле внутри конденсатора также будет испытывать весьма быстрые изменения. Оказывается, при таких условиях между обкладками конденсатора должны рождаться из вакуума электроны и позитроны. Аналогичные явления могут происходить и во Вселенной при некоторых нестационарных процессах, сопровождающихся мощными катаклизмами. В частности, подобные условия существовали на ранней стадии расширения, что должно было приводить к бурному рождению вещества.

Дальнейший ход эволюции Вселенной во многом зависит от того, сколько разновидностей элементарных частиц объективно существует. С точки зрения развиваемой в настоящее время теории их могут быть тысячи и десятки тысяч. Не исключено существование и бесконечного «набора» элементарных частиц различных масс. Однако вопрос остается открытым, поскольку теоретические выводы нуждаются во всесторонней экспериментальной проверке.

Теория «Великого объединения» имеет самое непосредственное отношение к выяснению физических явлений, происходивших в первые мгновения расширения Вселенной. Ведь согласно теории «горячей Вселенной» в этот период существовали температуры, при которых сливаются различные физические взаимодействия.

Более того, теоретические исследования, о которых идет речь, чрезвычайно важны и для понимания многих других процессов, происходящих во Вселенной.

Как мы уже говорили, по теории «Великого объединения» при температурах выше 1028 К электромагнитное, слабое и сильное взаимодействия как бы «сливаются», теряют свою индивидуальную специфику. Однако, как выяснилось, необходимым условием такого «слияния» является нестабильность кварков. Но нестабильность кварков, в свою очередь, влечет за собой нестабильность и такой фундаментальной частицы, как протон, представляющий собой комбинацию трех кварков. Иными словами, протоны время от времени должны самопроизвольно распадаться. К счастью, как показывают расчеты, период полураспада протона на много порядков выше, чем возраст нашей Вселенной. В различных вариантах теории он оценивается от 1028 до 1033 лет. Поэтому окружающий нас мир устойчив благодаря тому, что «время жизни» протонов, а также тех нейтронов, которые входят в состав атомных ядер[22]), чрезвычайно велико. Иначе все атомные ядра, состоящие из этих частиц, а следовательно, все окружающие нас предметы и мы сами давно распались бы на легкие частицы.

В то же время вывод о нестабильности протона открывает реальную возможность экспериментальной проверки обоснованности теории «Великого объединения». Поскольку протонов в мире существует очень много, распад некоторых из них время от времени можно «увидеть» и такие распады могут быть обнаружены.

Разумеется, ожидание распада какого-нибудь конкретного протона — дело безнадежное. Но если вести наблюдение за достаточно большим количеством вещества, то распад хотя бы нескольких частиц в принципе можно зарегистрировать. Для этого в настоящее время строятся специальные установки. Одна из них, например, должна содержать 10 тысяч тонн воды. В том случае, если среднее время жизни протона равно 1031 лет, то согласно расчетам в таком количестве жидкости в среднем должно происходить около трех распадов в сутки. Однако, если среднее время жизни протона составляет 1033 лет, то существующие в распоряжении современной физики средства для регистрации соответствующего числа распадов окажутся непригодными и возможность осуществления контрольного эксперимента отодвинется, по всей вероятности, на весьма длительный срок.

Как известно, одним из важнейших выводов теории относительности А. Эйнштейна является знаменитое соотношение Е = тс2 — энергия Е, эквивалентная некоторой массе вещества, равна произведению этой массы т на квадрат скорости света с.

Физическим процессом, при котором такая «полная» энергия может выделяться, является аннигиляция вещества и антивещества.

Но если будет доказана нестабильность протона, это не только послужит важным свидетельством в пользу теории «Великого объединения», но будет также означать, что обычное вещество, хотя и медленно, может распадаться и без помощи антивещества выделять всю заключенную в нем энергию.

Многие фундаментальные характеристики Вселенной зависят и от того, какими свойствами обладает элементарная частица нейтрино. Поэтому особого внимания заслуживает то обстоятельство, что согласно теории «Великого объединения» нейтрино в принципе могут обладать ненулевой массой, доступной измерению, а также изменять свои свойства во время движения.

В результате экспериментов, проведенных в Институте экспериментальной и теоретической физики АН СССР, ученые пришли к выводу, что масса нейтрино около 25 электронвольт. Для сравнения напомним, что масса электрона эквивалентна 500 тысячам электронвольт. Но если нейтрино действительно обладают даже столь малой конечной массой, то их общий вклад в массу нашей Вселенной окажется весьма внушительным.

Как и всякий фундаментальный физический эксперимент, эксперимент по определению массы нейтрино нуждается в тщательнейшей проверке. По мнению самих экспериментаторов, вероятность того, что полученный ими результат соответствует действительности, составляет около 50 %. Однако до сих пор опровергнуть этот результат никому не удалось.

В настоящее время предпринимаются попытки разработки и такой единой теории поля, которая объединила бы не только сильные, электромагнитные и слабые взаимодействия, но и гравитационные.

В расширяющейся Вселенной

В одной из своих статей В. Л. Гинзбург так формулирует основную проблему современной космологии: изучить структуру пространства в больших масштабах и найти закон эволюции Вселенной во времени.

Теперь, когда мы познакомились с некоторыми выводами общей теории относительности, в частности, с искривлением пространства и черными дырами, мы можем еще раз обратиться к одному, из самых поразительных явлений окружающего нас астрономического мира — расширению Вселенной.

Астрономические данные свидетельствуют о том, что мы живем в мире разбегающихся галактик. Воображаемый наблюдатель, в какой бы галактике он ни находился, отметил бы, что все остальные звездные системы от него удаляются. Таким образом, «разбегание» оказывается как бы всеобщим свойством нашей Вселенной. Но если галактики разбегаются, то что было много миллиардов лет назад? Логично предположить, что современное состояние Вселенной возникло из состояния более плотного. В пользу подобного предположения говорят не только наблюдения (разбегание галактик) — к такому же выводу приводит и теория.

Одно точное решение уравнений теории Эйнштейна мы уже рассмотрели. Оно описывало гравитационное поле, создаваемое статической массой вещества, и привело нас к заключению о возможности существования «черных дыр». Это решение было получено К. Шварцшильдом в 1916 г. и носит его имя.

Не менее важным и фундаментальным является решение уравнений общей теории относительности в предположении об однородности и изотропности Вселенной, полученное советским ученым А. А. Фридманом в 1922 г. На основе этого решения была построена модель развития астрономического мира во времени, объясняющая разбегание галактик. В этой модели исходным является сверхплотное состояние материи, существовавшее 10–20 млрд. лет назад.

Выяснение физического состояния вещества, в результате расширения которого образовалась наша Метагалактика, — одна из фундаментальных проблем современного естествознания. Формально решения уравнений дают бесконечную плотность вещества в такой первичной конденсации. Однако бесконечное значение плотности не имеет физического смысла, и поэтому обычно говорят о сингулярности — необычном состоянии, резко отличающемся от «привычных» состояний материи. Во всяком случае считается, что это было состояние чудовищной плотности, достигавшей 1093-1095 г/см3, что на 79–81 порядок выше плотности атомного ядра. О подобных суперплотных состояниях мы пока мало что знаем. К описанию физических явлений, которые протекают в таких условиях, современные фундаментальные физические теории неприменимы.

По-видимому, в подобной ситуации меняется смысл, который мы вкладываем в такие фундаментальные понятия, как «пространство», «время», «одновременность», «раньше», «позже» и т. п.

Вообще говоря, наука допускает экстраполяцию тех или иных теоретических представлений и на области явлений, лежащие за границами применимости данной теории. При такой экстраполяции общая теория относительности приводит к выводу, что Вселенная возникла из бесконечно малого (точечного) объема при моменте времени, равном нулю.

Проблема сингулярности составляет одну из центральных проблем современной космологии. С одной стороны, эйнштейновская ОТО с неизбежностью приводит к сингулярности. Однако, с другой стороны, состояния с бесконечной плотностью физически неосуществимы. Складывается впечатление, что появление сингулярности в ОТО является следствием того, что ОТО неприменима к состояниям с очень большой плотностью, что она Здесь выходит за границы своей применимости.

Каким образом может быть устранено возникающее противоречие? Над решением этой задачи упорно работают современные теоретики — физики и астрофизики. Возможно, удастся показать, что возникающая с точки зрения ОТО в процессе эволюции Вселенной сингулярность не является все же в рамках этой теории абсолютно неотвратимой, что при определенных условиях от нее можно избавиться. Другое направление связано с возможностью существования так называемой «фундаментальной длины», т. е. некоей минимальной протяженности, которая определяет границы применимости известной нам физики. Возможен, однако, и третий вариант: не исключено, что границы применимости ОТО определяются возникновением квантовых явлений. Согласно существующим представлениям, такой границей служит временной интервал порядка 10-43 с, протяженность порядка 1,6·10-33 см и плотность порядка 5·1093 г/см3. В связи с этим предпринимаются попытки создания квантовой гравитационной теории и квантовой космологии. Этой теории предстоит решить целый ряд принципиальных проблем: о взаимодействии вещества и вакуума, который, судя по всему, представляет собой особую, скрытую форму существования материи, о рождении частиц из вакуума, о взаимосвязи микро- и макропроцессов. Именно это направление теоретического поиска сейчас является основным.

Первичная сингулярность — состояние, резко отличающееся от современного состояния Вселенной. Таким образом, Вселенная изменяется во времени: ее прошлое отличается от настоящего, а настоящее — от будущего. Это — фундаментальный вывод современного естествознания, имеющий важнейшее значение для человечества.

Решение Фридмана, соответствующее современному состоянию Вселенной, распадается на три подкласса решений, соответствующих трем возможным математическим моделям или трем возможным путям грядущего развития астрономического мира. Первый вариант — это так называемая замкнутая модель, второй — открытая модель и третий — промежуточный случай. В случае открытой модели расширение нашего мира должно продолжаться неограниченно. При этом общий его «вид» будет длительное время сохраняться. Лишь постепенно, через очень большие промежутки времени, состояние материи во Вселенной изменится.

В случае же замкнутой модели фаза расширения Вселенной должна со временем смениться на противоположную — фазу сжатия, а затем вновь произойдет расширение — и так без конца. Исследуя возможные свойства и закономерности подобных «циклических» Вселенных, ученые занимаются конструированием различных теоретических моделей.

Еще около тридцати лет назад знаменитый математик К. Гёдель попытался построить модель Вселенной, которая периодически точь-в-точь повторяет саму себя. Ситуация, весьма заманчивая для авторов научно-фантастических романов.

Если бы модель Гёделя соответствовала действительности, то это означало бы, что все наблюдаемое нами в окружающем мире уже когда-то было. И не один раз…

Однако повторяющая себя Вселенная в духе Гёделя пока что остается всего лишь неопределенной идеей, возможностью, которая и не подтверждена и не опровергнута. Более детально разработаны другие варианты циклических моделей. В этих моделях Вселенная пульсирует, то сжимаясь, то расширяясь и периодически проходя при этом через стадию чудовищно плотной горячей плазмы.

Одна из таких моделей сконструирована английским астрономом Т. Голдом. В ее основу положен тот уже известный нам факт, что все современные физические теории в принципе допускают обращение направления времени. Если в уравнениях этих теорий изменить направление течения времени на противоположное, то не возникает никаких противоречий, только все события потекут в обратном порядке.

Правда, в реальном мире мы ничего подобного не наблюдаем. И тому, видимо, есть свои причины, хотя нам они пока неизвестны. А вот в модели Голда время всякий раз поворачивает вспять при каждом переходе от эпохи сжатия к эпохе расширения.

Вдохновившись «конструкторской» деятельностью Голда, другой английский астроном Девис решил «построить» свою Вселенную, в известной мере противоположную Голдовской. В этой Вселенной направление времени в каждом цикле также меняется на противоположное, но в промежутках между соседними циклами в период наибольшего сжатия время вообще не имеет направления, Что это значит физически, сказать трудно, поскольку (мы это не раз обсуждали) в современной физике и астрофизике вопросы, связанные с поведением материи в экстремальных условиях, в частности, при очень больших плотностях, по существу, еще не разработаны. Но любопытно, что конструкция Девиса допускает проникновение через область наибольшего сжатия некоторых физических процессов из одного цикла в другой, разумеется, с соответствующей «переработкой». В частности, с этой точки зрения Девис пытается истолковать реликтовое излучение.

Как мы уже говорили, астрофизики рассматривают его как весьма веское доказательство начального взрыва и вообще справедливости всей теоретической концепции горячей расширяющейся Вселенной.

Однако в модели Девиса реликтовое излучение приобретает совсем иной, прямо скажем, совершенно неожиданный смысл. Это уже не посланец из прошлого, а отголосок… будущего. Именно отголосок, а не предвестник. Своеобразная «радиозаря» того цикла в эволюции Вселенной, который еще только должен наступить в будущем.

Таким образом, во Вселенной Девиса нарушается один из фундаментальнейших принципов современного естествознания, согласно которому следствия не могут опережать свои причины. Тем не менее не исключено, что модель Девиса, несмотря на всю свою экстравагантность, все же отражает какие-то вполне реальные, и, быть может, весьма существенные черты мироздания.

Весьма необычна и циклическая модель, разработанная одним из учеников Эйнштейна Уилером. И в этой модели Вселенная пульсирует, то сжимаясь, то раздуваясь, но всякий раз она возрождается из сверхплотного «сгустка» в ином виде, с иными характерными параметрами, даже с иным набором элементарных частиц. Любопытно, что во Вселенной Уилера вообще нет времени в обычном понимании этого слова — нет настоящего и будущего. Поэтому в такой Вселенной возможны любые парадоксы — они здесь в порядке вещей.

Никто, разумеется, не станет утверждать, что одна из перечисленных выше моделей — это и есть точное описание нашей Вселенной. Да на это они, пожалуй, и не претендуют. Идет поиск. Нащупываются новые направления, оцениваются и переоцениваются различные идеи, осмысливаются новые факты и тем самым выявляются новые грани окружающего нас мира. Многое в циклических моделях в той или иной мере условно. За исключением одного вопроса, который имеет самое непосредственное отношение к свойствам нашей реальной Вселенной, — вопроса о том, сменится ли ее расширение сжатием? Для того чтобы это произошло, общая масса во Вселенной должна быть достаточно велика — тогда ее притяжение будет тормозить разбегание галактик и, в конце концов, должно остановить их разлет и повернуть эти звездные системы вспять. Со временем такой «обратный» процесс опять приведет к созданию сверхплотной сингулярности. С подобным вариантом мы уже встречались в циклических моделях.

Какой же вариант соответствует действительности, в какой Вселенной — открытой или замкнутой — мы живем?

Подсчеты, основанные на общей теории относительности, дают на этот счет вполне определенный численный критерий. Мысленно соберем всю массу Вселенной и равномерно «размажем» ее по всему пространству. Если после этой операции средняя плотность окажется меньше, чем 3·10-29 г/см3, то силы тяготения недостаточны для того, чтобы остановить разбегание галактик, и Вселенная расширяется неограниченно. Если же средняя плотность превысит этот предел (критическое значение), то расширение Вселенной со временем сменится сжатием.

Какими данными располагает современная астрофизика относительно фактической величины средней плотности во Вселенной? Если учесть «светящееся», т. е. видимое, вещество, то его средняя плотность равна 10-31 г/см3. Попытки учесть и другие формы существования материи в зависимости от подхода к решению задачи приводят к значениям средней плотности, несколько отличающимся друг от друга. Все они, в общем, ниже критического значения., но некоторые из них к нему довольно близки.

Важнейшее значение для определения средней плотности будет иметь решение вопроса о наличии конечной массы у нейтрино.

От настоящего к прошлому

Одной из важнейших и, прямо скажем, увлекательнейших задач современной науки является изучение самых ранних этапов эволюции нашей Вселенной, в значительной мере предопределивших ее дальнейшее развитие. Но если вспомнить, что эти этапы отделены от нас весьма внушительным промежутком времени, составляющим по современным оценкам 15–20 млрд. лет, то станет понятно, сколь сложна подобная задача.

Тем не менее современная астрофизика располагает по крайней мере двумя путями к ее решению. Один из них путь прямых наблюдений. Да, да, как ни покажется странной такая возможность — возможность непосредственного наблюдения событий, происходивших миллиарды лет назад, — в астрофизике она существует. Кстати, ничего подобного нет, пожалуй, ни в одной другой области естествознания. Правда, геологи могут непосредственно изучать отложения далеких эпох, палеонтологи — остатки давно исчезнувших животных, а археологи — предметы древних культур. Но хотя все эти объекты и имеют древнее происхождение, наблюдать и изучать их удается уже в нашем времени.

Иное дело в астрофизике, Благодаря конечной скорости распространения электромагнитных волн, чем дальше находится от нас тот или иной космический объект, тем в белее отдаленном прошлом мы его наблюдаем. Радиогалактика в созвездии Лебедя предстает перед нами такой, какой она была около 700 млн. лет назад, а некоторые радиоисточники мы наблюдаем с опозданием, по-видимому, на 10 и более млрд. лет.

Таким образом, регистрируя различные электромагнитные излучения, приходящие на Землю из глубин космоса, мы в принципе можем получать непосредственную информацию о ранних стадиях эволюции Вселенной.

Есть, однако, еще один путь проникновения в прошлое. Дело в том, что минувшее не исчезает совершенно бесследно. В той или иной степени оно отражено в настоящем.

В природе мы встречаемся с закономерностями, которые можно разделить на две группы. Первую составляют общие законы природы, которые действуют всегда, когда для этого складываются определенные условия. К числу подобных законов относятся, например, закон всемирного тяготения, законы движения Ньютона, законы Кеплера и т. п. Вторая группа — закономерности, действующие в данной конкретной материальной системе, сложившиеся в процессе ее эволюции. Эти закономерности в наибольшей степени связывают современное состояние данной системы с ее предшествующими состояниями, настоящее с прошлым. Поэтому выявление и изучение подобных закономерностей может дать наиболее ценную информацию об истории той или иной материальной системы.

Применительно ко Вселенной это означает, что ключ к познанию ее прошлого — в изучении современного состояния космических объектов. Не всякое прошлое, не всякая предыстория могла привести Вселенную к тому состоянию, которое мы наблюдаем сегодня, в современную эпоху.

Можно сказать, что в первоначальной сверхплотной плазме, в результате расширения которой образовалась наша Вселенная, были как бы запрограммированы ее основные свойства. Это не была, разумеется, железная предопределенность классической механики — в дальнейшей эволюции немалую роль играли случайные процессы, но все же «основной сценарий» развития Вселенной содержался в ее начальном состоянии. Иными словами, далеко не всякое начальное состояние могло в дальнейшем породить именно ту структуру Вселенной и те ее свойства, которые мы наблюдаем в настоящую эпоху.

Другой путь — построение моделей начальных фаз нашей Вселенной с помощью фундаментальных физических теорий. В основе этих теорий лежит огромный экспериментальный и наблюдательный материал, они прошли многократную практическую проверку, и в их справедливости не приходится сомневаться. Разумеется, когда мы распространяем эти теории за границы, в которых их применимость надежно доказана, экстраполируем их на необычные области явлений, полученные результаты не могут считаться абсолютно надежными. Тем не менее подобным методом приходится пользоваться, поскольку для познания прошлого у науки слишком мал выбор средств.

Более того, как отмечает в одной из своих статей Я. Б. Зельдович, требования современной космологии растут быстрее, чем накапливаются соответствующие экспериментальные данные. Поэтому космологам в своих теоретических изысканиях приходится пользоваться не только общепринятыми фундаментальными физическими теориями, но также и такими, которые еще нельзя считать достаточно строго обоснованными.

Создавая различные теоретические модели Вселенной, в том числе и ранних стадий ее расширения, и сопоставляя их с данными о современном состоянии Вселенной и ее объектов, полученными в результате астрономических наблюдений, ученые имеют возможность совершенствовать эти модели, вносить в них необходимые поправки и уточнения, отбрасывать предположения, вступающие в противоречие с современными данными, и таким образом постепенно восстанавливать картину эволюции от самых ранних ее этапов до нашей эпохи. При этом наибольший интерес представляют такие черты современной Вселенной, которые с полным правом можно назвать удивительными загадками.

Вот одна из них. Как уже говорилось выше, современная Вселенная в достаточно больших масштабах однородна и изотропна. Это значит, что свойства ее любых достаточно больших областей приблизительно одинаковы, а любые направления равноправны.

Но однородность Вселенной в больших масштабах требует специального объяснения. Дело в том, что никакие физические взаимодействия не могут распространяться со скоростью, превосходящей скорость света, которая, как известно, конечна и равна 300 000 км/с. Отсюда, между прочим, следует, что доступная непосредственному наблюдению область Вселенной всегда конечна. Мы не можем видеть объекты, удаленные от нас на такие расстояния, которые световой луч не успевает преодолеть за время существования Вселенной.

В связи с этим говорят о «горизонте», расширить который мы не можем никакими техническими ухищрениями: ведь он определяется не уровнем совершенства астрономических инструментов, а конечной скоростью распространения света. Хотя, разумеется, по мере старения Вселенной оптический горизонт постепенно отодвигается.

Но дело не только в том, что наличие горизонта в расширяющейся Вселенной ограничивает возможности наших астрономических наблюдений. Гораздо существеннее то, что на любой стадии расширения Вселенной в ней имеются такие точки, которые отделены друг от друга расстояниями, превосходящими расстояние оптического горизонта. Нетрудно сообразить, что между такими точками не может быть никакой причинной зависимости. Физические процессы, происходящие в одной из них, не могут оказывать никакого воздействия на события в другой. Образно говоря, любая из таких точек не может «знать», что творится в другой.

В частности, как показывают подсчеты, излучение, приходящее к нам из окраинных районов Вселенной, отстоящих друг от друга на угловое расстояние свыше 30 градусов, исходит из областей, разделенных расстояниями, превышающими оптический горизонт.

Между тем изучение информации, содержащейся в электромагнитных излучениях, свидетельствует о том, что физические параметры, характеризующие состояние материи у границ наблюдаемой Вселенной, везде приблизительно одинаковы.

Это крайне загадочно, ибо в равномерно расширяющейся Вселенной не может существовать никакого физического механизма выравнивания неоднородностей на расстояниях, превосходящих оптический горизонт.

Как же в таком случае объяснить однородность? Может быть, события, которые привели к выравниванию физических условий в расширяющейся Вселенной, развернулись уже на самых ранних стадиях ее существования?

К числу загадок нашей Вселенной относится и средняя плотность вещества, которая (если не учитывать возможного существования массы покоя нейтрино) сравнительно мало отличается от теоретического критического значения, составляющего, как мы уже знаем, 3·10-29 г/см3.

Как и всякое совпадение, это совпадение также требует своего объяснения…

Не исключено, что загадки, о которых идет речь, найдут свое объяснение в современной теории физического вакуума.

Вакуум — это скрытая форма существования вещества. Если говорить более строгим физическим языком — наинизшее энергетическое состояние всех физических полей, при котором нет реальных частиц. Но в то же время вакуум при определенных условиях может рождать реальные частицы и это происходит без нарушения законов сохранения.

Обладает вакуум и гравитационными свойствами. Но этой гравитации, в отличие от обычной, соответствуют не силы притяжения, а силы отталкивания, и она изменяется пропорционально первой степени расстояния.

В современной Вселенной гравитация вакуума либо полностью отсутствует, либо исчезающе мала. Однако при температуре, превосходившей температуру «Великого объединения», она достигала огромного значения. Это было состояние так называемого «ложного вакуума».

В процессе расширения наступил момент, когда гравитация вакуума превзошла гравитацию обычного вещества, и это должно было вызвать ускоренное расширение, «раздувание» Вселенной, сопровождавшееся стремительным уменьшением плотности обычного вещества и не менее стремительным понижением температуры.

Это «раздувание» происходило по экспоненциальному закону (типа ех), т. е. развивалось подобно тому, как растут в мире цены в соответствии со скоростью инфляции. Поэтому иногда «раздувающуюся» Вселенную называют «инфляционной» Вселенной. В этот период мог произойти фазовый переход от состояния «ложного вакуума» с огромной плотностью к состоянию «истинного вакуума» с нулевой или очень малой плотностью, при котором родилось огромное количество реальных частиц и античастиц.

Согласно теории, плотность «ложного вакуума» в «раздувающейся» Вселенной в точности равна критической. Поэтому и плотность вещества, возникшего в результате его распада, также должна быть равна критической плотности.

Что же касается однородности и «проблемы горизонта», то и она получает в теории вакуума вполне естественное объяснение. До начала «раздувания» Вселенной внутри общего горизонта в близких точках должна была установиться одинаковая температура. Но в период «раздувания», как показали расчеты, за очень короткий промежуток времени все пространственные размеры возросли примерно в 1043 раз. Благодаря этому близкие точки оказались стремительно разнесенными на огромные расстояния друг от друга. Расстояния, которые действительно превосходили бы расстояние горизонта видимости в том случае, если бы Вселенная все время расширялась в темпе, близком к современному.

Есть и еще одна проблема, связанная с прошлым и настоящим нашей Вселенной. Поскольку современная Вселенная в больших масштабах однородна, следовательно, была однородной и та горячая плазма, которая заполняла все пространство в период, предшествующий образованию небесных тел.

Однако эта однородность не могла распространяться на все без исключения масштабы. В этом случае образование небесных тел и их систем было бы невозможно и современная Вселенная целиком состояла бы из нейтрального газа, в который абсолютно однородная плазма неизбежно должна была бы превратиться по мере расширения и остывания.

Планеты, звезды, космические туманности, галактики, скопления и сверхскопления галактик могли образоваться лишь при условии, что в первичной плазме существовали неоднородности.

Как показывают расчеты, основанные на данных астрономических наблюдений, масса подобных неоднородностей должна была достигать 1015 солнечных масс. Именно таковы массы современных скоплений галактик. Что же касается различия между плотностью вещества неоднородностей и средней плотностью окружающей среды, то она должна была составлять десятые или сотые доли процента.

Итак, горячая плазма была не совсем однородной — в ней чередовались сгущения и разрежения. Но именно такая картина наблюдается в веществе, когда в нем распространяются звуковые волны. Следовательно, на одном из ранних этапов расширения в горячей плазме существовали звуковые волны и, видимо, это обстоятельство в значительной степени предопределило будущую структуру нашей Вселенной. По образному выражению советских астрофизиков — И. Новикова и В. Лукаша — «вся нынешняя структура Вселенной является своеобразным отзвуком, эхом тех звуковых волн, которые сопровождали начало расширения Вселенной, является раскатами тех громов, которые звучали тогда»[23]).

В тот момент, когда появился реликтовый звук, в очень плотном расширяющемся веществе протекали квантовые процессы. В этих условиях волновые явления характеризуют квантами или квазичастицами. Квазичастицы звуковых волн называются фононами. Чем больше амплитуда звуковых колебаний, тем большее число фононов приходится на каждое колебание.

Как показали расчеты, проведенные И. Новиковым и В. Лукашем, скорость звука в очень плотной первоначальной среде составляла около 0,6 скорости света, а частота колебаний была очень низкой. Что же касается амплитуды колебаний, т. е. числа фононов, то их в этот период было совершенно недостаточно для образования таких сгущений, из которых могли бы сформироваться скопления галактик.

Однако в дальнейшем, из-за происходивших изменений давления сверхгорячего вещества и вызванного ими изменения темпа расширения, число фононов резко увеличивалось и соответственно возрастала амплитуда звуковых колебаний. Благодаря этому уже могли возникать неоднородности, достаточные для образования скоплений галактик.

По всей вероятности, усиление слишком малых для образования галактик хаотических первичных неоднородностей, случайным образом возникавших в горячей плазме, происходило в результате работы особого физического механизма, получившего название параметрического резонанса.

Сущность этого явления состоит в усилении волн, попадающих в «такт» изменениям параметров системы. Нечто аналогичное происходит, когда, раскачиваясь на качелях, мы приседаем в такт их качаниям. Размах колебаний при этом возрастает.

По-видимому, непосредственно после окончания стадии «раздувающейся», или «инфляционной» Вселенной, когда, согласно теории, должен был произойти ее вторичный разогрев, возникли небольшие флуктуации плотности, которые затем разрослись благодаря действию механизма «параметрического резонанса». Иными словами, в кратковременный период расширения Вселенной с повышенной скоростью могли рождаться фононы, появление которых предопределило будущую сложную структуру Вселенной.

Изложенный выше сценарий ранней Вселенной, как подчеркивают его авторы И. Новиков и В. Лукаш в уже цитированной статье, «базируется на двух основных предположениях: они уже заняли прочное место в теории гравитации и физике элементарных частиц, но не получили еще всестороннего практического подтверждения. Это предположения о справедливости общей теории относительности в области сильных гравитационных полей и о существовании при высоких энергиях единого поля, объединяющего все виды взаимодействий».

Современные исследования в области изучения ранних этапов эволюции Вселенной убедительно показывают, что существует весьма тесная связь между космологическими процессами и явлениями, происходящими в микромире.

Одним из очень важных «следов» далекого прошлого нашей Вселенной является уже знакомое нам реликтовое излучение. Картина распределения яркости этого излучения по небесной сфере могла бы многое рассказать как о тех физических процессах, которые определяли формирование различных космических объектов и их систем, так и о некоторых других явлениях, имеющих первостепенное значение для познания закономерностей космических процессов. В частности, изучая анизотропию, т. е. отклонения от изотропии реликтового излучения, можно выяснить распределение областей горячей плазмы, электронов сверхвысоких энергий и межзвездной пыли в нашей Галактике, обнаружить оболочки горячей плазмы вокруг других ближайших к нам звездных систем и их скоплений, а также облака межзвездного газа.

Важные сведения можно получить и о характере расширения Вселенной в прошлом и в современную эпоху, о начальных стадиях процесса формирования звезд и галактик. Наконец, не исключена возможность обнаружения «других» Вселенных, т. е. таких областей материального мира, свойства которых существенно отличаются от свойств исследованной нами области.

Как мы уже отмечали, чувствительность современных наземных радиотелескопов для обнаружения анизотропии реликтового излучения, по-видимому, недостаточна. Поэтому советские ученые решили установить особо чувствительную радиоастрономическую аппаратуру на борту искусственного спутника Земли. 1 июля 1983 г. такой спутник — «Прогноз-9» с малогабаритным высокочувствительным радиотелескопом, работающим на волне длиной 8 мм, был выведен на орбиту.

Наблюдения были организованы таким образом, чтобы за несколько месяцев получить полную картину неба в миллиметровом диапазоне, где, как мы уже знаем, интенсивность реликтового излучения максимальна.

Тем самым было положено начало новому направлению изучения нашей Вселенной, цель которого — расширить и уточнить наши представления о ее структуре и главных особенностях ее эволюции.

Таким образом, современная теоретическая астрофизика уже многого достигла в понимании и объяснении эволюционных процессов, определивших формирование структуры нашей Вселенной.

Можно считать; что ей уже удалось правильно воссоздать события, происходившие в первые минуты расширения Вселенной. В пользу этого свидетельствует, например, тот факт, что в различных современных космических объектах мы обнаруживаем именно то соотношение по массе водорода и гелия, которое предсказывает теория, — 70 % водорода и 30 % гелия.

Однако для построения полной космологической теории, способной надежно определить начальные условия, которые привели к образованию структуры нашей Вселенной, и воссоздать самые ранние, этапы ее расширения, предстоит еще колоссальная работа. В частности, на многие вопросы, которые ставит космология, должна найти ответ прежде всего физика.

В то же время следует подчеркнуть, что у современной космологии есть бесспорные достижения, выводы, которые вряд ли существенно будут изменены в дальнейшем. Это тот фундамент, который сохранится и в будущем, К нему, например, относится теория «Большого взрыва».

«Теория „Большого взрыва“, — пишет Я. Б. Зельдович, — в настоящий момент не имеет сколько-нибудь заметных недостатков. Я бы даже сказал, что она столь же надежно установлена и верна, сколь верно то, что Земля вращается вокруг Солнца»[24].

С другой стороны, небезынтересно отметить, что современная космология становится своего рода ареной, на которой проходят своеобразную практическую проверку различные гипотезы и предположения, относящиеся к физике высоких энергий, изучающей экстремальные состояния материи и свойства пространства.

Миры и антимиры

В современной Вселенной плотность фотонов реликтового излучения составляет Nγ≈500 см-3, а плотность барионов — Nбap≈10-6 см-3. Таким образом, число фотонов во Вселенной во много раз больше числа барионов:

Величину S называют удельной энтропией.

Удельная энтропия — тоже «след» прошлого нашей Вселенной, способствующий его теоретической реконструкции. Теория должна объяснить, почему этот «след» именно такой, т. е. почему удельная энтропия столь велика.

Оказывается, это обстоятельство непосредственно связано с еще одной величайшей загадкой современной Вселенной… Согласно данным современной астрономии, все космические объекты, которые мы наблюдаем в нашей Вселенной, состоят из вещества. На языке физики это означает, что в окружающем нас мире явно преобладают барионы[25]. Антибарионов в сколько-нибудь значительных масштабах в нашей Вселенной нет. Однако на протяжении длительного времени этот фундаментальный факт не находил удовлетворительного объяснения.

В физике существует закон сохранения барионного заряда: барионным зарядом или барионным числом называется разность числа барионов и их античастиц, участвующих в тех или иных физических взаимодействиях.

Так вот, при любых физических процессах, какие бы превращения элементарных частиц ни происходили, барионный заряд должен оставаться неизменным. А отсюда следует, что тот избыток барионов над антибарионами, который наблюдается в современной Вселенной, должен был существовать всегда.

С другой стороны, согласно одному из основных законов современной физики, элементарные частицы всегда «рождаются» парами: если в каком-либо физическом процессе на свет появляется, скажем, электрон, то одновременно с ним должен появиться и позитрон, т. е. антиэлектрон. Протон рождается вместе с антипротоном, а нейтрон — с антинейтроном. Куда же в таком случае девались все те античастицы, которые должны были бы составить пары с частицами кашей Вселенной?

Согласно теории, в процессе расширения Вселенной частицы и античастицы должны были аннигилировать, превращаясь в конечном итоге в фотоны и нейтрино.

Но если современные космические объекты состоят только из вещества, то это означает, что на самой ранней стадии расширения должен был существовать небольшой избыток частиц над античастицами. Избыток, который и сохранился до нашей эпохи. Его величина характеризуется отношением числа барионов к числу фотонов:

Но это не что иное, как величина, обратная удельной энтропии. Вот почему удельная энтропия столь велика.

Что же касается причин, обусловивших возникновение избытка барионов над антибарионами, то на этот счет выдвигались различные гипотезы, в том числе довольно экстравагантные, но ни одна из них не выглядела достаточно убедительной.

Еще несколько лет назад академик В. А. Амбарцумян в связи с изучением нестационарных явлений, происходящих во Вселенной, высказал мысль о том, что для их объяснения, быть может, придется пересмотреть некоторые положения теоретической физики и в первую очередь закон сохранения барионного заряда. В конце 60-х годов определенные сомнения в справедливости закона сохранения барионного заряда возникли у физиков и астрофизиков также и в связи с зарядовой асимметрией Вселенной. Сейчас же, в свете теории «Великого объединения», эти сомнения получили весьма серьезные основания.

Когда в процессе расширения Вселенной температура была выше 1028 К, пространство заполняла сверхгорячая смесь, состоявшая из равных количеств всех фундаментальных частиц и соответствующих им античастиц. В этот период барионный заряд был равен нулю.

Если бы такое положение сохранилось и в дальнейшем, то по мере расширения Вселенной и понижения температуры все тяжёлые частицы проаннигилировали бы со своими античастицами и к современной нам эпохе не осталось бы ни протонов, ни нейтронов, т. е. не было бы вещества, а только фотоны и нейтрино.

Но все дело в том, что согласно теории «Великого объединения» при температуре порядка 1028 К могли рождаться сверхтяжелые частицы с энергиями порядка 1015 ГэВ (масса этих частиц была равна 1014 масс протона). Такая температура в процессе расширения Вселенной была достигнута спустя 10-35 секунды после начала расширения.

Затем сверхтяжелые частицы и их античастицы распадались, но у частиц и античастиц эти распады происходили с разной вероятностью. В конечном итоге это и привело к тому, что образовался небольшой избыток барионов над антибарионами, т. е. появился барионный заряд.

От настоящего к будущему

Гораздо сложнее обстоит дело с «построением» картины будущего. Это всегда чисто теоретическая экстраполяция, прямая проверка которой невозможна. В полной мере подтвердить ее или опровергнуть может только само дальнейшее развитие событий, само будущее: Но если теории, на которые мы опираемся, в достаточной степени обоснованы, то такая экстраполяция все же представляет известный интерес. Во всяком случае она рисует нам принципиально возможные варианты тех событий, которые могут произойти в грядущем.

Как известно, существуют два основных варианта возможного будущего нашей Вселенной. Либо разбегание галактик в какой-то момент прекратится и Вселенная начнет сжиматься, либо это расширение будет продолжаться неограниченно. В первом случае Вселенная, видимо, в конце концов вернется к первоначальному сверхплотному состоянию. А что произойдет во втором?

Данные современной физики позволяют обрисовать наиболее существенные моменты соответствующего развития событий.

Настанет время, запасы водорода во Вселенной исчерпаются — образование звезд прекратится. Существовавшие до этого звезды полностью израсходуют водород и превратятся либо в холодные тела, либо в черные дыры. Произойдет это примерно через 1014 лет, т. е. через промежуток времени, в 10 тысяч раз превосходящий современный возраст нашей Вселенной.

А какая судьба ожидает звездные острова-галактики? Под действием случайных возмущений отдельные звезды из их внешних частей будут выбрасываться в межгалактическое пространство. Центральные области галактик будут сжиматься и превращаться в сверхмассивные черные дыры, которые своим чудовищным притяжением станут втягивать в себя и поглощать еще оставшиеся звезды. Это случится через 1019 лет, т. е. тогда, когда все звезды уже давным-давно погаснут.

Какие события ожидают Вселенную в дальнейшем? Как мы уже знаем, среднее время жизни протона около 1032 лет, после чего он должен распасться. Продуктами такого распада являются позитрон и излучение в виде фотонов и нейтрино; возможно также образование нескольких электронно-позитронных пар. Что же касается нейтронов, то, как мы уже знаем, в свободном состоянии они довольно быстро распадаются на протоны, электроны и антинейтрино. А в атомных ядрах они ведут себя подобно протону.

Следовательно, через 1032 лет все ядра вещества полностью распадутся. Но еще останутся во Вселенной черные дыры: не очень массивные, образовавшиеся в результате коллапса звезд, и сверхмассивные, возникшие при сжатии центральных частей галактик. Но, как уже говорилось выше, и черные дыры не вечны — они постепенно «испаряются». В течение 1069 лет исчезнут звездные черные дыры, а через 1096 лет такая же участь постигнет и сверхмассивные. Наступит эра излучения…

Через 10100 лет во Вселенной останется только излучение и электронно-позитронная плазма, рассеянная в пространстве с невообразимо малой плотностью: одна частица в объеме пространства, в 10185 раз превосходящем объем наблюдаемой в настоящее время Вселенной.

Не вызывает ли подобная картина будущего Вселенной ощущения безысходного пессимизма? Ведь невольно возникает вопрос: а что же будет с жизнью?

Известный американский физик Ф. Дайсон считает, например, что и в такой Вселенной жизнь все-таки сохранится, хотя и в совершенно непривычных нам формах. Но ее пульс будет биться все медленнее и медленнее. Ведь и наша собственная современная жизнь по сравнению со стремительным темпом событий, происходивших в первые секунды расширения Вселенной, — это нечто чрезвычайно медленное и растянутое в пространстве.

Источником нашего оптимизма должно служить и то обстоятельство, что от катастрофических изменений в состоянии Вселенной нас отделяют десятки, сотни, а возможно, и тысячи миллиардов лет. Это не следует понимать как совет встать на пресловутую точку зрения: «после нас хоть потоп». Речь идет о том, что, познавая все более глубокие закономерности окружающего мира, человек приобретает возможность управлять все более сложными природными процессами. И не исключено, что через миллиарды лет, а возможно и раньше, человек сумеет изменять по своему желанию течение явлений даже космического порядка.

Наконец, следует напомнить и о том, что картина будущего Вселенной, которую мы нарисовали с позиций современной физики и астрофизики, — это лишь теоретическая экстраполяция. В процессе дальнейшей эволюции материи могут возникнуть необычайные условия, способные породить неизвестные нам процессы и вызвать к жизни неизвестные нам силы, которые существенным образом могут повлиять на ход событий и в корне изменить ситуацию.

Игра во внеземные цивилизации по-научному

В последние годы на страницах газет и журналов, особенно зарубежных, то и дело появляются сенсационные сообщения о будто бы обнаруженных следах практической деятельности инопланетных разумных существ, а спустя некоторое время эти сообщения подвергаются уничтожающей критике со стороны специалистов. С другой стороны, сами ученые в связи с проблемой внеземных цивилизаций ставят и вполне серьезно обсуждают такие вопросы, которые на первый взгляд относятся скорее к области научной фантастики.

Чем это объяснить? И вообще: можно ли считать проблему внеземных цивилизаций научной проблемой? Ведь речь идет об изучении объекта, о котором мы не только не располагаем ни прямыми, ни косвенными данными, но относительно которого у нас нет даже уверенности в том, что он реально существует.

Возникает вполне закономерный и естественный вопрос: можно ли изучать «то, чего нет», и если можно, то каким образом? И что представляет собой то знание, которое в результате такого исследования мы получим? О чем оно?

В истории науки известно немало случаев, когда в той или иной области исследований, по крайней мере в течение определенного времени, реально наблюдаемого объекта не существовало. Так, экспериментальное обнаружение многих элементарных частиц происходило значительно позже их теоретического предсказания. Предсказано было и существование ряда астрономических объектов, например, нейтронных звезд. И это не мешало ни физикам, ни астрофизикам успешно заниматься изучением свойств подобных «теоретических» объектов, которых еще «не было в наличии».

Если говорить о проблеме внеземных цивилизаций, то здесь предметом исследования как раз и является теоретический объект. Объект, построенный путем обобщения наших представлений о земной жизни и разуме и свойствах Вселенной.

Каковы же те способы, с помощью которых в науке решаются сложные задачи, подобные проблеме внеземных цивилизаций?

В качестве одного из них может применяться так называемый игровой метод. Понятие «игра», которое мы привыкли связывать либо с детскими забавами, либо со спортивными состязаниями, приобрело в настоящее время и строго научный смысл. Существует, например, математическая теория игр, которая изучает возможности отыскания наиболее выгодного, оптимального решения различных задач в ситуациях, когда имеется много вариантов выбора. Игровой метод можно применять и как способ научного познания, особенно в условиях неопределенности — когда по данному вопросу нет достаточной информации. В частности, в тех случаях, когда неизвестно, существует реально или не существует исследуемый теоретический объект.

При игровом методе участники игры должны стараться найти решение ряда задач, которые специально формулируются заранее или возникают непосредственно в ходе самой игры. Причем нередко такие задачи или, как их иногда называют, «вводные», носят условный характер. Особенность игрового метода состоит в том, что он сталкивает различные, иногда противоположные и даже взаимоисключающие точки зрения. В сущности, научная игра — это есть не что иное, как специально организованный с определенной целью спор. При этом в процессе научной игры могут ставиться, возникать и обсуждаться такие вопросы, которые при обычном «нормальном» развитии процесса научного исследования по тем или иным причинам не могли бы появиться. Между тем анализ и обсуждение этих вопросов способны принести науке весьма ощутимую пользу.

Исходной посылкой научной «игры во внеземные цивилизации» является чисто логический постулат: «предположим, что во Вселенной существуют другие общества разумных существ, напоминающие в общих чертах своей деятельностью нашу земную цивилизацию». Какие следствия можно вывести из такого предположения, какие проблемы при этом возникают?

В процессе игры во внеземные цивилизации может быть, например, поставлен такой вопрос или «вводная»: какую цивилизацию искать?

Очевидно, наш поиск должен быть нацелен на обнаружение цивилизаций, достигших определенного технологического и энергетического уровня. От этого зависит как установление признаков, позволяющих судить о существовании и деятельности внеземной цивилизации, так и выбор соответствующих наблюдательных средств…

Член-корреспондент АН СССР Н. С. Кардашев предложил классификацию космических цивилизаций по энергетическому признаку. Все цивилизации разделяются на три типа. К первому относятся цивилизации, аналогичные по уровню своего развития земному человечеству, ко второй — овладевшие энергетическими ресурсами, сравнимыми с энергией их звезды, и к третьей — цивилизации, располагающие энергетическими ресурсами в масштабах своей галактики. По мнению Кардашева, искать следует цивилизации именно третьего типа, поскольку их энергетическая, а также технологическая деятельность может быть обнаружена даже на очень больших космических расстояниях. А еще и потому, что, располагая огромными энергетическими возможностями, такие сверхцивилизации способны осуществлять всенаправленные радиопередачи, которые могут быть приняты в любой области космоса.

Однако подобная точка зрения встречает возражения. Для того, чтобы цивилизация достигла третьего типа и овладела энергией, сравнимой с энергией галактики, она должна расселиться по всей своей звездной системе. Но это неизбежно приведет к тому, что из-за огромных расстояний и конечной скорости распространения любых физических сигналов информационная связь между различными частями такой сверхцивилизации будет неизбежно практически утрачена. Сверхцивилизация распадется — она перестанет быть единым целым. Поэтому логично предположить, что оптимальные размеры цивилизации должны составлять несколько световых часов, максимум дней, т. е. размеры, сравнимые с масштабами Солнечной системы или ненамного их превосходящие.

На это у Кардашева есть контраргумент: для того чтобы космическая цивилизация овладела большими энергетическими ресурсами, она вовсе не обязательно должна осваивать всю галактику. Для этого достаточно расположиться в разумной близости от ядра галактики или квазара, т. е. космических объектов, выделяющих большие количества энергии.

Возможно, что высокоразвитые цивилизации, считает Н. С. Кардашев, используют потоки излучения, испускаемые ядрами галактик и квазарами, подобно тому, как мы используем поток солнечного излучения. А значит, искать сверхцивилизации целесообразнее всего в непосредственной близости от квазаров и ядер галактик.

Но в таком случае возникает вполне закономерный вопрос: каким образом цивилизация может оказаться в районе квазара или ядра какой-либо галактики? Ведь вероятность того, что она в таком месте и возникла, видимо, очень невелика. Кардашев отвечает на этот вопрос так: сверхцивилизация вовсе не обязательно должна сформироваться в непосредственной близости от мощного энергетического источника. Общество разумных существ, достигшее достаточно высокого уровня развития, способно искусственным путем изменить характер движения своей звезды в — пространстве и направить ее к центру галактики или даже за ее пределы к другой галактике или одному из ближайших квазаров. Причем подобную операцию, в принципе, вполне можно осуществить, исходя даже из тех законов физики, которые известны нам уже сегодня. Например, усилить поток солнечного ветра в определенном направлении или получить реактивный эффект, отражая часть солнечного излучения с помощью системы зеркал, расположенных в околосолнечном пространстве…

О чем идет спор? Какой вопрос решается? Внешне — вопрос о том, какие цивилизации следует искать в первую очередь. Для этого обсуждаются всевозможные пути энергетического развития внеземных цивилизаций, возможности овладения разумными существами сверхмощными источниками энергии и осуществления технологических акций космического масштаба. И если бы подобный спор велся ради самого спора, он носил бы чисто умозрительный характер: ведь нам неизвестно, ни что представляют собой инопланетные цивилизации, ни каковы пути их развития! их наука, их технология. В действительности же дискуссия о возможном энергетическом уровне инопланетных цивилизаций является одним из составных моментов научной игры. Речь, в сущности, идет о перспективах развития энергетических ресурсов самого земного человечества. Разумеется, вопрос о практической реализации обсуждаемых энергетических и технологических возможностей встанет перед людьми еще очень и очень нескоро. Однако заглянуть в будущее, пусть и весьма отдаленное, никогда не мешает. Тем более, что энергетические проблемы заявляют о себе достаточно остро и в наше время. В грядущем они станут, вероятно, еще более актуальными, несмотря даже на то, что человечество, видимо, уже в начале XXI в. получит в свое распоряжение управляемую термоядерную энергию. А ведь будущее, даже и очень далекое, в какой-то мере закладывается и в наше время, зависит от нашей современной практической и научной деятельности!..

Есть и такая «вводная»: почему за два с лишним десятилетия серьезных наблюдательных исследований, которые ведутся по международным научным программам, не удалось обнаружить ни одного факта, прямо или косвенно свидетельствующего о том, что внеземные цивилизации действительно существуют?

Возможны самые различные истолкования сложившейся ситуации. Самое простое и, казалось бы, естественно напрашивающееся истолкование состоит в том, чтобы сказать: срок наблюдений еще слишком мал. И вообще, то обстоятельство, что мы чего-то еще не открыли или чего-то еще не знаем, само по себе не может служить основанием для каких-либо далеко идущих и тем более окончательных выводов. Тем более, говорят некоторые исследователи, что инопланетные цивилизации, обогнавшие нас в своем развитии, могут передавать информацию во Вселенную не с помощью радиоволн, на которых главным образом и ведется поиск, а с помощью других физических носителей, которыми мы еще не умеем пользоваться, например, потоков нейтрино или гравитационных волн.

Однако есть и другая точка зрения, ее высказал И. С. Шкловский. Если цивилизации в своем развитии должны последовательно достигать второго, а затем и третьего типа, то во Вселенной должно существовать по крайней мере некоторое число сверхцивилизаций. А деятельность сверхцивилизаций неизбежно связана с выделением огромных количеств энергии, которые мы должны были бы обнаружить. Поскольку мы их не обнаруживаем, сверхцивилизаций не существует. Но так как сверхцивилизации — закономерная стадия развития космических цивилизаций вообще (за миллиарды лет существования нашей Вселенной они должны были появиться), а их нет, то нет и внеземных цивилизаций. Так что не исключен и такой вариант: земное человечество — единственная цивилизация в нашей звездной системе — Галактике, а может быть, и во всей наблюдаемой Вселенной.

Но подобный вывод также встречает возражения. Их выдвинул член-корреспондент АН СССР В. С. Троицкий. Отсутствие во Вселенной сверхцивилизаций или цивилизаций, достигших столь высокого уровня развития, что мы могли бы их обнаружить, объясняется, по его мнению, не отсутствием цивилизаций вообще, а иной причиной. Как предполагает Троицкий, цивилизации не появляются в различных местах Вселенной в разное время, а их возникновение произошло приблизительно в одну и ту же эпоху, когда во Вселенной сложились условия, необходимые для формирования живых структур.

Но если жизнь на различных космических мирах возникла приблизительно одновременно, то ни одна космическая цивилизация не могла существенно обогнать в своем развитии остальные и вырваться вперед настолько, чтобы достичь стадии сверхцивилизации, т. е. такой стадии, на которой мы с помощью современных средств могли бы обнаружить следы ее практической деятельности.

Однако и это предположение встречает серьезные возражения. Совершенно невероятно, чтобы словно по мановению волшебной палочки жизнь в одно и то же время зародилась на множестве далеко отстоящих друг от друга небесных тел. Значит, уже неизбежен какой-то разброс. И уж абсолютно невероятно, чтобы темпы дальнейшего развития жизни везде были одинаковы, независимо от местных условий и воздействия множества факторов, в том числе и случайных. А это означает, что даже в случае практически одновременного возникновения жизни во всей Вселенной современный уровень развития различных цивилизаций неизбежно должен быть существенно неодинаков.

Какая же реальная проблема скрывается за этим «туром» игры во внеземные цивилизации? Тоже очень важная. В сущности, обсуждается с необычной стороны вопрос о последовательных стадиях эволюции вещества во Вселенной. Такой подход может способствовать более глубокому проникновению в закономерности минувших этапов развития Вселенной.

Попутно затрагивается и весьма существенный методологический вопрос: имеют ли право на существование в науке аргументы типа: «а может быть „это“ будет открыто завтра»? На примере обсуждения проблемы внеземных цивилизаций особенно отчетливо видно, что любые ссылки на факты, которые еще не открыты, хотя в принципе и могут быть открыты, лежат за пределами современной науки и не могут быть использованы и приняты в расчет при обосновании той или иной гипотезы или точки зрения.

У обсуждаемой проблемы есть и еще одна сторона: возможно ли в принципе создание всенаправленного передатчика для межкосмической связи и вообще беспредельно ли наращивание цивилизацией своих энергетических ресурсов?

Расчеты показывают, что для создания сверхцивилизацией всенаправленного радиопередатчика, сигналы которого можно было бы принимать не только на межзвездных, но и на межгалактических расстояниях, потребовалась бы огромная концентрация энергии. А это по законам физики привело бы к значительному повышению температуры среды и сильному перегреву — явлениям, губительным для самого существования цивилизации. Это приводит к выводу, иному, чем у Кардашева: искать следует цивилизации не третьего, а второго типа.

Существуют весьма серьезные ограничения и возможной мощности радиосигнала, в особенности всенаправленного, который цивилизация может послать во Вселенную. Подсчеты показывают, что радиус антенны, способной излучать всенаправленные сигналы необходимой мощности, составил бы 0,1 астрономической единицы, что в 6 раз больше радиуса Солнца.

Такую антенну пришлось бы расположить на достаточно большом расстоянии от области обитания. В противном случае цивилизация подверглась бы мощному дополнительному облучению. Это расстояние должно по крайней мере на порядок превосходить расстояние от центральной звезды. В Солнечной системе подобную антенну пришлось бы разместить за пределами орбиты Юпитера. Задача, трудная даже для сверхцивилизации.

Все эти рассуждения приводятся в качестве подтверждения той точки зрения, что отсутствие наблюдательных данных, свидетельствующих о существовании других цивилизаций, объясняется чисто техническими трудностями.

Высказываются также интересные соображения, связанные с сохранением цивилизациями среды своего обитания. Эти соображения сводятся к тому, что выработка практически неограниченных количеств энергии какой-либо цивилизацией невозможна по той причине, что уже производство энергии, превосходящей на порядок энергию центральной звезды, неизбежно вызовет заметные изменения межпланетной среды, ее серьезные нарушения, засорение энергетическими отходами. Рост энергетических ресурсов не может быть беспредельным. Потребление энергии в среде обитания неминуемо ведет к тому, что все ее виды в конце концов рассеиваются, а это вызывает нагревание среды, т. е. ограничения здесь такие же, как и на Земле, только масштабы иные. Космическая среда на определенном уровне развития цивилизации тоже нуждается в защите, и охране.

Против предположения о существовании сверхцивилизаций выдвигается и такое возражение: неограниченный экспоненциальный рост какого-либо реального процесса есть чисто математическая абстракция. Она может реализоваться лишь в том случае, если изменение рассматриваемой величины в единицу времени строго пропорционально этой величине. Но для этого должны оставаться неизменными все внешние условия, при которых протекает данный процесс. Для процессов, связанных с развитием цивилизаций, подобное требование заведомо не может выполняться: экспонента — это чисто математическое понятие, а отнюдь не социологическое. Поэтому прогноз далекого будущего цивилизаций на основе закона экспоненциального роста совершенно неправомерен.

Однако этот аргумент вызывает по меньшей мере два контраргумента.

И. С. Шкловский замечает, что вовсе не обязательно, чтобы все цивилизации развивались по экспоненте. Достаточно, чтобы по такому пути следовали хотя бы некоторые из них.

Правда, д-р физ.-мат. наук Г. М. Идлис считает, что любое развитие цивилизации, не только технологическое, но и интеллектуальное, неизбежно связано с систематическим увеличением материальных и энергетических ресурсов и что в нормальных условиях такое увеличение всегда происходит по экспоненте, по закону геометрической прогрессии. Однако в то же время Идлис подчеркивает, что тривиальная космическая экспансия цивилизации из уже освоенной ограниченной пространственной области через ее внешнюю границу наружу в пределах макромира нашей Метагалактики или даже сразу в несколько таких смежных макромиров не может обеспечить беспредельного экспоненциального роста. Для этого нужно «буравить» материю «вглубь», проникать в квазизамкнутые взаимосоприкасающиеся макромиры, которые извне выглядят как элементарные частицы.

Одним из самых интересных вопросов, которые обсуждаются в процессе «игры во внеземные цивилизации», является идея контакта и, прежде всего, информационного контакта. Это не случайно — проблемы передачи информации, ее хранения и кодирования имеют огромное познавательное и практическое значение. И рассмотрение задачи установления информационных контактов с инопланетными цивилизациями на сверхдальних космических расстояниях открывает заманчивые возможности для «игрового» обсуждения этих насущных вопросов современной науки. В частности, подобное рассмотрение естественным образом приводит к исследованию таких задач как распространение информационных сигналов в космической среде, выбор наилучших средств и способов межкосмических радиопередач и т. п.

Таким образом, предметом исследования в задаче межзвездной связи являются, в сущности говоря, не реальные представители внеземных цивилизаций и взаимодействие с ними, а вопросы, связанные с изучением проблем передачи информации на большие расстояния иначе устроенным «интеллектам». Теоретические выводы, которые при этом могут быть получены, имеют самое непосредственное отношение к конкретной проблематике таких наук как астрофизика, радиофизика, информатика, кибернетика, разработка языков для общения человека и машины, а также к ряду других актуальных проблем современной науки.

Приведенные примеры показывают, что подлинная цель «игры во внеземные цивилизации» — осмыслить место человека, человеческого общества во В селенной, выяснить перспективы космического развития, оценить результаты, к которым могут привести в будущем космические исследования, освоение космоса. Превратится ли человечество, именно оно, а не теоретически возможные «иные разумы», в цивилизацию второго или третьего типа? Сможет ли человек «колонизировать» космос, расширяя поле своей деятельности на всю Галактику? Возникает и целый ряд других вопросов, представляющих вполне конкретный научный интерес.

Таков, подлинный смысл «игры во внеземные цивилизации по-научному». Но возможна игра и «не по-научному». Чем же отличаются друг от друга такие «игры»?

Главное отличие состоит в том, что участники игры первого рода отчетливо представляют себе ее подлинный смысл и трезво оценивают степень условности обсуждаемых вопросов и их соотношение с реальными задачами. При игре же «не по-научному» ее участники полностью игнорируют условность ее элементов, отождествляя их с реальной действительностью. В частности, некоторые люди воспринимают отдельные перипетии «игры во внеземные цивилизации» слишком буквально. Вот тогда-то и появляются пришельцы из космоса, «летающие тарелки», «зеленые человечки», «бермудские треугольники» и прочие «чудеса», не имеющие под собой абсолютно никакой научной почвы.

* * *

Пожалуй, со времени открытия «марсианских каналов» ни одна астрономическая проблема не привлекала к себе столь широкого всеобщего внимания и не обрастала таким количеством всевозможных сенсационных сообщений, как проблема поиска внеземных цивилизаций, осуществимости контактов с ними и, в особенности, о возможности посещения Земли представителями других космических миров.

В западных государствах весь этот круг вопросов быстро стал предметом бизнеса. Газеты и журналы охотно печатают сногсшибательные сообщения на подобную тему без всякой проверки их достоверности, лишь бы эти сообщения носили достаточно сенсационный характер и могли произвести соответствующее впечатление.

И как-то за этим потоком необоснованных сенсаций в глазах широких кругов людей постепенно стал затушевываться подлинный научный смысл проблемы внеземных цивилизаций, ее значение для развития наших представлений о мире, для будущего земного человечества. Очень многие стали ошибочно думать, что самое главное чуть ли не во всем современном естествознании вообще — как можно скорее отыскать какую-нибудь внеземную цивилизацию или обнаружить на Земле следы космических пришельцев.

Это и влечет за собой далекое от подлинной науки стремление к необычному, жажду сенсаций, сенсаций во что бы то ни стало. А спрос, как известно, рождает предложение.

Как же обстоит дело в действительности? Какое место занимает проблема внеземных цивилизаций в современном естествознании? В чем она состоит и каково ее подлинное значение? Ответ, возможно, покажется несколько неожиданным. Основной смысл исследования проблемы внеземных цивилизаций на современном уровне состоит не в обнаружении конкретной инопланетной цивилизации и даже не в выяснении того, существуют ли вообще в реальной действительности другие цивилизации, а прежде всего в изучении общих закономерностей нашего космического существования, знание которых насущно необходимо современному человечеству.

Было время, когда вся практическая деятельность людей ограничивалась чисто земными рамками. И тогда можно было не задумываться над тем, что в физическом отношении земная цивилизация является частью Вселенной и подчиняется действующим в ней физическим закономерностям. Но сегодня, когда наши свершения приобретают глобальный и даже космический характер, мы уже не можем игнорировать это обстоятельство. Знание закономерностей, о которых идет речь, необходимо для обоснованного научного прогнозирования нашего собственного космического будущего, планирования нашей практической деятельности, выбора оптимальных путей дальнейшего развития земного человечества!

Вместо заключения

Сценарий для Вселенной (научная фантастика)

— Я пригласил вас, главных теоретиков крупнейших фирм, — откашлявшись, начал Заказчик, — чтобы сообщить о необычном проекте весьма большого масштаба…

На мгновение он умолк и внимательно оглядел собравшихся, которые подобно участникам какой-нибудь международной конференции расположились за огромным полукруглым столом, положив перед собой универсальные электронные блокноты.

Заказчик загадочно улыбнулся уголком рта и продолжил:

— Но выполнение работ будет поручено только одной фирме. Той, которая представит наилучшие соображения. — Он бросил иронический взгляд на сидевших перед ним людей. — Так что все зависит от вас…

Пауза несколько затянулась и один из присутствующих не выдержал:

— А что вы собираетесь строить?

— Здесь не пресс-конференция, — обрезал Заказчик, — и потому вопросов прошу не задавать. Все необходимые данные я сообщу… Итак, что мы собираемся строить? — он вновь на некоторое время замолчал, словно опытный актер, стремящийся усилить предстоящий эффект. — Мы будем строить… Вселенную!

Люди за столом возбужденно зашевелились. Не давая им опомниться, Заказчик подчеркнуто деловым тоном продолжал:

— Техническое задание… Диаметр — 20–25 миллиардов световых лет. Начальное состояние — компактный сгусток горячей плазмы. Плотность порядка 1095 граммов в кубическом сантиметре. Процесс приведения объекта в заданное состояние — взрывное расширение. Должно быть предусмотрено как минимум четыре типа физических взаимодействий. Основные физические параметры, а также начальные условия вы должны подобрать таким образом, чтобы могли образоваться химические элементы, как легкие, так и тяжелые, а затем звезды, планеты, галактики, скопления галактик. Начальные условия должны также предусматривать возможность самоорганизации материи, т. е. возникновения жизни.

В зале воцарилась тишина. Несколько человек, захлопнув блокноты, поднялись со своих мест и покинули помещение. Заказчик обвел придирчивым взглядом оставшихся:

— Итак?

— Все же есть один вопрос, — послышался чей-то голос. — Зачем это понадобилось? Ведь Вселенная уже есть. Та, в которой мы живем. И не такая уж плохая. Разве мало одной?

— Это нужно, потому что… нужно. Я никогда не слышал о том, что заказчик должен объяснять подрядчику что-либо кроме технических условий. Впрочем, мы никого не принуждаем.

Он выжидающе посмотрел на присутствующих, но больше никто не ушел.

— В таком случае — приступим. Каждому из вас будет предоставлен отдельный кабинет с электронно-вычислительной машиной и всей необходимой аппаратурой. Срок — шесть часов.

— А общаться нам разрешается? — выкрикнул кто-то.

Заказчик пожал плечами:

— Это вы должны решить сами. Но помните, заказ будет поручен только одной фирме… Теперь договоримся о позывных для связи и входа в Главный информационный центр. — Он кивнул в сторону теоретика, сидевшего с левого края стола. — Ваш индекс будет «ЭФ-1», ваш — «ЭФ-2», «ЭФ-3» и так далее… И не забывайте, мы хотим получить оригинальный проект. А сейчас — приступим к делу. Отсчет времени начался!

… За спиной щелкнула тяжелая металлическая дверь. Теоретик «ЭФ-1» остановился и оглядел предоставленную ему кабину. Она напоминала небольшую радиостудию. Стены и потолок были выложены светлыми пористыми звукопоглощающими плитками, за толстыми стеклами располагалась разнообразная аппаратура. Помещение заполняла глухая, ватная тишина. Стол посередине был окружен многочисленными пультами, телевизионными экранами, дисплеями, табло, устройствами для ввода информации. Часы на стене показывали 10 часов 6 минут. Шесть минут из отведенного для работы времени было уже потеряно.

«ЭФ-1» присел к столу, положил перед собой электронный блокнот… Да, нечего сказать, хороша задачка! Сконструировать Вселенную! «ЭФ-1» усмехнулся — неплохо ощутить себя господом-богом. Впрочем, существуй всевышний на самом деле, ему бы никогда с такой задачей не справиться. Попробуй согласовать все те бесчисленные связи и отношения, которые должны превратить первозданный хаос в упорядоченную совокупность процессов и явлений гигантского масштаба. А одному человеку и тем более это не под силу, несмотря на помощь могущественной электроники. К счастью, от него такое и не требуется: нужно только наметить самые общие контуры, сформулировать и обосновать главные принципы, построить так сказать «физический скелет». А уж дальше — не его забота… Но и это черт знает как сложно! Во всяком случае, решать подобные задачи «ЭФ-1» не приходилось еще никогда…

Засветился один из экранов. Вызывал сосед — «ЭФ-2», старый друг, вместе учились в Академии космической физики.

— Приступил?

— Нет еще.

— С чего думаешь начинать?

— Попробую пожонглировать основными параметрами.

— Ну, ни пуха!..

— К черту, к черту…

В самом деле: с чего начать?

«ЭФ-1» раскрыл электронный блокнот и тонким пишущим стержнем набросал несколько математических знаков и формул. Решил: буду строить Вселенную по испытанным природой принципам — все равно лучше не придумаешь. Значит: четыре взаимодействия — сильное, электромагнитное, слабое и гравитационное. Трехмерное пространство. И фундаментальные константы — заряд электрона, гравитационная постоянная, скорость света… А теперь выясним, в каких пределах можно их изменять.

Он запросил канал для связи с Главным информационным центром, получил разрешение на вход, затребовал необходимые данные и, бросив беглый взгляд на дисплей, где эти данные мгновенно появились, ввел их в ЭВМ. Потом «ЭФ-1» на некоторое время задумался, включил микрофон и продиктовал задание вычислительному и имитационно-воспроизводящему устройствам.

Для начала поиграем зарядом электрона, — пробормотал он вслух, передвигая рычажки на пульте и нажимая нужные кнопки. — Теперь выберем «испытателей» — разумеется, так, чтобы их самих изменения не коснулись. Так, так… Хорошо…

И, повернувшись, на вращающемся кресле к голографической установке, «ЭФ-1» перевел пусковую рукоятку на пульте.

— Ну что же, — сказал профессор Смирнов, снимая очки и возвращая Комлеву листок с выписанными на нем данными. — Думаю, на этом измерения можно прекратить.

— Но я бы хотел кое-что перенастроить, — возразил Комлев. — И провести еще одну серию экспериментов, по измерению заряда электрона.

— Зачем же? — Смирнов недовольно поморщился. — Вы получили результат с точностью до седьмого знака. Превосходная точность. Ее вполне достаточно для вашей диссертации. Так что не вижу необходимости.

— А я вижу, — задиристо произнес Комлев. Иногда он на правах любимого ученика позволял себе дерзить профессору. — Просто у нас с вами разные исследовательские программы.

— Ах, Олег, Олег, — укоризненно покачал головой Смирнов, переходя на шутливый тон. — К чему эти модные словечки? Вы гоняетесь за синей птицей — будем называть вещи своими именами. И совсем замучили нашу Ириночку. Смотрите, она даже похудела за этот месяц.

Хорошенькая девушка, скромно сидевшая в сторонке возле пульта измерительной установки, повернула к ним голову и мило улыбнулась.

— Ну что вы, Василь Василич, — прощебетала она, бросив преданный взгляд на Олега. — Мне так нравится эта работа…

Смирнов перехватил ее взгляд и сразу помрачнел. Не то, чтобы он питал какие-то особые — чувства к этой девушке, едва закончившей физический факультет, но она была сотрудницей его лаборатории — поэтому он считал ее своей собственностью и в глубине души ревновал к Олегу. Тем более, что не мог не заметить: между аспирантом Комлевым и старшей лаборанткой Ясинской складываются не просто товарищеские отношения.

— Да, да, я знаю, — сказал он полушутливо-полуворчливо, — для Олега вы на все готовы.

— Ну почему же? — серьезно возразила Ирина, не принимая его тона. — Я тоже убеждена в том, что константы с течением-времени изменяются.

— Чепуха! — отрубил профессор. — Химера! Абсолютно ни на чем не основанная. Романтический бред.

— Между прочим, все во Вселенной эволюционирует, — вмешался в разговор Комлев. — Почему же константы должны оставаться неизменными?

— А если они заведомо не меняются, — поддержала Ирина, — то зачем же мы тратим столько времени и сил на их измерение? Что нам в таком случае дает этот лишний знак после запятой?

— Не кощунствуйте! — возмутился Смирнов. — Точность измерений — мать науки. Мне ли напоминать вам о том, что на фундаментальных константах держится все здание современной физики. И чем точнее мы будем знать их значение, тем лучше поймем устройство Вселенной.

— Вот потому-то я и хочу добраться до восьмого знака, — подхватил Олег. — И доказать, что постоянные — вовсе не так уж постоянны.

— Не слушайте его, Ирочка, — сказал Смирнов, вновь переходя на свой полушутливый-полуворчливый тон. — Не позволяйте этому увлекающемуся фантазеру сбивать вас с толка.

— Ничего, профессор, — добродушно рассмеялся Комлев, безошибочно почувствовав, что Смирнов уступил. — Мы еще посмотрим, кто прав.

— Ну хорошо, — в самом деле сдался Смирнов. — Последняя серия. Но на этот раз действительно последняя…

— Ты не сердишься на меня? — шепнул Комлев Ирине.

Девушка промолчала, но одарила молодого ученого таким взглядом, который не оставлял сомнений в характере ответа…

— Тогда приступим, — сказал Комлев. — Ирочка, пожалуйста, поменяй местами шестой и седьмой блоки, а третий и четвертый подключи последовательно.

Девушка кивнула и повернулась к установке. Ее длинные, тонкие пальцы с коротко подстриженными как у хирургов ногтями легко парили над пультом, словно пальцы пианиста над клавишами рояля. Закончив подготовку, она вопросительно посмотрела на Комлева. Бросив взгляд на приборы, Олег положил руку ей на плечо:

— Начнем!

Ирина плавно перевела рычаг в пусковое положение Задвигались стрелки на циферблатах. Сменяя друг друга, побежали цифры на световом табло. Постепенно установились первые четыре знака после запятой. Потом пятый… Система была сконструирована таким образом, что точность нарастала в процессе измерений. Установилась шестая цифра, за ней седьмая. Но на восьмом месте цифры все еще стремительно менялись. Наконец, их движение тоже стало замедляться.

— Кажется, получается, — возбужденно прокомментировала Ирина.

И вдруг седьмой знак скачком увеличился на единицу. Комлев и Ирина удивленно переглянулись. Еще скачок, еще — и вот уже изменения затронули шестой знак.

— Что за чушь? — воскликнул Комлев. — Посмотрите, Василий Васильевич.

Пока Смирнов неторопливо приблизился к установке, достал очки и протер носовым платком стекла, изменения произошли уже и в пятом знаке…

— Вот к чему приводят ваши пересмотры, — произнес он совершенно спокойно.

— Не может этого быть, — возразил Комлев. — Ведь сперва установилось правильное значение. И потом во всех этих изменениях просматривается какая-то последовательность.

— Да, да, — подтвердила Ирина. — Сперва изменился седьмой знак, потом шестой и только после этого пятый… А теперь, смотрите, и четвертый!

— И что же вы хотите сказать? — иронически улыбнулся Смирнов.

— Что-то произошло, — убежденно произнес Комлев.

— Где? — встревоженно спросила Ирина.

— Во Вселенной!

— Ха! — проскандировал Смирнов. — Ха, ха!.. Вселенная решила подыграть вашей гипотезе. Так?

— Боюсь, что так, — отозвался Комлев, напряженно следя за приборами. — Смотрите, что творится!

Теперь цифры на табло сменяли друг друга еще стремительнее.

— Заряд стал уже намного меньше обычного, — взволнованно сказал Комлев.

— И что же будет? — испуганно осведомилась Ирина.

— Ничего хорошего. Если так пойдет и дальше, то электроны в атомах попадают на ядра. Сперва погибнут атомы тяжелых элементов, а затем и все остальные.

— Смотрите! — испуганно вскричала Ирина. — Что это?

С окружающими предметами в самом деле происходило что-то странное. Их очертания перестали быть резкими и неизменными. Они пришли в какое-то непонятное «струение», стали колебаться, как колеблются очертания предметов в жаркий летний день, когда их искажают восходящие? потоки теплого воздуха.

Смирнов даже еще раз протер очки.

— Чертовщина какая-то, пробормотал он. — Наваждение…

— Они сжимаются! — закричала Ирина.

Действительно, металлические предметы, находившиеся в лаборатории на глазах, стали уменьшаться в размерах.

— Это… мировая катастрофа, — неестественно спокойным голосом произнес Комлев.

— Ерунда! — возмутился Смирнов. — Почему же мы с вами остаемся невредимыми и ваша измерительная установка тоже?

— В самом деле… — пробормотал Комлев.

— Как же вы — физик, исследователь могли не обратить на это внимание?

— Все пошло в обратную сторону, — сообщила Ирина.

Словно по команде Смирнов и Комлев вновь повернулись к табло. Теперь смена цифр показывала быстрое увеличение заряда электрона. В течение нескольких десятков секунд он достиг нормального значения и, перевалив через него, продолжал расти.

— Теперь все начнет разваливаться, — как-то безразлично прокомментировал Комлев.

Окружающие предметы стали медленно распухать…

— А мы с вами продолжаем жить, — заметил Смирнов, — ,и чувствуем себя вполне нормально.

— Ничего не понимаю, — растерянно произнес Комлев. — Подождем…

Ждать пришлось недолго. Прошло всего несколько минут и цифры на экране выстроились в хорошо знакомый ряд.

— Что это было? —  Тихо спросила Ирина.

Она сидела бледная на своем вращающемся стуле, вцепившись в поручни ограждения пульта.

— Наваждение, — повторил Смирнов. — Галлюцинация. Вы никогда не замечали за собой способности, к осуществлению массового гипноза, Олег?

— Я стал бы тогда не физиком, а врачом-психотерапевтом или на худой конец эстрадным актером.

— Я где-то читала, — вставила Ирина, — что у некоторых людей подобная способность может проявиться неожиданно для них самих.

— Но я ведь даже и вообразить не мог ничего подобного тому, что произошло, — пожал плечами Олег.

— И тем не менее… — пробурчал Смирнов, бросив подозрительный взгляд на Олега и Ирину. — Если это розыгрыш…

Однако в этот момент в окружающей обстановке вно’-ь что-то изменилось.

— Сейчас же прекратите! — взорвался было Смирнов, но увидев, как испуганно Олег схватил Ирину за руку и притянул ее к себе, умолк.

В последующие минуты происходило нечто необычайное и непонятное. Окружающие предметы невероятным образом меняли свой вид, стены то искривлялись, то стягивались чуть ли не в точку, то вовсе исчезали, открывая пугающую бездонную черноту. Но, пожалуй, самым удивительным во всей этой фантасмагории было то, что несмотря на безудержное буйство мировых свойств, ни Ирина, ни Олег, ни Смирнов не ощущали никаких физических воздействий. В окружавшем их невообразимом хаосе они оставались целыми и невредимыми, словно их охраняла неведомая колдовская сила. Странно было и то, что время от времени хаос исчезал и все вокруг возвращалось к привычному нормальному состоянию, но лишь затем, чтобы спустя несколько секунд вновь прийти в движение.

Тесно прижавшись друг к другу, все трое напряженно ожидали, чем закончится непонятная игра физических свойств окружающего мира.

Они не представляли, сколько прошло времени, потому что исчезло привычное ощущение времени. Может быть, несколько секунд, а может быть, целая вечность… И вдруг все прекратилось. Прекратилось так же неожиданно, как началось.

Лаборатория приняла свой обычный вид, все оказалось на своих местах, а за окнами голубело весеннее небо и ободряюще светило Солнце.

— Что же это все-таки было? — дрожащим голосом спросила Ирина, продолжая испуганно прижиматься к Олегу.

— Не знаю… Какое-то необъяснимое бешенство мировых констант.

— Словно страшный сон… — девушка оторвалась от Олега и подошла к окну. — А как прекрасен наш мир. И как хорошо, что он именно такой, а не другой!..

Олег тоже подошел к окну и остановился рядом с Ириной.

— В самом деле… А ведь мы как-то об этом забываем. Между тем, нам очень сильно повезло… Повезло, что мы живем в мире о такими именно свойствами.

— В другом мире нас просто не было бы… — добавил, присоединившийся к ним Смирнов.

«ЭФ-1», он же слушатель-дипломник Академии космической физики Андрей Морозов выключил аппаратуру и тщательно просмотрел итоговые записи в электронном блокноте. Потом решительно встал, подошел к двери и нажал выходную кнопку…

Через минуту он сидел за столом, по другую сторону которого расположился Заказчик — он же заведующий кафедрой космологии Николай Викторович Долгов. Морозов молча протянул ему блокнот с результатами расчетов. Бросив на них беглый взгляд, Долгов улыбнулся:

— Похоже, что «фирма» останется недовольна вашей работой… Вы сконструировали Вселенную, принципиально ничем не отличающуюся от нашей. Задание было несколько иное.

— Но оно оказалось невыполнимым. Я провел всесторонний анализ. И выяснилось, что всем тем требованиям, которые были сформулированы Заказчиком, удовлетворяет лишь Вселенная с представленными мною параметрами.

Долгов разыскал в лежавшей на столе стопке зачетную книжку Морозова и положил перед собой. Затем он извлек из нагрудного кармана старинное «вечное перо» и уже хотел было сделать соответствующую запись, но в последний момент почему-то остановился и перо, нацелившееся на графу «отметка», повисло в воздухе.

— Не кажется ли вам, молодой человек, — сказал Долгов, пристально глядя на Морозова, — что вы избрали не ту специальность? Вам следовало поступить в Литературный институт.

— Ну почему же? — улыбнулся Морозов.

— Вам была предложена задача из области космологии. А вы решали ее… я бы сказал… в литературном плане. Или точнее — в драматургическом. Вы неплохо сочинили сценарий — не спорю, я смотрел с интересом. И все же… Вам нужно было создать сценарий для Вселенной. Для Вселенной. И только…

Я мыслю — поэтому Вселенная такая, какая она есть.

— Знаю: Картер… И что же из этого?

— Вселенная именно такова, потому что есть человек.

— Уилер… Идлис… Тоже знаю. Могу добавить: человек наблюдает и изучает в окружающем мире процессы определенного типа, потому что процессы иного типа протекают без свидетелей.

— Зельманов…

— Совершенно справедливо. Так что же вы все-таки хотите сказать?

— Всего лишь то, что Вселенная сама по себе, без человека просто не имеет Смысла. Вот я и пытался построить Вселенную не только допускающую существование биологической жизни, но Вселенную, согласованную с человеком. Я строил сценарий для Вселенной, в которой есть человек!

— М-да… — задумчиво произнес Долгов. — Что же, наверное, вы правы… Спасибо за напоминание.

И он решительным движением вывел в зачетной книжке жирную пятерку. Немного помедлив, приписал к Ней восклицательный знак.

— Спасибо и вам, — сказал Морозов, поднимаясь. — С общими соображениями на тему «Вселенная и человек» я познакомился еще будучи студентом. Но организованная вами игра впервые, помогла мне их как следует осмыслить, сделала их вполне осязаемыми. Спасибо…

Вселенная и человек

Осознание человеком с научных позиций своего места во Вселенной, взаимосвязи своего существования с окружающим миром, составляет основу нашего научного мировоззрения.

Именно этот вопрос — о месте человека и человечества в мироздании — всегда был одним из центральных вопросов мировоззрения. И если разобраться, то, в сущности, именно вокруг этого вопроса во все времена развертывалась и продолжается по сей день борьба науки и религии. Внешне она принимала различные формы, но всегда была отражением различного понимания отношения человека к миру и своего места в нем.

В то же время следует подчеркнуть, что вопрос о месте человека и человечества в мироздании, а также о взаимосвязи и взаимозависимости земных явлений и космических факторов в наше время имеет не только мировоззренческое, но и прямое практическое значение. С развертыванием научно-технической революции, с бурным развитием науки, техники и технологии, наконец, с выводом человека в космическое пространство многие свершения земного человечества приобретают не только глобальный, но и космический характер. Человечество, в непосредственном значении этого слова, становится космической цивилизацией. А это означает, что в своей практической деятельности человечеству во все большей и большей степени придется учитывать закономерности космических явлений.

Действительно, строение живых организмов тесно связано с теми конкретными физическими условиями, в которых они непосредственно существуют. В частности, многие свойства земных организмов определяются физическими условиями, существующими на Земле. Так, глаз человека наиболее чувствителен к желто-зеленым лучам, поскольку в солнечном излучении максимум энергии приходится на желто-зеленую область. Строение скелета и мышечного аппарата человека и животных, а также химического состава костной ткани определяется величиной силы тяжести, которая в свою очередь зависит от массы нашей планеты. Вспомним, какие нарушения могут возникать и в работе мышц, и в системе кровообращения, и в химическом составе костной ткани в тех случаях, когда человек длительное время находится в условиях космического полета в состоянии невесомости.

Существенную роль для земных организмов играет уровень естественной радиоактивности у поверхности Земли, наличие в атмосфере слоя озона, задерживающего ультрафиолетовую радиацию Солнца, а также существование магнитного поля, создающего непреодолимый барьер для частиц высоких энергий, пронизывающих космической пространство. Немаловажное значение имеет и определенный ритм колебаний солнечной активности.

Наряду с этим существуют взаимосвязи и взаимозависимости и более высокого — космологического порядка.

Еще в пятидесятые годы советский космолог А. Л. Зельманов высказал интересное соображение: мы являемся непосредственными свидетелями природных процессов определенного типа, потому что процессы иного типа протекает без свидетелей.

Впоследствии американский ученый Б. Картер сформулировал тот же принцип в более парадоксальной форме. Он использовал знаменитое высказывание французского философа Декарта: «Я мыслю — значит, я существую». В интерпретации Картера оно звучит так: «Я мыслю, поэтому мир таков, каков он есть»[26].

Аналогичные идеи можно встретить и в работах других современных физиков и астрофизиков. Так, выдающийся современный физик, ученик А. Эйнштейна Д. Уилер в одной из своих книг подчеркнул, что существующего во Вселенной порядка вещей могло и не быть без человека, но поскольку есть человек, то Вселенная обладает именно теми свойствами, какими она обладает.

Другой известный ученый — английский астрофизик П. Девис в своей книге «Пространство и время в современной картине Вселенной» высказывает похожую мысль о том, что наличие жизни накладывает ограничения на свойства Вселенной — они должны быть в той или иной мере определенными.

Понимать это, разумеется, надо не так, что человек может силой мысли изменять свойства Вселенной, а так, что в иной Вселенной, обладающей иными свойствами, мы просто не могли бы ни появиться, ни существовать, ни мыслить. И такую Вселенную мы не могли бы ни наблюдать, ни изучать. Как справедливо заметил П. Девис, «…если бы все было не таким, каково оно есть, нас здесь просто бы не было и мы не могли бы выражать свое удивление»[27]).

Эти утверждения вошли в современную науку под названием «принципа Зельманова-Картера» или «антропного принципа».

Обычно вопрос ставился так: существует Вселенная с определенными свойствами, которые человек познает в процессе ее изучения? Как происходит эволюция этой Вселенной, как в ходе этой эволюции образуются сложные структуры и как возникают жизнь и человек? Именно в этом плане рассматривалась и возможность существования жизни в других регионах Вселенной и методов ее поиска. Таков, так сказать, классический подход к проблеме.

Антропный принцип — это, по существу, совершенно иная постановка вопроса о взаимосвязи фундаментальных свойств Вселенной с фактом существования жизни и человека.

Суть его состоит в следующем: Вселенная такая потому, что есть мы, разумные существа, «наблюдатели», способные задавать вопросы об ее свойствах.

Что же касается малой вероятности осуществления именно такого сочетания свойств, то мы не знаем, как много вариантов иных вселенных осуществилось до того, как реализовался наш вариант с благоприятными для возникновения жизни параметрами, или какое число вселенных, обладающих иными свойствами, существует в материальном мире наряду с нашей.

Таким образом, речь, идет о сложной взаимосвязи и взаимозависимости между свойствами Вселенной и порожденными ходом развития материи жизнью и разумом. Как мы уже знаем, все звездные острова — галактики — разлетаются таким образом, что взаимные расстояния между ними с течением времени увеличиваются. И хотя даже ближайшие галактики отделены от нас огромными расстояниями, характер их движения имеет первостепенное значение для существования жизни на Земле.

Дело в том, что удаление источника электромагнитного излучения порождает так называемый эффект Доплера — сдвиг излучения к красной части спектра в сторону более низких частот и более длинных волн. А чем ниже частота электромагнитного излучения, тем меньшую энергию оно с собой переносит.

Благодаря эффекту Доплера излучение взаимоудаляющихся галактик смещается в менее интенсивную часть спектра излучения. В итоге «средняя температура» Вселенной сказывается сравнительно небольшой, допускающее возможность существования биологической жизни.

А если бы галактики сближались? Тогда вместо красного смещения происходило бы фиолетовое — сдвиг излучения в сторону больших частот и более коротковолновых, жестких излучений. При этом условии все небо светилось бы так же ослепительно ярко, как светится диск Солнца, — на нас обрушивался бы испепеляющий поток излучения, приблизительно в 200 тысяч раз превосходящий по своей интенсивности солнечный свет. Плотность излучения была бы настолько велика, что в такой Вселенной жизнь не могла бы существовать, более того, не могли бы существовать даже планеты — они просто испарились бы!

Даже в том случае, если бы Вселенная просто не расширялась или темп расширения был менее значительным, то общая интенсивность фона излучения была бы столь велика, что в нашем мире не могло бы ничего появиться, ничего хотя бы отдаленным образом напоминающего белковую форму жизни.

Следовательно, мы совсем не случайно живем именно в расширяющейся Вселенной и наблюдаем именно красное смещение в спектрах галактик.

Разбегание галактик — это не только ослабление плотности излучения, делающее возможным существование биологической жизни. Расширяющаяся Вселенная — это Вселенная изменяющаяся: ее прошлое не тождественна настоящему, а настоящее — будущему. Если мысленно повернуть картину разбегания галактик вспять, то мы придем к выводу о том, что около 18 миллиардов лет назад не было ни звезд, ни галактик, ни планет, ни туманностей. Существовал только компактный сгусток сверхплотной горячей плазмы. Затем началось взрывное расширение этого сгустка, стали возникать неоднородности среды; их дальнейшая эволюция привела к формированию многообразного мира космических объектов, составляющих «население» современной Вселенной.

Но меняется не только Вселенная. Многие космические объекты также находятся в нестационарных состояниях. В сравнительно короткие по астрономическим масштабам промежутки времени они испытывают глубокие качественные превращения, качественные скачки, в этих объектах совершаются превращения материи, ее переходы из одного состояния в другое, сопровождающиеся выделением колоссальных количеств энергии и даже взрывными явлениями. К числу таких нестационарных объектов относятся, например, квазары и ядра некоторых галактик.

Таким образом, мы живем в нестационарной Вселенной, в которой на различных уровнях существования материи совершаются необратимые физические процессы. Осознание этого факта имеет существенное значение для всей нашей практической деятельности.

Так же тесно и весьма критическим образом свойства жизни на Земле связаны и со многими другими фундаментальными свойствами астрономического мира, в частности с конкретным ходом образования тяжелых элементов в процессе эволюции Вселенной. Выявляется грандиозная взаимозависимость между начальными условиями эволюции Вселенной и конкретными физическими предпосылками появления жизни. Становится ясно, что средой обитания жизни является не только поверхность нашей планеты, но и окружающий мир Солнечной систему, и Галактика с ее специфическими свойствами, и вся наша Вселенная.

Земная жизнь предстает закономерным результатом предшествующего развития материи не как локальное явление, а как глобальный итог множества различных причин и следствий, работающих во «вселенском» масштабе.

Наша Вселенная, ее фундаментальные свойства, в том числе структура, которой она обладает, начиная от элементарных частиц и вплоть до сверхскоплений галактик, самым тесным образом связаны и со значениями физических констант, а также формой действующих в ней физических закономерностей. Эти константы и закономерности обеспечили формирование в процессе эволюции нашей Вселенной таких условий, при которых возникает возможность образования сложных систем и сложных форм движения, а в конечном счете — жизни и человека.

Фундаментальные константы, определяющие свойства Вселенной, занимают среди огромного многообразия различных физических величин, которые входят в структуру основных физических теорий, совершенно особое место. К их числу относятся скорость света в пустоте (с), заряд (е) и масса (mе) электрона, так называемая постоянная Планка (G), гравитационная постоянная (G) и некоторые другие. Эти константы отражают наиболее глубокие, основополагающие свойства окружающего нас мира, и поэтому их не случайно называют иногда «константами Вселенной». Они неизменно фигурируют в основных уравнениях современной теоретической физики. Постоянная Планка tl=1,05·10-27 эрг·с = 1,05·10-33.Дж·с связывает между собой в квантовой теории энергию E и циклическую частоту фотона со известным соотношением Е=ђω.

Скорость света с входит в уже знакомое нам соотношение специальной теории относительности Эйнштейна, известное под названием принципа эквивалентности.

Что же касается заряда и массы электрона, то эти величины характеризуют не только свойства этой конкретной элементарной частицы, но и многих других материальных образований.

Фундаментальные константы тесно связаны с уже знакомыми нам четырьмя типами физических взаимодействий: ядерным, или сильным, электромагнитным, слабым и гравитационным. Так, постоянная тяготения G характеризует силу тяготения, а заряд электрона е является количественной характеристикой электромагнитных сил. Аналогичную роль для сильных и слабых взаимодействий играют соответственно константы gs и gF (постоянная Ферми).

С помощью фундаментальных констант можно охарактеризовать физические взаимодействия безразмерными константами: слабого взаимодействия aw, электромагнитного аe (так называемая «постоянная тонкой структуры»), сильного аs; и гравитационного ag. Их несложно получить, рассмотрев отношение энергии каждого из взаимодействий, скажем, с энергией фотона.

В результате мы определим следующие приближенные числовые значения констант взаимодействия:

где тр — масса протона.

Путем сравнения полученных чисел нетрудно установить, что электромагнитное взаимодействие приблизительно в 100 раз слабее сильного, слабое в 1000 раз слабее электромагнитного, a гравитационное взаимодействие еще в 1039 раз слабее.

В 1937 г. известный физик П. Дирак высказал предположение о том, что фундаментальные физические константы медленно изменяются с течением времени, и, следовательно, в отдаленном прошлом на ранних стадиях эволюции Вселенной их значения могли весьма существенно отличаться от современных.

В частности, согласно гипотезе Дирака гравитационная постоянная убывает пропорционально возрасту Вселенной. Подобное явление должно было бы вызывать определенные астрономические и геофизические следствия, например, некоторое расширение Земли и планет. Оценка возможных эффектов такого рода показала, что уменьшение G во всяком случае не превосходит 10-10 в год. Однако изменяется ли фактически постоянная тяготения или нет, пока сказать нельзя. Во всяком случае специальные измерения и наблюдения, проведенные в последние годы, этой гипотезы не подтвердили. С большой степенью точности установлено, что значения фундаментальных констант остаются неизменными. Видимо, и в самом начале расширения они были такими же, как в нашу эпоху.

То особое место, которое занимают фундаментальные константы в физике, предопределяет необходимость как можно более точного определения их значений. Задача любой физической теории в конечном счете сводится к возможно более точному количественному описанию соотношений и зависимостей реального мира, Но коль скоро в уравнения физических теорий входят фундаментальные константы, результаты теоретико-физических расчетов тем вернее отразят реальное положение вещей, чем точнее нам будут известны значения констант.

Назначение обычных физических теорий состоит в том, чтобы дать достаточно полное описание тех или иных физических систем, исходя из определенных начальных условий и основных физических констант. Вопрос, почему начальные данные именно таковы, в этих теориях не ставится.

Иное дело в космологии. Фундаментальные физические константы и связанные с ними константы взаимодействия определяют структуру нашей Вселенной. Возможно, значения этих констант содержались уже в начальных условиях, существовавших в той сверхплотной горячей плазме, в результате расширения которой сформировалась наша Вселенная. Поэтому вопрос о начальных условиях и основных физических константах непосредственно связан с вопросом о том, почему наша Вселенная именно такая как есть, а не какая-нибудь иная? Но почему эти константы именно такие, а не другие? Возможно, к ответу на этот фундаментальный вопрос мы приблизимся, отвечая на другой вопрос: какими были бы свойства нашей Вселенной при иных значениях фундаментальных констант?

На первый взгляд может показаться, что небольшие изменения некоторых параметров вызовут лишь несущественные количественные перемены во Вселенной. Так, скажем, изменение размеров атомов приведет к соответствующим изменениям масштабов всех предметов и объектов, а изменение гравитационной константы — к изменению размеров небесных тел и сроков их эволюции. Но ничего принципиального не произойдет: Вселенная в общих чертах останется такой же как и прежде.

Однако расчеты показывают, что это далеко не так. Даже сравнительно небольшие изменения фундаментальных констант неизбежно, повлекли бы за собой глубокие качественные изменения свойств Вселенной, исключающие возможность существования сложных структур.

Предположим, например, что заряд электрона увеличился в 10 раз по сравнению с существующим. В этом случае в соответствии с законом Кулона возросли бы силы электростатического отталкивания между атомными ядрами и тот «кулоновский барьер», который необходимо преодолеть для слияния ядер в термоядерных реакциях. В результате приблизительно на два порядка увеличилась бы масса вещества, необходимая для самоподдержания таких реакций.

Можно показать, что в этом случае в современной Вселенной не существовало бы звезд с массами, сравнимыми с массой Солнца. Все такие звезды уже сколлапсировали бы и превратились либо в белые карлики, либо в нейтронные звезды.

А если бы возросла в 10 раз масса протона, то верхняя граница массы нейтронных звезд уменьшилась бы в 100 раз и единственной конечной стадией жизни звезд стали бы черные дыры.

Весьма существенно повлияли бы на характер физических процессов, происходящих во Вселенной, и изменения таких величин как масса электрона или пиона (пи-мезона), которые согласно существующим представлениям никак не связаны с такими фундаментальными константами как гравитационная постоянная, постоянная Планка, скорость света и масса протона. Так, например, если увеличить массу электрона более чем в 2,5 раза, не смогут существовать атомы водорода. С другой стороны, если уменьшить в 1,3 раза безразмерную постоянную электромагнитного взаимодействия ае, то окажется невозможным существование атомов химических элементов с атомным номером больше, чем 4. Увеличение безразмерной постоянной тяготения ае в 1000 раз исключит возможность существования протонов. И так далее, и тому подобное…

Сравнительно узкие границы возможных вариаций фундаментальных физических констант, в пределах которых еще возможно существование сложных систем, убедительно свидетельствуют в пользу уникальности того «набора» физических констант, который имеет место в нашей Вселенной.

Это обстоятельство в принципе может быть истолковано как отражение одной из двух возможностей, о которых косвенно уже было упомянуто выше. Одна из них состоит в том, что наша Вселенная прошла через множество циклов расширения и сжатия, в начале каждого из которых складывался определенный «набор» физических констант, изменявшийся от цикла к циклу таким образом, что в современном цикле сформировалось их сочетание, благоприятное для образования сложных структур и жизни. Вторая возможность заключается в том, что в материальном мире существует множество Вселенных, для каждой из которых характерен свой «набор» физических констант.

Правда, исследования, проведенные физиками-теоретиками в последние годы, показали, что если изменять некоторые из фундаментальных постоянных совместно, то существует определенная область их значений, при которых все же сохраняется возможность образования в соответствующей Вселенной сложных структур. Однако размеры этой области, судя по полученным данным, весьма ограниченны.

Все сказанное позволяет сформулировать антропный принцип в несколько иной форме, чем это было сделано выше. Ни в какой другой Вселенной с иными законами физики и существенно отличающимися физическими свойствами невозможно образование сложных устойчивых структурных элементов — атомов, молекул, планет, звезд и галактик, а также существование высокоорганизованной органической материи.

Именно это обстоятельство и нашло свое отражение в рассказе «Сценарий для Вселенной».

В свое время Коперник, построив и обосновав гелиоцентрическую систему мира, совершил величайший переворот в существовавших до этого представлениях о мироздании. Попутно выяснилось, что видимые движения небесных светил — это движения кажущиеся, возникающие вследствие вращения Земли вокруг своей оси и ее обращения вокруг Солнца. Тем самым в науку прочно вошел важнейший принцип: мир может быть не таким, каким мы его непосредственно наблюдаем, — принцип, ставший одной из идейных основ всего дальнейшего развития естествознания.

На рубеже XIX и XX столетий произошла революция в физике, которая в дальнейшем переросла в революцию в естествознании вообще. Оказалось, что механическая картина мира, построенная классической физикой и представлявшаяся к концу XIX века близкой к завершению, в действительности отражает лишь одну из сторон, граней окружающей нас физической реальности. Эта революция привела не только к бурному развитию новой неклассической физики, в том числе квантовой физики и теории относительности, но и к осознанию бесконечного разнообразия и неисчерпаемости материального мира. Стало ясно, что любая научная теория имеет определенные границы применимости, а открытие новых фактов, лежащих за этими границами, требует создания более общих теорий, включающих в себя прежние теории в качестве предельных случаев.

В XX столетии, можно сказать на наших глазах, развернулась вторая революция в астрономии, в ходе которой был открыт целый ряд неизвестных ранее явлений во Вселенной, необычных с точки зрения существовавших представлений, и выяснилось, что на всех уровнях Вселенной во всех масштабах происходит эволюция, что все космические объекты имеют определенную историю, изменяются с течением времени. Этот вывод явился, так сказать, методологическим итогом революции в современной астрономии, превратившим астрофизику в эволюционную науку. Однако, судя по всему, конкретные открытия, связанные с этой революцией, будут продолжаться и могут привести к обнаружению, новых неизвестных космических процессов и к более глубокому пониманию физической сущности мегаскопических явлений, в частности к дальнейшему выяснению взаимосвязи между микропроцессами и процессами космического порядка.

Таковы важнейшие, фундаментальные этапы развития научных представлений о Вселенной. В этом свете появление «антропного принципа» и его осмысление с позиций диалектического материализма, возможно, является новым качественным скачком, знаменующим собой выход на качественно новый уровень совершенствования наших представлений о мироздании.

Ведь, этот принцип приводит нас к уже упомянутому выводу о том, что скорее всего наша Вселенная не исчерпывает собой материального мира, к заключению о вероятном существовании множества, быть может бесчисленного, других вселенных — «Метавселенной».

Поэтому не исключено, что открытие «антропного принципа» может послужить началом новой очередной революции в естествознании.

Правда, пока в рамках возможностей современных методов астрофизических исследований «другие вселенные» являются ненаблюдаемыми. Однако заметим, что первоначальные факты, знаменовавшие собой развитие революций в естествознании, рождались в границах традиционных представлений и в результате использования уже существовавших методов. Но дальнейшее изучение этих фактов вызывало к жизни и новые способы исследования, которые в свою очередь приводили к открытию новых фактов. И так далее. Такова диалектика познания.

Как уже было отмечено выше, наше существование тесно связано со всем предшествующим ходом развития материи в нашей Вселенной: появлением химических элементов, которые синтезировались в недрах звезд и при вспышках сверхновых звезд, образованием планет и т. п. Таким образом, наш организм как бы отражает все предшествующие этапы эволюции Вселенной. Если бы хотя бы один из них не осуществился, мы не могли бы появиться и существовать.

Таким образом, Вселенная в полном смысле слова является средой нашего обитания. И свойства этой среды, а также закономерности ее изменений мы должны изучать с не меньшей тщательностью, чем изучаем свойства земной среды.

Наукой о свойствах космической среды и является астрофизика.

В свое время еще Карл Маркс предсказывал, что развитие естественных и общественных наук неизбежно приведет к тому, что вся наука превратится в науку о Человеке.

Этот процесс, который можно назвать процессом гуманизации науки, в том числе и современного естествознания, уже происходит. Коснулся он и науки о Вселенной. В прошлом на ученого-астронома нередко смотрели как на человека, уединившегося от мира для наблюдения явлений, не имеющих никакого отношения к земным делам. Впрочем, подобные представления и тогда не соответствовали действительности, поскольку астрономия как наука возникла именно для удовлетворения практических потребностей людей. Произошло это еще в глубокой древности, когда наши предки ощутили потребность ориентироваться в пространстве и во времени. Решать эти задачи им помогали наблюдения небесных светил. И на протяжении многих столетий астрономия исправно выполняла эти свои функции.

Задачи и возможности современной науки о Вселенной неизмеримо шире. И многие проблемы, которые она решает и, в особенности, будет решать в обозримом будущем, имеют важнейшее общечеловеческое значение. Не только потому, что знания, добытые в глубинах космоса, позволит людям поставить себе на службу новые силы природы и новые источники энергии. Но еще и потому, что астрономия, познавая строение Вселенной, вносит весьма существенный вклад в формирование научной картины мира. А научная картина мира — это основа нашего материалистического мировоззрения. Мировоззрения, основанного не на простом созерцании и простой регистрации фактов, а формирующегося в результате активной деятельности человека.

То обстоятельство, что мы живем в расширяющейся нестационарной Вселенной, в которой протекают необратимые физические процессы, делает особенно необходимым такое научное прогнозирование дальнейших путей развития земной цивилизации, которое принимало бы во внимание и космические закономерности.

Мы хотели бы закончить нашу книгу словами академика Я. Б. Зельдовича: «Вопрос о том, как устроен окружающий нас мир, по-прежнему стоит перед физикой, и многое еще неясно… Сейчас в физике — период, когда мы отчетливо видим вопросы, которые надо задавать природе, чтобы успешно продвигаться вперед в понимании устройства материи».

Примечания

1

1 электронвольт (эВ) — энергия, которую приобретает электрон при свободном движении между точками электрического поля с разностью потенциалов, равной 1 вольту (1 В). Эта энергия равна 1,6·10-19 Дж.

(обратно)

2

1 кэВ (килоэлектронвольт) = 1000 эВ = 103 эВ, 1 МэВ (мегаэлектронвольт) = 1000 кэВ = 106 эВ, 1 ГэВ (гигаэлектронвольт) = 1000 МэВ = 109 эВ.

(обратно)

3

Световой год — расстояние, которое свет проходит за один год; 1 световой год = 9,46·1012 км.

(обратно)

4

Ангстрем = 1 А = 10-10 м.

(обратно)

5

1 парсек (пс) = 3,09·1013 км = 3,26 светового года, 1 мегапарсек (Mпc) = 1 000 000 пс= 106 пс.

(обратно)

6

Они названы так по имени исследовавшего этот тип звездных систем академика АН Армянской ССР Б. Е. Маркаряна.

(обратно)

7

Приводимые в книге обозначения М, NGC, ЗС и др. с номером — это обозначения небесных объектов (туманностей, галактик, квазаров) в различных каталогах.

(обратно)

8

Шкловский И. С. Проблемы метагалактической астрономии. — Земля и Вселенная, 1982, № 3, с. 20.

(обратно)

9

Аккреция — процесс выпадения на звезду окружающего вещества.

(обратно)

10

Вайнберг С. Первые три минуты. — М.: Энергоиздат, 1981, с, 12.

(обратно)

11

В современной физике рассматриваются четыре типа фундаментальных взаимодействий: сильное, электромагнитное, слабое и гравитационное взаимодействия. Для протонов с энергией 1 ГэВ интенсивности физических процессов, обусловленные этими взаимодействиями, относятся как 1: 10-2; 10-10 : 10-38.

(обратно)

12

Уэллс Г. Человек-невидимка, — М, Художественная литература, 1978, с, 88.

(обратно)

13

Гинзбург В. Л. — Наука и жизнь, 1982, № 6, с, 26.

(обратно)

14

Гинзбург В. Л. — Наука и жизнь, 1982, № 6, с, 27.

(обратно)

15

Гинзбург В. Л. — Наука и жизнь, 1982, № 5, с, 70.

(обратно)

16

Там же, № 6, с, 24.

(обратно)

17

Федосеев П, Н, В. И, Ленин и философские проблемы современного естествознания: Итоги и перспективы. — М. Наука, 1981, с. 13.

(обратно)

18

Аристотель. Физика. — М., 1937, с, 97.

(обратно)

19

Лосев А. Ф. Античный космос я современная наука. — М., 1927, с, 432; Очерки античного символизма и мифологии. — М., 1930.

(обратно)

20

Наан Г, И. Бесконечность и Вселенная. — М.: Наука, 1969.

(обратно)

21

Платон. Соч.: Т, 2, — М.: Наука, 1970, с. 457–458.

(обратно)

22

В свободном состоянии нейтрон нестабилен — время его жизни составляет 16 минут.

(обратно)

23

Новиков И., Лукаш В. Эхо «большого взрыва». — Наука и жизнь, 1981, № 7, с. 4.

(обратно)

24

Зельдович Я. В, Современная космология. — Природа, 1983, № 9, с. 12.

(обратно)

25

Барионы — «тяжелые» элементарные частицы с массой, равной или превосходящей массу протона.

(обратно)

26

Космология, теория и наблюдения: Сб. статей. — М.: Мир, 1978.

(обратно)

27

Девис П. Пространство и время в современной картине Вселенной — М.: Мир, 1979, с. 267–268.

(обратно)

Оглавление

  • Предисловие
  • Среда обитания — космос
  • Глава I. От астрономии оптической к астрономии всеволновой
  •   Научное оружие астрономов
  •   Астрономы «смотрят» на небо
  •   Второй вестник Вселенной
  •   Они «слушают» космос
  •   Из разных точек
  •   По соседству со светом
  •   Астрофизика высоких энергий
  •   Взгляд в завтрашний день
  • Глава II. Сюрпризы Вселенной
  •   Видимый космос
  •   «Соты» Вселенной
  •   Космические выбросы
  •   Очередная загадка!
  •   Излучение из прошлого
  •   Изотропна ли Вселенная?
  •   И звезда с звездою «говорит»
  •   Загадочный фон
  •   В нейтринном «свете»
  •   Новое тело в Солнечной системе
  •   Черные дыры
  •   Космические иллюзии
  • Глава III Вселенная
  •   «Вселенная естествоиспытателя»
  •   Круг (научная фантастика)
  •   Куда течет река времени?
  •   Великое объединение
  •   В расширяющейся Вселенной
  •   От настоящего к прошлому
  •   Миры и антимиры
  •   От настоящего к будущему
  •   Игра во внеземные цивилизации по-научному
  • Вместо заключения
  •   Сценарий для Вселенной (научная фантастика)
  •   Вселенная и человек Fueled by Johannes Gensfleisch zur Laden zum Gutenberg

    Комментарии к книге «Занимательная астрофизика», Виктор Ноевич Комаров

    Всего 0 комментариев

    Комментариев к этой книге пока нет, будьте первым!

    РЕКОМЕНДУЕМ К ПРОЧТЕНИЮ

    Популярные и начинающие авторы, крупнейшие и нишевые издательства